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Abstract 

Over the last decade, social media platforms have eclipsed the height of popular culture and 

communication technology, which, in combination with widespread access to GIS-enabled 

hardware (i.e. mobile phones), has resulted in the continuous creation of massive amounts of 

user-generated spatial data. This thesis explores how social media data have been utilized in 

GIS research and provides a commentary on the impacts of this next iteration of technological 

change with respect to GIScience. First, the roots of GIS technology are traced to set the stage 

for the examination of social media as a technological catalyst for change in GIScience. Next, a 

scoping review is conducted to gather and synthesize a summary of methods used to collect, 

analyze, and visualize this data. Finally, a case study exploring the spatio-temporality of 

crowdfunding behaviours in Canada during the COVID-19 pandemic is presented to 

demonstrate the utility of social media data in spatial research. 

Keywords: social media; spatial-temporal analysis; location-based social media data; 

geographic information systems; cartographic visualization; crowdsourced data collection 
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Introduction 

From the GPS satellite, to the personal computer, to the world wide web, geographic 

information systems (GIS) have always evolved in tandem with the innovation and proliferation 

of other technologies that provided the capabilities to create, manipulate, or communicate 

spatial data (1). While GIS itself underwent many changes and innovations in internally, it was 

largely these external technological factors that dictated the capabilities of GIS, and more 

generally, popular access to GIS technology itself (2). First, global positioning system (GPS) 

satellites allowed for the collection of massive amounts of accurate spatial information, while 

basic computing provided the tools to perform spatial calculations at a much faster rate than the 

human brain. The advent of the affordable personal computer meant that GIS were now 

available to far more users, and subsequently the creation of the internet meant that data and 

software could be communicated at faster and faster speeds, and that the average internet user 

could now access basic GIS web mapping applications. Now, over 2 decades since the creation 

of web 2.0 technology, the next iteration of this coevolution is taking shape with a new 

technological force at the fore: social media applications.  

Just as the development of GIS has been dictated in large part by the technological 

capabilities of a given era, so too has the development of social media been largely if not solely 

dependent on these same external technological factors. In this way, when referencing the 

impacts of social media platforms, the technological foundations upon which social media 

operate are implicitly included in this impact assessment. Mobile smartphones with GPS and 

widespread access to mobile and home internet are the main examples, however just about any 

innovation related to internet communications, computer storage, processing power, camera 

technology, and cloud computing could be included here, and that's without mentioning 

breakthroughs in the social media software design itself, nor the mathematical foundations in 

machine learning and neural networks from which they sprang. The point is not that social 

media platforms are the solely responsible technological driving force behind external pressures 

to GIS, but instead that they sit atop a mountain of innovation and therefore can serve as an 

analytic focal point for how this amalgamation of powerful hardware and software 

advancements over the last 20 years have, and will continue to shape not only the GIS toolkit, 

but also GIScience more broadly as a discipline.  
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This thesis will explore the GIS-social media interface by identifying areas of GIScience 

research that utilize social media platforms as a data resource, and investigating how social 

media has incorporated many GIS elements and in doing so has expanded GIS's reach in the 

popular culture. First, the specific methods used by researchers to collect, spatially analyze, and 

visualize data from social media are examined and categorized to provide a functional 

understanding of the broad research trends in this area of GIScience. Next, a case study is 

provided within which social media data are collected and used as the main data resource to 

explore the spatio-temporality of the cultural phenomenon of charitable crowdfunding in the 

context of the COVID-19 pandemic. Together, there chapters will serve as evidence to the claim 

that social media and GIS have become increasingly interlinked, both at the scientific level, 

where GIScience has increasingly embraced social media as a spatial data resource, and at the 

societal level, where social media has introduced elements of GIS to the wider populace. In 

doing so, this thesis will serve as a synthesis of GIScience research in the domain of the GIS-

social media interface. 

GIS and Technological Change 

In order to understand the relationship between GIS and social media, we must first 

observe how GIS technology and the discipline of GIScience have been impacted over the 

course of the last half-century by advancements in the broader technological landscape. The 

foundational 2015 text by Longley describes the evolution of GIS between 1960 and 2011 in 

three distinct eras (2). First, the era of innovation in the 60's and early 70's saw the launch of the 

first GIS, the establishment of the first academic, government, and commercial GIS institutions, 

and finally the launch of Landsat, the first of many civilian remote-sensing satellites (2). These 

innovations paved the way for what we now know as modern geographic information systems 

(GIS), and laid the technical foundations upon which geographical information science 

(GIScience), the domain of scientific knowledge surrounding GISystems, would be built. The era 

of innovation provided the template from which modern GIS would evolve, endowing today's 

GIS practitioners with not only the tremendous power of these innovations, but also the 

limitations inherent to the technology of the day, none the least of which remains the primacy of 

2D map-based analysis and visualization (3). 

These early foundations would be expanded upon in the 80's and 90's, mostly as a 

direct result of institutional interest and demand for the products of GIS and spatial analysis. 

Dubbed 'the era of commercialization' (2), GIS were now affordable enough for the average 
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business, university, or branch of government to own and operate, largely due to the rapid 

proliferation and decline in cost of the personal computer. It was at this stage that the term 

geographical information science was first used by Goodchild in 1992 to describe the growing 

body of scientific literature concerned with geographic concepts from a technical lens, an area 

distinct from yet completely interlinked with the traditional concept of GI-Systems as tools used 

by GISystem practitioners (4). The concept of GIScience was previously unexamined due to the 

fact that GISystems were specifically a collection of tools and technology utilized by GIS 

practitioners and spatial analysts, and thus were seen and marketed as 'slave-like processors' 

used to handle the heavy lifting in calculating spatial statistics and visualizing spatial data for 

use in other domains of geography and science more broadly (1). Goodchild's idea of 

GIScience came at a time when the average university could now afford to own and operate 

GIS applications of their own, which was leading to a growing body of scientific inquiry dealing 

with the results derived from the rapidly widening umbrella of GIS technology that lacked any 

substantial epistemological underpinnings. This new idea of a scientific discipline specific to the 

analytic fruits of the GIS environment, therefore, was driven at least in part by the 

advancements in the broader technology market, and sparked rigorous debate within the 

geographic and GIS communities that would animate these areas of study for years to come, 

and ultimately shape the theory of knowledge behind GIS as a whole (5). 

The final era noted by Longley covers the first decade of the 21st century, and was 

dubbed The Era of Openness and Pervasive Use, largely due to the innovations surrounding 

the internet and mass global digital communications (2). While the era of commercialization saw 

the migration of GIS technology from being prohibitively expensive to something affordable at 

the level of the institution, the era of openness saw GIS launch from exclusivity in institutions 

and organizations to widespread public access to GIS via the internet. Web mapping websites 

like www.mapquest.com and 3d earth visualizers like Google Earth put the most fundamental 

tools of GIS visualization into the hands of nearly everyone, while open source GIS applications 

and cloud-based computing were beginning to take off, equating to nothing less than a quantum 

leap in the speed and volume at which spatial data could be created, processed, and shared by 

an also exponentially increasing GIS userbase. The 2015 text ends with its characterization of 

GIS eras here in the early years of the 2010's, thus leaving the decade largely open to 

interpretation as to how GIS has been shaped by external technological forces. Now, in 2021, 

with the decade behind us, we can begin to perform this analysis. 
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The Rise of Social Media 

In addition to the proliferation of GIS, the 2000's and early 2010's also saw the creation 

of the significant majority of the large social media platforms that we know today. Of the top five 

social media platforms by users, all of them were created in 2010 or earlier (Facebook: 2004, 

YouTube: 2005, Whatsapp: 2009, Instagram: 2010, WeChat: 2010), and of the top 15, only 

three were created later than 2010 (Snapchat: 2011, Telegram: 2013, Tiktok: 2016) (6). The 

most popular, Facebook, has over 2.7 billion active users worldwide, and also owns two of the 

other top five major platforms, Instagram and Whatsapp with 1.2, and 2 billion users 

respectively (6). As of today in 2021, Facebook boasts a market capitalization of nearly $900 

billion, a 10-fold increase since its initial stock market listing in 2012; Alphabet, Google's (and 

therefore Youtube's) parent company has a market cap. of $1.57 trillion. All this is not to point 

out a potential monopoly in social media communications, but instead to demonstrate both the 

exponential rise in popularity of digital social media, and the fact that nearly all of the big names 

in social media that sprang up around the same time (and often in similar locales) have 

remained the dominant platforms to this day, and show no signs of relinquishing their hold on 

the market. 

This pivotal time period also saw the launch of the first mobile smartphones, at least in 

the form we recognize them today, most notably with the IPhone in 2007. The touchscreen, 

app-based model of the IPhone would go on to become the dominant smartphone design, with 

most smartphones sold today following this pattern. This design would also serve as a perfect 

platform for the use of social media applications, which as discussed previously were also being 

established at this time. It quickly became apparent that users preferred the mobile app versions 

of social media, as opposed to the original desktop-based website equivalents, as the share of 

social media visits via mobile devices reached 83% in 2019 (7). It was this turn to mobile 

technology that would finally introduce in earnest the of 'spatial angle' to social media, as it now 

allowed anyone with a smartphone (which as of 2019 represented 81% of US adults (8)) to 

digitally engage with their spatial whereabouts in real-time through a wide variety of smartphone 

applications, none the least of which remain social media applications.   

Once location-based services were incorporated into social media applications, they 

often became an integral part of the user experience. Photos could now be tagged to a specific 

location on the earth, and the users personal location could be shared via a status update, 

check-in, or even by direct message. Given the massive scale and reach of social media and 
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the smartphone, the GIS integration into the most basic aspects of these systems means that 

social media are likely one of the most common and profound ways most people will interact 

with GIS as a technology. As social media grew increasingly location-based, the convergence of 

GIS and social media became apparent, sparking interest and inquiry into the manifestations of 

this union and the challenges for GIScience as a discipline (9). Thus, given social media's 

significance as a conduit by which billions will utilize elements of GIS, it becomes important to 

consider the history of social media and how it may impact the evolution of GIS moving forward. 

Perhaps akin to the 2d-based reality endowed to the entire body of GIS by the technical 

limitations at the time of its founding (5), so too might the legacy of our current modes of social 

media, and therefore of GIS, be dictated by the technological limitations, both those known and 

those unknown, of today. 

The GIS-Social Media Interface 

The interface between GIS and social media is the point at which the two systems 

converge, and can be understood by looking at how each system has influence the other. First, 

the degree to which social media applications have utilized spatial services, i.e. the ways in 

which GIS has influenced social media, remains heterogenous across platforms, and varies 

widely depending on the nature of the platform. YouTube, for example, as a site is mostly 

aspatial except perhaps when videos are recommended as a consequence of one's location. A 

platform like Twitter, on the other hand, gives users the option to include a geotag containing 

one's location when tweeting, meaning that for some users the Twitter-verse is entirely spatially 

enabled with respect to the locations they are in when posting tweets. This periodic posting of 

one's location is the main mechanism by which GIS has been incorporated into social media, 

and, simultaneously, the main reason why social media platforms have recently become 

relevant as a data resource in GIScience analysis. While the latter will be the main focus of the 

body of this thesis, the former, i.e. the injection of GIS technology into social media and mobile 

communications more broadly, remains an important idea is reminiscent of past eras where a 

shift in the capabilities of technology has lead to a substantial demographic transition in terms of 

aggregate GIS usage across the world. 

