
Trakya Eğitim Dergisi

Cilt 10, Sayı 1

Ocak 2020, 221-237

ISSN: 2630-6301

Trakya Journal of Education

Volume 10, Issue 1

January 2020, 221-237

Geliş Tarihi: 11.06.2019 Doi: 10.24315/tred.575098

Araştırma Makalesi

Yayına Kabul Tarihi: 12.02.2020

221

The Influence of Pair Programming on Secondary School Students’ Confidence and

Achievement in Computer Programming

Eşli Programlamanın Ortaokul Öğrencilerinin Bilgisayar Programlama Özgüven ve

Başarısına Etkisi

Habibe ÇAL1, Gülfidan CAN2

UZUN ÖZET

Giriş

Öğrencilere bir dizi yazılımın kullanımını öğretmek yerine, programlama ile problem çözme

aktivitelerinin sağlanması, onların bilişsel olarak daha aktif, sistematik ve araştırmacı olmasına

yardımcı olmaktadır. Ancak programlamanın zorunlu olarak müfredata eklenmesi konusunda farklı

görüşler vardır. Bilgisayar programlamada başlangıç seviyesinde olan öğrenciler, programlama

kavramlarını anlamakta, hatalarını düzeltmekte ve karmaşık programlar yaratmakta zorluk

çekmektedirler. Bu sebeple çocukların programlamayı kolayca öğrenebilmesi için Scratch gibi basit ve

görsel programlama ortamları oluşturulmuş ve farklı öğretim yöntemleri denenmiştir. Etkili

yöntemlerden biri olan eşli programlamada iki öğrenci bir bilgisayarda çalışmakta, biri kodları

oluştururken diğeri kodları gözlemleyip eşine yardımcı olmaktadır. K-12 alanında yapılan araştırmalar

eşli programlamanın problem çözme ve kritik düşünme becerilerini geliştirdiğini ve programlama

1 Öğretmen, Yenikent İlksan Ortaokulu, E-posta: habibe_krgll@gmail.com , ORCID: 0000-0001-6365-2020
2 Dr. Öğr. Üyesi, Orta Doğu Teknik Üniversitesi, E-posta: gcan@metu.edu.tr, ORCID: 0000-0003-0337-4166.

Öz: Bu araştırmada iç içe geçmiş durum çalışması yapılarak eşli

programlamanın ortaokul öğrencilerinin bilgisayar programlama

özgüven ve başarısına etkisi araştırılmıştır. Beşinci sınıf

seviyesinde 35 öğrenci bireysel (n=13) ve eşli (n=22) programlama

gruplarına ayrılmış, Scratch programlama etkinlikleri kullanılarak

sekiz haftalık bir uygulama yürütülmüştür. Araştırmada nitel veri

görüşmelerle, nicel veri ise özgüven anketi ve rubriklerle

toplanmıştır. Veri analizi için bağımsız örneklemler t testi ve içerik

analizi kullanılmıştır. Uygulama sonunda eşli programlama

öğrencilerinin özgüven ve başarısının, bireysel programlama

öğrencilerinden daha yüksek olduğu bulunmuştur. Bu çalışma,

ortaokul seviyesinde bilgisayar programlama özgüveni ve

başarısını artırmak için eşli programlama yönteminin kullanımını

desteklemekte, özellikle bilgisayar sayısı yetersiz olan okullara,

rekabetçi öğrencilere ve programlamayı yeni öğrenenlere bu

yöntemi önermektedir.

Anahtar sözcükler: Eşli programlama, bilgisayar programlama,

özgüven, başarı, ortaokul.

Abstract: The purpose of this embedded case study is to explore the

possible influence of pair programming on secondary school students’

confidence and achievement in computer programming. A total of 35

students in a fifth-grade class were divided into individual (n=13) and

pair programmers (n=22), who then used Scratch programming

activities during an eight week implementation. Qualitative data were

collected with interviews and quantitative data were collected with a

confidence questionnaire and rubrics. Content analysis and

independent-samples t tests were conducted for data analysis. The

results showed that pair programmers’ confidence and achievement

for computer programming was higher compared to individual

programmers after the implementation. The study supports the use of

pair programming in secondary schools, especially where there are

limited numbers of computers, competitive students, and novice

programmers to increase the confidence and achievement in computer

programming.

Keywords: Pair programming, computer programming, confidence,

achievement, secondary school..

Cite this article as:
 Çal, H.& Can, G. (2020). The influence of pair programming on secondary school students’ confidence and achievement in computer

programming. Trakya Eğitim Dergisi, 10(1), 221-237.

mailto:habibe_krgll@gmail.com
mailto:gcan@metu.edu.tr

Habibe ÇAL, Gülfidan CAN

222

öğrenimini güçlendirdiğini raporlamıştır. Ayrıca, öğrenciler arasındaki etkileşimi ve sosyalleşmeyi

artırarak bilgi paylaşımını sağladığı bulunmuştur. Alan yazında eşli programlamanın etkisini araştıran

çalışmalar genellikle yetişkinlerle yapılmış ve deneysel yöntemler kullanılmıştır. Ortaokullarda

bilgisayar sayısı konusundaki yetersizliklere çözüm olabilecek ve öğrencilerinin programlama

eğitimine katkı sağlayabilecek bu yöntemin kullanımı hakkında alan yazında yeterince bilgi

bulunmamaktadır. Ayrıca bu yöntemin öğrencilerin bilgisayar programlama özgüveni ve başarısına

etkisi konusunda daha fazla araştırmaya ihtiyaç vardır. Bu sebeple bu araştırmanın amacı, eşli

programlamanın ortaokul öğrencilerinin bilgisayar programlama özgüven ve başarısına etkisini

incelemektedir.

Yöntem

İç içe geçmiş durum çalışması yapılarak eşli programlamanın etkisi derinlemesine

incelenmiştir. Çalışmada nitel veri nicel veri ile desteklenmiştir. Araştırma için ilk yazarın öğretmen

olarak çalıştığı, Ankara’da düşük gelir seviyesi olan bir ilçedeki devlet ortaokulunda, bilgisayar

programlamayı yeni öğrenen 5. Sınıflar arasından, sınıf mevcudu en düşük olan sınıf seçilmiştir.

