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Abstract

A new bottom-up approach to the flavour problem based on modular invariance
has been recently proposed and has gained considerable attention in the liter-
ature. In the present thesis we develop basic aspects of the requisite modular
symmetry formalism and explore its application to the lepton flavour problem.
After introducing the relevant notions (the modular group, the modulus field
and modular forms), we concentrate on the theoretical tools required for model-
building such as explicit construction of the modular forms, the interplay of
modular and CP transformations and of the related symmetries, classification
of residual symmetries and their possible relation to the observed hierarchical
flavour patterns. Armed with these tools, we construct and discuss three exam-
ples of viable models of lepton flavour: a simple predictive model depending on
a small number of parameters, a model with an unbroken residual symmetry
which leads to trimaximal neutrino mixing, and a model with a slightly bro-
ken residual symmetry which explains the observed pattern of charged-lepton
masses without fine-tuning.
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Introduction
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1. Flavour puzzle

1.1. Symmetry approach to flavour

Understanding the origins of flavour in both the quark and lepton sectors, i.e.,
the origins of the patterns of quark masses and mixing, of the charged-lepton
and neutrino masses, of neutrino mixing and of the CP violation in the two
sectors is one of the most challenging unresolved fundamental problems in
particle physics [1].

Within the reference three-neutrino mixing scheme, the lepton flavour prob-
lem consists of three basic elements or sub-problems, namely, understanding:

1. the origin of the hierarchical pattern of charged-lepton masses: ;4 �
;` � ;g, ;4/;` ' 1/200, ;`/;g ' 1/17;

2. why neutrino masses ;a 8 are much smaller than the masses of charged
leptons and quarks, ;a 8 ≪ ;�,?, ? = C, 2, B, 3, A, 1 and � = 4, `, g, with
;a 8 . 0.5 eV, ;� ≥ 0.511 MeV, ;? & 2 MeV;

3. the origins of the patterns of neutrino mixing of 2 large and 1 small
angles, and of the two independent neutrino mass squared differences,
Δ;2

21 � |Δ;2
31 | with Δ;2

21/|Δ;2
31 | ' 1/30, where Δ;2

7 8
≡ ;2

7
− ;2

8
.

Each of these three sub-problems is by itself a formidable problem. As a
consequence, individual solutions to each of them have been proposed. The
hierarchical pattern of charged-lepton masses can most naturally be understood
within the Froggatt-Nielsen mechanism based on the U(1)FN flavour symme-
try [2] and its extensions. The enormous disparity between the neutrino masses
and the masses of the charged leptons and quarks can be understood within
the seesaw or radiative models of neutrino mass generation or else employing
the Weinberg effective operator idea [3] (for a concise review see, e.g., [4]).
All these approaches lead naturally to massive Majorana neutrinos. Arguably
the most elegant and natural explanation of the observed pattern of neutrino
(or lepton) mixing of two large and one small mixing angles is obtained within
the non-Abelian discrete symmetry approach to the problem (see, e.g., [5–9]).
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1. Flavour puzzle

In the case of the quark sector, the flavour problem similarly has two basic
sub-problems, namely, understanding:

1. the origins of the mass hierarchies of the charge 2/3 and of the charge
(−1/3) quarks;

2. the origins of the relatively small values of the three quark mixing angles.

The most natural qualitative solution of these two problems is arguably provided
by the Froggatt-Nielsen approach [2], although the approach based on non-
Abelian discrete symmetries has been applied to the quark flavour problem
as well. Solutions to the two flavour problems within the theories with extra
dimensions have also been proposed.1
The specific solutions to the individual lepton flavour sub-problems listed

above become problematic when applied to the sub-problems they were not
intended to solve. The seesaw and the radiative neutrino mass models do not
lead to understanding of the origin of the neutrino mixing pattern without
additional input, consisting typically of imposing specific additional symmetries
(of GUT or flavour type) on the relevant constructions. Within the Froggatt-
Nielsen approach one most naturally obtains small values of the three neutrino
mixing angles and while the charged-lepton and quark mass hierarchies can
be qualitatively understood within this approach, the specific predictions suffer
from relatively large uncertainties. The symmetry breaking in the lepton and
quark flavour models based on non-Abelian discrete symmetries is impressively
cumbersome: it requires the introduction of a plethora of “flavon” scalar fields
having elaborate potentials, which in turn require the introduction of large
shaping symmetries to ensure the requisite breaking of the symmetry leading to
correct mass and mixing patterns.
There have been also attempts to make progress, e.g., on the lepton flavour

problem by combining the proposed “solutions” of the three related sub-problems.
In these combined approaches it is difficult, if not impossible, to avoid the draw-
backs of each of the sub-problem “solutions”. In some cases this can be achieved
at the cost of severe fine-tuning. Thus, a universal, elegant, natural and viable
theory of flavour that is free from undesired drawback features is still lacking.
Constructing such a theory would be a major breakthrough in particle physics.

1A rather comprehensive discussion of the past proposed approaches to the lepton and quark
flavour problems can be found in the review article [1].
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1. Flavour puzzle

1.2. Modular symmetry

The unsatisfactory status of the flavour problem and the remarkable progress
made in the studies of neutrino oscillations (see, e.g., [10]), which began 22
years ago with the discovery of oscillations of the atmospheric a` and ā` by the
Super-Kamiokande experiment [11] and lead, in particular, to the determina-
tion of the pattern of neutrino mixing, stimulated renewed attempts to seek
alternative viable approaches to the flavour problem. A step in this direction was
made in [12] where the idea of using modular invariance as a flavour symmetry
was put forward. This new original approach opened up a promising direction
in the studies of the flavour problem and correspondingly in flavour model
building.

The main feature of the approach proposed in [12] is that the elements of the
Yukawa coupling and fermion mass matrices in the Lagrangian of the theory
are modular forms of a certain level # which are functions of a single complex
scalar field g — the modulus — and have specific transformation properties
under the action of the modular group. In addition, both the couplings and
the matter fields are assumed to furnish representations of an inhomogeneous
(homogeneous) finite modular group Γ(′)# .

For # ≤ 5, the finite modular groups Γ# are isomorphic to the permutation
groups (3, �4, (4 and �5 (see, e.g., [13]), while the groups Γ′# are isomorphic
to the double covers of the indicated permutation groups, (′3 ≡ (3, �′4 ≡ )′, (′4
and �′5. These discrete groups are widely used in flavour model building.

The theory is assumed to possess the modular symmetry described by the finite
modular group Γ(′)# , which plays the role of a flavour symmetry. In the simplest
class of such models, the VEV (vacuum expectation value) of the modulus g is
the only source of flavour symmetry breaking, such that no flavons are needed.
Another appealing feature of the proposed framework is that the VEV of g can
also be the only source of breaking of the CP symmetry [P4].

When the flavour symmetry is broken, the elements of the Yukawa coupling
and fermion mass matrices get fixed, and a certain flavour structure arises.
As a consequence of the modular symmetry, in the lepton sector, for example,
the charged-lepton and neutrino masses, neutrino mixing and the leptonic
CPV (CP violating) phases are simultaneously determined in terms of a limited
number of coupling constant parameters. This together with the fact that they
are also functions of a single complex VEV — that of the modulus g — leads
to experimentally testable correlations between, e.g., the neutrino mass and

4



1. Flavour puzzle

mixing observables. Models of flavour based on modular invariance have then
an increased predictive power.
The modular symmetry approach to the flavour problem has been widely

implemented so far primarily in theories with global SUSY (supersymmetry).
Within the SUSY framework, modular invariance is assumed to be a feature of
the Kähler potential and the superpotential of the theory. Bottom-up modular
invariance approaches to the lepton flavour problem have been exploited first
using the groups Γ3 ' �4 [12, 14], Γ2 ' (3 [15], Γ4 ' (4 [16].

After the first studies, the interest in the approach grew significantly and mod-
els based on the groups Γ4 ' (4 [P1, 17–25], Γ5 ' �5 [P2, 23, 26], Γ3 ' �4 [P3,
20, 27–49], Γ2 ' (3 [50, 51] and Γ7 ' PSL(2,ℤ7) [52] have been constructed
and extensively studied. Similarly, attempts have been made to construct viable
models of quark flavour [53] and of quark-lepton unification [54–65]. The
formalism of the interplay of modular and CP symmetries has been developed
and first applications made in [P4]. It was explored further in [66–69], as
was the possibility of coexistence of multiple moduli [70–74], considered first
phenomenologically in [P1, P3]. Moduli-mediated SUSY breaking effects have
been studied in [75, 76]. Such bottom-up analyses are expected to eventually
connect with top-down results [77–103] based on ultraviolet-complete theories.
While the aforementioned finite quotients Γ# of the modular group have

been widely used in the literature to construct modular-invariant models of
flavour from the bottom-up perspective, top-down constructions typically lead
to their double covers Γ′# (see, e.g., [80, 82, 83, 104]). The formalism of such
double covers has been developed and viable flavour models constructed in
refs. [105], [P5, 106], [107, 108], and [109] for the cases of Γ′3 ' )′, Γ′4 ' (′4,
Γ′5 ' �′5, and Γ′6 ' (3 × )′ respectively.
In almost all phenomenologically viable flavour models based on modular

invariance constructed so far the hierarchy of the charged-lepton and quark
masses is obtained by fine-tuning some of the constant parameters present in
the models.2 One way to overcome this drawback is to utilise the hierarchical
mass matrix structures in the vicinity of the so-called symmetric points [P6,
110, 111]. Another possibility is to use modular weights as Froggatt-Nielsen
charges, with additional scalar fields of non-zero modular weights playing the
role of flavons [112–114].

2By fine-tuning we refer to either i) high sensitivity of observables to model parameters or ii)
unjustified hierarchies between parameters which are introduced in the model on an equal
footing.
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1. Flavour puzzle

The aim of this study is to investigate certain aspects of the modular symmetry
framework as well as its applications to the flavour problem. The thesis is
structured as follows.
We start by reviewing the framework in chapter 2. Then, in part II we

introduce several theoretical tools required for model-building. Namely, we
show in chapter 3 how basic blocks of such theories — modular forms — are
constructed. In chapter 4 we extendmodular symmetry with a CP transformation
to increase predictivity of the models. Next, in chapter 5 we classify the possible
unbroken residual symmetries, which can be used to explain the observed
flavour patterns as shown later in chapter 6.
We turn to construction of viable models of lepton flavour in part III. After

describing the general model-building setup in chapter 7, we proceed with
three examples of such models: a simple predictive model based on Γ4 ' (4
modular group (chapter 8), a model with an unbroken residual symmetry which
leads to trimaximal neutrino mixing (chapter 9), and a model with a slightly
broken residual symmetry which explains the observed pattern of charged-
lepton masses without fine-tuning (chapter 10). Finally, we summarise our
results and present our conclusions.

6



2. Framework [P5]

In this chapter we describe the framework of modular symmetry in the context
of N = 1 SUSY. The discussion follows the original bottom-up construction of
ref. [12] as well as its extension including odd-weight modular forms [105].

2.1. The modular group and transformation of fields

We introduce a chiral supermultiplet g, called the modulus, whose scalar compo-
nent is restricted to the upper half-plane H ≡ {g ∈ ℂ : Im g > 0}. With some
abuse of notation, we will use the same symbol g to denote the modulus itself,
its scalar component and its VEV, depending on the context. The modulus g
transforms non-trivially under the modular group Γ, which is the special linear
group of 2 × 2 integer matrices with unit determinant, i.e.,

Γ ≡ SL(2,ℤ) ≡
{(
0 1

2 3

) ���� 0, 1, 2, 3 ∈ ℤ, 03 − 12 = 1
}
. (2.1)

The group Γ is generated by three matrices

( =

(
0 1
−1 0

)
, ) =

(
1 1
0 1

)
, ' =

(
−1 0
0 −1

)
, (2.2)

subject to the following relations:

(2 = ', (())3 = 1, '2 = 1, ') = )', (2.3)

where 1 denotes the identity element of a group.
The modular group Γ acts on the modulus with fractional linear transforma-

tions:
W =

(
0 1

2 3

)
∈ Γ : g → Wg =

0g + 1
2g + 3 . (2.4)

Matter chiral superfields transform under Γ as “weighted” multiplets [12, 104,
115]:

k7 → (2g + 3)−9 d7 8(W) k 8 , (2.5)

7



2. Framework [P5]

where (2g + 3)−9 is the automorphy factor, 9 ∈ ℤ is the modular weight1 and d
is a unitary representation of Γ.

Note that the group action (2.4) has a non-trivial kernel ℤ'
2 = {1, '}, i.e., the

modulus g does not transform under the action of '. For this reason one typically
defines the inhomogeneous modular group as the quotient Γ ≡ PSL(2,ℤ) ≡
SL(2,ℤ) /ℤ'

2 , which is the projective version of SL(2,ℤ) with matrices W and
−W being identified. However, matter fields of a modular-invariant theory are in
general allowed to transform under ', as can be seen from (2.5). Therefore the
symmetry group of such theory is Γ rather than Γ (see, e.g., [83]).

We assume that representations of matter fields are trivial when restricted to
the so-called principal congruence subgroup,

Γ(#) ≡
{(
0 1

2 3

)
∈ SL(2,ℤ),

(
0 1

2 3

)
≡

(
1 0
0 1

)
(mod #)

}
, (2.6)

with a fixed integer # ≥ 2 called the level. In other words, d(W) of (2.5) is the
identity matrix whenever W ∈ Γ(#), so that d is effectively a representation of
the quotient group

Γ′# ≡ Γ
/
Γ(#) ' SL(2,ℤ#), (2.7)

called the homogeneous finite modular group. Unlike Γ, Γ′# is finite as the name
suggests. For # ≤ 5, this group admits the presentations

Γ′# =
〈
(, ), ' | (2 = ', (())3 = 1, '2 = 1, ') = )', )# = 1

〉
=

〈
(, ) | (4 = 1, (())3 = 1, (2) = )(2, )# = 1

〉
,

(2.8)

where with a slight abuse of notation we denote by (, ) , ' the equivalence
classes of the corresponding generators (2.2) of the full modular group. For
# > 5, additional relations are needed in order to render the group finite [13].
In the special case when d does not distinguish between W and −W, i.e., d(')

is identity, we see that d is a representation of a smaller quotient group
Γ# ≡ Γ

/ 〈
Γ(#) ∪ ℤ'

2
〉
' SL(2,ℤ#)

/
〈'〉 , (2.9)

called the inhomogeneous finite modular group. For # ≤ 5, Γ# has the following
presentation:

Γ# =
〈
(, ) | (2 = 1, (())3 = 1, )# = 1

〉
. (2.10)

Note that ' ∈ Γ(2), hence Γ2 = Γ′2. In contrast, for # ≥ 3 one has ' ∉ Γ(#),
and Γ′# is a double cover of Γ# . For small values of #, the groups Γ# and Γ′# are
isomorphic to permutation groups and their double covers, see table 2.1.
1While we restrict ourselves to integer 9, it is also possible for weights to be fractional [83,
116–119].
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2. Framework [P5]

Table 2.1.: Finite modular groups and dimensionality of the corresponding
spaces of modular forms, for # ≤ 5. Note that for # = 2 only
even-weighted modular forms exist.

# 2 3 4 5
Γ# (3 �4 (4 �5
Γ′# (3 �′4 ≡ )′ (′4 ≡ SL(2,ℤ4) �′5 ≡ SL(2,ℤ5)

dimM9(Γ(#)) 9/2 + 1 9 + 1 29 + 1 59 + 1

As a final remark, let us stress that the level # defining the finite modular
group is common to all matter fields k�, which may however carry different
modular weights 9�.

2.2. Modular forms and modular-invariant actions

The Lagrangian of an N = 1 global SUSY theory is given by

L =

∫
d2\ d2\̄  (Φ, Φ̄) +

[ ∫
d2\, (Φ) + h.c.

]
, (2.11)

where  is the Kähler potential,, is the superpotential, \ and \̄ are Grassmann
variables, and Φ collectively denotes chiral superfields of the theory, including
the modulus g. In theories with global SUSY, modular symmetry requires the
superpotential to be modular-invariant [115]. In theories of supergravity, the su-
perpotential is instead coupled to the Kähler potential and has to transform with
a certain weight −ℎ under modular transformations (up to a field-independent
phase U(W) called the multiplier system) [104, 115]:

W =

(
0 1

2 3

)
∈ Γ : , (Φ) → 47U(W) (2g + 3)−ℎ, (Φ). (2.12)

The superpotential can be expanded in powers of matter superfields k� as:

, (g, k�) =
∑ (

.�1...�< (g) k�1 . . . k�<

)
1 , (2.13)

where the sum is taken over all possible combinations of fields {�1, . . . , �<} and
all independent singlets of Γ′# , denoted by (. . .)1.
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2. Framework [P5]

In order to satisfy (2.12) given the field transformation rules (2.5), the
field couplings .�1...�< (g) have to be modular forms of level # and weight 9. =

9�1 + . . . + 9�< − ℎ, i.e., transform under Γ as

.�1...�< (g) → .�1...�< (Wg) = (2g + 3)9. d(W) .�1...�< (g), (2.14)

where d is a unitary representation of the homogeneous finite modular group Γ′#
such that d ⊗ d�1 ⊗ . . . ⊗ d�< ⊃ 1. Apart from that, due to holomorphicity
of the superpotential, modular forms have to be holomorphic functions of g.
Together with the transformation property (2.14), this significantly constrains
the space of modular forms.
In fact, non-trivial modular forms of a given level # exist only for positive

integer weights 9 ∈ ℕ. They span finite-dimensional linear spaces M9(Γ(#))
arranged into multiplets of Γ′# . In the following, we will denote the modular
form multiplet of level #, weight 9 and irrep (irreducible representation) r of Γ′#
as . (#,9)

r(,7) , with 7 labelling linearly independent multiplets of the same irrep type
in case more than one exists.

By analysing (2.14), one notes that odd-weighted modular forms necessarily
have d(') = −1 in order to compensate the minus sign arising from the auto-
morphy factor, while for even-weighted modular forms one has d(') = 1. It
follows that in modular-invariant theories based on inhomogeneous modular
groups Γ# only even-weighted modular forms appear.
As can be seen from table 2.1, the spaces M9(Γ(#)) have low dimension-

alities for small values of 9 and #. Therefore it is possible to form only a few
independent Yukawa couplings, which yields predictive models of flavour.
We should note however that the most general Kähler potential consistent

with modular symmetry contains multiple terms which may jeopardise the
predictive power of the framework [120]. This problem is a subject of ongoing
research (see, e.g., [121]). In what follows, we will assume the minimal form of
the Kähler potential which reads

 (g, g, k, k) = −Λ2
0 log(−7g + 7g) +

∑
�

|k� |2
(−7g + 7g)9�

, (2.15)

with Λ0 having mass dimension one.
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3. Construction of modular forms [P2, P5]

We have seen in the previous chapter that basic building blocks of a modular-
invariant theory of flavour are modular forms. These functions have been
explicitly constructed and arranged into multiplets of the corresponding finite
modular groups for the first few levels #; the relevant references are collected
in table 3.1. In this chapter we will consider two specific examples of such
constructions — integral-weight modular forms of level 4, corresponding to the
finite group Γ′4 ' (′4, and even-weight modular forms of level 5, corresponding
to Γ5 ' �5. The discussion follows refs. [P5] and [P2], respectively.1

Table 3.1.: References for explicit modular form constructions

# 2 3 4 5 6 7
Γ# [15] [12] [16] [P2] [109] [52]
Γ′# [15] [105] [P5] [107, 108] [109] —

3.1. �′4 ' Y′4 [P5]

“Weight 1/2”

Modular forms of level 4 and weight 9 form a linear space of dimension 29 + 1
given by [122]:

M9(Γ(4)) =
⊕

;+<=29,
;,<≥0

ℂ
[2<−2;(4g) [5;−<(2g)

[2;(g)

=
⊕

;+<=29,
;,<≥0

ℂ

(
[5(2g)

[2(g)[2(4g)

); (
[2(4g)
[(2g)

)<
,

(3.1)

1After the appearance of [P5] and [P2], modular form multiplets of level 4, corresponding
to Γ′4, and of level 5, corresponding to Γ5, were constructed also in refs. [106] and [26],
respectively.
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3. Construction of modular forms [P2, P5]

where ; and < are non-negative integers, and [(g) is the Dedekind eta function
(we collect all the necessary definitions and properties of special functions
in appendix A). In other words, M9(Γ(4)) is spanned by polynomials of even
degree 29 in two functions \(g) and Y(g) defined as

\(g) ≡ [5(2g)
[2(g)[2(4g) = Θ3(2g), Y(g) ≡ 2 [2(4g)

[(2g) = Θ2(2g). (3.2)

Here Θ2(g) and Θ3(g) are the Jacobi theta constants related to the Dedekind
eta by (A.6). In particular, we conclude from (3.1) that the space of weight-1
modular forms of level 4 is spanned by the homogeneous quadratic polynomials
in \ and Y, or equivalently, in the theta constants Θ2 and Θ3 of double argument.
From (3.2) and (A.3) we find immediately that \(g) and Y(g) admit the

following ?-expansions, i.e., power series expansions in ?4 ≡ exp(7cg/2):

\(g) = 1 + 2
∞∑
9=1

?
(29)2
4 = 1 + 2?44 + 2?164 + . . . ,

Y(g) = 2
∞∑
9=1

?
(29−1)2
4 = 2?4 + 2?94 + 2?254 + . . . ,

(3.3)

so that \ → 1, Y → 0 in the “large volume” limit Im g → ∞. In fact, Y ∼ 2?4
in this limit, so it can be used as an expansion parameter instead of ?4, which
justifies the notation. Note that, due to quadratic dependence in the exponents of
?4, the series (3.3) converge rapidly in the fundamental domain of the modular
group, where one has |?4 | ≤ exp(−c

√
3/4) ' 0.26. We give below the values

of \(g) and Y(g) at the so-called symmetric points (see chapter 5 for details):
\(g�) = 1 + 24−2c + $(10−11) ' 1.00373,
Y(g�) = 24−c/2 + $(10−6) ' 0.415761,

\(g!) = 1 − 24−
√
3c + $(10−9) ' 0.991333,

Y(g!) = 24−7c/4
[
4−

√
3c/4 + $(10−5)

]
' 0.512152 4−7c/4,

\(g)) = 1,
Y(g)) = 0,

(3.4)

where g� ≡ 7, g! ≡ 427c/3, and g) ≡ 7∞. We further find the exact relations at
symmetric points:

Y(g�)
\(g�)

=
1

1 +
√
2
,

Y(g!)
\(g!)

=
1 − 7

1 +
√
3
. (3.5)
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3. Construction of modular forms [P2, P5]

The action of the ) generator on \ and Y follows from the corresponding
transformation of the theta constants (A.4):

\(g) )−→ \(g), Y(g) )−→ 7Y(g). (3.6)

Similarly, one can obtain the action of the ( generator on \ from (A.4) with the
help of identity (A.7):

\(g) = Θ3(2g) =
1
2

[
Θ3

(g
2
)
+ Θ4

(g
2
)]

(−→ 1
2

[
Θ3

(
− 1
2g

)
+ Θ4

(
− 1
2g

)]
=

1
2
√
−72g [Θ3(2g) + Θ2(2g)] =

√
−7g \(g) + Y(g)√

2
.

(3.7)

By requiring that the second action of ( should transform the result back to
\(g), we find the corresponding action on Y(g), and conclude that

\(g) (−→
√
−7g \(g) + Y(g)√

2
, Y(g) (−→

√
−7g \(g) − Y(g)

√
2

. (3.8)

From the transformation properties (3.6) and (3.8), one sees that \ and Y

transform as “weight-1/2” modular forms. This statement can be made precise
in the context of the metaplectic group Mp2(ℤ), which is a double cover of the
modular group [119].

Weight 1

We have seen that the linear space of weight-1 modular forms of level 4 is
spanned by three quadratic monomials in \(g) and Y(g), namely:

\(g)2, \(g)Y(g), Y(g)2, (3.9)

such that the linear space of weight 9 = 1 has the correct dimension, 29 + 1 = 3.
These three functions can be arranged into a triplet furnishing a representation

of (′4 ≡ SL(2,ℤ4), which is a double cover2 of the permutation group (4 [105].
We summarise the group theory of (′4 in appendix B.2.
2Strictly speaking, the term “double cover of symmetric group” is used for a special kind of a
double cover called the Schur cover. There are two double covers of (4 of this kind: the binary
octahedral group (group ID (48,28) in GAP [123, 124]) and GL(2, 3) (group ID (48,29)).
Our double cover SL(2,ℤ4) is not a Schur cover of (4. It has group ID (48,30), hence it is a
double cover of (4 in a broader sense.
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3. Construction of modular forms [P2, P5]

In the group representation basis of table B.4, the relevant triplet has the form

.
(4,1)
3̂

(g) = ©­«
√
2Y\
Y2

−\2
ª®¬ (3.10)

and furnishes an irrep 3̂. Indeed, using the transformation rules (3.6), (3.8) it
is easy to check that the triplet (3.10) transforms under the generators of the
modular group as expected:

.
(4,1)
3̂

(g) )−→ .
(4,1)
3̂

(g + 1) = d3̂()) .
(4,1)
3̂

(g),

.
(4,1)
3̂

(g) (−→ .
(4,1)
3̂

(−1/g) = (−g) d3̂(() .
(4,1)
3̂

(g),

.
(4,1)
3̂

(g) '−→ .
(4,1)
3̂

(g) = (−1) d3̂(') .
(4,1)
3̂

(g).