The integration of GIS into social media is extensive, however the client-side user 

experience of GIS is only one aspect of its relationship to GIScience. Much more applicable to 

applied GIS research and spatial analysis is the product of this location-based user experience, 

namely the location-based data generated by every user interaction within a given social media 
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platform. This 'location-based social media data' (LBSMD) has been the subject of much GIS 

analysis in recent years, and has served as a significant data resource for a large body of 

research looking at everything from detecting earthquakes and the flu to mapping floods and 

sport-related crime events (10–13). The appeal of using social media data to discover and 

measure spatial phenomena lies in the fact that, first of all, social media data tends to have 

spatial qualities, second, that those spatial qualities usually also accompany some other content 

(text, image, video, etc.) created by a human, and third, because it can be accessed at in real-

time at incredible volume and in many cases for free. As will be discussed in chapter 2, Twitter 

data was a favourite amongst researchers because it fulfills all these characteristics (a wide 

variety of human generated spatial data at low cost and high volumes and velocities). 

Thesis Outline 

This thesis is composed of four chapters. The first chapter provided a background on 

GIS, its relationship to technology, and the growing significance of social media both as a GIS 

tool and data source. The second chapter is a scoping review of the methods used to collect, 

spatially analyze, and  visualize location-based social media data, which provides both a 

summary of the utilizations of LBSMD in the geographic literature and an operationalized 

understanding of the methods required to transform this data into GIS research outputs. The 

third chapter is a case study that demonstrates the applications of LBSMD in spatial research by 

gathering, analyzing, and visualizing data on COVID-19 related crowdfunding campaigns from 

the website gofundme.com. The fourth and final chapter summarizes the conclusions from 

chapters 2 and 3 and reflects on how this relates to themes discussed in the introduction. The 

thesis concludes with final remarks and insights on areas of potential future research. 
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Collecting, Analyzing, and Visualizing Location-Based 
Social Media Data: review of methods in GIS-social media 
analysis1 

Abstract 

With billions of active users, social media platforms now generate spatial data on a 

massive scale, which presents researchers with opportunities to use this data in new and 

innovative ways. There is an emerging body of literature that reports on the use of location-

based social media data used to spatially analyze a range of phenomena. Due to the low cost, 

high availability, and substantial range of content and geographic coverage, location-based 

social media data have the potential to play a major role in GIS research. To this end, our 

scoping reviews  and charts methods used by GIS researchers to collect, spatially analyze, and 

cartographically visualize location-based social media data.  

Introduction 

Social media platforms have risen to become some of the most popular mediums of 

communication in recent years, attracting billions of users worldwide. As a result, these 

platforms now produce a massive amount of user-generated content that can be downloaded by 

third parties. As some of this data is spatially referenced, this development has posed a 

promising opportunity for GIS researchers to gain insight into the spatial patterns and 

relationships that manifest online in social networks. There is a growing body of research that 

utilizes location-based social media data (LBSMD) to investigate these patterns and 

relationships, however the specific methods used to achieve meaningful analysis of LBSMD 

remain scattered and difficult to find. Of particular interest to GIS researchers are methods of 

collecting, spatially analyzing, and visualizing data gathered from social media platforms. 

Thus, the objective of this review is to synthesize a summary of methods used by GIS 

researchers to exploit LBSMD as a data resource. To achieve this synthesis, a systematic 

 

1 Authors: Matthew K. McKitrick, Nadine Schuurman, and Valorie A. Crooks. 
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search strategy was employed to gather relevant GIS literature within which LBSMD was a 

significant research component. The articles were then reviewed to identify key trends and 

answer research questions surrounding the methods used to collect, analyze, and visualize 

LBSMD. To conclude, key themes within the literature are discussed and recommendations for 

future research are given. 

LBSMD as a Spatial Data Resource 

Technological innovation has always played a pivotal role in the development of GIS 

technologies and GIScience (1). In recent years, social media has proven to be one such 

technological force and has created a series of challenges and opportunities for GIS 

researchers (2). These opportunities have been driven in large part by widespread access to 

GPS-enabled mobile devices, cellular internet connections, and high performance computing 

power, which have facilitated the development of a variety of client-side location-based service 

technologies (3). These technologies allow users the opportunity to post their precise locations 

online without prior training, thus making it possible to digitally crowdsource spatial data from a 

large sample of users. This phenomenon was dubbed 'Citizens as Sensors' by Goodchild, as 

users were now acting as voluntary sensors in the field, each gathering small amounts of 

spatially referenced information that can later be aggregated and analyzed to reveal meaningful 

spatial patterns and relationships (4). As social media platforms became more and more 

popular as a result of access to these technologies, they also became some of the largest 

producers of this crowdsourced, human-generated spatial data.  

The proportion of spatially referenced data produced by social media platforms remains 

relatively small (5), however, given the significant number of social media users, spatial data 

can still be accessed in volumes large enough to support spatial analysis (6). Typically, an 

LBSM-dataset presents as an aggregation of many individual digital records generated by users 

during their interactions with the platform. Each record contains content information pertaining to 

the activity or post of the user, the user's unique identifier (ID), as well as a geotag and 

timestamp denoting when and where the user performed the interaction. When gathered in 

large samples, analysis of these simple records can reveal spatio-temporal trends relevant to 

specific phenomena because the data can be preferentially collected by searching for key terms 

or specific times and location. Therefore, when available, LBSMD can serve as a versatile 

spatial data resource given its high volumes, large variety, and low cost, in contrast to spatial 



9 

data from traditional sources, which usually have significant costs associated with access and 

production.  

Location-based social media data is available at high volumes due to the sheer 

quantitative magnitude of social media users, high velocities due to its digital nature, and in 

extreme variety due to the wealth of topics discussed online, but understandably lack veracity, 

the fourth factor of big data. While the crowdsourced nature of LBSMD make it extremely 

plentiful and highly variable, it also creates questions surrounding the accuracy or viability of 

any data collected in this way, especially when assumptions are made and conclusions are 

drawn from crowdsourced big data in general (7). This is especially true with data derived from 

social media platforms, and researchers must consider the pitfalls and methodological hazards 

that can arise when performing secondary analysis on big data (8). The considerations 

surrounding user over-representation, exclusion of non-user individuals, reliance on secondary 

data analysis, and spatial accuracy are critically important and should always be considered 

when utilizing LBSMD, however these are not insurmountable obstacles. Indeed, LBSMD will 

never be a replacement for traditional data in most cases, however, when used correctly it can 

be a viable spatial data resource with widespread geographic coverage available at low cost.  

Having established the potential utility of LBSMD for geographic research, this review 

will now explore the methods researchers have used to exploit LBSMD as a spatial data source. 

Following the general architecture for archiving and exploring LBSMD outlined in 2014 by 

Huang & Xu, where data moves from the platform, to the repository, to the processor and then 

to the end client (9), this review will focus on the three areas of data manipulation that are 

required for this workflow. The first of these areas, data collection, covers the methods required 

to gather LBSMD from a platform and save it locally in a repository. Next, the methods spatial 

analysis used by researchers to identify relevant spatio-temporal patterns and trends in the 

LBSMD will be summarized. Finally, transformation and visualization techniques will be 

investigated to produce a synthesis of methods used to communicate the findings of the 

preceding spatial analysis. These three sections will be informed by a thorough review of 

research articles gathered and selected through a systematic search process which will identify 

articles that utilize LBSMD as a data resource. Thus, the following review presents the scope of 

methods used to collect, analyze, and visualize LBSMD for GIS research. 
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Existing Literature Reviews 

Prior to the main search for literature, a non-systematic search was performed to identify 

any similar reviews concerned with the utilization of social media data for GIS research. 

Although several reviews containing relevant information were gathered, few of them were 

directly related to GIScience and none were specifically concerned with the scope of methods 

discussed in this review. Related to geospatial analysis was Steiger et al. (2015), which 

performed a systematic review on spatiotemporal analyses of data specific to Twitter and 

explored which academic disciplines were focused on researching Twitter as well as 

applications and methods of analysis for Twitter data (3). Stock (2018) provides another 

systematic review concerned with methods of location mining from social media, and explored 

overall trends in which social media platforms data had been extracted from, what methods 

were used to extract location, and which research questions had been addressed by geographic 

data extracted from social media (10). While both of these reviews present detailed information 

on methods of manipulating LBSMD, the former focuses specifically on Twitter and the former 

specifically on the mining of location information, rather than LBSMD in general. Neither review 

encompasses a full GIS workflow, from collection through analysis and visualization. 

A number of other reviews covered the utilization of social media data in researching 

niche topic areas. For example, Weigmann et al. (2020) provides a systematic review of the 

opportunities and risks of mining disaster data from social media (11), while Mirzaalin & 

Halpenny (2019) presents a systematic review of the role of social media analytics in hospitality 

and tourism (12). Further, Kamalich et al. (2020) shows a systematic review of social media 

utilization in emergency response to natural disasters (13) , while Wilkins et al. (2021) presents 

a systematic review of the uses of social media in informing park use management (14). While 

these reviews specifically deal with articles that utilize LBSMD, their scope is much more narrow 

and not done from a GIScience perspective. Although not a review, Stefanidis et al. (2013) 

provides an early outlook of the capabilities in harvesting and harnessing geospatial information 

from social media (15). This foundational article provides an overview of many of the same 

techniques to be discussed in this paper. As such, this review will consider the main themes 

present in this article and will serve as an update to this early work. 
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Methods 

This review follows a scoping review protocol outlined by Arksey & O'Malley (2005) (15) 

and advanced by Pham et al. (2014) (16), which seeks to 'map' relevant literature in a field of 

interest. Drawing from the original Arksey & O'Malley framework, this review will seek to 

summarise and disseminate research findings contained within the body of literature, thereby 

providing a summative synthesis of evidence for practitioners and consumers who might 

otherwise lack the time or resources to perform a similar exercise (15). To this end, we pose the 

following research question: what methods have been used for the purposes of collecting, 

analyzing, and visualizing location-based social media data? This section outlines the procedure 

used to gather and analyze literature relevant to answering this question, and utilizes a 

systematic database literature search alongside collaborative literature review to generate a 

summative synthesis of findings. While this procedure is reflective of the scoping review 

protocols previously discussed, it deviates from the prescribed protocol because the included 

literature was reviewed only by a single reviewer. 