Sınıftaki 35 öğrencinin yaşları 10 ve 11 arasında değişmektedir. Bu öğrencilerden 19’u kız, 16’sı erkek

öğrencidir. Bilişim Teknolojileri ve Yazılım dersinin ilk haftasında öğrenciler bireysel (n=13) ve eşli

programlama (n=22) gruplarına ayrılmış, onlara ders ve uygulama hakkında bilgi sağlanmıştır. Sonraki

sekiz hafta boyunca ise Scratch web sayfasında bulunan ders planları, etkinlikler ve rubrikler

uygulanmıştır. Eşli programlama grubundaki öğrencilerin rolleri her iki haftada bir değiştirilmiştir. İki

saatlik dersin ilk saatinde, ders planları ve içinde bulunan etkinliklerden biri kullanılarak düz anlatım

yöntemi ile ders yapılmış, öğrencilere etkinlik sırasında yardım ve geri bildirim sağlanmıştır. Dersin

ikinci saatinde ise, ilk 10 dakika öğrencilere ikinci etkinlik ve rubrik hakkında bilgi verilmiş ve daha

sonra öğrencilerin etkinliği 30 dakika içinde öğretmen desteği olmadan tamamlamaları istenmiştir. Ders

sonunda öğretmen öğrencilerin sorularını yanıtlamış ve geri bildirim sağlamıştır. Uygulanan

programlama etkinlikleri haftalık olarak rubriklerle değerlendirilmiş ve değerlendirmeler iki kez

yapılarak doğruluğu kontrol edilmiştir. Ayrıca, dönem içinde iki kez diğer bir Bilişim Teknolojileri ve

Yazılım öğretmeni aynı rubrik ile bağımsız değerlendirme yapmış, iki öğretmenin değerlendirmeleri

tutarlı bulunmuştur (ilk uygulama tutarlık=0.82, ikinci uygulama=0.87). Öğrencilerin bilgisayar

programlama özgüvenlerini ölçmek amacıyla iki farklı ölçek birleştirilerek oluşturulan bir anket dönem

içinde iki kez uygulanmıştır (ilk uygulama Cronbach’s Alpha=0.81, ikinci uygulama Cronbach’s Alpha

=0.88). Öğretmen dönemin son üç haftasında öğrenmeyi pekiştirmek amacıyla etkinliklerle dersi

gözden geçirmiş ve problem yaşayan öğrencilere destek sağlamıştır. Bu son üç haftada, öğrenciler

bireysel veya eşli programla yapma konusunda serbest bırakılmıştır. Dönem sonunda gönüllü 20

öğrenci ile (7 bireysel, 13 eşli programlama öğrencisi) görüşmeler yapılmıştır. Nicel veri analizi için

bağımlı örneklem t testi, bağımsız örneklemler t testi ve Mann-Whitney U testi; nitel veri analizi için

ise içerik analizi kullanılmıştır.

Bulgular ve Tartışma

Nitel analiz sonuçları, eşli programlama kullanılmasının öğrencilerinin bilgisayar programlama

özgüven ve başarısını artırdığını göstermiştir. Eşli programlama sırasında öğrencilerin birbirlerine

yardımcı olması, bilgi paylaşımı yapması, hatalarını düzelterek problemleri kolayca çözmesi, verilen

etkinlikleri hızlı ve kaliteli bir şekilde tamamlaması, onların programlama özgüvenlerini yükseltmiştir.

Eşler arasındaki tartışmalar ise özgüvenlerinin düşmesine sebep olmuştur. Benzer şekilde, eşler

arasında bilgi paylaşımı, yardımlaşma ve yaratıcılık ile öğrenciler daha doğru kodlar oluşturduklarını,

etkinlikleri daha hızlı bitirip ve daha yüksek puanlar aldıklarını belirtmişlerdir. Ayrıca, programlamada

özgüven ve başarı arasında güçlü bir bağlantı bulunmuştur. Nicel veri analizleri bu sonuçları

desteklemiştir. Bireysel ve eşli programlama öğrencilerinin bilgisayar programlama özgüven değerleri

arasında dönem başında önemli bir fark bulunmazken, dönem sonunda eşli programlama öğrencilerinin

anlamlı bir farkla bireysel öğrencilere göre daha özgüvenli olduğu bulunmuştur. Aynı şekilde, eşli

programlama öğrencilerinin etkinlik puanları bireysel programlama öğrencilerinden anlamlı bir şekilde

daha fazladır.

Bulgular, alan yazında K-12 alanında eşli programlama için yapılan az sayıdaki çalışmanın

raporladığı olumlu etkiler açısından tutarlıdır. Bireysel ve eşli programla öğrencilerinin aynı ortamda

bulunması araştırma sonuçlarını etkilemiş olabilir; ancak bu durum uygulama başında rekabetçi olan ve

Habibe ÇAL, Gülfidan CAN

223

bireysel çalışmak isteyen öğrencilerin uygulama sonunda birlikte çalışma ve yardımlaşma tutumlarını

geliştirmiştir. Özellikle yetersiz sayıda bilgisayarı olan okullarda öğrenciler halihazırda bir bilgisayarı

birlikte kullanmak zorunda kalmaktadırlar. Bilgisayar sayısı yeterli olsa dahi eşli programlama

öğrencilerin öğrenme, özgüven ve sosyalleşmesini desteklemesi sebebiyle düzenli olarak kullanılmalı,

böylece programlama yaparken öğrencilerin özerkliğinin yanı sıra işbirlikçi tutumunun da gelişmesi

sağlanmalıdır. Bu araştırma bir durum araştırması olması sebebiyle sonuçlarının diğer bağlamlara

genellemesi sınırlıdır. Ayrıca bu çalışmada eşli programlama öğrencilerinin etkinliklerdeki bireysel

performansları ölçülmemiştir. Farklı öğrenci grupları ile çalışmanın tekrarı veya bilgisayar sayısı yeterli

okullarda ters çevrilmiş eşli programlamanın incelenmesi faydalı olabilir. Bunu yanında, etkili

eşleştirme yöntemleri, eşli programlama ölçme değerlendirme yöntemlerinin araştırılması, öğrencilerin

hata bulma ve düzeltme becerilerini geliştirmek için yöntemler ve öğretmen görüşlerinin araştırılması

alan yazına katkı sağlayabilir. Bu çalışma, ortaokullarda bilgisayar programlama özgüvenini ve

başarısını artırmak için eşli programlama kullanımını desteklemekte, özellikle yetersiz bilgisayar sayısı

olan okullara, rekabetçi öğrencilere ve programlamayı yeni öğrenenlere bu yöntemi önermektedir.

1. INTRODUCTION

There has been a recent focus on computer fluency rather than computer literacy.

Providing problem-solving activities using information technology has been suggested instead

of teaching students how to use a list of software (Werner & Denning, 2009). Compared to

direct teaching, programming can help children become more cognitively active, systematic,

exploratory, and self-directed in solving problems (Maloney, Resnick, Rusk, Silverman, &

Eastmond, 2010; Papert, 1980) and it can improve mathematical and social skills (Fessakis,

Gouli, & Mavroudi, 2013). As programming gained global popularity in K-12, Turkey has also

integrated programming into secondary school curricula, as from 2012.

However, including a new topic into established curricula requires examining students’

readiness as well as the required instructional methods, and there are debates ongoing with

regards to mandating Computational Thinking into school curricula (Grover & Pea, 2013).