(3.11)

The 3̂ modular triplet of (3.10) is the base result of our construction. It can
be used to generate all modular forms entering and determining the fermion
Yukawa couplings and mass matrices, as we will see in what follows.

Higher weights

Modular multiplets of higher weights . (4,9>1)
r, 7 may be obtained from those of

lower weight via tensor products. The lowest weight multiplet in (3.10) works
then as a “seed” multiplet, since all higher weight modular multiplets can be
recovered from a sufficient number of tensor products of . (4,1)

3̂
(g) with itself.

Note that the latter has been written in terms of a minimal set of functions of
g from the start, namely \(g) and Y(g). By doing so, tensor products directly
provide spaces of modular forms with the correct dimensions, bypassing the
typical need to look for constraints relating redundant higher weight multiplets
(cf. section 3.2). In other words, these constraints are manifestly verified given
the explicit forms of the multiplet components.

First of all, we recover the previously known [16] modular (4 lowest-weight
multiplets, a doublet and a triplet(′), which are now expressed in terms of \(g)
and Y(g) and read

.
(4,2)
2 (g) =

( 1√
2
(
\4 + Y4

)
−
√
6Y2\2

)
, .

(4,2)
3′ (g) = ©­«

1√
2
(
\4 − Y4

)
−2Y\3
−2Y3\

ª®¬ . (3.12)
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3. Construction of modular forms [P2, P5]

Our construction reduces to that of modular Γ4 ' (4 for even weights (see
also appendix B.2). In order to compare the results in (3.12) with those of
ref. [16], one needs to work in compatible group representation bases, i.e., bases
in which the representation matrices dr(() and dr()) coincide, for irreducible
representations r common to (4 and (′4 (those without hats). The basis for (4
compatible with the one for (′4 we here consider, together with the expressions
for modular multiplets in that basis, can be found in ref. [P4] (see appendices B
and C therein). Then, by looking at the ?-expansions,

.
(4,2)
2 (g) =

( 1√
2
(1 + 24 ?44 + 24 ?84 + 96 ?124 + 24 ?164 + . . .

)
−4

√
6 (
?24 + 4 ?64 + 6 ?104 + 8 ?144 + 13 ?184 + . . .

) )
,

.
(4,2)
3′ (g) =

©­­­«
1√
2
(1 − 8 ?44 + 24 ?84 − 32 ?124 + 24 ?164 + . . .

)
−4 (

?4 + 6 ?54 + 13 ?94 + 14 ?134 + 18 ?174 + . . .
)

−16 (
?34 + 2 ?74 + 3 ?114 + 6 ?154 + 5 ?194 + . . .

) ª®®®¬ ,
(3.13)

one can see that the modular multiplets in question indeed match, up to nor-
malisation.
Further tensor products with .

(4,1)
3̂

produce modular multiplets of higher
weights. At weight 3, a non-trivial singlet and two triplets exclusive to (′4 arise:

.
(4,3)
1̂′

(g) =
√
3 (
Y\5 − Y5\

)
,

.
(4,3)
3̂

(g) =
©­­«

Y5\ + Y\5
1

2
√
2
(5Y2\4 − Y6

)
1

2
√
2
(
\6 − 5Y4\2)ª®®¬ , .

(4,3)
3̂′

(g) = 1
2

©­«
−4

√
2 Y3\3

\6 + 3Y4\2
−3Y2\4 − Y6

ª®¬ .
(3.14)

Finally, at weight 4 one again recovers the (4 result. We obtain:

.
(4,4)
1 (g) = 1

2
√
3

(
\8 + 14Y4\4 + Y8

)
, .

(4,4)
2 (g) =

( 1
4
(
\8 − 10Y4\4 + Y8)√
3 (
Y2\6 + Y6\2

) )
,

.
(4,4)
3 (g) = 3

2
√
2

©­«
√
2 (
Y2\6 − Y6\2

)
Y3\5 − Y7\
−Y\7 + Y5\3

ª®¬ , .
(4,4)
3′ (g) =

©­­­«
1
4
(
\8 − Y8

)
1

2
√
2
(
Y\7 + 7Y5\3)

1
2
√
2
(7Y3\5 + Y7\)

ª®®®¬ ,(3.15)
which can be seen to match known multiplets (up to normalisation) by com-
paring ?-expansions. For the explicit expressions of (′4 modular multiplets with

16



3. Construction of modular forms [P2, P5]

higher weights, up to 9 = 10 and written in terms of \(g) and Y(g), we refer
the reader to appendix D of ref. [P5]. Note that odd(even)-weighted modular
forms always furnish (un)hatted representations, since in our notation hatted
representations are exactly the ones for which d(') = −1.

3.2. �5 ' G5 [P2]

Weight 2

Weight-2 modular forms of level 5 can be constructed in a way analogous to
the cases of Γ2 ' (3 [15], Γ3 ' �4 [12], and Γ4 ' (4 [16]. To do that, one
has to find a set of “seed” functions U7, 8(g) such that the sought-after modular
forms are linear combinations of their logarithmic derivatives. At level #, U7, 8(g)
should form a set which is in a certain sense closed under the action of Γ# . As
can be inferred from the results in ref. [125], a convenient choice for U7, 8(g) at
level 5 is given by the Jacobi theta functions Θ3(H, g) (see appendix A), and
they explicitly read:

U1,−1(g) ≡ Θ3

(
g + 1
2 , 5g

)
,

U1,0(g) ≡ Θ3

(
g + 9
10 ,

g

5

)
,

U1,1(g) ≡ Θ3

(
g

10 ,
g + 1
5

)
,

U1,2(g) ≡ Θ3

(
g + 1
10 ,

g + 2
5

)
,

U1,3(g) ≡ Θ3

(
g + 2
10 ,

g + 3
5

)
,

U1,4(g) ≡ Θ3

(
g + 3
10 ,

g + 4
5

)
,

U2,−1(g) ≡ 42c7g/5Θ3

(3g + 1
2 , 5g

)
,

U2,0(g) ≡ Θ3

(
g + 7
10 ,

g

5

)
,

U2,1(g) ≡ Θ3

(
g + 8
10 ,

g + 1
5

)
,

U2,2(g) ≡ Θ3

(
g + 9
10 ,

g + 2
5

)
,

U2,3(g) ≡ Θ3

(
g

10 ,
g + 3
5

)
,

U2,4(g) ≡ Θ3

(
g + 1
10 ,

g + 4
5

)
.

(3.16)

Under the action of the generators ( and ) of Γ5 (see appendix B.3), each of
these functions is mapped to another, up to (possibly g-dependent) multiplicative
factors. A diagram of said map is given in fig. 3.1, and one can check that the
actions of (2, (())3 and )5 applied to each element correspond to the identity.
Taking logarithmic derivatives, one obtains:
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3. Construction of modular forms [P2, P5]
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Figure 3.1.: Graph illustrating the automorphisms of the set of seed functions
U7, 8(g), defined in (3.16), under the actions of Γ5 ' �5 generators
( and ) .

d
dg logU7, 8(−1/g) =

7c

20

(
1 − 1

g2

)
+ 1
2g + d

dg logU(7, 8(g), (3.17)

d
dg logU7, 8(g + 1) = d

dg logU)7, 8(g), (3.18)

where U(
7, 8

and U)
7, 8

are the images of U7, 8 under the ( and ) maps of fig. 3.1,
respectively.

It then follows that the functions

. (21,−1, . . . , 21,4; 22,−1, . . . , 22,4 |g) ≡
∑
7, 8

27, 8
d
dg logU7, 8(g), with

∑
7, 8

27, 8 = 0 ,

(3.19)

span the sought-after 11-dimensional space of weight-2 modular forms of
level # = 5. Under ( and ) , one has the following transformations:

( : . (21,−1, . . . , 21,4; 22,−1, . . . , 22,4 |g) →
. (21,0, 21,−1, 21,4, 22,2, 22,3, 21,1; 22,0, 22,−1, 22,4, 21,2, 21,3, 22,1 |g),

(3.20)

) : . (21,−1, . . . , 21,4; 22,−1, . . . , 22,4 |g) →
. (21,−1, 21,4, 21,0, 21,1, 21,2, 21,3; 22,−1, 22,4, 22,0, 22,1, 22,2, 22,3 |g).

(3.21)

18



3. Construction of modular forms [P2, P5]

The space in question is divided into the following multiplets of �5:

.
(5,2)
5 (g) =

©­­­­­«
.1
.2
.3
.4
.5

ª®®®®®¬
≡

©­­­­­«
− 1√

6 . (−5, 1, 1, 1, 1, 1;−5, 1, 1, 1, 1, 1|g)
. (0, 1, Z4, Z3, Z2, Z ; 0, 1, Z4, Z3, Z2, Z | g)
. (0, 1, Z3, Z, Z4, Z2 ; 0, 1, Z3, Z, Z4, Z2 | g)
. (0, 1, Z2, Z4, Z, Z3 ; 0, 1, Z2, Z4, Z, Z3 | g)
. (0, 1, Z, Z2, Z3, Z4 ; 0, 1, Z, Z2, Z3, Z4 | g)

ª®®®®®¬
, (3.22)

.
(5,2)
3 (g) = ©­«

.6

.7

.8

ª®¬ ≡
©­­«

1√
2.

(
−
√
5,−1,−1,−1,−1,−1;

√
5, 1, 1, 1, 1, 1

���g)
. (0, 1, Z4, Z3, Z2, Z ; 0,−1,−Z4,−Z3,−Z2,−Z | g)
. (0, 1, Z, Z2, Z3, Z4 ; 0,−1,−Z,−Z2,−Z3,−Z4 | g)

ª®®¬ ,
(3.23)

.
(5,2)
3′ (g) = ©­«

.9
.10
.11

ª®¬ ≡
©­­«

1√
2.

(√
5,−1,−1,−1,−1,−1;−

√
5, 1, 1, 1, 1, 1

���g)
. (0, 1, Z3, Z, Z4, Z2 ; 0,−1,−Z3,−Z,−Z4,−Z2 | g)
. (0, 1, Z2, Z4, Z, Z3 ; 0,−1,−Z2,−Z4,−Z,−Z3 | g)

ª®®¬ ,
(3.24)

where Z ≡ 427c/5.
Weight-2 multiplets (3.22) to (3.24) admit the following ?-expansions:

.
(5,2)
5 (g) = −27c

©­­­­­­­­­«

−
√

1
6 (1 + 6?55 + 18?105 + 24?155 + 42?205 + . . .)
?5 + 12?65 + 12?115 + 31?165 + . . .
3?25 + 8?75 + 28?125 + 18?175 + 36?225 + . . .
4?35 + 15?85 + 14?135 + 39?185 + 24?235 + . . .
7?45 + 13?95 + 24?145 + 20?195 + 60?245 + . . .

ª®®®®®®®®®¬
,

.
(5,2)
3 (g) = 2

√
57c

©­­­«
− 1

5
√
2 (−1 + 30?55 + 20?105 + 40?155 + 90?205 + . . .)
?5 + 2?65 + 12?115 + 11?165 + 12?215 + . . .
3?45 + 7?95 + 6?145 + 20?195 + 10?245 + . . .

ª®®®¬ ,
.
(5,2)
3′ (g) = 2

√
57c

©­­­«
− 1

5
√
2 (1 + 20?5 + 30?25 + 60?35 + 60?45 + . . .)
?25 + 6?75 + 6?125 + 16?175 + 12?225 + . . .
2?35 + 5?85 + 12?135 + 7?18 + 22?235 + . . .

ª®®®¬ ,

(3.25)

where ?5 ≡ exp(27cg/5).
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3. Construction of modular forms [P2, P5]

Higher weights

# = 5 modular forms of higher even weights can be obtained from tensor
products of the weight-2 multiplets (3.22) to (3.24). The missing 1 and 4
representations arise at weight 4. Even though one can form 66 products .7.8,
the dimension of the space of weight 9 = 4 forms is 59+1 = 21. Therefore, there
are 45 constraints between the .7.8, which reduce the 66 seemingly independent
combinations to 21 truly independent ones. These last combinations arrange
themselves into the following multiplets of �5:

.
(5,4)
1 = .2

1 + 2.3.4 + 2.2.5 ∼ 1 ,

.
(5,4)
3 =

©­­«
−2.1.6 +

√
3.5.7 +

√
3.2.8√

3.2.6 + .1.7 −
√
6.3.8√

3.5.6 −
√
6.4.7 + .1.8

ª®®¬ ∼ 3 ,

.
(5,4)
3′ =

©­­«
√
3.1.6 + .5.7 + .2.8

.3.6 −
√
2.2.7 −

√
2.4.8

.4.6 −
√
2.3.7 −

√
2.5.8

ª®®¬ ∼ 3′ ,

.
(5,4)
4 =

©­­­­«
2.2

4 +
√
6.1.2 − .3.5

2.2
2 +

√
6.1.3 − .4.5

2.2
5 − .2.3 +

√
6.1.4

2.2
3 − .2.4 +

√
6.1.5

ª®®®®¬
∼ 4 ,

.
(5,4)
5,1 =

©­­­­­­«

√
2.2

1 +
√
2.3.4 − 2

√
2.2.5√

3.2
4 − 2

√
2.1.2√

2.1.3 + 2
√
3.4.5

2
√
3.2.3 +

√
2.1.4√

3.2
3 − 2

√
2.1.5

ª®®®®®®¬
∼ 5 ,

.
(5,4)
5,2 =

©­­­­­­«

√
3.5.7 −

√
3.2.8

−.2.6 −
√
3.1.7 −

√
2.3.8

−2.3.6 −
√
2.2.7

2.4.6 +
√
2.5.8

.5.6 +
√
2.4.7 +

√
3.1.8

ª®®®®®®¬
∼ 5 .

(3.26)

For the explicit expressions of �5 modular multiplets with higher weights up to
9 = 10 we refer the reader to appendix C of [P2].
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4. Combining CP and modular symmetry [P4, P5]

In models possessing a flavour symmetry �, one can define a generalised CP
transformation acting on matter fields as

k7(F)
CP−−→ -7 8 k 8(FP), (4.1)

with a bar denoting the conjugate field, and where F = (B, ®F), FP = (B,−®F)
and - is a unitary matrix acting on flavour space. The form of the matrix - is
constrained due to the presence of a flavour symmetry [126, 127]. The key idea
is that the theory should be invariant under the sequence of transformations
CP → 6 ∈ � → CP−1, so the resulting transformation must correspond to
another flavour symmetry transformation 6′ ∈ �. More formally, one can check
that CP should act on the flavour group as an outer automorphism C(6) ≡
CP ◦ W ◦ CP−1. In the case of a linearly realised discrete symmetry group �, this
yields a consistency condition of the form

- d∗(6) -−1 = d(C(6)) ∀ 6 ∈ �, (4.2)

where d is the flavour group representation of the matter field k.
In this chapter we show how this idea can be extended to the modular

invariance framework, following refs. [P4, P5]. Unlike the case of discrete
flavour symmetries, field transformation properties under CP are restricted to
only two possibilities. The derivation we are going to present is agnostic to the
UV completion of the theory and, in particular, the origin of modular symmetry.

4.1. CP transformations

Transformation of the modulus

Let us first apply the consistency condition chain1

CP → W ∈ Γ → CP−1 = W′ ∈ Γ (4.3)
1It may be possible to generalise the CP transformation such that it can be combined not only
with modular but also with other internal symmetries of the theory. We are not going to
consider this case here.
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4. Combining CP and modular symmetry [P4, P5]

to an arbitrary chiral superfield k(F) assigned to an irreducible unitary repre-
sentation r of Γ′# , which transforms as k(F) → -r k(FP) under CP:

k(F) CP−−→ -r k(FP)
W
−→ (2g∗ + 3)−9 -r d∗r (W) k(FP)

CP−1−−−→ (2g∗CP−1 + 3)
−9 -r d

∗
r (W)-−1

r k(F),
(4.4)

where gCP−1 is the result of applying CP−1 to the modulus g. The resulting
transformation should be equivalent to a modular transformation W′ which
depends on W and maps k(F) to (2′g+3′)−9dr(W′)k(F). Taking this into account,
we get

-r d
∗
r (W)-−1

r =

(
2′g + 3′
2g∗CP−1 + 3

)−9
dr(W′). (4.5)

Since the matrices -r, dr(W) and dr(W′) are independent of g, the overall coeffi-
cient on the right-hand side has to be a constant:2

2′g + 3′
2g∗CP−1 + 3

=
1
_∗

, (4.6)

where _ ∈ ℂ, and |_ | = 1 due to unitarity of dr(W) and dr(W′). The values of _,
2′ and 3′ depend on W.
Taking W = (−1, so that 2 = 1, 3 = 0, and denoting 2′((−1) = �, 3′((−1) = �

while keeping henceforth the notation _ ((−1) = _, we find g = (_g∗CP−1 − �)/�,
and consequently,

g
CP−1−−−→ gCP−1 = _ (�g∗ + �) , g

CP−−→ gCP =
1
�
(_g∗ − �) . (4.7)

Let us now act with the chain CP → ) → CP−1 on the modulus g itself:

g
CP−−→ 1

�
(_g∗ − �) )−→ 1

�
(_ (g∗ + 1) − �) CP−1−−−→ g + _

�
. (4.8)

The resulting transformation has to be a modular transformation, therefore
_/� ∈ ℤ. Since |_ | = 1, we immediately find |� | = 1, _ = ±1. After choosing

2Strictly speaking, this is only true for non-zero weights 9. We assume that at least one
superfield with non-zero modular weight exists in the theory, because otherwise the modulus
has no effect on the superfield transformations.
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the sign of � as � = ∓1 so that Im gCP > 0, the CP transformation rule (4.7)
simplifies to

g
CP−−→ < − g∗, (4.9)

with < ∈ ℤ. One can easily check that the chain CP → ( → CP−1 = W′(()
(applied to the modulus g itself) imposes no further restrictions on the form of
gCP. Since ( and ) generate the entire modular group, we conclude that (4.9)
is the most general CP transformation of the modulus g compatible with the
modular symmetry.
It is always possible to redefine the CP transformation in such a way that

< = 0. Consider the composition CP′ ≡ )−< ◦ CP so that g → −g∗ under CP′. It
is worth noting that this redefinition represents an inner automorphism which
does not spoil the form of CP transformation in (4.1). Indeed, chiral superfields
transform under CP′ as

k
CP′−−→ d−<r ()) -r k. (4.10)

Thus, CP′ has the same properties as the original CP transformation up to a
redefinition of -r. Therefore, from now on we will assume without loss of
generality that the modulus g transforms under CP as3

g
CP−−→ −g∗. (4.11)

It obviously follows that g does not change under the action of CP2:

g
CP2−−−→ g. (4.12)

Action on the modular group

Having derived the explicit form of the CP transformation for the modulus g,
we are now in a position to find the action of CP on the modular group Γ as
an outer automorphism C(W) ≡ CP ◦ W ◦ CP−1. For any modular transformation
W =

(
0 1
2 3

)
∈ Γ we have

g
CP−−→ −g∗

W
−→ −0g

∗ + 1
2g∗ + 3

CP−1−−−→ 0g − 1

−2g + 3 = C(W)g, (4.13)

3The CP transformation of the modulus derived by us from the requirement of consistency
between modular and CP symmetries has appeared in the context of string-inspired models
(see, e.g., refs. [80, 128–130]).
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which implies
C(W) = f(W)

(
0 −1

−2 3

)
∈ Γ, (4.14)

where f(W) = ±1. Note that the signs f(W) are irrelevant in the case of the inho-
mogeneous modular group Γ since W is identified with −W, and therefore (4.14)
uniquely determines the automorphism C(W). This is not the case for the full
modular group Γ, and one has to treat the signs carefully.
Since C is an automorphism, it is sufficient to define its action on the group

generators. From (4.14) one has:

C(() = f(()(−1, C()) = f()))−1, C(') = f(')'. (4.15)

The fact that C(W) is an automorphism implies C(') ≠ 1 = −', and so f(') = +1
and C(') = +'. Furthermore, the signs f(W) must be chosen in a way consistent
with the group relations in (2.3). In particular, one finds:

(())3 = 1
C−→ (f(()f()))3()()−3 = 1, (4.16)

implying that f(() = f()), since ()()3 = 1. Thus, from the outset, two different
outer automorphisms may be realised (see also [74, 131]):

(CP1) C : C(() = (−1, C()) = )−1, C(') = ', (4.17)
(CP2) C′ : C′(() = −(−1, C′()) = −)−1, C′(') = '. (4.18)

CP1

The first option (4.17), which we call CP1, corresponds to a trivial sign choice
f(W) = +1 and therefore admits an explicit formula for generic W:

C :
(
0 1

2 3

)
→

(
0 −1

−2 3

)
. (4.19)

This automorphism can be realised as a similarity transformationwithin GL(2,ℤ):

C(W) = CP1 W CP−11 with CP1 =
(
1 0
0 −1

)
∉ Γ. (4.20)

Applying the chain CP1 → W → CP−11 to a matter field k, which transforms
under Γ and CP as in (2.5) and (4.1), one arrives at the consistency condition on
the matrix -:

- d∗(W) -−1 = d(C(W)) ∀ W ∈ Γ, (4.21)
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4. Combining CP and modular symmetry [P4, P5]

or, equivalently,

- d∗(() -−1 = d†((), - d∗()) -−1 = d†()) (4.22)

(see also [83]). Note that the consistency condition (4.21) has the same form
as in the case of linearly realised discrete flavour symmetries (4.2). However,
unlike usual discrete flavour symmetries, modular symmetry restricts the form
of the automorphism C(W) as in (4.19). Therefore, for each irrep r, -r is fixed
up to an overall phase by Schur’s lemma.
In a basis where ( and ) are represented by symmetric matrices, (4.22)

is satisfied by the canonical CP transformation - = 1. Such basis exists for
all irreps of the inhomogeneous finite modular groups Γ# with # = 2, 3, 4, 5
(see [P4] and references therein) and # = 7 [52], as well as for all irreps of
the homogeneous modular groups Γ′# with # = 3,4 # = 4 (see appendix B.2),
and # = 5 [108]. This means that CP1 allows to define a CP transformation
consistently and uniquely for all irreps of the aforementioned finite modular
groups, hence C acts as a class-inverting automorphism on these groups [132].5
The action of CP1 on matter fields (and the modulus) obeys CP21 = 1, since

k7(F) → (--∗)7 8 k 8(F) under CP21 and - = 1 ⇒ --∗ = 1 in the symmetric
basis. It further follows that - is symmetric in any representation basis. The
modular group Γ = SL(2,ℤ) is then extended to

GL(2,ℤ) ' SL(2,ℤ) o ℤCP1
2

=

〈
(, ), ', CP1

���� (2 = ', (())3 = '2 = CP21 = 1, ') = )',

CP1 ( CP−11 = (−1, CP1 ) CP−11 = )−1

〉
.

(4.23)

CP2

Let us now discuss the second possibility (4.18) for the modular group outer
automorphism, C′. This choice, which we call CP2, is formally defined by

C′(W) = CP2 W CP−12 , (4.24)

4One can obtain a symmetric basis for Γ′3 starting from the one typically considered in the
literature [105] and performing a change of basis for all 2-dimensional irreps via the matrix
diag(4−77c/12, 1).

5Note however that, at the level of the full modular group, C is not class-inverting. Taking for
instance W =

( 11 9
17 14

) , one can show that C(W) and W−1 are not in the same SL(2,ℤ) conjugacy
class, via e.g. the LLS invariant of ref. [133].
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but cannot be realised as a similarity transformation within GL(2,ℤ). It leads
to a different consistency condition on the matrix - , namely:

- d∗(W) -−1 = f(W)9 d(C′(W)) ∀ W ∈ Γ, (4.25)

or, in terms of the generators ( and ) ,

- d∗(() -−1 = (−1)9d(')d†((), - d∗()) -−1 = (−1)9d(')d†()), (4.26)

which are equivalent to (4.25), since f(W1)f(W2) = f(W1W2).
In practice, the consistency condition (4.26) differs from that of (4.22) and

CP2 differs from CP1 only when (−1)9 d(') ≠ 1, i.e., whenever the matter
field k transforms non-trivially under '. For these '-odd fields, however, it is
only possible to satisfy the consistency condition if

• characters of ) and ( vanish, j(() = j()) = 0, which follows from (4.26)
after taking traces,

• the dimension of the representation ofk is even, which follows from (4.26)
after taking determinants, and

• the level # of the finite group is even, which follows from taking the #-th
power of the second relation in (4.26).6

This means that, given a finite modular group of level #, CP2 is incompatible
with certain combinations of modular weights and irreps.

