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Abstract 

Pancreatic neuroendocrine neoplasms (PNENs) are biologically and clinically 

heterogeneous neoplasms in which pathogenic alterations are often indiscernible. 

Treatments for PNENs are insufficient in part due to lack of alternatives once current 

options are exhausted. Despite previous efforts to characterize PNENs at the molecular 

level, there remains a lack of molecular subgroups and molecular features with clinical 

utility for PNENs. In this work, I describe the identification and characterization of four 

molecularly distinct subgroups from primary PNEN specimens using whole-exome 

sequencing, RNA-sequencing and global proteome profiling. A Proliferative subgroup 

with molecular features of proliferating cells was associated with an inferior overall 

survival probability. A PDX1-high subgroup consisted of PNENs demonstrating genetic 

and transcriptomic indications of NRAS or HRAS activation. An Alpha cell-like subgroup, 

enriched in PNENs with deleterious MEN1 and DAXX mutations, bore transcriptomic 

similarity to pancreatic α-cells and harbored proteomic cues of dysregulated metabolism 

involving glutamine and arginine. Lastly, a Stromal/Mesenchymal subgroup exhibited 

increased expression and activation of the Hippo signaling pathway effectors YAP1 and 

WWTR1 that are of emerging interest as potentially actionable targets in other cancer 

types. Whole-genome and whole-transcriptome analysis of PNEN metastases identified 

novel molecular events likely contributing to pathogenesis, including one case 

presumably driven by MYCN amplification. In agreement with the findings in primary 

PNENs, four of the metastatic PNENs displayed a substantial Alpha cell-like subgroup 

signature and all harboured concurrent mutations in MEN1 and DAXX. Collectively, the 

identified subgroups present a potential stratification scheme that facilitates the 

identification of therapeutic vulnerabilities amidst PNEN heterogeneity to improve the 

effective management of PNENs. 

Keywords:  pancreatic neuroendocrine neoplasms; whole-genome sequencing; 

whole-exome sequencing; RNA-sequencing; proteomic profiling 
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Chapter 1.  
 
Introduction to pancreatic neuroendocrine 
neoplasms 

Neuroendocrine neoplasms (NENs) are a group of rare but heterogeneous 

tumours arising from neuroendocrine cells that can be found within dedicated endocrine 

tissues and diffusely throughout the body (Oronsky et al., 2017). The endocrine 

compartment of the pancreas, the islets of Langerhans, (Figure 1.1) is an example of 

dedicated endocrine tissue from which pancreatic NENs (PNENs) can arise. The history 

of NENs began in the mid-to-late 19th century with the repeated post-mortem 

observations of atypical masses in the small intestine. In contrast to the aggressive 

behaviours typically seen with carcinomas, these masses had no or low-grade invasion 

into the surrounding tissues and were referred to as “benign carcinomas” by the German 

physician and pathologist Siegfried Oberndorfer (Modlin et al., 2004). These “benign 

carcinomas” were rarely observed, and as such the indications and characteristics of 

these tumours remained cryptic until an entity-defining publication by Oberndorfer in 

1907 (Modlin et al., 2004). In his seminal paper, Oberndorfer proposed that these rare 

growths belong to a novel disease entity and coined the term “karzinoide”, now referred 

to as carcinoid, to describe their “carcinoma-like” characteristics while distinguishing 

them from the classical carcinomas with highly aggressive clinical behaviours (Modlin et 

al., 2004; Oberndorfer, 1907). Nearly a decade later, it was found that carcinoid tumours 

shared biochemical properties with a neuroendocrine cell type in the small intestine, 

specifically in their ability to reduce silver salts (ie. argentaffin). This similarity suggested 

neuroendocrine cells as the likely cells-of-origin of carcinoid tumours (Modlin et al., 

2004) and marked the first evidence supporting the probable neuroendocrine origin of 

carcinoid tumours. 

Subsequent to the discoveries of small intestinal carcinoid tumours, tumours of 

similar clinical and biochemical behaviours were observed in other organs such as the 

stomach and pancreas (Feyrter, 1938). It is now recognized that tumours can originate 

from neuroendocrine cells found throughout the body (Oronsky et al., 2017). Despite 

their rather short history since discovery, the terminologies for these neuroendocrine 
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cell-derived neoplasms have gone through considerable modifications. For the purpose 

of this thesis, they are generically referred to as NENs, which include any neoplasms 

with neuroendocrine differentiation. 

 

Figure 1.1. The exocrine and endocrine components of the pancreas. 
The pancreas consists of an exocrine component, acinar and duct cells, and an endocrine 
component, islets. The islets are scattered throughout the pancreas and are clusters of different 
cell types that secrete various hormones for maintaining body homeostasis. The image was 
adapted from the original work by OpenStax College, obtained from the public domain Wikimedia 
(under the license CC BY 3.0). 

Among NENs of different primary sites, those arising from the gastrointestinal 

(GI) tract and the pancreas were typically combined in earlier studies and referred to as 

gastroenteropancreatic NENs (GEP-NENs) due to the anatomical proximity and similar 

cells of origins of these organs (Modlin et al., 2008). However, it was later recognized 

that PNENs differed from extrapancreatic NENs in their responses to therapies (Kulke et 
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al., 2011), warranting separate assessments and considerations for PNENs (Kunz, 

2015). Since PNENs have been analyzed separately from other NENs in the last decade 

only, studies focusing solely on PNENs have been limited; many of the early studies 

included PNENs as part of a study on NENs of all sites or GEP-NENs. Our knowledge of 

PNENs has therefore lagged and there is a dire need for the clinical, biological, and the 

integrated understanding of this under-studied disease to facilitate clinical management 

of PNENs. In this chapter, an abundance of background information referenced and 

introduced relates to NENs in general or GEP-NENs. Where applicable, studies or 

results specific to PNENs are indicated. 

1.1. Incidence and prevalence of PNENs 

NENs are considered rare neoplasms accounting for ~1.5% of new cancer 

diagnoses, but the annual incidence of NENs increased 6.4-fold while the incidence of 

all malignancies remained stable between 1973 and 2012 (Dasari et al., 2017). This 

rising NEN incidence has largely been due to expanded availability of advanced imaging 

technologies and has led to increased diagnosis of early-stage diseases, suggesting the 

prevalence of NENs is higher than originally expected despite their low incidence (Dasari 

et al., 2017; Hallet et al., 2015). Indisputably, due to their typically slow-growing nature, 

the prevalence of NENs has exceeded those of esophageal, gastric, pancreatic and 

hepatobiliary cancers (Yao et al., 2008). For PNENs, the annual incidence increased 

substantially from less than 0.2 to 0.84 per 100,000 individuals in the United States 

between 1973~2012 (Dasari et al., 2017) and from 0.1 to 0.6 per 100,000 individuals in 

Canada (Ontario) between 1994~2009 (Hallet et al., 2015). The proportion of metastatic 

disease among new diagnoses, however, decreased during the period while more 

patients presented with localized disease, supporting the hypothesis that increased 

detection of early-stage disease is leading to higher incidence (Dasari et al., 2017; Hallet 

et al., 2015). 

1.2. Evolution of cancer classification in PNENs 

A cancer classification system not only divides a cancer type into classes based 

on similar presentations and anatomical locations but also aids in providing prognostic 

and therapeutic implications for a given class to facilitate clinical management (Carbone, 
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2020). Our initial paucity and recent exponential gain of knowledge of PNENs is perhaps 

best represented by the numerous attempts to devise a classification system, initially for 

NENs and more recently for PNENs specifically, over the course of the past 6 decades. 

 Classification of NENs based on embryological origin 

Establishment of a cancer classification system relies on, and is built upon, prior 

clinical observations and evidence, which were seemingly lacking during the early years 

following the first recognition of NENs. The first classification system for NENs was 

proposed by Williams and Sandler in 1963, 56 years after Oberndorfer coined the term 

“karzinoide” (Modlin et al., 2004). In their paper, Williams and Sandler suggested that 

NENs could be grouped based on the embryological origin of the organ from which a 

NEN arose from. This stratified NENs into foregut, midgut and hindgut NENs (Figure 

1.2). Their recommendation was based on the observations that NENs could vary in 

histological structures, frequency of cells being argentaffin, secretion of 5-

hydroxytryptophan (5-HTP) and accompanying carcinoid syndrome in patients (Williams 

and Sandler, 1963). Formulated on the combination of these characteristics, NENs 

arising from the foregut (eg. bronchus, stomach and pancreas), midgut (eg. mid-

duodenum, cecum and mid-transverse colon), or hindgut (eg. descending colon and 

rectum) were found more similar to those arising from organs of the same embryological 

origin than those that differed (Williams and Sandler, 1963). Although this classification 

system is now considered superficial, it was a pioneering effort to classify NENs based 

on histopathology, which remains the foundation for the current NEN classification 

system established by the World Health Organization (WHO). 
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Figure 1.2. Embryological classification of NENs. 
The carcinoid tumours first identified by Siegfried Oberdorfer in 1907 in the small intestine were 
subsequently found in other organs and later classified by Williams and Sandler in 1963 based on 
embryological origins. The foregut, midgut and hindgut carcinoid tumours were found to differ in 
frequencies of being argentaffin, accompanying carcinoid syndrome and 5-HTP and histological 
presentations. Note that a recent study identified a greater proportion of small intestinal NENs 
with carcinoid syndrome compared to NENs of the lungs or other primary sites (Halperin et al., 
2017). Image of the gut was adapted from the original work by Mikael Häggström, obtained from 
the public domain Wikimedia Human body diagrams (under the license CC0). 

 Earlier editions of the WHO classification of PNENs 

The WHO classification system is currently the only clinically relevant and 

standardized classification for PNENs. Its antecedent, the International Histological 

Classification of Tumours (IHCT), commenced in 1967 and primarily relied on 

histological examinations (Sobin, 1981) which later incorporated immunohistochemical 

(IHC) assessments in the subsequent edition (Sobin, 1989). The first and second 

editions of IHCT on GI cancer were published in 1976 and 1990, respectively. The later 
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edition improved on a few key cancer types, including GEP-NENs (still referred to as 

carcinoids at the time) for which the IHC assessments of hormones (eg. gastrin, 

somatostatin, pancreatic polypeptides) superseded the traditional silver staining in 

subclassifying GEP-NENs (Jass et al., 1990) (Table 1.1). 

Table 1.1. Evolution of WHO classification systems for PNENs. 

Classification 
System 

Well-differentiated 
Poorly-

differentiated 
Mixed 

Histology 

IHCT 

1976/1990 

Carcinoid 

Argentaffinity (1st edition) 

IHC of specific hormones (2nd edition) 

Histology (for diagnosis only) 

  

2000/2004 
WHO 

(PNEN) 

WDET 

Benign 

Confined to pancreas 

No perineural invasion 

No angioinvasion 

< 2 cm in diameter 

< 2 mitotic rateb or < 2% Ki67 

 

Uncertain Behaviour 

Confined to pancreas 

At least one of: perineural invasion, angioinvasion, > 
2cm in diameter, 2-10 mitotic rate or > 2% Ki67 

 

WDEC 

Local invasion and/or metastases 

PDEC 

> 10 mitotic rate 

 

2010 

WHO 

(GEP-NEN)a 

NET-G1 

< 2 mitotic rate 
or  

≤ 2% Ki67 

NET-G2 

2-20 mitotic rate 
or  

3-20% Ki67 

NEC-G3 

> 20 mitotic rate 

or 

> 20% Ki67 

LC or SC 

MANEC 

≥ 30% are 
NE cells 

2017/2019 

WHO 

(PNEN) 

NET-G1 

< 2 mitotic rate 

or 

< 3% Ki67 

NET-G2 

2-20 mitotic rate 

or 

3-20% Ki67 

NET-G3 

> 20 mitotic rate 

or 

> 20% Ki67 

NEC 

LC or SC type 

MiNEN 

≥ 30% are 
NE cells 

aThe hyperplasia/dysplasia class from the WHO 2010 classification referred to pre-neoplastic lesions and is excluded 
from this table. bMitotic rate: number of mitotic cells / 10 high power fields. IHC: immunohistochemistry, NE: 
neuroendocrine, NEN: NE neoplasm, NEC: NE carcinoma, NET: NE tumour, GEP-NEN: gastroenteropancreatic NEN, 
PNEN: pancreatic NEN, MANEC: mixed adeno-neuroendocrine carcinoma, MiNEN: mixed neuroendocrine-
nonneuroendocrine neoplasm, WDET: well-differentiated endocrine tumour, WDEC: well-differentiated endocrine 
carcinoma, PDEC: poorly-differentiated endocrine carcinoma, LC: large cell, SC: small cell, WHO: World Health 
Organization. 



7 

Ten years later, the WHO Classification of Tumours project replaced and 

continued the mission of the IHCT in standardizing cancer classifications based on 

histopathology with the addition of molecular genetics to facilitate clinical management 

(Kleihues and Sobin, 2000). This refreshed classification system also included the first 

WHO classification section dedicated to PNENs (published in 2004). The 2000/2004 

WHO classification system proposed to classify PNENs based on histological 

differences, prognostic markers and stage of the disease into three groups: well-

differentiated endocrine tumour (WDET), well-differentiated endocrine carcinoma 

(WDEC) and poorly-differentiated endocrine carcinoma (PDEC); this classification was 

similarly proposed for other GEP-NENs. For PNENs, WDETs were those confined to the 

pancreas and were further subclassified into benign or tumours of uncertain behaviour 

based on size, proliferative potential, and presence of vascular and perineural invasions. 

WDECs were NENs with evidence of gross local invasion and/or metastases, while 

PDECs were those of poorly-differentiated histology and high proliferative potential 

(Heitz et al., 2004) (Table 1.1). The criteria implemented in this system, however, 

overlapped largely with cancer staging (eg. local invasion and distant metastasis), and 

the intrinsic ambiguities associated with WDETs of uncertain behaviour could potentially 

lead to confusions between clinicians and pathologists. Updates to the WHO 

classification for GEP-NENs were therefore proposed to address these concerns (Rindi 

et al., 2014). 

In 2010, a new edition of the WHO classification for GEP-NENs was published 

and similarly implemented the histological differentiation and proliferative potential 

criteria of its predecessor. However, it also proposed major rectifications, including the 

use of “neuroendocrine” instead of “endocrine” to better reflect the biological nature of 

NENs. Therein, GEP-NENs were grouped into five classes: 1) neuroendocrine tumour 

(NET)-G1, 2) NET-G2, 3) neuroendocrine carcinoma (NEC)-G3, 4) mixed adeno-

neuroendocrine carcinoma (MANEC), and 5) hyperplastic/dysplastic neoplasm. The term 

“carcinoma” implies poorly-differentiated histology and NECs may be of small cell or 

large cell type (Rindi et al., 2010). The term “NENs” was used as a generic term to refer 

to both NETs and NECs, and this usage is adopted throughout this thesis. 
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Among the five classes, NET-G1/2 and NEC-G3 were defined according to 

proliferative potential (based on Ki67 or mitotic index), while MANEC and 

hyperplastic/dysplastic neoplasm (Rindi and Solcia, 2007) were defined based on 

histological and morphological assessments (Table 1.1). The grading-based grouping of 

the first three classes proved to be prognostically significant, however, it was later 

determined inadequate due to a Ki67 categorization gap between NET-G1 (≤ 2% Ki67 

index) and NET-G2 (3–20% Ki67 index) and the assumption that all NECs-G3 were 

poorly-differentiated and with high proliferative potential (Rindi et al., 2014). These 

limitation and assumption were particularly evident for NENs in the pancreas, where the 

histological differentiation status is highly correlated with responses to different therapies 

(Inzani et al., 2018). 

 Current classification system 

Subsequently in 2017, the WHO classification was updated for PNENs to include 

a NET-G3 class to accommodate well-differentiated PNENs (ie. PNETs) with a 

proliferative potential greater than the G2 range. The grading threshold of NET-G1 was 

also increased from ≤ 2 to < 3% Ki67 index (Lloyd et al., 2017). In addition, the updates 

in the 2017 classification system included removal of the hyperplastic/dysplastic class 

and redefinition of MANEC into mixed non-neuroendocrine-neuroendocrine neoplasm 

(MiNEN) that encompasses NENs with substantial neuroendocrine and non-

neuroendocrine components (Table 1.1). 

At the time of writing this thesis, the release of the new edition of the WHO 

Classification of Tumours series has commenced, with the first volume published in 

2019 covering cancers of the GI tract including GEP-NENs. In this most up-to-date 

version, GEP-NENs are classified similar to the 2017 WHO classification for PNENs, 

and no specific changes were proposed for PNENs. This 2017/2019 WHO classification 

of PNENs has been widely adapted, and the works that will be introduced in the 

subsequent chapters of this thesis are based on the criteria and terminologies of this 

updated classification system. That is, PNENs are divided based on their histological 

differentiation into well-differentiated PNETs and poorly-differentiated PNECs, where 

PNETs may be further classified into G1-3 based on proliferative potential and PNECs 

may be of small-cell type (PNEC-SC) or large-cell type (PNEC-LC) (Table 1.1). 
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 Cancer staging system 

In addition to the WHO classification, it is worth mentioning that PNENs are 

TNM-staged like other cancer types as of 2009 using the American Joint Committee on 

Cancer (AJCC) 7th edition staging system (Kulke et al., 2010a). The TNM staging 

describes the size (T), and evidence of local spread (N) and distant metastasis (M) of 

any given tumour to aid with its clinical management. This TNM staging system is used 

complementarily to the WHO classification system for clinical management. 

1.3. Clinical heterogeneity 

A major hurdle in the management of PNENs is clinical heterogeneity, where 

patients present with a wide spectrum of clinical manifestations and the neoplasms have 

variable characteristics and responses to therapies. Although NENs were initially 

described as “benign carcinoma” due to their usually indolent clinical nature, disease-

related mortality has become evident, especially in patients with PNENs diagnosed in a 

metastatic setting or eventually becoming metastatic (Hallet et al., 2015; Niederle et al., 

2010). Indeed, patients with PNENs have among the shortest median overall survival 

time (3.6 years) compared to patients with NENs in general (9.3 years), but the 5-year 

overall survival probabilities for patients with PNENs have been reported to range from 

26% to 100% depending on various clinical phenotypes (Halfdanarson et al., 2008; Yao 

et al., 2008). Variables such as the spread of the disease at the time of diagnosis, the 

spectrum of symptoms patients present with, the underlying hereditary cancer 

syndromes leading to predisposition of PNENs and the variable responses to treatments 

all contribute to the often unpredictable disease prognosis and behaviours of PNENs. 

 Functional vs nonfunctional PNENs 

PNENs can be clinically defined as functional or nonfunctional, which is 

independent from their WHO classification designation. Functional PNENs are found in 

patients presenting with hormonal syndromes resulting from the hypersecretion of one or 

more amines or peptides by the neoplasms. In comparison, nonfunctional PNENs do not 

result in specific hormonal syndromes and are more clinically silent but account for the 

majority of PNEN incidences (Halfdanarson et al., 2008) (Table 1.2). Functional PNENs 

are named according to the hormone they secrete in excess, and the most common 
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functional PNENs are insulinomas and gastrinomas with hypersecretion of insulin and 

gastrin, respectively (Halfdanarson et al., 2008; Ito et al., 2012). Each of these 

hormones, when secreted in excess, leads to a particular syndrome often with 

nonspecific manifestations. For example, a patient with insulinoma may suffer from 

hypoglycemia due to excessive insulin secretion by the neoplasms (Hofland et al., 

2020a). Hypersecretion of more than one hormone in functional PNENs is rare and has 

only been observed in metastatic cases (Crona et al., 2016). 

Table 1.2. The proportional of functional vs nonfunctional PNENs in reported 
cohorts. 

 Proportion of all PNENs 

Functional PNENs  

Insulinoma 30-45% 

Gastrinoma 16-30% 

VIPoma < 10% 

Glucagonoma < 10% 

Nonfunctional PNENs 25-100% 

Data adapted from (Halfdanarson et al., 2008). The data had originally been compiled by Halfdanarson et al. from 25 
prior studies. For functional PNENs, only the four most common types are shown. VIP: vasoactive intestinal peptide. 

The indication of whether a PNEN is functional or nonfunctional is strictly defined 

within the clinical setting: nonfunctional PNENs may still be secretory, but their 

secretions do not result in clinically significant syndromes (Ito et al., 2012). This 

functional status indication is important from a clinical perspective, as the resultant 

hormonal syndrome often needs to be controlled concurrent with the anti-cancer 

regimen directed at the PNENs (Ito et al., 2012). Yet, despite functional PNENs causing 

hormonal syndromes, the prognoses of functional PNENs are typically better than 

nonfunctional PNENs (Wang et al., 2011a). For instance, patients with benign 

insulinomas have a 10-year overall survival rate of 78%, while patients with 

nonfunctional PNENs have a 5-year overall survival rate of 26-58% (Halfdanarson et al., 

2008). The reasons behind this survival difference are not entirely known but may be 

partly attributed to a greater proportions of functional PNENs (insulinomas in particular) 

being benign and most nonfunctional PNENs becoming only symptomatic and detected 

at later disease stage (Cloyd and Poultsides, 2015; Halfdanarson et al., 2008; Vinik et 

al., 2010). 
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 Hereditary cancer syndromes 

The vast majority of PNENs are sporadic, but it has been well-established that a 

few hereditary cancer syndromes can lead to predisposition of, and contribute to, up to 

10% of PNENs (de Wilde et al., 2012). These syndromes are the consequences of 

germline alterations to tumour suppressor genes menin 1 (MEN1), von Hippel-Lindau 

tumour suppressor (VHL), TSC complex subunit 1/2 (TSC1/2) and neurofibromin 1 

(NF1) that result in a multitude of hyperplastic/neoplastic growths in certain organs 

(Alexakis et al., 2004) (Table 1.3). The degrees to which PNENs contribute to the 

mortality of the patients with these hereditary cancer syndromes among various 

manifestations are not well-known, but the presence of PNENs was associated with an 

inferior survival outcome in patients with multiple endocrine neoplasia type I (MEN1) 

syndrome (Jensen et al., 2008), suggesting PNENs contribute, at least partially, to the 

mortality of patients presenting with these hereditary cancer syndromes. 

Table 1.3. Hereditary cancer syndromes leading to predisposition of PNENs. 

Hereditary cancer syndrome Affected gene Prevalence 
among population 

Frequency of PNENs 
in affected individuals 

Multiple endocrine neoplasia type I MEN1 1-10 / 100,000 60% 

Von Hippel-Lindau syndrome VHL 2-3 / 100,000 < 20% 

Neurofibromatosis type I NF1 1 / 3,000-4,000 < 10% 

Tuberous sclerosis complex TSC1/2 1 / 10,000 Rare 

Data adapted from (Alexakis et al., 2004; Ito et al., 2012; de Wilde et al., 2012). 

Multiple endocrine neoplasia type I syndrome 

MEN1 syndrome is a rare autosomal dominant condition that results from 

germline alterations in the MEN1 gene and is characterized by hyperplastic/neoplastic 

growths in the parathyroid, enteropancreatic tissues and pituitary. PNENs are evident in 

more than 60% of MEN1 patients. And similar to sporadic PNENs, MEN1-associated 

PNENs may be functional or nonfunctional, with the latter constituting the majority of 

observations (Ito et al., 2012; Jensen et al., 2008). 

Von Hippel-Lindau syndrome 

Von Hippel-Lindau (VHL) syndrome is also a rare autosomal dominant condition. 

Patients with VHL syndrome harbour germline alterations in the VHL genes and typically 

present with multiple tumours and/or cysts of various phenotypes. PNENs are observed 
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in less than 20% of patients with VHL syndrome, but nearly all VHL syndrome-

associated PNENs are nonfunctional (Alexakis et al., 2004; Ito et al., 2012; Jensen et al., 

2008). 

Neurofibromatosis type I 

Neurofibromatosis type I (NF1) disorder results from germline alterations in the 

NF1 gene and is a relatively common condition compared to MEN1 and VHL (Alexakis 

et al., 2004). Common clinical manifestations of NF1 include disorders of the nervous 

system such as benign or malignant tumours of the central and peripheral nervous 

systems. Only up to 10% of patients with NF1 disorder develop PNENs, and these 

PNENs can be functional or nonfunctional (Ito et al., 2012; Jensen et al., 2008).  

Tuberous sclerosis complex 

Tuberous sclerosis complex (TSC) is an autosomal dominant condition and 

occurs as a results of germline alterations in the TSC1 or TSC2 genes. Patients with 

TSC often present with hamartomas and neoplasms in multiple organs (Alexakis et al., 

2004; Ito et al., 2012; Jensen et al., 2008). Pancreatic involvement is not common in 

patients with TSC, but PNENs are the most common pancreatic lesion in patients with 

TSC and may be functional or nonfunctional (Ito et al., 2012; Larson et al., 2012). 

 Treatments and responses 

Clinical management of PNENs is complicated by multiple factors such as the 

functional status, the spread of the disease and the WHO classification. All of these 

contribute to the clinical behaviour of PNENs and thus largely dictate the optimal 

treatment regimen for each patient. In general, removal of tumour mass is the mainstay 

when feasible, and a surgical resection with curative intent is standard for localized 

PNENs. For metastatic cases, cytoreductive surgery and/or liver-directed therapies may 

be recommended to target the primary and secondary lesions, respectively (Kunz, 

2015). For progressive, unresectable, metastatic and/or symptomatic PNENs, systemic 

treatments are administered, where the particular therapeutic agents considered depend 

on the WHO classification and the functional status of the tumour (Kunz, 2015; Li et al., 

2020). 
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PNECs 

PNECs are generally treated differently from PNETs due to historically observed 

differences in treatment responses between NENs of different histological differentiation. 

In most cases, NECs are treated similarly regardless of their primary sites, while 

different targeted treatments are recommended for NETs depending on their primary 

sites (Kunz, 2015). The current standard systemic treatment for NECs is cisplatin with 

etoposide, which had originally been administered for patients with small cell lung 

cancer, a type of lung NEC (Strosberg et al., 2010). This combination achieved an 

excellent response rate in patients with NECs (67% overall tumour regression rate) but 

dreadful response rate in patients with NETs (7% overall tumour regression rate) 

(Moertel et al., 1991). A retrospective study of GEP-NECs-G3 (2010 WHO classification) 

found increased median overall survival time in patients treated with a combination of 

platinum-based agent (cisplatin or carboplatin) and etoposide (11 months; 95% CI of 

9.4-12.6 months) versus patients under best supportive care (1 month; 95% CI of 0.3-1.8 

months). Of note, a lower response rate to the treatment combination was observed in 

GEP-NECs-G3 with <55% Ki67 index (15% vs 42%), though GEP-NECs-G3 with <55% 

Ki67 index were associated with a slightly better survival outcome compared to >55% 

Ki67 index (Sorbye et al., 2013). However, this study did not examine or distinguish the 

histological differentiation status of the specimens. Among PNENs, NETs-G3 often have 

<55% Ki67 index, whereas most NECs have >55% Ki67 index (Basturk et al., 2015; 

Tang et al., 2016). While randomized clinical trials specifically for PNECs are lacking, the 

greater response rate to platinum-based therapy observed in GEP-NECs-G3 with >55% 

Ki67 index likely suggests a similarly differential response rate to cisplatin-based therapy 

in PNECs vs PNETs-G3. 

PNETs 

Systemic therapies for PNETs are administered to control tumour growth and/or 

symptoms, where the latter are mostly attributed to the functional status of the tumour. 

For the purpose of this thesis, only tumour-controlling therapeutic agents for PNETs are 

discussed. 

Somatostatin analogues 

Somatostatin (SST) is a cyclic peptide that binds to somatostatin receptors 1~5 

(SSTR1~5) and regulates the release of multiple hormones, many of which cause 
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hormonal syndromes in patients with functional NENs (Günther et al., 2018). Given the 

inhibitory role of SST in releases of hormones and abundant expression of SSTRs on 

NEN cells, SST was expected to be of therapeutic value in patients with functional 

NENs. Due to the extremely short half-life of SST (< 3 minutes), attempts were made to 

synthesize SST analogs (SSAs) suitable in clinical settings (Lamberts et al., 1996). 

Octreotide was the first SSA introduced and has been used in the clinics since the 1980s 

(Kunz, 2015). Another SSA, lanreotide, was later approved and showed similar efficacy 

as octreotide but with easier administration (O’Toole et al., 2000). SSAs inhibit SSTR2/5 

and elicit clinical benefits in patients with functional NENs by suppressing their levels of 

circulating hormones such as insulin and glucagon thereby alleviating the associated 

symptoms (Kvols et al., 1987; Lamberts et al., 1996; O’Toole et al., 2000). Considering 

their clinical benefits and historical success, SSAs are the mainstays for alleviating 

functional syndromes in patients with functional NENs (Hofland et al., 2020b; Kunz, 

2015; Li et al., 2020).  

In addition to their suppressive effects on hormone secretion, SSAs were found 

to elicit antitumour effects. In a randomized, double-blind phase 3 trial involving patients 

with metastatic nonfunctional enteropancreatic NETs, treatment with lanreotide improved 

progression-free survival compared to treatment with placebo (median survival time not 

reached vs 18.0 months). Among the patients with metastatic nonfunctional PNETs (n = 

91), multivariate analysis showed improved progression-free survival rate in those 

treated with lanreotide vs placebo (hazard ratio of 0.58; 95% CI of 0.32~1.04) (Caplin et 

al., 2014). 

Building upon the abundance of SSTRs on the NEN cell surface, radiolabeled 

SSAs have been exploited for targeted therapy. This approach, called peptide receptor 

radionuclide therapy (PRRT), uses SSAs chelated with radionuclide to introduce 

localized radiation to SSTR-positive NEN cells (Hofland et al., 2020b). Two radiolabeled 

SSAs, 90Y-DOTATOC and 177Lu-DOTATATE, were investigated in several clinical trials 

and showed survival benefits in patients with metastatic SSTR-positive NENs 

(Brabander et al., 2017; Imhof et al., 2011). A phase 3 trial involving midgut NETs found 

increased progression-free survival (65.2% vs 10.8% at month 20) in patients treated 

with 177Lu-DOTATATE compared to octreotide (Strosberg et al., 2017). A phase 3 trial 

investigating the efficacy of 177Lu-DOTATATE in locally advanced or metastatic NETs-

G2/3 is still in recruitment phase at the time of writing (CinicalTrials.gov Identifier: 



15 

NCT03972488). While no randomized, prospective trial of PRRT exists for patients with 

PNENs, PRRT has been used for the treatment of metastatic SSTR-positive NENs in 

Europe since the 1990s (Kunz, 2015). A retrospective analysis of 68 patients with 

metastatic SSTR-positive PNETs treated with 177Lu-DOTATATE reported a disease 

control rate (sum of partial response, minor response and stable disease) of 81% 

(Ezziddin et al., 2014), suggesting patients with SSTR-positive PNENs are likely to 

benefit from PRRT. 

Chemotherapies 

Cytotoxic agents are considered for the treatment of advanced stage PNETs, 

and a combination of an alkylating agent and an antimetabolite is used. Historically, the 

combination of streptozocin and fluorouracil was used for the treatment of advanced 

PNENs (Moertel et al., 1992). However, due to limited response rate and toxicity, 

capecitabine plus temozolomide (Cap/Tem) has become the combination of choice for 

patients with advanced PNETs (Kunz, 2015). No phase 3 trials involving Cap/Tem have 

been conducted in patients with PNENs, but preliminary results from a recent phase 2 

trial (ClinicalTrials.gov Identifier: NCT01824875) involving patients with unresectable or 

metastatic PNETs-G2/3 suggested that treatment with Cap/Tem was favoured over 

temozolomide alone in improving progression-free survival (22.7 vs 14.4 months; HR = 

0.58) and overall survival (median overall survival not reached vs 38 months) with a 

response rate of 33% (Kunz et al., 2018; Li et al., 2020). 