Inclusion / Exclusion Criteria 

This review included peer-reviewed articles that utilized location-based social media 

data as a resource for an analysis of a particular phenomenon. A broad definition of social 

media was mobilized to include any online platform where users can post content and directly 

interact with one another. Data was considered location-based when it contained locational 

metadata, i.e. latitude/longitude coordinate pairs, place names, zip codes, or any other spatial 

identifier for a location on the surface of the earth. Articles were included regardless of LBSMD 

sample size or phenomenon of interest, so long as they utilized LBSMD as a resource in the 

investigation or analysis of said phenomenon. Articles that did not perform a specific analysis 

using LBSMD were excluded. We did not include articles that provided commentary or 

theoretical input on the use of LBSMD and its general implications, rather, only articles that 

specifically gathered a sample of LBSMD from a platform and then used that sample to 

investigate an occurrence in the world were included. Articles that proposed an advanced 

method specific to a small area of the workflow, or articles concerned only with workflow 

performance and efficiency were also excluded. 
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Database Sources and Literature Search 

A search strategy was developed and deployed across two online literature databases: 

Web of Science and GEOBASE. These databases were chosen to provide a broad body of 

evidence, with a focus on geographic literature. The search query included 3 terms relating to 

'methods', 'social media' and 'GIS', each of which were queried with appropriate synonyms (see 

appendix for full search strategy). The search was designed to preferentially gather methods-

focused papers utilizing GIS analysis on social media data. The query was searched on each 

database in January 2020, with a follow-up search being performed in May 2021 to gather any 

literature published since the previous search was conducted. No restrictions on language or 

date of publication were used in either search.  

Article review and identification 

 A single reviewer screened all initially resulting articles by title and abstract for inclusion 

criteria. When it was unclear whether or not an article fit the inclusion criteria, multiple authors 

were consulted. Both reviewers then met to discuss and adjudicate any discrepancies between 

their respective title and abstract analysis. Articles deemed eligible for inclusion were then 

reviewed in full by a single reviewer, where data on methods of collection, analysis, and 

visualization were stored in a table. Fig. 1 illustrates the results of the paper collection process.  
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Fig. 1. Summary literature search diagram. 
Articles were aggregated across two different searches in each database, and were subsequently filtered 
by title and abstract for full-text inclusion in the review. 
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Results 

RQ1: What were the methods and variables of LBSMD collection? 

Platforms as a spatial data source 

Social media platforms used to collect LBSMD fell into three categories: Microblogs 

(e.g., Twitter, Weibo, Facebook), Photo/video sharing (e.g., Flickr, Instagram, YouTube), and 

Point-of-Interest (POI) (e.g., Open Street Map, Foursquare, Yelp). Microblogs were by far the 

most popular source of LBSMD: Twitter 'tweets' were used measure or model everything from 

natural disasters like earthquakes (17–19) and flooding (20–22) to influenza outbreaks (23–26), 

and when counted alongside studies that used Weibo, the two microblogs were the main data 

source for the large majority (>70%) of studies. In contrast, Facebook's inward facing, friend-

oriented structure made it useful as a data source in only a small number of cases (27–29); 

Twitter, meanwhile, allowed anonymous viewing and download of public profile data by default, 

meaning users had to explicitly make their data private if they wanted it as such (30). Similarly, 

Flickr accounted for most of the studies using photo/video sharing platforms as a data source 

and was the second most popular data source overall. Data from collected from Flickr was used 

to model human activity (31–33) and natural landscapes (34–41). Data from POI platforms was 

most often used to measure site activity patterns (33,42–44) by comparing the number and 

frequency of visitation of POIs between areas, and to measure public knowledge and sentiment 

associated with specific locations (45–47).  

Types of collection 

There were two ways to access data on social media platforms: by gathering the data 

from the front-end of a platform, or by using an application-program interface (API). Collecting 

data from the front-end of a platform (i.e., using the user interface) involves either manually or 

algorithmically visiting and recording information from the platform the way a normal user would 

via a web browser or smartphone app. Collecting data algorithmically has been a contentious 

legal issue in the past (48) and platforms concerned over corporate data propriety have 

implemented digital security measures that have spurred advancements in proxy-based web 

crawling strategies (49). In contrast, utilizing an API entails communicating directly with the 

servers of a particular platform, and in the case of studies in this review, querying and 

downloading specific subsections of data that the API gathers automatically (9). The former 

method is rarely used, as it is a labour intensive method requiring either a custom built web 
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scraping tool or the manual collection of data by a researcher. However, the manual method 

has been applied effectively for niche research objectives such as mapping tornado trajectories 

using manually classified Facebook posts (27), or by gathering information from otherwise non-

indexed content such as YouTube videos (50–52). In contrast, the latter method of utilizing an 

API when free and available offers significant research incentives in terms of the volume and 

velocity of data, as well as in ease of data accessibility and acquisition, which are exactly the 

qualities that make the Twitter and Flickr APIs so popular and reliable when compared to 

manual or custom-built scraping strategies. 

  

 

Fig. 2. Collection query parameters and the three types of data collection.  
After various parameters are selected, they can be mobilized through either of the various collection types 
to access the desired data from the social media platform. 

Data queries 

Data can be retrieved from APIs using parameterized queries designed to gather 

desirable posts based on location (area research of interest), time (period of interest), content 

(the actual text or image content of the post), and a variety of other attributes associated with 

the post, such as user ID (17). All studies that gathered data from an API utilized some form of 

query parameter to filter their data. In many cases, researchers preferred to collect large 

swathes of data by using broad parameters, restricting collection only to time frame within a  

country or continent and relying on subsequent filtering to narrow down the corpus after it has 
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been retrieved (53,54). Alternatively, queries can be quite specific across one or more 

parameters, resulting in a more focused dataset that can be used without significant post-

collection filtering (17,55). In any case, the specific query parameters utilized to gather social 

media data are a critical component to understanding the implications behind research reliant 

on this source of data as even small changes can significantly change the content of the 

sample, and therefore the results of any subsequent analysis. 

Query parameters 

Querying location-based data always requires a location parameter, which often places 

significant limitations on the amount of data available for download. Not only does a location 

filter exclude posts from outside the prescribed area, but it also eliminates the possibility of 

downloading the significant majority of total posts due to privacy settings. For example, the 

location of tweet creation is not published alongside a tweet unless the user has explicitly 

enabled the geotag feature, and as a result estimates put the proportion of geotagged tweets 

between 0.85% and 2% of total tweets (5,56). However, while a geotag (which includes the 

precise latitude/longitude location from which a tweet was posted) is the most precise and 

therefore preferred geolocational identifier, location can also be queried via locations mentioned 

in the body of a tweet, or the location associated with profile of the user that posted the tweet 

(56), both of which are a less reliable, yet more readily available measure of location. 

Geolocational identifiers can be queried by supplying a specific location (place name or 

coordinate pair) parameter in addition to a search distance radius, or alternatively, four 

coordinate pairs denoting a bounding box within which all posts are collected.  

Content is most often filtered using specific keyword parameters, which when used 

alongside locational and temporal parameters can greatly narrow down a sample of tweets to 

those pertaining to a common subject area in a common time and place. Studies utilizing the 

content of twitter feeds to model influenza trends combined the keyword parameter 'influenza' 

(including synonyms such as flu, etc.) with a temporal parameter limiting the search to one full 

flu year, and a locational parameter limiting results to those within the target country or to those 

with a geotag (23–26). In the case of Twitter, hashtags can also be used to effectively gather 

content related to a specific topic as hashtags signify a commonly accepted context or topic 

present in the tweet. For example, using #earthquake combined with a short time period 

parameter following a major earthquake yielded a sample of tweets whose spatiotemporal 
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distribution (i.e. when and where certain the tweets were created) mirrored that of the 

earthquake epicenter (17).  

Rate limits 

Location-based social media data can be gathered either via a stream or downloaded 

from an archive. Studies utilizing Flickr often used the archive approach, gathering all posts 

within a selected area (usually a bounding box) and timeframe (35,38). In contrast, studies 

using Twitter data often utilized the Twitter streaming API, which allows direct download of 

tweets as they are being created, usually within a specific area of interest. The stream provides 

either a general or filtered sample of all tweets in real-time, and has been used by researchers 

to gather large tweet datasets over several weeks or months that can then be filtered after 

collection (22,53,57). The advantage of the Twitter streaming API as opposed to an archive 

download is that Twitter imposes a rate limit of 1% on all API requests for standard users, 

meaning that no more than 1% of tweets can be returned without service interruption, or paid 

premium API access privileges (53). The 1% rate limit, combined with the low overall 

prevalence of geotagged tweets means that collecting a broad sample over time with few 

criteria other than a locational filter results in a more robust dataset than can be gathered with a 

single API archive request.  

RQ2: What were the methods used to analyze LBSMD? 

Categories of analysis 

Methods of data analysis were reflective of the attributes of the collected data; the 

different types of analysis are identified here accordingly. For the purposes of LBSMD, a dataset 

can be examined by the time and location at which each post was created (spatio-temporal (ST) 

metadata), the text or image content of each post, and/or the user identifier of the post's creator. 

These three attributes and the methods of analysis that stem from them are non-mutually 

exclusive, and therefore any combination of them can and were utilized alongside one another. 

For example, the seminal work first exploring analysis of geo-Twitter data to detect events in 

real-time utilized both the spatial and semantic content of tweets (58). For the purposes of this 

section, methods of analysis will be examined via the lens of each LBSMD attribute, with the 

understanding that the observed studies commonly utilized analytic methods from each 

category in unison.  
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Spatio-temporal analysis 

The ST attributes of LBSMD are used to assign a geo-temporal dimension to the 

semantic content in the dataset so that it can be analyzed for patterns and compared to other 

relevant spatial features. Thus, analysis of this LBSMD component is central to the observed 

studies as it grounds the online, user-generated information in real space-time so that it can be 

meaningfully compared to other real-world data. In many cases, ST analysis of LBSMD was 

successfully used to detect the time and place of specific events by observing the locations of 

anomalous quantities of related posts (58–64). In others, LBSMD-derived spatial indices of 

specific phenomena were produced and statistically compared with ground-truth data to 

mathematically assess possible ST correlations between the LBSMD-derived variables and 

confirmatory evidence (28,35,37,39,42,44,55,65–75). In any case, the ST metadata within LBSM-

datasets enables ST analysis of social media content by giving the user-generated, semantic 

information points of reference in real space-time. These reference points can then be analyzed 

to produce measures of human mobility and activity (76–90), emergency events (63,91–93), and 

even prevalence of infectious illness (23–26,64,94–101). 

An illustrative example of comparative analysis is demonstrated in studies seeking to 

utilize LBSMD to detect or model specific events or areas, such as traffic accidents or natural 

disaster footprints. The basic premise of comparatively analyzing LBSMD is that if a given 

subset of tweets, for example, can be analyzed and manipulated to produce spatiotemporal 

patterns that match or reflect the patterns of verifiable ground-truth data on the same topic, 

social media data can be relied upon to act as a sensor for similar events in the future 

(17,58,102). In 2013, Crooks et al. adapted the framework established by Sakaki et al. (2010) 

and measured the spatiotemporal creation patterns of tweets containing '#Earthquake', 

comparing them to the time and epicenter location of the 2011 Mineral, VA earthquake (17,58). 

By plotting the data spatially and temporally, researchers are able to visually demonstrate 

correlations between LBSMD-derived measures of an event and actual confirmatory indicators 

of that same event, thus establishing the veracity of LBSMD as an alternate data resource 

(22,103,104).  

A variant of visual comparative analysis is found in papers that use regression 

techniques. Regression, both geographically and temporally weighted, was commonly applied 

to compare LBSMD to other datasets, including other LBSM-datasets. This technique was used 

to create numeric and sometimes mappable indices of correlation between two variables to 
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quantitatively examine the relationship between the spatio-temporal dimensions of two related 

datasets. For example, in 2018 Wu et al. utilized both check-in data and POI data to map how 

land use type, time, and location affected the check-in derived measure of urban vibrancy, 

employing a regression equation to mathematically measure the heterogeneity of vibrance 

against these variables (44). Similar approaches were taken by a variety of studies utilizing 

regression to measure the correlation between their collected subset of LBSMD and a validation 

dataset of choice to produce indices of spatio-temporal correlation, heterogeneity, or perceived 

value (28,35–37,42,66,67,69,105).  