In particular, combining the groups Γ′# with # = 3, 5, 7 with CP2 means that
any matter field must be '-even, i.e., satisfy (−1)9 d(') = 1, and transform
canonically under CP, -CP2 = 1, in the symmetric basis. In the case of Γ2, Γ4
and Γ′4 there is the additional option to have '-odd fields, (−1)9 d(') = −1, but
only for the doublet representations, all of which verify j(() = j()) = 0. These
fields are constrained to transform under CP with

-CP2 =

(
0 1
−1 0

)
(4.27)

in the symmetric basis. Notice that CP22 ≠ 1; instead, the action of CP22 on fields,
forms and g coincides with that of ' for these finite groups. Equating these

6An associated fact is that Γ(#) with # ≥ 2 is only stable under C′ for even #.
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two actions, the modular group is in this context minimally extended to the
semidirect product7

SL(2,ℤ) o ℤCP2 (
2

=

〈
(, ), ', CP2

���� (2 = CP22 = ', (())3 = '2 = 1, ') = )',

CP2 ( = ( CP2, CP2 ) CP−12 = ')−1

〉
.

(4.28)

It should be noted that it is difficult to build phenomenologically viable models
of fermion masses and mixing exploiting CP2 with '-odd fields, as i) the choice
of irreps for such fields is quite limited and ii) the '-odd and '-even sectors are
segregated by the ℤ'

2 symmetry. Taken together, these facts imply the vanishing
of some mixing angles or masses in simple models based on the combination of
CP2 with Γ2, Γ4, or Γ′4. Therefore, in what follows we will focus on CP1, denoting
it simply as CP.

Transformation of modular formmultiplets

Since modular multiplets . (g) transform under the modular group in essentially
the sameway as chiral superfields, it is natural to expect that the above discussion
holds for modular multiplets as well. In particular, they should transform under
CP as . → -r .

∗. Still, it is instructive to derive their transformation rule
explicitly.
Under a modular transformation, . (g) transforms as in (2.14), while under

the action of CP one has . (g) → . (−g∗). One can check that the complex-
conjugated CP-transformedmultiplets. ∗(−g∗) transform almost like the original
multiplets . (g) under a modular transformation, namely:

. ∗(−g∗)
W
−→ . ∗ (−(Wg)∗) = . ∗ (C(W) (−g∗))

= (2g + 3)9d∗r (C(W)) . ∗(−g∗),
(4.29)

for a multiplet . (g) of weight 9 transforming in the irreducible representation r
of Γ′# .
Using the consistency condition (4.21), one then sees that it is the object

-)r .
∗(−g∗) which transforms like . (g) under a modular transformation:

-)r .
∗(−g∗)

W
−→ (2g + 3)9dr(W)

[
-)r .

∗(−g∗)
]
. (4.30)

7The non-trivial automorphism defining this outer semidirect product is W ↦→ CP2 ( W (−1 CP−12 .
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If there exists a unique modular form multiplet at a certain level #, weight 9
and representation r, then proportionality follows:

. (g) = H -)r .
∗(−g∗), (4.31)

with H ∈ ℂ. This is indeed the case for 2 ≤ # ≤ 5 and lowest weight 9 = 1.
Since . (−(−g∗)∗) = . (g), it follows that -r -∗

r = |H |21r, implying i) that H = 47q

is a phase which can be absorbed in the normalisation of . (g), and ii) that -r
must be symmetric in this case, -r -∗

r = 1r ⇒ -r = -)r , independently of the
basis. One can then write

. (g) CP−−→ . (−g∗) = -r.
∗(g) (4.32)

for these multiplets, as anticipated.
As we have seen in section 4.1, in a basis in which the generators ( and )

of Γ′# are represented by symmetric matrices, one has -r = 1r. From (4.31) it
follows that . (−g∗) = 47q . ∗(g), the phase q being removable, as commented
above. At the ?-expansion level this means that, in such a basis, all the expansion
coefficients are real up to a common complex phase. This is indeed the case
for the lowest-weight modular form multiplets of Γ′# with # ≤ 5, as can be
explicitly verified from their ?-expansions. This is further the case for the
higher-weight modular multiplets of these groups in such a basis due to reality
of Clebsch-Gordan coefficients.

4.2. CP-invariant theories

Implications for the couplings

We have found so far that a CP transformation consistent with modular symmetry
acts on fields and modular form multiplets in the following way:

g
CP−−→ −g∗, k(F) CP−−→ -rk(F%), . (g) CP−−→ . (−g∗) = -r.

∗(g). (4.33)

A SUSY modular-invariant theory is thus CP-conserving if the transforma-
tion (4.33) leaves the matter action S originating from the Lagrangian (2.11)
unchanged. In particular, the superpotential, has to transform into its Hermi-
tian conjugate, while the Kähler potential  is allowed to change by a Kähler
transformation.
The Kähler potential of (2.15) is clearly invariant under the CP transforma-

tion (4.33), since it depends on |k|2 and Im g, both of which remain unchanged
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(up to a change F → FP which does not affect S). On the other hand, the
superpotential can be written as a sum of independent terms of the form

, ⊃
∑
A

6A (.A(g)k1 . . . k<)1,A , (4.34)

where .A(g) are modular multiplets of a certain weight and irreducible rep-
resentation, and 6A are complex coupling constants. Such terms transform
non-trivially under CP, which leads to a certain constraint on the couplings 6A.
This can be easily checked for a symmetric basis, as in this basis -r = 1r for

any representation r, so that one has (assuming proper normalisation of the
modular multiplets .A(g)):

6A (.A(g)k1 . . . k<)1,A
CP−−→ 6A

(
.A(−g∗)k1 . . . k<

)
1,A

= 6A

(
. ∗
A (g)k1 . . . k<

)
1,A

= 6A(.A(g)k1 . . . k<)1,A ,
(4.35)

where in the last equality we have used the reality of the Clebsch-Gordan
coefficients, which holds for # ≤ 5. It is now clear that a term in the sum
of (4.34) transforms into the Hermitian conjugate of

6∗A (.A(g)k1 . . . k<)1,A , (4.36)
which should coincide with the original term due to the independence of singlets
in (4.34). It now follows that 6A = 6∗A , i.e., all coupling constants 6A have to be
real to conserve CP.

As a final remark, let us denote by 6̃A the couplings written for a general basis
and arbitrary normalisation of the modular form multiplets. The CP constraint
on 6̃A is then more complicated, since the singlets of different bases coincide
only up to normalisation factors, determined by the choice of normalisations of
the Clebsch-Gordan coefficients and of the modular form multiplets. Since the
normalisation factors can differ between singlets, the corresponding couplings
6̃A may require non-trivial phases to conserve CP. These phases can be found
directly by performing a basis transformation and matching 6̃A to 6A in the
symmetric basis (and with proper modular form multiplet normalisation).

Implications for the mass matrices

As a more concrete example, let us consider the Yukawa coupling term
,! =

∑
A

6A (.A(g)�2!�3)1,A , (4.37)
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which gives rise to the charged-lepton mass matrix. Here �2 is a modular
symmetry multiplet of SU(2) charged-lepton singlets, ! is a modular symmetry
multiplet of SU(2) lepton doublets, and �3 is a Higgs doublet which transforms
trivially under modular symmetry and whose neutral component acquires a
VEV D3 = 〈�0

3
〉 after electroweak symmetry breaking.

Expanding the singlets, one gets

,! =
∑
A

6A_
A
7 8(g)�

2
7 ! 8�3 ≡ _ 7 8(g)�27 ! 8�3, (4.38)

where entries of the matrices _A
7 8
(g) are formed from components of the cor-

responding modular multiplets .A(g). In a general basis, superfields transform
under CP as

�2
CP−−→ -∗

' �
2 , !

CP−−→ -! ! , �3
CP−−→ [3 �3 , (4.39)

and we set [3 = 1 without loss of generality. It follows that

,!
CP−−→

(
-
†
' _ (−g

∗) -!
)
7 8
�2
7
!
8
�
3
, (4.40)

so that CP conservation implies

-
†
' _ (−g

∗) -! = _∗(g). (4.41)

The resulting charged-lepton mass matrix "4 = D3_
† (written in the left-right

convention) satisfies
-
†
! "4(−g∗) -' = "∗

4 (g), (4.42)
which coincides with the corresponding constraint in the case of CP invariance
combined with discrete flavour symmetry, apart from the fact that now the mass
matrix depends on the modulus g which also transforms under CP. Similarly,
for the neutrino Majorana mass matrix "a one has

-)!"a(−g∗)-! = "∗
a (g). (4.43)

Note that matrix -! is the same in (4.42) and (4.43) since left-handed charged
leptons :! and left-handed neutrinos a:! form an electroweak SU(2) doublet !,
so they transform uniformly both under CP and modular transformations:

-:! = -a:! ≡ -!, d:! (W) = da:! (W) ≡ d!(W), 9:! = 9a:! ≡ 9!. (4.44)
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In a symmetric basis -! = -' = 1, the constraints on the mass matrices
simplify to

"4(−g∗) = "∗
4 (g), "a(−g∗) = "∗

a (g), (4.45)
which further reduce to reality of the couplings. Namely, for the charged-lepton
mass matrix one has

"4(−g∗) = D3
∑
A

6∗A (_A)†(−g∗) = D3
∑
A

6∗A (_A)) (g),

"∗
4 (g) =

(
D3

∑
A

6∗A (_A)†(g)
)∗

= D3
∑
A

6A (_A)) (g).
(4.46)

Clearly, CP invariance requires 6A = 6∗A , since _A(g) are linearly independent
matrices, which in turn is guaranteed by independence of the singlets.
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Modular symmetry is spontaneously broken by the VEV of the modulus g: in fact,
there is no value of g which is left invariant by the modular group action (2.4).
However, certain values of g (called symmetric points) break the modular group
Γ only partially, with the unbroken generators giving rise to residual symmetries.
In this chapter we classify the possible residual symmetry groups following
refs. [P1, P5]. These symmetries can play an important role in flavour model
building, as discussed later in chapters 6, 9 and 10.

5.1. Symmetric points in the fundamental domain

To classify the possible residual symmetries, one first notices that with a proper
“gauge choice” g can always be restricted to the fundamental domain D of the
modular group Γ:

D ≡
{
g ∈ H : −1

2 ≤ Re g < 1
2 , |g| > 1

}
∪

{
g ∈ H : −1

2 < Re g ≤ 0, |g| = 1
}
,

(5.1)
depicted in fig. 5.1. The fundamental domain describes all possible values of g
up to a modular transformation. Note that, by convention, the right half of the
boundary mD is not included into D, as it is related to the left half by suitable
modular transformations. Since the underlying theory enjoys the modular
symmetry Γ, all the vacua related by modular transformations are physically
equivalent. This means that without loss of generality one can assume that
g ∈ D.

In the fundamental domain D, there exist only three symmetric points (see
also [134]):

• g� ≡ 7 invariant under (;

• g! ≡ l ≡ 42c7/3 (“the left cusp”) invariant under ();

• g) ≡ 7∞ invariant under ) .
In addition, the ' generator is unbroken for any value of g.
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Figure 5.1.: The fundamental domain D of the modular group Γ, and its three
symmetric points g� = 7, g! = 42c7/3 and g) = 7∞.

5.2. CP-conserving points

In a CP-conserving modular-invariant theory both CP and modular symmetry
are broken spontaneously by the VEV of the modulus g. However, there exist
certain values of g which conserve CP. Obviously, this is the case if g is left
invariant by CP:

g
CP−−→ −g∗ = g, (5.2)

meaning that g lies on the imaginary axis, Re g = 0. In a symmetric basis one
then has

"4(g) = "∗
4 (g), "a(g) = "∗

a (g), (5.3)
as can be seen from (4.45). The resulting mass matrices are real and the
corresponding CPV phases are trivial, such that sin X = sinU21 = sinU31 = 0 in
the standard parametrisation [135] of the PMNS mixing matrix.
Let us now consider a point Wg related to a CP-invariant point g = −g∗ by

a modular transformation W. This point is physically equivalent to g due to
modular invariance and therefore it should also be CP-conserving. However, Wg
does not go to itself under CP. Instead, one has

Wg
CP−−→ (Wg)CP = C(W) gCP = C(W) g = C(W)W−1Wg, (5.4)
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so the resulting CP-transformed value (Wg)CP is related to the original value Wg
by a modular transformation C(W)W−1.

Hence, it is natural to expect that a value of g conserves CP if it is left invariant
by CP up to a modular transformation, i.e.,

g
CP−−→ −g∗ = Wg (5.5)

for some W ∈ Γ.1 Indeed, if we consider a value of g which satisfies (5.5), then
in a symmetric basis we have

"4(Wg) = "∗
4 (g), "a(Wg) = "∗

a (g), (5.6)

from (4.45). Denote by ?(g) the value of a lepton flavour observable evaluated
at g. Modular invariance requires that ?(g) = ?(Wg), since g is physically
equivalent to Wg. On the other hand, from (5.6) we find ?(Wg) = ?(g)∗. It follows
that the observables evaluated at g coincide with their complex conjugates,
?(g) = ?(g)∗, hence CPV phases are trivial (0 or c).
To find all points satisfying (5.5) in the fundamental domain D, let us first

notice that its interior, which we denote as int(D), maps to itself under CP. Apart
from that, no two points from int(D) are related by any non-trivial modular
transformation. Therefore, if g ∈ int(D), then (5.5) reduces to (5.2) and we
find again Re g = 0. The remaining possibility is that g lies on the boundary
of D. Then it is easy to show that it also satisfies (5.5), but with a non-trivial
W. Namely, for the left vertical line we have g = −1/2 + 7 G → 1/2 + 7 G = )g

under CP, while for the arc we have g = 47i → −4−7i = (g.
To summarise, if a theory is CP-invariant (i.e., its couplings satisfy the con-

straints discussed in section 4.2), then the CP symmetry is spontaneously broken
by any g ∈ D except for the values lying on the fundamental domain boundary
or the imaginary axis:

• Re g = 0 (the imaginary axis) is invariant under CP;

• Re g = −1/2 (the left vertical boundary) is invariant under CP);

• |g| = 1 (the boundary arc) is invariant under CP (.
Note also that CP always acts on g as in (4.11), meaning the above statement
does not depend on the choice of CP automorphism (CP1 or CP2).
1A similar condition has been derived in ref. [129] in the context of string theories (in which
the CP symmetry represents a discrete gauge symmetry), postulating the action of CP on the
compactified directions.
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5.3. Classification of the residual symmetry groups

For a given value of g, the residual symmetry group is simply a group generated
by the unbroken transformations subject to relations which can be deduced
from (4.23) and (4.28). For instance, the symmetric point g = 7 is invariant
under (, ' and CP1 in the case of the full modular group Γ enhanced by CP1.
The corresponding symmetry group is

〈(, ', CP1〉 =
〈
(, CP1

�� (4 = 1, CP21 = 1, CP1 ( CP−11 = (−1
〉
' �4 , (5.7)

where �4 is the dihedral group of order 8 (the symmetry group of a square).
One can find the residual symmetry groups for other values of g in a similar
fashion; we collect the results in table 5.1.
When considering finite modular versions Γ(′)# of the modular group, the

residual symmetry groups may be reduced, due to the extra relation )# = 1

(recall that for # > 5 further constraints are present). For # ≤ 5, the instances
of ℤ) in table 5.1 should be replaced by ℤ)

# .
Since every symmetric point outside the fundamental domain D is physi-

cally equivalent to a symmetric point inside D, its residual symmetry group is
isomorphic to one of the groups listed in table 5.1.
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Table 5.1.: Residual symmetry groups for different values of g and different choices of the full symmetry group.

Value of g Γ Γ Γ o CP1 Γ o CP2 Γ o CP

g = 7 ℤ(
4 ℤ(

2 ℤ(
4 o ℤ

CP1
2 ' �4 ℤ(

4 × ℤ
CP2(
2 ℤ(

2 × ℤCP
2

g = 42c7/3 ℤ()
3 × ℤ'

2 ℤ()
3

(
ℤ()

3 o ℤ
CP1)
2

)
× ℤ'

2
' (3 × ℤ2 ' �6

(
ℤ()

3 o ℤ
CP2)
2

)
× ℤ'

2
' (3 × ℤ2 ' �6

ℤ()
3 o ℤ

CP)
2 ' (3

g = 7∞ ℤ) × ℤ'
2 ℤ)

(
ℤ) o ℤCP1

2

)
× ℤ'

2
(
ℤ) × ℤ'

2
)
o ℤCP2)

2 ℤ) o ℤCP
2

Re g = 0 ℤ'
2 1 ℤ

CP1
2 × ℤ'

2 ℤ
CP2
4 ℤCP

2

|g| = 1 ℤ'
2 1 ℤ

CP1(
2 × ℤ'

2 ℤ
CP2(
2 × ℤ'

2 ℤCP (
2

Re g = −1
2 ℤ'

2 1 ℤ
CP1)
2 × ℤ'

2 ℤ
CP2)
2 × ℤ'

2 ℤCP)
2

generic g ℤ'
2 1 ℤ'

2 ℤ'
2 1
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6. Mass and mixing patterns [P6]

We have seen in the previous chapter that certain residual symmetry groups
remain unbroken at symmetric points g = gsym. For these values of g, flavour
textures can be severely constrained by the residual symmetry group, which
may enforce the presence of multiple zero entries in the mass matrices. As g
moves away from its symmetric value, these entries will generically become
non-zero.
We show in this chapter that the magnitudes of such (residual-)symmetry-

breaking entries are controlled by the size of the departure n from gsym and by
the field transformation properties under the residual symmetry group, which
may depend on the modular weights. This idea can be utilized to explain the
hierarchical patterns of fermion masses and mixing without fine-tuning of the
model parameters.

6.1. Mass hierarchies without fine-tuning

Mass matrices close to symmetric points

Consider a modular-invariant bilinear

k2
7 " (g)7 8 k 8 , (6.1)

where the superfields k and k2 transform under the modular group as1

k
W
−→ (2g + 3)−9d(W) k,

k2 W
−→ (2g + 3)−92d2 (W) k2,

(6.2)

so that each " (g)7 8 is a modular form of level # and weight  ≡ 9+ 92. Modular
invariance requires " (g) to transform as

" (g)
W
−→ " (Wg) = (2g + 3) d2 (W)∗" (g)d(W)†. (6.3)

1Note that in the case of a Dirac bilinear k and k2 are independent fields, so in general 92 ≠ 9

and d2 ≠ d, d∗.
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6. Mass and mixing patterns [P6]

Taking g to be close to the symmetric point, and setting W to the residual
symmetry generator, one can use this transformation rule to constrain the form
of the mass matrix " (g). We consider each of the three symmetric points in
turn.
3sym = i∞
The representation basis for the group generators ( and ) typically found in
the literature is the )-diagonal basis, in which d(2) ()) = diag (

d
(2)
7

) . This basis
is particularly useful for the analysis of models where g is “close” to gsym = 7∞,
i.e., models with large Im g. By setting W = ) in (6.3), one finds

"7 8()g) =
(
d27 d 8

)∗
"7 8(g). (6.4)

It is convenient to treat the "7 8 as a function of ?# ≡ exp (2c7g/#), so that

n ≡ |?# | = 4−2c Im g/# (6.5)

parametrises the deviation of g from the symmetric point. Note that the entries
"7 8(?#) depend analytically on ?# and that ?# → Z#?# under ) , with Z# ≡
exp (2c7/#). Thus, in terms of ?# , (6.4) reads

"7 8(Z#?#) = (d27 d 8)
∗"7 8(?#). (6.6)

Expanding "7 8 in powers of ?# as "7 8(?#) = 00 + 01 ?# + 02 ?2# + . . ., one finds

Z<# 0< = (d27 d 8)
∗ 0<, (6.7)

which means that 0< can only be non-zero for values of < such that (d2
7
d 8)∗ = Z<# .

It is clear that in the symmetric limit ?# → 0 the entry"7 8 = 00 is only allowed
to be non-zero if d2

7
d 8 = 1. More generally, if (d2

7
d 8)∗ = Z: with 0 ≤ : < #,

"7 8(?#) = 0: ?
:
# + 0#+: ?#+:# + 02#+: ?2#+:# + . . . (6.8)

in the vicinity of the symmetric point. It crucially follows that the entry "7 8 is
expected to be O(n:) whenever Im g is large. The power : only depends on how
the representations of k and k2 decompose under the residual symmetry group
ℤ)
# . This point will be made explicit in the next section.

3sym = i
For the analysis of models where g is in the vicinity of gsym = 7, it is convenient
to switch to the basis where the ( generator is represented by a diagonal matrix.
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6. Mass and mixing patterns [P6]

In this (-diagonal basis, one has d(2) (() = diag (
d
(2)
7

) .2 It is useful to define and
work with

d̃
(2)
7

≡ 79
(2)
d
(2)
7
, (6.9)

which not only simplify the algebra, but also correspond to representations of
the residual symmetry group, see (6.23). By setting W = ( in (6.3), one finds

"7 8((g) = (−7g) 
(
d̃27 d̃ 8

)∗
"7 8(g). (6.10)

We now treat the "7 8 as functions of

A ≡ g − 7

g + 7 , (6.11)

so that, in this context, n ≡ |A| parametrises the deviation of g from the symmetric
point. Note that the entries "7 8(A) depend analytically on A and that A (−→ −A.
Thus, in terms of A, (6.10) reads

"7 8(−A) =
(1 + A
1 − A

) 
( d̃27 d̃ 8)

∗"7 8(A) ⇒ "̃7 8(−A) = ( d̃27 d̃ 8)
∗"̃7 8(A), (6.12)

where we have introduced "̃7 8(A) ≡ (1 − A)− "7 8(A). Expanding "̃7 8 in powers
of A as "̃7 8(A) = 00 + 01 A + 02 A2 + . . ., one obtains

(−1)< 0< = ( d̃27 d̃ 8)
∗0<. (6.13)

It should be clear from (6.13) that for g ' 7 the mass matrix entry "7 8 ∼ "̃7 8

is only allowed to be O(1) when d̃2
7
d̃ 8 = 1. If instead d̃2

7
d̃ 8 = −1, the entry

"7 8 ∼ "̃7 8 is expected to be O(n), with n = |A|. Note that, unlike the case
gsym = 7∞, the relevant factors d̃(2)

7
depend on the weights 9(2) via (6.9).

3sym = 8
Finally, for the analysis of models where g is in the vicinity of gsym = l, we
consider the basis where the product () is represented by a diagonal matrix. In
this ()-diagonal basis where d(2) (()) = diag (

d
(2)
7

) , it is useful to define

d̃
(2)
7

≡ l9(2) d
(2)
7
, (6.14)

which are representations under the residual symmetry group, see (6.24). By
setting W = () in (6.3), one finds

"7 8(()g) = [−l(g + 1)] (
d̃27 d̃ 8

)∗
"7 8(g). (6.15)

2Although we make use of the same notation, the d(2)
7

depend on the basis under consideration.
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It is now convenient to treat the "7 8 as functions of

C ≡ g − l

g − l2 , (6.16)

so that, in this context, n ≡ |C| parametrises the deviation of g from the sym-
metric point. Note that the entries "7 8(C) depend analytically on C and that
C → l2C under () . Thus, in terms of C, (6.15) reads

"7 8(l2C) =
(1 − l2C

1 − C

) 
( d̃27 d̃ 8)

∗"7 8(C) ⇒ "̃7 8(l2C) = ( d̃27 d̃ 8)
∗"̃7 8(C),

(6.17)
where "̃7 8(C) ≡ (1 − C)− "7 8(C). Expanding "̃7 8 in powers of C as "̃7 8(C) =

00 + 01 C + 02 C2 + . . ., one obtains

l2< 0< = ( d̃27 d̃ 8)
∗ 0<. (6.18)

It follows that for g ' l the mass matrix entry "7 8 ∼ "̃7 8 is only allowed to
be O(1) when d̃2

7
d̃ 8 = 1. More generally, if d̃2

7
d̃ 8 = l: with : = 0, 1, 2, then the

entry "7 8 ∼ "̃7 8 is expected to be O(n:) in the vicinity of g = l, with n = |C|.
Like in the case gsym = 7, the factors d̃(2)

7
depend on the weights 9(2) , see (6.14).

Decomposition under residual symmetries

We have just shown that, as g departs from a symmetric value gsym, the entries
of fermion mass matrices are of O(n:), where n parametrises the deviation of g
from gsym. The powers : are extracted from products of factors which, in this
section, are shown to correspond to representations of the residual symmetry
group. One can systematically identify these residual symmetry representations
for the different possible choices of Γ′# representations of matter fields. This
knowledge will later be exploited to construct hierarchical mass matrices via
controlled corrections to entries which are zero in the symmetric limit.