Targeted therapies 

Aside from SSAs and cytotoxic agents, two molecularly targeted therapeutic 

agents have been approved for the treatment of advanced stage PNETs: everolimus and 

sunitinib. Targeted therapeutic agents exploit certain molecular vulnerabilities such as 

dysregulated signaling pathways to preferentially distress the tumours growth and/or 

viability. Everolimus is an inhibitor of the mechanistic target of rapamycin kinase (MTOR) 

that suppresses the PI3K/AKT/mTOR signaling pathway (Bhaoighill and Dunlop, 2019). 

A phase 3 trial involving patients with unresectable or metastatic PNETs-G2/3 showed 

increased progression-free survival (11 vs 4.6 months; HR = 0.35) but no overall survival 

benefit in patients treated with everolimus vs placebo. The authors remarked that the 

clinical benefits of everolimus treatment in patients with advanced PNETs were primarily 

stabilization or minor shrinkage of the tumours (Yao et al., 2011). Sunitinib is an inhibitor 
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of receptor protein-tyrosine kinases, among which include vascular endothelial growth 

factor receptors (VEGFRs) that induce angiogenesis (Roskoski, 2007). In a phase 3 trial 

involving patients with unresectable or metastatic PNETs of any grade, sunitinib 

treatment similarly increased progression-free survival (11.4 vs 5.5 months; HR = 0.42) 

compared to placebo treatment (Raymond et al., 2011). Although everolimus and 

sunitinib were shown to improve progression-free survival in patients with advanced 

PNETs, the tumour response rate to either agent was dismal (5% and 9.3%, 

respectively) suggesting these agents only provide therapeutic benefits in a small subset 

of patients with PNETs (Raymond et al., 2011; Yao et al., 2011). 

1.4. Molecular heterogeneity 

As with the evolution of their classification, our growing understanding of the 

molecular alterations underlying PNENs has revealed the highly heterogeneous nature 

of their molecular landscapes. Earlier studies identified potential driver genes 

contributing to PNEN development from investigating hereditary cancer syndromes 

(described in Section 1.3.2). These studies led to the identification of MEN1, VHL, NF1 

and TSC1/2 as putative driver genes in PNENs (Mafficini and Scarpa, 2019; Pipinikas et 

al., 2019). However, only less than 10% of PNENs are associated with cancer hereditary 

syndromes (de Wilde et al., 2012), and PNENs have a low tumour mutation burden 

(TMB; 0.82 mutations per megabase with a range of 0.04~4.56, compared to 2.64 with a 

range of 0.65~28.2 in pancreatic ductal adenocarcinoma [PDAC]), suggesting there are 

other molecular alterations beyond gene mutations that contribute to PNEN etiology and 

pathogenesis (Banck et al., 2013; Jiao et al., 2011; Scarpa et al., 2017). Omic 

approaches have become increasingly popular in molecular characterization studies 

over the past decade due to advancing technologies and declining costs. Accordingly, 

microarray and high-throughput sequencing technologies have been exploited to 

characterize the genome, epigenome and transcriptome of PNENs in attempts to identify 

clinically relevant molecular alterations. The results of these studies have culminated in 

the identification of recurrently altered genes, dysregulated signaling pathways and 

chromosomal anomalies among PNENs (Cao et al., 2013; Hong et al., 2020; Jiao et al., 

2011; Lawrence et al., 2018; Missiaglia et al., 2010; Roldo et al., 2006). More recently, 

different molecular subtypes of PNENs with prognostic implications were identified and 

described by separate groups (Cejas et al., 2019; Chan et al., 2018; Lawrence et al., 



17 

2018), including one study that compared patient PNENs with neoplasms from a 

genetically engineered mouse model with spontaneous PNEN development 

(Sadanandam et al., 2015). 

 Early biological studies using mouse models 

Early pathogenesis studies of PNENs were enabled by the development of the 

RIP-Tag mouse model by Douglas Hanahan during the 1980s. Hanahan created a 

fusion construct RIP-Tag by combining rat insulin promoter with SV40 large T antigen 

(Tag) and injected the fusion construct into mouse embryos. The resultant RIP-Tag litter 

had heritable tumour formations in the pancreas and died at an age of 9~12 weeks. The 

pancreatic lesions were confirmed as insulinomas and NECs (then-called “islet cell 

carcinomas”) that arose from transformed pancreatic β-cells (Hanahan, 1985). This 

mouse model provided the first evidence supporting the capability of pancreatic β-cells 

to give rise to PNENs. Subsequently, various genetically engineered mouse models 

provided evidence that PNENs may arise from the endocrine compartment of the 

pancreas depending on the genetic alterations introduced and the cells of targeted 

expression. Glucagonomas could arise from expression of Tag or deletion of tumour 

suppressor genes RB transcriptional corepressor 1 (Rb1) and transformation related 

protein 53 (Trp53) in pancreatic α-cells (Efrat et al., 1988; Glenn et al., 2014), and 

insulinomas could arise from β-cell-specific deletion of Men1 (Bertolino et al., 2003a). 

Interestingly, heterozygous Men1 mice developed PNENs with varying biochemical and 

histological characteristics including insulinomas, glucagonomas, NECs, as well as 

PNETs expressing both insulin and glucagon (Bertolino et al., 2003b). Recently, the 

insulinoma-associated 1 (Insm1) gene was linked to the development of metastatic 

nonfunctional PNENs using the RIP-Tag mouse model, suggesting pancreatic endocrine 

cells may give rise to functional and nonfunctional PNENs (Kobayashi et al., 2019). 

The RIP-Tag mouse was an exemplary model to elucidate not only the 

development of PNENs but also the progression of cancer in general, as it sustained a 

spectrum of pre-malignant and malignant lesions and showcased a continuum of 

progressive lesions reminiscent of cancer progression (Hanahan, 1985; Hanahan and 

Folkman, 1996). Hence, studies using this model system led to the identification of 

several cancer hallmarks (Hanahan and Folkman, 1996; Hanahan and Weinberg, 2000, 

2011). Using histological, temporal and statistical assessments of the pancreatic lesions 
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from the RIP-Tag model, Hanahan proposed two distinct pre-cancerous stages,  

hyperplastic and angiogenic, between normal islets and PNENs. It was found that ~50% 

of the islets in RIP-Tag mice became hyperplastic with hyperproliferation (Teitelman et 

al., 1988), possibly driven by aberrant insulin-like growth factor 2 (Igf2) gene expression 

(Christofori et al., 1994, 1995). Only a small percentage (1~2%) of the hyperplastic islets 

became angiogenic with evidence of neovasculatures and ultimately developed into 

PNENs upon loss of E-cadherin (Perl et al., 1998). Elevated expression of insulin growth 

factor 1 receptor (Igf1r) could accelerate the development of the PNENs (Lopez and 

Hanahan, 2002). The “angiogenic switch” was required for the progression of 

hyperplastic islets into adenomas that subsequently progressed into PNENs (Folkman et 

al., 1989). Treatment of RIP-Tag mice with sunitinib inhibited tumourigenesis and 

stabilized established tumours improving survival outcomes (Casanovas et al., 2005; 

Pietras and Hanahan, 2005). However, similar to the treatment outcomes in patients, 

tumour progression eventually ensued in RIP-Tag mice treated with sunitinib, and the 

tumour regrowth accompanied increased invasive and metastatic potentials (Pàez-Ribes 

et al., 2009). 

While these mouse models provided possible etiology and pathogenesis of 

PNENs, they are not fully representative of PNENs found in patients. The genetic 

modulations introduced into the genetically engineered PNEN mouse models are only 

observed in subsets of patient PNENs. For instance, transformation driven by Tag was 

primarily mediated through inhibition of Rb1 and Trp53 (Ali and DeCaprio, 2001), and 

alterations to tumour suppressor genes RB1 and tumor protein p53 (TP53) are common 

in PNECs but rare in PNETs among patients (Yachida et al., 2012), though the cyclin 

dependent kinases 4 and 6 (CDK4; CDK6) that act downstream of RB1 were found to be 

overexpressed or amplified in a subset of PNETs (Tang et al., 2012). Moreover, the 

majority of murine PNEN models give rise to functional PNENs, while most sporadic 

PNENs in patients are nonfunctional (Halfdanarson et al., 2008). Most murine PNENs 

also do not fully recapitulate patient PNENs (Yu, 2016), and the human and murine 

endocrine pancreas are different in structures and cell-type proportions (Dolenšek et al., 

2015). A microarray-based study of mRNA and miRNA identified three subtypes among 

patient PNENs, only two of which were observed among PNENs found in RIP-Tag mice 

(Sadanandam et al., 2015). Careful extrapolation of PNEN etiology from murine models 



19 

is therefore warranted, and recent interests in the molecular underpinnings of patient 

PNENs have shifted towards direct investigations using patient specimens. 

 Recurrently mutated genes in PNENs 

DNA-sequencing studies of sporadic PNENs have identified a few recurrently 

mutated genes and mutational differences between PNETs and PNECs (Table 1.4). 

Using whole-exome sequencing (WES) and Sanger sequencing, Jiao et al. (2011) 

identified recurrent somatic gene mutations in MEN1, death domain associated protein 

(DAXX), ATRX chromatin remodeler (ATRX), and genes of the PI3K/AKT/mTOR 

pathway (including TSC2, phosphatase and tensin homolog [PTEN] and 

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha [PIK3CA]) in 

44.1%, 25%, 17.6% and 14% of 68 PNETs-G1/2, respectively. The identified mutations 

in MEN1, DAXX and ATRX were mostly inactivating, suggesting their tumour 

suppressive roles. The mutations in DAXX and ATRX were mutually exclusive and 

collectively affected 42.6% of the sequenced specimens. Later, Scarpa et al. (2017) 

performed whole-genome sequencing (WGS) on 98 sporadic PNETs and similarly 

identified somatic mutations affecting MEN1, DAXX/ATRX and the PI3K/AKT/mTOR 

pathway (including PTEN and DEPDC5 [DEP domain containing 5, GATOR1 

subcomplex subunit]) in 36.7%, 33.7% and 9.2% of sequenced specimens, respectively. 

Each sequenced specimen on average harboured 23.5 somatic coding mutations. 

Interestingly, 17% of the sequenced PNETs harboured germline pathogenic mutations 

affecting putative tumour suppressor genes including MEN1, VHL, mutY DNA 

glycosylase (MUTYH), checkpoint kinase 2 (CHEK2) and BRCA2 (BRCA2 DNA repair 

associated), all coupled with somatic loss of heterozygosity (LOH) and resulted in 

biallelic loss of the respective gene (Scarpa et al., 2017).  

Another study performed targeted sequencing of 637 genes among 42 PNETs 

and identified 52.4%, 11.9% and 7.1% of the sequenced specimens with mutations in 

MEN1, DAXX/ATRX and PTEN, respectively (Lawrence et al., 2018). A WES or targeted 

sequencing study of 65 PNETs from the previously mentioned phase 3 everolimus trial 

(Section 1.3.3) revealed mutations in MEN1, DAXX/ATRX and genes of the 

PI3K/AKT/mTOR pathway in 43.1%, 38.5% and 10.8% of the specimens (Yao et al., 

2019). Targeted sequencing of cancer-related genes in 96 tumour samples from 80 

patients with metastatic PNETs who had received prior treatments revealed 56.3%, 
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40%, 25%, 25% and 12.5% of the cohort with mutations in MEN1, DAXX, ATRX, TSC2 

and PTEN, respectively (Raj et al., 2018). In addition, 7.5% of the cohort harboured 

mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase), two of which 

resulted in p.V600E, an activating variant commonly associated with melanoma and 

colorectal cancer (Cantwell-Dorris et al., 2011). Notably, this cohort had a median TMB 

of 2.95 mutations per megabase, substantially higher than a TMB of 0.82 reported by 

other studies, possibly due to prior treatments (Raj et al., 2018). 

While there were differences in the recurrence of mutations affecting MEN1, 

DAXX/ATRX and genes of the PI3K/AKT/mTOR pathway between cohorts and studies, 

the results from all studies support that these genes are recurrently altered in PNETs. 

The majority of the PNETs included in the above sequencing studies were nonfunctional. 

Analyses of insulinomas alone, however, did not identify recurrent mutations affecting 

any of these genes. In fact, few somatic coding mutations (average of 3.7-10.7 per 

specimen) were identified among insulinomas, but a recurrent hotspot mutation affected 

the YY1 transcription factor (YY1) gene. This hotspot mutation resulted in a p.T372R 

variant and was found in 15.4-32.6% of insulinomas (Cao et al., 2013; Cromer et al., 

2015; Hong et al., 2020; Lichtenauer et al., 2015; Wang et al., 2017). 

Table 1.4. Recurrently mutated genes in PNENs. 

 PNEN subset 
Somatic mutation 

frequency 
Germline mutation 

frequency 
References 

MEN1 NETs 38-56% 5% 

(Jiao et al., 2011; 
Lawrence et al., 
2018; Raj et al., 

2018; Scarpa et al., 
2017; Yao et al., 

2019) 

DAXX/ATRX NETs 11-58% - 

(Jiao et al., 2011; 
Lawrence et al., 
2018; Raj et al., 

2018; Scarpa et al., 
2017; Yao et al., 

2019) 

YY1 (p.T372R)a Insulinomas 15-33% - 

(Cao et al., 2013; 
Cromer et al., 2015; 
Hong et al., 2020; 
Lichtenauer et al., 
2015; Wang et al., 

2017) 
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 PNEN subset 
Somatic mutation 

frequency 
Germline mutation 

frequency 
References 

PI3K/AKT/mTOR 
pathwayb NETs 7-43% - 

(Jiao et al., 2011; 
Lawrence et al., 
2018; Raj et al., 

2018; Scarpa et al., 
2017; Yao et al., 

2019) 

RB1 NECs 71% - 
(Yachida et al., 

2012) 

TP53 NECs 57-60% - 
(Vijayvergia et al., 
2016; Yachida et 

al., 2012) 

KRAS (activating) NECs 28-30% - 
(Vijayvergia et al., 
2016; Yachida et 

al., 2012) 

MUTYH NETs - 5% 
(Scarpa et al., 

2017) 

CHEK2 NETs - 4% 
(Scarpa et al., 

2017) 

BRCA2 NETs - 1% 
(Scarpa et al., 

2017) 

CDKN1B NETs - 1% 
(Scarpa et al., 

2017) 

VHL NETs - 1% 
(Scarpa et al., 

2017) 
aIn YY1, only hotspot mutations resulting in p.T372R  have been reported. bIncludes DEPDC5, PIK3CA, PTEN and 
TSC2. 

Sequencing studies involving PNECs are scarce. A targeted sequencing study of 

9 cancer-related genes identified activating KRAS (KRAS proto-oncogenes, GTPase) 

mutations, inactivating TP53 mutations and inactivating RB1 mutations in 28.6%, 57.1% 

and 71.4% of 7 PNECs, respectively. None of the 11 PNETs also included in the study 

had mutations in these three genes suggesting genetic distinctions between PNETs and 

PNECs (Yachida et al., 2012). In another study that performed targeted sequencing of 

50 cancer-related genes among 23 NECs of various primary sites, 60.1% and 30.4% of 

the specimens harboured mutations in TP53 and KRAS, respectively (Vijayvergia et al., 

2016). Together, these findings suggest genetic distinctions between PNETs and 

PNECs, where PNECs are genetically more similar to extrapancreatic NECs than to 

PNETs. 

In addition to single nucleotide variations (SNVs) or small insertions and 

deletions (Indels) that affect local sequences, a few structural variations (SVs) with 
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predicted functional impacts were reported in PNETs. These included rearrangements 

leading to inactivation of MTAP (methylthioadenosine phosphorylase; 4.1%), ARID2 (the 

AT-rich interaction domain 2; 5.1%), SMARCA4 (SWI/SNF related, matrix associated, 

actin dependent regulator of chromatin, subfamily a, member 4; 3.1%) and KMT2C 

(lysine methyltransferase 2C; 3.1%). Gene fusions involving EWSR1 (EWS RNA binding 

protein 1) were found in three PNETs, where two were due to in-frame fusion with the 

BEND2 (BEN domain containing 2) and another with FLI1 (Fli-1 proto-oncogene, ETS 

transcription factor) (Scarpa et al., 2017). The latter is common in Ewing’s sarcoma 

(Sankar and Lessnick, 2011).  

MEN1 

MEN1 encodes a ubiquitously expressed scaffold protein with predominant 

nuclear localization (Guru et al., 1998) and has been associated with transcriptional 

regulation, cellular signaling and DNA repair (Agarwal, 2017). The mutations in MEN1 

observed among PNETs were largely inactivating mutations suggesting MEN1 poses 

inhibitory roles on PNET development, but the mechanisms by which it suppresses 

tumourigenesis from the endocrine pancreas remain elusive. In the context of PNENs 

and the endocrine pancreas, MEN1 indirectly regulates the gene expression of cell cycle 

inhibitors, cyclin dependent kinase inhibitor 1B (CDKN1B) and cyclin dependent kinase 

inhibitor 2C (CDKN2C), through histone H3 (H3) lysine 4 trimethylation at the CDKN1B 

and CDKN2C promoter regions (Karnik et al., 2005). Loss of CDKN2C was found in 

67.3% of 61 PNENs from patients with MEN1 syndrome (Conemans et al., 2018). The 

Wnt signaling pathway inhibits proliferation of mouse PNEN cells, and MEN1 interacts 

with members of the Wnt signaling pathway, including catenin beta 1 (CTNNB1) and 

transcription factor 3 (TCF3), and regulates the expression of Wnt pathway target gene 

axin 2 (AXIN2) (Chen et al., 2008). MEN1 likely also regulates the PI3K/AKT/mTOR 

pathway as it inhibits the activation of AKT serine/threonine kinase 1 (AKT1) by 

preventing its translocation from cytoplasm to the plasma membrane during growth 

factor stimulation (Wang et al., 2011b). Hotspot activating mutations in KRAS are found 

in nearly all PDACs but are virtually nonexistent in PNETs (Jiao et al., 2011). MEN1 was 

found to act downstream of KRAS and assumed an anti-proliferative role thereby 

suppressing pancreatic endocrine cell proliferation upon KRAS activation (Chamberlain 

et al., 2014). 
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DAXX and ATRX 

The mutually exclusive occurrence of inactivating mutations in DAXX and ATRX 

among PNETs suggested their cooperative roles in suppressing PNET development. 

DAXX and ATRX coordinately deposit histone H3 variant H3.3 (H3.3) at telomeric and 

pericentric heterochromatin in a replication-independent manner (Drané et al., 2010; 

Goldberg et al., 2010; Lewis et al., 2010; Wong et al., 2010). Both DAXX and ATRX as 

well as telomeric H3.3 deposition are required to suppress the alternative lengthening of 

telomere (ALT) pathway. ALT is a homologous recombination (HR)-dependent but 

telomerase-independent mechanism that promotes cancer cell immortality (Clynes et al., 

2015). Loss of DAXX or ATRX protein expression is associated with chromosomal 

instability (CIN) in PNETs (Marinoni et al., 2014). Analysis of 41 PNETs using 

fluorescence in situ hybridization revealed 61.0% with ALT, all of which harboured 

mutation in DAXX/ATRX and/or lost nuclear localization of DAXX/ATRX (Heaphy et al., 

2011). Three independent studies of PNETs congruously reported the prognostic utility 

of ALT in PNETs where ALT positivity was associated with reduced disease-free 

survival, larger tumour size and higher WHO grade (Kim et al., 2017b; Marinoni et al., 

2014; Singhi et al., 2017). A subsequent study using an international cohort of over 600 

nonfunctional PNETs showed loss of DAXX/ATRX staining or ALT positivity was 

independently associated with reduced recurrence-free survival. The 5-year recurrence-

free survival rates were 40% for DAXX/ATRX-loss and 42% for ALT-positive subsets 

compared to 85% and 86% in the opposed subsets, respectively (Hackeng et al., 2021). 

PI3K/AKT/mTOR pathway 

The PI3K/AKT/mTOR pathway is involved in numerous cellular processes 

including stress adaptation, cell proliferation and regulation of bioenergetics for cell 

growth and survival. The pathway is dysregulated in multiple cancer types and is a target 

of interest among PNETs (Porta et al., 2014). A few somatic mutations in genes of the 

PI3K/AKT/mTOR pathway were identified and collectively affected 7~14% of sequenced 

PNETs (Jiao et al., 2011; Lawrence et al., 2018; Scarpa et al., 2017). In addition to gene 

mutations, microarray analysis comparing PNENs to normal islets identified reduced 

TSC2 expression in the tumours. IHC analysis of TSC2 and PTEN showed lower levels 

of these proteins in PNENs compared to islets, and PNENs with lower TSC2 or PTEN 

IHC scores were associated with poor clinical outcomes (Missiaglia et al., 2010). IHC 

positivity of phosphorylated MTOR and phosphorylated ribosomal protein S6, markers 
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indicative of PI3K/AKT/mTOR pathway activation, were also associated with 

clinicopathological characteristics of poor clinical outcomes (Komori et al., 2014). 

However, there is currently no data to support whether aberrant activation of 

PI3K/AKT/mTOR pathway leads to susceptibility to the MTOR inhibitor everolimus in 

PNENs (Yao et al., 2019). 

DNA damage repair 

There have been few but consistent reports supporting alterations in DNA 

damage response and repair pathways among PNETs. Sanger sequencing of 35 kinase 

genes among 36 PNENs identified somatic mutations affecting the ATM serine/threonine 

kinase gene (ATM) in 5.6% of the specimens (Corbo et al., 2012). ATM as well as 

BRCA2, CHEK2 and MUTYH, described above in which germline mutations were found 

among PNETs, are involved in DNA damage response and repair pathways. The ATM-

CHEK2 pathway is stimulated in response to DNA double stranded breaks to activate 

checkpoint responses that facilitate DNA repair and cell survival (Smith et al., 2010b). 

BRCA2 acts downstream of CHEK2 and regulates the HR repair of DNA double 

stranded breaks (Bahassi et al., 2008; Thorslund and West, 2007; Yang et al., 2002). 

MUTYH is a DNA glycosylase involved in base excision repair pathway that prevents 

G:C>T:A transversion, and germline mutations in MUTYH lead to colorectal polyposis 

(Al-Tassan et al., 2002; Shinmura et al., 2000). In addition to regulation of ALT, DAXX, 

ATRX and H3.3 were recently associated with DNA damage repair. DAXX, ATRX and 

their coordinated deposition of H3.3 were required during extended DNA repair 

synthesis at exogenously induced DNA double stranded breaks (Juhász et al., 2018). 

Together, these findings point to potentially defective DNA damage response pathways 

in some PNETs. PNECs frequently harboured mutations in TP53 and RB1, which can 

also lead to elevated DNA damage. Deletion of RB1 results in increased double 

stranded breaks due to reduced HR-mediated and non-homologous end-joining-

mediated DNA damage repairs (Cook et al., 2015; Marshall et al., 2019). TP53 has been 

connected to various DNA damage repair mechanisms including base excision repair 

and HR-mediated repair (Williams and Schumacher, 2016). MUTYH is transcriptionally 

regulated by TP53 and potentially mediates the tumour suppressor functions of TP53 

(Oka et al., 2014), suggesting potential molecular similarities between certain PNETs 

and PNECs despite distinctions in recurrently mutated genes between the two entities. 
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 Copy number variations in PNENs 

Chromosomal alterations in PNETs have been investigated by a few studies and 

used to identify copy number variation (CNV)-based subtypes associated with 

clinicopathological characteristics (Table 1.5). A single nucleotide polymorphism (SNP) 

array study of 15 PNETs identified recurrent loss of chromosomes 1 (40%), 3 (46.7%), 

11 (53.3%) and 22 (40%) and recurrent gain of chromosomes 5 (46.7%), 7 (60%), 12 

(46.7%), 14 (53.3%), 17 (53.3%) and 20 (46.7%). Recurrent LOH of 11q was observed 

in 46.7% of the analyzed PNETs. While the sample size was small, the PNETs with 

more than four chromosomal gains/losses had larger tumour size (5.4 cm vs 2.3 cm) 

compared to those with four or less chromosomal gains/losses (Nagano et al., 2007). In 

their study of 98 PNETs, Scarpa et al. (2017) similarly used SNP array for copy number 

analysis and identified four discrete groups based on unsupervised clustering of 

chromosomal arm copy number patterns. Approximately one third of the cohort had 

limited CNV events, and the other two thirds had a recurrent pattern of either whole 

chromosomal loss or gain. A small subset of PNETs with recurrent chromosomal gain 

formed a polyploid group and was associated with a higher somatic mutation rate with 

an average of 1.98 mutations per megabase compared to an average of 0.82 mutations 

per megabase across the cohort. Among the recurrent chromosomal loss regions across 

the sequenced cohort were 11q13.1 and 9q21.3 that included MEN1 and CDKN2A, 

respectively (Scarpa et al., 2017). A separate study analyzing somatic CNVs from WGS 

or WES data of 127 nonfunctional PNETs similarly identified three groups either with 

limited CNV events or recurrent chromosomal gain or loss. The group with limited CNV 

events was associated with a better relapse-free survival and fewer cases with 

mutations in DAXX/ATRX compared to the other two (Table 1.5; Hong et al., 2020). 

Lawrence et al. (2018) also identified three CNV-based groups from targeted 

sequencing data of 637 genes from 42 PNETs. One group (Group 1) was characterized 

with recurrent pattern of LOH affecting chromosomes 1, 2, 3, 6, 8, 10, 11, 16, 21 and 22 

and PNETs with lymphovascular invasion and MEN1 mutation. The two other groups 

had limited CNV events, where Group 2 contained PNETs with MEN1 mutation and LOH 

affecting chromosome 11 while Group 3 PNETs did not harbour MEN1 mutation and had 

higher MEN1 mRNA expression (Table 1.5; Lawrence et al., 2018). Unsupervised 

clustering of CNV events also identified three groups among 65 PNETs from the phase 3 

everolimus trial introduced in Section 1.3.3. Two of the three groups displayed LOH in 
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chromosomes 1, 2, 3, 6, 8, 10, 11, 15, 16, 21 and 22 and contained mostly PNETs 

harbouring MEN1 mutation with high CIN score. Patients of these two groups with 

recurrent LOH also had a better overall survival probability (Yao et al., 2019). 

Despite nonfunctional PNETs being consistently categorized into three CNV-

based groups, clustering of CNV events among 84 insulinomas revealed only a group 

with limited CNV events and another with recurrent chromosomal gain. The hotspot YY1 

p.T372R was more common among insulinomas with limited CNV events (59% vs 7%), 

while the majority of insulinomas with chromosomal gains harboured amplification of 

TSC1/2 (Table 1.5). No difference in relapse-free survival was observed between the 

two insulinoma groups (Hong et al., 2020). 

Table 1.5. Existing PNEN subtyping studies and subtype characteristics. 

Study PNEN/subset 
Identification 

method 
Subtype Characteristicsa 

(Sadanandam et 
al., 2015) 

PNENs 

Unsupervised 
clustering of 
miRNA and 

mRNA 
microarrays 

Normal islet-like 
Clustered with normal 
islets 

Insulinoma-like 
Enriched in insulinomas 

No DAXX/ATRX mutations 

Intermediate 
Enriched in specimens 
with mutant MEN1 and 
DAXX/ATRX 

Metastasis-like 
primary-1 Enriched with liver or 

lymph node metastases Metastasis-like 
primary-2 

(Chan et al., 2018) PNETs-G1-2 

Unsupervised 
clustering of 

RNA-seq and 
DNA methylation 

microarray 

A-D-M Wildtype 

Wildtype MEN1, DAXX 
and ATRX 

Heterogeneous gene 
expression profiles 

High PDX1 expression 

A-D-M Mutant 

Mutant MEN1, DAXX or 
ATRX 

Gene signatures of α-cells 

High ARX expression 

(Cejas et al., 
2019) 

Nonfunctional 
PNETs 
(grades 

unreported) 

Pairwise 
correlations 
based on 

H3K27ac profiles 

Type A 

High ARX expression 

Enriched with ALT+ 
specimens 

Type B 
High PDX1 expression 

Few ALT+ specimens 

Type C Uncharacterized 
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Study PNEN/subset 
Identification 

method 
Subtype Characteristicsa 

(Lawrence et al., 
2018) 

PNETs-G1-2 
Unclear 

stratification 
based on CNVs 

Group 1 

Recurrent LOH affecting 
chromosomes 1, 2, 3, 6, 8, 
10, 11, 16, 21, 22 

Enriched in specimens 
with mutant MEN1 and 
DAXX/ATRX 

Enriched in specimens 
with LVI 

Group 2 

Limited CNV with recurrent 
LOH affecting 
chromosome 11 

Enriched in specimens 
with mutant MEN1. 

Group 3 

Contained specimens of 
variable aneuploidy 

Variable clinical outcomes 

(Hong et al., 2020) PNETs 

Unsupervised 
clustering of 

CNVs followed 
by separation 

based on 
insulinoma 
indication 

NF-Del 

Higher TMB 

More frequent inactivating 
of TSGs due to LOH and 
mutation 

NF-Neutral 

Limited CNVs 

Contained higher 
proportion of tumours 
smaller in size and lower in 
grade.   

NF-Amp 

Recurrent chromosomal 
gains 

Enriched in specimens 
with mutant MEN1 and 
DAXX/ATRX 

Ins-Neutral 
Limited CNVs 

Enriched in specimens 
with YY1 p.T372R 

Ins-Amp 

Recurrent chromosomal 
gains 

Enriched in specimens 
with TSC1/2 amplification 

(Di Domenico et 
al., 2020) 

PNETs-G1-2 

Phyloepigenetic 
analysis of 

differentially 
methylated sites 
between α-cells 

and β-cells 

α-like 

Clustered with α-cells 

IHC positivity for ARX but 
not PDX1 

Enriched in specimens 
with mutant MEN1 

β-like 

Clustered with β-cells 

IHC positivity for PDX1 but 
not ARX 
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Study PNEN/subset 
Identification 

method 
Subtype Characteristicsa 

Intermediate 

Majority of specimens 
were positive for ARX IHC 

Enriched in specimens 
with mutant MEN1 and 
DAXX/ATRX 

Reduced DFS compared 
to the other two subtypes 

(Lakis et al., 2021) PNETs 

Unsupervised 
clustering of 

variable, 
disease-specific 
methylation sites 

T1 

Few mutant MEN1 or 
DAXX/ATRX 

Enriched in functional 
tumours 

T2 

Enriched in specimens 
with mutant MEN1 and 
DAXX/ATRX 

Enriched with ALT+ 
specimens 

Recurrent LOH in 
chromosomes 1, 2, 3, 6, 8, 
10, 11, 15, 16, 21 and 22 

T3 

Enriched in specimens 
with mutant MEN1 

Recurrent loss of 
chromosome 11 

(Boons et al., 
2020) 

PNETs 

Unsupervised 
clustering of 
methylation 

status at PDX1 
gene region 

Subtype A 

Clustered with α-cells 

Enriched in specimens 
with mutant MEN1 or 
DAXX/ATRX 

Reduced overall survival 
probability 

Recurrent loss of 
chromosomes 1, 2, 6, 10, 
16 and 22 

Subtype B 

Clustered with β-cells 

Enriched in specimens 
with wildtype MEN1, DAXX 
and ATRX 

Recurrent loss of 
chromosome 11 

aSubtype characteristics were extracted from the corresponding publications and may simply be based on comparisons 
between subtypes from the same study. ALT: alternative lengthening of telomeres. LVI: lymphovascular invasion, DFS: 
disease-free survival, TSG: tumour suppressor gene, LOH: loss of heterozygosity, TMB: tumour mutation burden. 
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 Transcriptome and subtyping studies of PNENs 

With the advent of affordable molecular profiling technologies, numerous studies 

have been conducted to characterize different cancer types on molecular levels. As a 

result, molecular subtyping has been used to identify groups of tumours based on 

common molecular characteristics and that correlate with clinical outcomes for potential 

prognostic and predictive utility in clinical settings. This approach has precipitated 

clinically relevant subtypes in various cancer types such as colorectal cancer (Guinney 

et al., 2015), exocrine pancreatic cancer (Bailey et al., 2016; Collisson et al., 2011) and 

breast cancer (Sørlie et al., 2001). Similar attempts have recently been made to identify 

PNEN subtypes, albeit with inter-study variations. 

