
 

 

 
DEVELOPING A DATA-DRIVEN SAFETY ASSESSMENT 

FRAMEWORK FOR RITI COMMUNITIES IN WASHINGTON 
STATE 

 

FINAL PROJECT REPORT 
 
 
 

by 
 

Yinhai Wang, Wei Sun, Sam Ricord, Cesar Maia de Souza, Shuyi Yin, and Meng-Ju 
Tsai  

University of Washington 
 
 

for 
 

Center for Safety Equity in Transportation (CSET) 
USDOT Tier 1 University Transportation Center 

University of Alaska Fairbanks 
ELIF Suite 240, 1764 Tanana Drive 

Fairbanks, AK 99775-5910 
 

 

 

In cooperation with U.S. Department of Transportation,  
Research and Innovative Technology Administration (RITA) 

 
 

 



i 

DISCLAIMER 

The contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented herein. This document is disseminated under the sponsorship of 

the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of 

information exchange. The Center for Safety Equity in Transportation, the U.S. Government and 

matching sponsor assume no liability for the contents or use thereof.  



 

ii 

 

TECHNICAL REPORT DOCUMENTATION PAGE 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

   

4. Title and Subtitle 5. Report Date 

Developing a Data-Driven Safety Assessment Framework for RITI Communities 
in Washington State 

Sep 10, 2021 

6. Performing Organization Code 

 

7. Author(s) and Affiliations 8. Performing Organization Report No. 

Yinhai Wang, Wei Sun, Sam Ricord, Cesar Maia de Souza, Shuyi Yin, and Meng-Ju Tsai 
University of Washington 

INE/CSET 21.09 

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

Center for Safety Equity in Transportation  
ELIF Building Room 240, 1760 Tanana Drive 
Fairbanks, AK 99775-5910 

 

11. Contract or Grant No. 

Grant # 69A3551747129 

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered 

United States Department of Transportation 
Research and Innovative Technology Administration 

1200 New Jersey Avenue, SE 

Washington, DC 20590 

Final report, Sep 2019 – Sep 2021 

14. Sponsoring Agency Code 

 

15. Supplementary Notes 

Report uploaded to: 

16. Abstract 

The roadway safety of the Rural, Isolated, Tribal, or Indigenous (RITI) communities has become an important social issue in the United 
States. Official data from the Federal Highway Administration (FHWA) shows that, in 2012, 54 percent of all fatalities occurred on rural 
roads while only 19 percent of the US population lived in rural communities. Under the serious circumstances, this research aims to 
help the RITI communities to improve their roadway safety through the development of a roadway safety management system. 
Generally, a roadway safety management system includes two critical components, the baseline data platform and safety assessment 
framework. In our Year 1 and Year 2 CSET projects, a baseline data platform was developed by integrating the safety related data 
collected from the RITI communities in Washington State. This platform is capable of visualizing the accident records on the map. The 
Year 3 project further developed the safety data platform by developing crash data analysis and visualization functions.  In addition, 
various roadway safety assessment methods had been developed to provide safety performance estimation, including historical 
accident data averages, predictions based on statistical and machine learning (ML) models, etc. Beside roadway safety assessment 
methods, this project investigated the safety countermeasures selection and recommendation methods for RITI communities. 
Specifically, the research team has reached out to RITI communities and established a formal research partnership with the Yakama 
Nation. The research team has conducted research on safety countermeasures analysis and recommendation for RITI communities.  
 

17. Key Words 18. Distribution Statement 

Safety Data Tool; Roadway Safety Assessment; Statistical and Machine Learning Modeling; 
RITI communities 

 

19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price 

Unclassified. Unclassified. 39 N/A 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.



iii 

SI* (MODERN METRIC) CONVERSION FACTORS 



iv 

TABLE OF CONTENTS 

Disclaimer....................................................................................................................................................... i 

Technical Report Documentation Page ........................................................................................................ ii 

SI* (Modern Metric) Conversion Factors ..................................................................................................... iii 

List of Figures ................................................................................................................................................ v 

List of Tables ............................................................................................................................................... vii 

Executive Summary ....................................................................................................................................... 1 

CHAPTER 1. INTRODUCTION ..................................................................................................................... 2 

1.1. Project Background ....................................................................................................................... 2 

1.2. Problem Statement ....................................................................................................................... 2 

1.3. Research Objective ....................................................................................................................... 3 

CHAPTER 2. LITERATURE REVIEW ............................................................................................................. 4 

2.1. Roadway Safety Assessment Methods ......................................................................................... 4 

2.2. Crash Injury Analysis on Rural Roads ............................................................................................ 4 

2.3. Pedestrian Safety Assessment Methods ....................................................................................... 5 

CHAPTER 3. SAFETY DATA MANAGEMENT AND VISUALIZATION PLATFORM .......................................... 7 

CHAPTER 4. ROADWAY SAFETY ASSESSMENT METHODS FOR RITI COMMUNITIES ............................... 11 

4.1. Crash Injury Analysis ................................................................................................................... 11 

4.2. Pedestrian Safety Analysis .......................................................................................................... 14 

CHAPTER 5. ROADWAY SAFETY COUNTERMEASURES ANALYSIS AND RECOMMENDATION ................. 21 

5.1. Introduction ................................................................................................................................ 21 

5.2. Crash Modification Factors (CMFs) ............................................................................................. 21 

5.3. Safety Improvements on Rural Roads ......................................................................................... 22 

5.3.1. Avoiding Vehicle-Vehicle Crashes ....................................................................................... 22 

5.3.2. Improving Pedestrian and Bicyclist’s Safety ....................................................................... 30 

5.4. Summary of Safety Countermeasures for Yakima Nation .......................................................... 32 

CHAPTER 6. REFERENCES ........................................................................................................................ 38 

 

  



 

v 

 

LIST OF FIGURES 

Figure 1.1 Structure of the roadway safety management system for RITI communities ............................. 3 

Figure 3.1. Point-based crash visualization ................................................................................................... 7 

Figure 3.2. Segment-based safety index visualization .................................................................................. 8 

Figure 3.3. Area-based safety index visualization ......................................................................................... 8 

Figure 3.4. Crash heatmap ............................................................................................................................ 9 

Figure 3.5. Safety report ............................................................................................................................... 9 

Figure 4.1. Variable importance ranking for significant factors ................................................................. 13 

Figure 4.2. Dashboard with the results for the Nearest Neighbor Classification ....................................... 17 

Figure 4.3. Dashboard with the results for the Decision Tree .................................................................... 18 

Figure 5.1. Safety countermeasures examples from CMF Clearinghouse. Source: CMF 

Clearinghouse ...................................................................................................................................... 22 

Figure 5.2. Treatment matrix for pavement and shoulder resurfacing (FHWA Manual for 

Selecting Safety Improvements on High Risk Rural Roads, 2014) ...................................................... 24 

Figure 5.3. Treatment matrix for installing Edge line or Shoulder rumble strips (FHWA Manual for 

Selecting Safety Improvements on High Risk Rural Roads, 2014) ...................................................... 25 

Figure 5.4. Treatment matrix for installing Center Line Rumble Strips (FHWA Manual for 

Selecting Safety Improvements on High Risk Rural Roads, 2014) ...................................................... 25 

Figure 5.5. Treatment matrix for installing Safety Edge (FHWA Manual for Selecting Safety 

Improvements on High Risk Rural Roads, 2014) ................................................................................. 26 

Figure 5.6. Benefit-Cost Diagram for distinct safety countermeasures used on rural roads (Crash 

Risk Factors for Low-Volume Roads: an ODOT Case Study, 2016. National Center for Rural 

Road Safety) ........................................................................................................................................ 27 

Figure 5.7. Treatment matrix for Flashing Beacons at intersections approaches (FHWA Manual 

for Selecting Safety Improvements on High Risk Rural Roads, 2014) ................................................. 28 

Figure 5.8. Treatment matrix for Chevrons (FHWA Manual for Selecting Safety Improvements on 

High Risk Rural Roads, 2014) ............................................................................................................... 29 

Figure 5.9. Treatment matrix for Raised Pavement Markers (FHWA Manual for Selecting Safety 

Improvements on High Risk Rural Roads, 2014) ................................................................................. 29 

Figure 5.10. Treatment matrix for implementing crosswalks at target locations (FHWA Manual 

for Selecting Safety Improvements on High Risk Rural Roads, 2014) ................................................. 30 

Figure 5.11. Treatment matrix for building sidewalks (FHWA Manual for Selecting Safety 

Improvements on High Risk Rural Roads, 2014) ................................................................................. 31 

Figure 5.12. Treatment matrix for Hybrid Beacons or High Intensity Activated Crosswalk (HAWK), 

(FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014) ....................... 31 

Figure 5.13. Treatment matrix for Shared-Use Paved Shoulders for Horse & Buggy Road Users or 

Bicyclists, (FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 

2014) ................................................................................................................................................... 32 

Figure 5.14. Set of road photos taken from Yakima Nation. Source: Yakama Nation Tribal Traffic 