We start by noting that matter fieldsk furnish “weighted” representations (r, 9)
of the finite modular group Γ′# . Whenever a residual symmetry is preserved
by the value of g, matter fields decompose into unitary representations of the
residual symmetry group. Modulo a possible ℤ'

2 factor,3 these groups are the
cyclic groups ℤ)

# , ℤ(
4, and ℤ()

3 (see chapter 5). A cyclic group ℤ< ≡ 〈0 | 0< = 1〉
has < inequivalent 1-dimensional irreps 19, where 9 = 0, . . . , <− 1 is sometimes
3See the discussion in appendix C.
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referred to as a charge. The group generator 0 is represented by one of the <-th
roots of unity,

19 : d(0) = exp
(
2c79

<

)
. (6.19)

For odd <, the only real irrep of ℤ< is the trivial one, 10 (the reality of an irrep
is indicated by removing the boldface). For even <, there is one more real irrep,
1</2. All other irreps are complex, and split into pairs of conjugated irreps:
(19)∗ = 1<−9.
To illustrate the aforementioned decomposition of representations at sym-

metric points, we take as an example a (3, 9) triplet k of (′4. It transforms under
the unbroken W = () at g = l as

k7
()−−→ (−l − 1)−9 d3(())7 8 k 8 = l9d3(())7 8 k 8 . (6.20)

One can check that the eigenvalues of d3(()) are 1, l and l2, and so in a
suitable (()-diagonal) basis the transformation rule explicitly reads

k
()−−→ l9 ©­«

1 0 0
0 l 0
0 0 l2

ª®¬k =
©­«
l9 0 0
0 l9+1 0
0 0 l9+2

ª®¬k, (6.21)

which means that k decomposes as k { 19 ⊕ 19+1 ⊕ 19+2 under the residual
ℤ()

3 .
One can find the residual symmetry representations for any other “weighted”

multiplet of a finite modular group in a similar fashion. For a given level #, the
decompositions of fields under a certain residual symmetry group only depend
on the pair (r, 9). In general:

• At g = 7∞, k ∼ (r, 9) transforms under the unbroken W = ) as

k7
)−→ dr())7 8 k 8 = d7 k7 , (6.22)

where for the last equality we have assumed to be in a )-diagonal basis (no
sum over 7). The phase factors d7 correspond to the ℤ)

# irreps into which
k decomposes. It follows that each d7 is a power of Z = exp(2c7/#),
depending on r but not on 9.

• At g = 7, k ∼ (r, 9) transforms under the unbroken W = ( as

k7
(−→ (−7)−9dr(()7 8 k 8 = 79d7 k7 , (6.23)
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where for the last equality we have assumed to be in an (-diagonal basis
(no sum over 7). The phase factors d̃7 = 79d7 correspond to the ℤ(

4 irreps
into which k decomposes. It follows that each d̃7 is a power of 7 which
depends both on r and on 9 (mod 4).

• At g = l, k ∼ (r, 9) transforms under the unbroken W = () as

k7
()−−→ (−l − 1)−9dr(())7 8 k 8 = l9d7 k7 , (6.24)

where for the last equality we have assumed to be in an ()-diagonal
basis (no sum over 7), as in the explicit example of (6.21). The phase
factors d̃7 = l9d7 correspond to the ℤ()

3 irreps into which k decomposes.
It follows that each d̃7 is a power of l which depends both on r and on
9 (mod 3).

After identifying the (∼)
d7 and (∼)

d 2
7
factors for the fields k and k2 entering a

bilinear (equivalently, their irrep decompositions), one can apply the results of
the previous section to determine the structure of a mass matrix in the vicinity
of a symmetric point in terms of powers of n, in the appropriate basis. It follows
from the above that, in the analysis with large Im g, the product (d2

7
d 8)∗ matches

some power Z:# with 0 ≤ : < #, while in the analysis corresponding to g ' l

one necessarily has d̃2
7
d̃ 8 = l: with : = 0, 1, 2. These were tacitly taken as the

most general possibilities in section 6.1.
The same reasoning implies that, in the g ' 7 context, d̃2

7
d̃ 8 is some integer

power 7:, with : = 0, 1, 2, 3. It turns out that only two out of the four possibilities
are viable, namely : = 0, 2 so that d̃2

7
d̃ 8 = ±1, as considered in section 6.1. This

is due to the fact that " (g)7 8 is '-even and thus the fields k2
7
and k 8 need to

carry the same '-parity (see also appendix C).
We list in tables C.1 to C.4 of appendix C the decompositions of the weighted

representations of Γ′# (# ≤ 5) under the three residual symmetry groups.

Hierarchical structures

We are in a position to use the results found so far and construct hierarchical
mass matrices in the vicinity of a symmetric point. We have seen that in an
appropriate basis " (g(n))7 8 ∼ O(n:). For each (7, 8) pair, the power : can be
obtained from the residual symmetry group decompositions of tables C.1 to C.4.
Note that a modular-symmetric mass matrix " (g(n)) depends analytically

on the small real parameter n, defined in section 6.1 for each symmetric point.
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Physical masses are the singular values of " (g) and are also analytic functions
of n.4 After the modular symmetry breaking, the leading superpotential contri-
bution to each fermion mass is thus expected to be proportional to a power of
n which depends on the hierarchical structure of the entries of ". To find out
which, one can make use of the following set of relations, valid for any < × <

complex matrix " [137]:∑
71<...<7>

;2
71 . . . ;

2
7>
=

∑��det">×>
��2 , (6.25)

where > = 1, . . . , < is fixed, ;7 are the singular values of ", and the sum on
the right-hand side goes over all possible > × > submatrices ">×> of ". In the
particular case of < = 3, we denote the masses by (;1, ;2, ;3) such that their
leading terms are respectively of order (n31 , n32 , n33) with 31 ≥ 32 ≥ 33 ≥ 0.
Then,

;2
3 ∼

∑
7, 8

|"7 8 |2 = Tr"†",

;2
2;

2
3 ∼

∑
| det"2×2 |2 ⇒ ;2

2 ∼
∑ | det"2×2 |2

Tr"†"
,

;2
1;

2
2;

2
3 = |det" |2 ⇒ ;2

1 ∼ |det" |2∑ | det"2×2 |2
,

(6.26)

where ∼ refers to power counting in n and not necessarily to a reliable approxi-
mation. Note that so far the considered mass spectrum is generic. This is to be
contrasted with the special case of a hierarchical 3 × 3 mass matrix, for which
31 > 32 > 33 ≥ 0 and thus ;1 � ;2 � ;3. In this case, (6.26) turns into
useful approximation,

;2
3 '

∑
7

;2
7 = Tr"†",

;2
2;

2
3 '

∑
7< 8

;2
7;

2
8 =

1
2

(
(Tr"†")2 − Tr("†")2

)
,

(6.27)

and lead to reliable expressions for ;3, ;2 and ;1 = | det" |/(;2;3).
As an example of application of our results, consider a model at level # =

5 with g having a large imaginary part and with matter fields in weighted
4More precisely, the elements of the unordered tuple of non-zero singular values are absolute
values of analytic functions of n, see theorem 4.3.17 in ref. [136].
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representations k ∼ (3, 9) and k2 ∼ (3′, 92). From table C.4 one sees that
k { 10 ⊕ 11 ⊕ 14 and k2 { 10 ⊕ 12 ⊕ 13 under the residual group at the
symmetric point gsym = 7∞. One can then identify d7 = diag(1, Z, Z4) and
d2
7
= diag(1, Z2, Z3), with Z = exp(2c7/5), which allows for the structure

" (g(n)) ∼ ©­«
1 n4 n

n3 n2 n4

n2 n n3
ª®¬ , with n = 4−2c Im g/5. (6.28)

Resorting to (6.26), one finds that spectrum is hierarchical, with (;3, ;2, ;1) ∼
(1, n, n4).
Note that to have a non-zero mass matrix one needs the sum  = 9 + 92 to

be even (in this case), since matter fields furnish unhatted representations of
the finite modular group and should carry the same '-parity (see appendix C).
Furthermore, in order to obtain the full structure of (6.28) and the expected
hierarchical spectrum,  must be large enough that sufficient modular forms
contribute to " (g). For instance, for  = 2 the superpotential may turn out to
include a unique contribution:

, ⊃ U
(
.
(5,2)
5 (g)k2k

)
1
⇒ " (g) = U

©­­«
√
3.1 .5 .2
.4 −

√
2.3 −

√
2.5

.3 −
√
2.2 −

√
2.4

ª®®¬. (5,2)
5

, (6.29)

where U is the coupling constant, and the rightmost matrix subscript indi-
cates the multiplet to which the .7 components belong. We have consid-
ered the )-diagonal basis for �′5. One can see from (3.25) that, at lead-
ing order in n = |?5 |, the components of . (5,2)

5 (g) read (.1, .2, .3, .4, .5) ∝(
− 1/

√
6, ?5, 3?25, 4?35, 7?45

) . The power structure matches that of (6.28) and
naively this corresponds to the desired (1, n, n4) spectrum. Upon closer inspec-
tion, however, one realises that the determinant of " vanishes identically for
any value of g,

det" ∝
√
6.1.3.4 − .2

2.4 + .2
(
.2
3 −

√
6.1.5

)
+ .5

(
.2
4 − .3.5

)
= 0 , (6.30)

meaning that at least one fermion is massless. In the vicinity of gsym = 7∞, we
have (;3, ;2, ;1) ∼ (1, n, 0). This issue is resolved already at weight  = 4,
for which the modular multiplets . (5,4)

4 , . (5,4)
5,1 , and . (5,4)

5,2 are available. In this
case the spectrum follows a (1, n, n4) pattern, without a massless fermion.
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Let us pause and describe our philosophy going forward. We are interested
in identifying 3 × 3 hierarchical mass matrices where the hierarchical pattern is
a result of the proximity of the modulus to a point of residual symmetry and no
massless fermions are present in the spectrum.
We assume to be dealing with bilinears of the type (6.1) and consider all

possible 3-dimensional representations for the fields k and k2. While the
representations r and r2 are in general reducible, we focus on the case where
the same weight is shared between the irreps into which they decompose.5
Thus, in our search, we take r(2) to be either irreducible or a direct sum of

irreps sharing the same d('). While it is possible for r(2) to be a direct sum of
hatted and unhatted representations, the requirement of a common weight 9(2)
would result in the co-existence of '-odd and '-even fields within k(2). The
fact that " (g) is '-even would then imply the isolation of these sectors by the
ℤ'

2 symmetry and the vanishing of some mixing angles.
Finally, it is straightforward to recognise that if all mass matrix entries are

either O(1) or O(n), then leading contributions to the masses themselves are not
expected to be smaller than O(n), unless one resorts to cancellations. Therefore,
for g ' 7 one cannot produce the desired hierarchical patterns solely as a
consequence of the smallness of n.
The result of our analysis is given in tables D.1 to D.4 of appendix D. These

tables summarise, for each of the levels # ≤ 5, the patterns which may arise
in the vicinity of the two potentially viable symmetric points, gsym = l and
7∞, for all (r, r2) pairs of 3-dimensional representations and all weights 9(2).
One finds that it is only possible to obtain hierarchical spectra for a small list of
representation pairs, the most promising of which are collected here, in table 6.1.

We have excluded from this summary table reducible representations made up
of three copies of the same singlet, since in those cases at least three independent
modular multiplets of the same typemust contribute to themass matrix to avoid a
massless fermion, and the number of superpotential parameters is unappealingly
high. Still, such cases may result in other interesting hierarchical patterns such
as (1, n2, n3) and (n, n2, n3) and can be found in the tables of appendix D.

5The freedoms in choosing i) the normalisations of modularmultiplets and ii) the normalisations
of Clebsch-Gordan coefficients introduce ambiguities in the identification of hierarchies. In the
interest of minimizing their impact, when possible we make use of modular form multiplets
obtained from tensor products of a single 9 = 1multiplet with itself, via canonically normalised
Clebsch-Gordan coefficients. Using this procedure, one expects that relative normalisations of
modular multiplets cannot be responsible for hierarchies, at least within the same weight 9.
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Table 6.1.: Hierarchical mass patterns which can be realised in the vicinity of
symmetric points. These patterns are unaffected by the exchange
r ↔ r2 and may only be viable for certain weights (see appendix D).
Subscripts run over irreps of a certain dimension, and 1′′′0 = 10
for # = 3, while 1′′0 = 10 for # = 4. Primes in parenthesis are
uncorrelated.

# Γ′# Pattern Sym. point Viable r ⊗ r2

2 (3 (1, n, n2) g ' l [2 ⊕ 1(′)] ⊗ [1 ⊕ 1(′) ⊕ 1′]
3 �′4 (1, n, n2) g ' l [10 ⊕ 10 ⊕ 1′0] ⊗ [11 ⊕ 11 ⊕ 1′′

1
]

g ' 7∞ [10 ⊕ 10 ⊕ 1′0] ⊗ [11 ⊕ 11 ⊕ 1′′
1
]

with 10 ≠ (11)∗

4 (′4 (1, n, n2) g ' l [30, or 2 ⊕ 1(′), or 2̂ ⊕ 1̂(′)]
⊗[11 ⊕ 11 ⊕ 1′

1
]

(1, n, n3) g ' 7∞ 3 ⊗ [2 ⊕ 1, or 1 ⊕ 1 ⊕ 1′],
3′ ⊗ [2 ⊕ 1′, or 1 ⊕ 1′ ⊕ 1′],
3̂′ ⊗ [2̂ ⊕ 1̂, or 1̂ ⊕ 1̂ ⊕ 1̂′],
3̂ ⊗ [2̂ ⊕ 1̂′, or 1̂ ⊕ 1̂′ ⊕ 1̂′]

5 �′5 (1, n, n4) g ' 7∞ 3 ⊗ 3′

6.2. Large mixing angles without fine-tuning

We have seen in the previous sections that a slightly broken residual modular
symmetry allows to accommodate hierarchical charged-lepton masses without
fine-tuning of the corresponding couplings. However, the resulting models are
still subject to fine-tuning in the neutrino sector, since residual symmetries
typically constrain not only the charged-lepton masses, but also the form of the
PMNS matrix by forcing some of its entries to be zeros. This raises the question
of whether it is possible to have a PMNS matrix which is close to the observed
one even in the symmetric limit, i.e., such that either none of its entries vanish,
or only the (13) entry vanishes as n → 0.
This possibility has been investigated in ref. [138] for arbitrary flavour sym-

metry groups. In particular, this analysis directly applies to the case of the flavour
symmetry being a residual modular symmetry. One of the main conclusions
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of ref. [138] is that only a limited number of flavour symmetry representation
choices for ! and �2 give rise to a PMNS matrix which is viable in the symmetric
limit (as defined above). Most notably, there are only two such cases consistent
with hierarchical charged-lepton masses:

1. ! { 1 ⊕ 1 ⊕ 1, �2 { 1 ⊕ @, where 1 is some real singlet of the flavour
symmetry, and @ is some (possibly reducible) representation such that
@ ⊅ 1;

2. ! { 1 ⊕ 1 ⊕ 1∗, �2 { 1∗ ⊕ @, where 1 is some complex singlet of the
flavour symmetry, 1∗ is its conjugate, and @ is some (possibly reducible)
representation such that @ ⊅ 1, 1∗.

The above original result makes use of the assumption that one charged-lepton
mass and at least one neutrino mass does not vanish in the symmetric limit.
However, one can also deduce from the analysis performed in [138] that the
PMNS matrix is generically unconstrained in the symmetric limit when the
opposite is true. Therefore, we extend the list of viable cases with the following
two:

3. all charged-lepton masses vanish in the symmetric limit, i.e., the cor-
responding hierarchical pattern involves only positive powers of n, e.g.
(n, n2, n3);

4. all light neutrino masses vanish in the symmetric limit, i.e., ! decom-
poses into three (possibly identical) complex singlets none of which are
conjugated to each other.

It follows that a modular-symmetric model of lepton flavour with hierarchical
charged-lepton masses may be free of fine-tuning if it satisfies any of the proper-
ties 1–4. Applying this filter to the promising hierarchical cases of table 6.1, one
is left with the representation pairs listed here, in table 6.2. In this summary
table, we have once again disregarded reducible representations made up of
three copies of the same singlet. We proceed by constructing such a model
in chapter 10.

As a final remark, we note that the argument of ref. [138] is only valid in the
case when the flavour symmetry analysis can be applied directly to the light
neutrino mass matrix. In our setup, this corresponds to the situation when
light neutrino masses arise either directly from a modular-invariant Weinberg

47



6. Mass and mixing patterns [P6]

Table 6.2.: Hierarchical charged-lepton mass patterns which may be realised in
the vicinity of symmetric points without fine-tuned mixing (PMNS
close to the observed one in the symmetric limit). The property
which is satisfied (from 1–4, see text) is given in the last column and
may depend on the weights 9 and 92. The case # = 3 with g ' l is
the only one in the table for which r�2 ↔ r! may be required, and
for which not all 9(2) choices are viable. For other notation, see the
caption of table 6.1.

# Γ′# Pattern Sym. point Viable r�2 ⊗ r! Case
2 (3 (1, n, n2) g ' l [2 ⊕ 1(′)] ⊗ [1 ⊕ 1(′) ⊕ 1′] 1 or 4
3 �′4 (1, n, n2) g ' l [10 ⊕ 10 ⊕ 1′0] ⊗ [11 ⊕ 11 ⊕ 1′′

1
] 2

g ' 7∞ [1 ⊕ 1 ⊕ 1′] ⊗ [1′′ ⊕ 1′′ ⊕ 1′],
[1 ⊕ 1 ⊕ 1′′] ⊗ [1′ ⊕ 1′ ⊕ 1′′]

2

4 (′4 (1, n, n2) g ' l [30, or 2 ⊕ 1(′), or 2̂ ⊕ 1̂(′)]
⊗[11 ⊕ 11 ⊕ 1′

1
]

1 or 4

5 �′5 − − − −

operator, or via a type-I seesaw UV completion such that none of the gauge-
singlet neutrinos # 2 becomes massless in the symmetric limit (so that they can
be integrated out). This is the case for the model described later in chapter 10.
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7. General setup [P1]

In this part of the thesis we describe several viable models of lepton flavour
based on the theoretical developments of part II. We start our discussion with
the general model-building setup. In section 7.1 we describe the field content
of our models, transformation properties of these fields and the origin of lepton
masses. Next, in section 7.2 we discuss potential sources of corrections and show
that they are negligible in a sizeable region of the parameter space. Finally, in
section 7.3 we describe our numerical procedure which we use to fit the models
to the experimental data and to explore the viable regions in the parameter
space. These methods will be employed to analyse the models presented later
in chapters 8 to 10.

7.1. Field content

We consider models of lepton masses and mixings in an MSSM-like (minimal
supersymmetric Standard Model) setting. The relevant matter superfields are
collected in table 7.1. For simplicity, we take the Higgs fields �C and �3 to be
singlets under the modular group. Charged-lepton masses are obtained from
their Yukawa interactions,

, ⊃
∑
A

UA

(
.
(#,9. )
rA (g) �2 !

)
1,A
�3, (7.1)

where ! and �2 denote the lepton doublet and the charged-lepton singlet su-
perfields with weights 9! and 9�, respectively. Neutrino masses are generated

Table 7.1.: Chiral matter fields and their transformation properties under the
electroweak gauge group and the finite modular group.

�2 # 2 ! �3 �C

SU(2)L × U(1)Y (1, +1) (1, 0) (2,−1/2) (2,−1/2) (2, +1/2)
Γ′# d� d# d! 1 1
9� 9� 9# 9! 0 0
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either by the Weinberg operator,

, ⊃ 1
Λ

∑
A

6A

(
.
(#,9, )
rA (g) !2

)
1,A
�2
C , (7.2)

or within a type-I seesaw UV completion,

, ⊃
∑
A

6A

(
.
(#,9Y)
rA (g) # 2 !

)
1,A
�C +

∑
A

ΛA

(
.
(#,9")
rA (g) (# 2)2

)
1,A
, (7.3)

where at least 2 neutrino gauge-singlet superfields # 2 of weight 9# are present
in the model. To compensate the modular weights of field monomials, the
modular forms entering the Weinberg and Majorana terms need to have weights
9, = 29! and 9" = 29# , while those in Yukawa terms need instead 9. = 9!+9�
and 9Y = 9! + 9# .

The relevant superpotentials can be cast in the form

, = _ 7 8 �
2
7 ! 8 �3 +


1
2 27 8 !7 ! 8 �

2
C (Weinberg)

Y7 8 #
2
7
! 8 +

1
2 ("#)7 8 # 2

7
# 2
8

(Seesaw)
. (7.4)

After electroweak symmetry breaking, with 〈�C〉 = (0, DC)) and 〈�3〉 = (D3, 0)) ,
these result in the Lagrangian mass terms for leptons

L ⊃ −
(
"4

)
7 8
47! 4 8' −

1
2

(
"a

)
7 8
a2
7'
a 8! + h.c., (7.5)

which have been written in terms of four-spinors. Here, "4 = D3_
†, while

"a =

{
D2C 2 (Weinberg)
−D2C Y) "−1

# Y (Seesaw)
. (7.6)

7.2. Potential sources of corrections

Predictions extracted from modular-invariant theories of flavour correspond
to some high energy scale Λ. Therefore, they may strongly depend on the
SUSY-breaking effects, and the RG (renormalisation group) running. These
effects were analysed in detail in ref. [14].
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As far as SUSY-breaking effects are concerned, it was demonstrated in ref. [14]
that corrections to masses and mixing which may not be absorbed in a redef-
inition of superpotential parameters can still be made negligible, provided
one realises a sufficient separation between i) the scale " of communication
of SUSY-breaking effects to the visible sector and ii) the characteristic scale
;SUSY ∼ �/" of the soft terms, with � being the spurion VEV assumed to
parameterise the breaking of SUSY. Asking for such a gap does not hinder
dramatically the choice of possible values for ;SUSY.

RG effects on neutrino mixing parameters strongly depend on i) tan V ≡ DC/D3
and ii) the absolute neutrino mass scale ;min. The effects generically become
larger when either tan V or ;min are increased (see, e.g., [139]). Furthermore,
for the IO (inverted ordering) neutrino mass spectrum, these effects can be
sizeable even for ;min → 0, since in this case the one-loop V-functions for
\12 and X are enhanced by Δ;2

23/Δ;2
21 independently of ;min (see table 2 in

[139]).
It has been found in ref. [14] that for a model predicting the NO (normal

ordering) spectrum of neutrino masses with ;min ≈ 0.01 eV, the RG effects
on the predictions of the neutrino parameters are negligible even for relatively
large value of tan V = 25. All three models considered in this thesis lead to the
NO spectrum and are allowed to have ;min . 0.01 eV. Thus, in what follows
we assume to be in a regime in which RG corrections to masses and mixings are
negligible.
In general, one should also take into account threshold corrections. They

depend on the specific SUSY spectrum and, as argued in ref. [14], can be
rendered unimportant. This naturally happens if tan V is small.

7.3. Numerical procedure

As we shall see, each of the investigatedmodels depends on a set of dimensionless
parameters

>7 = (g, V/U, W/U, 6′/6, . . . , Λ′/Λ, . . .), (7.7)
which determine dimensionless observables (mass ratios, mixing angles and
phases), and two overall mass scales: one for the charged-lepton mass matrix "4

and one for the neutrino mass matrix "a. Phenomenologically viable models
are those that lead to values of observables which are in close agreement with
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Table 7.2.: Best-fit values and 1f ranges for neutrino oscillation parameters, ob-
tained from the global analysis of ref. [140], and for charged-lepton
mass ratios, given at the scale 2× 1016 GeV with the tan V averaging
described in [12], obtained from ref. [141]. The parameters entering
the definition of @ are X;2 ≡ ;2

2−;2
1 and Δ;2 ≡ ;2

3− (;2
1+;2

2)/2.

Observable Best fit value and 1f range
;4/;` 0.0048 ± 0.0002
;`/;g 0.0565 ± 0.0045

NO IO
X;2/(10−5 eV2) 7.34+0.17−0.14
|Δ;2 |/(10−3 eV2) 2.485+0.029−0.032 2.465+0.030−0.031
@ ≡ X;2/|Δ;2 | 0.0295 ± 0.0008 0.0298 ± 0.0008
sin2 \12 0.305+0.014−0.013 0.303+0.014−0.013
sin2 \13 0.0222+0.0006−0.0008 0.0223+0.0007−0.0006
sin2 \23 0.545+0.020−0.047 0.551+0.016−0.034
X/c 1.28+0.38−0.18 1.52+0.13−0.15

the experimental results summarised in table 7.2.1
As a measure of goodness of fit, we use the sum of one-dimensional Δj2

8

functions
Δj2(>7) =

6∑
8=1

Δj2
8 (>7), (7.8)

for six accurately known dimensionless2 observable quantities

? 8 = (;4/;`, ;`/;g, @, sin2 \12, sin2 \13, sin2 \23). (7.9)

In (7.8) we have assumed approximate independence of the fitted quantities
(observables). In what follows, we define #f ≡

√
Δj2. For sin2 \7 8, we make use

1The atmospheric mass-squared difference is Δ;2
31 = Δ;2 + X;2/2 for the NO spectrum of

light neutrino masses and Δ;2
32 = Δ;2 − X;2/2 for the IO spectrum.

