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Abstract: The assumptions of frame supports being fully rigid and distributed masses and deformations of the 
columns being neglected are frequently taken into consideration in dynamic analysis of plane frames. In 
practice, however, column bases of frames may usually rotate and translate a little due to seismic effects. In 
this case, support behavior can be modeled using elastic springs at the column bases of frames. Besides, 
columns, in fact, are not massless, and have distributed mass and stiffness. In this study, the support of the 
frame modeled as Timoshenko column is modeled by elastic springs against rotation and translation. The 
generalized equation of motion is obtained by Lagrange equation using energy relations of the system, the 
dynaimc response is computed for different elastic spring coefficients using incremental Newmark-β method, 
and response spectra are obtained using ground accelerations of 1999 Izmit earthquake. 
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Sürekli Sistem Olarak Modellenen Yarı-Rijit Mesnetli Tek Katlı Çerçevelerin Tepki Spektrumları 

 
Özet: Çerçevelerin dinamik analizinde, ankastre bağlı oldukları ve kolonlarının kütle ve deformasyonunun 
ihmal edildiği kabulleri sıkça yapılır. Ancak gerçekte, çerçeve kolonlarının temele bağlı noktaları sismik 
etkiler sebebiyle ötelenme ve dönme gösterebilmektedir. Bu durumda, mesnet davranışı elastik yaylarıyla 
modellenebilir. Ayrıca, gerçekte kolonlar yayılı kütleye ve rijitliğe sahiptir. Bu çalışmada, Timoshenko 
kolonu olarak modellenen çerçevenin mesnedi ötelenmeye ve dönmeye karşı elastik yaylar ile modellenmiştir. 
Genelleştirilmiş hareket denklemi sistemin enerji ifadeleri kullanılarak Lagrange denklemi ile elde edilmiş, 
Newmark-β metodu kullanılarak sistemin dinamik tepkisi hesaplanmış ve 1999 İzmit depremi yer ivmeleri 
kullanılarak tepki spektrumları elde edilmiştir. 
Anahtar kelimeler: tepki spektrumu, timoshenko modeli, tek katlı çerçeve, yarı-rijit mesnet 

 
Introduction 

In dynamic analysis of single-storey frames, it is generally assumed that distributed mass of column is negligible 
and supports are fully rigid. These assumptions make dynamic analysis of mathematical calculation model easy. 

Michaltsos and Ermopoulos (2001) studied free and forced vibration of the model in this study neglecting shear 
deformation and rotatory inertia. Glabisz (1999) studied vibration and stability of elastically supported continuous 
bars subjected to static loading. Güler (1996) searched the effects of soil flexibility on free vibration of tower-like 
structures using Euler model. 

Dynamic analysis of semi-rigid supported framed systems modeled as discrete parameter in which deformations 
and distributed mass of the columns are neglected is also frequently studied by many researchers (Rodriguez & 
Montes, 2000; Bhattachaya & Dutta, 2004; Hjelmstad, 1998). 

Behavior of the column bases of frames is more appropriate to semi-rigid support model. Dynamic mathematical 
model of semi-rigid supported single storey frame is presented in Fig. 1. Floor mass of the frame with its rotational 
inertia is concentrated at the top of elastic bar in the model, and base of the bar is supported by elastic springs against 
rotation and translation modeling the semi-rigid support behavior. The model is assumed to be subjected to Izmit 
earthquake. Generalized equation of motion is derived using energy relations of the model in Lagrange’s equation, 
and dynamic response of the model is evaluated by incremental (non-iterative) Newmark-β method. 
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Theory 
Differential equation of motion for Timoshenko column of the mathematical model in Fig. 1 for free vibration is 

as in follows 
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where m, A, I, EI, AG and k are respectively, distributed mass, cross section area, moment of inertia, flexural 
stiffness, shear stiffness and constant of shear area of the column, N is axial compressive force. Method of separation 
of variables is applied using transformation given in Eq. (2) to solve differential Eq. (1). 

)tsin()x(X)t(T)x(X)t,x(u ω⋅=⋅=          (2) 
where ω is natural frequency, X(x) is shape function and T(t) is harmonic time function chosen to solve the equation 
of motion for free vibration and to obtain X(x) substituted into energy relations that will give the equation of motion 
for seismic vibration. 
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Figure 1. Dynamic mathematical model of semi-rigid supported single-storey frame. 
 

Differentiating successively of Eq. (2) with respect to x and t and substituting in Eq. (1) gives 
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Solving differential equation (3) gives the shape function X(x) of the continuous model used for the frame in Fig. 
1 and substituting X(x) in Eq. (2) gives the displacement function of the model as 
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Shape function for the considered mode frequency obtained from the solution of Eq. (3) in terms of the 
integration constants C1...C4 is substituted into boundary conditions given in Eq. (5) to evaluate the integration 
constants for C4=1, because the three integration constants are always calculated in terms of the fourth one (Chopra, 
1995). 
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where M(0), M(L), V(0), V(L) θ(0), θ(L) are moment, shear and slope functions at x=0 and x=L respectively; K  and θ
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Kδ are spring coefficients of rotation and translation, respectively; M and J are concentrated mass and its rotatory 
inertia, respectively. 