Safety................................................................................................................................................... 33 

Figure 5.15. Locations for crashes involving pedestrians in Yakima Nation (2010-current). Source: 

Yakama Nation Tribal Traffic Safety .................................................................................................... 34 



 

vi 

 

Figure 5.16. Trail plan for Yakima Nation. Source: Own elaboration based on information 

provided by Yakama Nation Tribal Traffic Safety ................................................................................ 36 

 

 



vii 

LIST OF TABLES 

Table 4-1. Selected variables ...................................................................................................................... 12 

Table 4-2. Model performance ................................................................................................................... 12 

Table 4-3. Results for the Logistic regression ............................................................................................. 15 

Table 4-4. Dashboard with the results for the Random Forest Classifier ................................................... 19 

Table 5-1. Treatment matrix for installing Horizontal Alignment Signs (FHWA Manual for 

Selecting Safety Improvements on High Risk Rural Roads, 2014). ..................................................... 28 

Table 5-2. Mechanism of motor vehicle-related deaths of Yakima County residents by race, 

1999-2016. Source: Yakama Nation Tribal Traffic Safety.................................................................... 34 

Table 5-3. Yakima County resident pedestrian deaths by county of death occurrence. Source: 

Yakama Nation Tribal Traffic Safety .................................................................................................... 35 

Table 5-4. Pedestrian deaths by hour of death that occurred in Yakima County 1999-2016. 

Source: Yakama Nation Tribal Traffic Safety ....................................................................................... 35 

Table 5-5. Summary of safety countermeasures recommendations for Yakima Nation ........................... 36 

 



 

1 

 

EXECUTIVE SUMMARY 

RITI communities often do not have the capability and resources to sufficiently solve roadway safety 

problems. In this case, several challenges are often encountered when addressing transportation safety 

issues in RITI communities, including: (1) crashes are often randomly distributed on local and rural roads 

in RITI areas; (2) there is a critical need for data-driven safety assessment methods for RITI communities; 

(3) RITI communities often lack safety data tools for data management and visualization to support 

decision making. A survey conducted by the National Association of Counties (NACo) in 2009 revealed 

that only 42 percent of counties surveyed maintained a database that tracks the number and types of 

crashes on their rural roads and less than half of the respondents had conducted a road safety audit. 

Existing databases are still incomplete for most of the RITI communities. It is necessary to develop safety 

data platform and assessment methods specifically for RITI communities for traffic safety data 

management and analysis. 

In our Year 1 and Year 2 CSET projects, a baseline data platform, i.e., Safety Net, was developed by 

integrating the safety related data collected from the RITI communities in Washington State (Wang et 

al., 2019). This platform is capable of visualizing the accidents records on the map. The Year 3 project 

aimed to further develop the safety data platform by developing crash data analysis and visualization 

functions.   

In addition, this project developed various roadway safety assessment methods to provide safety 

performance estimation, including historical accident data averages, predictions based on statistical and 

machine learning (ML) models, etc. This project investigated the potential influential factors, such as 

roadway geometric characteristics, environmental conditions, human behaviors, and traffic conditions 

on the injury severity of crashes occurred on rural roads. Four models, including ordered probit (OP), 

multinomial logit (MNL), artificial neural network (ANN) and random forest (RF), were trained, tested, 

and validated using five years of Washington State crash records from 2013 to 2017. It was found that 

the two Machine Learning models (ANN and RF) performed better than the two statistical models (OP 

and MNL), and the RF model had the best performance in predicting crash injury severities. The results 

also showed that variables such as grade percentage, degrees of curvature, shoulder width, driver’s 

gender, roadway width, head on crash, pedestrian/cyclist involved, young driver, truck involved, etc. 

have significant impact on the crash injury severity on low-volume rural roads.  

Beside roadway safety assessment methods, this project investigated the safety countermeasures 

selection and recommendation methods for RITI communities. Safety countermeasures are developed 

and implemented aiming at reducing crash frequency and accidents severity on road systems. 

Concerning the RITI communities, this is even more critical. Specifically, the research team reached out 

to RITI communities and established a formal research partnership with Yakama Nation. By working with 

the traffic engineers and planners Yakama Nation DNR Engineering Department, the research team 

conducted research on safety countermeasures analysis and recommendation for RITI communities.  
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CHAPTER 1. INTRODUCTION 

1.1. Project Background 

Road traffic crashes often cause property damage, injuries, and even fatalities. They also account for 

25% of congestion in road networks (Cambridge Systematics Inc., 2005). According to the Federal 

Highway Administration (FHWA), while only 19% of the country’s population lives in rural areas, about 

54% of the traffic crashes occurred on rural roads (Federal Highway Administration, 2012). This indicates 

a clear disparity regarding transportation safety in rural areas of the country. According to the National 

Highway Traffic Safety Administration (NHTSA), from 2007 to 2016, the fatality rate in rural roads was 

more than two times higher than in urban areas (NHTSA, 2018). This discrepancy in fatalities reveals the 

urgency to improve the roadway safety conditions in the rural areas in order to achieve transportation 

equity. 

To meet the transportation safety needs of RITI communities, Washington State also faced a lot of 

challenges. Twenty-two percent of the state’s major rural locally and state-maintained roads are in poor 

condition. An additional 52 percent of rural roads are in mediocre or fair condition. The fatality rate on 

Washington’s rural non-Interstate roads was 1.76 fatalities per 100 million vehicle miles of travel in 

2013, nearly three and a half times higher than the 0.52 fatality rate on all other roads and highways in 

the state. According to the data from Washington State Strategic Highway Safety Plan 2016, more than 

half of impairment-involved fatalities occurred in rural areas during 2012-2014, and unrestrained 

occupants are also more likely to die in rural road crashes. It is obvious that rural roadway safety has 

become an important social issue influencing the sustainable development of RITI communities in 

Washington State.  

1.2. Problem Statement 

RITI communities often do not have the capability and resources to sufficiently solve roadway safety 

problems. In this case, several challenges are often encountered when addressing transportation safety 

issues in RITI communities, including: (1) crashes are often randomly distributed on local and rural roads 

in RITI areas; (2) there is a critical need for data-driven safety assessment methods for RITI communities; 

(3) RITI communities often lack safety data tools for data management and visualization to support 

decision making. A survey conducted by the National Association of Counties (NACo) in 2009 revealed 

that only 42 percent of counties surveyed maintained a database that tracks the number and types of 

crashes on their rural roads and less than half of the respondents had conducted a road safety audit. 

Existing databases are still incomplete for most of the RITI communities. It is necessary to develop safety 

data platform and assessment methods specifically for RITI communities for traffic safety data 

management and analysis. 
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Figure 1.1 Structure of the roadway safety management system for RITI communities 

Due to the importance of reducing the social and economic costs associated with traffic crashes, most 

transportation agencies apply some type of roadway safety management system, designed to improve 

the roadway safety performance. To build up the roadway safety management system, two critical 

components, i.e., the baseline data and safety assessment framework, are needed (shown in Figure 1.1). 

In the Year 1 CSET project, a baseline data platform was developed by integrating the safety related data 

collected from the RITI communities in Washington State.  The safety assessment framework is the 

cornerstone of the roadway safety management system. Due to different RITI communities having 

different safety data sources, a general safety assessment method may not be adapted to all the RITI 

communities. To provide context-sensitive solutions, the roadway safety cultural factors, such as local 

driving habits and training level, will be considered. All the safety assessment methods form a data-

driven safety assessment framework which can enable effective roadway safety management systems at 

all levels in RITI communities, and aid in roadway design and implementation appropriate 

countermeasures to mitigate rural crash severities and risks. 

1.3. Research Objective 

In our Year 1 and Year 2 CSET projects, a baseline data platform, i.e., Safety Net, was developed by 

integrating the safety related data collected from the RITI communities in Washington State (Wang et 

al., 2019). This platform is capable of visualizing the accidents records on the map. The Year 3 project 

aimed to further develop the safety data platform by developing crash data analysis and visualization 

functions.  In addition, this project developed various roadway safety assessment methods to provide 

safety performance estimation, including historical accident data averages, predictions based on 

statistical and machine learning (ML) models, etc. Beside roadway safety assessment methods, this 

project investigated the safety countermeasures selection and recommendation methods for RITI 

communities. 

Roadway Safety Management System
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CHAPTER 2. LITERATURE REVIEW 

2.1. Roadway Safety Assessment Methods 

Over the years, there have been many studies about crash injury severity modeling and analysis, with 

the objective to better understand the risk factors that influence the crash injury severities and help 

transportation agencies make decisions to improve the roadway safety conditions. Crash injury 

severities are usually classified into several categories by law enforcement. According to the KABCO 

crash injury scale developed by the National Safety Council, the crash injury severities include five 

categories: fatal (K), incapacitating injury (A), non-incapacitating injury (B), possible injury (C), and 

property damage only (PDO). Researchers have developed models with crash injury severities as the 

dependent variable and various contributing factors as the explanatory variables. Such contributing 

factors usually include roadway geometric characteristics (e.g., number of lanes and lane width, 

shoulder width and type, curve rate, grade, road surface type, median type, shoulder type), human 

behavior factors with respect to drivers, occupants, and pedestrians (e.g., driver and occupant 

characteristics such as gender and age, DUI, speeding, seat belt use, distractions), environmental 

conditions (e.g., adverse weather conditions such as fog, snow, ice, heavy rain, and lighting conditions), 

traffic conditions, and vehicle characteristics.   