The earliest clustering analysis performed on PNENs was done with miRNA 

profiles. A custom miRNA microarray that included probes for 235 human mature 

miRNAs was used to determine the miRNA expression patterns in rare pancreatic 

cancer types. The profiled specimens included 28 nonfunctional PNETs (11 WDETs and 

17 WDECs based on 2000/2004 WHO classification), 12 insulinomas (11 WDETs and 1 

WDEC), 4 acinar carcinomas and 12 normal pancreas. Unsupervised clustering of the 

miRNA profiles predictably distinguished normal pancreas from all included tumour 

samples but did not identify any distinction between nonfunctional PNETs vs 

insulinomas or WDETs vs WDECs (Roldo et al., 2006). Considering the endocrine 

pancreas is the likely precursor of PNETs, and the endocrine component only makes up 

to 5% of the pancreas volume (Ionescu-Tirgoviste et al., 2015), the finding that the 

normal pancreas samples clustered away from the tumours was unsurprising due to 

distinctions between endocrine and exocrine pancreas. Analysis between nonfunctional 

PNETs and insulinomas only identified differential expression of miR-203, miR-204 and 

miR-211, all of which were more highly expressed in insulinomas. In particular, the 

expression of miR-204 was found to positively correlate with insulin IHC score. Among 

all miRNAs profiled, only miR-21 level was found to associate with presence of 

metastases and Ki67 > 2% (Roldo et al., 2006). 

A microarray-based mRNA profiling study was subsequently performed and used 

to analyze the gene expression patterns of 72 primary PNENs (including both PNETs 

and PNECs, 15 of which were insulinomas), 7 matched metastases and 10 normal 

pancreatic samples (5 bulk pancreas and 5 islet preparations). Similar to miRNA-based 
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analysis, unsupervised clustering of the mRNA expression profiles distinguished normal 

pancreatic samples from the PNENs, while the nonfunctional WDETs, WDECs and 

PDECs (2000/2004 WHO classification) fell into overlapping clusters that also included 

the matched metastases (Missiaglia et al., 2010). Interestingly, the insulinomas clustered 

away from the other PNENs suggesting profound mRNA but subtle miRNA level 

differences between insulinomas and nonfunctional PNENs (Missiaglia et al., 2010; 

Roldo et al., 2006). Differential analyses identified downregulation of TSC2 in both 

insulinomas and nonfunctional PNENs compared to normal samples. As mentioned in 

the previous subsection, IHC analysis of TSC2 and PTEN further established a 

correlation between low level staining of these markers and reduced overall survival and 

progression-free survival and suggested a dysregulated PI3K/AKT/mTOR pathway in 

PNENs (Missiaglia et al., 2010). 

The first formal class discovery study of PNENs was conducted by incorporating 

miRNA and mRNA expression data from patient PNENs and correlating with the PNENs 

from the RIP-Tag mouse model. A qPCR array had previously been used to 

quantitatively measure the levels of 430 miRNAs from RIP-Tag specimens and 

confirmed distinct miRNA profiles between specimens at various disease stages. 

Clustering of miRNAs from RIP-Tag mouse tumour specimens revealed a small subset 

of primary tumours, termed metastasis-like primary (MLP) tumours, more similar to liver 

metastases than other primary tumours based on miRNA profiles (Olson et al., 2009). 

Using the microarray data previously generated from patient PNENs, Sadanandam et al. 

(2015) identified three subtypes from miRNA profiles, one of which had high expression 

of miRNAs also elevated in the MLP tumours from the RIP-Tag mouse. A similar 

analysis approach applied to the mRNA microarray data from the study by Missiaglia et 

al. (2010) identified five clusters: normal islet-like, insulinoma-like, intermediate, MLP-1 

and MLP-2 (Table 1.5). The normal islet-like cluster consisted primarily of normal islet 

samples while insulinomas were predominant in the insulinoma-like cluster. The two 

MLP clusters contained largely metastasis specimens or primary tumours from patients 

with metastatic PNENs and therefore inherited the MLP terminology from the RIP-Tag 

specimen clustering study (Olson et al., 2009; Sadanandam et al., 2015). 

A PanNETassigner-miR signature (n = 30) and a PanNETassigner-mRNA 

signature (n = 221) were derived from the miRNA and mRNA profiles, respectively, and 

used to validate the subtypes in additional cohorts. Analysis of specimens with paired 
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miRNA and mRNA expression data suggested significant enrichment between the three 

miRNA-based subtypes and the four mRNA-based subtypes (excluding the normal islet-

like subtype). Combined analysis of mRNA expression profiles from human and RIP-Tag 

PNENs revealed transcriptomic similarities of insulinoma-like and MLP subtypes to RIP-

Tag insulinomas and MLP tumours, respectively (Sadanandam et al., 2015). Targeted 

sequencing of genes recurrently mutated in PNENs (Jiao et al., 2011) found roughly half 

of the intermediate subtype PNENs with mutations in MEN1 and DAXX/ATRX while only 

12.5% of insulinoma-like PNENs had mutations in MEN1 and none in DAXX/ATRX 

(Sadanandam et al., 2015). Given the abundance of specimens with MEN1 and 

DAXX/ATRX mutations in the intermediate subtype PNENs and their clustering away 

from insulinoma-like and MLP subtype PNENs, the intermediate subtype of specimens 

was proposed to be absent from the RIP-Tag mouse model, which does not harbour 

mutations in MEN1 and DAXX/ATRX (Sadanandam et al., 2015). The MLP subtypes 

were associated with PNENs of higher WHO grade (2010 edition) and characterized with 

relatively higher expression of pancreatic progenitor genes HNF1 homeobox B (HNF1B) 

and GATA binding protein 6 (GATA6). The insulinoma-like PNENs, on the contrary, had 

higher expression of β-cell marker genes pancreatic and duodenal homeobox 1 (PDX1), 

insulin (INS), glucokinase (GCK) and solute carrier familiar 2 member 2 (SLC2A2) as 

well as insulinoma-specific gene INSM1 (Sadanandam et al., 2015).  

In their WGS study, Scarpa et al. (2017) applied RNA-sequencing (RNA-seq) to 

30 of the PNENs and identified three clusters from unsupervised analysis. Two of the 

clusters were moderately similar to the intermediate and MLP subtypes based on 

enrichment analysis using the PanNETassigner-mRNA signature genes. However, the 

cluster most similar to the intermediate subtype was not enriched in PNENs with MEN1 

and DAXX/ATRX mutations, and the third cluster was not particularly similar to any of 

the subtypes identified by Sadanandam et al. (2015) (Scarpa et al., 2017). 

Five studies subsequently identified two to three PNEN subtypes using RNA-seq, 

methylation profiles, enhancer profiles, or a combination of these methods (Boons et al., 

2020; Cejas et al., 2019; Chan et al., 2018; Di Domenico et al., 2020; Lakis et al., 2021; 

Table 1.5). In all except one of these studies, the subtypes were partly dictated by the 

potential cell-of-origin. 
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Unsupervised hierarchical clustering of RNA-seq or DNA methylation microarray 

data from 33 PNETs-G1/2 (of functional or nonfunctional status) identified two clusters 

characterized by presence or absence of mutations in any of MEN1, DAXX or ATRX. 

The correlation between the mutational status of the genes and the two clusters were 

confirmed in external gene expression datasets. The PNET subtype characterized with 

mutations, the A-D-M mutant subtype, was associated with reduced recurrence-free 

survival and exhibited gene expression signatures of pancreatic ɑ-cells. Pancreatic ɑ-

cell-specific genes aristaless related homeobox (ARX) and iroquois homeobox 2 (IRX2) 

were highly expressed while β-cell-specific genes PDX1, MAF bZIP transcription factor A 

(MAFA) and INS were lowly expressed in this A-D-M mutant subtype compared to the A-

D-M WT subtype. The A-D-M WT PNETs were found to be heterogeneous in both gene 

expression profiles and expression of pancreatic cell-type-specific genes (Chan et al., 

2018). 

Cejas et al. (2019) examined the super-enhancer profiles marked by H3 lysine 27 

acetylation (H3K27ac) using chromatin immunoprecipitation sequencing (ChIP-seq) 

among 8 nonfunctional PNETs and identified three subtypes: Type A, B and C. 

Comparison between Type A and B revealed significantly higher H3K27ac in the ARX 

and IRX2 loci of Type A PNETs and in the PDX1 locus of Type B PNETs; Type C 

PNETs had variable H3K27ac signals at these loci. RNA-seq confirmed relatively higher 

ARX and PDX1 mRNA expression in Type A and B PNETs, respectively, and further 

suggested transcriptomic similarity of Type A PNETs to ɑ-cells and Type B PNETs to β-

cells. Subtyping 61 MEN1-mutant PNETs based on ARX and PDX1 IHC analysis 

revealed reduced relapse-free survival in PNETs either with only ARX positivity or 

neither ARX and PDX1 (double-negative). Mutation status of DAXX and ATRX was not 

assessed among the MEN1-mutant cohort, but 48.1% of ARX-positive or double-

negative PNETs were positive for ALT while only 14.3% of PDX1-positive or PDX1-

positive-ARX-positive were positive for ALT (Cejas et al., 2019). However, no prognostic 

differences were found between PDX1-positive and ARX-positive PNETs in an 

international cohort of 668 nonfunctional PNET specimens (Hackeng et al., 2021). 

A subsequent study analyzed the methylation status of the PDX1 gene region 

among 83 PNETs and identified two hierarchical clusters: subtype A and subtype B. 

Subtype A was enriched with PNETs harbouring mutant MEN1, DAXX or ATRX and 

associated with a higher rate of disease recurrence similar to the A-D-M mutant subtype 
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reported by Chan et al. (Boons et al., 2020; Chan et al., 2018). Inference of CNV from 

methylation array identified shared and different CNV patterns between the two 

subtypes. Recurrent loss of chromosome 11 was observed in all PNETs. Recurrent loss 

of chromosomes 1, 2, 6, 10, 16 and 22 and gain of chromosomes 4, 12, 14, 17, 18, 19, 

20 and 21 were observed in subtype A PNETs. Subtype B PNETs, on the other hand, 

had low frequencies of chromosome loss and recurrent gain of chromosome 21. Further, 

subtype B PNETs were associated with a reduced overall survival probability compared 

to subtype A PNETs (Boons et al., 2020). 

Phyloepigenetic analysis of 125 PNETs-G1/2 (including functional and 

nonfunctional) and normal ɑ-cells and β-cells distinguished ɑ-cell-like and β-cell-like 

groups from an intermediate group of PNETs. The methylomes of PNETs and isolated ɑ-

cells and β-cells were profiled using microarray, and the differentially methylated sites 

between ɑ-cells and β-cells were used to perform phyloepigenetic analysis. Hierarchical 

relationships were observed between the PNETs and normal cells, where ɑ-cells and β-

cells sat at two extremities. Subsets of PNETs grouped with normal ɑ-cells or β-cells 

were named as ɑ-like or β-like PNETs, respectively. The majority of the profiled PNETs 

(n = 92), however, were intermediate to the two subtypes and were weakly similar to ɑ-

cells or β-cells. The ɑ-like, β-like and intermediate subtypes exhibited mutational 

differences in MEN1 and DAXX/ATRX, where 67.4% of the intermediate PNETs 

harboured mutations in MEN1 and/or DAXX/ATRX and 57.9% of ɑ-like PNETs 

harboured mutations in MEN1. Mutations in DAXX/ATRX were absent among ɑ-like 

PNETs, and nearly all β-cell PNETs had wildtype MEN1, DAXX and ATRX. In addition, 

the intermediate PNETs were characterized with numerous CNV events, while ɑ-like and 

β-like PNETs had limited CNV events. IHC of ARX and PDX1 confirmed positivity in ɑ-

like and β-like PNETs, respectively, but also found 86% of the intermediate PNETs 

positive for ARX. Survival analysis of the PNETs stratified by phyloepigenetic groups 

showed the intermediate PNETs associated with reduced disease-free survival 

compared to ɑ-like and β-like PNETs (Di Domenico et al., 2020). 

The Scarpa group followed up their WGS study (Scarpa et al., 2017) with a 

microarray-based methylome profiling study. Tumour-specific methylation sites in 

promoter regions were identified from 84 sporadic PNETs after comparative analysis to 

adjacent normal pancreatic tissues and used to perform unsupervised cluster analysis 

that identified three methylation subtypes: T1, T2 and T3. The T1 PNETs were 
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characterized by few mutations in MEN1 and DAXX/ATRX and included 7 of the 11 

functional PNETs included in the cohort. The T2 subtype of PNETs had recurrent 

mutations in MEN1 and DAXX/ATRX, high frequency of tumours with ALT and tumours 

of larger size and higher TMB. Mutations in MEN1 were also common in the T3 subtype, 

but the T3 subtype contained a higher proportion of NETs-G1 and cases without extra-

pancreatic spread of perineural/vascular invasion. Analysis of CNV events found 

recurrent loss of chromosome 11 among T3 PNETs and recurrent LOH in chromosomes 

1, 2, 3, 6, 8, 10, 11, 15, 16, 21 and 22 among T2 PNETs (Lakis et al., 2021), potentially 

matching the T2 and T3 subtypes to Group 1 and 2 described by Lawrence et al. (2018). 

 Proteomic analysis of PNENs 

There is currently no large-scale global proteomic study on PNENs. A literature 

search discovered only three studies that employed a proteomic approach to identify 

proteins either of potential prognostic utility or with metastasis associations. A two-

dimensional gel electrophoresis approach following tissue microdissection was used for 

comparative proteomic analysis between 6 benign and 6 metastatic insulinomas. Eight 

candidate proteins were found more abundant and another eight less abundant in the 

metastatic insulinomas relative to the benign specimens. IHC validation of the 

candidates on a tissue microarray (TMA) of 62 insulinomas confirmed higher levels of 

aldehyde dehydrogenase 1 (ALDH1) and tumor protein D52 (TPD52) in malignant 

insulinomas and benign insulinomas, respectively. TPD52 IHC scores were positively 

correlated with better recurrence-free survival and overall survival in multivariate 

analysis (Alkatout et al., 2015). A comparative analysis of global proteomes of four 

insulinomas and paired pancreatic tissues identified 219 more abundant and 62 less 

abundant proteins in insulinomas among 3,476 identified proteins. Among the more 

abundant proteins in insulinomas, IHC analysis of ubiquitin C-terminal hydrolase L1 

(UCHL1), microtubule associated protein 1B (MAP1B), microtubule associated protein 2 

(MAP2), versican (VCAN) and CDK4 confirmed higher abundance or specific expression 

in 40 PNETs (including functional and nonfunctional) relative to surrounding normal 

tissues. PDX1 and calcium sensing receptor (CASR) were also identified to be more 

abundant from proteomic analysis of PNETs vs normal tissues but were only detected in 

insulinomas and not in other PNETs. In addition, concurrent expression of UCHL1 and 

internexin neuronal intermediate filament protein alpha (INA) was associated with a 
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better overall and disease-free survival outcome (Song et al., 2017). Another 

comparative study of global proteomes of 7 pairs of primary tumours and metastases 

from patients with PNENs found 33 and 76 proteins (among 3,722 identified proteins) 

more abundant in primary tumours or metastases, respectively. IHC of candidate 

proteins associated with metastases confirmed up-regulation of annexin A6 (ANXA6), 

canopy FGF signaling regulator 2 (CNPY2), RAB11B (RAB11B, member RAS oncogene 

family) and tubulin beta 3 class III (TUBB3) in the liver metastases, with CNPY2 absent 

in normal islet cells. Positivity in either CNPY2 and RAB11B was associated with PNENs 

of higher grade. In addition, CNPY2 IHC positivity was an independent prognostic 

marker of reduced liver recurrence-free survival (Shimura et al., 2018). 

1.5. Aims, objectives and chapters overview 

The clinical and molecular heterogeneity of PNENs are now well-appreciated and 

are the major hurdles in the effective clinical management of PNENs. A few therapeutic 

options are available for patients with PNENs, but the response rate is often limited with 

nonexistent molecular predictive biomarkers. Despite mounting efforts over recent years 

to characterize PNENs at the molecular level, the results from existing studies examining 

the genome, epigenome, transcriptome or proteome of PNENs have largely been limited 

to the identification of potential prognostic indicators for patients with PNENs. Little 

advance has been made towards the identification of new therapeutic vulnerabilities and, 

by extension, potential targeted therapeutic agents that may modify the projected 

prognosis in this disease. 

Molecular profiling studies of PNENs using either DNA and/or RNA level 

information have identified up to 5 potential subtypes with mutational and/or prognostic 

differences. However, inconsistencies between various subtyping schemes and 

limitations in their therapeutic implications from various studies hamper their potential 

translational utility. In spite of three studies that examined the proteomic alterations in a 

small number of PNENs, the proteomic landscape of PNENs remains practically 

unknown. Investigation into the multi-omic space of PNENs using DNA-, RNA- and 

protein- level data may lead to a more robust and versatile PNEN stratification and 

further dissect the pathogenesis of this disease to identify novel therapeutic 

vulnerabilities. 
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The majority of patients with PNENs present with distant metastases at the time 

of diagnosis, and the presence of metastases is significantly associated with disease-

specific mortality in these patients. Ironically, molecular studies on the distant 

metastases from these patients are scarce due to specimen availability, where limited 

tissues from biopsies were typically devoted to diagnostic and pathological 

examinations. Elucidating the molecular alterations in metastases from patients with 

PNENs can bolster our knowledge in the biology of these deadly neoplasms to foster 

effective management of PNENs in the metastatic setting. 

The overarching objective of this thesis project was to unravel the molecular 

heterogeneity of PNENs to enable molecular associations with clinicopathological 

characteristics and to identify potential novel therapeutic vulnerabilities in this disease. I 

hypothesized that 1) PNENs can be stratified into clinically relevant molecular subgroups 

based on their proteotranscriptomic profiles and 2) WGS and whole-transcriptome 

sequencing (WTS) of PNEN metastases can identify molecular alterations that offer 

additional insights into the pathogenesis of PNENs. The investigations to support these 

hypotheses resulted in a submitted manuscript (Yang et al., in revision) and a published 

report (Wong et al., 2018) that are described in Chapter 2 and 3, respectively. Chapter 2 

details the molecular identification and characterization of four proteotranscriptomic 

subgroups from one of the largest PNEN cohorts to date. The discovery of these four 

PNEN subgroups accompanies potential novel oncogenic drivers and pathway 

alterations with therapeutic implications. Chapter 3 catalogues the genomic and 

transcriptomic aberrations identified from a small but unique cohort of PNEN metastases 

where two cases were presumably driven by novel oncogenic drivers. This is followed by 

unpublished results correlating the metastatic cases to the subgroups detailed in 

Chapter 2. Finally in Chapter 4, I discuss the roles and potential contributions of these 

findings to the current state of knowledge in PNEN research and suggest potential 

avenues for future research in this disease and other NENs. 

Throughout this thesis, the conventional nomenclatures for genes and proteins 

are used, and the approved gene names from HUGO Gene Nomenclature Committee 

(HGNC) are used. Where applicable, the term “disorder” or “syndrome” is added to 

mentions of hereditary cancer syndromes to differentiate them from the protein products 

of the underlying causative genes. 
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Chapter 2.  
 
Proteotranscriptomic classification and 
characterization of PNENs 

This chapter is modified from a manuscript submitted to Cell Reports and is in 

revision at the time of writing this thesis. The study culminating in the submitted 

manuscript was a combined effort from multiple individuals as detailed in the 

Acknowledgements. My specific roles in this particular study included its 

conceptualization and design (jointly with my supervisor Dr. Sharon Gorski), sample 

coordination, data curation and analysis, results interpretation, figure generation and 

preparation of the submitted manuscript. 

2.1. Introduction 

PNENs are pancreatic neoplasms with neuroendocrine differentiation, in which 

substantial molecular and clinical heterogeneity has caused challenges for disease 

management. The WHO classification system has proven prognostic utility; the 

histological differentiation status in particular has been used to guide treatment regimens 

(Kunz, 2015). While both the functional status and the WHO classification system were 

shown to correlate with particular molecular alterations (Cao et al., 2013; Hong et al., 

2020; Yachida et al., 2012), the roles of molecular features in the management of this 

disease have been limited, and responses to therapies often vary between tumours of 

the same histopathological class (Raymond et al., 2011; Yao et al., 2011). Moreover, the 

categorization of borderline or ambiguous cases based on the presence/absence of 

clinical syndromes and histopathology can be difficult and subjective, thus hindering their 

effective management. 

Data from omics profiling studies have facilitated characterization of the 

molecular landscape of PNENs. WES and WGS of PNEN specimens have identified 

recurrent somatic mutations in MEN1, DAXX, ATRX and negative regulators of the 

PI3K/AKT/mTOR pathway, as well as recurrent germline mutations in MEN1, VHL and 

DNA repair genes MUTYH, BRCA2 and CHEK2 (Jiao et al., 2011; Scarpa et al., 2017). 

Differential gene expression analysis has identified metastasis-associated gene 
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signatures of PNENs (Scott et al., 2020). Several studies have identified altered 

signaling pathways, distinct chromosomal abnormalities and epigenomic profiles among 

PNENs, and up to 5 molecular subtypes with mutational and/or prognostic differences 

(Cejas et al., 2019; Chan et al., 2018; Di Domenico et al., 2020; Missiaglia et al., 2010; 

Sadanandam et al., 2015). However, most of these studies were restricted to pre-

defined subsets of PNENs based on either histological differentiation (Cejas et al., 2019; 

Chan et al., 2018; Di Domenico et al., 2020) or both histological differentiation and 

functional status (Hong et al., 2020). The restriction to pre-defined subsets of PNENs 

may limit the relevance of results to other PNEN cohorts and likely contributed to the 

observed discrepancies among the PNEN subtypes reported by different groups (Cejas 

et al., 2019; Chan et al., 2018; Di Domenico et al., 2020; Sadanandam et al., 2015). With 

the proteome of PNENs as yet virtually unexplored, along with the previous inconsistent 

PNEN subtyping based on transcriptome and/or epigenome profiling of pre-defined 

PNEN subsets, we set out to identify and characterize a non-selected group of PNENs 

by incorporating RNA-seq and global proteome data from patient specimens. Combined 

with WES and inference analysis, four molecularly distinct proteotranscriptomic 

subgroups of PNENs emerged. In this chapter, I present the identification and 

characterization of the four proteotranscriptomic subgroups of PNENs with mutational, 

transcriptomic, proteomic, molecular pathway and potential oncogenic driver differences. 

2.2. Results 

 Whole-transcriptome and global proteome analyses identify 
four distinct proteotranscriptomic subgroups among PNENs 

Consensus non-negative matrix factorization (cNMF)-based clustering was used 

to survey the optimal number of clusters and identify molecularly distinct subgroups. 

cNMF was initially performed on a Discovery cohort of PNEN specimens (n = 36; Table 

2.1 and Supplemental Table 1), 6 islet samples (five cadaveric and one matched to a 

Discovery cohort PNEN) and 2 cell line samples (BON-1 and QGP-1) using the top 25% 

variably expressed mRNAs from RNA-seq. Five clusters were identified, where one 

consisted exclusively of the normal islet samples, and another included the two cell lines 

with a few of the Discovery cohort PNENs (Figure 2.1A). Repeating cNMF on the 

Discovery cohort specimens alone essentially reproduced the same four PNEN clusters 

indicating robust separations between the four subgroups of PNENs (Figure 2.1B). 
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Table 2.1. Clinicopathological characteristics of the PNEN cohorts 

Characteristics Discovery 

N = 36 

Validation 

N = 48 

Total 

N = 84 

Median Follow-up Time – mo. (Range) 83.5 (2-211) 58 (0-87) 64 (0-211) 

Sex – no. (%)    

Male 18 (50) 18 (37.5) 36 (43) 

Female 18 (50) 30 (62.5) 48 (57) 

Functional Status – no. (%)    

Functional 3 (8) 7 (15) 10 (12) 

Nonfunctioning 33 (92) 41 (85) 74 (88) 

All-cause Mortality – no. (%)    

Censored 21 (58) 41 (85) 62 (74) 

Deceased 15 (42) 7 (15) 22 (26) 

Histological Differentiation – no. (%)    

Well Differentiated 33 (91.7) 45 (94) 78 (93) 

Poorly Differentiated 3 (8.3) 3 (6) 6 (7) 

Ki67 Index – no. (%)    

<3% 19 (53) 22 (46) 41 (49) 

3-20% 14 (39) 23 (48) 37 (44) 

>20% 3 (8) 3 (6) 6 (7) 

pTa: Primary Tumour – no. (%)    

pT1 4 (11) 19 (40) 23 (27) 

pT2 12 (33) 15 (31) 27 (32) 

pT3 15 (42) 10 (21) 25 (30) 

pT4 5 (14) 3 (11) 8 (10) 

pTX - 1 (2) 1 (1) 

pNa: Regional Lymph Nodes – no. (%)    

pN0 14 (39) 25 (69) 39 (46) 

pN1 22 (61) 9 (19) 31 (37) 

pNX - 14 (29) 14 (17) 

Metastases at Diagnosis – no. (%)    

Absent 25 (69) 36 (75) 61 (73) 

Present 5 (14) 12 (25) 17 (20) 

Unknown 6 (17) - 6 (7) 

All-time Metastases – no. (%)    

Absent 16 (44) 26 (54) 42 (50) 

Present 19 (53) 22 (46) 41 (49) 

Unknown 1 (3) - 1 (1) 

a. pT and pN were defined according to the 8th edition of American Joint Committee on Cancer Pancreas Cancer 
Staging system. pTX or pNX denotes specimens with insufficient information, due to specimens being biopsy material 
or absence of lymph nodes in the specimens. mo.: months; no.: number. The case-by-case clinicopathological 
characteristics are included in Supplemental Table 1. 
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Figure 2.1. cNMF rank survey of the Discovery cohort specimens based on 
transcriptomic profiles. 

cNMF was used to perform unsupervised clustering of the transcriptome data from the Discovery 
cohort PNEN specimens (n = 36). Cophenetic coefficients were used to evaluate how well the 
clustering results represented the original data, and silhouette coefficients were used to assess 
how similar a given sample was to its cluster compared to other clusters, respectively. A rank 
survey was performed to estimate the optimal rank based on cophenetic and silhouette 
coefficients (left). The consensus heatmap from the selected rank (right) was visually inspected 
for robust inter-cluster separation. The rank survey results are shown for the analysis of (A) the 
Discovery cohort specimens plus control samples or (B) the Discovery cohort specimens alone. 
Control samples included 6 normal islet and 2 cell line, BON-1 and QGP-1, samples. 

Global proteome profiling was used to augment the transcriptome data from the 

Discovery cohort specimens. A total of 86,439 unique peptides mapped to 10,656 

unique proteins were identified, 6,036 of which were quantified across all specimens. 

cNMF analysis using the top 25% variably abundant proteins similarly identified four 

clusters (Figure 2.2). Comparison between transcriptome- and proteome- based 

clustering results obtained from 35 Discovery cohort specimens with paired 

transcriptome and proteome data (Figure 2.3A-B) confirmed significant overlaps in the 

transcriptome- and proteome- based cluster assignments (Figure 2.3C), supporting the 

existence of four molecularly distinct proteotranscriptomic subgroups. Principal 
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component analysis (PCA) using either mRNA expression or protein abundance 

confirmed the molecular distinctions between the four subgroups and revealed one 

subgroup with greater intra-subgroup heterogeneity and inter-subgroup differences 

(Figure 2.4; purple). 

 

Figure 2.2. cNMF rank survey of the Discovery cohort specimens based on 
proteomic profiles. 

cNMF-based rank survey was performed to estimate the optimal rank based on cophenetic and 
silhouette coefficients (left) from the proteome data of 40 PNENs, including 35 of the Discovery 
cohort PNEN specimens. The consensus heatmap from the selected rank (right) was visually 
inspected for robust inter-cluster separation. 
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Figure 2.3. Whole-transcriptome and global proteome analyses identify four 
distinct proteotranscriptomic subgroups among PNENs. 

cNMF analysis was independently performed using (A) transcriptome or (B) proteome data from 
35 Discovery cohort PNEN specimens with paired information at the estimated optimal rank (k = 
4). Shown are the consensus heatmap with the subgroup assignments derived from each 
analysis colour-coded at the top. (C) A 4x4 table summarizes the mRNA- and protein- based 
subgroup assignments of each Discovery cohort specimen, where the intersections indicate the 
number of specimens assigned to a particular mRNA- and protein- based subgroup. The 
significance of each mRNA- and protein- based subgroup intersection (ie. overlap) is colour-
coded to reflect p-value computed from hypergeometric test with FDR correction. Comparisons 
were only made for the 35 Discovery cohort specimens with paired transcriptome and proteome 
information. 
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Figure 2.4. PCA of the Discovery cohort specimens. 
PCA was performed for the Discovery cohort specimens with paired transcriptome and proteome 
data using either all expressed (A) mRNAs (n = 19,053) or (B) all quantified proteins (n = 6,036). 
Each dot represents a specimen and is colour-coded according to the subgroup assignments in 
Figure 2.3A-B. 

To identify mRNAs and proteins that differed significantly between the four 

subgroups, I used differential expression/abundance analysis. A total of 1,637 

differentially expressed genes (DEGs) and 354 differentially abundant proteins (DAPs) 

were identified between the subgroups among the Discovery cohort specimens. The list 

of DEGs and DAPs as well as their differential analysis statistics are available in 

Supplemental Table 2. 

 Analysis of a separate cohort of PNENs confirms the four 
proteotranscriptomic subgroups 

To confirm the four proteotranscriptomic subgroups, a Validation cohort of 48 

PNEN cases was identified (Table 2.1). Specimens from this cohort were collected, 

processed, sequenced and analyzed independently from the Discovery cohort to enable 

cross comparisons. cNMF analysis of the Validation cohort specimens, 4 islet samples 

and two NT-3 cell line (Benten et al., 2018) samples using the top 25% variably 

expressed mRNAs revealed six clusters where four consisted only of PNENs and two of 

either normal islet or cell line samples (Figure 2.5). Different from BON-1 and QGP-1, 

the NT-3 cell line samples formed a distinct cluster, which did not include any of the 

patient specimens. Repeating cNMF solely on the PNENs confirmed the existence of 

four clusters among the Validation cohort specimens (Figure 2.6A). To compare the 

subgroups identified from independent cluster analyses of the Discovery and Validation 

cohort specimens, the Discovery cohort-derived DEGs (Supplemental Table 2) were 
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used to perform cNMF on the Validation cohort specimens. This resulted in four 

subgroups (Figure 2.6B) that recapitulated the subgroups identified using Validation 

cohort variably expressed mRNAs (Figure 2.6C). Hence, I identified the same four 

subgroups of PNENs in two separate cohorts confirming the existence of four 

proteotranscriptomic subgroups among PNENs. Finally, I used the DEGs to perform 

cNMF to determine the final subgroup assignment of each of the 84 PNEN specimens 

included in this study. Four subgroups were identified (Figure 2.7A) and consisted of 

roughly equal numbers of specimens from the Discovery and Validation cohorts (Figure 

2.7B). I proceeded with these DEGs-defined subgroups for downstream analysis while 

keeping the molecular analysis independent between the two cohorts. 