Human activity and mobility were also common subjects of ST analysis using LBSMD, 

as space-time variability in user posts can be strongly indicative of real-world patterns in human 

behaviour (77). Some research analyzed mobility through general ST variations in online posting 

activity, utilizing the quantitative shifts in the general number of posts being made throughout 

the day as inferential data suggesting equivalent shifts in the number of people in those areas 

(44). Other researchers utilized the user identifiers associated with posts to derive aggregate ST 

trajectories, which show the typical mobility patterns of specific populations through an area 

(77,80,106,107). The former method was typically used to measure ST fluctuations in municipal 

population densities or to generate occupancy curves for establishments (78,79,108,109), while 

the latter method of analyzing trajectories was used to model aggregate movements of specific 

user populations of interest, such as those potentially infected with influenza (23,25,26,64,94,96). 

Activity analysis was performed to detect ST variability in hot-spots of specific user actions, and 

was frequently used to show ST patterns in tourist activity behaviours (31,33,110–115). 

The reviewed ST analyses were facilitated by a variety of computational techniques 

used to detect spatial clusters, measure ST correlation between datasets, and analyze patterns 

in social networks. Spatial clustering algorithms such as k-means and DBSCAN were used to 

identify variations in ST points derived from LBSMD to develop spatial trajectories and detect 

anomalous clusters of posting activity (72,74,77,86,110,116–118), which was particularly essential 

for mobility analyses. Kernel density estimation (KDE) was also utilized in detecting ST hotspot 

activity, as well as for transforming discrete ST points derived from LBSMD into continuous 

spatial surfaces (31,42,44,109,111,119–121). Geo-temporally weighted regression was the 

preferred method for measuring the ST relationships between comparable datasets and 

assessing spatial correlations  (28,35–37,42,66,67,69,105). Finally, social network analysis was 
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used to examine the ST variability of interactions between users online and develop models of 

social connection across digital space (55,122,123).  

Content analysis 

Where comparative spatio-temporal analysis addresses the patterns of post creation 

with respect to other spatial features, content analysis utilizes the actual text, image, or keyword 

identifiers associated with a post to enhance or derived further information from the dataset . As 

discussed, these types of analysis are non-mutually exclusive, meaning it was not uncommon 

for researchers to utilize both spatiotemporal and content analyses within the same project. In 

most cases, content analysis was used alongside spatiotemporal techniques to strengthen or 

expand upon the inferences made based upon the information contained in each post. Content 

analysis differs from the other analytic categories in that the methods utilized are concerned 

only with the text or image content of the post, and are thus distinct from methods used to 

analyze spatio-temporality of posts or users. 

Beyond simple keyword matching used at the collection stage, studies utilizing LBSMD 

have applied more advanced content analysis techniques, such as using text-mining and text 

analysis to improve the reliability of the dataset with respect to relevant context. For example, 

after collecting flu-related tweets using an API-based keyword search for 'Influenza' or 'flu', Allen 

et al. (2016) applied machine learning methods to further analyze the text content of tweets in 

order to remove those tweets that, although containing the word 'flu', do not indicate that the 

user is actually sick with the flu (ex: I'm getting the flu shot today (invalid) vs. I gotta get over this 

flu! (Valid)) (23). In this way, content analysis via filtering produces a more robust dataset, 

removing false positives gathered during the collection process and enabling greater confidence 

in the conclusions drawn from subsequent spatiotemporal analysis by ensuring only relevant 

posts are included. The basis for this type of content filtering is found in machine learning 

techniques, which enables algorithms to 'learn' how to distinguish between cases based on their 

content by training them on example datasets (26,101,124).  

Machine learning approaches can also be used to detect the intended underlying 

sentiment in a text corpus through training on similar datasets with human-verified answer keys. 

Sentiment analysis, where posts are assigned a 'sentiment' based on the interpreted meaning of 

their contents, was commonly used in studies that sought to model human thoughts and 

emotions present in social media datasets (53,71,125–129). The sentiment of a post refers to the 

meaning or feeling that the user was trying to convey with their words, which can be determined 
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using either manual (54,127) or the aforementioned algorithmic, machine learning-based 

approaches (130). For example, Seltzer et al. (2017) classified Zika virus-related Instagram post 

content by hand to assign a sentiment of either humour, fear, positive, and negative to 

investigate characteristics of public discourse on the topic (127), while in 2016 Jiang et al. 

analyzed Weibo posts to gauge citizen's feelings about a large public infrastructure project by 

using a machine learning-based approach (125). Earlier research analysed sentiment through 

manual classification of posts, exemplified in 2015 with Yang & Mu's identification of depressed 

Twitter users through researcher-classified depressive tweets (54). 

Finally, post content can be analyzed to derive a representation of the main topics or 

meanings presented in the text, or in some cases images or videos. In the case of text data,  

'topic modelling' is a machine-learning, more specifically a natural language processing-based 

analysis technique that generates a statistical model of the abstract topics present in a corpus of 

text (53,131–136). This type of model, based in Latent Dirichlet Allocation, assigns a number of 

related words to each generated topic area, categorizing words based on their 

interchangeability observed in the body of text so as to reduce a large body of text to a 

researcher-assigned number of topics (53,137). Alternatively, when the desired information 

resides in images rather than text, machine learning-based image recognition techniques can 

be applied to identify posts based on specific objects present in the picture. In 2019, Di Minin et 

al. trained a deep learning algorithm with manually verified data to produce a model capable of 

identifying posts on Instagram that contained images of illegal wildlife trophies (ivory, etc.) (138). 

Videos from social media have also been analyzed to derive summative information, similar to 

text and video, however most of this work has been done manually by researchers viewing and 

recording notes for videos, such as in 2018 where Basch et. al used YouTube as a source for 

information on a specific illness (50). 

RQ3: What were the methods used to visualize LBSMD and communicate 
findings? 

Data collection and spatial analysis have ostensibly more impact on the overall output of 

the research, however the resulting visualizations have the most significant impact on reader 

communication, and therefore dictate the uptake of a given idea presented by a study. After the 

data has been analyzed, it needs to be transformed and visualized into a format that clearly 

demonstrates the utility of the LBSM-dataset in emulating a chosen phenomenon. Where data 

analysis consists of methods used to glean information and meaning from the data, the methods 
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of data transformation and visualization are the vehicle that allows the information to be 

communicated and understood in the context of the research objective. Studies in the review 

frequently utilized cartographic maps, graphs, and tables to communicate research findings 

visually. The visual outputs contain the main thrust of the results and research findings in 

general, as they are the direct product of the collected LBSMD upon which the study is based. 

As such, these methods and the outputs they produce are of significant importance when 

considering the utilization of LBSMD, as they are the main mechanisms by which research 

findings can be communicated and evaluated in print. The following will describe the prominent 

themes in data transformation and visualization found in the included studies; instead of 

presenting an exhaustive list of every methodological variant found in each research paper, 

select examples will be used to illustrate what were found to be the main ways of achieving 

LBSMD-derived visual output. 

Basic visual outputs 

A combination of tabular, graphic, and cartographic methods were used in almost all 

cases to communicate key evidence and information derived from collected LBSMD. Similar to 

techniques of analysis, categories of transformations and visualizations were non-mutually 

exclusive, with studies employing multiple methods to communicate findings. Tables were 

commonly used to display and relate spatio-temporal attributes with other variables such as 

correlation coefficients (23) and other summative data (70,73–75,75,90,123). Time-series were 

often shown graphically in addition to tabularly: in the most clear-cut cases, studies showed the 

temporal incidence of two variables (usually one derived from the social media dataset, another 

from an alternative confirmatory source) to demonstrate how closely the social media data 

emulated the patterns observed in the closest authoritative account of the actual phenomenon 

(17,24,139). For example, in 2017 Wang et al. utilized messages collected from the platform 

Weibo to infer information about air quality, and then plotted the inferred values alongside 

weather station data in-series to show how closely the inferences based on LBSMD matched to 

the reality of air quality on the ground (139). Although graphs and tables were utilized heavily by 

studies in the review and served as a main type of information visualization, their discussion will 

end here given their simplicity and widespread usage across all fields of quantitative study. 

Point mapping 

Ultimately, cartographic representation (mapping) was the most significant vehicle used 

to communicate spatial findings due to its visual nature and high information density. Figure 4 
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contains an example of each type of cartographic representation used in publications to 

communicate data derived from social media. In some cases, the spatial incidence of the 

collected data alone was sufficient to demonstrate the target phenomenon without any 

cartographic techniques beyond plotting the location of post creation with respect to a specific 

time and place. This results in simple point-mapping, as shown in Figure 3a, where each point 

represents the location of an individual tweet. In 2013, Crooks et al. were able to show how the 

spatiotemporal creation patterns of tweets related to an earthquake mirrored the incidence of 

the earthquake itself by plotting the locations of the tweets at various time intervals shortly after 

the event (17). This produced cartographic maps clearly displaying the progression of the 

earthquake's impact as it rippled outwards from the epicentre using nothing but the time and 

location of collected tweets superimposed over the continental US, and then additionally plotted 

against alternative crowdsourced means of earthquake impact measurement to clearly 

demonstrate the correlation between the datasets (17). Aside from this specific example, points 

were often used to portray the locations of the LBSM-dataset, situating the sample inside the 

study area (5,35,55,72,74,140). 
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Fig. 3. Examples of transforming pseudo Twitter data into a variety of visualizations. 

a) Shows an example of basic locational plotting, where each point represents the location and classified 
land use type contained in a single tweet. b) Shows these same points spatially interpolated into a raster 
surface representing location and content. c) Shows a qualitative visualization where the content is 
reflected via text, and the location via Provincial/Territorial divisions. d) Shows a thematic choropleth map 
using the Provinces and Territories of Canada as zonal units, where color reflects the dominant tweet-
derived measure of land use type in each zone. 

Raster surfaces 

Point mapping is an efficient way to visualize data because most LBSMD is point-based, 

as is most spatial data more generally, however, there are many cases where this technique 

does not provide sufficient spatial information due to the nature of discrete point-based 
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locations. To overcome the limitations of point-based data, researchers used methods of spatial 

interpolation, which allows for the prediction of cell values based on a limited number of sample 

data points (141). There are a wide variety of spatial interpolation methods, each varying based 

on different mathematical approaches or assumptions about the data, and as such the specific 

methods of spatial interpolation utilized by studies in the review were largely heterogenous. 

Mitas & Mitasova (1999) outlines many of these variants and can serve as a technical manual 

for understanding and applying the specifics of spatial interpolation techniques utilized by 

studies included here. The main output of spatial interpolation is a raster surface displaying the 

coverage area and point density derived from the initial point sample (69,70,72,74). Shown in 

Figure 3b, an interpolation method is used on the points shown in a) to create a continuous 

surface whose area and color intensity are estimated based on the locations and proximity of 

each point relative to one another. Raster surfaces were commonly generated using kernel 

density estimations, and were used to visualize social media-user density with respect to public 

park use (41,69), spheres of influence in adjacent cities (107), perceived value of POIs (42), and 

a variety of other different patterns of human activity and behaviour (131,142–144). 