In the early stage of crash injury severity studies, researchers mostly used statistical models such as 

Logistic regression to investigate the risk factors related to crash injury severities. With the massive and 

complicated crash data being collected nowadays, it is difficult for statistical models to accurately 

capture the impacts of various risk factors to injury severity. Recently, the advancements in computing 

technology in the fields of artificial intelligence (AI), especially machine learning (ML), have allowed for 

more efficient and effective extraction of information from extensive traffic safety datasets. 

Consequently, researchers have been very active in applying ML technologies towards crash injury 

severity prediction. With an abundance of data available, the ML approaches could capture relationships 

among contributing factors and crash injury levels that traditional statistical models are not able to, and 

thus improve the accuracy of the prediction results. 

2.2. Crash Injury Analysis on Rural Roads 

Many researchers have applied the aforementioned statistical and machine learning methods for injury 

severity analysis of crashes occurred on rural roads. Vogt and Bared (1998) built negative binomial 

models to investigate relationships between crash injury and explainable variables including traffic, 

horizontal and vertical alignments, lane and shoulder widths, and number of driveways, etc. Karlaftis 

and Golias (2002) used tree-based regression and found that roadway geometric design and pavement 

conditions are two most important factors for crashes that occurred on rural two-lane and multilane 

roads. Chen et al. (2016) used the ordered logit model for crash injury severities analysis on rural non-

interstate roadway, and the results showed that factors such as seatbelt use, driver age and gender, 

DUI, wet road surface, crash location, collision type, vehicle type, number of vehicles and maximum 

vehicle damage, have significant impacts on driver injury severity. A study by Ye and Lord (2014) 

compared MNL, OP, and mixed logit models on crash injury severity analysis on rural two-way highways. 

It was found that OP model has the least requirement on sample size comparing to the other two 

methods. Lin et al. (2020) developed RF models for the driver crash injury severity prediction, and it was 
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found that road class, speed limit, and the first harmful event are the most important factors on the 

injury severity of teen driver involved crashes occurred on rural roads in West Texas.  

Only a few studies were found in the literature that specifically analyzed traffic crashes on low-volume 

rural roads. Souleyrette et al. (2010) used the OP model to study the influential factors for crashes on 

rural roads with 400 Annual Average Daily Traffic (AADT) or less in Iowa. Several factors were identified 

to increase the severity of crashes on low-volume rural roads, such as paved surfaces, spring/summer 

months, weekends, impaired driving, speeding, younger or older driver involvement, etc. Prato et al. 

(2014) studied crashes that occurred on low-volume facilities in rural area in Denmark between 2007 

and 2011. The authors applied the generalized ordered logit model for crash injury severity analysis. The 

results indicated that factors including alcohol, seatbelt usage, involvement of vulnerable road users 

such as pedestrian and cyclists, speed limits, etc. to be significantly associated with crash injury severity 

on low-volume rural roads.  

2.3. Pedestrian Safety Assessment Methods 

There have been many different studies related to pedestrian safety. This has been a subject of study for 

many decades. M Snyder conducted a study in 1971 to identify the causes and countermeasures of 

pedestrian collisions in Maryland. For this study over 2000 pedestrian collisions were analyzed, mostly 

focusing on pedestrian behavior. It was found that over 50% of crashes were caused by some form of 

pedestrians entering the roadway inappropriately (Snyder and Knoblauch, 1971). In 1983, Hall 

conducted a study to measure rural pedestrian safety in New Mexico. The study described the 

discrepancy between rural pedestrian fatalities and urban fatalities, with the results for each region 

being 49% and 34% respectively (Hall, 1983). These studies highlight the importance of pedestrian safety 

studies and some of the initial methodologies aimed at understanding them. 

More recently, an NCHRP study was conducted for the National Academies of Sciences, Engineering, and 

Medicine that investigated the correlation between site-specific characteristics and pedestrian 

collisions.  They found that site-specific characteristics increased the likelihood of pedestrian collisions 

(National Academy of Sciences, 2008). A similar study was conducted in Bangladesh. This study also 

found that specific characteristics precipitate pedestrian collisions in the city of Dhaka (Bhuiyan, 2019). 

Additionally, several studies were conducted utilizing different modeling techniques to assess pedestrian 

safety. Zajac created an ordered probit model that evaluated roadway features that are prevalent in 

pedestrian collisions (Zajac and Ivan, 2002). This model showed different characteristics that influence 

pedestrian collisions that are more appropriate for a rural setting than the other above studies. Chen 

conducted a similar study in 2019, which used the alternative method of a mixed logit model to predict 

rural pedestrian collisions (Chen and Fan, 2019). Baireddy conducted a study in rural Illinois that 

identified several factors that increase the pedestrian collision likelihood using multiple correspondence 

analysis (Baireddy et al., 2018). These previous studies hold several implications for this study.  Firstly, 

they show that using roadway characteristics as a method to predict pedestrian collisions is a valid and 

well-documented methodology. Secondly, it highlights the research gaps filled by this paper where the 

severity of pedestrian collisions is not considered in any of these previous studies.   

It can be noted that most of the literature relies on traditional statistical modeling approaches to 

address pedestrian safety issues. Nevertheless, with the recent advent of Machine Learning, some 

researchers have started applying these latest approaches to this type of problem. In 2018, Ding 
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developed a study to examine built environmental effects on the frequency of crashes involving 

automobiles and pedestrians by applying Multiple Additive Poisson Regression Trees (MAPRT), a 

Machine Learning approach based on decision trees. Using data from Seattle, Washington, the study 

helped to detect non-linear relationships between the built environment and pedestrian collisions 

frequency, confronting the linearity assumption frequently used in studies that use statistical models 

(Ding et al., 2018). Das applied in 2020 distinct Machine Learning techniques to classify pedestrian 

collision types (intended vs. untended, pedestrian at fault vs. motorist at fault) using pedestrian crashing 

data from two locations in Texas (Das et al., 2020). These reference studies were essential for the 

development of our methodology applied specifically to fatal collisions, an unprecedented approach so 

far.
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CHAPTER 3. SAFETY DATA MANAGEMENT AND VISUALIZATION PLATFORM 

In our Year 1 and Year 2 CSET projects, a baseline data platform, Safety Net, was developed by 

integrating the safety related data collected from the RITI communities in Washington State. This 

platform is capable of visualizing the accidents records on the map. This project further developed the 

safety data platform by developing crash data analysis and visualization functions. The safety platform 

includes various visualization functions to support decision making, such as visualization of crash records 

in roadway network map based on filtering of crash attributes and roadway features, visualization of 

roadway segment safety performance based on the calculated safety performance indices, rural 

roadway speeding map, hotspot identification for pedestrian and vehicles, graphs and tables of crash 

statistics that support crash reporting, etc. Specifically, the following visualization functions had been 

developed for the crash data and crash modeling results. 

• Point-based crash visualization 

 

Figure 3.1. Point-based crash visualization 
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• Segment-based safety index visualization 

 

Figure 3.2. Segment-based safety index visualization 

• Area-based safety index visualization 

 

Figure 3.3. Area-based safety index visualization 
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• Crash heatmap 

 

Figure 3.4. Crash heatmap 

• Safety report 

 

Figure 3.5. Safety report 

The safety assessment methods coupled with powerful visualization could assist the decision makers by 

transferring data analysis results into actionable insights. With the help of the safety platform, RITI 

communities could obtain funding based on the analytical results of the safety tool, make effective use 

of the resources utilizing the safety tool to prioritize the high-risk roadway segments, and apply 



 

10 

 

countermeasures based on the analysis of risk factors of the selected roadway sections. As many state 

and local agencies, especially in RITI communities, are experiencing similar safety issues, the analytical 

methods and tool developed in this project can be modified to support these agencies as well.   
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CHAPTER 4. ROADWAY SAFETY ASSESSMENT METHODS FOR RITI COMMUNITIES 

It is well known that some of the differences of roadway geometric characteristics between roads in 

rural and urban areas, such as lane width, shoulder width and type, number of curves and curve rate, 

grade, etc. contribute to the higher fatality rate in rural areas, especially in the RITI communities. Human 

behavior factors, such as driving under the influence (DUI), speeding, unrestrained driver/occupant, and 

distracted driver, etc. could lead to serious injuries and fatalities. In addition, adverse weather 

conditions, such as fog, snow, ice, and severe rain on rural roads will lead to dangerous driving 

conditions and increase the risk of having crashes. While most rural road traffic safety related studies 

have focused on major facilities, few efforts have been made to investigate the crash injuries on low-

volume roads. These less-travelled roads do not expect to serve high volumes of vehicles, and are often 

built with lower geometric standards. Nonetheless, drivers or pedestrians still have the same right to 

travel on these roads safely. In order to help decision makers better understand the influential factors 

on rural road safety and implement effective safety countermeasures accordingly, this project aims to 

investigate the potential influential factors, such as roadway geometric characteristics, environmental 

conditions, human behaviors, traffic conditions, etc., on the injury severity of crashes that occurred on 

low-volume rural roads. 