 

Figure 2.5. cNMF rank survey of the Validation cohort specimens plus control 
samples based on transcriptomic profiles. 

cNMF-based rank survey was performed to estimate the optimal rank based on cophenetic and 
silhouette coefficients (left) from the transcriptome data of the Validation cohort PNEN specimens 
(n = 48) plus control samples. The consensus heatmap from the selected rank (right) was visually 
inspected for robust inter-cluster separation. Control samples included 4 normal islet and 2 NT-3 
cell line samples. 
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Figure 2.6. cNMF rank survey and comparison of subgroup assignments of the 
Validation cohort specimens. 

cNMF-based rank survey was performed using either (A) variably expressed mRNAs or (B) the 
Discovery cohort-derived DEGs to estimate the optimal rank based on cophenetic and silhouette 
coefficients (left) from the transcriptome data of the Validation cohort PNEN specimens. The 
consensus heatmap from the selected rank (right) was visually inspected for robust inter-cluster 
separation. (C) A 4x4 table summarizes the number of Validation cohort specimens that were 
assigned to each of the subgroups identified using variably expressed mRNAs or the Discovery 
cohort-derived DEGs, where the intersections indicate the number of specimens assigned to a 
particular subgroup. The significance of each intersection (ie. overlap) is colour-coded to reflect p-
value computed from hypergeometric test with FDR correction. 
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Figure 2.7. cNMF rank survey and subgroup distribution of the Discovery and 
Validation cohort specimens. 

(A) cNMF-based rank survey was performed using the Discovery cohort-derived DEGs to 
estimate the optimal rank based on cophenetic and silhouette coefficients (left) from the 
transcriptome data of the Discovery and Validation cohort PNEN specimens (n = 84). The 
consensus heatmap from the selected rank (right) was visually inspected for robust inter-cluster 
separation. (B) The consensus heatmap from the cNMF analysis of the Discovery and Validation 
cohort specimens overlaid with subgroup assignments and cohort designations colour-coded at 
the top. 

Sadanandam et al. previously analyzed microarray-based gene expression 

profiles (GEPs) from a non-selected cohort of PNENs (Missiaglia et al., 2010) but 

identified five subtypes: normal islet-like, insulinoma-like, MLP-1, MLP-2, and 

intermediate (Sadanandam et al., 2015). I reanalyzed their PNEN GEPs using my 

bioinformatic workflow and the Discovery cohort-derived DEGs and identified five 

subgroups that partially recapitulated the five Sadanandam subtypes (Figures 2.8A). 

While two of the DEGs-defined subgroups largely resembled the intermediate and MLP-

2 subtypes, one DEGs-defined subgroup combined normal islet-like and insulinoma-like 

samples together, and two DEGs-defined subgroups constituted the MLP-1 (Figure 

2.8B). The latter refinement of one subtype into two subgroups was likely due to my 
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approach using a greater number of genes in subgroup identification (1,637 vs 221 with 

155 overlap) and RNA-seq which has enhanced dynamic range over microarrays thus 

capturing other molecular differences between the subgroups. 

 

Figure 2.8. cNMF rank survey and subgroup comparisons of the Sadanandam 
et al. dataset. 

cNMF-based rank survey was performed using the Discovery cohort-DEGs to estimate the 
optimal rank within the microarray dataset from Sadanandam et al.. (A) The cophenetic and 
silhouette coefficients at the tested ranks, and (B) the consensus heatmap at the selected rank. 
(C) Enrichment of the subgroups identified using the Discovery cohort-derived DEGs (rows) in the 
five subtypes previously identified by Sadanandam et al. (columns). The colour of each block 
reflects the significance of the enrichment computed by hypergeometric test followed by FDR 
correction. MLP: metastasis-like primary 
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 Comparison of paired transcriptome and proteome profiles 
reveals modest single gene correlations but shared patterns of 
gene set enrichment 

Analogous results obtained from the transcriptome- and proteome- based 

clustering analyses suggested distinct mRNA and protein features between the four 

proteotranscriptomic subgroups. Comparison between global transcriptomes and 

proteomes of the Discovery cohort samples showed modest but positive correlations 

(median Spearman’s rho = 0.2776; Figure 2.9A). Comparison of paired mRNA 

expression and protein abundance from 5,931 available genes showed a wide spectrum 

of correlations between mRNA and protein variation (-0.4406~0.8840; Figure 2.9B) 

similar to previous studies in colorectal cancer (Mertins et al., 2016) and breast cancer 

(Zhang et al., 2014). Consistent with a low but variable number of genes showing 

concordant mRNA- and protein- level enrichment across normal tissues (Jiang et al., 

2020), the majority of DEGs and DAPs were mutually exclusive with only 121 genes in 

common (Figure 2.9C). However, the correlations between mRNA and protein variation 

of these 121 intersecting genes were significantly higher compared to the correlations 

between global mRNA and protein variation (median Spearman’s rho of 0.6807 vs. 

0.3804, p < 2.2 x 1016, Kolmogorov-Smirnov test; Figure 2.9B) suggesting that a subset 

of subgroup-specific genes was under concerted directional regulation. Indeed, gene set 

analysis (GSA) independently performed with transcriptome or proteome data using the 

Hallmark gene sets from MSigDB (Liberzon et al., 2015) produced results with similar 

patterns and revealed distinct molecular features of each subgroup (Figure 2.10; 

Supplemental Table 3). Analysis of the Validation cohort specimens identified similarly 

enriched or depleted gene sets between the subgroups (Supplemental Table 3). Based 

on these prominent molecular features, as well as similarities to two previously reported 

PNEN subtypes (Cejas et al., 2019; Chan et al., 2018), the four subgroups were named 

as follow: Proliferative (purple), Alpha-cell-like (green), PDX1-high (red) and 

Stromal/Mesenchymal (blue), where the colours correspond to the subgroups in all 

relevant figures. 
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Figure 2.9. Comparison of paired transcriptome and proteome profiles reveals 
modest single gene correlations. 

Comparisons between mRNA expression and protein abundance were made for 5,931 genes 
from the 35 Discovery cohort specimens with paired transcriptome and proteome data to evaluate 
(A) the correlation between steady state mRNA expression and protein abundance for each of the 
specimens, and (B) the correlations between mRNA and protein variation. For (B), shown in light 
grey are Spearman’s rho for all genes, and shown in dark grey are Spearman’s rho for the 121 
genes that overlap between DEGs and DAPs. (C) is an UpSet plot that details the number of 
genes overlapping between whole-transcriptome (mRNA), proteome (protein), the list of DEGs 
and the list of DAPs. The complete list of DEGs and DAPs are included in Supplemental Table 2. 
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Figure 2.10. Paired transcriptome and proteome profiles exhibit shared patterns 
of gene set enrichment. 

Gene set analysis using the Hallmark gene sets from MSigDB identified subgroup-specific 
features and revealed consistency between mRNA- (top) and protein- (bottom) level gene set 
enrichments among the Discovery cohort specimens. Each dot describes the enrichment (pink) or 
depletion (green) of each Hallmark gene set (rows) in each of the four proteotranscriptomic 
subgroups (columns), where its size and the length of its trailing grey bar are proportional to the 
significance of the enrichment/depletion. The same gene sets and order are shown in both the 
mRNA and protein plots. Only gene sets significantly enriched or depleted (FDR-adjusted p-value 
< 0.01; vertical dotted line) in at least one subgroup are shown. The complete results, including 
those from the Validation cohort comparison, are included in Supplemental Table 3. 
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 A Proliferative PNEN subgroup is associated with unfavourable 
clinicopathological characteristics and molecular features of 
cell cycle progression 

To increase statistical power and clinicopathological diversity, the associations 

between subgroups and available characteristics were evaluated using all 84 PNENs 

included in this study (Table 2.1). The Proliferative subgroup was associated with a 

reduced overall survival probability (p = 0.0024; logrank test; Figure 2.11), and 

significantly enriched with specimens of poorly-differentiated histology (i.e. PNECs) and 

Ki67 index > 20% (Table 2.2). Although PNECs are known to be genetically distinct from 

PNETs (Yachida et al., 2012), more than half of the Proliferative subgroup specimens 

had a well-differentiated histology and included one PNET-G1, four PNETs-G2, and one 

PNET-G3 (Supplemental Table 1). This observation suggests that a subset of PNETs 

may be more similar to PNECs than other PNETs at least at the transcriptome level. All 

four PNENs that had initially clustered with the BON-1 and QGP-1 cell line samples also 

fell within the Proliferative subgroup. 

 

Figure 2.11. Overall survival probability of all 84 PNEN patients included in this 
study. 

Patients were stratified by the proteotranscriptomic subgroup assignment of their specimens. 
Logrank test was used to evaluate whether the survival probabilities between the four subgroups 
were significantly different, and the resultant p-value is shown. 
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Table 2.2. Clinicopathological associations of the proteotranscriptomic 
subgroups using all 84 PNENs included in this study. 

Characteristic PDX1-high 
Stromal/ 

Mesenchymal 
Alpha cell-like Proliferative p-value 

Sex     

0.69 Female 13 12 17 6 

Male 7 13 11 5 

Functional Status     

0.47 Functional 5 1 3 1 

Nonfunctional 10 11 11 7 

All-cause mortality     

3.3 x 10-2 Censored 17 19 22 4 

Deceased 3 6 6 7 

Histological 
Differentiation 

    

5.2 x 10-5 
Well 20 24 28 6 

Poor 0 1 0 5 

Ki67     

4.7 x 10-4 
< 3% 14 12 14 1 

3 – 20% 6 12 14 5 

> 20% 0 1 0 5 

pTa     

0.28 

pT1 4 7 10 2 

pT2 4 10 10 3 

pT3 11 4 6 4 

pT4 1 4 2 1 

pNa     

0.26 pN0 7 14 14 4 

pN1 11 8 7 5 

Metastases at 
Diagnosis 

    

0.88 
No 13 20 20 8 

Yes 4 4 6 3 

All-time Metastases     

0.59 No 10 15 13 4 

Yes 9 10 15 7 

a. pT and pN were defined according to the 8th edition of American Joint Committee on Cancer Pancreatic Cancer 
Staging System. Cases with insufficient information were excluded. p-values were obtained from Fisher’s exact test 
with Monte Carlo simulation. 
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The molecular features of the Proliferative subgroup included enrichment of cell 

cycle-related gene sets such as E2F targets and G2M checkpoints, which were evident 

at both the mRNA and protein levels (Figure 2.10). The mRNA expression and protein 

abundance of marker of proliferation Ki-67 (MKI67) were also significantly higher in the 

specimens of this subgroup consistent with their higher Ki67-based grading 

(Supplemental Table 2). Signaling pathway impact analysis (SPIA) was used to identify 

KEGG pathways enriched among the subgroup-specific DEGs and infer the relative 

activation state of each pathway (Tarca et al., 2008). The results from SPIA further 

supported the activation of cell cycle pathways in the Proliferative subgroup 

(Supplemental Table 4). GSA using cellular component gene ontologies revealed 

enrichment of proteins involved in chromosomes and spliceosomes suggesting 

increased DNA replication and active transcription (Figure 2.12; Supplemental Table 5). 

In particular, the mRNA and protein levels of multiple members of the minichromosome 

maintenance (MCM) family were higher in the Proliferative subgroup (Supplemental 

Table 2). The MCM family of proteins are involved in DNA replication initiation and 

elongation as well as chromosome maintenance (Forsburg, 2004). Altogether, the 

Proliferative subgroup was associated with a reduced overall survival probability and 

exhibited histology-, mRNA- and protein- level evidence of increased cell proliferation 

consistent with poorer outcomes typically observed in patients with PNECs or PNETs of 

higher grade (Dasari et al., 2017). 
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Figure 2.12. The top cellular components enriched or depleted on the protein 
level in each proteotranscriptomic subgroup. 

The five highest ranking cellular component gene ontologies enriched (yellow) or depleted 
(purple) on the protein level in each of the four proteotranscriptomic subgroups depicted using 
circular barplot. The height and colour fill of each bar corresponds to the significance of the 
enrichment/depletion. Axis for the significance levels (FDR-adjusted p-values) are depicted as 
circular dashed lines for reference. All ontologies shown have FDR-adjusted p-value less than 
0.05. The complete results are included in Supplemental Table 5. 

 Transcriptomic and proteomic analysis reveals differential 
enrichment of ARX, PDX1 and organellar proteins between 
subgroups 

Similar to two PNET subtypes previously reported (Cejas et al., 2019; Chan et 

al., 2018), the Alpha cell-like and PDX1-high subgroups showed increased expression of 

the transcription factors ARX and PDX1, respectively, in both the Discovery and 

Validation cohorts. The expression levels of ARX and PDX1 in these two subgroups 

were also significantly higher (p = 0.014 and 0.023, respectively; Figure 2.13A) 

compared to levels observed in normal islets, indicating these transcription factors were 

selectively dysregulated. Considering that PDX1 and ARX are cell fate-determining 

transcription factors, I evaluated the transcriptomic similarity of the samples to major 

pancreatic cell types using gene set variation analysis (GSVA). The results indicated 

significant similarity of the Alpha cell-like subgroup to pancreatic alpha cells, while none 
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of the four PNEN subgroups were similar to pancreatic beta cells or other endocrine cell 

types across both cohorts (Figure 2.13B-C). The Alpha cell-like subgroup was further 

characterized by increased mRNA expression and protein abundance of genes involved 

in oxidative phosphorylation (OxPhos; Figure 2.10) and increased abundance of 

mitochondrial proteins (Figure 2.12). Notably, the protein abundance of arginine 

(arginase 2; ARG2) and glutamine/glutamate metabolic enzymes (glutaminase, GLS; 

glutamate-ammonia ligase; GLUL; and glutamate dehydrogenase 2, GLUD2) was 

significantly higher in the Alpha cell-like subgroup (Supplemental Table 2), suggesting a 

potential reliance on these amino acids. 

Given the differential expression of PDX1 and ARX and their known roles in 

transcriptional regulation, I performed transcription factor enrichment analysis (TFEA) 

using ChEA3 (Keenan et al., 2019) to identify other transcription factors that may 

contribute to the molecular differences between the subgroups. Among the 1,632 

transcription factors used by ChEA3 computation, one cut homeobox 1 (ONECUT1), 

paired related homeobox 2 (PRRX2), AE binding protein 1 (AEBP1) and forkhead box 

M1 (FOXM1) were the highest ranking in the PDX1-high, Stromal/Mesenchymal, Alpha 

cell-like and Proliferative subgroup, respectively. Both ARX and PDX1 were ranked 

among the top 10% transcription factors for both the Alpha cell-like and PDX1-high 

subgroups. The results from ChEA3 also suggested potential roles of ONECUT1/2, 

pancreas associated transcription factor 1a (PTF1A), SRY-box transcription factor 9 

(SOX9) and neurogenin 3 (NEUROG3), all reported to be expressed in pancreatic 

progenitor cells (Bastidas-Ponce et al., 2017; Shih et al., 2013), in shaping the GEPs of 

the PDX1-high subgroup specimens (Supplemental Table 6). The expression of 

NEUROG3 in human pancreas is transiently detected in endocrine progenitor and 

newly-differentiated endocrine cells (Jennings et al., 2013). The relatively higher mRNA 

levels of PDX1 and NEUROG3 observed in the PDX1-high subgroup specimens (Figure 

2.13A; Supplemental Table 2) further support that this subgroup may be relatively similar 

to endocrine progenitor cells. Together, these results support that the Alpha-cell-like 

subgroup specimens resemble pancreatic alpha cells and exhibit increased abundance 

of mitochondrial proteins and expression of OxPhos-related genes, while the PDX1-high 

subgroup is characterized by high mRNA expression of PDX1 and involvement of other 

transcription factors typically expressed in pancreatic progenitor cells. 
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Figure 2.13. Subgroups are characterized by difference in enrichment of cell 
types. 

(A) The mRNA expression of PDX1 and ARX between the four subgroups in the Discovery (left) 
or Validation (right) cohort. Statistical significance from differential expression analysis is shown 
for the PDX1-high subgroups (in the case of PDX1) or Alpha cell-like subgroups (in the case of 
ARX) vs. other PNENs (black asterisks) or normal islets (orange asterisks). (B) and (C) show the 
transcriptomic similarity of each (B) Discovery cohort or (C) Validation cohort (C) PNEN specimen 
to each of the 9 tested pancreatic cell types. Statistical significance in (B) and (C) was computed 
using Wilcoxon test to compare the scores from each subgroup of specimens to the rest. *: p < 
0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001. Ph: PDX1-high subgroup; S: 
Stromal/Mesenchymal subgroup; A: Alpha cell-like subgroup; P: Proliferative subgroup; I: Normal 
Islet. Each box marks the median, 25th quartile and 75th quartile, and the whiskers extend to 1.5 
times the inter-quartile range. 

 The Stromal/Mesenchymal subgroup specimens are enriched in 
stromal and immune cells 

Most sporadic PNETs present as well-demarcated solitary masses and are 

vascularized with small vessels and little fibrotic stroma (Capelli et al., 2009; Kasajima et 

al., 2015). PNETs often contain few tumour infiltrating lymphocytes (TILs) compared to 

PNECs or PDACs, but a subset of PNETs was previously observed with higher 

abundance of TILs (Takahashi et al., 2018). Among the specimens in this study, I 

identified a Stromal/Mesenchymal subgroup that showed mRNA- and protein- level 

enrichment of genes involved in epithelial-to-mesenchymal transition (EMT) and immune 

responses (Figure 2.10, Supplemental Table 3). In combination with inferred activation 

of focal adhesion and gap junction pathways (Supplemental Table 4), as well as 

increased abundance of proteins associated with the extracellular matrix (Figure 2.12), 

these results suggested a relatively higher involvement of tumour microenvironment 

(TME) and/or mesenchymal cell-related molecular features in this particular subgroup. 

The Stromal/Mesenchymal subgroup specimens also exhibited significantly higher 

transcriptomic similarities to mesenchymal and endothelial cells (Figure 2.13B-C), 

though platelet and endothelial cell adhesion molecule 1 (PECAM1/CD31) and CD34 

molecule (CD34) IHC staining of the primary specimens showed no evidence of 

increased microvessel densities (p = 0.81 and 0.26, respectively) (Figure 2.14A). GEP-

based stromal and immune cell inference analysis using ESTIMATE (Yoshihara et al., 

2013) and CIBERSORT (Newman et al., 2015) also found higher stromal and immune 

fractions in the specimens of this subgroup (Figure 2.14B-C). Together, these data 

indicate that the Stromal/Mesenchymal subgroup exhibited molecular characteristics 

suggestive of increased TME association and/or cellular phenotypes more akin to 

mesenchymal cells. 



58 

 

Figure 2.14. Differences in enrichment of non-tumour cells between the four 
subgroups. 

(A) Microvessel density in each available Discovery cohort specimen (n = 36) assessed using 
either immunohistochemical staining of CD31 or CD34. The statistical significance was computed 
using Kruskal-Wallis test to test for differences between the subgroups. (B) The immune and 
stromal scores for each Discovery cohort (left) or Validation cohort (right) specimen from 
ESTIMATE analysis. (C) The absolute score from CIBERSORT for each Discovery cohort (left) or 
Validation cohort (right) specimen. In all panels, the specimens were stratified based on their 
subgroup assignments. In (B) and (C), the results from normal islet samples are included for 
reference, and the statistical significance was computed using Wilcoxon test to compare the 
scores from each subgroup of specimens to the rest. *: p < 0.05; **: p < 0.01; ***: p < 0.001. Ph: 
PDX1-high subgroup; S: Stromal/Mesenchymal subgroup; A: Alpha cell-like subgroup; P: 
Proliferative subgroup; I: Normal Islet. Each box marks the median, 25th quartile and 75th quartile, 
and the whiskers extend to 1.5 times the inter-quartile range. 
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 Mutational differences between the proteotranscriptomic 
subgroups suggest distinct oncogenic drivers 

To identify recurrent and potentially pathogenic sequence variants between the 

four subgroups, WES was performed on the 35 Discovery cohort specimens with paired 

transcriptome and proteome data. A total of 355 mutations in 227 cancer-related genes 

were identified among the 35 Discovery cohort specimens, where 10 (4.4%) cancer-

related genes were mutated in more than 10% of the cohort (Supplemental Table 7). 

Among the most recurrently mutated cancer-related genes were those previously 

implicated in PNENs such as MEN1, DAXX, ATRX and VHL, with mutation frequencies 

of 22.9%, 17.1%, 8.6% and 11.4%, respectively (Figure 2.15). Comparison between the 

four subgroups showed a trend toward enrichment of deleterious MEN1 mutations (p = 

0.066; Fisher’s exact test) and significant enrichment of deleterious DAXX mutations (p = 

0.013; Fisher’s exact test) in the Alpha cell-like subgroup specimens. The Alpha cell-like 

subgroup was also the only subgroup with ATRX mutations or deleterious TSC1/2 

mutations. IHC staining of DAXX and ATRX showed no significant association between 

the detected DNA mutations and DAXX/ATRX scores (Figure 2.15). 

Germline mutations in VHL or NF1 can cause VHL syndrome or NF1 disorder, 

both potentially leading to PNEN development (Alexakis et al., 2004; Hammel et al., 

2000). There were four cases with VHL syndrome among the Discovery cohort patients 

all of which fell within the Stromal/Mesenchymal subgroup (Figure 2.15; Supplemental 

Table 1), consistent with the prominence of small vessels and stroma in VHL-associated 

neoplasms (Lubensky et al., 1998). In three of these VHL patients, at least one 

missense mutation in VHL was found in their sequenced specimens. None of the 

patients in our cohorts were diagnosed with neurofibromatosis, but a truncating mutation 

affecting NF1 was found in one PDX1-high case (Figure 2.15; Supplemental Table 7). 

Missense mutations in proto-oncogenes, experimentally shown to be 

hypermorphic in previous reports, were also found among the sequenced PNENs. These 

include a Proliferative subgroup specimen with a CTNNB1 p.D32N variant (Al-Fageeh et 

al., 2004) concomitant with high mRNA expression (470.7 transcripts per million (TPM) 

vs cohort average = 114.5, SD = 71.1) and protein abundance (normalized, log2-scale 

abundance of 7.1 vs cohort average = 5.7, SD = 0.5) of CTNNB1, two PDX1-high 

specimens with an activating HRAS (HRas proto-oncogene, GTPase) or NRAS (NRAS 
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proto-oncogene, GTPase) p.Q61R variant (Burd et al., 2014; Geyer et al., 2018; Muñoz-

Maldonado et al., 2019), another PDX1-high specimen with a weakly activating RET (ret 

proto-oncogene) p.V292M variant (Castellone et al., 2010), and a Stromal/Mesenchymal 

specimen with weakly activating KRAS p.L19F and p.Q22K variants (Smith et al., 2010a; 

Tsukuda et al., 2000) (Supplemental Table 7). Collectively, hypermorphic mutations 

affecting proto-oncogenes were identified in five of the sequenced specimens, all of 

which were histologically defined as PNETs (Figure 2.15). 
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Figure 2.15. Mutational differences between the proteotranscriptomic subgroups 
suggest distinct genetic drivers 

Oncoprint depicting the mutational status and the types of mutation in select genes among the 35 
Discovery cohort specimens with paired transcriptome and proteome data. The genes were 
selected based on mutational frequency > 10%, known relevance to PNENs or known roles as 
proto-oncogenes in which at least one hypermorphic mutation was found (see also Table S7). 
Samples are ordered and colour-coded according to their subgroup assignments (top row). The 
barplot (second row) shows, in each patient sample, the total number and types of variants 
affecting the genes shown. The barplot on the far right shows the total number and types of 
variants affecting the indicated gene. Additional clinicopathological characteristics of interest are 
shown at the bottom. Shown mutations are categorized into Deleterious mutations: nonsense or 
frameshift mutations, Indel: inframe insertions or deletions, Missense mutations, or Activating 
mutations: point mutations experimentally shown to be hypermorphic. 
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 Inferred activities of key cellular regulators are consistent with 
mutational differences and suggest involvement of the Hippo 
signaling pathway in the Stromal/Mesenchymal subgroup 

To evaluate the functional impacts of the identified mutations and particularly 

their effects on GEPs, I used VIPER (Alvarez et al., 2016) to infer the activity of key 

cellular regulators based on subgroup-specific gene expression signatures. The VIPER 

results are included in Supplemental Table 8. Consistent with the observed mutations 

and mutational differences, MEN1, DAXX and ATRX were relatively inhibited in the 

Alpha cell-like subgroup, while the PDX1-high subgroup showed relative activation of 

HRAS and NRAS along with inhibition of NF1. Similarly, the identified activating KRAS 

mutations and deleterious TSC2 mutations in the Stromal/Mesenchymal subgroup 

specimens were supported by the relative activation of KRAS and inhibition of TSC2 in 

this subgroup (Figures 2.15 and 2.16A). 

I further exploited the VIPER results and found Yes1 associated transcription 

regulator (YAP1) and WW domain containing transcription regulator 1 (WWTR1) to be 

the top 1 and 3 activated regulators, respectively, in the Stromal/Mesenchymal subgroup 

(Figure 2.16A; Supplemental Table 8). WWTR1, also known as TAZ, along with YAP1 

are transcriptional coactivators and downstream effectors of the Hippo signaling pathway 

(Varelas, 2014). Indeed, SPIA identified an over-representation of Hippo signaling 

pathway genes among the subgroup-specific DEGs in the Stromal/Mesenchymal 

subgroup (Supplemental Table 4). Further, differential analysis identified significantly 

higher mRNA expression of YAP1 and WWTR1 in the Stromal/Mesenchymal subgroup 

specimens compared to other PNENs or normal islets (Figure 2.16B). Given that YAP1 

and WWTR1 act as transcriptional coactivators, a direct measurement of YAP1/ 

WWTR1 protein activity can be made by examining the transcriptional levels of their 

target genes. For this, I used a previously curated panel of 22 YAP1/WWTR1 target 

genes (Wang et al., 2018) as a reference gene set. Significantly higher YAP1/WWTR1 

target enrichment scores in the Stromal/Mesenchymal subgroup specimens suggested 

the relative activation of YAP1/WWTR1 in this subgroup compared to other PNENs or 

normal islets (Figures 2.16C). Together, these results support the activation of the 

YAP1/WWTR1 signaling axis in the Stromal/Mesenchymal subgroup and mark the 

significance of the Hippo signaling pathway in PNENs. 
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Figure 2.16. Inferred activities of cellular regulators are consistent with 
mutational differences and suggest involvement of the Hippo 
signaling pathway in the Stromal/Mesenchymal subgroup 

(A) Inferred activity (outer ring) of select cellular regulators of interest are illustrated along with 
their mRNA expression (centre fill) and protein abundance (outer fill) fold-changes between the 
four proteotranscriptomic subgroups, among the 35 Discovery cohort specimens with paired 
transcriptome and proteome data. The mRNA expression of protein abundance of a gene is 
outlined in black if the fold-change was significant with an adjusted p-value less than 0.05. Only 
genes with an adjusted p-value < 0.05 from the inference analysis are considered as activated or 
inhibited. (B) mRNA expression levels of YAP1 and WWTR1 in each of the Discovery cohort (left) 
or Validation cohort (right) specimens, stratified by subgroup assignments, or in normal islet 
samples. mRNA expression levels shown as log2-TPM values. Statistical significance from 
differential expression analysis is shown for the Stromal/Mesenchymal subgroup vs. other PNENs 
(black asterisks) or normal islets (orange asterisks). Statistical significance from differential 
expression analysis is shown for the Stromal/Mesenchymal subgroup vs. other PNENs (black 
asterisks) or normal islets (orange asterisks). (C) YAP1/WWTR1 target gene enrichment score for 
each Discovery cohort (left) or Validation cohort (right) specimen, stratified by subgroup 
assignments, or for normal islet samples. Statistical significance was computed using Wilcoxon 
test to compare the scores from each subgroup of specimens to the rest. **: p < 0.01; ***: p < 
0.001; ****: p < 0.0001. Ph: PDX1-high subgroup; S: Stromal/Mesenchymal subgroup; A: Alpha 
cell-like subgroup; P: Proliferative subgroup; I: Normal Islet. Each box marks the median, 25th 
quartile and 75th quartile, and the whiskers extend to 1.5 times the inter-quartile range. 

2.3. Discussion 

Using a multi-omics approach that combined exome-, transcriptome- and 

proteome- level data to portray an unselected group of PNENs, I identified four 

proteotranscriptomic subgroups. I also uncovered previously unrecognized metabolism-

related molecular differences in an Alpha cell-like subgroup and involvement of the 

Hippo signaling pathway in a Stromal/Mesenchymal subgroup of PNENs. Combined with 

subgroup-specific cellular regulators and oncogenic features, my findings provide a 

basis for potential patient stratification strategies with therapeutic implications. 

ARX and PDX1 are two transcription factors that may distinguish pancreatic 

alpha versus beta cells, respectively, with PDX1 also being expressed early during 

pancreas organogenesis (Shih et al., 2013). An ARX-high subtype of PNETs was shown 

to resemble pancreatic alpha cells, while a PDX1-high subtype of PNETs exhibited 

enhancer profiles resembling pancreatic beta cells but with more heterogeneity in intra-

subtype GEPs and PDX1 expression levels (Cejas et al., 2019; Chan et al., 2018). I 

similarly identified elevated PDX1 or ARX mRNA expression levels in PDX1-high and 

Alpha-cell like subgroups, respectively. The Alpha cell-like specimens showed 

transcriptomic similarity to pancreatic alpha cells and enrichment of mutations in ATRX, 

DAXX and MEN1, consistent with the A-D-M mutant PNET subtype reported by Chan et 
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al. (2018) and the Type A subtype reported by Cejas et al. (2019). However, the PDX1-

high subgroup did not exhibit any other molecular features suggestive of its similarity to 

pancreatic beta cells or any other endocrine cell types. These variations in the subset of 

PNENs with high PDX1 mRNA expression across studies warrant further investigation 

using larger and broader cohorts of PNENs. Furthermore, the majority of PNENs in this 

and previous studies (Cejas et al., 2019; Chan et al., 2018) were clinically identified as 

nonfunctional PNENs. The discovery of a subset of PNENs with transcriptomic similarity 

to pancreatic alpha cells but without clinically significant glucagon detection suggests a 

disconnection between molecular characteristics and clinical phenotypes and the 

importance of employing an unbiased approach to fully understand PNENs as a disease. 

In the Alpha cell-like subgroup specimens, I found previously unknown molecular 

features that revealed potential therapeutic angles. The Alpha cell-like subgroup showed 

mRNA- and protein- level enrichment of OxPhos-related genes as well as increased 

abundance of mitochondrial proteins, such as GLS, GLUL and ARG2. Some cancer 

types require utilization of GLS to catabolize glutamine and are susceptible to GLS 

inhibition (Cluntun et al., 2017). For example, in a hepatocellular carcinoma murine 

model with increased Gls mRNA expression and protein abundance, loss of a Gls allele 

or pharmacological inhibition of Gls using BPTES delayed tumour growth and prolonged 

survival (Xiang et al., 2015). The markedly higher abundance of glutamine and arginine 

metabolic enzymes in the Alpha cell-like subgroup may reflect the subgroup’s reliance 

on these amino acids and therefore sensitivity to interventions that affect their 

supply/availability. Considering multiple groups have reported a subset of PNENs with 

elevated ARX expression or ARX IHC positivity (Cejas et al., 2019; Chan et al., 2018; Di 

Domenico et al., 2020; Hackeng et al., 2021) similar to the Alpha cell-like subgroup, 

therapeutic agents such as BPTES that inhibit glutamine metabolism may provide 

therapeutic benefit for patients within this subgroup. With the frequent mutation of 

MEN1, DAXX or ATRX and the high expression level of ARX in the Alpha cell-like 

subgroup of PNENs, the relationship between these genetic alterations and its distinct 

metabolism-related expression profile could be exploited for the discovery of potential 

targeted treatments and corresponding predictive biomarkers. 