Thematic maps  

Thematic maps, as shown in Fig.3 d), use established boundaries or zones to eliminate 

the need for interpolating point area and density by classifying each zone according to the 

number of observations (points) within each zonal polygon. In the case of Figure 4d, the 

Provinces and Territories of Canada are used as these zonal polygons, each being categorically 

color coded according to the most numerous type of tweet contained within. This strategy is 

commonly used when predefined boundaries, such as those at the level of municipal wards or 

state counties, are available and serve as meaningful delineations within which the data can be 

shown (35,69,71,73,74). In 2015, Yang & Mu utilized this mapping strategy to investigate the 

incidence of depression amongst Twitter users in the New York metropolitan area at the county 

level by color-coding counties according to the number of Twitter users showing signs of 

depression within each zone (54). Similarly, Ghosh & Guha (2013) classified obesity-related 

tweets at the county level to show the relative rates of discussion on the topic occurring across 

the U.S (131). Tu et al. (2020) used area-based choropleth maps extensively in their exploration 

of LBSMD-derived measures of urban vibrancy in Shenzhen, China, using traffic analysis zones 

as the areal boundaries for the analysis (73). 
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Qualitative content diagrams 

The types of visualization discussed thus far are effective at displaying spatio-temporal, 

or otherwise quantitative data, however many of the methods of analysis discussed above (and 

therefore many papers in the review) produced qualitative analytic outputs that don't map onto 

quantitative schemes of transformation. Therefore, many studies in the review utilized 

cartographic methods that produced figures depicting the content or topics contained within a 

corpus of LBSMD in a spatial manner. To achieve this, studies used LDA-based content 

analysis to generate topics and topic probability which were then visualized in 'code clouds' or 

'content clouds' which display each topic visually, often showing higher probability or more 

numerous topics with larger text (53,120,145–148). Then, to add a spatial dimension to the code 

cloud topic models, the content of the clouds would be inputted into a GIS environment where 

the topic content can be geo-locationally visualized according to the locations aggregated within 

each prominent topic (53,146,147). A simple example of this can be seen in Figure 3c, where 

the dominant land-use types are visualized graphically on the map itself at the level of the 

provinces, rather than being symbolically described using a color-coded legend. This is 

obviously an oversimplified example; however, the main idea is that the topics or words 

themselves are being represented visually on the map as opposed to being shown with symbols 

depicting the quantitative classification derived from the such text. 

At the most basic level, Jung (2015) generated such topic models from geotagged 

tweets, and then showed the area of the city from within which the tweets were located (and 

therefore the location from which the topics were generated) using a bounding box super-

imposed over a cluster of tweet locations (146). Martin & Schuurman (2017) took this approach 

one step further by generating topic models from geo-tweets that were grouped using pre-

determined vector boundaries, and then spatially displaying the topics generated from each 

group within these pre-determined boundaries, resulting in a cartographic representation of 

Twitter topics at the neighbourhood level (53). Dunkel (2015) used a different approach to 

visualize the relative abundance of specific tags on Flickr by mapping the text of each tag at the 

location at which it was tagged, and increasing the size of the text based on the frequency of 

that term in that location (147). 

Transmission diagrams  

When human mobility and matters of transmission were studied (be it transmission of 

pathogens or ideas), the spatio-temporality of point data pertaining to specific users was 
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transformed to create polyline trajectories between points that intertwined to create networks of 

transmission (fig. 4). These network diagrams display the space-time trajectories generated by 

investigating post patterns of specific users, inferring user movements when the same user 

creates posts at differing times and locations. A prime example of this is shown in an influenza 

surveillance study variant that aimed to model transmission of the flu by generating 

amalgamations of infected user trajectories to show how transmission of the virus can be 

modelled using LBSMD (25). Similar techniques were used to visualize the spread of news 

across the globe from the time and place of a specific event, such as the 2015 Paris attacks 

(55). In 2016, Williamson & Ruming transformed the results of social network analysis in the 

context of Twitter data to produce network model visualizations that displayed spatial 

relationships between users as a function of their tweeting and retweeting behaviours, with each 

user acting as a node connected by lines, and highly prominent users being displayed using 

labels and larger sized nodes (149). In the same vein, Wang et al. (2018) used similar types of 

transformation depicting lines connecting various nodes to visualize aggregate social 

connections, deriving visualizations of inter-urban connection pathways found in online social 

interactions in China from Weibo data (150). 

  



28 

 

 

Fig. 4. Two types of LBSMD-generated transmission models.  
a) Shows transmission of information from an epicentre to surrounding nodes, in this case depicting the 
unidirectional broadcast of a tweet from Southern California to other cities in which retweets of that same 
tweet were located. b) Shows the flow of information (or users) between nodes, in this case displaying the 
dominant bi-directional paths of transmission between Western Cities. 

Web mapping 

The final type of data visualization and transformation is defined not necessarily by the 

content of the figures, but rather the format. Where the majority of studies used static images of 

maps to display their findings, some researchers operationalized their workflows into online 

platforms which allows for real-time reader access to interactive cartographic displays of the 

social media data in question. Researchers include links to webpages that contain the cloud-

based workflows, which are able to run autonomously and update in real-time by continuously 

sampling the data source (i.e. the Twitter streaming API) for posts matching the query 

parameters. Web maps were commonly utilized in research contexts where real-time data 

access was necessary or paramount to the research objective, such as in 2017 when Huang et 
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al. developed an online graphical user interface (GUI) allowing real-time tracking and analysis of 

disaster events derived from Wikipedia entries and social media feeds (151). In 2014, 

Padmanabhan et al. presented FluMapper, which operationalized the trajectory mapping 

associated with tweet-derived flu transmission into a cyberGIS application allowing for reader 

interactivity and map dynamism with respect to different locations and time periods (allowing 

users to pan the map and use the slider tool to investigate the trends in a particular time and 

place) (25). Several other studies in the review included web mapping as a visual research 

output for a wide variety of topics, from a platform predicting earthquakes by analyzing and 

mapping the incidence of anomalous animal behaviours in real-time (19), to web maps designed 

to improve resource dispatch during a disaster by analyzing Twitter data (152), and more (153–

155). 

Discussion 

Data collection protocols showed a strong preference for utilization of data from Twitter, 

which was found to be the platform most widely utilized by researchers (5,6,8,17,21,23,26,54,58–

60,71,100,126,128,129,156). This is likely due to Twitter's free API, which allows for seamless 

access to data with minimal investment, and to the massive volume of geolocational tweets 

generated every day. This observation was commensurate to that of Stock 2018, where Twitter 

and Flickr were found to be the data sources for about three-quarters of the studies found by the 

systematic review protocol (10). Steiger et al.'s 2015 review also clearly reflects this, as their 

findings indicated a wealth of literature on the topic of uses and applications for LBSMD 

specifically from Twitter (3). Twitter will remain a popular data source for this type of research, 

however the inherent limitations of data sourced from this platform like user selection bias and 

data availability (8) should always be considered, especially with the observed over-reliance on 

this social network in particular.  

This review found significant reliance on keyword-based search and filter strategies for 

data collection in the observed studies, although the more recent literature has shown an 

emergence of automated methods such as natural language processing (NLP) being put to use 

for this task. As most social media API's operate using keyword-based archiving and search 

strategies, this reliance is understandable. However, as this review demonstrates, researchers 

have started implementing post-collection processing techniques to increase the robustness of 

samples and eliminate false-positives to a degree beyond what is possible when reliant on API-
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based collection. This finding is in contrast to Steiger et al. (2015), which found a similar trend in 

data collection via keyword-based search strategies, and noted the weaknesses of this 

approach, but did not find evidence of algorithmic alternatives (3). NLP techniques allow for the 

algorithmic classification of large bodies of text, and are able to capture user meaning and intent 

far more efficiently than simple keyword-based filtering (26,53,156). Thus, as NLP and the larger 

field of machine learning (ML) have made considerable advancements and have been 

increasingly propagated to other disciplines over the last 5 years, the move by spatial 

researchers to include these techniques in LBSMD collection and processing protocols is 

understandable.  

Algorithmic strategies are also playing an increasingly prevalent role in social media data 

analysis, and are allowing researchers to garner more and more information from larger and 

larger datasets (157). However, as Reich (2015) put it, big datasets do not carry with them the 

answers to interesting questions just by virtue of their size (158). Further, given the primacy of 

algorithmic solutions to big data analysis, some have called for the geographies emanating from 

such work to be named 'algorithm-driven geographies' as opposed to data-driven geographies 

(159). Thus, while algorithms have enabled deeper spatial inquiry at larger scales, they have 

also introduced inherent algorithmic uncertainty at every level which must be addressed by 

researchers in practice whenever engaging in big data enabled geographic knowledge 

production (159). For example, as Tu et al. (2020) demonstrated, the same phenomenon can be 

measured via different metrics and produce divergent results as a result of slight alterations to 

the data collection and generation procedures (73). 

This review discussed methods of data visualization at the level of data input and visual 

output, and found that many of the visualization strategies centered around generating areas 

from discrete points. As Martin & Schuurman (2020) reminds us, data visualization is not the 

direct reflection of the world it seeks to represent, but rather, similar to an abstraction, it 

obscures certain features in order to highlight others (160). When utilizing kernel density 

estimations, cluster analysis, or data aggregation to a specific areal unit, the original geo-data 

contained within the LBSMD is being obfuscated and transformed in many ways. By flattening 

data to a single dimension and using it to extrapolate spatial coverages of the contained 

information beyond that of the original discrete points, visualization techniques, especially when 

automated, can lead to spatial inconsistencies.   
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Contributions / strengths 

This review offers an extensive overview of the scope of research surrounding the 

interface between GIScience and social media data. The systematic search protocol combined 

with a specific focus on the applicable methods involved in spatial manipulation of social media 

data ensures readers have an understanding of the broad methods involved in this field of work. 

While the review does not explore any one method or element of analysis in exhaustive detail, 

the wealth of cited works in each section provides a strong basis of literature for any 

researchers interested in pursuing the finer details of a particular element discussed here.  

A number of other reviews have covered content areas similar to the data considered in 

the present review, however the present review remains distinct in its geospatial lens and focus 

on operationalizing the methods necessary for GIS-social media interfacing and research 

production(11–14,161). For example, in 2018 Stock presented a systematic review of methods 

used for the extraction of location from social media datasets, which describes in great detail all 

of the methods presented in the related literature (10). The 2018 review was exhaustive in its 

approach, and while it shares many similarities to the present review's section on data collection 

in terms of statistics on platform popularity and the research objectives of studies utilizing social 

media data, it does not address methods of spatial analysis or visualization necessary for 

research outputs. Thus, while the present review does not cover the specifics in methods of 

location mining from social media to the same degree as the aforementioned review, it does 

cover the broader scope of this area in combination with similar coverage of subsequent 

required methods in the workflows of studies exploiting social media data for research 

purposes, namely spatial analysis and visualization. 