2If a model successfully reproduces dimensionless observables, the overall mass scales can be
easily recovered by fitting them to the charged lepton masses ;4, ;` , ;g, and the neutrino
mass-squared differences X;2 and |Δ;2 |.
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of the one-dimensional projections Δj2
8
( 8 = 4, 5, 6) from ref. [140],3 whereas

for the remaining quantities we employ the Gaussian approximation:

Δj2
8 (>7) =

(
? 8(>7) − ? 8,best−fit

f 8

)2
, 8 = 1, 2, 3. (7.10)

Our goal is to explore phenomenologically viable regions in the parameter
space, i.e.,

{>7 : :(>7) ≤ :max} , (7.11)
where :(>7) is the “loss” objective function, which we define as :(>7) ≡ #f(>7) ≡√
Δj2(>7), and :max is the threshold, which we set to 3, so that it corresponds

to compatibility with the observed data at 3f confidence level.
We decompose this problem into two parts: first, we find local minima

>
(1)
7
, >

(2)
7
, . . . of :(>7), and then we explore connected regions around the min-

ima >(<)
7

that satisfy the constraint : (>7) ≤ :max.
To find local minima of :(>7), we use the following algorithm:
1. Pick parameters >7 at random until we find a “good enough” point such

that :(>7) < :0.01. The threshold :0.01 is a 0.01 quantile of the :(>7)
distribution, i.e., it is chosen in such a way that we accept roughly 1%
points. We use this preliminary step to filter out unpromising points which
are very far from the regions of interest. Note that typically :0.01 > :max,
i.e., the regions of interest cover only a tiny fraction of the parameter
space, so this step is needed to speed up the computation.

2. Run a conventional gradient-based local minimisation algorithm for the
objective function :(>7) starting from this point. If the resulting local
minimum satisfies the constraint : ≤ :max, then add it to a set of viable
minima.

3. Repeat steps 1 and 2 until we stop finding any new viable minima.
At this point, we have a set of distinct viable minima, so for each of them

we have to explore the viable region around them. A simple approach to the
problem is to vary parameters >7 individually until the objective function :(>7)
increases to :max. It corresponds to approximation of the viable region with
a parallelepiped. A more sophisticated approach is to approximate the viable
3These one-dimensional Δj2

8
( 8 = 4, 5, 6) projections were kindly shared with us by the authors

of ref. [140], and they are represented in figure 1 of this reference.
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region with an ellipsoid by expanding :(>7) around the minimum up to the
second order. However, neither of these approaches work well in our setting
due to peculiar shapes of viable regions. Typically, only a small part of a viable
region can be approximated with a parallelepiped or an ellipsoid, therefore
such approximations lead to a significant underestimation of the full viable
parameter space.

Instead, we explore a viable region with a random walk process known as the
Metropolis algorithm. The algorithm mimics the Brownian motion of a probe
particle in a potential. The procedure is as follows:

1. Define a “potential”

+ (>7) =
{
:(>7) if :(>7) ≤ :′max,

+∞ otherwise. (7.12)

We set :′max = 5 > :max in order to make the boundary :(>7) = :max clearly
visible in the plots.

2. Start a sequence with any point >(0)
7

from the viable region, e.g., the local
minimum found previously.

3. At iteration B, generate a candidate point >′
7
from a Gaussian distribution

centred at >(B)
7

with covariance Σ = diag(f21, . . . , f26), where f7 are “step
sizes” along different axes, which have to be tuned.

4. Accept the candidate point with probability

U = min
[
1, exp

( (
+ (>(B)

7
) − + (>′7)

)
/)

)]
, (7.13)

where ) is the “temperature” to be tuned.

5. Repeat steps 3 and 4 until the region is fully explored.

One can show that the resulting sequence is distributed according to the
Boltzmann (Gibbs) distribution %(>7) ∝ exp (−+ (>7)/)), which explains our
choice of the potential + (>7).
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As a first example of a viable modular-invariant model of lepton flavour, we
consider a model based on Γ4 ' (4 modular group with type-I seesaw. Models
of this type were studied in ref. [P1], and several viable choices depending on
8 parameters were identified. In this chapter we present one of these models,
which was shown to remain viable [P4] after imposing the CP symmetry (see
chapter 4), thus reducing the number of parameters from 8 to 7. More recently,
this model was found among the 9 predictive (4 modular-invariant models in
the comprehensive study [25] (labelled as L2 therein).

8.1. Model description

We choose the modular group representations and weights (r, 9) of the relevant
fields as

d! ∼ (3, 2), d� ∼ (1′, 0) ⊕ (1, 2) ⊕ (1′, 2), d# ∼ (3′, 0), (8.1)

which leads to the superpotential of the form

, = U
(
�21!.

(4,2)
3′

)
1
�3 + V

(
�22!.

(4,4)
3

)
1
�3 + W

(
�23!.

(4,4)
3′

)
1
�3

+ 6
(
# 2!.

(4,2)
2

)
1
�C + 6′

(
# 2!.

(4,2)
3′

)
1
�C + Λ (# 2# 2)1 ,

(8.2)

where the multiplets of modular forms . (4,2)
r and . (4,4)

r have been constructed
in section 3.1 (for the group theory of (4, see appendix B.2). Here no sums are
implied, since each singlet is unique, and the coefficients (U, V, W) = (U1, U2, U3),
6 and Λ are real without loss of generality, as the corresponding phases can
be absorbed into the fields �21, �22, �23, ! and # 2, respectively. Therefore, the
only complex parameter of the theory is 6′/6. If a symmetric basis is used and
the modular form multiplets are properly normalised, then CP is conserved
whenever

Im (6′/6) = 0. (8.3)
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8. Predictive model based on (4 [P1, P4]

The basis used in ref. [P1] is not symmetric. One can check that it can be
related to the symmetric basis here considered by the following transformation
matrices *r:

*1 = *1′ = 1, *2 =
1
√
2

(
1 1
−7 7

)
,

*3 = *3′ =
1

2
√
3

©­«
1 0 0
0 −4−7c/4 0
0 0 −47c/4

ª®¬ ©­«
2 2 2
−2 1 +

√
3 1 −

√
3

−2 1 −
√
3 1 +

√
3
ª®¬ .

(8.4)

By direct comparison of the singlets (# 2!.
(4,2)
2 )1 and (# 2!.

(4,2)
3′ )1 written in

different bases, and taking into account an extra factor of 7 arising from the
normalisation of the modular form multiplets used in ref. [P1], we find that also
in this basis CP invariance results in the condition (8.3). In what follows, we
report the parameter values in the basis of ref. [P1].

8.2. Numerical result

Through numerical search, we find only one viable region of the parameter space
consistent with the condition (8.3). We report the corresponding best-fit values
and the confidence intervals of the parameters and observables in table 8.1.

This minimal CP-invariant model, predicting 12 observables, is characterised
by 7 parameters: the 6 real parameters D3 U, V/U, W/U, D2C 62/Λ, 6′/6, Im g and
the phase Re g.1 The three real parameters D3 U, V/U and W/U are fixed by fitting
the three charged-lepton masses. The remaining three real parameters D2C 62/Λ,
6′/6, Im g and the phase Re g describe the nine neutrino observables: three
neutrino masses ;1, ;2, ;3; three neutrino mixing angles \12, \13, \23; and
three CPV phases X, U21, U31, where U21 and U31 are the Majorana phases [142].

The model predicts the type of spectrum neutrino masses obey, or the neutrino
mass ordering; the value of the lightest neutrino mass, and thus the sum of the
three neutrino masses; the values of the Dirac and the Majorana CPV phases
X and U21, U31, and thus the magnitude of CP violation effects in neutrino
oscillations [142–144] and of the neutrinoless double beta decay effective
Majorana mass |〈;〉| (see, e.g., [10, 145]). These predictions will be tested in
ongoing and future planned neutrino experiments (see, e.g., [10]). In addition,
1Re g should be treated as a phase since the dependence of Yukawa couplings and fermion
mass matrices on g arises through powers of ?4 ≡ exp(2c7g/4).
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Table 8.1.: Best-fit values along with 3f ranges of the parameters and observ-
ables in the predictive CP-invariant modular (4 model. CP symmetry
is spontaneously broken by the VEV of the modulus g.

Best-fit value 3f range
Re g ±0.09922 ±(0.09371 − 0.1049)
Im g 1.016 1.014 − 1.018
V/U 9.348 7.845 − 12.25
W/U 0.002203 0.001954 − 0.00246
6′/6 −0.02093 −(0.01682 − 0.02528)
D3 U, MeV 53.61
D2C 6

2/Λ, eV 0.0135
;4/;` 0.004796 0.004251 − 0.005351
;`/;g 0.05756 0.04399 − 0.06861
@ 0.02981 0.02769 − 0.03212
X;2, 10−5 eV2 7.326 6.953 − 7.694
|Δ;2 |, 10−3 eV2 2.457 2.396 − 2.511
sin2 \12 0.305 0.2687 − 0.3427
sin2 \13 0.02136 0.0192 − 0.02372
sin2 \23 0.4862 0.484 − 0.4882
;1, eV 0.01211 0.01185 − 0.01236
;2, eV 0.01483 0.01473 − 0.01493
;3, eV 0.05139 0.05074 − 0.05195∑
7;7, eV 0.07833 0.07734 − 0.07921

|〈;〉|, eV 0.01201 0.01178 − 0.01221
X/c ±1.641 ±(1.627 − 1.656)
U21/c ±0.3464 ±(0.324 − 0.3713)
U31/c ±1.254 ±(1.229 − 1.283)
#f 1.012
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Figure 8.1.: Correlations between pairs of observables in the predictive CP-
invariant modular (4 model.
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Figure 8.2.: Correlations between pairs of observables (continued from fig. 8.1)
and between observables and parameters.
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since all observables are functions of the VEV of the modulus g, the model also
predicts unique correlations between the different observables. Some of these
correlations are illustrated in figs. 8.1 and 8.2.

We note also that this model has more predictive power than the original model
from ref. [P1], which is described by the same parameters and an additional
phase arg(6′/6). In fact, the correlations between sin2 \23, the neutrino masses
and the CPV phases, which were present in the original model, now reduce to
accurate predictions of these observables at a few percent level. Apart from
that, many correlations between pairs of observables and between observables
and parameters arise. As we have already indicated, some of these correlations
are reported in figs. 8.1 and 8.2.

We also check numerically that CP invariance is restored for the CP-conserving
values of g derived in section 5.2. To achieve this, we vary the value of g while
keeping all other parameters fixed to their best-fit values, and present the
resulting sin2 X(g), sin2 U21(g) and sin2 U31(g) as heatmap plots in the g plane
in fig. 8.3. Notice that this variation is done for illustrative purposes only, as it
spoils the values of the remaining observables. Those are in agreement with
experimental data only in a small region of the g plane. The sine-squared of
a phase measures the strength of CPV, with the value of 0 (shown with green
colour) corresponding to no CPV and the value of 1 (shown with red colour)
corresponding to maximal CPV. As anticipated, both the boundary of D and
the imaginary axis conserve CP, appearing in green colour in fig. 8.3. However,
even a small departure from a CP-conserving value of g can lead to large CPV
due to strong dependence of the observables on g. This is noticeably the case in
the vicinity of the boundary of the fundamental domain.
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Figure 8.3.: CP violation strength, measured as sine-squared of the CPV phases,
for different values of the modulus g. The boundary of the funda-
mental domain D defined in (5.1) and the imaginary axis Re g = 0
conserve CP. The ranges of Re g and Im g are chosen to extend
slightly beyond the fundamental domain D to make its boundary
clearly visible.
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In this chapter we investigate the possibility to construct a modular-invariant
model of lepton flavour with an unbroken residual symmetry (see chapter 5),
following ref. [P3]. Residual symmetries can be used to explain in a natural
way the observed neutrino mixing pattern in the context of usual non-Abelian
discrete flavour symmetries.
By considering modular-invariant mass matrices of Γ3 ' �4, we implement

this idea in the context of the modular symmetry approach to flavour. More
specifically, we construct a model with an unbroken ℤ)

3 or ℤ()
3 group in the

charged-lepton sector, and an unbroken ℤ(
2 group in the neutrino sector, so that

the neutrino mixing matrix has the trimaximal form. This model also gives rise
to leptonic sum rules, which have been studied more recently in ref. [23].

9.1. Modular forms of level 3

Weight-2 modular forms of Γ3 ' �4 have been explicitly constructed in [12] (for
the group theory of �4, see appendix B.1). They furnish a triplet representation
of �4, and can be expressed in terms of the Dedekind eta function [(g) (see
appendix A) and its derivative:

.
(3,2)
3 (g) = 7

2c

©­­­­­­­­«

[′(g/3)
[(g/3) + [′((g + 1)/3)

[((g + 1)/3) + [′((g + 2)/3)
[((g + 2)/3) − 27[′(3g)

[(3g)

−2
(
[′(g/3)
[(g/3) + l2[

′((g + 1)/3)
[((g + 1)/3) + l [′((g + 2)/3)

[((g + 2)/3)

)
−2

(
[′(g/3)
[(g/3) + l [′((g + 1)/3)

[((g + 1)/3) + l2[
′((g + 2)/3)
[((g + 2)/3)

)
ª®®®®®®®®¬

(9.1)

with the following ?-expansions in ?3 ≡ exp(27cg/3):

.
(3,2)
3 (g) =

©­­«
.
(3,2)
1 (g)
.
(3,2)
2 (g)
.
(3,2)
3 (g)

ª®®¬ =
©­­«
1 + 12?33 + 36?63 + 12?93 + . . .
−6(?3 + 7?43 + 8?73 + . . . )
−18(?23 + 2?53 + 5?83 + . . . )

ª®®¬ . (9.2)
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Table 9.1.: Modular forms of weights 9 = 2, 4 up to a common prefactor(
.
(3,2)
1

)9/2 and the magnitude of . (3,2)
1 at the symmetric points.

weight 2 weight 4
g 3 3 {1, 1′} .

(3,2)
1

g! (1, l,−1
2l

2) 3(1,−1
2l, l

2) {0, 9
4l} 0.95 . . .

g� (1, 1 −
√
3,−2 +

√
3) (1, 1, 1) {6

√
3 − 9, 9 − 6

√
3} 1.02 . . .

g) (1, 0, 0) (1, 0, 0) {1, 0} 1

Higher-weight modular forms can be obtained as tensor products of . (3,2)
3 . In

particular, at weight 4, we find one triplet 3 and two singlets 1, 1′:

.
(3,4)
3 =

2
3

©­­«
(. (3,2)

1 )2 − . (3,2)
2 .

(3,2)
3

(. (3,2)
3 )2 − . (3,2)

1 .
(3,2)
2

(. (3,2)
2 )2 − . (3,2)

1 .
(3,2)
3

ª®®¬ ,
.
(3,4)
1 = (. (3,2)

1 )2 + 2. (3,2)
2 .

(3,2)
3 ,

.
(3,4)
1′ = (. (3,2)

3 )2 + 2. (3,2)
1 .

(3,2)
2 .

(9.3)

At the symmetric points g!, g� and g) , modular forms take specific values which
we collect in table 9.1 for weights 2 and 4.

9.2. Lepton mass matrices at the symmetric points

We assume that the neutrino masses originate from the Weinberg operator, and
assign the modular group representations and weights as

d! ∼ (3, 9!), d� ∼ (1, 9�) ⊕ (1′, 9�) ⊕ (1′′, 9�). (9.4)
Restricting ourselves to modular forms of weights 2 and 4, we obtain the super-
potential of the form

, = U
(
�21!.

(3,9. )
3

)
1
�3 + V

(
�22!.

(3,9. )
3

)
1
�3 + W

(
�23!.

(3,9. )
3

)
1
�3

+ 1
Λ

∑
A

6A

(
! !.

(3,9, )
rA

)
1
�2
C ,

(9.5)

where the sum in the second line includes one term (with rA = 3) if 9, = 2,
and three terms (with rA = 3, 1, 1′) if 9, = 4.
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Charged leptons

The superpotential (9.5) yields a mass matrix of charged leptons, which can be
written in terms of the �4 modular-form triplet with weight 9. = 2 or 4:

"� = D3
©­«
U 0 0
0 V 0
0 0 W

ª®¬ ©­«
.1 .3 .2
.2 .1 .3
.3 .2 .1

ª®¬. (3,9. )
3

. (9.6)

Without loss of generality the coefficients U, V, and W can be made real positive
by rephasing the right-handed charged lepton fields.

We will discuss next the charged-lepton mass matrix at the symmetric points
in the case of 9. = 2. At g = g!, the matrix "†

�"�, which is relevant for the
left-handed mixing, is given by:

"
†
�"� =

9
4D

2
3 (.

(3,2)
1 )2 ×

©­­«
U2 + V2 + 1

4W
2 −l2

2 U
2 + l2V2 − l2

2 W
2 lU2 − l

2 V
2 − l

2 W
2

∗ 1
4U

2 + V2 + W2 −l2
2 U

2 − l2
2 V

2 + l2W2

∗ ∗ U2 + 1
4 V

2 + W2

ª®®¬ ,
(9.7)

where through asterisks we omit some entries of a Hermitian matrix. It is easily
noticed that this matrix commutes with () , which is guaranteed by the residual
symmetry ℤ()

3 at g = g!, where

() =
1
3

©­«
−1 2l 2l2

2 −l 2l2

2 2l −l2
ª®¬ . (9.8)

Both matrices "†
�"� and () are diagonalised by the unitary matrix

*� ≡ )( =
1
3

©­«
−1 2 2
2l −l 2l
2l2 2l2 −l2

ª®¬ , (9.9)

so that
*
†
� () *� = ) = diag (1, l, l2),

*
†
� "

†
�"� *� =

9
4D

2
3 (.

(3,2)
1 )2 diag(W2, U2, V2).

(9.10)

Note that *� is independent of the parameters U, V, W.
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At g = g�, the determinant of "� vanishes. Therefore, this mass matrix leads
to a massless charged lepton, and thus cannot be used for model building.

Finally, at g = g) we obtain a real diagonal matrix:

"� = D3 .
(3,2)
1

©­«
U 0 0
0 V 0
0 0 W

ª®¬ . (9.11)

Let us now briefly discuss the case of 9. = 4. First note that only the modular-
form triplet . (3,4)

3 contributes to the charged-lepton mass matrix. As seen
from table 9.1, this triplet coincides with the weight-2 triplet at g = g! up to
a permutation, complex conjugation, and a prefactor. In fact one can check
that this choice yields the same numerical results as 9. = 2, therefore we do
not consider this case in what follows. Next, at g = g�, the charged-lepton
mass matrix is of rank one, i.e., two massless charged leptons appear since the
modular-form triplet is proportional to (1, 1, 1). Finally, at g = g) , the charged-
lepton mass matrix is proportional to the diagonal matrix given in (9.11) since
the weight-4 triplet coincides with the weight-2 triplet up to a prefactor.

Neutrinos

The triplet modular form contribution to the neutrino mass matrix is given by:

"a =
D2C
Λ

©­«
2.1 −.3 −.2
−.3 2.2 −.1
−.2 −.1 2.3

ª®¬. (3,9, )
3

. (9.12)

In the case 9, = 2 it is easily checked that two lightest neutrino masses are
degenerate at g = g!, while the determinant of "a vanishes at g = g�. In the
latter case one neutrino is massless and two neutrino masses are degenerate.
The two lightest neutrino masses are degenerate also at g = g) . In fact, these
degeneracies of neutrino masses still hold even if we use the seesaw mechanism
by introducing the three right-handed neutrino fields as �4 triplet. Thus, a
realistic neutrino mass matrix is not obtained as far as we take weight 2 modular
forms at g = g!, g�, g) .
Let us now consider the case 9, = 4. At g = g!, the modular-form triplet

contribution to the neutrino mass matrix is similar to the case of weight 2, where
two neutrino masses are degenerate. There is an additional contribution from
the modular-form singlet 1′, which however does not resolve the degeneracy. It
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is easily noticed that two neutrino masses are degenerate also at g = g) since
.
(3,4)
3 (g)) ∝ (1, 0, 0). An additional . (3,4)

1 contribution does not change this
situation. Finally, at g = g�, contributions from all three multiplets . (4,3)

3 , . (4,3)
1 ,

.
(4,3)
1′ are present, and the neutrino masses are non-degenerate.
To summarise, the charged-lepton mass matrix could be consistent with the

observed masses at g = g!, g = g) for both cases 9. = 2, 4. On the other hand,
the neutrino Majorana mass matrix is consistent with the observed masses only
at g = g� for the case 9, = 4. There is no common symmetric value of g, which
leads to charged lepton and neutrino masses that are consistent with the data.

9.3. Model with two moduli

The mass matrices described in the previous section are inconsistent with the
observed masses if taken at the same symmetric point. Therefore, we consider
instead the case of having two moduli in the theory: one g�, responsible via
its VEV for the breaking of the modular �4 symmetry in the charged-lepton
sector, and another one ga, breaking the modular symmetry in the neutrino
sector. This possibility can be realised within the formalism of multiple modular
symmetries [70, 71].
We present next our setup. For the charged lepton mass matrix, we take

weight-2 modular forms at g� = g) (Case I) or at g� = g! (Case II). At the same
time we use weight-4 modular forms at ga = g� for constructing the neutrino
Majorana mass term. In order for the modular weight in the superpotential to
vanish, we assign the matter field weights as 9! = 2, 9� = 0. Note that 9! = 2 is
common in both g� and ga modular spaces.
Then, the charged lepton mass matrix is obtained by using as input the

expressions for the weight-2 modular forms given in table 9.1. At g) , it is a
diagonal matrix:

"� = D3 .
(3,2)
1

©­«
U 0 0
0 V 0
0 0 W

ª®¬ : Case I. (9.13)

At g = g!, the charged lepton mass matrix has the form:

"� = D3 .
(3,2)
1

©­«
U 0 0
0 V 0
0 0 W

ª®¬ ©­«
1 l2 −1

2l
−1

2l 1 l2

l2 −1
2l 1

ª®¬ : Case II. (9.14)
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The matrix "
†
�"�, which is relevant for the calculation of the left-handed

mixing, is given in (9.7).
The neutrino mass matrix represents a sum of the contributions of modular-

form multiplets 3, 1 and 1′, with the terms involving the two singlet modular
forms entering the sum with arbitrary complex coefficients � and �:

"a =
D2C
Λ

(. (3,2)
1 )2

©­«
2 −1 −1
−1 2 −1
−1 −1 2

ª®¬ +
� ©­«

1 0 0
0 0 1
0 1 0

ª®¬ − �
©­«
0 0 1
0 1 0
1 0 0

ª®¬

 . (9.15)

The two models with charged-lepton mass matrix "� specified in (9.13) and
(9.14) and neutrino mass matrix "a given in (9.15), as we will show, lead to
the same phenomenology.

Neutrino mixing

In case I, only the neutrino mass matrix contributes to the PMNS matrix *PMNS
since the charged lepton mass matrix is diagonal. The neutrino mass matrix in
this case leads to the so called TM2 mixing form of the PMNS matrix [146, 147]
where the second column of *PMNS is trimaximal:

* I
PMNS =

©­­«
2√
6

1√
3 0

− 1√
6

1√
3 − 1√

2
− 1√

6
1√
3

1√
2

ª®®¬
©­«

cos \ 0 47q sin \
0 1 0

−4−7q sin \ 0 cos \
ª®¬ P. (9.16)

Here \ and q are arbitrary mixing angle and phase, respectively, and P is
a diagonal phase matrix containing contributions to the Majorana phases of
*PMNS. Employing the standard parametrisation of *PMNS (see, e.g., [10]), it
is possible to show that the trimaximal mixing pattern leads to the following
relation between the reactor angle \13 and \, between the atmospheric neutrino
mixing angle \23 and \13 and \, and sum rules for the solar neutrino mixing
angle \12 and for the Dirac phase X [146, 147] (see also [9, 148]):

sin2 \13 =
2
3 sin2 \, (9.17)

sin2 \12 =
1

3 cos2 \13
, (9.18)

sin2 \23 =
1
2 + A13

2

√
2 − 3A213
1 − A213

cosq, (9.19)
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cos X =
cos 2\23 cos 2\13

sin 2\23 sin \13 (2 − 3 sin2 \13)
1
2
. (9.20)

Using the 3f allowed range of sin2 \13 from [149] and (9.17) we get the
following constraints on sin \:

0.17 . | sin \| . 0.19. (9.21)
To leading order in A13 we obtain from (9.19):

1
2 − A13√

2
. sin2 \23 .