While I did not investigate the genomic landscapes of the PNEN specimens 

examined in this study, the Alpha cell-like subgroup may also correlate with other 

previously described subtypes without RNA-level characterization. Based on its 
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enrichment of specimens with mutant MEN1 and DAXX, higher ARX expression and/or 

clustering with pancreatic α-cells, the Alpha cell-like subgroup may resemble the Group 

1 subtype described by Lawrence et al. (2018), the Intermediate subtype by Di 

Domenico et al. (2020), the NF-Amp subtype by Hong et al. (2020), the T2 subtype by 

Lakis et al. (2021) and the Subtype A by Boons et al. (2020). Of note, three of these 

subtypes were characterized with recurrent LOH or loss in chromosomes 1, 2, 6, 10, 16 

and 22 (Boons et al., 2020; Lakis et al., 2021; Lawrence et al., 2018), suggesting 

potential links between concurrent alterations in MEN1 and DAXX and loss of these 

chromosomes. 

PNETs are typically known as a “tumour-suppressor” disease, wherein potential 

driver mutations most often affect tumour suppressor genes and rarely proto-oncogenes 

(Jiao et al., 2011; Scarpa et al., 2017; Wong et al., 2018). I found a surprising number of 

PNET cases with hypermorphic variants of proto-oncogenes: CTNNB1 (p.D32N), HRAS 

(p.Q61R), NRAS (p.Q61R), KRAS (p.L19F and p.Q22K), and RET (p.V292M) that result 

in either their constitutive activation or stabilization (Al-Fageeh et al., 2004; Burd et al., 

2014; Castellone et al., 2010; Geyer et al., 2018; Smith et al., 2010a; Tsukuda et al., 

2000). In particular, one third (3/9) of the PDX1-high subgroup specimens harboured 

gene variants that potentially lead to activated RAS signaling. Altogether, 5 out of 32 

(15.6%) PNETs, or 5 out of 35 (14.3%) PNENs, and no PNECs, among the Discovery 

cohort specimens harboured hypermorphic mutations affecting proto-oncogenes. 

Through inference analysis, I also found accompanying transcriptomic changes 

consistent with relative activation of these genes in the corresponding subgroups. It 

remains uncertain what led to the higher-than-expected number of activating mutations 

in these sequenced PNETs, but the inclusive nature of the current study and the 

epidemiology of the included PNENs may contribute to the observed differences. 

Nonetheless, the clustering of the cases harbouring potentially oncogenic mutations with 

other PNENs lacking obvious driver genetic alterations could reflect common intra-

subgroup molecular features. 

The Hippo signaling pathway elicits downstream transcriptional effects through 

YAP1 and WWTR1 (Hansen et al., 2015). I identified an unexpected activation of the 

YAP1 and WWTR1 transcriptional coactivators in the Stromal/Mesenchymal subgroup. 

Phenotypic consequences of YAP1 and WWTR1 activation include a myriad of cancer 

hallmarks, among which are the induction of EMT (Lei et al., 2008), promotion of 
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angiogenesis (Choi et al., 2015; Kim et al., 2017a) and modification of the TME 

(Zanconato et al., 2019) - all of which were observed in the Stromal/Mesenchymal 

subgroup (Figures 2.10 and 2.12). Both increased mRNA expression and relative 

activation of YAP1 and WWTR1 were found in the Stromal/Mesenchymal subgroup and 

were further supported by transcriptomic signatures previously shown to correlate with 

YAP1 and WWTR1 activation in pan-cancer analysis (Wang et al., 2018). YAP1 and 

WWTR1 are favoured therapeutic targets among the Hippo signaling pathway due to 

their direct roles in transcriptional regulation. Investigative drugs targeting YAP1 and 

WWTR1 are being explored (Crawford et al., 2018). Verteporfin, a photosensitizer used 

in photodynamic therapies, has demonstrated YAP1 inhibitory effects and anti-tumour 

effects in hepatocellular carcinoma, retinoblastoma and glioblastoma (Brodowska et al., 

2014; Liu-Chittenden et al., 2012; Vigneswaran et al., 2021), and may provide 

therapeutic benefit to patients with PNENs of the Stromal/Mesenchymal subgroup or 

exhibiting elevated YAP1/WWTR1 expression. The observation of high expression and 

activity of YAP1 and WWTR1 in the Stromal/Mesenchymal subgroup specimens could 

indicate their reliance on the activation of these Hippo signaling pathway effectors and 

susceptibility to inhibition of YAP1/WWTR1 activity. 

Epidemiological factors, the nonselective nature of case accrual, and an 

unprecedent multi-omic approach all likely contributed to the discovery of the new PNEN 

molecular features revealed in this study. Also, the PNEN specimens profiled in this 

study were mostly resected during the early stage of disease, as reflected by the few 

cases with metastases at the time of diagnosis. While the molecular landscapes of these 

early-stage PNEN specimens may partially differ from those of late-stage, metastatic 

disease, our study revealed biological subgroups that may aid treatment planning in the 

early stages of this highly heterogeneous disease. Given the rarity of PNENs and 

limitations of the specimens in the current studies, there may be additional PNEN 

subgroups not represented among our cohort specimens that could explain the distinct 

clustering of the NT-3 cell line samples. A meta-analysis combining the present study 

and previous PNEN profiling studies would be invaluable to more comprehensively 

understand the disease from both biological and therapeutic perspectives. 
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2.4. Methods 

 Case and clinical information accrual 

Tumour specimens 

The Discovery cohort consisted of PNEN cases included in a previously 

constructed pancreatic TMA (Riazy et al., 2015; Tessier-Cloutier et al., 2017). To identify 

PNEN cases for the Validation cohort, the pathology archives at Vancouver General 

were searched for PNEN cases, where the only criterion for inclusion in the study was a 

confirmed PNEN diagnosis. No exclusion criteria were implemented. For all identified 

cases with specimen availability, archival formalin-fixed paraffin-embedded (FFPE) 

tissue and corresponding data were retrieved and used in accordance with the ethical 

approval granted by the University of British Columbia (UBC) Clinical Research Ethics 

Board (H12-03484) and the UBC BC Cancer Research Ethics Board (H16-01577). The 

original slides were reviewed by a board certified pathologist (Dr. John Aird) to confirm 

the diagnosis, the pathological classification and the grade. 

A total of 41 PNENs from the Discovery cohort and 51 PNENs from the 

Validation cohort were subjected to RNA-seq. Forty of the Discovery cohort PNENs were 

characterized with proteomic profiling. Samples that failed RNA-seq or yielded inferior 

sequencing quality were excluded (see the RNA quantification and sample exclusion 

subsection under Section 2.4.2), resulting in the final Discovery cohort of 36 PNENs and 

the final Validation cohort of 48 PNENs. Thirty-five of the Discovery cohort PNENs with 

both RNA-seq and proteomic data were additionally characterized with WES. The two 

cohorts included patients at various disease and pathological stages diagnosed between 

1999 and 2016. 

For molecular assays, tumour-rich regions from FFPE tumour blocks were 

marked and cored. Areas with the highest Ki67 proliferative index were targeted. Due to 

limited material, tissue scrolls were instead obtained for two cases where only biopsied 

materials were available. For sequencing and proteomic sample extractions, two cores 

(1 mm x1 mmx 10 mm) or three 10 µm scrolls (300~400 mm2) were used for each 

assay. 
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Cell lines 

BON-1 was a gift from Drs. Courtney Townsend and Mark Hellmich at the 

University of Texas Medical Branch, Texas, USA. QGP-1 was purchased from the 

Japanese Cancer Resource Bank. NT-3 was previously developed and provided by Dr. 

Jörg Schrader at University Medical Center Hamburg-Eppendorf, Hamburg, Germany 

(Benten et al., 2018). BON-1 cells were cultured in DMEM:F12 (Gibco) supplemented 

with 10% fetal bovine serum (FBS; Gibco) and 10 mM HEPES (Gibco). QGP-1 cells 

were cultured in RPMI 1640 (Gibco) supplemented with 10% FBS. NT-3 cells were 

cultured in RPMI 1640 supplemented with 10% FBS, 100 U/mL penicillin-streptomycin 

(Gibco), 20 ng/mL EGF (Sigma-Aldrich) and 10 ng/mL FGF2 (Sigma-Aldrich). For 

culturing NT-3 specifically, cell culture vessels were coated with collagen IV (Sigma-

Aldrich) to ensure adherent growth. All three cell lines were developed from tumours 

from male patients. All cell cultures were maintained at 37°C with 5% CO2 and were 

checked regularly to be free of mycoplasma. Cells were harvested at 70~90% 

confluence and immediately snap-frozen. 

Normal islet samples 

Islet extractions were obtained from the IsletCore at the Alberta Diabetes 

Institute, Alberta, Canada, between 2016 and 2018. All extractions were derived from 

cadaveric pancreas from individuals (age: 22~74; BMI: 21.5~32.5; 6 males and 3 

females) without documented pancreas-related health conditions and of causes of death 

unrelated to cancer. All islet extractions were hand-picked after receipt to ensure 

maximum purity and snap-frozen immediately. An additional normal islet sample, 

matched to one of the FFPE tumour blocks was acquired by laser capture 

microdissection (LCM) of islets from fifteen 8 µm sections. 

Clinicopathological characteristics 

Where applicable, the grading (including the histological differentiation status and 

proliferative index) of the PNEN cases was updated to conform with the 2019 WHO 

classification system (Nagtegaal et al., 2020). The clinicopathological characteristics 

such as sex, tumour stage and WHO class of the study cohort are provided in 

Supplemental Table 1. The overall survival time was calculated by subtracting the date 

of diagnosis from the last follow-up date. pT and pN staging were defined according to 

the AJCC Staging Manual (8th edition). 
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 Sample processing 

FFPE tissue nucleic acid extraction 

Total nucleic acid extraction from FFPE specimens was performed using a 

modified version of Agencourt’s FormaPure protocol developed in-house and described 

previously (Haile et al., 2017, 2018). Briefly, Agencourt® FFPE FormaPure Kit (Beckman 

Coulter) was used per manufacturer’s instructions for total RNA extraction except 1) the 

DNase treatment step was excluded, 2) the deparaffinization/lysis step was extended to 

two hours, and 3) a reverse cross-linking step was included between proteinase K 

treatment and bead binding steps. 

Snap-frozen tissue nucleic acid extraction 

Frozen tissue or cell line pellets were homogenized in lysis buffer (RLT Plus + 

TCEP) for total nucleic acid (DNA and RNA) extraction using the EvoPure RNA Tissue 

Isolation kit (Aline Biosciences) automated on a Microlab NIMBUS liquid handler 

(Hamilton Robotics). Frozen tissue pieces were immersed in 420 µL of RLT Plus buffer 

(Qiagen) containing the reducing agent TCEP and a unique sample tracking DNA 

plasmid and gently agitated overnight at room temperature. Lysates were transferred 

from 2 mL tubes to wells of a 1.2 mL plate (Thermo Scientific, AB1127) into which was 

added 400 µL of 5x bind buffer (80 µL beads in 320 µL IPA). Following a 5 minute 

incubation at room temperature lysates were cleared on a magnet (Alpaqua, 96M-EX) 

for 6 minutes and the protein-containing supernatant removed. The beads, with bound 

nucleic acids, were washed by pipetting 10 times in wash buffer and returned to the 

magnet. Beads were washed three times in 70% ethanol then dried for 10 minutes. 40 

µL nuclease-free water was added to the dried beads and returned to the magnet. The 

eluted total nucleic acids were transferred to a 96-well storage plate and aliquots taken 

for fluorometric quantification using Qubit 4 Fluorometer (Thermo Scientific). 

RNA-seq 

To remove cytoplasmic and mitochondrial ribosomal RNA (rRNA) species from 

total RNA, NEBNext® rRNA Depletion Kit was used (New England Biolabs, NEB). 

Enzymatic reactions were assembled in a 96-well plate on a Microlab NIMBUS liquid 

handler. 100 ng of DNase I-treated total RNA in 6 µL was hybridized to rRNA probes in a 

7.5 µL reaction. Heat-sealed plates were incubated at 95oC for 2 minutes followed by 



71 

incremental reduction in temperature by 0.1oC per second to 22oC (730 cycles). The 

rRNA in DNA hybrids was digested using RNase H in a 10 µL reaction incubated in a 

thermocycler at 37oC for 30 minutes. To remove excess rRNA probes (DNA) and 

residual genomic DNA contamination, DNase I was added in a total reaction volume of 

25 µL and incubated at 37oC for 30 minutes. RNA was purified using RNA MagClean DX 

beads (Aline Biosciences) with 15 minutes of binding time, 7 minutes clearing on a 

magnet followed by two 70% ethanol washes, 5 minutes to air dry the RNA pellet and 

elution in 36 µL DEPC water. The plate containing RNA was stored at -80oC prior to 

cDNA synthesis. 

First-strand cDNA was synthesized from the purified RNA (minus rRNA) using 

the Maxima H Minus First Strand cDNA Synthesis kit (Thermo Scientific) and random 

hexamer primers at a concentration of 8 ng/µL along with a final concentration of 0.04 

µg/µL Actinomycin D, followed by PCRClean DX bead (Aline Biosciences) purification on 

a Microlab NIMBUS liquid handler. The second strand cDNA was synthesized following 

the NEBNext® Ultra™ Directional Second Strand cDNA Synthesis Module (NEB) that 

incorporates dUTP in the dNTP mix, allowing the second strand to be digested using 

USERTM enzyme (NEB) in the post-adapter ligation reaction and thus achieving strand 

specificity. 

cDNA was fragmented by sonication (Covaris, LE220) for 130 seconds (2x65 

seconds) at a “Duty cycle” of 30%, 450 Peak Incident Power (W) and 200 Cycles per 

Burst in a 96-well microTUBE Plate (Covaris, 520078) to achieve 200-250 bp average 

fragment lengths. The paired-end sequencing library was prepared following the 

Genome Sciences Centre (BC Cancer, Canada) strand-specific, plate-based library 

construction protocol on a Microlab NIMBUS liquid handler. Briefly, the sheared cDNA 

was subject to end-repair and phosphorylation in a single reaction using an enzyme 

premix (NEB) containing T4 DNA polymerase, Klenow DNA Polymerase and T4 

polynucleotide kinase, incubated at 20oC for 30 minutes. Repaired cDNA was purified in 

96-well format using PCRClean DX beads and 3’ A-tailed (adenylation) using Klenow 

fragment (3’ to 5’ exo minus) and incubation at 37oC for 30 minutes prior to enzyme heat 

inactivation. Illumina PE adapters were ligated at 20oC for 15 minutes. The adapter-

ligated products were purified using PCRClean DX beads, then digested with USERTM 

enzyme (1 U/µL) at 37oC for 15 minutes followed immediately by 13 cycles of indexed 

PCR using PhusionTM High-Fidelity DNA Polymerase (Thermo Scientific) and Illumina’s 
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PE primer set. PCR parameters: 98˚C for 1 minute followed by 13 cycles of 98˚C for 15 

seconds, 65˚C for 30 seconds and 72˚C for 30 seconds, and then 72˚C for 5 minutes. 

The PCR products were purified and size-selected using a 1:1 PCRClean DX beads-to-

sample ratio twice, and the eluted DNA quality was assessed with LabChip® GX 

(Caliper) for DNA samples using the DNA High Sensitivity Reagent Kit (PerkinElmer). 

Samples were then quantified using a Quant-iTTM dsDNA Assay Kit, high sensitivity 

(Thermo Scientific) on Qubit 4 Fluorometer prior to library pooling and size-corrected 

final molar concentration calculation for Illumina HiSeq2500 sequencing with paired-end 

75 base reads. Library pooling was done in sets of three, with the exception of the library 

from the one LCM islet sample, which was not pooled with other libraries. 

Protein extraction and digestion 

FFPE tissues were first deparaffinized using xylene. Lysis buffer (500 mM Tris-Cl 

pH 8, 2% SDS, 1% NP40, 1% Triton X-100, 5mM EDTA, 50mM NaCl, 10mM TCEP and 

40mM CAA) was then added to each sample. Proteins were denatured using heat (for 

130 minutes at 95°C with shaking at 1,100 RPM), followed by a 30 minute incubation at 

room temperature in the dark to allow reduction and alkylation of disulfide bonds. 

Protein clean-up and digestion was done using the SP3 protocol developed in-

house (Hughes et al., 2014, 2019). Briefly, paramagnetic beads were prepared by 

mixing two types of Sera-Mag Speed beads (GE Life Sciences) at 1:1 ratio, and 20 µg of 

bead mix was added to each protein mixture. Ethanol was added to a final concentration 

of 50% (v/v), and the sample was mixed and incubated for 10 minutes at room 

temperature to ensure protein-bead binding. The samples were then placed on a 

magnetic rack to stabilize the beads, and the supernatants were discarded, and two 

rinses with 70% absolute ethanol and one rinse with 100% absolute ethanol were 

applied. The beads were reconstituted in aqueous buffer (50 mM HEPES pH 8) 

containing trypsin/LysC mix (Promega) at 1:50 (ug/ug) enzyme to protein amount and 

sonicated for 30 seconds in a water bath to disaggregate the beads. The mixtures were 

then incubated for 14 hours at 37°C, sonicated for 10 seconds to resuspend the beads, 

and the supernatants recovered. 
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Peptide labeling and fractionation 

The digested peptide samples were prepared for mass spectrometry (MS) 

analysis in batches of 10, where each batch contained 8 randomly assigned patient 

samples and two common inter-batch controls. One control was a pooled all-sample 

mixture consisting of an aliquot of each patient sample. The second control was a 

universal standard consisting of digested peptides from thirteen cell lines. The peptide 

mixtures were labeled with tandem mass tag (TMT) using the TMT10plex labeling kit 

(Pierce) according to manufacturer's instructions. High-pH reversed phase analysis was 

performed on an Agilent 1100 HPLC system equipped with a diode array detector (254, 

260, and 280 nm). Fractionation was performed on a Kinetix EVO C18 column (2.1 mm 

x 150 mm, 1.7 μm core shell, 100 Å, Phenomenex). Elution was performed at a flow rate 

of 0.2 mL per minute using a gradient of mobile phase A (10 mM ammonium 

bicarbonate, pH 8) and B (acetonitrile), from 3% to 35% over 60 minutes. Fractions were 

collected every minute across the elution window for a total of 48 fractions, which were 

concatenated to a final set of 12 (e.g. 1 + 13 + 25 + 37 = fraction 1). Fractions were dried 

in a SpeedVac centrifuge and reconstituted in 1% formic acid with 1% DMSO in water 

prior to MS analysis. 

MS analysis 

Analysis of TMT-labeled peptide fractions was carried out on an Orbitrap 

FusionTM TribridTM MS platform (Thermo Scientific). Samples were introduced using an 

Easy-nLC 1000 system (Thermo Scientific). Columns used for trapping and separations 

were packed in-house. Trapping columns were packed in 100 μm internal diameter 

capillaries to a length of 25 mm with ReproSil-Pur C18 beads (3 µm particle size, Dr. 

Maisch). Trapping was carried out for a total volume of 10 μL at a pressure of 400 bar. 

After trapping, gradient elution of peptides was performed on a ReproSil-Pur C18 (1.9 

µm particle size, Dr. Maisch) column packed in-house to a length of 15 cm in 100 μm 

internal diameter capillaries with a laser-pulled electrospray tip and heated to 45°C using 

AgileSLeeve column ovens (Analytical Sales & Service). Elution was performed with a 

gradient of mobile phase A (water and 0.1% formic acid) to 8% B (acetonitrile and 0.1% 

formic acid) over 5 minutes, to 25% B over 88 minutes, to 40% B over 20 minutes, with 

final elution (80% B) and equilibration (5% B) using a further 7 minutes at a flow rate of 

375 nL per minute. 
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Data acquisition on the Orbitrap Fusion (control software v2.1.1565.20) was 

carried out using a data-dependent method with multi-notch synchronous precursor 

selection MS3 scanning for TMT tags. Survey scans covering the mass range of 350 – 

1500 were acquired at a resolution of 120,000 (at m/z 200), with quadrupole isolation 

enabled, an S-Lens RF Level of 60%, a maximum fill time of 50 ms, and an automatic 

gain control (AGC) target value of 4e5. For MS2 scan triggering, monoisotopic precursor 

selection was enabled, charge state filtering was limited to 2 – 4, an intensity threshold 

of 5e3 was employed, and dynamic exclusion of previously selected masses was enabled 

for 60 seconds with a tolerance of 20 ppm. MS2 scans were acquired in the ion trap in 

Rapid mode after CID fragmentation with a maximum fill time of 20 ms, quadrupole 

isolation, an isolation window of 1 m/z, collision energy of 30%, activation Q of 0.25, 

injection for all available parallelizable time turned OFF, and an AGC target value of 1e4. 

Fragment ions were selected for MS3 scans based on a precursor selection range of 

400-1600 m/z, ion exclusion of 20 m/z low and 5 m/z high, and isobaric tag loss 

exclusion for TMT. The top 10 precursors were selected for MS3 scans that were 

acquired in the Orbitrap after HCD fragmentation (NCE 60%) with a maximum fill time of 

90 ms, 50,000 resolution, 120-750 m/z scan range, ion injection for all parallelizable time 

turned OFF, and an AGC target value of 1e5. The total allowable cycle time was set to 4 

seconds. MS1 and MS3 scans were acquired in profile mode, and MS2 in centroid 

format. 

Genomic library construction 

A 96-well library construction protocol was performed for library construction from 

genomic DNA as previously described (Haile et al., 2017, 2018). Since DNA extracted 

from FFPE tissues is damaged by the fixation process and prolonged storage in non-

ideal conditions, variable DNA quality across the collection was expected with some 

highly degraded samples. An S1 nuclease treatment step was added to further remove 

single-stranded DNA as previously described (Haile et al., 2018). DNA was normalized 

to 300 ng in a volume of 62 μL elution buffer (Qiagen) and transferred into a 96-well 

microTUBE Plate (Covaris, 520078) for shearing on an LE220 (Covaris) acoustic 

sonicator using the conditions: Duty Factor - 20%, Peak Incident Power – 450W, Cycle 

per burst – 200, Duration – 2X 60 seconds with an intervening spin. The protocol for 

FFPE-derived DNA generates a dominant DNA peak in the 300-400 bp size range. 

Highly degraded DNAs can dominate the final amplified library. To improve library quality 
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of FFPE-derived DNA library, solid phase reversible immobilization (SPRI) bead-based 

size selection was performed before library construction to remove smaller fragments 

potentially from degraded DNAs. The NEBNext® FFPE End Repair Kit (NEB) was then 

used, followed by bead purification using a 0.8:1 (bead:sample) ratio to remove small 

FFPE-derived DNA fragments. Repaired DNA fragments were A-tailed and adaptor-

ligated to paired-end, partial Illumina sequencing adapters using the NEB Paired-End 

Sample Prep Premix Kit – A Tail (NEB) and the NEB Paired-End Sample Prep Premix 

Kit – Ligation (NEB), respectively, then purified twice with PCRClean DX beads (0.9:1 

ratio). Full-length, adaptor-ligated products were achieved by performing 8 cycles of 

PCR with primers, in which we introduced fault-tolerant hexamer “barcodes” to allow 

library multiplexing. Indexed PCR products were double purified with 0.9:1 ratio of 

library:beads. The concentrations of final library products were determined using size 

profiles obtained from a LabChip® GX using the DNA High Sensitivity Reagent Kit and 

quantified using the Quant-iTTM dsDNA Assay Kit with high sensitivity on the Qubit 4 

Fluorometer. 

WES 

Eight different genomic libraries (total of >500 ng) were pooled prior to whole-

exome capture using the xGen® Exome Research Panel v1.0 (Integrated DNA 

Technologies). The pooled libraries were hybridized to the capture probes at 65oC for a 

minimum of 4 hours. Following hybridization, Dynabeads™ M-270 Streptavidin (Thermo 

Scientific) was used for exome capture. Post-capture enrichment using 6 PCR cycles 

and primers that maintained the library-specific indices was performed. The pooled 

libraries were sequenced with paired-end 125 base reads in a single lane of an Illumina 

HiSeq2500 flowcell. 

 Data analysis 

RNA quantification and sample exclusion 

Raw RNA-seq data was aligned to the human reference genome hg19 using 

STAR in two-pass mode (Dobin et al., 2012), and duplicate reads were identified using 

Picard’s MarkDuplicates. Gene counts were obtained using featureCounts (part of 

Subread) (Liao et al., 2013) using transcript annotations obtained from Ensembl (v87). 
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Transcripts per million (TPM) values were calculated from the gene counts using the 

formula: 
(Count Effective length⁄ ) × 1,000,000

Sum(Count Effective length⁄ )
. 

As most of the samples were FFPE specimens, which typically yield degraded 

RNA, we excluded samples of inferior RNA-seq data quality based on strong deviation in 

quality measures from other FFPE samples within the same cohort. The decision to 

remove a sample was made based on a combination of factors including a low 

percentage of properly mapped reads, a much higher percentage of reads that were too 

short or mitochondrial, and a much higher percentage of duplicate reads. In addition, 

unsupervised clustering of the least variably expressed mRNAs (the 25% lowest ranking 

mRNAs based on coefficient of variation; n = 4,820) was used to identify outlier samples 

with strongly deviating mRNA expression profiles. 

Protein quantification and preprocessing 

Data from the Orbitrap Fusion were processed using Proteome Discoverer 

(Thermo Fisher) as previously described (Hughes et al., 2016). Briefly, Sequest HT was 

used to search for MS2 spectral matches against a combination of UniProt Human and 

Escherichia coli proteomes and a list of common contaminants. Percolator was used to 

determine peptide spectral match (PSM) error rates. A q-value cut-off of 0.05 was used 

to control for false discoveries. Reporter ions were quantified from MS3 scans where the 

output quantification values represented the signal-to-noise of the TMT value relative to 

the Orbitrap preamplifier. 

Quantification outputs from Proteome Discoverer were exported and analyzed in 

R. PSM data were filtered to remove contaminant and decoy proteins and those that 

were mapped to more than one protein. The abundance of uniquely identified peptides 

were computed from the quantification values of the PSMs mapped to the peptides by 

taking the median of all mapped PSMs. Peptide abundances were then treated with 

variance-stabilization normalization using the vsn R package (Huber et al., 2002, 2019) 

and collapsed into normalized protein abundance by taking their median values. The 

normalized protein abundance (log2-scale) was used in differential protein abundance 

analysis. 
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For clustering and visualization, ComBat from the sva R package (Leek et al., 

2019) was used on the normalized protein abundance values to adjust for batch 

covariates associated with different TMT batches. 

cNMF 

For initial cNMF analyses of the Discovery and Validation cohorts, I included 

normal human pancreatic islet samples and human PNEN cell lines as normal 

counterparts and to represent PNENs with known phenotypes and proliferative potential 

(Hofving et al., 2018), respectively. Six different normal (including one LCM) islet 

samples and BON-1 and QGP-1 cell line samples were included with the analysis of the 

Discovery cohort PNENs. For the analysis of the Validation cohort PNENs, four different 

normal islet samples and two biological replicate samples of NT-3 cell line were 

included. The final PNEN subgroups were identified among tumour specimens only. 

cNMF was performed using the NMF R package (Gaujoux and Seoighe, 2010, 

2020) using either the top 25% ranking genes (mRNAs or proteins) based on coefficient 

of variation or DEGs derived from the differential analysis between the four subgroups 

among the Discovery cohort (see the Differential analysis subsection below for details). 

cNMF analysis was done using either log2-transformed TPM values or normalized, 

batch-adjusted protein abundance values for mRNAs or proteins, respectively. mRNAs 

with expression level below 1 TPM in at least half of the sample cohort were excluded 

from the analysis. To survey the optimal rank and therefore the number of subgroups, 50 

iterations of NMF were performed assuming a possible rank at 2~7, and an optimal rank 

was selected based on high cophenetic and silhouette coefficients. The rank survey was 

performed on all PNEN specimens where information was available to maximize sample 

variation: n = 36 for RNA-seq data from the Discovery cohort specimens, n = 40 for 

proteomic profiles (including 35 of the Discovery cohort specimens), and n = 48 for RNA-

seq data from the Validation cohort specimens. To obtain the final subgroup assignment 

for each sample at the optimal rank, 200 iterations of NMF were performed followed by 

hierarchical cluster analysis of the resultant consensus matrix. Hierarchical cluster 

analysis was done using the hclust function from the stats R package (R Core Team, 

2020) with distance computed from 1 – consensus matrix. Where applicable, an initial 

seed of 123456 was set for reproducibility in computation. 



78 

Differential analysis 

Differential gene expression and protein abundance analyses were done using 

the limma R package (Ritchie et al., 2015; Smyth et al., 2020). For transcriptome data, 

RNAs expressed below 1 counts per million (CPM) in 10% of the samples were 

considered noise and removed. The read counts of the resultant 25,373 RNAs were 

transformed to log2-CPM using voom from the edgeR R package (Chen et al., 2020; 

Robinson et al., 2010). For proteome data, the normalized protein abundance was used, 

with the batch covariates associated with TMT-10 batches included in the design matrix 

to account for variations between different TMT-10 batches. DEGs or DAPs were 

identified between the PDX1-high, Stromal/Mesenchymal and Alpha cell-like subgroups. 

The Proliferative subgroup was analyzed independently and compared to the rest of the 

tumour samples to account for its higher intra-subgroup heterogeneity. Using a 

significance threshold of absolute log2-fold change (log2FC) > 2 and false discovery 

rate-adjusted p-value (p.FDR) < 0.05 for mRNAs, and absolute log2FC > 1 and p.FDR < 

0.05 for proteins, 1,637 DEGs and 354 DAPs were identified. 

Gene and protein ID conversions 

Different software and algorithms may require different gene/protein identifiers. I 

used biomaRt (Durinck and Huber, 2020; Durinck et al., 2005, 2009) and org.Hs.eg.db 

(Carlson, 2019) for conversions of identifiers. In instances where an analysis referenced 

both mRNAs and proteins, the official gene symbols approved by HGNC were used, and 

the mRNAs and proteins without official gene symbols were excluded. 

Enrichment analysis 

GSA was performed using Camera (Wu and Smyth, 2012) from the limma R 

package. The Hallmark and cellular components gene ontology gene sets were obtained 

from the Molecular Signatures Database (Liberzon et al., 2015) (downloaded June 25th, 

2019) and used as the reference gene sets. 

Signaling pathway impact analysis (Tarca et al., 2008) was used to identify the 

list of KEGG pathways over-represented by the subgroup-specific DEGs using the 

iLINCS web-based platform (http://ilincs.org). Only pathways with adjusted p-value 

(SPIA pajd) less than 0.05 were considered, and the status of each enriched pathway 

was only considered if the topology p-value (Top pval) was less than 0.05.  

http://ilincs.org/
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ESTIMATE analysis was performed using the estimate R package (Yoshihara et 

al., 2013). Log2-TPM values were used as the input, and the analysis was run using 

default parameters.  

TFEA was performed using the ChEA3 (Keenan et al., 2019) web portal 

(https://amp.pharm.mssm.edu/chea3/) using default parameters and the subgroup-

specific DEGs. 

PCA 

PCA was performed using log2-transformed TPM values from protein-coding 

genes using the stats R package (R Core Team, 2020). 

GSVA 

GSVA was performed using the GSVA R package (Guinney and Castelo, 2019; 

Hänzelmann et al., 2013) using log2-TPM values from protein-coding genes. To 

measure the transcriptomic similarity of each sample to a panel of pancreatic cell types, 

cell type-specific gene sets were constructed from a previous report comparing single-

cell RNA-seq data from different pancreatic cell types (Muraro et al., 2016). The genes 

found to be over-expressed (defined by a log2-fold change > 2 and an adjusted p-value 

< 0.05) in a cell type relative to others constituted the cell type-specific genes for that cell 

type. To estimate the transcriptional activity of YAP1/WWTR1, a panel of 22 

YAP1/WWTR1 target genes from a previous report (Wang et al., 2018) was used as the 

reference, and GSVA was used to transform the gene expression profile of each sample 

into a YAP1/WWTR1 target enrichment score. 