Novice programmers in K-12 sometimes experience difficulty with programming concepts,

correcting mistakes, or producing complex programs (Denner, Werner, & Ortiz, 2012). One of

the strategies suggested to help children learn programming more easily and effectively is the

provision of an easy to use programing environment for kids such as LOGO, Scratch, Code.org,

and Alice (Fessakis et al., 2013; Grover & Pea, 2013). Several studies reported on the cognitive

and affective advantages of using Scratch in schools (Akpinar & Aslan, 2015; Maloney et al.,

2010; Wilson & Moffat, 2010; Yünkül, Durak, Çankaya, & Mısırlı, 2017). However,

conflicting results have shown that although students’ motivation and enjoyment increased

with the use of Scratch, there were minimal cognitive improvements realized (Kalelioğlu &

Gülbahar, 2014; Wilson & Moffat, 2010). One possible reason for these conflicting results

might be due to differences in the instructional methods applied. Introducing a new software

for children without the appropriate instructional method does not guarantee the realization of

the intended benefits; and it is therefore necessary to examine the effectiveness of instructional

methods for programming at the K-12 level (Fessakis et al., 2013).

Consequently, another strategy for facilitating students’ learning programming is to use

known effective instructional methods such as pair programming. Pair programming is referred

as a “modern pedagogical method of teaching” (Nančovska, Kaučič, & Rugelj, 2008, p. 45) or

a “teaching-learning strategy” (Mentz, van der Walt, & Goosen, 2008, p. 247). It originated as

one of the major practices of Extreme Programming, which differs from traditional software

development methods in that it aims to increase the efficiency and the quality of the developed

product (Beck, 1999). Pair programming requires programmers to work collaboratively on a

task together using a single computer. Each pair has a distinct role. The “Driver” controls the

programming environment, creates codes, and tests the codes, while the “Navigator” or

“Observer” observes the codes, asks questions, brainstorms, and provides suggestions and

corrections (Williams & Upchurch, 2001). These roles should change round on regular basis

Habibe ÇAL, Gülfidan CAN

224

to ensure that each pair adequately experiences both roles (Umapathy & Ritzhaupt, 2017;

Williams, Wiebe, Yang, Ferzli, & Miller, 2002). Although pair programming is frequently used

with adult learners and considered as a collaborative method, it has been suggested that it can

also be applied to cooperative learning (Mentz et al., 2008).

Relevant research studies on pair programming have mostly been conducted with adult

learners. They have frequently compared individual programming and pair programming, and

reported that pair programmers performed more effectively on one or more performance

measures including successfully passing programming courses, obtaining higher grades,

completing assignments, improving problem-solving and higher-order thinking skills, learning

programming, understanding programming concepts, producing quality programs with correct

codes and fewer errors, increasing productivity, and faster programming (DeClue, 2003;

Dongo, Reed, & O’Hara, 2016; Isong et al., 2016; McChesney, 2016; McDowell, Werner,

Bullock, & Fernald, 2006; Nagappan et al., 2003; Nančovska et al., 2008; Salge & Berente,

2016; Umapathy & Ritzhaupt, 2017; Williams & Upchurch, 2001; Williams et al., 2002).

However, although pair programmers have been shown to perform better in assignments, there

has been no significant difference identified in terms of their exam scores (Nagappan et al.,

2003; Williams et al., 2002). It is therefore suggested that each pair programmer learned as

much as individual programmers instead of one pair doing all the work (Nagappan et al., 2003).

Collaborative interaction in pair programming can increase adults’ confidence in

programming (Dongo et al., 2016; McChesney, 2016; McDowell et al., 2006; Williams &

Upchurch, 2001), and they can develop more positive feelings and experiences than individual

programmers (Dongo et al., 2016; Isong et al., 2016; McChesney, 2016; McDowell et al., 2006;

Williams & Upchurch, 2001). Working as pairs can increase effort and motivation (DeClue,

2003; Nagappan et al., 2003) and feel more satisfied having a partner with whom to solve

problems through creative and efficient means (Williams & Upchurch, 2001). However,

problems with pair working have also been reported due to personality clashes, scheduling,

unequally distributed workload, difficulties in communication, and difference in skill levels

(DeClue, 2003; McChesney, 2016; Nagappan et al., 2003; Nančovska et al., 2008).

Compared to extensive literature on adult pair programmers, few studies have explored

pair programming in schools. For middle school female students using Macromedia’s Flash

MX, pair programming was found to be an effective method to increase metacognitive

activities and enhance problem-solving abilities (Werner & Denning, 2009). By engaging in

communication with their pair partner in solving problems, students detected and corrected

their errors together and helped each other learn the processes of code debugging (Werner &

Denning, 2009). Similar cognitive advantages were also reported for high school students using

Delphi programming language; with students seen to question, discuss, and solve problems

together through pair programming, their critical thinking was enhanced and programming

skills improved (Bailey & Mentz, 2017). In the Turkish literature, Demir and Seferoğlu (2017)

found pair programing to be effective in allowing tacit knowledge to be open, and thereby

facilitating knowledge transfer among pairs, and increasing efficiency through faster coding

with fewer errors.

Pair programming has also been shown to facilitate interaction and socialization among

programmers (Bailey & Mentz, 2017). In one study, pair programming for sixth-grade students

using Alice helped students to socialize, develop friendships, and increase positive attitudes

toward programming (Zhong, Wang, Chen, & Li, 2017). It has also reportedly increased

enjoyment in coding (Demir & Seferoğlu, 2017). However, conflicting results have shown that

when students work on their own computers and collaborate frequently with others, they

complete activities faster as pair programmers and face less conflicts (Lewis, 2011). Gender

has not been found to be a statistically significant factor for compatibility in pairs, confidence,

or performance; however, females were found to work more harmoniously, were more

motivated, and performed better than their male counterparts (Zhong et al., 2017).

Habibe ÇAL, Gülfidan CAN

225

Most research reported in the literature have been experimental studies conducted with

adults of varying age and programming expertise, while only a few studies have examined K-

12 application of this method. Moreover, it is questionable whether or not the available studies

were conducted based on the proper implementation of pair programming (Umapathy &

Ritzhaupt, 2017). Examining the factors influencing the confidence and achievement of the

students using pair programming can help teachers, curriculum developers, and educators to

make better informed decisions regarding the use of this method within secondary school

programming courses. Also, due to a lack of computers in some schools in Turkey, the use of

this method has the potential to alleviate the problem while improving students’ attitudes

towards working and learning together. Therefore, it is crucial to understand how pair

programming influences secondary school students’ confidence and achievement in

programming through in-depth exploration.