Limitations 

This review was primarily limited by incongruence between the volume of research 

gathered by the search protocol and the information limits on a single review. With over 200 

papers included via the search and filtering process, an in-depth exploration of any specific 

method or paper was not possible. Therefore, this review offers a cursory examination of the 

patterns in trends observed in the included articles, with the expectation that readers access the 

cited works for greater information and detail on the specific research objectives and methods 

discussed. 
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Crowdfunding platforms as social media 

Chapter 2 presents a review of methods used for GIS analysis of location-based social 

media data, and precedes chapter 3, which mobilizes these methods in a case study. Indeed, 

while chapter 3 presents an example using methods to collect, analyze, and visualize user-

generated online spatial content, the particular source of this data may not be considered by 

some to be 'traditional' social media. The source, an online crowdfunding platform called 

gofundme.com, is by no means a typical social media platform, however, chapter 3 will treat it 

as such in its application of the previously reviewed methods. 

Crowdfunding platforms are online spaces where people can post campaigns to raise 

money for a cause. A prime example of such a platform, gofundme.com, fits this definition, but, 

as established does not fit the traditional definition of social media. However, these platforms 

operate in a similar manner to social media platforms, and the data gathered from them have 

similar qualities. For example, every campaign posted contains a location from which the 

campaign originated, text, image and video content pertaining to the topic of the campaign, and 

campaigner (user) metadata. Thus, while gofundme.com is not a traditional social media, it can 

function as one for the purposes of gathering analyzing, and visualizing spatial user data. To 

this end, the following chapter wll mobilize the methods reviewed in chapter 2, using location-

based data from gofundme.com as the subject of spatio-temporal and content analysis and 

developing visualizations from the result.
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Spatial and temporal patterns in Canadian COVID-19 
crowdfunding campaigns2 

Abstract 

Online charitable crowdfunding has become an increasingly prevalent way for 

Canadians to deal with costs that they would otherwise not be able to shoulder on their own. 

With the onset of COVID-19 and related lockdown measures, there is evidence of a surge in 

crowdfunding use relating to the pandemic. This study gathered, classified, and analysed 

Canadian crowdfunding campaigns created in response to COVID-19 from GoFundMe.com, a 

popular crowdfunding platform. Spatio-temporal analysis of classified campaigns allowed for 

observation of emergent trends in the distribution of pandemic-related need incidence and 

financial support throughout the pandemic. Campaigns raising money on behalf of established 

charities were the most common in the sample, and accounted for the greatest portion of 

funding raised, while campaigns for businesses made up a small proportion. Dense 

metropolitan areas accounted for the vast majority of campaign locations, and total sample 

funding was disproportionately raised by campaigners in Ontario and British Columbia. 

Introduction 

In times of crisis, charitable crowdfunding serves as a popular method to connect those 

willing to give with those in need. From the half-billion dollars raised by the American Red Cross 

on behalf those impacted by the 2010 Haiti earthquake (1), to concerts raising money to fight 

SARS (2) , and even to donations made at grocery store checkouts, crowdfunding initiatives 

funded by everyday people have been known to raise generous sums when the need arises. 

Even though these crowdfunding initiatives manifest in different forms, their unifying aspect is 

that they are charitable in nature, and on behalf of those in need as opposed to equity-based 

crowdfunding which raises money for the launch of a business venture. In recent years 

charitable crowdfunding has expanded into the online space, allowing for individual people or 

groups to host 'campaigns' on behalf of their particular cause in hopes of raising money directly 

 

2 Authors: Matthew K. McKitrick, Nadine Schuurman, Valorie A. Crooks, Jeremy Snyder. 
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from people in their personal network and beyond. GoFundMe, the largest of these platforms, 

has raised over $9 billion worldwide for campaigns on their platform since its launch in 2010, 

and in 2018 mediated roughly 90% of U.S. and 80% of global charitable crowdfunding dollars 

(3,4). GoFundMe and similar platforms host campaigns and allow campaigners to include text, 

images, videos, and periodic updates on the progress of their campaigns. This new medium of 

charitable crowdfunding has created a space for those with nowhere else to turn to solicit for 

financial assistance, and has resulted in the fulfillment of many campaign funding goals for 

worthy causes.  

In addition to being more accessible to most people, the popularity of online 

crowdfunding platforms has also allowed researchers greater access to data on the topic, and 

thus more opportunity to analyze and investigate the manifestations of online charitable 

crowdfunding at large. Given the wide variety of platforms and absence of sanctioned access to 

this data, a diverse set of methods has been utilized in the literature to gather, analyze, and 

describe the various dimensions of online crowdfunding. Crowdfunding at large is investigated 

through the analysis of campaigns created by people seeking financial assistance associated 

with a need demonstrated by the content of the campaign, which are often manually searched 

and catalogued by researchers  to develop a cohort pertaining to a specific topic from which 

conclusions can be drawn (5–7). In contrast to work investigating the qualitative trends in a small 

number of highly specific campaigns, other research has utilized automated collection 

mechanisms like web crawlers to gather large cohorts of campaigns from which summative 

statistics can be generated (8–11). Because campaigns include a mixture of both quantitative 

and qualitative information, research often incorporated a blend of methods and results which 

describe both these dimensions. 

In light of the expanding body of research on the topic, many researchers have been 

critical of the ethical and societal implications of this new mode of donation based crowdfunding, 

and have increasingly found that it exacerbates inequality by awarding crowdfunding dollars not 

by relative need, but by ability to appeal to an audience through mastery of digital media and 

media literacy (12,13). Rather than alleviating societal inequities by allowing anyone to create a 

campaign, online donation-based crowdfunding has come under scrutiny for potentially 

perpetuating imbalances, replicating existing inequities in race, gender, and socio-economic 

status by favouring those with the means to create successful campaigns rather than those 

most severely in need (11,14). Geographic-oriented research in this domain similarly found 

evidence of spatial inequities, where communities in urban areas vastly outperformed their rural 
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counterparts, bringing in drastically higher volumes of funding and support through 

crowdfunding platforms even when accounting for relative population densities (15). 

Nevertheless, GoFundMe is a clear leader in the charitable crowdfunding market, and nothing 

has demonstrated this more clearly than the incredible volume of campaign creation and 

charitable donations in response to the COVID-19 pandemic.  

The COVID-19 pandemic has been another crisis where individual people and groups 

have turned to crowdfunding for help and to aid others. Between March 1 and August 31, 2020, 

over $625 million was raised globally across 150,000 campaigns created to support causes 

related to the COVID-19 pandemic; in the US, approximately 60% of pandemic-related 

campaigns were created to support small businesses and those dealing with unemployment 

(16). These figures show not only the impacts of the current crisis, the immense need it has 

generated, and the generosity and situational awareness of those still able to donate, but also 

the prevalence of GoFundMe and online charitable crowdfunding in general as a significant 

means with which society addresses economic hardship.  

Canada has been no exception to the economic hardship caused by the COVID-19 

pandemic. From February to April 2020, about 5.5 million Canadian workers had their 

employment situation negatively affected by the economic shutdowns, and in the proceeding 

period from May to September 2020, over 8.75 million unique applications were made to the 

Canada Emergency Response Benefit (CERB), equating to over $76 billion in funds being 

dispersed to Canadians in just 6 months (17,18). As a result, many Canadians have turned to 

crowdfunding to address the needs created by the COVID-19 pandemic and efforts to mitigate 

its spread. 

In this article we provide a snapshot in time of COVID-19 related Canadian crowdfunding 

campaigns during the first 6 months of the pandemic. Specifically, the spatio-temporal 

characteristics of these campaigns are analyzed and visualized to show the patterns of 

campaign creation and success throughout Canada between January and June 2020. The 

aggregation and analysis of this data creates an opportunity to understand not only the needs 

that emerged in Canada as a result of the pandemic, but also where and when they arose 

relative to significant events in the pandemic timeline. This analysis is original in its spatio-

temporal focus, using a map and several figures to visualize where in Canada COVID-19-

related campaigns were created, when campaign creation for specific pandemic-related needs 

were most prevalent, and how these factors relate to campaign fundraising success. 
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Methods 

Since campaign data are not publicly available for bulk download, it must be gathered 

using algorithms to 'scrape' data directly from the website if large volumes of data (too large to 

manually copy) are desired. This method of data collection has previously been used to target 

and gather campaigns raising money for a specific purpose, which are then quantitatively 

analyzed to examine the qualities of these campaigns. For example, Duynhoven et al. used 

scraped campaigns to analyze the spatial trends in Canadian crowdfunding campaigns for 

cancer (15), and more recently scraped campaigns have been used to examine the quantitative 

trends of crowdfunding for COVID-19 at large (19,20). 

The focus of this research is to explore the characteristics of Canadian crowdfunding 

campaigns created for reasons related to the COVID-19 pandemic. We gathered campaigns 

from only one platform, GoFundMe, due to its popularity, broad user appeal, and because 

combining campaigns across platforms can bring out platform-specific effects in the data (13). 

The exploratory research design uses a broad analytic focus within a specific, robust sample, in 

search of emergent properties rather than the answer to a specific research question.  The 

value of interpretation and discussion of campaign characteristics lies not in sample 

completeness, but in sample size and content. The scraped campaigns, as is common among 

scraped web datasets in general, do not form a probabilistic sample, and therefore are not 

statistically generalizable to the space of crowdfunding at large. Instead, the quantity of 

gathered campaigns and the specificity of their purpose allows for the examination of trends and 

dynamics between variables in the sample.  

Crowdfunding campaigns were scraped from www.gofundme.com using a Python 

algorithm. The scraper gathered all of the campaigns resulting from searching "Canada" AND 

"COVID-19" via the GoFundMe search bar on June 30th, 2020, which amounted to 915 search 

results in total, each of which were saved to a local database. Four reviewers then examined a 

random sample of 100 of these campaigns, twice. Based on this examination and subsequent 

reviewer discussions, 6 content categorizations were developed to describe the underlying 

funding motivations present in the campaign sample. Shown in Table 1, these content 

categorizations were decided upon after extensive reviewer discussion surrounding the content 

of both the title and description of each campaign in their respective sample. 

 



37 

Table 1. Content categorizations used to describe the funding motivation present in 
the collected campaigns. 

In support of a(n) ____________ in 
relation to the COVID-19 pandemic: 

Description 

Funding Requested to... 

Canadian Business Help a small business dealing with lockdown-related closure or 
general loss of income during the pandemic. 

 

Canadian Charity Be donated to a formal charity for charitable purposes within For 
example: Canada Food Bank, Canadian United Way. 

 

International Charity Be donated to a formal charitable organization for charitable 
purposes outside of Canada. For example: UNICEF. 

 

Purchase / Manufacture of Personal 
Protective Equipment (PPE) 

Help with the purchase or creation of Personal Protective 
Equipment, particularly PPE that is thought to shield against 
COVID-19, such as face masks (N95, Surgical, Cloth), face 

shields, plexiglass barriers, and other such equipment. 

 

Family Reunification  Help with airfare and other travel costs associated with reuniting 
family members and pets stranded because of COVID-19 related 

border closures and flight cancellations. 

 

Personal Need Directly help people who are experiencing hardship, financial or 
otherwise, due to the pandemic. 

 

Each campaign in the sample was assigned one of these content descriptors to enable quantitative analysis of the pandemic-
related funding motivations in Canadian COVID-19 crowdfunding campaigns. These categorizations were developed by analysis 
and discussion of random campaigns from the sample. 