CIBERSORT 

The CIBERSORT source code in R was requested from 

https://cibersort.stanford.edu/download.php (downloaded February 18th, 2019). To run 

CIBERSORT, TPM values from RNA-seq and the LM6 signature genes were used 

(Newman et al., 2015). CIBERSORT was run at the absolute mode without quantile 

normalization, using sig.score as the absolute method. 

https://amp.pharm.mssm.edu/chea3/
https://cibersort.stanford.edu/download.php
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Cellular regulator activity inference analysis 

Activities of cellular regulators were inferred using the viper R package (Alvarez, 

2019; Alvarez et al., 2016) and a previously constructed neuroendocrine neoplasm-

specific regulatory network (Alvarez et al., 2018). Subgroup-specific gene expression 

signatures were constructed from the moderated t-statistics from limma (described under 

the Differential analysis section), and the msVIPER function was used to infer the 

relative activities of cellular regulators between subgroups. The ledge function was used 

to perform leading edge analysis. A significance cut-off was set at an adjusted p-value of 

0.005, at which the number of false positive roughly equals to one. 

Variant calling and prioritization 

To increase the detection while reducing the number of false positive variants, 

SNVs and Indels were identified from both WES and RNA-seq reads from the 35 

Discovery cohort specimens with paired transcriptome and proteome data. WES and 

RNA-seq reads were aligned to hg19 with BWA-MEM (Li and Durbin, 2009) (parameters 

-M). Read duplicates were marked using sambamba (Tarasov et al., 2015). After 

alignment, RNA-seq reads that were aligned to exon junctions were repositioned in the 

genome as large-gapped alignments using JAGuaR (Butterfield et al., 2014). Four 

variant callers were used on the WES reads: Platypus (Rimmer et al., 2014), LoFreq 

(Wilm et al., 2012), Pisces (Dunn et al., 2019) and Mutect2 (Benjamin et al., 2019); all 

callers were run using default parameters including the respective quality filters. SNVs 

and Indels were identified in the RNA using SAMtools mpileup (Li et al., 2009) 

(parameters -C50 -ABuf) and filtered to remove variants with mapping quality score less 

than 20. 

SnpEff (Cingolani et al., 2012) was used to annotate and predict the functional 

impacts of the identified variants using GRCh37 annotation (ensemble v69). Consensus 

variants called by two or more variant callers were then identified from the WES and 

RNA-seq variants. The identified variants were additionally annotated with minor allele 

frequencies from gnomAD v2 (Karczewski et al., 2020), COSMIC mutation identifiers 

and functional prediction scores from COSMIC Coding Mutation Data (Tate et al., 2018) 

(downloaded March 12th, 2020)  and COSMIC Cancer Gene Census (Sondka et al., 

2018) (downloaded October 18th, 2019). 
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Formalin fixation is known to cause sequencing artifacts (Do and Dobrovic, 2015; 

Haile et al., 2018) and can potentially lead to false discovery of sequence variants. 

Considering that we used FFPE tumour specimens, and to compensate for the absence 

of matched normal control samples to help subtract germline variants from somatic 

variants called from individual tumour samples, we introduced several exclusion criteria 

to filter out variants that were unlikely to be pathogenic. For this study, we assumed that 

a disease-causing variant would 1) affect known cancer-related genes, 2) be rare among 

populations, 3) be present in substantial fraction of the bulk tumour, and 4) be predicted 

to impact the function of the protein product. Specifically, we filtered out variants 

considered as small nucleotide polymorphisms or with minor allele frequencies greater 

than 0.1% in gnomAD (Karczewski et al., 2020) or variant allele frequencies less than 

0.33 and focused on the variants affecting the 723 genes in the COSMIC Cancer Gene 

Census. Considering that PNENs generally have low mutation rates (Scarpa et al., 

2017) and recurrent hotspot mutations are rare, we filtered out identical mutations (that 

cause identical nucleotide changes at exact same genomic locations) found in more than 

10% of specimens in our cohort, which were likely due to technical artifacts. Variants in 

which the predicted functional impacts were benign according to COSMIC Coding 

Mutation Data (a FATHMM prediction of “Neutral”) were also filtered out. In addition, we 

filtered out variants with non-deleterious impacts (according to SnpEff) that affect the 

500 most frequently mutated genes in public exomes (Shyr et al., 2014). Lastly, eight in-

frame insertions or deletions affecting the two polymorphic trinucleotide repeat sites of 

the androgen receptor (AR) gene (Ferlin et al., 2005) were identified and excluded from 

further analysis. The result of incorporating these exclusion criteria and cancer focus 

was a list of more confident variants with presumptive oncogenic contributions. All 355 

post-filtering variants were visually validated in IGV. 

IHC analysis 

IHC staining and scoring of markers were performed using the previously 

constructed TMA (Riazy et al., 2015; Tessier-Cloutier et al., 2017). Briefly, for each case, 

an epithelial rich area of an FFPE tissue specimen was cored twice with a 0.6 mm 

needle and inserted into a recipient block generating a duplicate 0.6 mm core TMA. For 

staining, 4 µm sections were mounted onto slides and used for IHC staining. IHC 

staining of CD31 and CD34 was performed using the Dako Omnis (Agilent 

Technologies, Inc.) and DAXX and ATRX using the Discovery XT (Ventana Medical 



82 

Systems, Inc.) automated staining platforms following manufactuers’ recommendations. 

For CD31, slides were incubated with the JC70A clone (Agilent Technologies, Inc.) 

without dilution for 15 minutes at room temperature, then washed and incubated with 

mouse linker (Agilent Technologies, Inc.) for 10 minutes followed by polymer (Agilent 

Technologies, Inc.) for 15 minutes. For CD34, slides were incubated with the QBEnd/10 

clone (Agilent Technologies, Inc.) without dilution for 25 minutes at room temperature, 

then washed and incubated with polymer for 25 minutes. For DAXX and ATRX, slides 

were incubated with rabbit polyclonal antibodies (Sigma-Aldrich) at a dilution of 1:50 

(DAXX) or 1:100 (ATRX) for 60 minutes at room temperature, then washed and 

incubated with Universal Secondary antibody (Ventana Medical Systems, Inc.) for 32 

minutes at room temperature. 

CD31 and CD34 were quantified according to methods developed by Weidner 

(1995). DAXX and ATRX were quantified by H-Score which represents the product of 

percent (0-100) of epithelial cells staining positive and a subjective assessment of 

staining intensity (0-3) which yields a range of 0-300. 

 Data deposition and access 

The sequencing datasets generated during this study are available at the 

European Genome-phenome Archive (EGA; EGAS00001005024). The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the 

dataset identifier PXD024175. Derivative datasets directly referred to in this study are 

provided as supplemental tables. No new software or algorithms were used during the 

study. Public datasets and software downloaded and used during the study are listed in 

the Key Resources Table. 

 Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

CD31, clone JC70A Agilent Technologies, 
Inc. 

Cat# GA610 

CD34, clone QBEnd/10 Agilent Technologies, 
Inc. 

Cat# GA632 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

DAXX, polyclonal Sigma-Aldrich Cat# HPA008736 

ATRX, polyclonal Sigma-Aldrich Cat# HPA001906 

Biological Samples   

FFPE PNEN tumour blocks Pathology archive at 
Vancouver General 
Hospital 

N/A 

Cadaveric islet extractions IsletCore, Alberta 
Diabetes Institute 

https://www.ualberta
.ca/alberta-
diabetes/core-
services/isletcore.ht
ml 

Chemicals, Peptides, and Recombinant Proteins 

USERTM Enzyme New England Biolabs Cat# M5508 

PhusionTM High-Fidelity DNA Polymerase Thermo Scientific Cat# F-530XL 

Trypsin/LysC Promega Cat# V5071 

Critical Commercial Assays 

Agencourt® FFPE FormaPure Kit Beckman Coulter Cat# A33343 

EvoPure RNA Tissue Isolation kit Aline Biosciences SKU R-907T 

NEBNext® rRNA Depletion Kit New England Biolabs Cat# E6310X 

RNA MagClean DX beads Aline Biosciences SKU C-1005 

Maxima H Minus First Strand cDNA Synthesis Kit Thermo Scientific Cat# K1652 

PCRClean Dx beads Aline Biosciences SKU C-1003 

NEBNext® UltraTM Directional RNA Second Strand 
Synthesis Module 

New England Biolabs Cat# E7550 

DNA High Sensitivity Reagent Kit PerkinElmer Part# CLS760672 

Quant-iTTM dsDNA Assay Kit, high sensitivity Thermo Scientific Cat# Q33120 

TMT10plex labeling kit Pierce Cat# 90406 

Sera-Mag Speed beads, carboxylate modified GE Life Sciences Cat# 
45152105050350 

NEBNext® FFPE End Repair Kit GSC New England Biolabs Cat# E6615B-GSC 

NEB Paired-End Sample Prep Premix Kit – A Tail New England Biolabs Cat# E6876B-GSC 

NEB Paired-End Sample Prep Premix Kit – Ligation New England Biolabs Cat# E6877B-GSC 

xGen® Exome Research Panel v1.0 Integrated DNA 
Technologies 

Cat# 1056115 

Dynabeads™ M-270 Streptavidin Thermo Scientific Cat# 65305 

Deposited Data 

Molecular Signature Database gene sets Liberzon et al., 2015 https://www.gsea-
msigdb.org/gsea/ind
ex.jsp 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Neuroendocrine neoplasm regulon Alvarez et al., 2018 https://figshare.com/
articles/GEP-
NET_transcriptional
_regulatory_network
/6007232 

gnomAD Exome variants v2 Karczewski et al., 
2020 

https://gnomad.broa
dinstitute.org 

COSMIC Coding Mutation Data Tate et al., 2018 https://cancer.sange
r.ac.uk/cosmic 

COSMIC Cancer Gene Census Sondka et al., 2018 https://cancer.sange
r.ac.uk/census 

RNA-sequencing BAM files This paper EGAS00001005024 
at 
https://www.ebi.ac.u
k/ega/ 

Whole-exome sequencing BAM files This paper EGAS00001005024 
at 
https://www.ebi.ac.u
k/ega/ 

Mass spectrometry proteomics files This paper PXD024175 at 
https://www.ebi.ac.u
k/pride/ 

Experimental Models: Cell Lines 

BON-1 Drs. Courtney 
Townsend and Mark 
Hellmich, University of 
Texas Medical Branch 

N/A 

NT-3 Benten et al., 2018 N/A 

QGP-1 Japanese Cancer 
Resource Bank 

Cat# JCRB0183 

Software and Algorithms 

STAR v2.6.0c Dobin et al., 2012 https://github.com/al
exdobin/STAR 

Subread v1.6.0 Liao et al., 2013 http://subread.sourc
eforge.net/ 

Picard v2.22.0 Broad Institute https://broadinstitute.
github.io/picard/ 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Proteome Discoverer v2.1.0.62 Thermo Fisher https://www.thermofi
sher.com/ca/en/hom
e/industrial/mass-
spectrometry/liquid-
chromatography-
mass-spectrometry-
lc-ms/lc-ms-
software/multi-
omics-data-
analysis/proteome-
discoverer-
software.html 

vsn v3.50.0 Huber et al., 2002, 
2019 

https://bioconductor.
org/packages/releas
e/bioc/html/vsn.html 

sva v3.30.1 Leek et al., 2019 https://www.biocond
uctor.org/packages/r
elease/bioc/html/sva
.html 

NMF v0.23.0 Gaujoux and Seoighe, 
2010, 2020 

https://cran.r-
project.org/web/pack
ages/NMF/index.htm
l 

R v3.6.3 R Core Team, 2020 https://www.r-
project.org/ 

limma v3.42.2 Ritchie et al., 2015; 
Smyth et al., 2020 

https://bioconductor.
org/packages/releas
e/bioc/html/limma.ht
ml 

edgeR v3.28.1 Robinson et al., 2010; 
Chen et al., 2020 

https://bioconductor.
org/packages/releas
e/bioc/html/edgeR.ht
ml 

estimate v1.0.13 Yoshihara et al., 2013 https://bioinformatics
.mdanderson.org/est
imate/rpackage.html 

GSVA v1.34.0 Hänzelmann et al., 
2013; Guinney and 
Castelo, 2019 

https://bioconductor.
org/packages/releas
e/bioc/html/GSVA.ht
ml 

CIBERSORT v1.04   

viper v1.20.0 Alvarez et al., 2016; 
Alvarez, 2019 

https://bioconductor.
org/packages/releas
e/bioc/html/viper.htm
l 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

BWA-MEM v0.7.6a Li and Durbin, 2009 http://bio-
bwa.sourceforge.net
/ 

sambamba v0.5.5 Tarasov et al., 2015 https://github.com/bi
od/sambamba 

JAGuaR v1.7.5 Butterfield et al., 2014 https://www.bcgsc.c
a/resources/software
/jaguar 

Platypus v0.8.1 Rimmer et al., 2014 https://www.well.ox.
ac.uk/research/rese
arch-groups/lunter-
group/lunter-
group/platypus-a-
haplotype-based-
variant-caller-for-
next-generation-
sequence-data 

LoFreq v2.1.3.1 Wilm et al., 2012 https://csb5.github.io
/lofreq/ 

Pisces v5.2.10.49 Dunn et al., 2019 https://github.com/Ill
umina/Pisces 

Mutect2 v4.0.10.0 Benjamin et al., 2019 https://gatk.broadinst
itute.org/hc/en-
us/articles/36003651
0132-Mutect2 

SAMtools v0.1.19 Li et al., 2009 http://www.htslib.org/ 

SnpEff v4.1 Cingolani et al., 2012 https://pcingola.githu
b.io/SnpEff/ 

survival v3.2-3 Therneau, 2020 https://cran.r-
project.org/web/pack
ages/survival/index.
html 

survminer v0.4.8 Kassambara et al., 
2020 

https://cran.r-
project.org/web/pack
ages/survminer/inde
x.html 

tidyverse v1.3.0 Wickham, 2019 https://cloud.r-
project.org/web/pack
ages/tidyverse/index
.html 

reshape2 v1.4.4 Wickham, 2020 https://cran.r-
project.org/web/pack
ages/reshape2/index
.html 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

openxlsx v4.1.5 Schauberger and 
Walker, 2020 

https://cran.r-
project.org/web/pack
ages/openxlsx/index
.html 

biomaRt v2.42.1 Durinck et al., 2005, 
2009; Durink and 
Huber, 2020 

https://bioconductor.
org/packages/releas
e/bioc/html/biomaRt.
html 

org.Hs.eg.db v3.10.0 Carlson, 2019 https://bioconductor.
org/packages/releas
e/data/annotation/ht
ml/org.Hs.eg.db.html 
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Chapter 3.  
 
Whole-genome and transcriptome analyses of 
metastatic PNENs 

This chapter is modified and expanded from a published report describing 

PNENs enrolled in the Personalized OncoGenomics (POG) program at BC Cancer 

(ClincalTrials.gov; NCT02155621). The individuals who contributed to this study and 

their specific contributions are outlined in the Acknowledgements. The first portion of the 

results in this chapter is adapted from the published report describing the whole-genome 

and whole-transcriptome characterization of five metastatic PNENs (Wong et al., 2018). 

A few updates to the published manuscript are implemented in this chapter to reflect 

advances in the field over the past 3 years. My specific roles in the published report 

included data curation and analysis, results interpretation, and preparation of the 

submitted manuscript. Later in this chapter, I expand the initial cohort of five metastatic 

PNENs to include four more recent PNEN cases enrolled in the POG program and 

compare them to the four proteotranscriptomic subgroups identified and characterized in 

Chapter 2. 

3.1. Introduction 

PNENs are rare pancreatic neoplasms commonly diagnosed at an advanced 

stage at which point distant metastases are evident or eventually ensue (Hallet et al., 

2015; Niederle et al., 2010). The molecular landscape of PNETs was initially described 

in a seminal paper by Jiao et al. (2011), in which WES identified recurrent somatic 

mutations in MEN1, DAXX/ATRX, and PI3K/AKT/mTOR pathway genes, most 

commonly PTEN, TSC2, and PIK3CA. Mutations in these and other genes may occur in 

hereditary cancer syndromes, including MEN1 syndrome, TSC, NF1 disorder, and VHL 

syndrome, that increase susceptibility to PNEN development (Jensen et al., 2008). The 

recurrent somatic mutations in MEN1, DAXX/ATRX and the PI3K/AKT/mTOR pathway 

genes were subsequently confirmed in a WGS study by Scarpa et al. (2017), who 

categorized somatically altered genes into those involved in chromatin remodeling, DNA 

damage repair, PI3K/AKT/mTOR pathway activation, and telomere maintenance. 

Additionally, 17% of the patients were found to harbour germline mutations not only in 
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previously described MEN1 and VHL but also in tumor suppressor genes CHEK2, 

MUTYH, and CDKN1B (Scarpa et al., 2017). PNECs, in contrast, often harbour 

alterations in TP53, RB1 and KRAS (Yachida et al., 2012). Aside from sequence 

variants, recurrent chromosomal anomalies have been described and associated with 

mutational frequencies of MEN1 and DAXX/ATRX in PNETs (Hong et al., 2020; 

Lawrence et al., 2018). Wide variations in CNV events have been observed between 

PNENs, and recurrent LOH in chromosomes 1, 2, 3, 6, 8, 10, 11, 16, 22 were observed 

in subsets of PNENs (Hong et al., 2020; Lawrence et al., 2018; Yao et al., 2019). 

Most molecular profiling studies of PNENs to date, however, have focused on 

primary tumours. Despite the important implications of distant metastases in PNENs for 

prognosis and treatment (Kunz, 2015), the molecular characteristics of PNEN 

metastases are rarely reported and the existing studies only examined genomic 

aberrations or metastasis-associated genes (Raj et al., 2018; Scott et al., 2020). The 

whole-genome and whole-transcriptome landscapes of PNEN metastases have not 

been reported. In this chapter, I describe the whole-genome and whole-transcriptome 

profiles for five patients with metastatic PNENs who underwent sequencing analyses as 

part of an ongoing clinical trial – the POG program at BC Cancer (ClincalTrials.gov; 

NCT02155621). Together with Drs. Hui-Li Wong (former medical oncology resident at 

BC Cancer) and Yaoqing Shen (analyst in the POG program), we identified notable 

genomic and transcriptomic characteristics of each of the five POG PNENs, which are 

presented here along with their clinical histories. In addition to previously described 

recurrently altered genes and chromosomes with recurrent LOH, two cases were found 

with molecular aberrations novel to PNENs. One case harboured focal amplification of 

MYCN (MYCN proto-oncogene, bHLH transcription factor) concomitant with loss of APC 

(APC regulator of WNT signaling pathway) and TP53 with wildtype MEN1 and DAXX, 

while another case harboured a germline fusion gene involving the nth like DNA 

glycosylate (NTHL1) gene. Lastly, I correlate these 5 cases plus 4 more recent PNEN 

cases from the POG program with the proteotranscriptomic subgroups described in 

Chapter 2. 
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3.2. Results 

 Clinical Presentation and Treatment Outcomes 

Clinical vignettes are described for each case below and summarized in Table 

3.1 and Figure 3.1. Radiological responses are defined per RECIST (Response 

Evaluation Criteria in Solid Tumors) version 1.1 (Eisenhauer et al., 2009). 

Table 3.1. Baseline characteristics of the five patients with metastatic PNENs. 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Age (Year) 69 52 46 36 67 

Gender Male Female Female Male Male 

Metastatic sites Liver Liver Liver 
Liver, lymph 

nodes 
Liver 

Functional 
status 

Functional Nonfunctional Nonfunctional Nonfunctional Nonfunctional 

Histological 
differentiation 

Well Well Well Well Poor; LC 

Ki67 indexa < 2% 10-15% 15% 20% > 70% 

Baseline 
chromogranin Ab 

110 µg/L 92 U/L 5200 µg/L 250 µg/L 4920 µg/L 

111In-labeled 
octreotide scan 

avidity 
Yes Yes Not done Yes Not done 

aKi67 index was categorized according to the criteria of the WHO 2010 classification system, but the grades remain the 
same under the WHO 2017/2019 systems. bNormal range of baseline chromogranin A is < 94µg/L or < 40 U/L. LC: 
large-cell type. 
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Figure 3.1. Clinical evolution and treatment of the five patients with metastatic 
PNENs. 

Cap/Tem: capecitabine with temozolomide; Cis/Etop: cisplatin with etoposide; Carbo/Iri: 
carboplatin with irinotecan; Y-90: yttrium90 radioembolization. 

Case 1 

A 69 year-old man presented with hypercalcemia and was found on computed 

tomography (CT) imaging to have a pancreatic mass and liver lesions. Pathology 

examination of the pancreatic mass obtained under endoscopic ultrasound guidance 

confirmed a PNET-G1. Serum chromogranin A (CgA) was slightly elevated at 110 µg/L 

(normal range of < 94 µg/L), and the liver and pancreatic lesions were intensely avid on 

octreotide scan. He commenced treatment with everolimus and underwent core biopsy 

of a liver metastasis for molecular analyses after 7 weeks of therapy. He had 

radiologically stable disease, but treatment was discontinued after 4 months because of 

grade 2 pneumonitis. Second-line systemic therapy with sunitinib was initiated but also 

discontinued early because of congestive heart failure. He eventually received 90yttrium 

(Y-90) radioembolization therapy to his liver metastases and had a partial radiological 

response. His hypercalcemia, which was initially refractory to bisphosphonates and 

required several hospital admissions for management, normalized and remained stable 

5 months after Y-90 therapy. At the study cut-off time (20 months after diagnosis), he 

remained well on maintenance monthly long-acting octreotide. 
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Case 2 

A 52 year-old female presented with several years of abdominal pain, which 

eventually led to abdominal ultrasound and CT that showed a pancreatic tail mass and 

multiple liver lesions. Pathological examination of the liver core biopsy showed a PNET-

G2. CgA was slightly elevated at 92 U/L (normal range of < 40 U/L) and imaging with 

111Indium-labeled octreotide showed uptake in her known disease sites. She 

commenced treatment with sunitinib but required several dose reductions for grade 2 

hand-foot syndrome. She had a brief trial of everolimus but switched back to sunitinib 

after 3 weeks because of mucositis and pneumonitis. She had a symptomatic response 

and radiologically stable disease that was sustained for 15 months before developing 

progressive liver metastases, which did not accumulate 18F-DOPA. She underwent a 

liver biopsy for genomic analysis prior to starting second-line systemic therapy with 

Cap/Tem. She achieved a partial radiographic response and, after 20 months of 

chemotherapy, proceeded to resection of her pancreatic primary along with 

radiofrequency ablation of the liver metastases. Pathologic review of the resected 

pancreatic primary again confirmed a PNET-G2. Three of nine lymph nodes were 

involved. At the study cut-off time (43 months after diagnosis), she remained well with 

disease stability off chemotherapy. 

Case 3 

A 46 year-old female with a prior history of TSC, resected renal angiomyolipoma, 

and childhood epilepsy was noted to have liver masses on routine surveillance imaging. 

Due to progressive fatigue, leg edema, and abdominal discomfort related to massive 

hepatomegaly, a liver biopsy 9 months after initial presentation was done. IHC of the 

liver biopsy did not support metastatic angiomyolipoma but confirmed expression of 

paired box 8 (PAX8) in favour of a pancreatic origin (Sangoi et al., 2011), suggesting a 

PNET-G2 pathology. CgA was markedly elevated at 5200 µg/L. She commenced 

treatment with everolimus and underwent biopsy of a liver metastasis for molecular 

analyses after 16 weeks of therapy. She had an early symptomatic and marker 

response, where CgA decreased to 3780 µg/L from a peak of 8200 µg/L. Interestingly, 

her TSC-associated skin lesions (presumed facial angiofibromas), also improved on 

everolimus treatment. Radiological response could not be accurately assessed, as 

pretreatment imaging was performed 8 months prior to the start of the treatment. 

However, her treatment course was complicated by recurrent anemia, diarrhea, and 
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renal impairment. After nearly 7 months of everolimus treatment, she developed clinical 

progression and died 8 months after initial pathologic diagnosis. Referral to the 

Hereditary Cancer Program for clinical genetic testing had been discussed but was not 

pursued due to absence of significant family history, so this was not pursued. 

Case 4 

A 36 year-old man presented with a short history of right shoulder and chest pain 

was found on CT to have multiple liver lesions and a pancreatic tail mass. Pathological 

examination of the core liver biopsy suggested a PNET, both morphologically and on 

immunoprofile, with positive staining for synaptophysin and cytokeratin AE1/AE3. 

Although the tumor had < 2 mitotic rate (mitoses/10 HPF), the Ki67 index was up to 20% 

in some areas; hence this was classified as a PNET-G2. Octreotide scan identified 

additional disease within the retroperitoneal and supraclavicular lymph nodes, and CgA 

was modestly elevated at 250 µg/L. He commenced first-line systemic therapy with 

Cap/Tem, but the disease progressed after three cycles. He then received Y-90 

radioembolization to the liver but progressed within 3 months. Prior to starting second-

line systemic therapy with everolimus, he underwent liver biopsy for genomic analysis. 

He was also referred for PRRT, but his clinical status declined rapidly. He died 10 days 

after commencing everolimus, 8.4 months after initial diagnosis. 

Case 5 

A 67 year-old male presented with a short history of diarrhea and constitutional 

symptoms and was found on CT to have multiple liver masses and a pancreatic tail solid 

lesion that appeared suspicious for pancreatic ductal adenocarcinoma. He consented for 

genomic analysis at the time of his diagnostic liver biopsy, which showed a NEC-LC with 

positive staining for synaptophysin, chromogranin, and cytokeratin 19. The Ki67 index 

was > 70%. CgA was markedly elevated at 4920 µg/L. He received treatment with 

cisplatin and etoposide for four cycles before developing disease progression. He then 

received four cycles of carboplatin and irinotecan but also had upfront disease 

progression. He had ongoing clinical deterioration and died 9 months after initial 

diagnosis. 
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 Genomic analyses 

WGS of liver metastases and blood from the five patients was performed to 

identify somatic genomic alterations including chromosomal aberrations (Figure 3.2) and 

sequence variants (Figure 3.3A; Supplemental Table 9). Germline alterations in 98 

cancer susceptibility genes were evaluated, as approved by the research ethics board. 

RNA-seq was performed to identify alterations in gene expression and molecular 

pathways. For comparison of gene expression levels, the expression levels of select 

genes were converted into percentile ranks against a collection of tumor transcriptomes 

from The Cancer Genome Atlas (TCGA) project (https://portal.gdc.cancer.gov/) (Figure 

3.3A) or to a compendium of 16 normal tissue transcriptomes from the Illumina Human 

BodyMap 2.0 project (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-513/Results) 

(Supplemental Table 11). The latter comparison provided a coarse list of putative 

disease-specific genes for each case and was used to identify prospective upstream 

regulators (Figure 3.3B) and pathways affected (Supplemental Table 10). Hereafter, 

description of individual gene expression level specifically refers to comparison with the 

TCGA tumor compendium unless otherwise noted. 

The approved therapeutic drugs for the treatment of PNETs in Canada include 

everolimus, sunitinib, SSAs, and chemotherapy with Cap/Tem, whereas platinum-based 

chemotherapy is typically reserved for PNECs. I retrieved the list of proteins targeted by 

the aforementioned approved therapeutic agents from Santos et al. (2017) and 

examined the status of their gene and gene expression in addition to genes previously 

implicated in PNENs (Figure 3.3A). 

https://portal.gdc.cancer.gov/
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-513/Results
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Figure 3.2. Genome-wide copy-number architectures across the five cases. 
(A) Chromosomal regions with loss of heterozygosity events are depicted in green. The zygosity 
states at these regions are not discriminated. (B) Copy number deviations from the estimated 
ploidy in protein-coding regions are depicted in red (copy gain) or blue (copy loss). The 
magnitude of copy gains is capped at +4. Aside from Case 4 in which the estimated ploidy was 4, 
the other cases were estimated to be diploid. 

A

B
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Figure 3.3. Key molecular alterations and predicted upstream regulators across 
the five cases. 

(A) An OncoPrint depicting alterations in genes that have either been implicated in PNETs or are 
targets of conventional therapeutic agents used to treat PNETs. All alterations described here are 
somatic, aside from Case 3, which had germline one copy loss of TSC2. “Set A” contains genes 
recurrently mutated in sporadic PNETs (Jiao et al., 2011). “Set B” contains genes in which 
germline mutations were recently reported in PNET patients (Scarpa et al., 2017). “Others” 
contains genes of interest in this study. “Drugs” contains genes with protein products that are the 
molecular targets (color-coded) of the indicated therapeutic agents used to treat PNETs. 
Nonsynonymous mutations (black bar), copy-number aberrations (red/blue shade), and up- or 
down-regulated expressions (red/blue edge) of these genes are shown. All genes have gray 
background by default to facilitate visualization. Shallow and deep deletions refer to one- or two-
copy losses, respectively. Up-regulated genes are defined as those expressed at levels > 90% of 
TCGA tumor compendium, and down-regulated genes as those expressed at levels < 10% of 
TCGA tumor compendium. (B) Using the Upstream Regulator Analysis tool from Ingenuity 
Pathway Analysis software, the activation states of prospective upstream regulators in each 
sample were predicted based on differentially regulated genes. Only upstream regulators with 
activation score of > 3 or < -3 were selected. Color and intensity indicate the predicted activation 
state and effect size, respectively. The overlap p-value of each prediction is also indicated. *: p < 
0.05; **: p < 0.01; ***: p< 0.001; ****: p < 0.0001. 

A B
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 Shared molecular alterations 

Several genomic alterations were shared within the cohort. LOH events were 

frequently observed in Cases 1, 2, 3, and 5, with chromosomes 1, 2, 3, 6, 11, 16, 21, 

and 22 largely affected. These include regions encoding for MEN1 (11q13.1), DAXX 

(6p21.32), and TSC2 (16p13.3) (Figure 3.2A). Frequent copy number gains were 

observed in Cases 1 and 5, whereas copy number losses, most of which were likely due 

to LOH, were more frequent in Cases 2 and 3. Gene amplification events, defined as the 

ploidy-corrected copy number gain being greater than the ploidy, were absent in Cases 

1, 2, and 3 but were observed in Case 5 and more frequently in Case 4 (Figure 3.2B). 

Consistent with the reported low mutation burden in PNETs (Jiao et al., 2011), less than 

50 nonsynonymous mutations in protein-coding genes were identified in three of the five 

cases (median = 39; range = 21~170; Supplemental Table 9). Somatic mutations in 

MEN1 and DAXX were found in Cases 1, 2, 3, and 5. These comprised nonsense, 

frameshift, and splice site mutations as well as in-frame deletion or missense mutations 

predicted to be deleterious (Table 3.2). In conjunction with LOH events or copy number 

losses, these mutations resulted in biallelic loss of MEN1 and DAXX in the four cases. 

The expression levels of both MEN1 and DAXX were low across all five cases, whereas 

TSC2 expression was low in Cases 1, 2, 3, and 4. Tumor suppressor gene CHEK2 also 

had low expression in Cases 1, 2, 3, and 5 (Figure 3.3A). 

The gene expression levels of the drug molecular targets varied across all five 

cases, but similar trends were observed in a few of the genes. All five cases had high 

expression of SSTR1/2, consistent with their neuroendocrine diagnosis and 111In-labeled 

octreotide scan avidity. The gene encoding the core kinase of the mTOR pathway 

MTOR was expressed at low levels in cases 1, 2 and 4. Low expression of O-6-

Methylguanine-DNA methyltransferase (MGMT), which indicates sensitivity to 

temozolomide in glioblastoma (Hegi et al., 2005), was observed in Cases 1, 2, 3 and 5 

(Figure 3.3A). 

High expression of neuroendocrine markers and pancreas-specific transcription 

factors confirmed the pancreatic origin of the metastases. In all five cases, high 

expression levels of the chromogranin A (CHGA) and the synaptophysin (SYP) genes 

were observed, and neuronal differentiation 1 (NEUROD1) and PDX1 were expressed at 

high levels in four cases. In addition, each case exhibited increased expression of at 
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least one of the INS, glucagon (GCG), gastrin (GAST), SST or vasoactive intestinal 

peptide (VIP) genes, favouring a pancreatic endocrine cell origin (Supplemental Table 

11). 