4.1. Crash Injury Analysis  

This project investigated the potential influential factors, such as roadway geometric characteristics, 

environmental conditions, human behaviors, and traffic conditions as shown in Table 4-1, on the injury 

severity of crashes occurred on low-volume rural roads. Four models, including ordered probit (OP), 

multinomial logit (MNL), artificial neural network (ANN) and random forest (RF), were trained, tested, 

and validated using five years (2013to 2017) of Washington State crash records on low-volume rural 

roads. It was found that the two Machine Learning models (ANN and RF) performed better than the two 

statistical models (OP and MNL), and the RF model had the best performance in predicting crash injury 

severities. The results also showed that variables such as grade percentage, degrees of curvature, 

shoulder width, driver’s gender, roadway width, head on crash, pedestrian/cyclist involved, young 

driver, and truck involved, have significant impact on the crash injury severities on low-volume rural 

roads. 

All the models applied in this project were developed using Python and libraries such as Scikit-Learn 

(Pedregosa et al., 2011) and TensorFlow (Abadi et al., 2016). The performance of the four models were 

measured using the accuracy scored calculated in Equation 1:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛
          (1) 

Where 𝑇𝑝 is true positive, 𝑇𝑛 is true negative, 𝐹𝑝 is false positive, and 𝐹𝑛 is false negative. 

Table 4-2 shows the accuracy score of the four models. Despite the fact that the OP model can capture 

the ordinal nature of the crash injury severities, the MNL method in this study outperformed the OP 

model in prediction accuracy. This is most likely because the crash injury severity variables for the OP 

model are the same while the MNL method had different variables to predict each crash injury severity 

category. The accuracy scores also indicated that the ML methods had better performance than the 
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statistical method, and the RF model had the overall best performance in predicting crash injury severity 

on low-volume rural roads in this research. 

Table 4-1. Selected variables 

Variable Definition Range/Categories 

Crash Injury Severity Crash injury severities Fatal, Injury, PDO 

Roadway 

Geometrics 

Road Surface 

Material 

Surface material type Asphalt, Bituminous, Gravel, 

Portland Concrete Cem, Soil, Other 

Lane Width Calculate lane width: calculated by 

dividing the total roadway width by 

the total number of lanes 

Continuous, in ft 

Roadway 

Width 

Total roadway width for the roadway 

segment 

Continuous, in ft 

Degree of 

Curvature 

Degree of curvature for the curve: 

calculated from curve radius 

Continuous, in ft 

Left Shoulder 

Width 

The width of the inside (left) shoulder 

of road  in feet in the increasing 

direction of the roadway. 

Continuous, in ft 

Right 

Shoulder 

Width 

The width of the outside (right) 

shoulder road in feet in the increasing 

direction of the roadway. 

Continuous, in ft 

Grade 

Percentage 

Percent grade for this roadway 

segment 

Continuous, in % 

Vehicle 

Information 

Truck If the involved vehicle is truck Yes, No 

Old Car If the involved vehicle was more than 

15 years old at the time of crash 

Yes, No 

Traffic 

Characteristics 

AADT Calculated Annual average daily 

traffic (AADT) 

Integer 

Truck 

percentage 

Truck percentage for the roadway 

segment 

Continuous, in % 

MVMT Million vehicle miles traveled on road 

segment 

Continuous, in veh-mile 

 

Table 4-2. Model performance 

Model Accuracy 

OP 0.47 

MNL 0.67 

ANN 0.72 

RF 0.79 
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To identify the variables that have the most predictive power, variable importance is calculated and 

ranked for each variable in the final RF model. The variable importance is computed as the impurity 

decrease weighted by the probability of reaching that node. In this study, the Scikit-Learn library was 

used to calculate the impurity-based feature importance. As shown in Figure 1.1, the variable 

importance rankings indicate that variables such as grade percentage, degrees of curvature, shoulder 

width, driver’s gender, roadway width, head on crash, pedestrian/cyclist involved, young driver, truck 

involved, all have a significant impact on the crash injury severities on low-volume rural roads.  

 

Figure 4.1. Variable importance ranking for significant factors 

Roadway Geometrics 

According to the analysis, roadway geometric factors such as grade percentage, degrees of curvature, 

left and right shoulder width, roadway width, lane width, and road surface material, were among the 

most significant factors for crash injury severity. Given their functional class and geometric design 

standards, many of the rural roads with low traffic volume are narrow and without shoulders. Some of 

these roads tend to have sharp curves and steep hills. Many such roadways in the rural area have 

rough/no pavement, which could be dangerous to travel, especially under adverse weather conditions. 

With the random nature of crash events and the low traffic volume of these rural facilities, it is difficult 

to identify the crash hotspots compared to the higher volume roads. In this case, it is critical to provide 

geometric design guidelines based on the unique characteristics of the low-volume rural roads, as well 

as using signs and markings to improve the safety conditions. 

Driver Characteristics 

Driver’s characteristics including gender, age (young and older drivers), and behavior (DUI) were also 

found to have significant impact on crash injury severity on low-volume rural roads. Other researchers, 

such as Souleyrette et al. (2010) also recognized that impaired driving, younger or older driver to be 
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increasing the severity of crashes on low-volume rural roads. This is evident as not only the human 

behavior factors are always significant towards traffic safety, but also the relatively challenging 

geometrics conditions of the low-volume rural facilities pose more requirements on the driver’s ability 

to travel safely.  

Crash Type and Vehicle Information 

Crash types, especially head on crashes and pedestrian/cyclist involved crashes were found to be 

important in the crash injury severities prediction models. Head on crashes and pedestrian/cyclist 

involved crashes have a much higher rate of injury and fatality compared to other crash types. In 

addition, if the involved vehicle is a truck and if the vehicle is older than 15 years were recognized as 

important contributing factors as well. While the majority of pedestrian related injuries and fatalities 

occurred in the urban areas because of higher population rate, pedestrians and cyclists are exposed to 

many risks in the rural areas, especially when travelling on the low-volume facilities with poor 

infrastructure and lack of regulations towards pedestrian safety. As trucks require higher levels of 

visibility conditions and road geometrics to ensure driving safety, the sharp curves, steep grades, and 

narrow road width in low-volume rural facilities cause blind spots to truck drivers. The implementation 

of signs or sensors at the risky locations to warn the truck drivers and pedestrians could help prevent 

crashes from happening. Several other crash types, such as rollover, animal strikes and other objects 

and road departure, were also found to have significant impact. 

Environmental Conditions 

The model results indicated that the light conditions have significant impact on crush injury severities. A 

study by Abdel-Aty (2003) also found that dark lighting conditions contribute to higher probability of 

roadway injuries. Plainis et al. found that in the United Kingdom, the crash fatality rate is higher during 

nighttime than daytime (Plainis et al., 2006). In this case, it is important for decision makers to enhance 

the lighting conditions on rural roads, especially during the nighttime. In addition, weather conditions 

such as rain and snow were also found to be significant as well as road surface conditions (dry/wet). Wet 

road surface could be caused by weather conditions such as snow, ice and rain.  

4.2. Pedestrian Safety Analysis  

Four classification techniques were applied to assess how roadway features mainly correlate to 

pedestrian fatal crashes: Logistic Regression, Nearest Neighbor Classification, Decision Tree, and 

Random Forest Classifier. Each of the four modeling approaches was implemented using K-fold cross-

validation, a process that allows choosing the best parameters for the model. Their results were 

evaluated and then compared in terms of accuracy score and confusion matrices for the testing data set. 

It was found that the Decision tree had consistent results and the best performance among all models, 

showing how the distinct predictors relate to each other to predict fatal pedestrian collisions. This 

project focuses on specific roadway factors that precipitate fatal pedestrian collisions. Specifically, we 

aimed to predict the severity of a pedestrian collision based upon the existing roadway characteristics at 

the location of the collision. This allows practitioners to pinpoint the locations where the highest 

severity of pedestrian collision is likely to occur so that they can prioritize locations and treatments for 

pedestrian safety countermeasures.   
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For this study, four different Machine Learning classification techniques were used to assess how 

roadway features and some other factors correlate to pedestrian fatal collisions. An overview of each of 

these modeling techniques is presented below. 