2. METHODOLOGY

2.1. Research Design

The main research question of this study is “How does the application of pair programming

influence the confidence and achievement level of secondary school students in computer

programming?” Embedded case research design was chosen for in-depth exploration of the research

question within a real environment (Yin, 2003). The collected qualitative data were supported by

quantitative data for the purposes of triangulation. Instead of only focusing on pair programmers, the

current study intended to also deeply understand both pair and individual programmers’ experiences

within the same fifth-grade class, and to reveal factors relating to their confidence and achievement.

2.2. Context

The context of the study is representative of many urban public secondary schools with limited

resources in Turkey. Based on the records of the counseling service in the school where the data were

collected for this study, most of the students were from low income families, with parental salaries

below the poverty line. In 2017, when the data were collected, the selected school had 1,207 secondary

school students with an average class size of 40 students. Each classroom was equipped with a

smartboard that included an Internet connection. The school had one computer laboratory that contained

one smartboard and 27 computers with an Internet connection. Most of the computers were running on

Windows XP operating system, whist a few had Windows 7 with a 2GB memory. Prior to the

implementation of this research, the students worked in pairs, but only due to necessity based on the

school’s limited number of computers.

In Turkey, secondary school refers to students typically aged nine to 15 years old. An

“Information Technologies and Software” course is offered to fifth and sixth grade secondary school

students as two-hour compulsory course (Millî Eğitim Bakanlığı [Turkish Ministry of National

Education], 2018). While in the first semester of the fifth grade, students receive a general introduction

to programming, they start actively programming in the second semester. Therefore, the data for the

current study were collected during the second semester. The first author of the study was employed as

a teacher at the selected school, and the students were familiar with the teacher prior to the

implementation. The grading policy for the course included 50% for activities which were a part of this

research, 20% for examination, and 30% were project-related.

For the implementation of the current study, Scratch programing environment, lesson plans,

and rubrics provided on the Scratch website were all employed. Although all 10 lesson plans were

applied during the semester, only the first eight were included in the research study because the ninth

lesson plan’s activity was relatively short and the 10th was project-based (see Table 1). Each lesson

plan typically provided two or three activities. The teacher usually spent the first activity teaching and

one of the other activities for implementation. For each lesson plan, the Scratch website also provided

example rubrics with five criteria at the three levels (scored as 0 to 2 points). Therefore, the highest

achievement score from a rubric was 10 points for each activity. The Scratch website also allowed

students to share their projects within their online community; allowing novice programmers to inspect

a variety of projects and thereby also provided discussion opportunities.

Habibe ÇAL, Gülfidan CAN

226

2.3. Teacher’s Observations and Reflections Prior to Implementation

One semester prior to the implementation, the teacher observed that most of the fifth

grade students had acted selfishly by trying to use certain computers known to work best and

attempted to work by themselves even though there were insufficient computers for all of the

students in the class. When forced to sit together and work on a single computer, they were

mostly noncooperative and did not allow their peers use of the computer in a fair manner, and

most complained about the unfair use of the equipment. Most of the students had limited access

to computers at home and therefore wanted to use them as much as possible in class. The

teacher also observed that the students would frequently compete with each other and did not

want to help their classmates. This situation might have been related to the competitive

emphasis of the examination system within Turkish K-12 schooling. The teacher believed most

of the students were very concerned and motivated about simple grade achievement rather than

their actual learning capability or performance.

2.4. Participants

One particular school was chosen for this case study as the first author was an appointed teacher

for the Information Technologies and Software course. Purposeful sampling strategy was used to select

one case among others to reach a rich case and to reveal in-depth information. Fifth-grade students were

chosen purposefully because they are considered novice programmers. Among 12 different fifth-grade

classes, one class was chosen purposefully as there were fewer students in the class, which enabled the

better forming of both pair and individual programmers and allowed for more effective observation of

the students during the application. Among the 35 students, 32 had no prior programming experience

and the remaining three had only little according to their self-reports.

The students’ ages ranged between 10 (40%) and 11 (60%) years old, with an average

of M = 10.60. There were 16 (45.7%) male and 19 (54.3%) female students in the class. A

confidence questionnaire was administered twice during the implementation to all 35 students.

A total of 20 students in the class also volunteered to be interviewed for the study (seven male

and 13 female, seven individual programmers and 13 pair programmers), and were considered

representative to the class composition in terms of their ages, gender, and achievement scores.

In terms of the implementation’s weekly activities, four of the students (two pair programmers

and two individual programmers) had one week of absenteeism each.

2.5. Implementation and Collection of Data

After receiving the approval of the Human Subjects Ethics committee of the Middle

East Technical University, the Turkish Ministry of National Education, the principal of the

participant school, and of the students and their parents, the research was conducted for a period

of eight weeks during the second semester with a total of 35 fifth-grade students. The teacher

systematically and randomly organized the students into 11 pair programmers (22 students)

and 13 individual programmers by first randomly choosing a number in the classroom list and

then skipping two numbers.

During the first week of the semester, the teacher provided the students with an introduction to

the course, the computer laboratory rules, the Scratch website, activities, rubrics, and showed the

students some programming examples. The teacher then explained about the implementation of the

study and announced the list of individual and pair programmers. The teacher also informed the students

about the distinct roles of drivers and navigators in pair programming (see Table 1).

Table 1. Implementation and data collection process

Week Implementation Rubrics Application Other Data Collection

Week 1 Information

Week 2 Lesson Plan 1 Rubric 1 Applied

Week 3 Lesson Plan 2 Rubric 2 Applied Interrater reliability

Week 4 Lesson Plan 3 Rubric 3 Applied Confidence questionnaire

Week 5 Lesson Plan 4 Rubric 4 Applied

Week 6 Lesson Plan 5 Rubric 5 Applied

Habibe ÇAL, Gülfidan CAN

227

Week 7 Lesson Plan 6 Rubric 6 Applied

Week 9 Lesson Plan 7 Rubric 7 Applied Inter-rater reliability

Week 10 Lesson Plan 8 Rubric 8 Applied Confidence questionnaire

Week 11 Activity, Review, and Feedback Students’ choice Interviews

Week 12 Activity, Review, and Feedback Students’ choice Interviews

Week 13 Summary and Game Students’ choice

Throughout the implementation, for the first 40-minute sessions of each class, the teacher

provided a lesson by way of the direct instruction method utilizing Scratch lesson plans. First, the

teacher stated the objectives of the lesson, then explained and showed the first activity step-by-step

using the classroom smartboard. As the students applied the activity on their respective computers, the

teacher provided them with the necessary help, guidance, and feedback. During the second session, for

the first 10 minutes of each lesson, the teacher provided information about the activity and its rubric on

the smartboard, as well as providing directions and guidance to the class. Both groups were asked to

complete the activity within a period of 30 minutes, and without the teacher’s help. If a student became

stuck, they were permitted to use the available resources on the Scratch website. Students who

completed the activities before the end of the 30-minute period were asked to continue exploring the

Scratch programming environment. Undertaking any activities on the computers that were irrelevant to

the assigned programming activity were not permitted. During the period when the students were

working, the teacher only observed them. At the end of the 30-minute session, the teacher then answered

the students’ questions and provided feedback on their work. During a 15-minute break that followed,

the teacher also evaluated the task performance using the rubrics from the Scratch website. Within one

week and prior to the next scheduled class session, the teacher re-evaluated the students’ activities to

assure the accuracy of the scores recorded.