1
2 + A13√

2
, or

0.391(0.390) . sin2 \23 . 0.609 (0.611),
(9.22)

where the numerical values correspond to the maximal allowed value of sin2 \13
at 3f confidence level for NO (IO) neutrino mass spectrum [149]. The interval
of possible values of sin2 \23 in (9.22) is somewhat wider that the 3f ranges of
experimentally allowed values of sin2 \23 for NO and IO spectra given in [149].
Using the 3f allowed ranges of sin2 \23 and sin2 \13 for NO (IO) spectra from
[149] and (9.19) we also get:

− 0.640(−0.508) . cosq ≤ 1. (9.23)
The phase q is related to the Dirac phase X [9]:

sin 2\23 sin X = sinq. (9.24)
The Majorana phase U31/2 of the standard parametrisation of *PMNS [10] re-
ceives contributions from the phase q via [9]

U31
2 =

b31
2 + U2 + U3, (9.25)

where the phase b31 will be specified later,

U2 = arg
(
− 2
√
2
− A
√
6
47q

)
, U3 = arg

(
2
√
2
− A
√
6
47q

)
, (9.26)

so that

sinU2 = − A
√
6

sinq
A23 213

= − tan \13 cos \23 sin X, (9.27)

sinU3 = − A
√
6

sinq
223 213

= − tan \13 sin \23 sin X. (9.28)
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We also have [9]:
sin(q − U2 − U3) = − sin X. (9.29)

For further discussion of phenomenology of the neutrino trimaximal mix-
ing (9.16), see, e.g., [9, 150–152].
In case II, the contribution of the rotation of the charged-lepton sector is

added to the trimaximal mixing, which is derived from the neutrino mass matrix
in (9.15). The mixing matrix in the charged-lepton sector is the matrix *�
in (9.10). The PMNS matrix is given by:

* II
PMNS =

1
3

©­«
−1 2 2
2l −l 2l
2l2 2l2 −l2

ª®¬
† ©­­«

2√
6

1√
3 0

− 1√
6

1√
3 − 1√

2
− 1√

6
1√
3

1√
2

ª®®¬
©­«

cos \ 0 47q sin \
0 1 0

−4−7q sin \ 0 cos \
ª®¬ P.

(9.30)
It is straightforward to check that after a substitution \ → \ − c/2, q → −q,
the PMNS matrix (9.30) can be rewritten as

*II
PMNS =

©­«
−1 0 0
0 47c/3 0
0 0 4−7c/3

ª®¬* I
PMNS

©­«
47(q−c/2) 0 0

0 1 0
0 0 4−7(q+c/2)

ª®¬ . (9.31)

The leftmost phase matrix does not contribute to the mixing, since its effect can
be absorbed into the charged-lepton field phases. The rightmost phase matrix
contributes only to the Majorana phases, therefore the numerical predictions in
this case are the same as in Case I, apart possibly from the corresponding shift
of the Majorana phases. However, as can be shown analytically, and we have
confirmed numerically, also the predictions for the Majorana phases in Case II
coincide with the predictions in Case I.

Neutrino masses and Majorana phases

It follows from (9.15) that the neutrino mass matrix "a is a linear combination
of three basis matrices:

"1 =
©­«
2 −1 −1
−1 2 −1
−1 −1 2

ª®¬ , "2 =
©­«
1 0 0
0 0 1
0 1 0

ª®¬ , "3 =
©­«
0 0 1
0 1 0
1 0 0

ª®¬ . (9.32)
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To diagonalise "a, it is convenient to rewrite it in a different basis:

"′
1 =

1
√
3
("2 + 2"3) =

1
√
3

©­«
1 0 2
0 2 1
2 1 0

ª®¬ ,
"′

2 = "2 +
1
3"1 =

1
3

©­«
5 −1 −1
−1 2 2
−1 2 2

ª®¬ ,
"′

3 = "2 −
1
3"1 =

1
3

©­«
1 1 1
1 −2 4
1 4 −2

ª®¬ ,
(9.33)

so that "a = 2
(
"′

1 + 0"′
2 + 1"′

3
) , where 0 and 1 are arbitrary complex coeffi-

cients and 2 is the overall scale factor which can be rendered real positive. "a

is diagonalised by a unitary matrix *◦
a of the following form:

*◦
a = +TBM*13(\, q), (9.34)

so that
"a = (*◦

a)∗ "
diag
a (*◦

a)†,

"
diag
a = diag

(
;14

−72q1 , ;24
−72q2 , ;34

−72q3
)
,

(9.35)

where ;74
−72q7 are complex eigenvalues and ;7 ≥ 0 are the neutrino masses.1

Extracting the phases q7 from "
diag
a , we find:

"
diag
a = 4−72q1 P∗ diag (;1, ;2, ;3) P∗,
P = diag

(
1, 47(q2−q1), 47(q3−q1)

)
,

(9.36)

where the phases (q2 − q1) and (q3 − q1) contribute to the Majorana phases
U21/2 and U31/2 of the standard parametrisation of the PMNS matrix [10].
Thus, the PMNS matrix has the form:

*PMNS = *
◦
a P = 4−72q1 +TBM*13(\, q) P, (9.37)

1In general, the standard labelling of the neutrino masses [10] corresponds to some permuta-
tion of the neutrino mass matrix eigenvalues, which affects the order of the PMNS matrix
columns. However, the only non-trivial permutation of the TM2 matrix columns consistent
with the experimental data is (321), which is equivalent to a shift \ → \ − c/2 up to an
unphysical overall column sign. Hence, we can assume that the order of neutrino mass matrix
eigenvalues coincides with the standard labelling without loss of generality.
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where the common phase factor 4−72q1 is unphysical. The phase b31/2 in (9.25)
can be identified now with (q3 − q1): b31/2 = q3 − q1. Thus, the Majorana
phases U21/2 and U31/2 are given by:

U21
2 = q2 − q1,

U31
2 = q3 − q1 + U2 + U3. (9.38)

The complex rotation parameters \ and q are fixed by a choice of 0 and 1,
which we will now show explicitly. We find by direct calculation that

*◦)
a "′

1*
◦
a =

©­«
−4−7q sin 2\ 0 cos 2\

0
√
3 0

cos 2\ 0 47q sin 2\
ª®¬ ,

*◦)
a "′

2*
◦
a =

©­«
2 cos2 \ 0 47q sin 2\

0 1 0
47q sin 2\ 0 2427q sin2 \

ª®¬ ,
*◦)
a "′

3*
◦
a =

©­«
−24−27q sin2 \ 0 4−7q sin 2\

0 1 0
4−7q sin 2\ 0 −2 cos2 \

ª®¬ .
(9.39)

Thus, the neutrino mass matrix "a is diagonalised when the corresponding
linear combination of the off-diagonal entries vanishes, which leads to

cos 2\ + 047q sin 2\ + 14−7q sin 2\ = 0 ⇔ 047q + 14−7q = − cot 2\. (9.40)

The above condition is equivalent to:

47q = ± 0∗ − 1

|0∗ − 1| , cot 2\ = ∓ |0|2 − |1|2
|0∗ − 1| . (9.41)

It proves convenient to introduce the complex parameter

H = 047q − 14−7q = ± |0|2 + |1|2 − 201
|0∗ − 1| . (9.42)

(\, q, H) is a reparametrisation of (0, 1) defined by (9.41) and (9.42). The
inverse parameter transformation is given by

0 =
4−7q

2 (H − cot 2\) ,

1 =
47q

2 (−H − cot 2\) .
(9.43)
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The neutrino mass matrix eigenvalues are the corresponding linear combina-
tions of the diagonal entries in (9.39):

;14
−7(2q1−q) = 2

(
H − 1

sin 2\

)
,

;24
−72q2 = 2

(√
3 − 7H sinq − cot 2\ cosq

)
,

;34
−7(2q3+q) = 2

(
H + 1

sin 2\

)
.

(9.44)

Fitting the mass-squared differences to experimentally observed values, we
find the following constraint on H in terms of \, q and @ ≡ Δ;2

21/Δ;2
31:

|H − H0 |2 = '2, sign (Re H) = ± sign (sin 2\) , (9.45)

where the plus (minus) sign corresponds to NO (IO) spectrum of neutrino
masses, and

H0(\, q, @) =
1 − 2@

cos2 q sin 2\ + tanq
( √

3
cosq − cot 2\

)
7,

'2(\, q, @) =
[(√

3 − cot 2\ cosq
)2

+ (1 − 2@)2 − cos2 q
sin2 2\

] /
cos4 q.

(9.46)

Since \ and @ are tightly constrained by the experimental data, the set of
phenomenologically viable models is effectively described by two angles q
and k, with the latter being the angle parameter on the circle (9.45), i.e.,
H = H0 + ' 47k. Scanning through q and k numerically, we find that to each set
of the experimentally allowed values of the mixing angles and the mass-squared
differences corresponds a range of models (parameterised by k) with different
values of the neutrino masses and the Majorana phases.

We report the numerical results in the case of NO spectrum in fig. 9.1. The
allowed range of the sum of neutrino masses depends on the value of sin2 \23.
The lower bound slightly decreases from 0.097 eV to 0.074 eV as sin2 \23 runs
through its 3f confidence interval of [0.46, 0.58]. On the other hand, the upper
bound is highly dependent on the value of sin2 \23, and tends to infinity as
sin2 \23 approaches 0.5, which corresponds to X = q = 3c/2. This means that
at this point the sum of neutrino masses is allowed to take any value greater
than its lower bound of 0.093 eV.
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Figure 9.1.: Correlations between sin2 \23 and the sum of neutrino masses∑;7,
between sin2 \23 and the effective Majorana mass |〈;〉|, and be-
tween the Majorana phases U31 and U21 in the case of NO neutrino
mass spectrum. See text for further details.

The dependence of the effective Majorana mass |〈;〉| on sin2 \23 is qualita-
tively similar to that of the sum of neutrinomasses. Themaximal value of |〈;〉| �
0.059 eV is practically independent of sin2 \23 for 0.46 ≤ sin2 \23 ≤ 0.55. The
lower bound of |〈;〉| varies from 0.0015 eV to 0.0059 eV for sin2 \23 in its 3f
range. However, for values of sin2 \23 from its 3f range, 0.46 ≤ sin2 \23 ≤ 0.58,
|〈;〉| can have values in the interval [0.0059, 0.059] eV (see fig. 9.1). Most (if
not all) of these values may be probed in the future neutrinoless double beta
decay experiments.
There is also a strong correlation between the Majorana phases. The set of

best-fit models corresponds to q = 1.664c and leads to the following values of
observables:

sin2 \12 = 0.3406,
sin2 \13 = 0.02125,
sin2 \23 = 0.5511,

X;2 = 7.34 · 10−5 eV2,

Δ;2 = 2.455 · 10−3 eV2,

@ = 0.0299,

;1 = 0.0143 − 0.0612 eV,
;2 = 0.0166 − 0.0618 eV,
;3 = 0.0519 − 0.079 eV,∑
7;7 = 0.0828 − 0.2019 eV,

|〈;〉| = 0.0029 − 0.0589 eV,
X/c = 1.339,

(9.47)

consistent with the experimental data at 2.59f confidence level.
Similar analysis can be performed in the case of IO neutrino mass spectrum.

However, in that case the minimal value of the sum of the three neutrino masses
is 0.63 eV, and we do not analyse this case further.
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10. Y′4 model free from fine-tuning [P6]

We have seen in chapter 6 that hierarchical patterns of fermion masses can be
explained by a small deviation of the modulus VEV from one of the symmetric
points. In the final chapter of the thesis we realise this idea by considering the
most “structured” cases within the surviving lepton flavour models of table 6.2.
These arise at level # = 4 in the vicinity of g = l and correspond to �2 and !
being a triplet and a direct sum of three singlets of the finite modular group
(′4, respectively. The expected charged-lepton mass pattern is (;g, ;`, ;4) ∼
(1, n, n2).
We have performed a systematic scan restricting ourselves to promisingmodels

involving the minimal number of effective parameters (9, including Re g and
Im g). Once again, models predicting a massless electron are rejected, while the
# 2 furnish a complete irrep of dimension 2 or 3 (# 2 are present since Weinberg
models require more parameters). Out of 48 models, we have identified a model
which is viable and not fine-tuned in the regime of interest. For this model,

d! ∼ (1̂, 2) ⊕ (1̂, 2) ⊕ (1̂′, 2), d� ∼ (3̂, 4), d# ∼ (3′, 1). (10.1)

The corresponding superpotential reads:

, =

[
U1

(
.
(4,6)
3′,1 �2!1

)
1
+ U2

(
.
(4,6)
3′,2 �2!1

)
1

+ U3
(
.
(4,6)
3′,1 �2!2

)
1
+ U4

(
.
(4,6)
3′,2 �2!2

)
1
+ U5

(
.
(4,6)
3 �2!3

)
1

]
�3

+
[
61

(
.
(4,3)
3̂

# 2!1
)
1
+ 62

(
.
(4,3)
3̂

# 2!2
)
1
+ 63

(
.
(4,3)
3̂′

# 2!3
)
1

]
�C

+ Λ
(
.
(4,2)
2 (# 2)2

)
1
.

(10.2)

Since !1 and !2 are indistinguishable, one of the constants U7, with 7 = 1, . . . , 4,
is effectively not an independent parameter and can be set to zero by a suitable
rotation without loss of generality. We choose to set U2 = 0.
At leading order in the small parameter |n|, with n ≡ 1 − 1+

√
3

1−7
Y
\
and |n| '
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10. (′4 model free from fine-tuning [P6]

2.8
�� g−l
g−l2

�� in the context of this chapter,1 the charged-lepton mass matrix reads

"†
4 ' −3(

√
3 − 1)6
√
13

D3U1\
12

©­­­­­«
1 Ũ3 +

√
13
2 Ũ4

7
√
39
2 Ũ5

√
3 n

√
3

(
Ũ3 −

√
13
2 Ũ4

)
n 7

√
13
2 Ũ5 n

5
2 n

2 1
4

(
10Ũ3 +

√
13Ũ4

)
n2 −57

√
13

4
√
3 Ũ5 n

2

ª®®®®®¬
,

(10.3)
while the charged-lepton mass ratios are given by

;4

;`

' 2
|Ũ4Ũ5 |

√
4 +

(
2Ũ3 +

√
13Ũ4

)2
+ 39Ũ25

3Ũ24 +
[
1 +

(
Ũ3 −

√
13Ũ4

)2]
Ũ25

|n|,

;`

;g

' 4
√
13

√
3Ũ24 +

[
1 +

(
Ũ3 −

√
13Ũ4

)2]
Ũ25

4 +
(
2Ũ3 +

√
13Ũ4

)2
+ 39Ũ25

|n|,

(10.4)

with Ũ7 ≡ U7/U1, 7 = 3, 4, 5. As a measure of fine-tuning in the charged-lepton
sector, we use the Barbieri-Giudice measure [153]

max(BG) ≡ max |m ln(mass ratio)/m ln Ũ3,4,5 |. (10.5)

An observable $ is typically considered fine-tuned with respect to some param-
eter > if BG ≡ |m ln$/m ln >| & 10 [153]. With respect to charged-lepton mass
ratios, the model best-fit point is found to correspond to max(BG) ' 0.85.
Up to an overall normalisation K, the light neutrino mass matrix is instead

given by:

"a ' K n
©­­«
0 0 6̃3
0 0 6̃26̃3

6̃3 6̃26̃3 27
√

2
3 6̃

2
3

ª®®¬ (10.6)

at leading order in |n|, where 6̃7 ≡ 67/61, 7 = 2, 3. Note that the smallness of |n|
does not constrain the "a contribution to the mixing matrix, which depends
only on the couplings 67, and large mixing angles are allowed.
1The definition of n is motivated by the fact that Y/\ = (1 − 7)/(1 +

√
3) at g = l, see (3.5).
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10. (′4 model free from fine-tuning [P6]

From the form of "a it is clear that, in the limit of unbroken SUSY, there is a
massless neutrino, even though # 2 is a triplet. This follows from the modular-
symmetric superpotential, which implies the proportionality of the first two
columns of Y, reducing its rank and therefore the rank of "a. The neutrino
masses thus read

;1 = 0 , ;2,3 '
√

2
3 K 6̃23

(√
1 +

3(1 + 6̃22)
26̃23

∓ 1
)
|n|, (10.7)

and imply the n-independent prediction

@ =
;2

2 − ;2
1

;2
3 − (;2

1 + ;2
2)/2

'
6 + 66̃22 + 86̃23 − 4

√
6(1 + 6̃22) + 46̃23 |6̃3 |

3 + 36̃22 + 46̃23 + 6
√
6(1 + 6̃22) + 46̃23 |6̃3 |

, (10.8)

which, by taking into account the 1f range for @ in table 7.2, isolates a viable
region in the plane of coupling constants. At the model best-fit point, the
Barbieri-Giudice measure max{|m ln @/m ln 6̃2 |, |m ln @/m ln 6̃3 |} has an acceptable
value of 2.9. Additionally, the 3f ranges for 6̃2,3 are not especially narrow.

The result of the fit of this (′4 model is summarised in table 10.1. The viable
region in the g plane corresponds to a neutrino spectrum with NO and is located
very close to gsym = l, as can be seen from fig. 10.1. The annular form of
the region is explained by the fact that the phase of (g − l) has no effect on
the observables, as it enters only through n and its effects are suppressed by
the smallness of |n|. Therefore, in the regime g ' l this model is effectively
described by 8 rather than 9 parameters.
To summarise, in the vicinity of the symmetric point, i.e., for small |n|, this

model can naturally lead to the observed charged-lepton mass hierarchies,
see (10.4). The neutrino mass-squared difference ratio @ is, in this region,
insensitive to n and depends only on the two ratios 6̃2,3 of neutrino couplings,
see (10.8). Furthermore, it is not especially sensitive to these couplings. Finally,
since light neutrino masses vanish in the symmetric point, the symmetric limit
allows for a generic mixing matrix (case 4 of section 6.2). Therefore, the fit
is not expected to be tuned in a way that compensates some “wrong PMNS”
symmetric prediction.

In fact, we have numerically verified that sending g → l (n → 0) has almost
no effect on the values of mixing angles. This can be understood by considering,
in turn, each of the contributions to the mixing matrix. The rotation to the mass
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10. (′4 model free from fine-tuning [P6]
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Figure 10.1.: Allowed region in the g plane for the (′4 model free from fine-
tuning. Points outside the fundamental domain, while redundant,
are kept for illustrative purposes.

basis in the neutrino sector, on the one hand, is independent of n in the region of
interest, see (10.6), and thus has a well-defined limit as n → 0 (it is unchanged)
even though light neutrinos become massless. This rotation depends only on
the ratios 6̃2,3 of neutrino couplings. On the other hand, one can check that
the charged-lepton rotation arising from the diagonalisation of "4"

†
4 , with "†

4

given in (10.3), also has a well-defined limit as n → 0 even though two of the
three charged leptons become massless. This limiting form closely matches the
rotation obtained for finite, non-zero n, and depends only on the ratios Ũ3,4,5 of
charged-lepton couplings.
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10. (′4 model free from fine-tuning [P6]

Table 10.1.: Best-fit values along with 3f ranges of the parameters and observ-
ables in the (′4 model free from fine-tuning.

Best-fit value 3f range
Re g −0.496 −(0.487 − 0.513)
Im g 0.877 0.853 − 0.879
U3/U1 2.45 2.03 − 2.90
U4/U1 −2.37 −(2.01 − 2.67)
U5/U1 1.01 0.95 − 1.07
62/61 1.5 1.36 − 1.65
63/61 2.22 2.07 − 2.39
D3 U1, GeV 4.61 3.28 − 5.93
D2C 6

2
1/Λ, eV 0.268 0.205 − 0.325

n(g) 0.0186 0.0163 − 0.0214
CL mass pattern (1, n, n2)
max(BG) 0.848
;4/;` 0.00475 0.00423 − 0.000535
;`/;g 0.0556 0.0440 − 0.0691
@ 0.0298 0.0275 − 0.0317
X;2, 10−5 eV2 7.38 6.94 − 7.73
|Δ;2 |, 10−3 eV2 2.48 2.44 − 2.53
sin2 \12 0.304 0.268 − 0.343
sin2 \13 0.0221 0.0202 − 0.0240
sin2 \23 0.539 0.440 − 0.591
;1, eV 0
;2, eV 0.0086 0.0083 − 0.0088
;3, eV 0.0502 0.0497 − 0.0506
Σ7;7, eV 0.0588 0.0585 − 0.0590
|〈;〉|, eV 0.00144 0.00111 − 0.00179
X/c 1 ± O(10−6)
U21/c 0
U31/c 1 ± O(10−5)
#f 0.563
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Summary and conclusions

In the present thesis we have developed various aspects of the modular symmetry
approach to lepton flavour, which remains one of the outstanding fundamental
problems in particle physics.

As seen in chapter 2, the field couplings are significantly constrained within
this approach, so that the fermion mass matrices are typically expressed in terms
of a small number of complex constants 6A and certain functions (modular forms)
of a single VEV of a complex scalar field g (the modulus). In order to construct
such mass matrices explicitly in the case of the finite modular groups �5 and
(′4, we have derived in chapter 3 the modular forms furnishing representations
of the corresponding groups (see also appendix B) in terms of the Dedekind eta
function and the Jacobi theta functions (see also appendix A). We have further
shown in chapter 4 that the complex constants 6A can be made real by extending
modular symmetry with a CP transformation, thus increasing predictivity of
the models. This construction allows also for the attractive possibility of CP
violation and the flavour symmetry breaking having a common origin — the
VEV of the modulus g.

By fitting modular-invariant lepton mass matrices to the observed data as
explained in chapter 7, one can obtain testable predictions for the neutrino mass
ordering, the lightest neutrino mass, the Dirac and the Majorana CPV phases,
and the neutrinoless double beta decay effective Majorana mass. An example of
such model of lepton flavour has been presented in chapter 8.
However, such “black-box” fitting procedure does not naturally explain the

observed flavour patterns and, in particular, the strong hierarchy of fermion
masses. Instead, in the overwhelming majority of modular-invariant quark and
lepton flavour models available in the literature, they are obtained by fine-tuning
the constants 6A. We have shown that it is possible to overcome this problem
by making use of the residual symmetries, which exist for certain values of the
modulus g (symmetric points). We have classified these symmetries in chapter 5
(see also appendix C). We have also described two possible constructions which
utilise residual symmetries and allow to explain the observed lepton flavour
structures.
One of these constructions, presented in chapter 9, assumes that the modu-
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Summary and conclusions

lus g� entering the charged-lepton mass matrix is different from the modulus ga
entering the neutrino mass matrix, g� ≠ ga. By setting the moduli VEVs to
different symmetric values, one obtains two distinct residual symmetries in the
charged-lepton sector and in the neutrino sector. This leads to a specific neu-
trino mixing pattern, e.g. trimaximal mixing, as in the context of conventional
non-Abelian discrete symmetries.

Another construction is based on the analysis of hierarchical mass matrices in
the vicinity of the symmetric points. This analysis, performed in chapter 6, shows
that a suitable choice of field representations naturally leads to hierarchical
charged-lepton masses without forcing the neutrino mixing angles to be small.
We have presented a viable model which realises this idea in chapter 10. We
have also derived all possible hierarchical patterns of fermion masses that can
be obtained in the vicinity of the symmetric points g = 7, g = 7∞ and g = l

for all 3-dimensional (possibly reducible) fermion representations of the finite
modular groups (3, �′4, (′4 and �′5 (see appendix D).

To summarise, modular invariance provides a predictive framework possessing
rich mathematical structure suitable for the treatment of the flavour problem,
and thus having the strong potential to explain the observed flavour patterns,
both in the lepton and quark sector of the Standard Model. We are encouraged
by the results obtained so far, and we believe that the future is bright for this
field as many fundamental questions of this promising novel approach still
remain unanswered.
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A. Dedekind eta and Jacobi theta

The Dedekind eta function is a holomorphic function defined in the complex
upper half-plane as

[(g) ≡ ?
1
24

∞∏
<=1

(1 − ?<) , (A.1)

where ? ≡ 42c7g and Im g > 0. In this work, fractional powers ?1/<, < being a
non-zero integer, should be read as 42c7g/<.

The Jacobi theta functions Θ7(H, g), 7 = 1, . . . , 4, (see e.g. [154]) are special
functions of two complex variables. We are primarily interested in Θ3(H, g)
defined as1

Θ3(H, g) ≡
∑
9∈ℤ

?
92
2 42c79H, (A.2)

and in the so-called theta constants Θ7(g) ≡ Θ7(0, g) which are functions of one
complex variable defined in the upper half-plane by

Θ2(g) ≡
∑
9∈ℤ

?
1
2
(
9+ 1

2
)2
,

Θ3(g) ≡
∑
9∈ℤ

?
92
2 ,

Θ4(g) ≡
∑
9∈ℤ

(−1)9? 92
2

(A.3)

(the first theta constant, Θ1(g), is identically zero). The theta constants trans-
form under the generators of the modular group as

Θ2(g)
)−→ 4c7/4Θ2(g), Θ2(g)

(−→
√
−7gΘ4(g),

Θ3(g)
)−→ Θ4(g), Θ3(g)

(−→
√
−7gΘ3(g),

Θ4(g)
)−→ Θ3(g), Θ4(g)

(−→
√
−7gΘ2(g).

(A.4)

Note that in the ( transformation the principal value of the square root is
assumed.
1In the notation of ref. [154] ? ≡ 4c7g, which corresponds to ?1/2 in our notation.
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A. Dedekind eta and Jacobi theta

Apart from the power series expansions (A.3), the theta constants admit the
following infinite product representations:

Θ2(g) = 2 ? 1
8

∞∏
<=1

(1 − ?<) (1 + ?<)2 ,

Θ3(g) =
∞∏
<=1

(1 − ?<)
(
1 + ?<− 1

2
)2
,

Θ4(g) =
∞∏
<=1

(1 − ?<)
(
1 − ?<−

1
2
)2
.