Campaign categorizations were generated as a result of two collaborative discussion 

sessions held after each author reviewed a subsample of campaigns. During the discussions, 

authors promulgated the main themes of their subsamples and drew from extensive previous 

experience reviewing crowdfunding campaigns to develop a collaborative content taxonomy that 

included the prominent categories of campaigns in the sample while simultaneously narrowing 

down the campaign types to 6 specific areas that aptly described the entire sample when 

assigned appropriately. After the categories were developed, a single reviewer analyzed each 

campaign, removing those campaigns that were either not created in Canada, were created 

outside the prescribed study period from January - June 2020, or were not directly motivated by 

COVID-19 related circumstances. The start of the time period (January 2020) was chosen as a 

safe estimate for the earliest possible time for which COVID-19 campaigns may have been 

created, while the period end date (June 2020) was chosen so as to capture the campaigns 
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from the first 6 months of the pandemic to identify emerging crowdfunding responses to COVID-

19. 

During this process the reviewer also assigned one of the six type descriptors to each 

campaign in the sample. At this stage, each campaign consisted of seven attributes, each 

attribute corresponding to a data column: Campaign title, Description, Date of Creation, Funding 

Dollars Raised, Funding Dollars Requested, Location, and Type, shown in Table 2. The location 

attributes were gathered in the form of place names, which were subsequently geocoded using 

QGIS's integrated geocode function to allow for the spatial analysis component. Table 2  serves 

to exemplify a standard case of a campaign scraped by the Python web scraper, where each 

row contains a single campaign and each column contains an a campaign attribute derived from 

the HTML webpage on www.gofundme.com for each individual campaign, which are the subject 

of the following analysis. 

Table 2. Campaign dataset headers and example campaign entry. 

Title Description 
Date 
Created 

Funding 
Raised 
(CAD$) 

Funding 
Requested Location Type 

PPE for 
Frontline 
Workers 

Donations 
towards the 
purchase of 
PPE for frontline 
workers in 
Toronto 
hospitals 

05-01-
2020 

$51,453 $100,000 Toronto, 
Ontario 

PPE 

Campaigns relating to the pandemic were scraped from Gofundme.com in the format shown here. The ‘Type’ column was 
appended to reflect the type of need portrayed in the title and description. Location and date created values acted as space and 
time variables, respectively. The funding requested column shows how much money was raised by the campaign from the date it 
was created until June 15th, 2020. 
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Results 

A total of 915 campaigns were initially scraped from www.gofundme.com, each of which 

were examined for inclusion criteria; 342 campaigns were removed during this process. The 

remaining 573 campaigns were analyzed spatially, temporally, monetarily, and according to 

content, corresponding with the variables of campaigner location, date of campaign creation, 

funding dollars raised per campaign, and campaign funding, respectively.  The main reasons 

why campaigns were not included in the analysis was due to invalid campaign content (not 

directly related to COVID-19), invalid location (not in Canada or not in a specific Province or 

Territory), or because the location was unable to be geocoded. Table 3 shows a breakdown of 

these variables. The following 7 figures will visualize the trends seen in the scraped campaign 

across these 4 dimensions. 

Table 3. Campaign study variables derived from scraped campaign data 

Variable Description 

Campaigner Location The listed location of the campaign, usually at the 
municipal level. 

 

Campaign Date of Creation Date that the campaign was created on. 

 

Campaign Dollars Raised Funding dollars raised by the campaign (CAD$). 

 

Campaign Type Underlying type of campaign fundraising need (See 
Table 1). 

 

 

First, the campaigns are counted and shown by type (Figure 5). Campaigns created by, 

or on behalf of charities were the most numerous, accounting for 232 of the 573 total 

campaigns. The majority of these campaigns were created by people on behalf of established 

charities to raise money in their particular group, while a comparatively small number of 

campaigns in this category were created by the charitable organizations themselves. This latter 

group was clearly identifiable, as the campaigns were created by the verified user accounts of 

the charity and usually had much larger levels of donations. Campaigns for PPE (118), 

international charities (90), and general personal need (78) accounted for roughly half of the 

total distribution, while campaigns for private businesses and family reunification together 

accounted for about 10%.  
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Fig. 5. Campaign count by type 
A total of 573 campaigns were categorized by the type of need they addressed. The figure shows the 
type of need demonstrated by the gathered campaigns relating to COVID-19 from January 1st to June 
15th, 2020. For a description of each 'Campaign Type', refer to Table 1. 

Next, the count of COVID-19 related campaigns created per day was plotted against the 

reported number of daily new confirmed COVID-19 cases in Canada, with major related news 

events superimposed in series (Figure 6). The number of campaigns per day, shown as the 

grey bars, peaks in early April, as the number of daily new cases surpassed 1000 per day, but 

tapered off shortly after and remained low into June. The number of new cases peaked almost a 

month after the apex of campaign creation, and steadily declined into June. The majority of 

campaigns (68%) were created in the six weeks from mid-March through the end of April, in 

roughly the same period of time as between the first COVID-19 death in Canada and the initial 

easing of the lockdown measures.  
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Fig. 6. Campaigns created per day vs. Canadian COVID-19 Timeline from  
January 1st to June 15th. 

The volume of campaigns created per day are shown in grey bars, the daily number of new COVID-19 
cases is shown with the red line, and various COVID-19 related events are shown with labels 
corresponding to the date of the black dot above each of them. 

Campaign types were then plotted as a time series by date of creation to show the 

temporal distribution of need as it arose during the pandemic (Figure 7). Campaigns created for 

the purposes of funding a Canadian charity made up the largest proportion of newly created 

campaigns for the majority of weeks in the study period. Campaigns for the purchase or 

manufacture of PPE peaked in mid-April but tapered off and were not a significant proportion 

into May. Campaigns for family reunification in Canada from abroad and Canadian businesses 
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were sporadic and minimal for most weeks, while campaigns for personal need were steady 

throughout. Finally, campaigns for international charities peaked in early April and occupied a 

consistent proportion of weekly campaigns until June. 

 

 

 

Fig. 7. Campaign class type distribution per week of the study period from 
January to June 2020 

Shows the trends in weekly campaign creation, stratified by campaign type, across the 22 week period 
within which all scraped campaigns were created. 

Figure 8 shows the provincial distribution of donations to campaigns in the sample, again 

stratified by campaign type. Ontario had by far the most donations, accounting for 64.3% of total 

funding in the sample. British Columbia, Alberta, and Quebec followed with 17%, 10%, and 7% 

of funding, respectively, with the remaining provinces accounting for the last 1%. The 
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distribution of funding per type in each province remained similar to that breakdown at the 

national level, with campaigns for Canadian charities accounting for a considerable proportion in 

each province, and when including PPE account for the vast majority of funding dollars raised 

by campaigns in the sample. None of the Territories had any campaigns, and Manitoba (MB), 

New Brunswick (NB), Newfoundland and Labrador (NL), Nova Scotia (NS), and Saskatchewan 

(SK) accounted for about 1% of total funding. 

 

 

Fig. 8. Total funding dollars raised per province from the 573 campaign sample 
by campaign type. 

Ontario received the vast majority of total funding (65.3%), followed by BC (17.99%), Alberta (8.81%), 
Quebec (6.64%), and the remaining provinces accounting for about 1% of total donations. Funding 
distributions per campaign type within the Provinces showed similar patterns to the distribution of 
campaigns by type at the national level. 

Figure 9 shows the proportion of total dollars raised that each campaign funding group 

accounted for. Campaigns were grouped by how much money they had raised into bins shown 
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along the X-axis of Figure 5. The $500 - 2500 group accounted for the most campaigns (171), 

but the $10,000 - $100,000 raised group accounted for the majority of funding dollars raised, 

with 61.83%. There were only 2 campaigns that raised more than $100,000; between them they 

accounted for 10.59% of all funding dollars raised by campaigns in the sample. Although there 

were 122 campaigns that raised between $0 - 50, these campaigns accounted for less than 

0.01% of total dollars raised, and 86 campaigns raising between $50 - 250 and $250 - 500 

together accounted for just 0.63% of all funding. 

 

 

Fig. 9. Funding raised by campaigns grouped by total dollars raised. 
Campaigns were assigned a grouping based on the funding raised relative to the ranges shown on the x-
axis. The counts of how many campaigns were included in each group are shown underneath each 
corresponding bar in the chart. The proportion of funding raised by campaigns in each funding range 
grouping is shown on the y-axis, and is relative to the total dollars raised by all campaigns in the sample 
($3,024,967). 
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Figure 10 shows funding raised by campaign type. Again, campaigns for Canadian 

Charities and PPE were representative of the majority (>70%) of funding, over $2 million (CAD). 

The distributions here are similar to those shown stratified by week and count of campaign type, 

with campaigns for businesses and family reunification accounting for about 10%, and those for 

Personal Need and International Charities the remaining 20%. 

 

 

Fig. 10. Dollars and proportion of total funding raised by campaign type. 
The dollar value atop each bar indicates how many dollars were raised by campaigns of the 
corresponding type, cumulatively. The percentage figure below the bar shows what proportion of total 
dollars raised by campaigns in the sample each dollar amount corresponds to (N dollars raised = 
$3,024,967). 

Finally, figure 11 shows the spatial distributions of campaigners across Canada 

superimposed over color-coded provinces depicting the average level of funding received by 

campaigns in each province. The dense, urban areas of Canada like Toronto, Vancouver, 
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Montreal, Ottawa, and Calgary show high concentrations of campaigners, with few campaigners 

shown in predominately rural or Northern areas of the country. Ontario and British Columbia 

(BC) showed the highest average campaign funding raised, followed by Alberta and Quebec. 

No campaigns created in the Territories or Prince Edward Island were included in the study 

sample; Saskatchewan, Newfoundland and Labrador, and New Brunswick showed fewer than 5 

campaigns each, Manitoba and Nova Scotia had less than 10 each.
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Fig. 11. Spatial distribution of campaigns in Canada and average campaign funding per province. 
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Discussion 

Distributions of campaigns according to campaign funding objective showed similarities 

with other analyses of COVID-19 campaigns, specifically the prevalence of campaigns for 

charities (international or local), PPE, businesses, and general areas of personal need (Elmer et 

al. 2020). However, the campaigns in the present study showed a much higher proportion of 

campaigns for charitable organizations (accounting for over 50% of campaigns in the sample), 

and more particularly campaigns for charities within the same country/community (as opposed 

to charities working internationally). Campaigns for PPE were also very common in both studies 

(19) likely due to the widespread shortages experienced worldwide at the onset of the pandemic 

(21).  

Campaigns for businesses struggling as a result of the pandemic and related lockdown 

measures were surprisingly few in number and in dollars raised, accounting for only about 6% of 

both campaigns in the sample and funding dollars raised despite widespread coverage of the 

fact that significant numbers of small businesses were and are facing bankruptcy and closure 

(22,23). This could be due to the time period within which these campaigns were gathered, as 

businesses may have been able to stay solvent during the early days of the pandemic, surviving 

on cash reserves and government aid. A future analysis of campaigns from later periods in the 

pandemic could reveal a greater prevalence of business-related campaigns, as dampened 

revenues and lockdown measures persist in Canada. 