Logistic Regression 

Logistic regression is a classical method for binary classification whose parameters are estimated by 

maximizing the likelihood estimation through the following equation: 

𝑙𝑜𝑔 
𝑃𝑟 (𝑦=1) 

1−𝑃𝑟 (𝑦=1)
=  𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1          (2) 

Where: Pr represents the probability of a sample belonging to class 1, 𝛽0 = intercept and 𝛽𝑖 = 

coefficients. The expression 
𝑃𝑟 (𝑦=1) 

1−𝑃𝑟 (𝑦=1)
 corresponds to the odds, where 𝑙𝑜𝑔 

𝑃𝑟 (𝑦=1) 

1−𝑃𝑟 (𝑦=1)
   represents the 

log odds. The goal is to predict the log-odds, which is converted to probability through the logistic 

function.  

Logistic regressions can also have a penalty term related to the model complexity. It is represented for 

the hyperparameter C that controls the inverse of model complexity (smaller values imply stronger 

regularization). The hyperparameter selection was made using the k-fold cross-validation method, 

where the training data is split into k groups to select the best value of C. The value of k usually varies 

from 5 to 10, and due to the data size used in this study, k = 5 was selected. Cross-validation is also an 

appropriate technique to avoid overfitting issues, a Machine Learning sign of poor performance occurs 

when the model fits perfectly the training data set, including its noise or outliers. 

We built an initial logit regression with all the variables having Fatal as the response variable. Results 

were then analyzed to verify the significance of each of the variables’ coefficients. As a common 

practice, a level of significance of 0.05 was established, so that each variable with a statistical p-value 

less than 0.05 was considered significant. A second logistic regression model was built using only the 

significant variables identified in the initial model. 

The following table presents the coefficients for the final logistic model using k-fold cross-validation, 

where all the variables are significant to a level of 0.05, except for the “rural” variable (p-value = 

0.1272). However, since we are equally interested in understanding whether rural areas may have a 

distinct impact on pedestrian fatal collisions compared to urban areas, we decided to keep this variable 

in the model.Table 4-3. Results for the Logistic regression are the final set of variables used in all the 

other models that will be presented below. 

Table 4-3. Results for the Logistic regression 

Variable Coefficient 

Intercept -0.0026 

SPD_LIMT -0.0124 

LANEWID -0.0273 

RSHLDWID 0.1999 
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Variable Coefficient 

AADT 0.0000 

TRKPCTS 0.0706 

RURAL -0.0313 

LIGHT_DAYLIGHT -0.3674 

LIGHT_DARKLIGHTSON -0.2014 

LIGHT_DARKNOLIGHT 0.0002 

WEATHER_CLEAR -0.2106 

FREEWAY 0.0142 

2-LANEROAD  -0.0580 

MULTILANE_NON-FREWAY -0.1868 

Penalty value: 5.0  

Accuracy on training data set: 0.759 

Accuracy on testing data set: 0.826 

 

The results show noteworthy insights about the relationship between each variable and their impact on 

the occurrence of fatal crashes involving pedestrians. SPD_LIMIT and LANEWID have surprisingly 

negative impacts on the outcome, suggesting that roadways with higher speed limits and lane width 

tend to be related to fewer fatal collisions. This outcome should be interpreted with caution though, 

particularly because this analysis does not include features that may be linked to these variables’ effects. 

For example, demographic predictors are not present in this model.  

On the other hand, RSHLDWID and TRKPCTS all have positive coefficients, which may indicate that roads 

with wider right shoulders and a higher percentage of trucks are more likely to have pedestrian fatal 

collisions. Rural roads seem to be less likely to have fatal crashes compared to urban roads, whereas 

daylight periods have the most negative impact on the response variable. However, dark periods when 

street lights are off or absent are more likely to generate fatal crashes, which intuitively makes sense. As 

expected, days with clear or partly cloudy weather are less likely to have lethal collisions, and freeways 

are more likely to be associated with this type of crash, which may be explained by their general higher 

volume compared to other roads (although AADT has a positive coefficient, its value is practically equal 

to zero). 

 

Regarding model accuracy, we observe that the testing data set has a higher accuracy when compared 

to the training data set (0.826 against 0.759, respectively). Since the model is fitted using the training 

data and then used to predict testing samples, having a higher accuracy on the testing data set does not 
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seem to be conceivable. This may indicate that logistic regression is not a suitable model type for this 

study.  

Nearest Neighbor Classification 

Nearest Neighbor Classification is a method that uses class labels of the K nearest neighbors to 

determine the class label of an unknown record using proximity metrics to calculate distance/similarity 

between records. The number of nearest neighbors (K) is a hyperparameter that must be provided, 

along with the distance metric (Minkowski distances are usually used). Choosing the values of K can be 

difficult, since a too-small K may lead to neighborhoods that are sensitive to noise points, whereas a 

too-large K may make a neighborhood include points from other classes. K-fold cross-validation is an 

effective method to handle this issue, where distinct values of K can be analyzed using the training data 

set, as well as distinct values for parameters such as the exponent factor “p” for the Minkowski distance 

and the weights associated with the distances. A final model with the best parameters is then fitted and 

can be applied to the testing data set. Therefore, a third model using Nearest Neighbor Classification 

with k-fold cross-validation was built using the same set of significant variables applied to the second 

logistic regression.  

The following figure is a dashboard with the results for the Nearest Neighbor Classification. It shows the 

best value of parameters selected after cross-validation using Minkowski as the distance metric: number 

of neighbors, the exponent factor “p” for the Minkowski distance, and the criteria of weights (two 

possible options: uniform and distance). The table also presents the accuracy scores for the training and 

testing data sets, in addition to the confusion matrix (right column) showing the right and wrong 

predictions for the testing data set. 

Best parameters   

 

N. neighbors: 3  

p: 1  

Metric: Minkowski  

Weights: Distance  

Accuracy on training data set: 0.997 

Accuracy on testing data set: 0.857 

Figure 4.2. Dashboard with the results for the Nearest Neighbor Classification 

We observe from Figure 4.2 that the accuracy of the training data set is higher than the testing data set, 

which is reasonable. However, the accuracy for the training data is practically equal to 1, almost a 

“perfect” fit to the training data. As previously mentioned, this is a sign of overfitting, which suggests 

that this model, even after cross-validation, may not represent a good fit for the studied data set. Like 

the logistic regression, the confusion matrix for testing predicted values shows that the model is biased 

predicting 0 values (non-fatal collisions). 

Decision Tree 
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Decision trees are another effective tool to handle classification problems. The goal is to classify data 

(leaf nodes of the tree) from the characteristics of the predictor variables (decision nodes). If Dt is the set 

of training data points reaching a node t, two options exist: if Dt contains data points that belong to the 

same class yt, then t is a leaf node labeled as yt ; if Dt contains records that belong to more than one 

class, we should use an attribute test to split the data into smaller subsets and recursively apply the 

procedure to each subset. However, early terminations are often applied to stop the splitting procedure 

to avoid overfitting issues. 

To define the best split, we follow the Greedy approach which establishes that nodes with “purer” class 

distribution are preferred, i.e. nodes with samples mainly distributed towards one of the classes. We 

applied the Gini Index as a measure of node impurity, computed as follows: 

𝐺𝐼𝑁𝐼 (𝑡) = 1 − ∑ [𝑝(𝑗|𝑡)]2
𝑗          (2) 

Where 𝑝(𝑗|𝑡)  is the relative frequency of the class j at node t. GINI is maximized when the points are 

equally distributed among all classes, showing the least interesting information. The minimum (0) occurs 

when all records belong to one class, indicating the most interesting information for that node.  

To avoid overfitting and to select an appropriate number of parameters such as minimum samples per 

leaf nodes and the maximum depth, we applied k-fold cross-validation as was done for the other models 

to choose the optimal hyper-parameters (always with k=5). A new model was thus fitted using the same 

set of final variables that were applied for the previous two models. 

The results of fitting a decision tree using cross-validation are summarized in Figure 4.3. We can observe 

that two parameters were tested during the cross-validation process in order to get the best modeling 

performance: the maximum depth of the three (i.e. the number of horizontal levels of a top-down tree 

from its root) and the minimum samples in leaf nodes. Additionally, there are the accuracy scores for 

the training and testing data sets, as well as the confusion matrix with predictions for the testing data. 

Best parameters   

 

  

Maximum depth: 5  

Minimum samples in leaf node: 5  

  

Accuracy on training data set: 0.885 

Accuracy on testing data set: 0.874 

Figure 4.3. Dashboard with the results for the Decision Tree 

The results of Figure 4.3 show that the best tree that fits the training data has a maximum depth of 5 

levels, with a minimum of 5 samples for the leaf nodes. These parameters help to avoid overfitting 

issues, which can be seen for the accuracy score of the training data set: 0.885 (a high value not too 

close to 1). The accuracy score for the testing data (0.874) is also high and slightly less than the training’s 
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score, which is a good performance indicator for this model. However, the confusion matrix once again 

shows that the model is biased to predicting 0 values (non-fatal collisions). 