(A.5)

By comparing the product expansions (A.5) with the definition of the Dedekind
eta function (A.1), one can relate the theta constants to the Dedekind eta as

Θ2(g) =
2[2(2g)
[(g) , Θ3(g) =

[5(g)
[2

(
g
2
)
[2(2g) . (A.6)

Finally, using the power series expansions (A.3) one can prove a useful identity:

Θ3(2g) =
1
2

[
Θ3

(g
2
)
+ Θ4

(g
2
)]
. (A.7)
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B. Finite modular group theory

B.1. �3 ' G4

�4 is the group of even permutations of four objects. It contains 4!/2 = 12
elements and admits four irreducible representations, namely 1, 1′, 1′′, and 3
(see, e.g., [6]). It can be generated by two elements ( and ) satisfying

(2 = (())3 = )3 = 1. (B.1)

We collect the representations matrices for the �4 generators in our working
basis in table B.1. The non-trivial Clebsch-Gordan coefficients in the above basis
are collected in table B.2.

Table B.1.: Representation matrices for the group generators of different �4
irreps r.

r dr(() dr())
1 1 1
1′ 1 l

1′ 1 l2

3
1
3

©­«
−1 2 2
2 −1 2
2 2 −1

ª®¬ ©­«
1 0 0
0 l 0
0 0 l2

ª®¬
B.2. �′4 ' Y′4

The homogeneous finite modular group (′4 ≡ SL(2,ℤ4) can be defined by three
generators (, ) and ' satisfying the relations:

(2 = ', )4 = (())3 = '2 = 1, )' = '). (B.2)
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B. Finite modular group theory

Table B.2.: Decomposition of all non-trivial tensor products of �4 irreps, and
corresponding Clebsch-Gordan coefficients. Entries of each multiplet
entering the tensor product are denoted by U7 and V7.

Product Clebsch-Gordan coefficients
1′ ⊗ 1′ = 1′′
1′ ⊗ 1′′ = 1
1′′ ⊗ 1′′ = 1′

U1V1

3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3 ⊕ 3

U1V1 + U2V2 + U3V3
⊕ U1V2 + U2V1 + U3V3
⊕ U1V3 + U2V2 + U3V1

⊕ 1
3

©­«
2U1V1 − U2V3 − U3V2
2U3V3 − U1V2 − U2V1
2U2V2 − U1V3 − U3V1

ª®¬
⊕ 1

2
©­«
U2V3 − U3V2
U1V2 − U2V1
U3V1 − U1V3

ª®¬
It is a group of 48 elements (twice as many as (4), with group ID (48,30)
in the computer algebra system GAP [123, 124]. It admits 10 irreps: 4 one-
dimensional, 2 two-dimensional, and 4 three-dimensional, which we denote
by

1, 1̂, 1′, 1̂′, 2, 2̂, 3, 3̂, 3′, 3̂′. (B.3)
The notation has been chosen such that irreps without a hat have a direct
correspondence with (4 irreps, whereas hatted irreps are novel and specific to (′4.
In fact, for the hatless irreps, the new generator ' is represented by the identity
matrix and the construction effectively reduces to that of (4 ' (′4

/
{' = 1}. We

also note that the hatless irreps are real, while the hatted irreps are complex
except for 2̂ which is pseudoreal.

The 48 elements of (′4 are organised into 10 conjugacy classes. The character
table is given in table B.3 and shows at least one representative element for
each class.

In table B.4, we summarise the working basis for the representation matrices
of the group generators (, ) and '. We present the non-trivial Clebsch-Gordan
coefficients in the above basis in tables B.5 to B.8.
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B. Finite modular group theory

Table B.3.: Character table for (′4, obtained via the GAP Irr() function. <�9
denotes a conjugacy class of < elements of order 9.

Rep. element(s) 1 1̂ 1′ 1̂′ 2 2̂ 3 3̂ 3′ 3̂′

1�1 1 1 1 1 1 2 2 3 3 3 3
1�2 ' 1 −1 1 −1 2 −2 3 −3 3 −3
3�2 )2 1 −1 1 −1 2 −2 −1 1 −1 1
3�̂2 ')2 1 1 1 1 2 2 −1 −1 −1 −1
6�4 ( 1 7 −1 −7 0 0 1 7 −1 −7
6�̂4 '( = (−1 1 −7 −1 7 0 0 1 −7 −1 7

6�′4 ) 1 −7 −1 7 0 0 −1 7 1 −7
6�̂′4 ') , )−1 1 7 −1 −7 0 0 −1 −7 1 7

8�3 () 1 1 1 1 −1 −1 0 0 0 0
8�6 '() 1 −1 1 −1 −1 1 0 0 0 0

B.3. �5 ' G5

�5 is the group of even permutations of five objects. It contains 5!/2 = 60
elements and admits five irreducible representations, namely 1, 3, 3′, 4 and 5
(see, e.g., [6]). It can be generated by two elements ( and ) satisfying

(2 = (())3 = )5 = 1. (B.4)

We will employ the group theoretical results of ref. [155], using in particular
the explicit basis for the �5 generators summarised in table B.9. The non-
trivial Clebsch-Gordan coefficients in the above basis are collected in tables B.10
to B.15.
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B. Finite modular group theory

Table B.4.: Representation matrices for the group generators of different (′4
irreps r.

r dr(() dr()) dr(')
1 1 1 1
1̂ 7 −7 −1
1′ −1 −1 1
1̂′ −7 7 −1

2
1
2

(
−1

√
3√

3 1

) (
1 0
0 −1

) (
1 0
0 1

)
2̂

7

2

(
−1

√
3√

3 1

) (
−7 0
0 7

)
−

(
1 0
0 1

)
3 −1

2
©­­«
0

√
2

√
2√

2 −1 1√
2 1 −1

ª®®¬
©­«
−1 0 0
0 −7 0
0 0 7

ª®¬ ©­«
1 0 0
0 1 0
0 0 1

ª®¬
3̂ − 7

2
©­­«
0

√
2

√
2√

2 −1 1√
2 1 −1

ª®®¬
©­«
7 0 0
0 −1 0
0 0 1

ª®¬ − ©­«
1 0 0
0 1 0
0 0 1

ª®¬
3′

1
2

©­­«
0

√
2

√
2√

2 −1 1√
2 1 −1

ª®®¬
©­«
1 0 0
0 7 0
0 0 −7

ª®¬ ©­«
1 0 0
0 1 0
0 0 1

ª®¬
3̂′

7

2
©­­«
0

√
2

√
2√

2 −1 1√
2 1 −1

ª®®¬
©­«
−7 0 0
0 1 0
0 0 −1

ª®¬ − ©­«
1 0 0
0 1 0
0 0 1

ª®¬
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Table B.5.: Decomposition of all non-trivial tensor products involving 1-
dimensional (′4 irreps, and corresponding Clebsch-Gordan coeffi-
cients. Entries of each multiplet entering the tensor product are
denoted by U7 and V7.

Product Clebsch-Gordan coefficients
1′ ⊗ 1′ = 1
1′ ⊗ 1̂ = 1̂′

1′ ⊗ 1̂′ = 1̂
1̂ ⊗ 1̂ = 1′

1̂ ⊗ 1̂′ = 1
1̂′ ⊗ 1̂′ = 1′

U1V1

1′ ⊗ 2 = 2
1̂′ ⊗ 2 = 2̂
1′ ⊗ 2̂ = 2̂
1̂ ⊗ 2̂ = 2

U1

(
V2
−V1

)
1̂ ⊗ 2 = 2̂
1̂′ ⊗ 2̂ = 2 U1

(
V1
V2

)
1′ ⊗ 3 = 3′

1̂ ⊗ 3 = 3̂
1̂′ ⊗ 3 = 3̂′
1′ ⊗ 3′ = 3
1̂ ⊗ 3′ = 3̂′

1̂′ ⊗ 3′ = 3̂
1′ ⊗ 3̂ = 3̂′

1̂ ⊗ 3̂ = 3′

1̂′ ⊗ 3̂ = 3
1′ ⊗ 3̂′ = 3̂
1̂ ⊗ 3̂′ = 3
1̂′ ⊗ 3̂′ = 3′

U1
©­«
V1
V2
V3

ª®¬
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B. Finite modular group theory

Table B.6.: Decomposition of tensor products involving two 2-dimensional (′4
irreps, and corresponding Clebsch-Gordan coefficients. Note that
the order is important to match the left and right columns.

Product Clebsch-Gordan coefficients

2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2
2 ⊗ 2̂ = 1̂ ⊕ 1̂′ ⊕ 2̂

1
√
2
(U1V1 + U2V2)

⊕ 1
√
2
(U1V2 − U2V1)

⊕ 1
√
2

(
U2V2 − U1V1
U1V2 + U2V1

)

2̂ ⊗ 2̂ = 1 ⊕ 1′ ⊕ 2

1
√
2
(U1V2 − U2V1)

⊕ 1
√
2
(U1V1 + U2V2)

⊕ 1
√
2

(
U1V2 + U2V1
U1V1 − U2V2

)
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B. Finite modular group theory

Table B.7.: The same as in table B.6, but for products involving a 2-dimensional
and a 3-dimensional irrep.

Product Clebsch-Gordan coefficients

2 ⊗ 3 = 3 ⊕ 3′

2 ⊗ 3̂ = 3̂ ⊕ 3̂′

2̂ ⊗ 3 = 3̂ ⊕ 3̂′

2̂ ⊗ 3̂′ = 3 ⊕ 3′

©­­­«
U1 V1(√

3/2
)
U2 V3 − (1/2) U1 V2(√

3/2
)
U2 V2 − (1/2) U1 V3

ª®®®¬
⊕

©­­­«
−U2 V1(√

3/2
)
U1 V3 + (1/2) U2 V2(√

3/2
)
U1 V2 + (1/2) U2 V3

ª®®®¬
2 ⊗ 3′ = 3 ⊕ 3′

2 ⊗ 3̂′ = 3̂ ⊕ 3̂′

2̂ ⊗ 3′ = 3̂ ⊕ 3̂′

2̂ ⊗ 3̂ = 3 ⊕ 3′

©­­­«
−U2 V1(√

3/2
)
U1 V3 + (1/2) U2 V2(√

3/2
)
U1 V2 + (1/2) U2 V3

ª®®®¬
⊕

©­­­«
U1 V1(√

3/2
)
U2 V3 − (1/2) U1 V2(√

3/2
)
U2 V2 − (1/2) U1 V3

ª®®®¬
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B. Finite modular group theory

Table B.8.: The same as in table B.6, but for products involving two 3-
dimensional irreps.

Product Clebsch-Gordan coefficients

3 ⊗ 3 = 1 ⊕ 2 ⊕ 3 ⊕ 3′

3 ⊗ 3̂ = 1̂ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′

3′ ⊗ 3′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′

3′ ⊗ 3̂′ = 1̂ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′

3̂ ⊗ 3̂′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′

1
√
3
(U1V1 + U2V3 + U3V2)

⊕ 1
√
2

(
(2U1V1 − U2V3 − U3V2) /

√
3

U2V2 + U3V3

)
⊕ 1

√
2

©­«
U3V3 − U2V2
U1V3 + U3V1
−U1V2 − U2V1

ª®¬
⊕ 1

√
2

©­«
U3V2 − U2V3
U2V1 − U1V2
U1V3 − U3V1

ª®¬
3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′

3 ⊗ 3̂′ = 1̂′ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′

3′ ⊗ 3̂ = 1̂′ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′

3̂ ⊗ 3̂ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′

3̂′ ⊗ 3̂′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′

1
√
3
(U1V1 + U2V3 + U3V2)

⊕ 1
√
2

(
U2V2 + U3V3

(−2U1V1 + U2V3 + U3V2) /
√
3

)
⊕ 1

√
2

©­«
U3V2 − U2V3
U2V1 − U1V2
U1V3 − U3V1

ª®¬
⊕ 1

√
2

©­«
U3V3 − U2V2
U1V3 + U3V1
−U1V2 − U2V1

ª®¬
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B. Finite modular group theory

Table B.9.: Representation matrices for the group generators of different �5
irreps r. Here Z ≡ 42c7/5 and i ≡ (1 +

√
5)/2.

r dr(() dr())
1 1 1

3
1
√
5

©­­«
1 −

√
2 −

√
2

−
√
2 −i 1/i

−
√
2 1/i −i

ª®®¬
©­«
1 0 0
0 Z 0
0 0 Z4

ª®¬
3′

1
√
5

©­­«
−1

√
2

√
2√

2 −1/i i√
2 i −1/i

ª®®¬
©­«
1 0 0
0 Z2 0
0 0 Z3

ª®¬
4

1
√
5

©­­­«
1 1/i i −1

1/i −1 1 i

i 1 −1 1/i
−1 i 1/i 1

ª®®®¬
©­­­«
Z 0 0 0
0 Z2 0 0
0 0 Z3 0
0 0 0 Z4

ª®®®¬
5

1
5

©­­­­­­«

−1
√
6

√
6

√
6

√
6√

6 1/i2 −2i 2/i i2
√
6 −2i i2 1/i2 2/i√
6 2/i 1/i2 i2 −2i√
6 i2 2/i −2i 1/i2

ª®®®®®®¬
©­­­­­«
1 0 0 0 0
0 Z 0 0 0
0 0 Z2 0 0
0 0 0 Z3 0
0 0 0 0 Z4

ª®®®®®¬
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B. Finite modular group theory

Table B.10.: Decomposition of all non-trivial tensor products of �5 irreps, and
corresponding Clebsch-Gordan coefficients. Entries of each multi-
plet entering the tensor product are denoted by U7 and V7.

Product Clebsch-Gordan coefficients

3 ⊗ 3 = 1 ⊕ 3 ⊕ 5

U1V1 + U2V2 + U3V3

⊕ ©­«
U2 V3 − U3 V2
U1 V2 − U2 V1
U3 V1 − U1 V3

ª®¬
⊕

©­­­­­­«

2U1V1 − U2V3 − U3V2
−
√
3U1V2 −

√
3U2V1√

6U2V2√
6U3V3

−
√
3U1V3 −

√
3U3V1

ª®®®®®®¬

3′ ⊗ 3′ = 1 ⊕ 3′ ⊕ 5

U1V1 + U2V2 + U3V3

⊕ ©­«
U2 V3 − U3 V2
U1 V2 − U2 V1
U3 V1 − U1 V3

ª®¬
⊕

©­­­­­­«

2U1V1 − U2V3 − U3V2√
6U3V3

−
√
3U1V2 −

√
3U2V1

−
√
3U1V3 −

√
3U3V1√

6U2V2

ª®®®®®®¬

3 ⊗ 3′ = 4 ⊕ 5

©­­­­«
√
2U2V1 + U3V2

−
√
2U1V2 − U3V3

−
√
2U1V3 − U2V2√
2U3V1 + U2V3

ª®®®®¬
⊕

©­­­­­­«

√
3U1V1

U2V1 −
√
2U3V2

U1V2 −
√
2U3V3

U1V3 −
√
2U2V2

U3V1 −
√
2U2V3

ª®®®®®®¬
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B. Finite modular group theory

Table B.11.: Decomposition of all non-trivial tensor products of �5 irreps, and
corresponding Clebsch-Gordan coefficients (continued).

Product Clebsch-Gordan coefficients

3 ⊗ 4 = 3′ ⊕ 4 ⊕ 5

©­­«
−
√
2U2V4 −

√
2U3V1√

2U1V2 − U2V1 + U3V3√
2U1V3 + U2V2 − U3V4

ª®®¬
⊕

©­­­­«
U1V1 −

√
2U3V2

−U1V2 −
√
2U2V1

U1V3 +
√
2U3V4

−U1V4 +
√
2U2V3

ª®®®®¬
⊕

©­­­­­­«

√
6U2V4 −

√
6U3V1

2
√
2U1V1 + 2U3V2

−
√
2U1V2 + U2V1 + 3U3V3√
2U1V3 − 3U2V2 − U3V4
−2

√
2U1V4 − 2U2V3

ª®®®®®®¬

3′ ⊗ 4 = 3 ⊕ 4 ⊕ 5

©­­«
−
√
2U2V3 −

√
2U3V2√

2U1V1 + U2V4 − U3V3√
2U1V4 − U2V2 + U3V1

ª®®¬
⊕

©­­­­«
U1V1 +

√
2U3V3

U1V2 −
√
2U3V4

−U1V3 +
√
2U2V1

−U1V4 −
√
2U2V2

ª®®®®¬
⊕

©­­­­­­«

√
6U2V3 −

√
6U3V2√

2U1V1 − 3U2V4 − U3V3
2
√
2U1V2 + 2U3V4

−2
√
2U1V3 − 2U2V1

−
√
2U1V4 + U2V2 + 3U3V1

ª®®®®®®¬
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B. Finite modular group theory

Table B.12.: Decomposition of all non-trivial tensor products of �5 irreps, and
corresponding Clebsch-Gordan coefficients (continued).

Product Clebsch-Gordan coefficients

3 ⊗ 5 = 3 ⊕ 3′ ⊕ 4 ⊕ 5

©­­«
−2U1V1 +

√
3U2V5 +

√
3U3V2√

3U1V2 + U2V1 −
√
6U3V3√

3U1V5 −
√
6U2V4 + U3V1

ª®®¬
⊕

©­­«
√
3U1V1 + U2V5 + U3V2

U1V3 −
√
2U2V2 −

√
2U3V4

U1V4 −
√
2U2V3 −

√
2U3V5

ª®®¬
⊕

©­­­­«
2
√
2U1V2 −

√
6U2V1 + U3V3

−
√
2U1V3 + 2U2V2 − 3U3V4√
2U1V4 + 3U2V3 − 2U3V5

−2
√
2U1V5 − U2V4 +

√
6U3V1

ª®®®®¬
⊕

©­­­­­­«

√
3U2V5 −

√
3U3V2

−U1V2 −
√
3U2V1 −

√
2U3V3

−2U1V3 −
√
2U2V2

2U1V4 +
√
2U3V5

U1V5 +
√
2U2V4 +

√
3U3V1

ª®®®®®®¬

3′ ⊗ 5 = 3 ⊕ 3′ ⊕ 4 ⊕ 5

©­­«
√
3U1V1 + U2V4 + U3V3

U1V2 −
√
2U2V5 −

√
2U3V4

U1V5 −
√
2U2V3 −

√
2U3V2

ª®®¬
⊕

©­­«
−2U1V1 +

√
3U2V4 +

√
3U3V3√

3U1V3 + U2V1 −
√
6U3V5√

3U1V4 −
√
6U2V2 + U3V1

ª®®¬
⊕

©­­­­«
√
2U1V2 + 3U2V5 − 2U3V4

2
√
2U1V3 −

√
6U2V1 + U3V5

−2
√
2U1V4 − U2V2 +

√
6U3V1

−
√
2U1V5 + 2U2V3 − 3U3V2

ª®®®®¬
⊕

©­­­­­­«

√
3U2V4 −

√
3U3V3

2U1V2 +
√
2U3V4

−U1V3 −
√
3U2V1 −

√
2U3V5

U1V4 +
√
2U2V2 +

√
3U3V1

−2U1V5 −
√
2U2V3

ª®®®®®®¬
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B. Finite modular group theory

Table B.13.: Decomposition of all non-trivial tensor products of �5 irreps, and
corresponding Clebsch-Gordan coefficients (continued).

Product Clebsch-Gordan coefficients

4 ⊗ 4 =

1 ⊕ 3 ⊕ 3′

⊕ 4 ⊕ 5

U1V4 + U2V3 + U3V2 + U4V1

⊕ ©­«
−U1V4 + U2V3 − U3V2 + U4V1√

2U2V4 −
√
2U4V2√

2U1V3 −
√
2U3V1

ª®¬
⊕ ©­«

U1V4 + U2V3 − U3V2 − U4V1√
2U3V4 −

√
2U4V3√

2U1V2 −
√
2U2V1

ª®¬
⊕

©­­­«
U2V4 + U3V3 + U4V2
U1V1 + U3V4 + U4V3
U1V2 + U2V1 + U4V4
U1V3 + U2V2 + U3V1

ª®®®¬
⊕

©­­­­­­«

√
3U1V4 −

√
3U2V3 −

√
3U3V2 +

√
3U4V1

−
√
2U2V4 + 2

√
2U3V3 −

√
2U4V2

−2
√
2U1V1 +

√
2U3V4 +

√
2U4V3√

2U1V2 +
√
2U2V1 − 2

√
2U4V4

−
√
2U1V3 + 2

√
2U2V2 −

√
2U3V1

ª®®®®®®¬
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B. Finite modular group theory

Table B.14.: Decomposition of all non-trivial tensor products of �5 irreps, and
corresponding Clebsch-Gordan coefficients (continued).

Product Clebsch-Gordan coefficients

4 ⊗ 5 =

3 ⊕ 3′ ⊕ 4
⊕ 51 ⊕ 52

©­­«
2
√
2U1V5 −

√
2U2V4 +

√
2U3V3 − 2

√
2U4V2

−
√
6U1V1 + 2U2V5 + 3U3V4 − U4V3

U1V4 − 3U2V3 − 2U3V2 +
√
6U4V1

ª®®¬
⊕

©­­«
√
2U1V5 + 2

√
2U2V4 − 2

√
2U3V3 −

√
2U4V2

3U1V2 −
√
6U2V1 − U3V5 + 2U4V4

−2U1V3 + U2V2 +
√
6U3V1 − 3U4V5

ª®®¬
⊕

©­­­­«
√
3U1V1 −

√
2U2V5 +

√
2U3V4 − 2

√
2U4V3

−
√
2U1V2 −

√
3U2V1 + 2

√
2U3V5 +

√
2U4V4√

2U1V3 + 2
√
2U2V2 −

√
3U3V1 −

√
2U4V5

−2
√
2U1V4 +

√
2U2V3 −

√
2U3V2 +

√
3U4V1

ª®®®®¬
⊕

©­­­­­­«

√
2U1V5 −

√
2U2V4 −

√
2U3V3 +

√
2U4V2

−
√
2U1V1 −

√
3U3V4 −

√
3U4V3√

3U1V2 +
√
2U2V1 +

√
3U3V5√

3U2V2 +
√
2U3V1 +

√
3U4V5

−
√
3U1V4 −

√
3U2V3 −

√
2U4V1

ª®®®®®®¬
⊕

©­­­­­­«

2U1V5 + 4U2V4 + 4U3V3 + 2U4V2
4U1V1 + 2

√
6U2V5

−
√
6U1V2 + 2U2V1 −

√
6U3V5 + 2

√
6U4V4

2
√
6U1V3 −

√
6U2V2 + 2U3V1 −

√
6U4V5

2
√
6U3V2 + 4U4V1

ª®®®®®®¬
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B. Finite modular group theory

Table B.15.: Decomposition of all non-trivial tensor products of �5 irreps, and
corresponding Clebsch-Gordan coefficients (continued).