Table 3.2. Sequence variants in genes previously implicated in PNENs. 

Case Gene Chr HGVS DNA HGVS protein Predicted effect Genotype 

Case 1 MEN1 1 c.1579C>T p.R527* Stop gain Hom 

Case 1 DAXX 6 c.1178delA p.K393fs 
Frameshift 

variant 
Hom 

Case 2 MEN1 11 

c.245_259delA 

CCTGTCTA 

TCATCG 

p.D82_I86del 
Disruptive 

inframe deletion 
 

Case 2 DAXX 6 c.329_330delCT p.S110fs 
Frameshift 

variant 
 

Case 2 ATRX X c.1558G>T p.V520F Missense variant Hom 

Case 2 MTOR 1 c.6625C>G p.L2209V Missense variant Hom 

Case 2 BRCA2 13 c.3504G>T p.M1168I Missense variant Het 

Case 3 MEN1 11 c.798+1G>A  

Splice donor 
variant + 

intron variant 

Hom 

Case 3 DAXX 6 c.850C>T p.Pr284S Missense variant Hom 

Case 4 TP53 17 c.818G>T p.R273L Missense variant Hom 

Case 5 MEN1 11 

c.981_1006delCCAC 

TGTCGCAACCGC 

AATGTGCGGG 

p.Y327fs 
Frameshift 

variant 
 

Case 5 DAXX 6 

c.801_824delTAACA 

GGCGCATTGAG 

CGGCTCAT 

p.N268_I275del 
Disruptive 

inframe deletion 
 

Chr: chromosome; Hom: homozygous; Het: heterozygous. 

 Case-specific molecular alterations of interest 

Case 1 

In addition to many of the shared molecular alterations, low expression levels of 

tumour suppressor genes TP53 and VHL were observed in this case. Several receptor 

tyrosine kinases (RTKs) and targets of sunitinib including fms related receptor tyrosine 

kinase 1 (FLT1) and kinase insert domain receptor (KDR) that encode for vascular 

endothelial growth factor receptors 1 and 2, respectively, were expressed at high levels 

(Figure 3.3A). Moreover, several MAPK pathway genes including MAP3K10, MAP3K12 

and MAP2K2 were highly expressed suggesting up-regulated activity of MAPK pathways 
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(Supplementary Table 11). The use of sunitinib as second-line therapy was supported by 

the high expression of several RTKs; however, treatment response was not assessable 

due to early discontinuation of therapy. 

Case 2 

Contrary to the other four cases where somatic mutations were only identified in 

MEN1 and DAXX, additional somatic mutations in genes associated with PNENs were 

identified in Case 2. These include a heterozygous missense mutation in BRCA2 and a 

homozygous missense mutation in ATRX, both of unknown significance (Table 3.2). 

Prediction of the damaging effects of the missense mutations using Polyphen-2 

(Adzhubei et al., 2010) indicated that the BRCA2 variant was likely benign (score = 

0.000) while the ATRX variant p.V520F was likely damaging (score = 0.999). In addition, 

missense mutations resulting in amino acid substitutions adjacent to the identified ATRX 

variant (p.S519 and p.P521) had been reported and predicted to be pathogenic 

(http://cancer.sanger.ac.uk; COSM5878330, COSM5878331, COSM4993581, 

COSM4993582; Forbes et al., 2015). Collectively, these predictions suggested that the 

identified mutation in ATRX likely affected its protein functions. Mutations in DAXX and 

ATRX are typically mutually exclusive, and this case was the first reported instance of a 

PNEN with concurrent homozygous DAXX and ATRX loss. Examination of allelic 

frequencies of the DAXX and ATRX variants suggested that both were present in all 

tumour cells (Supplemental Table 9). The identified missense mutation in MTOR, which 

resulted p.L2209V, affected its kinase domain and had been previously characterised as 

an activating mutation that results in constitutively active mTOR signalling (Yamaguchi et 

al., 2015). 

Case 3 

In keeping with the clinical history of TSC in this case, one allele of TSC2 was 

found altered in the germline. Combined with a somatic loss of the remaining copy, the 

biallelic loss of TSC2 accompanied its very low expression (0 percentile) in the tumour. 

The germline inactivation of TSC2 was due to structural variants in chromosome 16, 

which included a large deletion spanning TSC2 and the base-excision repair gene 

NTHL1, and an inversion that caused a fusion between NTHL1 and the TNF receptor 

associated factor 7 (TRAF7) gene (Figure 3.4), predicted to be non-functional. 

Comparison to previously described COSMIC mutational signatures (Alexandrov et al., 
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2013) showed an unusually high contribution of Signature 30, characterized by a high 

proportion of C>T transitions (Figure 3.5). Similar mutational profiles were reported in 

NTHL1-mutated tumours related to polyposis syndromes (Rivera et al., 2015; Weren et 

al., 2015) and in NTHL1 knock-out human colon organoids (Drost et al., 2017), but have 

not previously been described in PNENs. The TMB of this case was the highest among 

the PNETs in this cohort, with 7.47 somatic mutations per megabase vs. 1.17-2.17, with 

C>T transition accounting for 45% (77/170) of the coding variants.  

 

Figure 3.4. Illustration of the two structural variants involving TSC2 identified in 
Case 3. 

Only part of the chromosome 16 that is affected is shown. The lengths of the arrows shown are 
not to scale. 

 

Figure 3.5. Comparison of mutation signature of case 3 to signature 30. 
The base substitutions at all possible trinucleotide contexts are colour-coded as depicted on the 
right. 

Breakpoints of Deletion 1: 16:2093920, 16:2126780

Breakpoints of Deletion 2: 16:2212355, 16:2214166

Breakpoints of Inversion 1: 16:2093920, 16:2212355

Breakpoints of Inversion 2: 16:2126780, 16:2214166

NTHL1 TSC2 TRAF7

Inversion 1
Resulting in NTHL1-TRAF7 fusion
where the fusion product is expressed 

Inversion 2
Resulting in TSC2-TRAF7 antisense 
fusion where the fusion product 
is not expressed

Chr16 (part)

Deletion 1 Deletion 2
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Case 4 

Unlike the other cases in this cohort, CNV events were infrequent in Case 4 

(Figure 3.2). Moreover, no mutations were observed in MEN1, DAXX and ATRX. 

Instead, the key genomic aberrations included a homozygous pathogenic TP53 mutation 

(COSM10779), copy number loss and a gene fusion event involving the APC, and 

amplification of MYCN. Consistent with the observed genomic aberrations, both TP53 

and APC were expressed at low levels. MYCN had a 38-copy gain and was 

overexpressed (99 percentile; 48 fold-change relative to the BodyMap compendium 

expression) (Figure 3.3A). Gene expression analyses predicted activation of MYCN 

(Figure 3.3B) and identified enrichment of genes encoding ribosomal proteins 

(Supplemental Table 10), which are known to be regulated by MYCN (Boon et al., 2001). 

Together, these results suggested MYCN-driven transcriptomic changes in this case. 

In view of the unusual genomic findings, pathology review was undertaken and 

confirmed the diagnosis of PNET-G2 in the liver biopsy samples taken at diagnosis and 

after progression on chemotherapy and Y-90. In particular, there was no evidence of 

transformation to a PNEC, or evidence of glandular or acinar components that may 

suggest an alternate diagnosis. 

Case 5 

Although Case 5 was histologically diagnosed as a PNEC, its genomic landscape 

was similar to that of PNETs as in Cases 1, 2 and 3. These include similar regions with 

LOH events (Figure 3.2A) and copy number aberrations (Figure 3.2B), as well as 

biallelic loss of MEN1 and DAXX (Figure 3.3A). Gene expression analyses suggested a 

number of transcription factors and receptors were uniquely affected in this case. The 

cell cycle regulator cyclin D1 was predicted to be activated (Figure 3.3B), consistent with 

enrichment of genes involved in cell cycle pathway (Supplemental Table 10). 

 Proteotranscriptomic subgroup of metastatic PNENs 

Having examined the whole-genome and whole-transcriptome landscapes of the 

PNEN metastases along with their clinical progression, I was interested in whether these 

metastases could be categorized into one of the four proteotranscriptomic subgroups 

described in Chapter 2. To determine the possible subgroup for each of the metastases, 
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I compared the transcriptomes of the PNENs from the POG program to the sequenced 

specimens from Chapter 2. Additional metastatic PNEN cases had been enrolled in the 

POG program since the publication of the report on the five cases described earlier in 

this chapter, so I expanded my POG PNEN cohort to include these four additional 

metastatic PNEN cases (available up to March 2021) for the comparisons. One of these 

newer cases was a PNET-G3 without alterations in MEN1 and DAXX/ATRX and was 

described previously in a case report (Williamson et al., 2019). The inclusion of these 

more recent POG PNENs resulted in a total of 9 metastatic PNENs from which WGS 

and WTS data were available (Table 3.3). 

Table 3.3. All metastatic PNENs enrolled in the POG program up to March 
2021. 

Study IDa Differentiation status Ki67 index Biopsy site Tumour contentb 

PN2 (Case 3) Well 3-20 Liver 0.77 

PN4 (Case 5) Poor; LC > 55 Liver 0.86 

PN6 (Case 2) Well 3-20 Liver 0.79 

PN12 (Case 1) Well < 3 Liver 0.79 

PN14 (Case 4) Well 3-20 Liver 0.79 

PN18 Mixed; Well > 55 Pancreas 0.64 

PN23 Well 21-55 Liver 0.95 

PN25 Well 3-20 Liver 0.36 

PN27 Well 3-20 Liver 0.30 

aCase numbers were previously assigned arbitrarily based on Ki67 index-based grades for publication purposes. 
Instead of the case numbers, a Study ID was assigned to each NEN enrolled in POG in sequential order. The case 
numbers referred to in the 2018 publication are included in the brackets. bTumour contents were estimated based on 
WGS data. 

I first examined the global transcriptomic correlation of the 9 POG PNENs to the 

sequenced samples from Chapter 2. The samples from Chapter 2 used in this 

comparison included the 84 primary PNEN specimens with subgroup assignments, with 

the 10 normal islet and the 4 cell line samples serving as biological references. As 

expected, and similar to the unsupervised cluster analysis results showing normal islet 

and some of the cell line samples clustering away from PNEN specimens (Figures 2.1A 

and 2.5), the POG PNENs generally had lower transcriptomic correlation to normal islet 
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and cell line samples. On the contrary, greater correlations to primary PNENs of the 

Alpha cell-like subgroup were observed (p = 0.00042; Figure 3.6). 

 

Figure 3.6 Correlation of POG PNENs to each of the proteotranscriptomic 
PNEN subgroups. 

Transcriptomic correlation between the 9 analyzed POG PNENs and a total of 98 sequenced 
samples from Chapter 2 was evaluated using Spearman’s rank correlation. The distributions of 
the correlations between the POG PNENs to PDX1-high subgroup (n = 20), 
Stromal/Mesenchymal subgroup (n = 25), Alpha cell-like subgroup (n = 28), Proliferative 
subgroup (n = 11), normal islet (n = 10) or cell line (n = 4) samples are shown. The dashed line 
denotes the median correlation for all comparisons. The statistical significance was computed 
using Kruskal-Wallis test to determine differences between the subgroups or using Wilcoxon test 
to compare between each subgroup/specimen type to the rest. 

I next explored whether each of the POG PNENs could fit in any of the four 

proteotranscriptomic subgroups that I had identified. This entailed examining the 9 POG 

PNENs on an individual basis and evaluating their transcriptomic similarities to each of 

the subgroups. For this, I adapted the GSVA-based approach that I had employed in 

Chapter 2 for use with subgroup-specific genes. Here, subgroup-specific genes were 



104 

defined as DEGs exclusively up-regulated in a subgroup, and together represents the 

reference gene signature for the subgroup. Using GSVA against the reference gene 

signature from each of the four proteotranscriptomic subgroups enumerated an 

enrichment score that reflects the subgroup enrichment scores for a target GEP. Using 

the average score as the baseline for each subgroup enrichment, a higher transcriptomic 

similarity to the Alpha cell-like subgroup specimens was observed in 4 of the POG 

PNENs: PN2, PN4, PN6 and PN12 (Figure 3.7), corresponding to Cases 3, 5, 2 and 1 

that had been previously characterized (Table 3.3). In addition, the mRNA expression of 

ARX was relatively high in these four cases, in keeping with their higher similarities to 

the Alpha cell-like subgroup specimens (Figure 3.8). These cases were also the only 4 

POG PNENs among the cohort with concurrent mutations in MEN1 and DAXX (Table 

3.4), consistent with my previous observation of the Alpha cell-like subgroup enriched in 

specimens with mutant MEN1 and DAXX (Figure 2.15). 

Various combinations of subgroup signatures were observed in the POG PNENs. 

PN14 (previously referred to as Case 4), which had only been characterized with MYCN 

amplification and alterations in APC and TP53, had a GEP with a mixed signature of 

PDX1-high and Proliferative subgroups. PN18, a MiNEN, also displayed a mixed 

signature, but was of Stromal/Mesenchymal and Proliferative subgroups (Figure 3.7). 

Consistent with PN18 exhibiting the most pronounced Stromal/Mesenchymal subgroup 

signature among all POG PNENs, the mRNA expression of both YAP1 and WWTR1 

were considerably higher in this PNEN. The only other POG PNEN also demonstrating a 

substantial Stromal/Mesenchymal subgroup signature, PN2, had a high WWTR1 

expression (Figure 3.8). Further, four POG PNENs displayed a pronounced Proliferative 

subgroup signature, either alone or in combination with another subgroup signature. 

These four cases: PN4, PN14, PN18 and PN23 exhibited various histology (including a 

PNEC-LC, a PNET-G2, a PNET-G3 and a MiNEN) but shared a common characteristic 

of high Ki67 indices (Table 3.3). This was consistent with my previous finding of the 

Proliferative subgroup associated with PNENs of higher Ki67 indices irrespective of 

histological differentiation (Table 2.2). 
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Figure 3.7. Transcriptomic similarity of each POG PNEN to the four 
proteotranscriptomic subgroups. 

GSVA was used to evaluate the transcriptomic similarity of each POG PNEN to the four 
proteotranscriptomic subgroups using subgroup gene signatures. Each panel shows the 
enrichment results for a POG PNEN. The average enrichment score from all POG PNENs is 
indicated as a bold vertical line for each subgroup. Ph: PDX1-high; S: Stromal/Mesenchymal; A: 
Alpha cell-like; P: Proliferative. 

Table 3.4. Mutational status of MEN1, DAXX and ATRX in the 9 POG PNENs. 

Study ID MEN1 DAXX ATRX 

PN2 (Case 3) g.64575023C>T (splice variant) p.P284S - 

PN4 (Case 5) p.Tyr327fs p.N268_I275del - 

PN6 (Case 2) p.D82_I86del p.S110fs p.V520F 

PN12 (Case 1) p.R527* p.K393fs - 

PN14 (Case 4) - - - 

PN18 p.D501fs - - 

PN23 p.R420* - - 

PN25 - - p.K1274* 

PN27 - - - 

Only identified somatic mutations in MEN1, DAXX and ATRX are shown. Cells indicated with a “-“ denotes absence of 
mutations. 
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Figure 3.8. mRNA expression levels of ARX, PDX1, YAP1 and WWTR1 in the 9 
POG PNENs. 

The TPM value for each indicated gene from each of the 9 POG PNENs is shown. Aside from 
ARX, the y-axis is kept consistent across the genes. 

3.3. Discussion 

In the case series study in the earlier part of this chapter, the whole-genome and 

whole-transcriptome landscapes of liver metastases from five patients with metastatic 

PNENs were described. Previous studies on primary PNETs have identified recurrent 

somatic mutations in MEN1, DAXX/ATRX and mTOR pathway genes and germline 

mutations in genes involved in chromatin remodelling, DNA damage repair, mTOR 

signalling and telomere maintenance (Jiao et al., 2011; Scarpa et al., 2017). Consistent 

with these reports, we identified biallelic loss of MEN1 and DAXX (due to deleterious 

mutations, copy number losses and/or LOH events) in three of the four PNETs 

characterized. Low mRNA expression of MEN1, DAXX and TSC2 were observed in all 

five PNENs. These likely contributed to tumour development and progression. In 

addition, one or more cases exhibited low expression levels of tumour suppressor genes 

CHEK2, CDKN1B, NF1 and VHL, in which germline mutations had been reported in 

PNETs (Scarpa et al., 2017). While we only identified one germline deletion affecting 
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TSC2 within our cohort (Case 3), the reduced expression of these genes likely also 

augmented disease development and progression. 

Previous studies suggest that loss of nuclear DAXX/ATRX staining is associated 

with metastases, poor prognostic features and shorter survival (Marinoni et al., 2014; 

Singhi et al., 2017). While we are unable to make any definite conclusions about the 

prognostic impact of DAXX/ATRX in our cohort, it is clear that treatment and survival 

outcomes in PNENs were highly variable, and other drivers likely contributed to disease 

progression and treatment response. 

For example, a liver metastasis (Case 4) with typical pathologic features of a 

PNET-G2 was characterized with unique genomic characteristics previously unreported 

in PNENs. The MYCN amplification and expression signature observed in this case had 

not previously been described in human PNENs, although ectopic targeted expression of 

MYCN in pancreatic islets or neural progenitor cells was shown sufficient to induce 

PNEN development in zebrafish and mice, respectively (Fielitz et al., 2016; Yang et al., 

2004). MYCN promotes cell proliferation, and MYCN amplification was correlated with 

poor prognosis, particularly in neuroblastomas (Huang and Weiss, 2013). Similarly, the 

clinical picture for this case was characterized by treatment resistance and poor survival 

that may have been compounded by TP53 loss, which may have negated the pro-

apoptotic signals elicited by MYCN and augmented its oncogenic potential (Chen et al., 

2010; Gamble et al., 2012). Of interest, a small interfering RNA targeting MYC (MYC 

proto-oncogene, bHLH transcription factor) was investigated as a potential therapeutic 

strategy in solid tumours including PNETs, where treatment responses observed in a 

phase I trial (Tolcher et al., 2015) have led to cohort expansion in this tumour type 

(ClinicalTrials.gov; NCT02110563) (Dicerna Pharmaceuticals Inc., 2015). The trial was 

unfortunately terminated as the pharmaceutical sponsor discontinued the program to 

focus on other candidates (Dicerna Pharmaceuticals Inc., 2016). However, given 

demonstrated anti-tumour activity of targeting MYC in PNENs, it would be important to 

explore any underlying molecular characteristics that may predict benefit to MYC-

targeted therapy and regimens that target MYCN. 

Conversely, another PNET within the cohort (Case 2) had relatively good 

treatment outcomes, with prolonged responses to sunitinib (15 months) and Cap/Tem 

(no progression after 20 months). We observed low expression of MGMT in the tumor, 
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which has previously been described and correlated with better responses to 

temozolomide in small PNET cohorts (Cros et al., 2016; Kulke et al., 2009). 

Alterations and aberrant expression of PI3K/AKT/mTOR pathway genes have 

been frequently reported in PNETs (Jiao et al., 2011; Missiaglia et al., 2010), and the 

mTOR inhibitor everolimus is well-established as effective therapy in PNETs-G1/2 (Yao 

et al., 2011). However, no biomarkers that may predict for response to everolimus have 

yet been validated. Within our cohort, three patients received everolimus, and Case 3 

had an early and sustained response to treatment, which would be supported by 

genomic evidence of biallelic TSC2 inactivation. Decreased expression of TSC2 and/or 

PTEN was observed in the other two patients (Cases 1 and 4); however, no conclusions 

can be made regarding the impact of these findings on response to everolimus 

treatment. 

Previous study reported genomically distinct findings that differentiate pancreatic 

NETs from poorly differentiated NECs, with the latter frequently associated with TP53 

and RB1 alterations and rarely with DAXX or ATRX loss (Yachida et al., 2012). 

Conversely, in a study comparing genomic characteristics of NECs from different 

primary sites, the majority PNECs did not harbour alterations in TP53 or RB1, whereas 

33% and 20% of the sequenced PNECs harboured genomic alterations (due to SNVs, 

SVs or CNVs) in MEN1 and DAXX, respectively (Bergsland et al., 2016). The only PNEC 

in this study (Case 5) did not have TP53 or RB1 alterations but retained the 

pathognomonic mutations commonly observed in PNETs. Other genomic features in this 

case included a higher mutation burden and gene expression profile indicative of cell 

cycle activation that was not seen in the other cases (Figure 3.3B; Supplemental Table 

10). The unusual observation of PNET-associated but not PNEC-associated genomic 

alterations in this PNEC-LC raises the hypothesis that it may have evolved from a PNET 

or that some PNECs may share genomic characteristics of PNETs. Either way, this 

suggested the patient would have been a candidate for therapy with targeted molecular 

therapy or temozolomide typically administered to PNETs rather than platinum therapy 

given for PNECs, which did not induce a response. This indicates an inadequacy of the 

conventional approach of treating PNETs and PNECs as distinct entities. 

Of interest, the higher than expected TMB in a PNET-G2 (Case 3), coupled with 

an unusual mutational signature, drew our attention to the germline fusion event causing 
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NTHL1 loss. Germline mutations in NTHL1 had been described in the context of 

polyposis syndromes (Rivera et al., 2015; Weren et al., 2015), similar to those 

associated with MUTYH loss, another base-excision repair gene (Al-Tassan et al., 2002; 

Shinmura et al., 2000). Analogous to Case 3, MUTYH loss was associated with a novel 

mutational signature in PNETs (Scarpa et al., 2017). While loss of the two base-excision 

repair genes resulted in different mutational patterns (C>T for NTHL1 and C>A for 

MUTYH), the physiological similarities between the loss of these two genes highlight the 

potential utility of examining mutational signatures to determine mechanisms of 

tumorigenesis in PNETs. To our knowledge, this was the first reported PNET case 

associated with NTHL1 loss and a somatic mutation pattern that resembles signature 30. 

This was also the first study correlating response to systemic therapy with whole-

genome and transcriptome analyses in PNEN patients and preceded many of the 

sequencing studies involving PNENs to date (Cejas et al., 2019; Chan et al., 2018; Hong 

et al., 2020; Lawrence et al., 2018; Raj et al., 2018). Notably, three of the PNENs in this 

study harboured LOH affecting chromosomes 1, 2, 3, 6, 11, 16, 21, and 22 (Figure 

3.2A). Subsequent studies examining chromosomal aberrations in PNETs similarly 

identified recurrent LOH events in these chromosomes, concurrent with MEN1 

mutations. However, one study found the recurrent LOH events associated with 

lymphovascular invasion (Lawrence et al., 2018) while another observed association 

with a better overall survival probability (Yao et al., 2019). As we and others analogously 

found a subset of PNENs with recurrent LOH affecting chromosomes 1, 2, 3, 6, 11, 16, 

21 and 22 coupled with MEN1 mutations, the clinical outcomes between the affected 

PNET subsets varied and warrant further investigation using a bigger cohort of PNENs 

at various stages. 

The clinical significance of the molecular changes identified among the PNENs 

sequenced in this study remains poorly understood, and to date, there are no known 

predictive biomarkers that are currently applicable in clinical practice. Aside from one 

case in which high expression of several RTKs and components of the MAPK pathway 

supported the use of sunitinib, genomic findings generally did not inform therapy 

decisions in real time. This was partly due to biopsy timing and relatively short disease 

course in three of the patients, as retrospective review suggested that the genomic 

results could potentially have informed treatment decisions. For the two patients who 

remained on follow-up at the completion of this study, high expression of SSTR2 would 
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support the use of PRRT with radiolabeled somatostatin analogs (Hicks et al., 2017). 

Alternatively, four of the PNENs in this cohort had low expression of MGMT which may 

suggest their sensitivity to temozolomide-based regimens (Cros et al., 2016; Kulke et al., 

2009). One of these cases (Case 2) indeed demonstrated exceptional response to 

Cap/Tem. The other three cases, however, were not treated with temozolomide, but the 

one case with normal MGMT expression (Case 4) did not respond to temozolomide. 

Comparisons of the initial five and four additional POG PNENs to primary PNEN 

specimens from Chapter 2 showed stronger correlations with the Alpha cell-like 

subgroup. As mentioned in Chapter 2, the Alpha cell-like subgroup shared molecular 

characteristics of the A-D-M mutant and the Type A subtypes of PNETs with high ARX 

expression and/or transcriptomic similarity to pancreatic α-cells. These two subtypes 

were associated with a reduced recurrence-free or relapse-free survival rate (Cejas et 

al., 2019; Chan et al., 2018) and therefore a higher chance of refractory or metastatic 

disease. While I could not compare the recurrence-free or relapse-free survival rates 

between different PNEN subgroups in Chapter 2 due to limitations in available clinical 

data, the POG program generally enrolls metastatic, treatment-refractory cancer 

patients. Consequently, the POG PNENs may be inherently associated with a greater 

relapse rate explaining the higher correlation to the Alpha cell-like subgroup and in line 

with previous reports associating ARX-high PNETs with greater disease recurrence or 

relapse. 

Four of the POG PNENs characterized with MEN1 and DAXX alterations as well 

as high ARX expression demonstrated considerably higher transcriptomic similarity to 

the Alpha cell-like subgroup specimens. In all of these cases, recurrent LOH or loss 

could be observed in chromosomes 1, 2, 6, 10, 16 and 22 (Figure 3.2) as in the 

previously reported Group 1 subtype, T2 subtype and Subtype A (Boons et al., 2020; 

Lakis et al., 2021; Lawrence et al., 2018). Therefore, there is a possible relationship 

between concurrent MEN1 and DAXX alterations, a pancreatic α-cell-like GEP including 

elevated expression of ARX, and recurrent LOH or loss of chromosomes 1, 2, 6, 10, 16 

and 22. While further analysis combining specimens across studies for comparison is 

needed, the similar features shared by one subtype/subgroup across studies provides 

strong evidence that these studies have descended on the same subtype/subgroup of 

PNENs. 
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PNENs are associated with highly heterogeneous clinical outcomes and 

treatment sensitivities. The in-depth whole-genome and transcriptome analyses of the 

initial five cases demonstrated a number of shared and unique molecular aberrations 

that contribute to this observed heterogeneity. Transcriptomic comparisons with the 

primary PNENs suggested that the molecular characteristics observed in the four 

proteotranscriptomic subgroups were, at least partially, evident in PNEN metastases. 

And, the gene signatures from the proteotranscriptomic subgroups could be potentially 

employed to infer the molecular characteristics of a given PNEN. It is also worth 

mentioning that all 9 cases displayed an unique enrichment profile emphasizing the 

molecular heterogeneity of PNENs. Interestingly, a few of the POG PNENs adopted 

GEPs of hybrid subgroup gene signatures. This could point to a limitation in my 

subgrouping system due to the absence of metastasis specimens in the initial 

proteotranscriptomic subgroup identification process, or due to PNEN metastases 

embracing more composite GEPs. Further molecular analyses of metastatic PNENs with 

associated treatment and outcome information will be critical to improve our 

understanding of the prognostic and predictive implications of the various molecular 

features. 

3.4. Methods 

 Sample collection and processing 

Patients provided written informed consent for metastatic biopsies, sequencing, 

and publication of results as part of the POG program at BC Cancer (ClincalTrials.gov; 

NCT02155621). This study was approved by the UBC Clinical Research Ethics Board 

(H12-00137). 

Following informed consent, patients underwent image-guided metastatic 

biopsies as part of the POG program at BC Cancer (ClincalTrials.gov; NCT02155621). 

As per protocol, biopsies could be undertaken at any time up to disease progression on 

first-line systemic therapy. Up to five biopsy cores were obtained using 18~22G biopsy 

needles and embedded in optimal cutting temperature compound. Tumour sections were 

reviewed by a pathologist to confirm the diagnosis, evaluate tumor content and 

cellularity, and select areas most suitable for DNA and RNA extraction. Peripheral 
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venous blood samples were obtained at the time of biopsy and leukocytes isolated for 

use as a germline reference. 

 Sequencing and Bioinformatics 

DNA and RNA were extracted for genomic and transcriptomic library 

construction, which has been previously described in detail (Sheffield et al., 2015). 

Paired-end reads of 125 bp in length were generated on an Illumina HiSeq2500 

sequencer and aligned to the human reference genome (GSCh37, available from 

http://www.bcgsc.ca/downloads/genomes/9606/hg19/1000genomes/bwa_ind/genome) 

by the BWA aligner (v0.5.7) (Li and Durbin, 2009). Somatic SNVs and Indels were 

processed using SAMtools (Li et al., 2009) and Strelka (v0.4.6.2) (Saunders et al., 

2012). Regions of copy-number variations (CNV) were determined using CNASeq 

(v0.0.6) and LOH by APOLLOH (v0.1.1) (Ha et al., 2012). Tumour content and ploidy 

models were estimated from sequencing data through analysis of the CNV ratios and 

allelic frequencies of each chromosome. This was then compared to in-house theoretical 

models for different ploidy at various tumour contents. Tumour content and sequencing 

coverage as well as the estimated ploidy for each case are provided in Table 3.5. SVs 

were detected by de novo assembly of tumour reads using ABySS and Trans-ABySS 

(Robertson et al., 2010), followed by variant discovery using DELLY (Rausch et al., 

2012). RNA-seq reads were processed and gene expression analyzed as previously 

described in (Sheffield et al., 2015). 

Table 3.5. Tumour content and sequencing coverage for the five metastatic 
PNENs. 

Case 
WGS coverage – 

Tumour 
WGS coverage – 

Normal 

RNA-seq coverage 

(number of paired reads) 

Tumour 
Content 

Ploidy 

Case 
1 

78X 41X 192M 79% 2 

Case 
2 

94X 47X 246M 79% 2 

Case 
3 

89X 42X 289M 77% 2 

Case 
4 

87X 42X 187M 79% 4 

Case 
5 

91X 43X 116M 86% 2 

http://www.bcgsc.ca/downloads/genomes/9606/hg19/1000genomes/bwa_ind/genome
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 Gene expression analysis 

In the absence of matched normal transcriptome data, the level of expression of 

each gene was determined as the number of reads per kilobase of transcript per million 

mapped reads (RPKM) and compared to a compendium of 16 normal transcriptomes 

from the Illumina BodyMap 2.0 project (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-

513/Results). Differential expression analysis between tumor and the normal 

compendium was performed as previously described (Sheffield et al., 2015). Up-

regulated genes were defined as those with a fold change (FC) > 4 and a p.FDR < 0.05; 

down-regulated genes were defined as those with FC < −2 and a p-value < 0.1. 

Expression levels of select genes were converted into percentile ranks against a 

compendium of 5976 tumor transcriptomes across 25 cancer types from the TCGA 

project. KEGG signaling pathway gene set enrichment analysis was performed using the 

gage R package (Luo et al., 2009). Upstream regulator analysis was performed using 

Ingenuity Pathway Analysis to predict the activation/inhibition states of G-protein-

coupled receptors, ligand-dependent nuclear receptors, transcription regulators, kinases, 

and phosphatases from the list of differentially expressed genes (Krämer et al., 2014). 

To increase prediction confidence, only candidates with activation scores > 3 or <−3 

were selected. Molecular targets of drugs mentioned in this study were retrieved from 

Santos et al. (2017). 

For comparisons with RNA-seq data from Chapter 2, TPM values from protein-

coding genes were used. Correlation analyses were performed using Spearman’s rho, 

and GSVA analyses were performed using log2-transformed TPM values. DEGs 

exclusively over-expressed in a subgroup (ie. subgroup signature genes) were used to 

construct the reference gene signature for the subgroup. 