Random Forest Classifier 

Random Forest classifiers are part of the so-called Ensemble Methods, ML classification techniques 

aiming at building a set of base classifiers from the training data set and predicting the class label of test 

records by combining the predictions made by all base classifiers (through majority vote). Ensemble 

methods also aim to reduce the variance of complex models by aggregating responses of multiple base 

classifiers. 

Ensemble methods generally need independent base classifiers, and Random Forest techniques are well 

aligned with this. They fit a full decision tree by randomizing which predictors would be available for a 

given node, which alleviates the split on similar predictors for bagged trees. 

We developed a final model by applying a Random Forest Classifier for the same final set of significant 

variables used in the previous models. Likewise, we used k-fold cross-validations to select parameters 

needed for this method, such as maximum depth for the trees and the number of trees in the forest 

(“number of estimators”). 

All the models in this study were evaluated and compared in terms of the accuracy score for the training 

and testing data sets. Accuracy scores vary from 0 to 1, and values close to one denote effective 

predictions. However, models with accuracy scores approximately equal to 1 may indicate overfitting 

issues and are not suitable. Additionally, we applied confusion matrices to the testing data of each of 

the models to evaluate their level of predictions. A confusion matrix is a representation of the 

classification rate for a classifier method and has 4 quadrants indicating the number of right and wrong 

predictions for the class.  

We compared each model to verify which one performed better when predicting the occurrence of fatal 

collisions involving pedestrians. The following table summarizes the best parameters related to the 

Random Forest Classifier after cross-validation (maximum depth and number of estimators), as well as 

the accuracy score for the training and testing data sets and the confusion matrix for the predicted 

tested values. 

  Table 4-4. Dashboard with the results for the Random Forest Classifier 

Best parameters   

 

  

Maximum depth: 5  

Number of estimators: 100  

  

Accuracy on training data set: 0.883 

Accuracy on testing data set: 0.867 
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The two classification techniques that best fit the data and have consistent and high accuracy scores for 

the training and testing data sets are the Decision Tree and the Random Forest Classifier. Since both 

models are based on building classifier trees and have similar parameters, we would expect them to 

have related performances. Nevertheless, the Decision Tree has a slightly higher accuracy score on the 

testing data (0.874) when compared to the same metric for the Random Forest Classifier (0.867), thus 

this is the model with the best performance among all. Furthermore, we noted from the results that the 

confusion matrices for all the models were alike: even though they have substantially more correct than 

incorrect predictions, they are all biased to predict 0 values (non-fatal collisions). Since this is happening 

with all the models, we believe that is derived from the dataset itself and its errors rather than 

specificities related to any of the modeling approaches used in this study. 

With the best performance among all models, the Decision Tree represents how the combination of 

predictor variables leads to fatal or non-fatal accidents involving pedestrians. However, not all the 

predictor variables are used as decision nodes for the final tree, and this is due to the selected 

parameters after the cross-validation process, particularly for the maximum depth. Indeed, since we 

have 12 final predictor variables, a tree having almost all of them used as decision nodes would require 

a higher depth, but large-sized trees are generally not easy to interpret and may likely lead to 

overfitting. In this case, the Machine Learning algorithm searches for the set of variables that mostly 

impact the outcome for the selected tree depth. 
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CHAPTER 5. ROADWAY SAFETY COUNTERMEASURES ANALYSIS AND RECOMMENDATION 

5.1. Introduction 

In addition to developing the safety assessment methods, this project also investigated the safety 

countermeasures for RITI communities. Safety countermeasures are developed and implemented to 

reduce crash frequency and accident severity on road systems. Concerning the rural, isolated, tribal and 

indigenous (RITI) communities, this is even more critical. Studies indicated that crashes involving 

pedestrians in RITI communities often lead to severe injuries or fatalities (Marshall and Ferenchak, 2017; 

Baireddy et al., 2018; Chen and Fan, 2019). The lack of accommodation, such as sidewalks, marked 

crosswalks, lighting conditions, and traffic control, makes pedestrians and bicyclists at a high 

disadvantage in these RITI communities. Over seventy percent of pedestrian fatalities on tribal lands 

occurred in the rural areas (Awwad-Rafferty et al., 2019), where approximately seventy-five percent of 

them happened at night. Additionally, aggravating cultural and human behaviors such as speeding, 

driving under the influence, and pedestrian behavior make the problem even worse. 

Specifically, the research team has reached out to RITI communities and established a formal research 

partnership with the Yakama Nation. By working with the traffic engineers and planners in the Yakama 

Nation DNR Engineering Department, the research team has conducted research on safety 

countermeasures analysis and recommendation for RITI communities.  

5.2. Crash Modification Factors (CMFs) 

Use of Crash Modification Factors (CMFs) is a common way of assessing the efficacy of safety 

countermeasures. According to the CMF Clearinghouse (Crash Modification Factors Clearinghouse, 

accessed 03/23/2021), a Crash Modification Factor is “a multiplicative factor that indicates the 

proportion of crashes that would be expected after implementing a countermeasure” (installing a traffic 

signal or a median barrier, increasing the width of edgelines, etc). CMFs with values less than 1.0 

indicate expected decreases in crashes, whereas values greater than 1.0 indicate a likely increase in 

crashes. Harkey et al. (2008), as cited by CMF Clearinghouse, gives a practical example for using the 

CMF: a specific stop-controlled intersection is expected to have 5.2 total crashes per year, so a traffic 

signal is planned to be installed. The CMF for installing the traffic signal is estimated at 0.56 for the total 

of crashes, thus the expected total crashes after installing the signal would be 5.2 x 0.56 = 2.9 (total 

crashes per year). 

The Crash Reduction Factor (CRF) is a distinct way of evaluating the effect of countermeasures related to 

the expected decrease in crashes and can be calculated as: 

𝐶𝑅𝐹 = 100 (1 − 𝐶𝑀𝐹)          (3) 

Although some transportation agencies in the United States have been utilizing CRFs, the use of CMF has 

been encouraged in recent years for the safety field. This is due to interpretative confusions that may be 

raised since CRFs can present negative reduction values for CMFs larger than 1, which actually indicates 

expected crashes increasing.   

Figure 5.1 shows how distinct countermeasures can be visualized and compared on the CMF 

Clearinghouse page for distinct categories. 
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Figure 5.1. Safety countermeasures examples from CMF Clearinghouse. Source: CMF Clearinghouse 
(03/01/2021) 

5.3. Safety Improvements on Rural Roads 

5.3.1. Avoiding Vehicle-Vehicle Crashes  

As previously mentioned, safety countermeasures can be classified according to distinct categories. Each 

one has its specificities and parameters, such as CMF, CRF, and Benefit-Cost ratios. Examples for some 

categories are listed below (National Center for Rural Road Safety, 2016): 

● Road alignment 

o Horizontal alignment signs 

o Flashing beacons 

o Chevrons 

o Post mounted delineators 

o Raised pavement markers 

● Cross Section 

o Widen lanes 

o Widen shoulders 

o Adding shoulders 

o Stabilizing shoulders 

o High friction surface treatments 
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● Roadside Features 

o Flatten side slopes 

o Install safety edge 

o Object markers 

o Relocate objects 

o Remove objects 

● Miscellaneous 

o Shoulder rumble strips/stripes 

o Centerline rumble stripes 

o Edge-line markings 

o Centerline markings 

o Widen edge-line markings 

o Widen centerline markings 

Additionally, rural collectors and rural local roads are within the scope of High-Risk Rural Roads by the 

Manual for Selecting Safety Improvements on High Risk Rural Roads (Atkinson et. al., 2014). This manual 

presents information about cost and benefits as well as the CMF of safety treatments on high-risk rural 

roads. The manual is organized by roadway feature type, such as horizontal curves, intersections, 

roadside, signing, etc., providing a treatment matrix for each treatment presented. This matrix presents 

an overview of benefits and costs related to each safety countermeasure and can be used to compare 

them. An example of a treatment matrix for pavement and shoulder resurfacing is shown in Figure 5.2. 
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Figure 5.2. Treatment matrix for pavement and shoulder resurfacing (FHWA Manual for Selecting Safety 
Improvements on High Risk Rural Roads, 2014) 

Some examples of countermeasures with high benefit costs ratios related to pavement and shoulder 

resurfacing are presented as follows. 

Edge line (or Shoulder rumble strips) and Center Line Rumble Strips 

Rumble strips provide both an audible warning and a physical vibration that alerts drivers they are 

leaving the driving lane. The treatment matrices for these types of safety countermeasure are presented 

as follows1.  