Pair programmers were asked to stay in the same role for periods of two weeks to adapt to each

role. The teacher kept track of switching the roles. Throughout the implementation, the teacher made

sure that each student in pair programming contributed to each activity.

The teacher administered a programming confidence questionnaire twice; once at the end of

the forth week and again at the end of the 10th week. Since the students had no prior experience in

completing a Likert-type instrument, the teacher explained how the students should complete the

questionnaire and explained the importance for applying their honesty during each administration. The

students completed the questionnaire within a period of 30 minutes. The necessary permissions were

taken from the school for this level of duration. During the third and the ninth weeks, a second teacher

who gave the same course to a different class evaluated the participant students’ performances using

the same rubric for the purposes of interrater reliability.

For the 11th and 12th weeks of the semester, the students were permitted to select whether to

work as individual programmer or pair programmer. The teacher used the activities to reinforce learning

during these two weeks of the course and provided feedback to those students who had experienced

difficulties. Interviews were also conducted during the same two weeks at the end of the lesson, and

were audio-recorded using a digital recording device with the permission of the students. It was

observed that the students exhibited no discomfort due to the presence of the recording device. The

interviews were conducted individually in the computer laboratory or in the school’s library. To make

the students feel comfortable, a series of warm-up questions were asked by the interviewer. The

interviews each lasted for an average of M=6.37 (SD=1.50) minutes. During the final week of the

course, the teacher provided a review and recap lesson and permitted the students to play games that

they had created themselves using Scratch.

2.6. Instruments

For this case study research, several types of data sources were employed including audio-

recordings of the students’ interviews, results from a twice administered confidence questionnaire, and

the students’ achievement scores based on rubrics on the Scratch website.

Confidence questionnaire: Due to nonexistence of a comprehensive scale to measure student

programming confidence, items from two different scales were combined. From the “Computer Science

Attitude Survey” using five-point, Likert-type items, 11 of the items were selected to measure the

students’ confidence in learning computer science and computer programming (Wiebe, Williams, Yang,

& Miller, 2003). The Cronbach’s Alpha internal consistency coefficient was found to be .91 for the

Habibe ÇAL, Gülfidan CAN

228

scale (Wiebe, Williams, Yang, & Miller, 2003). Minor revisions were applied to some of the selected

scale items in terms of changing the phrase “computer science” to “programming”.

The second scale that was used was “The TIMSS 2011 Students Confident in Mathematics

Scale” and included nine items aimed at eight-grade students (Martin & Mullis, 2012). The scale’s

Cronbach’s Alpha coefficient was found to be .87 for the context of Turkey (Martin & Mullis, 2012).

Due to the relationship between mathematics and programming (Papert, 1980), all nine of the scale’s

items were included in the confidence questionnaire created for application within the current study,

with minor changes applied by substituting the word “Programming” for “Mathematics”.

As both of the aforementioned scales were developed for the English Language, items of the

newly creatd confidence questionnaire were translated into Turkish by the researchers of this study, and

then the translations reviewed by two English language experts familiar with the subject of

programming. The translated confidence questionnaire was then tested with four additional students

with similar educational levels and backgrounds as the participants of the study. Using the think-aloud

procedure, the four reviewing students provied feedback about the questionnaire items’ clarity. After

content validity review of the final questionnaire with two faculty members from the Computer

Education and Instructional Technology (CEIT) program, the items were approved as sufficiently

representative to measure secondary school students’ programming confidence level. The Cronbach

Alpha coefficient of the final 20-item questionnaire was found to be .81 for the first implementation

and .88 for the second implementation.

Interview Protocol: A semi-structured interview protocol with five primary questions was

developed by the researchers of the current study to explore the participant students’ opinions regarding

their experiences, perceived confidence and achievement in programming throughout the

implementation. To test the clarity of the questions, four students from the sixth grade at the same

participant school were interviewed. After the interview protocol was revised for its clarity, bias, and

the target students’ age level, it was further examined in terms of its content validity by a computer

teacher and two faculty members from the CEIT department.

Rubrics: The example rubrics were taken from the Scratch website and slightly revised in

accordance with the activities selected for this study’s implementation, and were then examined by two

content experts from the CEIT department. The rubrics were subsequently translated into the Turkish

language and approved by two language experts familiar with programming. The two computer teachers

who conducted the interrater reliability for the current study then reviewed and discussed the rubric

items prior to implementation to ensure they understood the same criteria while evaluating the students’

activities. The two teachers’ scores were found to be consistent for both application (82% and 87%

consistency).

2.7. Data Analysis

For the analysis of the interviews, the audio recordings of the interviews were

transcribed verbatim, and then analyzed according to themed content analysis (Yıldırım &

Şimşek, 2016). Codes were created, classified, and then themes developed, organized, and

defined. Among the 20 interviews that were conducted, two of the interviews (10%) were

coded independently by two coders and their categories compared and combined through

mutual discussion. Data saturation has deemed to have been achieved following analysis of

about half the interview transcripts. For the analysis of the quantitative data, descriptive

statistics, independent-samples t-test, and Mann-Whitney U Test were conducted.

2.8. Trustworthiness

In terms of assessing the study’s credibility (Lincoln & Guba, 1985) the implementation

duration lasted for a period of eight weeks, and a variety of data were collected for the purposes

of triangulation. Two researchers from the CEIT department and one computer teacher

evaluated and discussed the research and provided feedback to the researchers. For

transferability, thick descriptions about the context and the implementation were used in

reporting the study. For dependability, interrater reliability assessment was conducted. For

confirmability, the teacher maintained a diary throughout the implementation semester to

record all the process in detail and in a reflexive manner. A variety of data were collected for

Habibe ÇAL, Gülfidan CAN

229

the confirmation of the study’s results, and the whole research process was reported in detail.

Throughout the research process, the teacher attempted to control any self-bias biases and

encouraged the participant students to provide honest responses.

3. QUALITATIVE DATA ANALYSIS RESULTS

3.1. Factors Influenced Programming Confidence

Both groups attributed their increased or decreased confidence to similar factors. Pair

programmers frequently reported the advantages of cooperation, while individual programmers

attributed their decreased confidence to being unsupported when they experienced difficulties. The pair

programmers reported that when they encountered problems during programming, being in pairs

increased their confidence (see Table 2). Their confidence increased toward programming when they

helped each other to complete the activities faster and more effectively, they shared knowledge,

corrected their mistakes, and found solutions easily together through brainstorming during the problem-

solving process. For individual programmers on the other hand, finding solutions through a series of

trial and error were reported to be difficult and that they often could not spot their own mistakes. They

felt that they needed help from their teacher, classmates, or other resources to complete the activity.