 Sequencing result visualization 

LOH events and CNAs were illustrated using the R package GenVisR (Skidmore 

et al., 2016). Heatmaps were generated using the R packages ComplexHeatmap (Gu et 

al., 2016) and gplots. 

https://www.ebi.ac.uk/gxa/experiments/E-MTAB-513/Results
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-513/Results
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 Data deposition and access 

Sequencing data were deposited in the EGA as part of the study 

EGAS00001001159, accession IDs EGAD00001003048, EGAD00001003089, 

EGAD00001002591, EGAD00001003069 and EGAD00001002607. The variants 

reported were deposited in the ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) database 

with the following accession numbers: MEN1 c.1579C>T (SCV000611142), 

c.245_259delACCTGTCTATCATCG (SCV000611144), c.798+1G>A (SCV000611149), 

c.981_1006delCCACTGTCGCAACCGCAATGTGCGGG (SCV000611152); DAXX 

c.1178delA (SCV000611143), c.329_330delCT (SCV000611145), c.850C>T 

(SCV000611150), c.801_824delTAACAGGCGCATTGAGCGGCTCAT 

(SCV000611153); ATRX c.1558G>T (SCV000611146); MTOR c.6625C>G 

(SCV000611147); BRCA2 c.3504G>T (SCV000611148); TP53 c.818G>T 

(SCV000611151). 

http://www.ncbi.nlm.nih.gov/clinvar/
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Chapter 4.  
 
Conclusions and future directions 

PNENs are a group of rare pancreatic neoplasms with immense clinical, 

pathological and molecular heterogeneity. Increasing awareness of this disease has led 

to rising research interests in its etiology and pathology, yet the links between their wide-

ranging clinicopathological presentations and diverse molecular characteristics remained 

fragmented. The drivers of PNEN development also remained elusive in some cases. In 

this thesis, I aimed to address these knowledge gaps by identifying potential pathogenic 

alterations in PNENs and elucidating connections between clinicopathological and 

molecular attributes of PNENs. Additionally, I investigated a potential molecular 

classification to help establish the basis for novel therapeutic approaches to better the 

management of this disease. In this concluding chapter, I highlight select key findings on 

PNENs throughout my doctoral study and describe their contributions to the field of 

PNEN research with emphases on their potential clinical utility. In addition, I present my 

insights on current limitations and potential future research directions that will help to 

improve the management of PNENs as well as NENs in general. 

4.1. Novel alterations in PNENs 

Novel dysregulated pathways or processes were found in the PDX1-high, Alpha 

cell-like and Stromal/Mesenchymal subgroups, including potential Ras pathway 

activation, metabolic dysregulation and YAP1/WWTR1 activation, respectively. 

Additionally, a metastatic PNEN carried MYCN alterations that likely contributed to its 

pathogenesis. The specific biological and therapeutic implications of these potential 

oncogenic drivers are described here. 

 Activation of HRAS and NRAS in PDX1-high PNENs 

The RAS family of GTPases promotes oncogenic cellular functions through 

activation of signaling cascades including the mitogen-activated protein kinase (MAPK) 

pathway and the PI3K/AKT/mTOR pathway (Gimple and Wang, 2019). Three members 

of the family, KRAS, NRAS and HRAS, are proto-oncogenes frequently found with 
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activating mutations and promote tumour development in various cancer types (Akbani 

et al., 2015; Collisson et al., 2014; Muzny et al., 2012; Raphael et al., 2017a). From my 

analysis of primary PNENs, 11.4% (4 out of 35) of the specimens harboured genetic 

alterations potentially leading to RAS pathway activation. These included 3 PNETs with 

activating mutations in KRAS, NRAS or HRAS and another with a deleterious NF1 

mutation (Figure 2.15). Mutations in KRAS are rare in PNETs and, to my knowledge, 

there is no report of PNETs with mutant HRAS or NRAS except for a NRAS p.Q61R 

variant in the BON-1 NEN cell line (Vandamme et al., 2015) and a metastatic PNET with 

BRAF p.V600E variant that acquired an NRAS (p.Q61R) mutation after treatment with 

BRAF inhibitor vemurafenib (Raj et al., 2018). Aside from the KRAS-mutant case, all 

affected cases fell in the PDX1-high subgroup (Figure 2.15). Although only three of the 9 

PDX1-high PNENs harboured RAS pathway-activating mutations, gene expression-

based inference analysis identified higher activity of HRAS and NRAS in the PDX1-high 

subgroup suggesting a subgroup-wide dysregulation. This makes the potentially 

elevated RAS pathway activity a characteristic of the PDX1-high subgroup, which 

otherwise lacks obvious oncogenic drivers, and supplies a possible avenue for novel 

therapeutic intervention. Considering other groups had similarly reported PNET subtypes 

with high PDX1 expression, and the PDX1-high subgroup expresses higher levels of 

PDX1, it would be interesting to investigate potential connections between PDX1 and the 

RAS pathway in PNENs. The RAS pathway has been one of the most sought-after 

targets in anti-cancer therapeutics, and multiple inhibitors that have been approved for 

other indications or in clinical trials can be exploited to curb the activity of specific RAS 

protein variants, the MAPK pathway or the PI3K/AKT pathway (Moore et al., 2020). The 

identification of a subgroup of PNENs with elevated RAS pathway activity and high 

PDX1 expression carries potential classification and therapeutic utility. A validated 

connection between PDX1 expression, RAS pathway activation and possible 

susceptibility to RAS pathway inhibition could be explored to facilitate selection of 

patients with PNEN for RAS-targeting therapeutic options. 

 Activation of Hippo signaling pathway effectors in 
Stromal/Mesenchymal PNENs 

The Hippo signaling pathway elicits downstream effects through transcription 

coactivators YAP1 and WWTR1. In mammals, a kinase module comprising 

serine/threonine kinase 3/4 (STK3/4) and large tumor suppressor kinase 1/2 (LATS1/2) 
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acts downstream of NF2 and phosphorylates YAP1 and WWTR1 for cytoplasmic 

retention and degradation thereby inhibiting the transcription of genes mediated by 

YAP1/WWTR1 (Hansen et al., 2015). The Hippo signaling pathway is an emerging 

subject in cancer research, but its roles and implications in PNENs have never been 

described. Known mechanisms leading to dysregulation of YAP1/WWTR1 include 

mutations in upstream regulators such as LATS1/2 and NF2 in mesothelioma and 

amplification of YAP1 and WWTR1 in squamous cell carcinomas (Wang et al., 2018). 

Mutations in YAP1 or WWTR1 are rare (≤ 3% of all cancers) and include inactivating as 

well as activating mutations across cancers (Wang et al., 2018). IHC analyses revealed 

elevated YAP1/WWTR1 nuclear staining in cancer cells across multiple cancer types, 

suggesting YAP1/WWTR1 activation is not uncommon in cancer (Zanconato et al., 

2016).  

My identification of a Stromal/Mesenchymal subgroup of PNENs with the first 

molecular evidence of aberrant activation of YAP1/WWTR1 will hopefully spur interest in 

further investigating the roles of the Hippo signaling pathway in the context of PNENs. 

Also, the upstream alterations leading to YAP1/WWTR1 activation in PNENs remain 

elusive, and understanding the mechanisms by which YAP1 and WWTR1 are aberrantly 

activated in PNENs can provide additional details on PNEN pathogenesis and potential 

means for patient selection for YAP1/WWTR1-targeting therapeutics. Given the 

Stromal/Mesenchymal subgroup of PNENs demonstrated higher activity of 

YAP1/WWTR1, inhibiting the downstream function of these transcription coactivators 

may achieve anti-tumour effects and become an additional targeted therapeutic option 

for PNENs with evidence of aberrant YAP1/WWTR1 activation. The Hippo signaling 

pathway regulates angiogenesis, and YAP1/WWTR1 expression promote endothelial 

cell proliferation and arrangements (Choi et al., 2015; Neto et al., 2018). Cell-type 

analysis suggested a higher endothelial cell proportion in the Stromal/Mesenchymal 

subgroup specimens which may have contributed to their elevated expression levels of 

YAP1/WWTR1. While it remains to be confirmed whether the higher expression and 

aberrant activation of YAP1/WWTR1 were restricted to tumour cells or due to endothelial 

cells, sunitinib, an existing agent that targets angiogenesis, achieves therapeutic 

benefits in PNETs (Raymond et al., 2011). Thus, suppressing the aberrant activities of 

YAP1/WWTR1 in either tumour or endothelial cells may be potentially effective in 

achieving anti-tumour effects in PNENs. Aberrant activation of YAP1/WWTR1 can lead 
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to dysregulated expression of genes associated with oncogenesis, including the target 

genes of the TEAD family of transcription factors (Liu-Chittenden et al., 2012; Ota and 

Sasaki, 2008; Zhao et al., 2008). As such, the YAP1/WWTR1-TEAD axis has gained 

enormous interest as a target to inhibit YAP1/WWTR1 function in cancer cells (Calses et 

al., 2019; Crawford et al., 2018). Although existing agents targeting the YAP1/WWTR1-

TEAD interaction either lack clear mechanism of action or lead to off-target effects such 

as oligomerization of proteins involved in other cellular processes (Calses et al., 2019), 

the interaction axis itself remains a potential target to inhibit YAP1/WWTR1 activity, and 

such a strategy could be similarly employed to target PNENs with evidence of elevated 

YAP1/WWTR1 activity. 

 Dysregulated metabolism involving arginine and glutamine in 
Alpha cell-like PNENs 

Metabolism represents one of the enabling cancer hallmarks in which cancer 

cells reprogram cellular energetics to sustain cell growth and proliferation (Hanahan and 

Weinberg, 2011). Interests in the field have led to explosive growth in our understanding 

and culminated in hallmarks of cancer metabolism including “deregulated uptake of 

glucose and amino acids” and “increased demand for nitrogen” (Pavlova and Thompson, 

2016). Yet, there is virtually no published work on the possible metabolic dysregulation 

in PNENs nor metabolic variations between PNENs. The Alpha cell-like subgroup of 

PNENs that I identified showcased enrichment of OxPhos genes on both mRNA and 

protein levels (Figure 2.10) and had higher abundance of proteins involved in arginine 

and glutamine/glutamate metabolism (Supplemental Table 2). The OxPhos process is 

tightly connected to the tricarboxylic acid (TCA) cycle, and the two modules act in a 

feedback loop that ultimately produces ATP (Martínez-Reyes and Chandel, 2020). 

Glutamine is a major anaplerotic substrate in cancer cells that fuels the TCA cycle and 

supplies nitrogen for biosynthesis required during cancer cell growth (Hensley et al., 

2013). Interestingly, glutaminolysis, the conversion of glutamine into α-ketoglutarate that 

involves GLS, is required for mTOR complex 1 (mTORC1) activation and downstream 

signaling that promotes cell growth (Durán et al., 2012; Jewell et al., 2015; Nicklin et al., 

2009). In the context of glutamine deficit, arginine can sufficiently activate mTORC1 

downstream signaling, though the activation mechanism remains to be investigated 

(Lowman et al., 2019). Given the Alpha cell-like subgroup exhibited higher abundance of 

glutamine/glutamate and arginine metabolic enzymes, the PNENs of this subgroup likely 
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had higher demands for these amino acids, and as such, may have higher mTORC1 

activation. In line with this hypothesis, the Alpha cell-like subgroup was the only 

subgroup with PNENs in which deleterious mutations were found in TSC1/2, upstream 

negative regulators of mTORC1 (Huang and Manning, 2008). 

A literature search identified only one conference abstract that describes 

metabolism-related work in PNENs. In that study, fresh tissue slices from 15 PNENs 

were treated with everolimus and subjected to transcriptomic profiling to identify potential 

molecular features of everolimus sensitivity/resistance. Apoptosis activation was 

evaluated based on IHC of caspase 3 (CASP3) for determining sensitivity or resistance 

to everolimus. Transcriptomic analysis identified enrichment of glycolytic signatures in 

the everolimus-resistant PNENs while everolimus-sensitive PNENs exhibited enrichment 

of OxPhos signatures. IHC analysis confirmed increased abundance of solute carrier 

family 2 member 1 (SLC2A1) and hypoxia inducible factor 1 subunit alpha (HIF1A) in the 

resistant specimens and mitochondrial respiratory chain components in the sensitive 

specimens (Cros et al., 2018). While the described work from this abstract is yet to be 

published (as of April 2021), the increased abundance of mitochondrial respiratory chain 

components and enrichment of OxPhos gene signature observed in their everolimus-

sensitive PNENs match the characteristics of the Alpha cell-like PNENs. Further, two of 

the four patients from the analyzed POG PNENs exhibiting substantial Alpha cell-like 

subgroup signatures, PN2 (Case 3) and PN12 (Case 1), were treated and their 

neoplasms responded to everolimus during their clinical course. Future research is 

needed to confirm whether the Alpha cell-like subgroup of PNENs indeed exhibits higher 

mTORC1 signaling and is sensitive to everolimus treatment. 

 Focal amplification of MYCN concomitant with a MCYN-driven 
transcriptomic signature in a metastatic PNEN 

The MYC family of transcription factors, including MYC, MYCN and MYCL 

(MYCL proto-oncogene, bHLH transcription factor), regulates the expression of a broad 

range of genes involved in a myriad of cellular processes, including ribosome 

biogenesis, DNA replication and inhibition of apoptosis, that contribute to cancer 

development (Dang, 2012). All three MYC family genes are proto-oncogenes. Myc 

overexpression promotes tumourigenesis in murine models (Dang, 2012), and MYC is 

frequently amplified across cancer types in human (Beroukhim et al., 2010). MYCN and 
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MYCL have tissue-specific expression patterns (Zimmerman et al., 1986) and are 

frequently amplified in neuroblastoma and small cell lung cancer, respectively (Huang 

and Weiss, 2013; Kim et al., 2016; Nau et al., 1985). Forced expression of Mycn and 

constitutively active Akt1 transforms prostate epithelial cells into metastatic 

neuroendocrine prostate cancer (Lee et al., 2016). In the context of PNENs, ectopically 

expressed MYCN induced PNEN development in animal models (Fielitz et al., 2016; 

Yang et al., 2004), but whether MYCN dysregulation contributes to PNEN development 

in human is unknown. The PNET-G2 with focally amplified MYCN from the POG 

program was the first instance of a human PNEN with evidence of MYCN amplification 

and resultant gene expression changes (Figure 3.3). While it is not possible to confirm 

the pathogenic roles of MYCN in this PNET, the absence of aberrations in PNET-

associated genes or other obvious genomic alterations sufficient to induce neoplastic 

transformation (Figures 3.2~3.3) suggested a potential oncogenic contribution from the 

MYCN amplification in this case. In addition, this particular case of PNET was found in a 

relative young individual (< 50 year-old; Dasari et al., 2017) with rapid disease 

progression (Figure 3.1). This rather aggressive disease course may be related to its 

MYCN-driven nature. Although the aggressive clinical course of this PNET was unlike 

the most PNETs, pathology reviews confirmed its PNET diagnosis. Experimental 

assessments are needed to ascertain whether MYCN serves as a proto-oncogene in the 

context of pancreatic islets and promotes tumour aggressiveness in PNENs. 

Murine studies showed MYC and MYCN are partially compensatory in functions 

yet are both required during development (Huang and Weiss, 2013) suggesting they 

have shared but also distinct transcriptional targets. In NEN-related studies, MYC has 

shown context-dependent roles. MYC promotes neuroendocrine marker expression and 

drug resistance in murine PDACs (Farrell et al., 2017) but induces neuroendocrine de-

differentiation in a Notch pathway-dependent manner in small cell lung cancer (Ireland et 

al., 2020). Similar to MYCN, the oncogenic roles of MYC in PNENs are largely unknown, 

but 81% of 21 PNETs in a study were found with moderate to high MYC IHC score 

despite lack of association with clinicopathological characteristics (Chang et al., 2017). 

MYC overexpression confers resistance to everolimus, and pharmacological inhibition of 

MYC reduced the viability of everolimus-resistant PNEN cells (Terracciano et al., 2020). 

This provides a potential therapeutic avenue to target PNENs intrinsically resistant to 

everolimus by interfering with MYC. It is therefore important to elucidate the functional 
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roles and potential differences between MYC and MYCN in PNENs as well as their 

possible contributions to treatment sensitivity and resistance. It had been recognized 

that MYC-induced transcriptional activation is facilitated by members of the 

bromodomain and extra-terminal (BET) subfamily of proteins, and inhibition of BET 

proteins down-regulate the expression of MYC as well as MYC and MYCN target genes 

providing anti-tumour effects in vivo (Delmore et al., 2011; Puissant et al., 2013). Several 

phase 1/2 clinical trials are currently in progress to investigate the anti-cancer effects of 

BET inhibitors (Shorstova et al., 2021). While the functional roles of the MYC family in 

the context of PNENs are yet to be elucidated, the lessons to be learned from the BET 

inhibitor trials could be exploited to potentially repurpose those agents for PNENs with 

molecular evidence of MYC contribution. 

4.2. Emerging molecularly based classifications 

Traditional cancer classification systems such as the WHO Classification of 

Tumours project (Kleihues and Sobin, 2000) build upon clinical observations and 

experience of a given cancer type to guide the management of newly diagnosed patients 

with the same cancer type. This typically involves histopathological assessments of the 

tumours and has been the standard approach to classify tumours in order to facilitate 

clinical management of cancer patients, including those with PNENs (Kulke et al., 

2010b; Nagtegaal et al., 2020). However, this traditional classification approach for 

PNENs is becoming insufficient as we begin to appreciate the vast clinical and 

pathological heterogeneity of these neoplasms. This problem is particularly evident from 

the generally poor responses to treatments observed in patients with PNENs despite 

basing treatment decisions on the recommendations surrounding the WHO classification 

of PNENs (Kunz et al., 2018; Li et al., 2020; Raymond et al., 2011; Sorbye et al., 2013; 

Yao et al., 2011). In conjunction with the lack of predictive biomarkers for PNENs to 

inform possible therapeutic regimens, a new approach to classify PNENs is imperative. 

With an increasing number of molecular studies as well as targeted therapeutic 

agents surfacing over recent years, a new era of a molecularly guided classification 

approach to achieve more effective and precise management regimens for cancer 

patients seems imminent. In fact, clinical practices or ongoing initiatives have been 

harnessing the predictive utility of validated biomarkers or molecular data to inform 

therapeutic regimens. These include using single gene biomarkers such as MGMT, in 
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which promoter methylation or low expression confers sensitivity to temozolomide (Cros 

et al., 2016; Hegi et al., 2005; Kulke et al., 2009) and BRCA1/2, in which mutations 

confer sensitivity to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibition 

(Golan et al., 2019; Robson et al., 2017), to identify therapeutic agents that are likely to 

result in a tumour response. A number of ongoing projects adopt a precision medicine 

approach which utilizes a tumour’s unique sequencing data to identify its therapeutic 

vulnerabilities. Examples of such strategies include the POG program at BC Cancer 

(Laskin et al., 2015), the CAPTUR trial taking place across Canada (Skamene et al., 

2018), the OncoTreat platform at Columbia University Irving Medical Center (Alvarez et 

al., 2018) and the MSK-IMPACT test at Memorial Sloan Kettering Cancer Center (Cheng 

et al., 2015). While these projects adopt different methodologies, they all engage a 

basket trial approach which sanctions the use of targeted therapeutic agents based on 

molecular evidence of treatment susceptibility, irrespective of the type of cancer in 

question. This transition towards using molecular evidence to support and inform 

treatment decisions can be similarly exploited for the classification and management of 

PNENs. The addition of molecular level data to cancer classification indirectly addresses 

the issues surrounding the clinicopathological heterogeneity of PNENs by identifying 

shared molecular characteristics and molecular aberrations suitable as therapeutic 

targets in PNENs regardless of their clinicopathological characteristics. 

In Chapter 2, I used an unbiased approach to identify four subgroups of PNENs 

with distinct transcriptomic and proteomic profiles. The proteotranscriptomic subgroups 

demonstrated different mutational frequencies in genes associated with PNENs and 

variations in GEPs suggestive of different oncogenic drivers. Previous studies had 

attempted to classify PNENs using miRNA expression profiles, GEPs, CNVs and/or 

epigenomics, but the identified subtypes were limited to having prognostic significance 

and were either largely inconsistent or not comparable between studies. By coupling 

transcriptomic and proteomic variations, I confirmed an Alpha cell-like and a PDX1-high 

PNEN subgroup sharing features with previously described subtypes (Boons et al., 

2020; Cejas et al., 2019; Chan et al., 2018; Di Domenico et al., 2020; Lakis et al., 2021; 

Lawrence et al., 2018). Moreover, I identified a Proliferative subgroup comprising 

PNENs with molecular characteristics suggestive of a higher proliferation (Figures 

2.10~13 and 2.15; Table 2.2) and a Stromal/Mesenchymal subgroup of PNENs with 

novel implication of the Hippo signaling pathway (Figure 2.16). Applying my subgroup 
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classification to PNEN metastases confirmed select subgroup molecular characteristics 

but also reaffirmed the molecular heterogeneity of PNENs. Most notably, three of the 

subgroups that I identified exhibited certain dysregulated pathways or processes that 

may be exploited for novel therapeutic interventions, as discussed above. 

Among the four proteotranscriptomic subgroups, the Proliferative subgroup was 

the only subgroup associated with known clinicopathological characteristics, including 

enrichment of PNECs. However, roughly half of the subgroup was PNETs. The 

conventional belief dictates that PNECs and PNETs are two independent entities and 

should be considered and managed differently (Kulke et al., 2010b; Kunz, 2015; 

Strosberg et al., 2010). My observation of a molecular subgroup comprising both PNETs 

and PNECs raises an important question surrounding this assumption. If a small subset 

of PNETs is genuinely more similar to PNECs than other PNETs on the molecular level, 

should PNETs and PNECs truly be considered distinct simply based on their differences 

in histological differentiation? While genetic differences between PNETs and PNECs had 

been previously reported (Yachida et al., 2012), and PNECs are more likely to respond 

to platinum-based therapy (Moertel et al., 1991), some PNETs were also found to 

harbour mutations in PNEC-associated genes: KRAS, TP53 and RB1, albeit at lower 

frequencies (Vijayvergia et al., 2016). Similarly, the only PNEC (PN4; Case 5) among 

the 9 POG PNENs that I examined in Chapter 3 harboured mutations in PNET-

associated genes, MEN1 and DAXX, but not in PNEC-associated genes, TP53, KRAS 

or RB1 (Table 3.5; Supplemental Table 9). These findings suggest some PNENs share 

molecular characteristics despite histological differences. In line with this argument, four 

of the POG PNENs analyzed in Chapter 3 presented with different histopathological 

characteristics yet all elicited a substantial degree of the Proliferative subgroup signature 

(Table 3.4; Figure 3.7). The addition of molecular evidence could augment 

histopathological assessments to better classify PNENs and predict whether a given 

neoplasm is likely to respond to a certain treatment. 

4.3. Expanding to other NENs 

NENs can arise from neuroendocrine cells found in most tissues and are 

categorized based on their organ of origin. However, NENs are perceived as distinct 

entities from their non-neuroendocrine counterparts arising from the same organ. Such 

distinction is reflected in the most recent WHO classification system which distinguishes 
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NENs in each organ-specific chapter (Nagtegaal et al., 2020). The current official 

nomenclatures for NENs in each primary anatomical site (PAS) differ due to historical 

conventions, and terminologies like “carcinoid” are still being used to refer to well-

differentiated pulmonary NENs. That being said, clinically relevant features such as 

histological differentiation and proliferative indices are similarly used in NENs across 

different PASs for prognostic and therapeutic utility (Nagtegaal et al., 2020; Raphael et 

al., 2017b). An example of this is the use of platinum-based therapy for NECs of GI, 

pancreas and lung origin (Evans et al., 1985; Moertel et al., 1991). Generally, tumour 

grades based on proliferative indices are highly prognostic, but the presence of distant 

metastases remains the top contributor to inferior survival outcomes for patients with 

NENs (Dasari et al., 2017). 

A recent initiative by international NEN experts proposed a consensus 

classification framework for NENs across different PASs (Rindi et al., 2018). This 

suggestion came in the wake of the various terminologies adopted for NENs of different 

PASs that are potentially confusing for interdisciplinary communication. The proposed 

consensus classification system largely resembled the current WHO classification for 

PNENs where a dichotomized histological definition distinguishes NETs from NECs. 

Similar to those of pancreatic origin, NETs were further classified into G1-3 based on 

proliferative index, and NECs may be of SC or LC type (Rindi et al., 2018). The 

nomenclatures from this proposed classification system is adopted hereafter for 

convenience. 

Despite the initiative to consolidate and standardize the terminologies and some 

shared management regimens already in clinical practice for NENs across PASs, the 

vast majority of molecular studies to date have focused on primary NENs of certain 

PASs. Further, organ-specific NEN studies have identified molecular subtypes among 

NENs of pancreatic origin (as described in Chapter 2 and summarized in Section 1.4.4), 

pulmonary origin (Ireland et al., 2020) and the small intestine (Karpathakis et al., 2016). 

Yet, similar genetic alterations have been observed in NENs of different PASs. PNENs 

and pulmonary NENs, for example, share several mutational characteristics. MEN1, 

which is recurrently mutated in up to 56% of PNETs and rarely altered in PNECs, was 

found mutated in 13.6% of pulmonary NETs but not in pulmonary NECs. Similarly, 

tumour suppressors TP53 and RB1 that are frequently altered in PNECs were found 

recurrently altered in pulmonary NECs (26~98%) but rare in pulmonary NETs (< 5%) 
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(Fernandez-Cuesta et al., 2014; George et al., 2015; Jiao et al., 2011; Miyoshi et al., 

2017; Scarpa et al., 2017; Yachida et al., 2012). In addition to genetic alterations, 

aberrations that affect signaling pathways such as the PI3K/AKT/mTOR pathway have 

been identified in both small intestinal NENs and pulmonary NECs-LC (Karpathakis et 

al., 2016; Miyoshi et al., 2017). Together, these observations suggest that despite vast 

heterogeneities among NENs of the same PASs, some NENs of different PASs share 

molecular features. 

To explore potential commonalities and distinctions in the molecular profiles of 

NENs originating from different PASs, I conducted a preliminary analysis utilizing 

existing molecular data available from the POG program. I identified a total of 29 NENs 

(including the 9 PNENs explored in Section 3.5) enrolled in the POG programs with 

available WGS and WTS data. A consensus hierarchical cluster analysis, using 

Spearman’s correlation calculated from the top 25% variably expressed RNAs between 

the samples, identified 3 hierarchical clusters, one of which may be further divided into 

two or three subclusters (Figure 4.1; green, red and orange at k = 5). One cluster 

consisted exclusively of pulmonary and thyroid NENs, and another contained mostly 

NECs or MiNENs with or without high Ki67 indices. The third cluster consisted of mostly 

NETs of pancreas or small intestine origin but also a few pulmonary/thyroid NETs and a 

NET originated from neck (Figure 4.1). For the majority of the cohort, biopsies from 

distant metastases were sequenced, and NENs of different PASs have distinct 

metastatic patterns (Hermans et al., 2020), so the biopsy sites were correlative with the 

PASs. Overall, the results suggest the clustering structure was largely associated with 

PASs/biopsy sites and grade or histological differentiation status. However, it is also 

evident that there are potential transcriptomic features not reflected in the 

clinicopathological characteristics as a few of the samples clustered away from others 

sharing the same PASs, grades or histological differentiation status. While this is a 

preliminary piece of data, it highlights the importance of elucidating potential 

commonalities and distinctions on the molecular level between NENs of different PASs. 

A comprehensive analysis of a large cohort with NENs of different PASs and various 

clinicopathological characteristics would provide valuable knowledge to better assess 

the adequacies of the current organ-specific practice in NEN management. 
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Figure 4.1. Consensus hierarchical clustering result of the POG NENs. 
Consensus hierarchical cluster analysis was performed using Spearman’s correlation for 1000 
iterations. An optimal cluster solution was achieved at k = 3 (top dendrogram), after which there 
were relatively smaller changes in area under the consensus distribution function curves. The 
cluster solutions at k = 4 and 5 are shown for comparison. Where available, the available 
clinicopathological data and estimated tumour content are shown as coloured boxes with legends 
at the bottom. White boxes denote missing information. 

4.4. Concluding remarks 

Considerable clinical, translational and basic research advances in PNENs have 

led to improved detection, increased number of therapeutic options and better molecular 

understanding of this disease. However, the current cancer classification system and 

effective treatment regimens are still inadequate as demonstrated by the low treatment 

response rates and the lack of predictive markers to facilitate therapeutic decisions. In 

addition, putative drivers of PNEN development are unknown in a substantial number of 

cases. In Chapter 2, I show that PNENs can be stratified into four molecular subgroups 

characterized by mutational, transcriptomic and proteomic distinctions. Whereas other 

groups have reported subtypes of prognostic significance, I identified potential 
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therapeutic vulnerabilities suitable for clinical interventions in my subgroups. Due to the 

rarity of PNENs and heterogeneous nature of the disease, additional validation analyses 

using larger and international patient specimen cohorts are needed to affirm the 

applicability of my subgroup stratification system. Also, functional validation of subgroup-

specific features, such as arginine/glutamine metabolism and YAP1/WWTR1 activity, 

could provide preclinical evidence for establishing novel therapeutic avenues for PNENs. 

This may entail genetic and pharmacological modulation of key factors of a cellular 

pathway/process of interest in cell line, patient-derived spheroids/organoids and 

genetically engineered mice. Experimental studies investigating select subgroup 

molecular characteristics are in the works. 

Throughout Chapters 2 and 3, novel oncogenic events were identified in genes 

or pathways already implicated or utilized as therapeutic targets in other cancer types. 

The discoveries of these oncogenic contributors provide additional insights into the 

pathogenesis of PNENs and suggest potential for repurposing therapeutic agents 

approved for other cancers to be used for PNENs. This argument advocates the 

emerging precision medicine initiatives that leverage molecular evidence to aid 

therapeutic decision-making for patients with PNENs. 

PNENs are heterogeneous yet may share molecular features with 

extrapancreatic NENs. The data and results from this thesis may help to foster the 

molecular understanding and clinical management of NENs in general. My findings 

herein provide a sizable contribution to the NEN field towards better clinical outcomes for 

patients with NENs. 
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Appendix 
 
Supplemental Data File 

The following files can be found in the Appendix file “Supplemental Data File.xlsx”. 

Supplemental Table 1. Clinicopathological and subgroup information for each of the 84 

PNENs in the Discovery and Validation cohorts. List of sample identifiers, clinical and 

pathological characteristics, and the cohort and subgroup assignment for each of the 84 

cases of PNENs included in this study. 

Supplemental Table 2. The list of DEGs and DAPs and their differential expression or 

abundance analysis statistics. The Accession column refers to the Ensembl Gene ID (for 

mRNAs) or the UniProt Accession ID (for proteins) of each gene entry. 

Supplemental Table 3. The mRNA- and protein- based gene set enrichment results for 

the complete list of MSigDB Hallmark gene sets. Includes mRNA-based results from the 

Discovery and Validation cohort specimens, and protein-based results from the 

Discovery cohort specimens. 

Supplemental Table 4. Significantly over-represented pathways from SPIA results. Only 

over-represented pathways with adjusted p-value less than 0.05 are shown, and the 

status of a pathway is indicated as activated or inhibited based on topology score and p-

value threshold of 0.05. 

Supplemental Table 5. The mRNA- and protein- based gene set enrichment results for 

the cellular components gene ontologies. Only ontologies with an FDR-adjusted p-value 

less than 0.05 in either mRNA- or protein- based analysis are included. 

Supplemental Table 6. TFEA results from ChEA3Only the top 10% ranked transcription 

factors are included. 

Supplemental Table 7. Filtered variants in cancer-related genes identified from each of 

the Discovery cohort specimens. 

Supplemental Table 8. VIPER results. Only regulators with an FDR-adjusted p-value 

less than 0.05 in at least one subgroup are shown. 
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Supplemental Table 9. Somatic sequence variants identified from each of the five 

metastatic PNEN cases. 

Supplemental Table 10. KEGG pathway enrichment results for each of the five 

metastatic PNEN cases. 

Supplemental Table 11. RNA expression and comparison of select genes of interest for 

each of the five metastatic PNEN cases. 

 

Filename: Yang-Appendix.xlsx 
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