                                                           
1 Definition from the FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014: 

Lower Volume ≤1000 vpd 
Higher Volume = Between 1,001 and 8000 vpd 
Optimal Conditions = 12-foot lanes, 6-foot paved shoulders 
Narrower Conditions = 10-foot lanes and no shoulders 
 
NCHRP 500 Performance. Proven: The safety effect for other similar applications has shown a proven benefit. 
Tried: The treatment has indications that it can be expected to reduce crashes, but has some conflicting reports as 
to its associated safety effects or has been deployed and observed to be effective. Experimental: New treatments 
that still need to be tested and for which the safety effect is unknown. Unknown: Not enough is known about an 
associated safety performance.  
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Figure 5.3. Treatment matrix for installing Edge line or Shoulder rumble strips (FHWA Manual for 
Selecting Safety Improvements on High Risk Rural Roads, 2014) 

  

Figure 5.4. Treatment matrix for installing Center Line Rumble Strips (FHWA Manual for Selecting Safety 
Improvements on High Risk Rural Roads, 2014) 

Use:  

● Edge line: On roads with a history of departure crashes. Center Line Rumble Strips: Any roads, 

especially those with a history of head-on crashes.  

● “For all rumble strips, pavement conditions should be sufficient to accept milled rumble strips”. 

(Atkinson et. al., 2014) 

● “Rumble strips should be provided on all new rural freeways and on all new rural two-lane 

highways with travel speeds of 50 mph or greater”. (Atkinson et. al., 2014) 

Safety Edge 

This treatment aims at minimizing drop-off related crashes by sloping the pavement edge at an angle, so 

the driver can safely reenter the road after driving onto the shoulder.  
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Figure 5.5. Treatment matrix for installing Safety Edge (FHWA Manual for Selecting Safety Improvements 
on High Risk Rural Roads, 2014) 

Use:  

● “Each State should implement policies and procedures to incorporate the Safety Edge where 

pavement and non-pavement surfaces interface on all paving and resurfacing projects with 

surface differentials of 2.5 inches or more”. (Atkinson et. al., 2014) 

● The Safety Edge is properly used at spots where pavement edge drop-offs occur through 

everyday use, which is the case of rural roads with unpaved shoulders. 

The National Center for Rural Road Safety, founded by the Federal Highway Administration in 2014, is 

also focused on improving safety on rural roads by “supporting local, state, and tribal road owners and 

their stakeholders” (National Center for Rural Road Safety web page, accessed 03/23/2021). They 

publish several analyses regarding rural road safety on their web portal, where the presentation “Crash 

Risk Factors for Low-Volume Roads: an ODOT Case Study” (2016) shows an evaluation of low-cost safety 

countermeasures that can be implemented on low-volume road roads in terms of benefit-cost (B/C) 

ratios. The following figure summarizes the overall B/C ranges for several safety countermeasures on 

rural roads: 
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Figure 5.6. Benefit-Cost Diagram for distinct safety countermeasures used on rural roads (Crash Risk 
Factors for Low-Volume Roads: an ODOT Case Study, 2016. National Center for Rural Road Safety) 

The analysis of the diagram shows that countermeasures related to pavement and shoulder resurfaces 

as well as to cross-sections and roadside features have higher B/C rations when compared to those from 

road alignment. Nonetheless, according to the study, alignment countermeasures are highly used for 

low-volume rural roads particularly for their low-cost implementation, as well as for their effectiveness 

concerning crash reduction. For instance, the study results show that chevrons and arrow signs reduced 

injury and fatal crashes by 18% and night-time crashes by 27.5%2, while raised pavement marks reduced 

total crashes from 224 to 33, fatalities from 7 to 0, and injuries from 152 to 103. Some of these safety 

countermeasures often used on low-volume rural roads are described below based on the FHWA 

Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014. 

Horizontal Alignment Signs 

Horizontal alignment signs can be used to alert drivers about changes related to the road geometry, 

providing them with some information about the type of curve they are approaching. The table below 

shows CMFs equal to 0.7, which represents a significant Crash Reduction Factor (CRF) of 30%. 

                                                           
2 Empirical Bayes before and after (average of 5.6 years before data and 5.4 years of after data) for 89 rural two-

lane curves in Connecticut and 139 rural two-lane curves in Washington State. 
3 Simple before and after (4 years data before and 4 years data after) for 10 rural roadways (tangents and curves) 

in Mobile County, AL, with documented high run-off-road crashes. 
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Table 5-1. Treatment matrix for installing Horizontal Alignment Signs (FHWA Manual for Selecting Safety 
Improvements on High Risk Rural Roads, 2014). 

  

 

Use:  

● Horizontal alignment signs can be applied to any curve or turn with a history of roadway 

departure crashes and to those with similar geometry or traffic volume that have not 

experienced crashes yet.  

● “Warning signs are required on curves or turns where the advisory speed is 10 mph less than the 

posted speed”. [2009 Manual on Uniform Traffic Control Devices (MUTCD) cited by Atkinson et. 

al., 2014]. 

● “Studies have shown that reductions in crashes due to the installation of curve warning signs are 

more prominent at locations with expressive traffic volumes, sharper curves, or hazardous 

roadsides”. (Atkinson et. al., 2014) 

Flashing Beacons 

Flashing beacons are generally introduced to show the presence of an intersection, improving safety 

particularly at spots with night visibility issues, such as the case of Yakima Nation.  

  

Figure 5.7. Treatment matrix for Flashing Beacons at intersections approaches (FHWA Manual for 
Selecting Safety Improvements on High Risk Rural Roads, 2014) 

Use: 

● Installed at intersections with no signaling characterized by “patterns of right-angle crashes 

related to lack of driver awareness of the intersection on an uncontrolled approach and lack of 

driver awareness of the Stop sign on a stop-controlled approach”. (Atkinson et. al., 2014) 
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● They can be implemented either atop Stop signs or Advance Intersection Warning Signs. 

Chevrons 

Chevrons (also known as curve delineation signs) show the road’s alignment when drivers are within the 

actual horizontal alignment of a curve. The signs show the shape and degree of curvature, acting as a 

guide for drivers through the entire curves/turns. 

  

Figure 5.8. Treatment matrix for Chevrons (FHWA Manual for Selecting Safety Improvements on High 
Risk Rural Roads, 2014) 

Use: 

● Installed at any curve/turn with a history of roadway departure crashes and at those with similar 

geometry or traffic volume that have not experienced crashes yet.  

● “Alignment delineation (or a one direction large arrow) is required on curves or turns where the 

advisory speed is 15 mph less than the posted speed limit”. [2009 Manual on Uniform Traffic 

Control Devices (MUTCD) cited by Atkinson et. al., 2014]. 

Raised Pavement Markers 

Raised pavement markers increase the visual alignment provided by pavement markers, making them 

more salient for drivers, especially during adverse weather conditions.  

  

Figure 5.9. Treatment matrix for Raised Pavement Markers (FHWA Manual for Selecting Safety 
Improvements on High Risk Rural Roads, 2014) 

Use: 

● On roads with adequate pavement quality to hold the devices in place.  

● The type of the marker depends on regional climate (e.g., in areas subject to snowfall, snow 

plowable devices should be used) 
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5.3.2. Improving Pedestrian and Bicyclist’s Safety 

The safety countermeasures already mentioned can also contribute to the reduction of crashes involving 

pedestrians and bicyclists. For example, edge lines and chevrons can alert drivers when they are leaving 

from the driving lane, protecting pedestrians and cyclists who circulate along the shoulder in areas 

without sidewalks or exclusive bike lanes. Likewise, flashing beacons can improve pedestrian and 

bicyclist crossing at intersections, particularly during night periods. However, there are specific 

treatments whose main goal is to improve safety for these non-motorized users. Some of the 

pedestrian/bicyclist safety-oriented countermeasures recommended for Yakima Nation are presented 

below (FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014). 

Crosswalks 

Providing crosswalks at target locations is an effective treatment to define spots for pedestrian crossings 

and to draw drivers’ attention. Indeed, their NCHRP 500 Performance Rating is classified as Proven and 

Tried4. 

  

Figure 5.10. Treatment matrix for implementing crosswalks at target locations (FHWA Manual for 
Selecting Safety Improvements on High Risk Rural Roads, 2014) 

Use:  

Crosswalks can be implemented at: 

● Locations with stop signs or traffic signals to indicate crossing sites to pedestrians and to 

prevent vehicular traffic from blocking pedestrian paths. 

● Non-signalized street crossing sites in specific school zones. 

● Non-signalized locations where engineering judgment shows that the number of motor vehicle 

lanes, pedestrian exposure, average daily traffic (ADT), posted speed limit, and site’s geometry 

would make the use of crosswalks desirable for safety. 

However, marked crosswalks alone (i.e., without traffic/pedestrian signals or other expressive crossing 

improvements) are not sufficient and should be not used: 

● “Where the speed limit exceeds 40 mph (64.4 km/h) 

● On roads with four or more lanes without a raised median or crossing island that has (or will 

soon have) an ADT of 12,000 or greater. 

                                                           
4 No CMF information provided 
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● On roads with four or more lanes with a raised median or crossing island that has (or soon will 

have) an ADT of 15,000 or greater”. (Atkinson et. al., 2014) 

Sidewalks 

Sidewalks provide a refuge for pedestrians and enhance road operations. Their implementation can 

considerably improve safety for both drivers and pedestrians, especially at locations with heavy 

pedestrian volumes. 