Table 2. Factors influenced programming confidence

Pair programmer confidence Pair n Individual programmer confidence Indiv. n Total

A. Problem Solving Process A. Problem Solving Process

Finding solutions (easy) 8 Finding solutions (hard) 7 15

Helping each other 13 Helping each other 0 13

Sharing knowledge 10 Sharing knowledge 0 10

Correcting mistakes 7 Correcting mistakes 0 7

Knowledge source for problem solving 0 Knowledge source for problem solving 5 5

B. Programming Process B. Programming Process

Task completion time (fast) 7 Task completion time (slow) 7 14

Learning programming (high) 9 Learning programming (low) 4 13

Quality of product (high) 4 Quality of product (low) 5 9

Motivation (high) 5 Motivation (low) 3 8

C. Being in Pair or Individual C. Being in Pair or Individual

Programming ability differences (good) 7 Programming ability differences 0 7

Heavy workload 0 Heavy workload 7 7

Disagreements (high) 6 Disagreements (low) 0 6

In terms of programming process, the pair programmers’ confidence in programming increased

as they learned programming, increased in motivation, and completed their assigned activities both

quickly and to a high quality. Similarly, when individual programmers completed the activities very

slowly or not at all within the class duration, when they felt they could not learn much about

programming, when they produced low quality products, or when they felt unmotivated due to these

sorts of difficulties, their confidence dropped as a result. Pair programmers reported that having a more

knowledgeable pair partner made them feel more confident. However, disagreements between pairs

negatively influenced their confidence. For individual programmers, their confidence dropped as they

felt overwhelmed with the workload.

 My friend contributed to me in programming. With my friend we completed our coding quicker

and faster… I was able to ask my friend when I made a mistake. Even in difficult work we

believed we completed our work quicker together, and so we believed in ourselves. (Pair

programmer)

At the beginning of the programming course I had some self-confidence. And it made

me happy to sit at the computer by myself and use the computer. But once I did coding

in Scratch, I felt a lack of confidence toward programming. When I encountered

problems, I had difficulty with codes to solve them… I tried to solve by trial and error;

some worked, but some didn’t… As the coding got harder, my success dropped… When

I couldn’t find the solutions, my confidence dropped too. (Individual programmer)

Habibe ÇAL, Gülfidan CAN

230

3.2. Factors Influenced Programming Achievement

According to the pair programmers, sharing knowledge, getting help from their pair

partners, testing codes together, and being creative by brainstorming with their partner were

methods that contributed to achievement (see Table 3). Access to resources were important for

individual programmers’ success. In terms of achievement, the students frequently reported the

importance of working codes, grades, completion duration, and required effort.

Individual programmers reported that the required effort for success was higher for

them compared to pair programmers who completed activities relatively faster, with fewer

coding errors, and therefore received higher grades. Individual programmers reported having

several coding errors, completing the activities very slowly, and thereby receiving lower

grades.

The interview results showed that the students’ confidence and achievement were

closely linked, and that the students’ emotional state also played a role. Pair programmers

frequently reported positive emotions such as feeling confident, relaxed, productive, motivated,

friendly, and having fun. However, the emotions stated by the individual programmers were

mostly negative, including feeling diffident, panicked, unproductive, unmotivated, isolated,

frightened, and even desperate.

The coding started to get harder, and everything I did turned out wrong… I couldn’t

maintain my focus and my mind would drift. I couldn’t solve the problems when I was

alone… My self-confidence dropped. I had a hard time as I made mistakes. I wished I’d

worked with my friends to help me find my mistakes by talking to them. I would have

had more self-confidence and be more successful if my friend could have told me what

to do. (Individual programmer)

While we were working together with my friend, we did better by combining our

knowledge. I added the codes, and my friend checked the accuracy of the codes… My

friend corrected my mistakes and checked my work. This made us more successful as a

team. (Pair programmer)

Table 3. Factors influenced programming achievement

Pair programmer achievement Pair n Individual programmer achievement Indiv. n Total

A. Method used for Achievement A. Method used for Achievement

Knowledge sharing 13 Knowledge sharing 0 13

Getting help 13 Getting help 0 13

Testing codes together 8 Testing codes together 0 8

Access to resources 0 Access to resources 5 5

Being creative 4 Being creative 0 4

B. Programming Process B. Programming Process

Amount of coding errors (low) 10 Amount of coding errors (high) 6 16

Activity completion duration (fast) 7 Activity completion duration (slow) 5 12

Grades for activities (high) 7 Grades for activities (low) 5 12

Required effort to achieve (low) 0 Required effort to achieve (high) 6 6

3.3. Final Observations and Reflections of the Teacher

The teacher observed that the students liked the Scratch programing interface and

enjoyed working with it during the implementation. Compared to the previous semester prior

to the implementation, most of the students’ interviews revealed a significant change of attitude

from their working individually to collaboratively. Instead of their previous attempt to utilize

the few computers for themselves, they wanted instead to work in pairs, both for their

achievement and also for their self-confidence. The teacher also observed that even though

some of the individual programmers experienced difficulties, they continued to work hard to

complete all of the activities instead of just giving up. The students’ competitive attitude was

seen to continue to be exhibited. In each lesson, the students still competed to achieve the best

Habibe ÇAL, Gülfidan CAN

231

score and to have the fastest task completion time. The teacher still felt that the students were

focused more on achieving their course grades than in the learning of programming, and that

the students’ confidence was still linked to realizing high grades from the course.

4. QUANTITATIVE DATA ANALYSIS RESULTS

To support the qualitative data of the current study, quantitative data were also collected. The

data were analyzed using IBM SPSS v22.0 statistical analysis software. The data were prepared for

quantitative analysis and negative items were reverse-coded. There were no missing data found in the

confidence questionnaires returned, but there were four instances of missing values in the achievement

data due to four students’ absenteeism (two pair programmers and two individual programmers). These

missing values were replaced with the sample mean, for the sake of data completeness. Normality

assumption was met for the confidence questionnaire data and for the individual programmers’

achievement data, but not for the pair programmers’ achievement data based on Shapiro-Wilk test, Q-

Q plots, and histograms. Both t-tests and nonparametric procedures were applied and the results

compared as the sample sizes between two groups were not equal and the sample size considered to be

small.

4.1. Programming Confidence

The differences in mean scores in the confidence questionnaire data between individual

programmers and pair programmers were analyzed for both applications of the questionnaire

using independent-samples t-test and Mann-Whitney U Test. Independent-samples t-test

results showed that, for the first application of the confidence questionnaire there was no

significant difference found between the scores of the individual and pair programmers (t(33)

= .13, p = .90) (see Table 5). In the second application, however, there were significant

differences found between the mean scores of the individual and pair programmers (t(33) = -

2.76, p < .05), with a large effect size (eta square = .19). Mann-Whitney U Test confirmed

these results (see Table 9).