Lagrange’s equation of the undamped system is written as follows (Biggs, 1964). 
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where Z(t) is the generalized coordinate of the nth mode; Ek, Ep and Eg are kinetic, potential and external load 
energies, respectively. Total kinetic and potential energies of the model in Fig. 1 are obtained respectively as (Karami 
et al, 2003) 
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where total external seismic load energy as 
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Displacement function of a continuous system modeled as generalized single-degree-of-freedom system can be 
written as  

)t(Z)x(X)t,x(u =          (10) 
Using the transformation of Eq. (10) in the energy equations (7), (8), (9) and substituting them into Lagrange’s 

equation (6) gives the equation of motion for the model in Fig. 1 as in the following 
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Since Eq. (11) is similar to the equation of motion of a discrete parameter sdof system, the following relation can 

be obtained if both sides are divided by . *
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Eq. (12) is evaluated for incremental displacement ΔZi by substituting Eq. (13) given for incremental acceleration 
into incremental equation (14) of motion, as given in Newmark-β method (Chopra,1995). 
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where β=1/6, Δt is incremental time. Once ΔZi is computed, incremental velocity  and acceleration  iZ&Δ iZ&&Δ
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Numerical Analysis 
Response spectrum analysis of semi-rigid supported timoshenko column having a concentrated mass representing 

floor at the top are performed. Rotational inertia of the concentrated mass is also included in the dynamic analysis. 
Numerical data for the model of single-storey semi-rigid supported frame in Fig. 1 are given as follows: 
Distributed mass of bar: m=1.7982 ts2/m2; Cross-section area of bar: A=2.45 m2; Cross-sectional moment of inertia of 
bar: I=0.0625 m4; Flexural stiffness of bar: EI=198750 tm2; Shear stiffness of bar: AG=3116400 t; Shear area 
constant for rectangular cross-section: k=1.2; Length of bar: L=3 m; Concentrated mass: M=53.946 ts2/m; Rotational 
inertia of concentrated mass: J=485.514 ts2m/rad; Axial compression force: N=100 t; Coefficient of translational 
spring: Kδ=10000-100000-1000000 (t/m); Coefficient of rotational spring: Kθ=10000-100000-1000000 (tm/rad) 

Acceleration-time history of 1999 Izmit earthquake is presented in Fig. 2. 
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Figure 2. Acceleration-time history of 1999 Izmit earthquake 

 
Response spectrum analysis of semi-rigid supported single-storey frames subjected to Izmit earthquake is made 

solving Eq. (12) by Newmark-β method for period values of 0-3 seconds using a computer program developed by the 
author. Displacement, velocity and acceleration response spectrum graphs are presented in respectively Figs. 3, 4 and 
5 for translational and rotational spring coefficients of 10000 (t/m; tm/rad); in respectively Figs. 6, 7 and 8 for spring 
coefficients of 100000 (t/m; tm/rad); respectively Figs. 9, 10 and 11 for t spring coefficients of 1000000 (t/m; tm/rad). 
 



Response Spectra of Semi-Rigid Supported Single Storey Frames Modeled as Continuous System            
131 
 

0

0.002

0.004

0.006

0.008

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

T (s)

SD (m)

 
Figure  3. Displacement response spectrum for Kδ=10000 t/m, Kθ=10000 tm/radian 
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Figure  4. Velocity response spectrum for Kδ=10000 t/m, Kθ=10000 tm/radian 
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Figure  5. Acceleration response spectrum for Kδ=10000 t/m, Kθ=10000 tm/radian 
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Figure  6. Displacement response spectrum for Kδ=100000 t/m, Kθ=100000 tm/radyan 
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Figure  7. Velocity response spectrum for Kδ=100000 t/m, Kθ=100000 tm/radian 
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Figure 8. Acceleration response spectrum for Kδ=100000 t/m, K =100000 tm/radian θ
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Figure  9. Displacement response spectrum for Kδ=1000000 t/m, Kθ=1000000 tm/radian 
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Figure 10. Velocity response spectrum for Kδ=1000000 t/m, Kθ=1000000 tm/radyan 
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Figure  11. Acceleration response spectrum for Kδ=1000000 t/m, Kθ=1000000 tm/radyan 
 
 
Discussion 

The generalized mass and generalized seismic force values show a decrease if the spring coefficients are 
increased, whereas the generalized stiffness increases. It is observed in the response spectrum analysis of semi-rigid 
supported single storey frames having a period of 0-3 seconds performed for North-South component of 1999 Izmit 
earthquake ground accelerations that the displacement, velocity and acceleration response spectrum values show a 
decrease for translational and rotational spring coefficients of 10000 and 100000 (t/m; tm/rad) when the spring 
coefficients are increased. 
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