Campaigns for personal need in Canada made up about 14% of campaigns in the 

sample and almost 12% of dollars raised ($355,404), which, while a significant amount of 

money, was lower than expected relative to the other categories given the broad definition of 

'personal need' used here and the wide variety of potential personal needs that can arise during 

a pandemic. For example, a previous campaign analysis found that campaigns for funerals, 

family/friend support, and food/supplies (all included in the present 'personal need' category) 

together made up 31% of sample COVID-19 related campaigns (19). Given the extensive aid 

offered by the Canadian government to Canadians in the amount of $2,000 monthly cheques 

(17), it could be that the demand for crowdfunding dollars on behalf of individual Canadians in 

need as a result of the pandemic is lower in the present study due to the specifically Canadian 

sample, as opposed to the non-country specific sample of campaigns gathered by Elmer et al. 

(2020). 
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Campaigns for family reunification, although relatively few in comparison to other 

categories, still raised almost $90,000 in total, and were included to demonstrate this distinct 

type of need. As opposed to campaigns for businesses, it seems likely that campaigns for family 

reunification were prevalent at the beginning of the pandemic due to the abrupt nature of border 

closures and orders for Canadians to return home from abroad, but tapered off as everyone 

who needed to arrive home had already done so, demonstrated by the absence of campaigns in 

this category from the last week of the study period (Figure 6). 

Temporal trends in campaign creation showed that the initial spike in campaigns 

coincided precisely with the first surge in COVID-19 cases in Canada (Figure 2). Campaigns for 

charities and PPE dominated these early weeks. This shows the reactionary crowdfunding 

response of Canadians as it became clear that COVID-19 was to become a serious societal 

crisis, and how digital donation-based crowdfunding acted as a primary medium for Canadians 

to manage the crisis, whether by donating, or by campaigning for themselves or on behalf of 

others. Similar trends were seen in American crowdfunding, where creation of COVID-19 

related campaigns coincided temporally with increases in detected COVID-19 cases (20). 

Spatial analysis of campaigns showed a clear urban-rural divide in Canada, where the 

vast majority of campaigns were created in densely populated, urban areas. This is undoubtedly 

due to asymmetries in Canada's population distribution, as demonstrated by the vast majority of 

funding dollars also being raised in the most populous Provinces, however it could also be due 

to lower levels of access to communication technologies in rural communities or to the strength 

of voluntary or informal care sectors in rural communities were residents look inwards to friends 

and neighbours for support rather than outwards to society at large (15). 

This study focused on analyzing the spatio-temporal patterns in crowdsourced data from 

GoFundMe.com. As such, it is differentiated from studies using similar data with a focus on 

inferential statistics (11). Studies like Kenworthy et al. (2020) used a randomized sample of 

campaign data derived from an extremely large dataset (>165,000 campaigns) to draw and 

extrapolate inferential conclusions about crowdfunding users, campaign characteristics, and 

crowdfunding success at the national level (11). Analyses such as this, which favour statistical 

significance and inference instead of considering spatio-temporal variables, are therefore 

distinct from the purview of the present paper because conclusions are drawn from aspatial 

factors. However, clearly both approaches reveal patterns in the data and are complementary. 
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Limitations 

The present study acknowledges limitations to the methods used in gathering and 

analyzing crowdfunding campaigns. First, it is entirely possible that the search protocol 

over/under exaggerated certain types of campaigns, or entirely missed campaigns that would 

have otherwise met inclusion criteria. For example, the large number of campaigns on behalf of 

Canadian charities included in the sample could be due in part to the utilization of 'Canada' in 

the GoFundMe search, which would favour campaigns for organizations like the 'Canada Food 

Bank' or 'Canadian United Way' as the word 'Canada' is explicitly used in the title and campaign 

description. In contrast, campaigns for an individual person looking for donations from their local 

network would perhaps not include the word 'Canada', even if the campaign was in Canada 

because it would be self-evident to those donating. Given the nature of the campaign data and 

that the only way to access it is through the front-end of the website (as opposed to having 

access to the back-end which would allow for more options when querying), it is impossible to 

say whether or not all the relevant campaigns were included. However, since all the campaigns 

included in the final analysis were individually examined and vetted for inclusion criteria, we can 

say that the sample represents a robust, though likely incomplete, collection of relevant 

campaigns. 

Another limiting factor is that the sample here represents a snapshot of campaigns at the 

time they were harvested. This means that, although campaigns as far back as January 2020 

were gathered, it is possible that many campaigns were created and then deleted before having 

a chance to be gathered. This could lead to an over representation of successful campaigns, as 

unsuccessful campaigns are rather more likely to be deleted after a short time (15). This 

snapshot also only gathered information on the first 6 months of the pandemic; future studies 

could investigate the characteristics of crowdfunding campaigns during the latter portions of the 

pandemic to observe whether the same types of campaign characteristics persisted.  

Conclusion 

Charitable crowdfunding has become an increasingly popular way for people to deal with 

unmanageable expenses, and the expenses incurred by many millions of Canadians over the 

last twelve months due to COVID-19 are no exception. Collection and analysis of COVID-19 

related crowdfunding campaigns from GoFundMe revealed a significant number of Canadians 

who had turned to crowdfunding to help themselves personally, but more so on behalf of 
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charitable organizations in Canada and abroad. The spatio-temporal approach allowed for 

identification of trends across Canada and across time with respect to COVID-19 and how the 

pandemic developed from its beginnings in February to the lull in cases and relaxing of 

restrictions in June. Funding and campaign need type were the primary dimensions of analysis, 

both of which showed clear patterns when analyzed across time and space in Canadian 

provinces, with the most pronounced numbers of campaigns and funding dollars raised being in 

BC and Ontario during the months of April and May. Campaign creation was also greatest in the 

period between when the initial lockdown measures were imposed and when the Canada 

Emergency Response Benefit was announced. 

The study design in terms of campaign collection, classification, and analysis allowed for 

campaigns on the charitable crowdfunding website GoFundMe to be used as a proxy for 

understanding how these types of platforms facilitate need in times of crisis, as well as the 

specific areas of need in Canada that were revealed as a result of the pandemic. While other 

studies on COVID-19-crowdfunding have been published, our results demonstrate that spatio-

temporal specificity allows for a nuanced study in how pandemic-related needs and 

crowdfunding change over time and react to events and policies in specific contexts. Future 

studies utilizing a similar collection protocol should aim to minimize the campaign selection bias 

in the collection process by performing multiple searches using utilizing multiple search terms 

across a period of weeks or months, to ensure the greatest possible number of relevant 

campaigns are collected.  
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Conclusion 

Social media continues to impact society in many different areas, one of which remains 

the area of spatial research. The ways in which massive amounts of spatial user data are 

changing the means by which spatial patterns can be studied are numerous, and this thesis 

sought to illustrate the methods that make these impacts possible. To this end, the roots of 

spatial analysis were traced in chapter 1 to establish the technological and theoretical bases 

from which GIS and GIScience emerged. Chapter 2 explored the next iteration of the co-

evolution of GIS and technology by reviewing the ways in which spatial social media data have 

been exploited for GIS research purposes. Chapter 3 illustrated the reviewed methods in a 

concrete case study of spatial and temporal crowdfunding patterns in Canada during the 

COVID-19 pandemic. Together, these chapters illuminate the research capabilities enabled over 

the past decade by the massive uptake of social media and by extension the immense volumes 

of spatial user data generated each day. 

Chapter 2 Contributions 

Chapter 2 focused on methods of collecting, analyzing, and visualizing location-based 

social media data. The purpose of this review was to establish a practical array of methods used 

in social media analysis and to demonstrate a catalogue of LBSMD applications in GIS 

research.  

Information on this topic was gathered and analyzed using a scoping review protocol 

established by Arksey and O'Malley (2005) (15). A total of 222 articles were included for full-text 

review during this process, after approximately 900 papers were eliminated through abstract 

and title review. Articles were selected based on their inclusion of LBSMD as a primary data 

resource, and were analyzed to detect trends in collection, analysis, and visualization of 

location-based data from social media platforms. 

Methods of collection were found to be dominated by use of the Twitter and Flickr API's, 

while a minority of researchers opted to use manual or automated custom search strategies for 

sources that do not offer API services. Data queries were found to the main drivers of collected 
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sample results, with different inputs for locational, keyword content, and user ID parameters 

being the main variables of collection. 

Methods of analysis were split into those analyzing the ST patterns contained in the 

metadata, or those analyzing the text or image content within the posts themselves. ST analysis 

consisted mainly of detecting anomalous activity with reference to specific times or locations, 

while content analysis sought to derived semantic meaning or sentiment from post text. In the 

majority of cases, both types of analysis were utilized in unison to both categorize posts by their 

semantic or sentiment information and then analyze the ST patterns of those posts to identify 

patterns.  

Methods of visualization were commonly derived from the standard GIS toolkit, and 

aside from tables and graphs mainly included cartographic maps that displayed visual 

information derived from collections of LBSM-point data. Some studies simply plotted the data 

as ST points  to demonstrate patterns, while others transformed the data into raster surfaces, 

thematic area-based maps, qualitative content diagrams like spatial topic-models, transmission 

diagrams, and web maps.  

The chapter closed with a discussion on the increasing prevalence of algorithms in 

geography, especially in big-data driven geographies like those generated through use of 

LBSMD. While algorithms enable geographers to generate knowledge at rates and scales never 

before possible, they also come with inherent limitations that must always be considered when 

working with large datasets.  

Chapter 3 Contributions 

Chapter 3 mobilizes the methods reviewed in chapter 2 in a case study of spatial-

temporal patterns in Canadian online crowdfunding activity during the first 6 months of the 

COVID-19 pandemic. First, a custom-built automated data collection strategy was employed to 

gather a large sample of pandemic-related campaigns. Next, the content of the gathered 

campaigns was analyzed manually to generate classifiers based on the purpose of each 

campaign. Finally, the spatio-temporal patterns in the data were analyzed to illuminate 

differences in campaign success and creation as a function spatial location within Canada and 

the groups of identified campaign purposes. 
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Meaningful differentiation in these factors was found across Canada, with provinces like 

BC and Ontario accounting for the vast majority of funding dollars raised. The patterns in 

campaign creation also strongly reflected events in the pandemic-related news cycle, indicating 

the influences of events on crowdfunding behaviours. Campaign funding purposes also showed  

differentials across time, with campaigns for PPE falling off substantially towards the start of 

June 2020. 

Closing remarks 

From the outset the purpose of this work was to explore the implications of social media 

data to spatial research. However, the onset of the COVID-19 pandemic in 2020 provided an 

opportunity to utilize these GIS-social media methods for a topic of analysis that remains 

somewhat distant from traditional definitions of social media. As discussed though, the 

incongruence between crowdfunding platforms and social media platforms remains a minor one, 

and therefore did not stand in the way of the meaningful application of the discussed methods of 

LBSMD utilization as the characteristics of data from both sources are similar. While additional 

work is certainly required to further establish a concrete array of methods for LBSMD use, as 

well as in uncovering spatio-temporal patterns of crowdfunding behaviours using these 

methods, this thesis' contributions to the geographies of big-data analysis and in particular 

social media analysis will ideally be used to inform other spatially-oriented researchers in similar 

analytic pursuits.  
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