Table 5. Independent-samples t-test results for confidence questionnaire data

 M (SD) M (SD) Levene’s Test for

Eq. of Variances

 t-test for Equality of Means

 Individ. Pair F Sig. t df
Sig. (2-

tailed)
M Diff.

Confidence

Questionnaire

Application 1

Equal

variances

assumed

3.13

(.97)

3.11

(1.04)

.07 .80

.13 33.00 .90 .02

Confidence

Questionnaire

Application 2

Equal

variances

assumed

2.93

(.58)

3.29

(1.03)

.14 .71

-2.76 33.00 .01 -.36

Descriptive analysis of the confidence questionnaire data is presented in Table 6. As can be

seen, the participants’ ratings mostly showed positive confidence scores. They were most confident

about learning programming and performing well on the programming course. Their confidence ratings

for advanced programming or difficult programming problems were also shown to be positive.

Habibe ÇAL, Gülfidan CAN

232

Table 6. Confidence questionnaire results for two implementations

 Individual

programmers

Pair

programmers

 Confid. 1 Confid. 2 Confid. 1 Confid. 2

 M (SD) M (SD) M (SD) M (SD)

1. I am sure that I could do advanced work in computer

science.

4.15 (.89) 3.30 (.85) 3.86 (.71) 4.40 (.66)

2. I am sure that I can learn programming. 4.61 (.76) 3.76 (.92) 4.54 (.85) 4.63 (.58)

3. I think I could handle more difficult programming

problems.

3.84 (1.14) 3.07 (1.18) 3.68 (.94) 3.90 (.75)

4. I can get good grades in programming course. 4.15 (1.06) 3.61 (.65) 4.04 (.84) 4.54 (.50)

5. I have a lot of self-confidence when it comes to

programming.

4.23 (1.01) 3.76 (.92) 4.40 (.73) 4.27 (.93)

6. I am no good at programming. 1.53 (.66) 2.30 (1.18) 1.95 (1.04) 2.31 (1.46)

7. I do not think I could do advanced programming. 3.15 (1.28) 2.84 (1.21) 2.63 (1.17) 2.36 (1.09)

8. I am not the type to do well in computer

programming.

2.69 (1.37) 2.23 (1.36) 1.90 (1.01) 2.22 (1.23)

9. For some reason even though I work hard at it,

programming seems unusually hard for me.

2.00 (1.35) 2.30 (1.10) 2.36 (1.49) 2.13 (1.32)

10. Most subjects I can handle O.K., but I have a knack

for flubbing up programming problems.

3.07 (1.65) 3.38 (1.19) 2.50 (1.30) 2.36 (1.36)

11. Programming has been my worst subject. 1.84 (1.28) 2.15 (1.06) 1.77 (1.19) 2.22 (1.30)

12. I usually do well in programming. 3.69 (1.25) 3.38 (1.32) 4.36 (.90) 4.22 (1.19)

13. Programming is more difficult for me than for many

of my classmates.

2.46 (1.45) 2.30 (1.03) 2.27 (1.12) 2.50 (1.14)

14. Programming is not one of my strengths. 2.30 (1.31) 2.38 (.96) 2.13 (.94) 2.50 (1.62)

15. I learn things quickly in programming. 3.69 (1.54) 3.46 (1.19) 4.09 (1.01) 4.22 (.75)

16. Programming makes me confused and nervous. 2.15 (1.06) 2.23 (.83) 1.81 (.95) 2.36 (1.25)

17. I am good at working out difficult programming

problems.

3.53 (1.12) 3.00 (1.15) 3.63 (1.00) 4.09 (1.06)

18. My teacher thinks I can do well in programming

lessons with difficult materials.

4.15 (.89) 3.38 (.86) 4.27 (.82) 4.31 (.94)

19. My teacher tells me I am good at programming. 3.61 (1.12) 3.30 (.63) 3.95 (.95) 4.18 (1.05)

20. Programming is harder for me than any other subject. 1.69 (.94) 2.38 (.86) 2.04 (1.43) 2.00 (1.19)

Average 3.13 (.97) 2.93 (.58) 3.11 (1.04) 3.29 (1.03)

Note: 1. Strongly Disagree, 2. Disagree, 3. Neutral, 4. Agree, 5. Strongly Agree.

4.2. Programming Achievement

The individual programmers’ mean scores for achievement data ranged between M =

6.23 (SD = 1.87) and M = 9.46 (SD = .77). For the pair programmers, the mean scores for

achievement data ranged between M = 9.81 (SD = .39) and M = 9.36 (SD = 1.25) (see Table

7). While the pair programmers’ scores fluctuated around a score of 9, the individual

programmers scores were around 8 and then dropped towards the end of the semester. The

main difference between the mean scores of the two groups was observed for Activity 7, which

required the students to design a game.

Table 7. Descriptive statistics for achievement

 Activity Act 1 Act 2 Act 3 Act 4 Act 5 Act 6 Act 7 Act 8 Total

Indiv. programmers

M (SD)

7.92

(1.38)

8.53

(1.61)

8.00

(1.52)

9.46

(.77)

8.53

(.96)

7.76

(1.53)

6.23

(1.87)

7.69

(1.31)

63.38

(6.47)

Pair programmers

M (SD)

9.72

(.45)

9.81

(.39)

9.63

(.65)

9.36

(1.25)

9.45

(1.01)

9.72

(.45)

9.54

(.80)

9.54

(.50)

76.27

(4.33)

Mean difference 1.80 1.28 1.63 -.10 .92 1.96 3.31 1.85 12.89

Habibe ÇAL, Gülfidan CAN

233

Homogeneity of variance assumption was not met based on Levene’s Test for the

achievement rubric (F = 6.72, and p = .01) (see Table 8). Independent-samples t-test showed

that significant difference (t(18.45) = -6.38, p = .00) was found between the individual

programmers’ achievement mean scores (M = 63.38, SD = 6.47) and pair programmers’

achievement mean scores (M = 76.27, SD = 4.33), with a large effect size (eta square= .55).

Mann-Whitney U Test confirmed these results (see Table 9).

Table 8. Independent-samples t-test results for achievement scores

 Levene’s Test for Eq. of

Variances

 t-test for Equality of Means

F Sig.

t df Sig. (2-tailed) M Diff.