Product Clebsch-Gordan coefficients

5 ⊗ 5 =

1 ⊕ 3 ⊕ 3′

⊕ 41 ⊕ 42
⊕ 51 ⊕ 52

U1V1 + U2V5 + U3V4 + U4V3 + U5V2

⊕ ©­«
U2V5 + 2U3V4 − 2U4V3 − U5V2

−
√
3U1V2 +

√
3U2V1 +

√
2U3V5 −

√
2U5V3√

3U1V5 +
√
2U2V4 −

√
2U4V2 −

√
3U5V1

ª®¬
⊕ ©­«

2U2V5 − U3V4 + U4V3 − 2U5V2√
3U1V3 −

√
3U3V1 +

√
2U4V5 −

√
2U5V4

−
√
3U1V4 +

√
2U2V3 −

√
2U3V2 +

√
3U4V1

ª®¬
⊕

©­­­­«
3
√
2U1V2 + 3

√
2U2V1 −

√
3U3V5 + 4

√
3U4V4 −

√
3U5V3

3
√
2U1V3 + 4

√
3U2V2 + 3

√
2U3V1 −

√
3U4V5 −

√
3U5V4

3
√
2U1V4 −

√
3U2V3 −

√
3U3V2 + 3

√
2U4V1 + 4

√
3U5V5

3
√
2U1V5 −

√
3U2V4 + 4

√
3U3V3 −

√
3U4V2 + 3

√
2U5V1

ª®®®®¬
⊕

©­­­­«
√
2U1V2 −

√
2U2V1 +

√
3U3V5 −

√
3U5V3

−
√
2U1V3 +

√
2U3V1 +

√
3U4V5 −

√
3U5V4

−
√
2U1V4 −

√
3U2V3 +

√
3U3V2 +

√
2U4V1√

2U1V5 −
√
3U2V4 +

√
3U4V2 −

√
2U5V1

ª®®®®¬
⊕

©­­­­­­«

2U1V1 + U2V5 − 2U3V4 − 2U4V3 + U5V2
U1V2 + U2V1 +

√
6U3V5 +

√
6U5V3

−2U1V3 +
√
6U2V2 − 2U3V1

−2U1V4 − 2U4V1 +
√
6U5V5

U1V5 +
√
6U2V4 +

√
6U4V2 + U5V1

ª®®®®®®¬
⊕

©­­­­­­«

2U1V1 − 2U2V5 + U3V4 + U4V3 − 2U5V2
−2U1V2 − 2U2V1 +

√
6U4V4

U1V3 + U3V1 +
√
6U4V5 +

√
6U5V4

U1V4 +
√
6U2V3 +

√
6U3V2 + U4V1

−2U1V5 +
√
6U3V3 − 2U5V1

ª®®®®®®¬
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C. Residual group decompositions

The multiplets of Γ′# are “weighted”, i.e., are described by a pair (r, 9). At a
symmetric point these multiplets decompose into 1-dimensional representations
of the corresponding residual symmetry group. In this appendix we present the
decompositions of Γ′# multiplets (# ≤ 5) under the three residual groups of
interest (tables C.1 to C.4). As seen in chapter 5, these are ℤ(

4, ℤ()
3 × ℤ'

2 and
ℤ)
# × ℤ'

2 .
Before proceeding, let us comment on the ℤ'

2 factors in ℤ()
3 × ℤ'

2 and in
ℤ)
# × ℤ'

2 . While kept as part of the residual symmetry group definition in this
appendix, they have been omitted in the main text of section 6.1. To understand
why they can be ignored without loss of generality, note that a direct product
ℤ<×ℤ2 ≡

〈
0, 1 |0< = 12 = 1, 01 = 10

〉
has 2< irreps 1±

9
, 9 = 0, . . . , <−1, which

are simply given as products of the ℤ< and ℤ2 irreps:

1±9 : d(0) = exp
(
2c79

<

)
, d(1) = ±1. (C.1)

In this notation, 1+0 is the trivial irrep. The representation under ℤ2 is just a sign
and does not affect the reality/complexity of a representation. Hence real irreps
are 1+0, 1−0 and, for even <, 1+

</2, 1−</2 (one also has (1±
9
)∗ = 1±

<−9). Since " (g)
in the bilinear of (6.1) is a function of g alone, it is '-even. The fields k and k2

are then constrained to carry the same '-parity, i.e., transform with the same
sign under ℤ'

2 . Fields in unhatted representations r — for which dr(') = 1

— are even (odd) under ℤ'
2 if 9 is even (odd), while the opposite happens for

hatted representations. Keeping this in mind, one can omit the ℤ'
2 factor and

ignore the superscript signs in the following tables.
Finally, notice that a ℤ'

2 factor is hidden in the residual ℤ(
4, as (2 = '. Fields

transforming under ℤ(
4 as 10 or 12 are '-even while fields transforming as 11

or 13 are '-odd. Requiring that k and k2 carry the same '-parity implies that
one effectively works with ℤ(

4/ℤ'
2 ' ℤ2, which is why it is generic to consider

d̃2
7
d̃ 8 = ±1 in section 6.1.
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C. Residual group decompositions

Table C.1.: Decompositions of “weighted” (r, 9) multiplets of Γ′2 ' (3 under
the residual symmetry groups. Irrep subscripts should be under-
stood modulo <, where < = 4, 3 in the first and second columns,
respectively. Upper (lower) signs correspond to even (odd) values of
9.

r ℤ(
4 (g = 7) ℤ()

3 × ℤ'
2 (g = l) ℤ)

2 × ℤ'
2 (g = 7∞)

1 19 1±
9

1±0
1′ 19+2 1±

9
1±1

2 19 ⊕ 19+2 1±
9−1 ⊕ 1±

9+1 1±0 ⊕ 1±1

Table C.2.: Decompositions of “weighted” (r, 9) multiplets of Γ′3 ' �′4 = )
′ under

the residual symmetry groups. Irrep subscripts should be under-
stood modulo <, where < = 4, 3 in the first and second columns,
respectively. Upper (lower) signs correspond to even (odd) values of
9.

r ℤ(
4 (g = 7) ℤ()

3 × ℤ'
2 (g = l) ℤ)

3 × ℤ'
2 (g = 7∞)

1 19 1±
9

1±0
1′ 19 1±

9+1 1±1
1′′ 19 1±

9+2 1±2
2̂ 19+1 ⊕ 19+3 1∓

9
⊕ 1∓

9+1 1∓0 ⊕ 1∓1
2̂′ 19+1 ⊕ 19+3 1∓

9+1 ⊕ 1∓
9+2 1∓1 ⊕ 1∓2

2̂′′ 19+1 ⊕ 19+3 1∓
9
⊕ 1∓

9+2 1∓0 ⊕ 1∓2
3 19 ⊕ 19+2 ⊕ 19+2 1±

9
⊕ 1±

9+1 ⊕ 1±
9+2 1±0 ⊕ 1±1 ⊕ 1±2
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C. Residual group decompositions

Table C.3.: Decompositions of “weighted” (r, 9) multiplets of Γ′4 ' (′4 =

SL(2,ℤ4) under the residual symmetry groups. Irrep subscripts
should be understood modulo <, where < = 4, 3 in the first and
second columns, respectively. Upper (lower) signs correspond to
even (odd) values of 9.

r ℤ(
4 (g = 7) ℤ()

3 × ℤ'
2 (g = l) ℤ)

4 × ℤ'
2 (g = 7∞)

1 19 1±
9

1±0
1̂ 19+1 1∓

9
1∓3

1′ 19+2 1±
9

1±2
1̂′ 19+3 1∓

9
1∓1

2 19+2 ⊕ 19 1±
9+1 ⊕ 1±

9+2 1±0 ⊕ 1±2
2̂ 19+1 ⊕ 19+3 1∓

9+1 ⊕ 1∓
9+2 1∓1 ⊕ 1∓3

3 19+2 ⊕ 19 ⊕ 19 1±
9
⊕ 1±

9+1 ⊕ 1±
9+2 1±1 ⊕ 1±2 ⊕ 1±3

3̂ 19+1 ⊕ 19+1 ⊕ 19+3 1∓
9
⊕ 1∓

9+1 ⊕ 1∓
9+2 1∓0 ⊕ 1∓1 ⊕ 1∓2

3′ 19+2 ⊕ 19+2 ⊕ 19 1±
9
⊕ 1±

9+1 ⊕ 1±
9+2 1±0 ⊕ 1±1 ⊕ 1±3

3̂′ 19+1 ⊕ 19+3 ⊕ 19+3 1∓
9
⊕ 1∓

9+1 ⊕ 1∓
9+2 1∓0 ⊕ 1∓2 ⊕ 1∓3
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C.
Residualgroup

decom
positions

Table C.4.: Decompositions of “weighted” (r, 9) multiplets of Γ′5 ' �′5 = SL(2,ℤ5) under the residual symmetry
groups. Irrep subscripts should be understood modulo <, where < = 4, 3 in the first and second
columns, respectively. Upper (lower) signs correspond to even (odd) values of 9.

r ℤ(
4 (g = 7) ℤ()

3 × ℤ'
2 (g = l) ℤ)

5 × ℤ'
2 (g = 7∞)

1 19 1±
9

1±0
2̂ 19+1 ⊕ 19+3 1∓

9+1 ⊕ 1∓
9+2 1∓2 ⊕ 1∓3

2̂′ 19+1 ⊕ 19+3 1∓
9+1 ⊕ 1∓

9+2 1∓1 ⊕ 1∓4
3 19 ⊕ 19+2 ⊕ 19+2 1±

9
⊕ 1±

9+1 ⊕ 1±
9+2 1±0 ⊕ 1±1 ⊕ 1±4

3′ 19 ⊕ 19+2 ⊕ 19+2 1±
9
⊕ 1±

9+1 ⊕ 1±
9+2 1±0 ⊕ 1±2 ⊕ 1±3

4 19 ⊕ 19 ⊕ 19+2 ⊕ 19+2 1±
9
⊕ 1±

9
⊕ 1±

9+1 ⊕ 1±
9+2 1±1 ⊕ 1±2 ⊕ 1±3 ⊕ 1±4

4̂ 19+1 ⊕ 19+1 ⊕ 19+3 ⊕ 19+3 1∓
9
⊕ 1∓

9
⊕ 1∓

9+1 ⊕ 1∓
9+2 1∓1 ⊕ 1∓2 ⊕ 1∓3 ⊕ 1∓4

5 19 ⊕ 19 ⊕ 19 ⊕ 19+2 ⊕ 19+2 1±
9
⊕ 1±

9+1 ⊕ 1±
9+1 ⊕ 1±

9+2 ⊕ 1±
9+2 1±0 ⊕ 1±1 ⊕ 1±2 ⊕ 1±3 ⊕ 1±4

6̂
19+1 ⊕ 19+1 ⊕ 19+1
⊕ 19+3 ⊕ 19+3 ⊕ 19+3

1∓9 ⊕ 1∓9 ⊕ 1∓9+1
⊕ 1∓9+1 ⊕ 1∓9+2 ⊕ 1∓9+2

1∓0 ⊕ 1∓0 ⊕ 1∓1
⊕ 1∓2 ⊕ 1∓3 ⊕ 1∓4
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D. Possible hierarchical patterns

In this appendix we list the hierarchical patterns which may arise in the vicinities
of the two symmetric points of interest (see main text). We consider in turn
the finite modular groups Γ′2 ' (3, Γ′3 ' �′4 = )

′, Γ′4 ' (′4 = SL(2,ℤ4), and Γ′5 '
�′5 = SL(2,ℤ5) (tables D.1 to D.4). We have focused on 3-dimensional (possibly
reducible) representations (r, r2) entering the bilinear (6.1). Dependence on the
weights 9(2) may only arise for g ∼ l and through the combination  = 9 + 92,
modulo 3. One can see from tables C.1 to C.4 that if one of the 3d multiplets
(say k) entering the bilinear is not a sum of 3 singlets, then its decomposition
under the ℤ()

3 residual symmetry includes all possible singlets, 10, 11, and 12,
independently of the weight 9. In such cases, hierarchies are independent of
weights since a change in 92 can be absorbed by a change in 9 in their sum.

Note that for # = 2 the residual symmetry group at gsym = 7∞ is ℤ)
2. Mass

matrix entries are then expected to be either O(1) or O(n) and, as was the case
for g ' 7, one cannot obtain the sought-after hierarchical patterns from the
smallness of n alone. As such, only g ' l is considered in table D.1.

Table D.1.: Leading-order mass spectra patterns of bilinears k2k in the vicinity of the
symmetric point l, for 3d multiplets k ∼ (r, 9) and k2 ∼ (r2, 92) of the
finite modular group Γ′2 ' (3. Spectra are insensitive to transposition, i.e.,
to the exchange k ↔ k2. Congruence relations for 9 + 92 are modulo 3.

r r2 g ' l

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
2 ⊕ 1 2 ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1)
2 ⊕ 1 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1)
2 ⊕ 1′ 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1)
2 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2)
2 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2)
2 ⊕ 1′ 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2)
2 ⊕ 1′ 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2)
2 ⊕ 1 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2)
2 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2)
2 ⊕ 1′ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2)
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D. Possible hierarchical patterns

Table D.1.: (cont.)

r r2 g ' l

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
2 ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2)

1′ ⊕ 1 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n)
1′ ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n)
1′ ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n)
1 ⊕ 1 ⊕ 1 1 ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n)
1′ ⊕ 1′ ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n)

Table D.2.: Leading-order mass spectra patterns of bilinears k2k in the vicinity of
the symmetric points l and 7∞, for 3d multiplets k ∼ (r, 9) and k2 ∼
(r2, 92) of the finite modular group Γ′3 ' �′4 = )

′. Spectra are insensitive to
transposition, i.e., to the exchange k ↔ k2. Congruence relations for 9 + 92
are modulo 3.

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
3 3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 1′′ ⊕ 1′ ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 1′ ⊕ 1 ⊕ 1 (1, 1, n2) (1, 1, n2) (1, 1, n2) (1, 1, n2)
3 1′′ ⊕ 1 ⊕ 1 (1, 1, n) (1, 1, n) (1, 1, n) (1, 1, n)
3 1′ ⊕ 1′ ⊕ 1 (1, 1, n) (1, 1, n) (1, 1, n) (1, 1, n)
3 1′′ ⊕ 1′′ ⊕ 1 (1, 1, n2) (1, 1, n2) (1, 1, n2) (1, 1, n2)
3 1′′ ⊕ 1′ ⊕ 1′ (1, 1, n2) (1, 1, n2) (1, 1, n2) (1, 1, n2)
3 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, n) (1, 1, n) (1, 1, n) (1, 1, n)
3 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
3 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
3 1′′ ⊕ 1′′ ⊕ 1′′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)

1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
1′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, n2) (1, 1, n2) (1, 1, n2) (1, 1, n2)
1′′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, n) (1, 1, n) (1, 1, n) (1, 1, n)

105



D. Possible hierarchical patterns

Table D.2.: (cont.)

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, 1, n) (1, 1, n) (1, 1, n) (1, 1, n)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, 1, n2) (1, 1, n2) (1, 1, n2) (1, 1, n2)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, 1, n2) (1, 1, n2) (1, 1, n2) (1, 1, n2)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, n) (1, 1, n) (1, 1, n) (1, 1, n)
1 ⊕ 1 ⊕ 1 1′′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
1′ ⊕ 1 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, 1, n) (1, n2, n2) (1, 1, n) (1, 1, n)
1′ ⊕ 1 ⊕ 1 1′′ ⊕ 1 ⊕ 1 (1, 1, 1) (1, n, n2) (1, n, n2) (1, 1, 1)
1′ ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, 1, 1) (1, n, n2)
1′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, 1, n) (1, 1, n) (1, n2, n2) (1, 1, n)
1′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, n2, n2) (1, 1, n) (1, 1, n) (1, n2, n2)
1′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, n, n2) (1, 1, 1) (1, n, n2) (1, n, n2)
1′′ ⊕ 1 ⊕ 1 1′′ ⊕ 1 ⊕ 1 (1, 1, n2) (1, 1, n2) (1, n, n) (1, 1, n2)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1 ⊕ 1 (1, 1, n2) (1, n, n) (1, 1, n2) (1, 1, n2)
1′′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, n, n2) (1, 1, 1) (1, n, n2) (1, n, n2)
1′′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, 1, 1) (1, n, n2)
1′′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, n, n) (1, 1, n2) (1, 1, n2) (1, n, n)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, n, n) (1, 1, n2) (1, 1, n2) (1, n, n)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, 1, 1) (1, n, n2) (1, n, n2) (1, 1, 1)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, 1, 1) (1, n, n2) (1, n, n2)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, n2) (1, 1, n2) (1, n, n) (1, 1, n2)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
1′′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
1′′ ⊕ 1′′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, n2, n2) (1, 1, n) (1, 1, n) (1, n2, n2)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1 (1, 1, n) (1, n2, n2) (1, 1, n) (1, 1, n)
1′′ ⊕ 1′′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, 1, 1) (1, n, n2)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′ (1, 1, n) (1, 1, n) (1, n2, n2) (1, 1, n)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, 1) (1, n, n2) (1, n, n2) (1, 1, 1)
1′′ ⊕ 1′′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, n2) (1, n, n) (1, 1, n2) (1, 1, n2)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, 1, n2) (n, n2, n2) (1, n, n) (1, 1, n2)
1 ⊕ 1 ⊕ 1 1′′ ⊕ 1 ⊕ 1 (1, 1, n) (1, n2, n2) (n, n, n2) (1, 1, n)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, n2, n2) (n, n, n2) (1, 1, n) (1, n2, n2)
1 ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1 (1, n, n) (1, 1, n2) (n, n2, n2) (1, n, n)
1 ⊕ 1 ⊕ 1 1′′ ⊕ 1′ ⊕ 1′ (n, n2, n2) (1, n, n) (1, 1, n2) (n, n2, n2)
1 ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′ (n, n, n2) (1, 1, n) (1, n2, n2) (n, n, n2)
1′ ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (n, n2, n2) (1, n, n) (1, 1, n2) (n, n2, n2)
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D. Possible hierarchical patterns

Table D.2.: (cont.)

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
1′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (1, n, n) (1, 1, n2) (n, n2, n2) (1, n, n)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1 ⊕ 1 (1, n2, n2) (n, n, n2) (1, 1, n) (1, n2, n2)
1′′ ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (n, n, n2) (1, 1, n) (1, n2, n2) (n, n, n2)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (n, n, n2) (1, 1, n) (1, n2, n2) (n, n, n2)
1′ ⊕ 1′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (1, 1, n) (1, n2, n2) (n, n, n2) (1, 1, n)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1 (1, 1, n2) (n, n2, n2) (1, n, n) (1, 1, n2)
1′′ ⊕ 1′′ ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (n, n2, n2) (1, n, n) (1, 1, n2) (n, n2, n2)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′ (1, n, n) (1, 1, n2) (n, n2, n2) (1, n, n)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′ (1, 1, n) (1, n2, n2) (n, n, n2) (1, 1, n)
1′′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′′ (1, 1, n2) (n, n2, n2) (1, n, n) (1, 1, n2)
1′′ ⊕ 1′′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′′ (1, n2, n2) (n, n, n2) (1, 1, n) (1, n2, n2)
1 ⊕ 1 ⊕ 1 1 ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (n2, n2, n2) (n, n, n) (1, 1, 1) (n2, n2, n2)
1 ⊕ 1 ⊕ 1 1′′ ⊕ 1′′ ⊕ 1′′ (n, n, n) (1, 1, 1) (n2, n2, n2) (n, n, n)
1′ ⊕ 1′ ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (n, n, n) (1, 1, 1) (n2, n2, n2) (n, n, n)
1′ ⊕ 1′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′′ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1′′ ⊕ 1′′ ⊕ 1′′ 1′′ ⊕ 1′′ ⊕ 1′′ (n2, n2, n2) (n, n, n) (1, 1, 1) (n2, n2, n2)

Table D.3.: Leading-order mass spectra patterns of bilinears k2k in the vicinity of the
symmetric points l and 7∞, for 3d multiplets k ∼ (r, 9) and k2 ∼ (r2, 92)
of the finite modular group Γ′4 ' (′4 = SL(2,ℤ4). Spectra are insensitive to
transposition, i.e., to the exchange k ↔ k2. Congruence relations for 9 + 92
are modulo 3.

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
3 3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n2)
3 3̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n3)
3 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n)
3′ 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3′ 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n3)
3̂ 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n)
3̂ 3̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n2)
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D. Possible hierarchical patterns

Table D.3.: (cont.)

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
3̂ 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3̂′ 3̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n2)
3 2 ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n3)
3 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n)
3 2̂ ⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n3)
3 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n)
3′ 2 ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n)
3′ 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n3)
3′ 2̂ ⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n)
3′ 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n3)
3̂ 2 ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n3)
3̂ 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n)
3̂ 2̂ ⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n)
3̂ 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n3)
3̂′ 2 ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n)
3̂′ 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n3)
3̂′ 2̂ ⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n3)
3̂′ 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n)

2 ⊕ 1 2 ⊕ 1 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2 ⊕ 1 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n2)
2 ⊕ 1 2̂ ⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (n, n, n)
2 ⊕ 1 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (n, n, n3)
2 ⊕ 1′ 2 ⊕ 1′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2 ⊕ 1′ 2̂ ⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (n, n, n3)
2 ⊕ 1′ 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (n, n, n)

3 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)
3 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n)
3 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n3)
3 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n)
3′ 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n)
3′ 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)
3′ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n)
3′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n3)
3 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (n, n2, n3)
3 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)
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D. Possible hierarchical patterns

Table D.3.: (cont.)

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
3 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n3)
3 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
3′ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)
3′ 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (n, n2, n3)
3′ 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
3′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n3)

2̂ ⊕ 1̂ 2̂ ⊕ 1̂ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n2)
2̂ ⊕ 1̂ 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
2̂ ⊕ 1̂′ 2̂ ⊕ 1̂′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, n2)

3̂ 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n3)
3̂ 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n)
3̂ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n)
3̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)
3̂′ 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n)
3̂′ 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n3)
3̂′ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)
3̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n)
3̂ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n3)
3̂ 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
3̂ 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)
3̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (n, n2, n3)
3̂′ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n2)
3̂′ 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n3)
3̂′ 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (n, n2, n3)
3̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n3)

2 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, 1)
2 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2 ⊕ 1 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n)
2 ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2 ⊕ 1′ 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2 ⊕ 1′ 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, 1)
2 ⊕ 1′ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2 ⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n)
2 ⊕ 1 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n2)
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D. Possible hierarchical patterns

Table D.3.: (cont.)

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
2 ⊕ 1 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2 ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (n, n3, n3)
2 ⊕ 1′ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n2)
2 ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2 ⊕ 1′ 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (n, n3, n3)
2 ⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2̂ ⊕ 1̂ 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n)
2̂ ⊕ 1̂ 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2̂ ⊕ 1̂ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2̂ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, 1)
2̂ ⊕ 1̂′ 1′ ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2̂ ⊕ 1̂′ 1′ ⊕ 1′ ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n)
2̂ ⊕ 1̂′ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, 1)
2̂ ⊕ 1̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2̂ ⊕ 1̂ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2̂ ⊕ 1̂ 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (n, n3, n3)
2̂ ⊕ 1̂ 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n2)
2̂ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2̂ ⊕ 1̂′ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (n, n3, n3)
2̂ ⊕ 1̂′ 1′ ⊕ 1′ ⊕ 1′ (1, n, n2) (1, n, n2) (1, n, n2) (n, n, n3)
2̂ ⊕ 1̂′ 1̂ ⊕ 1̂ ⊕ 1̂ (1, n, n2) (1, n, n2) (1, n, n2) (1, 1, n2)
2̂ ⊕ 1̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n2)

1′ ⊕ 1 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1′ ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, n2)
1′ ⊕ 1 ⊕ 1 1̂′ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n)
1′ ⊕ 1 ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n3)
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1′ ⊕ 1′ ⊕ 1 1̂′ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n3)
1′ ⊕ 1′ ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, n2)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, n2, n2)
1 ⊕ 1 ⊕ 1 1̂′ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n3)
1 ⊕ 1 ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n3, n3)
1′ ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, n2, n2)
1′ ⊕ 1 ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n3, n3)
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D. Possible hierarchical patterns

Table D.3.: (cont.)

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
1′ ⊕ 1′ ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, n2)
1′ ⊕ 1′ ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n3)
1′ ⊕ 1′ ⊕ 1′ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n3, n3)
1′ ⊕ 1′ ⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n3)
1 ⊕ 1 ⊕ 1 1 ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1 ⊕ 1 ⊕ 1 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n) (n2, n2, n2)
1 ⊕ 1 ⊕ 1 1̂ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n)
1 ⊕ 1 ⊕ 1 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (n3, n3, n3)
1′ ⊕ 1′ ⊕ 1′ 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1′ ⊕ 1′ ⊕ 1′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n)
1̂′ ⊕ 1̂ ⊕ 1̂ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, n2)
1̂′ ⊕ 1̂ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1̂′ ⊕ 1̂′ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, n2)
1̂ ⊕ 1̂ ⊕ 1̂ 1′ ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n, n3)
1̂ ⊕ 1̂ ⊕ 1̂ 1′ ⊕ 1′ ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (n, n3, n3)
1̂ ⊕ 1̂ ⊕ 1̂ 1̂′ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, n2, n2)
1̂ ⊕ 1̂ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, n2)
1̂′ ⊕ 1̂ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, n2)
1̂′ ⊕ 1̂′ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, n2, n2)
1̂ ⊕ 1̂ ⊕ 1̂ 1′ ⊕ 1′ ⊕ 1′ (1, 1, 1) (n2, n2, n2) (n, n, n) (n3, n3, n3)
1̂ ⊕ 1̂ ⊕ 1̂ 1̂ ⊕ 1̂ ⊕ 1̂ (1, 1, 1) (n2, n2, n2) (n, n, n) (n2, n2, n2)
1̂ ⊕ 1̂ ⊕ 1̂ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
1̂′ ⊕ 1̂′ ⊕ 1̂′ 1̂′ ⊕ 1̂′ ⊕ 1̂′ (1, 1, 1) (n2, n2, n2) (n, n, n) (n2, n2, n2)

Table D.4.: Leading-order mass spectra patterns of bilinears k2k in the vicinity of the
symmetric points l and 7∞, for 3d multiplets k ∼ (r, 9) and k2 ∼ (r2, 92)
of the finite modular group Γ′5 ' �′5 = SL(2,ℤ5). Spectra are insensitive to
transposition, i.e., to the exchange k ↔ k2. Congruence relations for 9 + 92
are modulo 3.

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
3 3 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, n, n4)
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D. Possible hierarchical patterns

Table D.4.: (cont.)

r r2 g ' l
g ' 7∞

9 + 92 ≡ 0 9 + 92 ≡ 1 9 + 92 ≡ 2
3′ 3′ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
3 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n, n4)
3′ 1 ⊕ 1 ⊕ 1 (1, n, n2) (1, n, n2) (1, n, n2) (1, n2, n3)

1 ⊕ 1 ⊕ 1 1 ⊕ 1 ⊕ 1 (1, 1, 1) (n2, n2, n2) (n, n, n) (1, 1, 1)
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Index

automorphy factor 8

fundamental domain 32

homogeneous finite modular group 8

inhomogeneous finite modular group 8

inhomogeneous modular group 8

level 8

metaplectic group 14

modular form 10

modular group 7

modulus 7

multiplier system 9

principal congruence subgroup 8

residual symmetry 32

symmetric point 32

weight 8
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