  

Figure 5.11. Treatment matrix for building sidewalks (FHWA Manual for Selecting Safety Improvements 
on High Risk Rural Roads, 2014) 

Use:  

Building sidewalks should be considered for heavy pedestrian volumes existing along a corridor or 

specific location. 

Pedestrian Hybrid Beacons or High Intensity Activated Crosswalk (HAWK) 

The High Intensity Activated Crosswalk (HAWK) is “a pedestrian-activated beacon located on the 

roadside and on mast arms over major approaches to an intersection” (Atkinson et. al., 2014). It consists 

of two red lenses over a single yellow lens, displaying a red indication to drivers when activated. The 

device is illuminated only by pedestrian activation, changing to yellow and then to red to make drivers 

stop. It also shows a walking person symbol to pedestrians at the beginning and an upraised hand 

symbol with a countdown display at the conclusion of the walk phase. The estimated CMF is 0.712, 

indicating a significant safety improvement for pedestrians and drivers. 

  

Figure 5.12. Treatment matrix for Hybrid Beacons or High Intensity Activated Crosswalk (HAWK), (FHWA 
Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014) 

Use:  

This countermeasure may be used at locations with a significant number of pedestrian crashes where 

additional visibility is needed. In Yakima Nation, for example, installing HAWKs could be appropriate at 

locations with important historical numbers of crashes involving pedestrians and bicyclists, such as the 

W 1st Ave and S Elm St/Buena Way in Toppenish and the W 1st St and Donald Wapato Rd in Wapato. 
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Shared-Use Paved Shoulders for Horse & Buggy Road Users or Bicyclists 

Shared-use paved shoulders provide a paved shoulder next to the roadway with sufficient width to allow 

movements for other modes of transportation such as horses, buggies, and bicycles. The 

implementation of this treatment helps separate slower moving traffic from the main traffic lane, 

reducing crashes’ incidences5. 

  

Figure 5.13. Treatment matrix for Shared-Use Paved Shoulders for Horse & Buggy Road Users or 
Bicyclists, (FHWA Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014) 

Use: 

This treatment may be used at locations with frequent slower moving traffic, such as bicycle routes and 

sites with horse and buggy users. 

5.4. Summary of Safety Countermeasures for Yakima Nation 

As a RITI community, Yakima Nation faces several road safety problems related to the ongoing road 

conditions. Generally, there is a lack of pedestrian facilities, and most roads do not have a shoulder, but 

an embankment or a drainage ditch instead.  This forces pedestrians to walk essentially on the fog line 

or in the live traffic lane along most of these roads. Additionally, most of the population do not have 

access to private vehicles, relying on either public transportation (which has limited routes and 

schedule) or walking. Several intersections have only stop signs with poor visibility, which can be more 

hazardous during winter months when fog regularly limits drivers’ visibility. 

Therefore, the countermeasures previously described can be effective treatments for improving safety 

in the Yakama Nation road network. However, the choice between them will depend on the 

characteristics of each road, which will define the most appropriate treatments to be implemented.  

Figure 5.14 shows some road profile examples taken from distinct roads of Yakima Nation. 

 

 

 

 

 

 

                                                           
5 No CMF information provided 
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a. no shoulder 

 

 
b. no signs/markings 

 

 
c. lack of signs 

 

 
d. faded pavement markings 

Figure 5.14. Set of road photos taken from Yakima Nation. Source: Yakama Nation Tribal Traffic Safety 

Most of the profiles are formed by low-volume roads, with exceptions for some routes within more 

urban centers like Toppenish. From the above photos, we also note a lack of pedestrian and bicycle 

facilities, which may be related to the significant number of crashes on certain roads. The following 

image shows the spots for crashes involving pedestrians from 2010 to current times, where the majority 

are located in the area of Toppenish along W 1st Ave and S Elm St/Buena Way. 
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Figure 5.15. Locations for crashes involving pedestrians in Yakima Nation (2010-current). Source: 
Yakama Nation Tribal Traffic Safety 

The following table shows the mechanism of motor vehicle-related deaths of Yakima County residents 

by race between 1999 and 2016. We observe a higher proportion of AI/AN (American Indian/Alaska 

Native) motor vehicle-related deaths for pedestrians when compared to other races (roughly 23% for 

AI/AN against 11% for Non-Hispanic Whites - NHW - and 10% for other races). This illustrates the 

alarming pedestrian crashes rates among the AI/AN community. 

Table 5-2. Mechanism of motor vehicle-related deaths of Yakima County residents by race, 1999-2016. 
Source: Yakama Nation Tribal Traffic Safety. 

  
AI/AN Percentage NHW Percentage 

Other 

races 
Percentage Total 

Occupant 90 62.1 169 66.5 217 74.6 476 

Motorcyclist 0 0.0 27 10.6 9 3.1 36 

Pedal cyclist 1 0.7 3 1.2 4 1.4 8 

Pedestrian 33 22.8 29 11.4 29 10.0 91 

Unspecified 21 14.5 26 10.2 32 11.0 79 

Total 145 100.0 254 100.0 291 100.0 690 
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The table below shows the Yakima County resident pedestrian deaths by county of death occurrence. 83 

out of the total of 91 Yakima County residents who were killed by motor vehicles as pedestrians were in 

Yakima County. 

Table 5-3. Yakima County resident pedestrian deaths by county of death occurrence. Source: Yakama 
Nation Tribal Traffic Safety 

 County AI/AN NHW Other Total 

Non-Washington State or Unknown 2 1 0 3 

King County  1 0 0 1 

Klickitat County  3 0 0 3 

Walla Walla County  0 0 1 1 

Yakima County  27 28 28 83 

Total 33 29 29 91 

 

Additionally, 50% of the AI/AN pedestrian deaths occurred at night (9 PM – 5 AM), against 24% for NHW 

and 21% for other races, as seen in the following table. In fact, different from the AI/AN community, the 

highest percentage of non-AI/AN pedestrian deaths occurred from 4 PM to 8 PM. These numbers 

highlight the predominance of accidents involving pedestrians in RITI communities during night periods. 

Table 5-4. Pedestrian deaths by hour of death that occurred in Yakima County 1999-2016. Source: 
Yakama Nation Tribal Traffic Safety 

  

  

AI/AN NHW Other/Unknown  

Hour of injury Count Percent Count Percent Count Percent Total 

Day time (6AM-3PM) 1 3.57 9 31.03 3 10.71 13 

Night time (9PM-5AM) 14 50.00 7 24.14 6 21.43 27 

Rush hour (4-8PM) 9 32.14 10 34.48 10 35.71 29 

Missing 4 14.29 3 10.34 9 32.14 16 

Total 28 100.00 29 100.00 28 100.00 85 

 

Countermeasures for both low-volume and more urban roads can effectively be implemented to 

improve road safety within the area. Some locations may be prioritized, such as spots with historical 

numbers of crashes as well as those with actual or expected important demands of pedestrians or 

cyclists. Indeed, Yakima Nation is planning to implement a trail for pedestrians and cyclists connecting 
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its major city (Toppenish) with other distant locations, so that installing safety countermeasures on 

roads that are close to this future trail will be an efficient effort to protect users and drivers. Figure 5.16 

depicts the location of this trail plan with some images of nearby roads6. 

 

Figure 5.16. Trail plan for Yakima Nation. Source: Own elaboration based on information provided by 
Yakama Nation Tribal Traffic Safety 

The table below summarizes our safety countermeasures recommendations for Yakima Nation 

according to their roads’ profile. 

Table 5-5. Summary of safety countermeasures recommendations for Yakima Nation 

Safety countermeasure Where to implement 

Crosswalks Target locations with a high volume of pedestrian circulation 

(schools, hospitals, public spaces) and spots with historical 

pedestrian crashes. 

Sidewalks Locations with urban characteristics and those with significant 

pedestrian circulation but without pedestrian facilities. 

High Intensity Activated 

Crosswalks (HAWK) 

Target locations with a significant number of pedestrian crashes 

where additional visibility is needed. 

                                                           
6 Two major highways cross Yakima Nation territories: Interstate 82 (I-82) and State Route 22 (SR 22). Although 

some of the described countermeasures for high volume roads can be used in specific cases, these roads are not 
addressed in the Manual for Selecting Safety Improvements on High Risk Rural Roads, 2014 
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Shared-Use Paved Shoulders Locations with frequent slower moving traffic 

Horizontal Alignment Signs Hazardous curves or turns. 

Flashing Beacons Intersections with no signaling, either atop Stop signs or Advance 

Intersection Warning Signs, especially on spots with night visibility 

issues. 

Chevrons Any curve/turn with a history of roadway departure crashes or with 

similar geometry or traffic volume yet to experience crashes. 

Raised Pavement Markers Any route with sufficient pavement quality to hold the devices in 

place. 

Edge Lines & Center Line 

Rumble Strips 

Roads with a history of road departure and head-on crashes. 

Safety Edge Locations where pavement edge drop-offs occur through everyday 

use, particularly on rural roads with unpaved shoulders. Policies 

and procedures subject to each State. 
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