Equal variances assumed 6.72 .014 -7.06 33 .00 -12.88

Equal variances not assumed -6.38 18.45 .00 -12.88

Table 9. Mann-Whitney U Test for programming confidence and achievement

 n M Rank Sum of

Ranks

z p Conclusion t-test

Questionnaire

Application 1

individual 13 18.96 246.50
-.428 .67

Not

significant
Agreed

pair 22 17.43 383.50

Questionnaire

Application 2

individual 13 12.12 157.50
-2.624 .01 Significant Agreed

pair 22 21.48 472.50

Achievement

Rubric Scores

individual 13 8.12 105.50
-4.428 .00 Significant Agreed

pair 22 23.84 524.50

5. DISCUSSION AND CONCLUSION

In this study of fifth-grade secondary school students who worked as pair programmers or

individual programmers for an eight-week implementation with Scratch, the pair programmers showed

higher levels of confidence and achievement compared to the individual programmers. Quantitative and

qualitative data analysis results both showed that while the students’ confidence toward programming

was not found to be significantly different between the two groups at the beginning of the semester, as

the semester progressed and the programming activities became more complicated, the individual

programmers started to lose confidence, while the pair programmers gained in confidence. In terms of

achievement, the pair programmers received relatively higher scores than the individual programmers.

The results of the current study were consistent with the other limited number of studies in the

literature, in that pair programming positively affected increased confidence in programming (Dongo

et al., 2016; McChesney, 2016; McDowell et al., 2006; Williams & Upchurch, 2001). The main factors

that increased the pair programmers’ confidence in programming in the current study were solving

problems easily, helping each other, sharing knowledge, correcting each other’s mistakes, completing

the activities quickly and to a good quality, increased learning, increased motivation, and working with

a peer who had a higher programming ability. Similar to most studies in the literature based on K-12

students, pair programmers’ achievement in programming was also positively influenced by pair

programming. Their achievement increased when they shared knowledge, received help, tested codes

together, were creative, had fewer coding errors, and completed tasks quickly (Bailey & Mentz, 2017;

Demir & Seferoğlu, 2017; Werner & Denning, 2009). Therefore, this current study supports that pair

programming is an effective method to increase the confidence and achievement of secondary school

students in computer programming.

Having pair programmers and individual programmers working alongside each other

in the same learning environment might have influenced the validity of the current study’s

results. The pair programmers’ increased confidence and achievement might also have

negatively influenced the individual programmers’ confidence and achievement. However, the

reverse scenario may also have been possible if the individual programmers had outperformed

Habibe ÇAL, Gülfidan CAN

234

the pair programmers. As seen in the literature, pair programmers did not always report better

performance over individual programmers (Salge & Berente, 2016). However, as an advantage

of having both pair and individual programmers working alongside each other in the same

environment, almost all of the students in the current study showed a preference for working

cooperatively for the remainder of the semester following the implementation, while they were

observed to be highly individualistic during the previous semester. This suggests that, for a

competitive group of students with limited available educational resources, pair programing

can help students to develop more positive attitudes toward cooperation, sharing, and learning

from each other. If young students’ preference for competition needs to be satisfied, competing

teams instead of competing individually is also an option (Denner et al., 2012; Fessakis et al.,

2013) to be considered at the design stage of future implementations.

The interview results showed a strong mutual interaction between the confidence and

achievement levels of the students for programming. The students in this study reported that they could

be successful by attentively listening to the first lesson and then reviewing at home; however, they

mostly preferred to work in pairs because they considered the presence of a peer to increase their levels

of confidence and achievement (Dongo et al., 2016; McChesney, 2016; McDowell et al., 2006;

Williams & Upchurch, 2001). This suggests that pair programming can be beneficial for novice

programmers in secondary schools to increase their confidence in learning programming during their

programming education.

The application of pair programming can be arranged based on the number of available

computers in the classroom or laboratory environment. It was reported in the literature that when each

student worked on their own computers and collaborate frequently, they completed the activities faster

than pair programmers who worked together throughout each task (Lewis, 2011). If there are adequate

numbers of computers for each student in the class, another alternative is to use inverted pair

programming, in which pairs design the program together, then split to work individually during the

implementation, and then come together again as a pair for the testing stage (Swamidurai & Umphress,

2015). However, when there is an inadequate number of computers, the students may have to sit in pairs

just from a numerical and practical perspective (Demir & Seferoğlu, 2017). Therefore, it is

pedagogically more advantageous to use pair programming by applying the procedures and practices to

make this method more effective, than simply leaving the collaboration between pairs to chance. The

formation can be regularly changed between pair programming and individual programming to provide

students with both experiences of working autonomously and collaboratively. So as to make sure each

student in the pairs adequately learns the prescribed level of programming, they can be asked to

undertake a similar activity on their own after the application of pair programming.

The matching of pairs needs to be addressed with due care while applying pair programming.

In the literature, the problems reported for adult pair programmers such as scheduling, unequal

workload, differences in skill levels, or difficulties in communication (DeClue, 2003; Isong et al., 2016;

McChesney, 2016; Nagappan et al., 2003; Nančovska et al., 2008) were not observed in the current

study. Nančovska et al. (2008) reported that most of the disadvantages associated with pair

programming related to the professional software environment may not appear as they are largely

irrelevant to the educational setting. As the students in the current study were all novice programmers

enrolled at the same secondary grade, there was not much difference in terms of their programming

expertise or age level. The disagreements they did have were mostly minimal and related to the design

of the program instead of the actual coding. Although pair programming can facilitate positive emotions

(Demir & Seferoğlu, 2017; Zhong et al., 2017), disagreements in the pairs had a decreasing effect on

their confidence. In the current study, the students’ interviews did not show any indication that gender

was an important factor (Zhong et al., 2017). However, gender composition of programming pairs could

also be examined at the K-12 level.

In the current study, as the activities became more difficult, both groups started to make

more mistakes and experienced difficulties in performing code debugging. However, the pair

programmers were able to correct more of their mistakes, whilst the individual programmers

sometimes struggled to complete the activities. It is possible, however, that the students’

debugging capabilities in both groups were low due to their being novice programmers.

Habibe ÇAL, Gülfidan CAN

235

Therefore, it is advisable to teach students debugging strategies prior to the implementation

process and to provide them with more extensive resources throughout the implementation.

In order for pair programming to be successful, it is important that students fully

understand the roles and the procedures. Therefore, aside from teachers’ presentations about

these roles and procedures, a small pamphlet or handbook for pair programming could be

provided to the participating students (Zhong et al., 2017). Similarly, for individual

programmers, a variety of resources and step-by-step self-learning materials could be provided.

The assessment and evaluation methods for pair programming should also be examined in

future studies for secondary school students (Williams et al., 2002).

In the current study, the students mostly focused on task completion duration. This was likely

due to the tasks needing to be completed within a 30-minute deadline. However, spending longer

periods on programming may increase students’ understanding and thereby improve the quality of the

developed product (Salge & Berente, 2016). With pair-explanations, code reviews, and reflections,

students can learn better during pair programming (Williams & Upchurch, 2001). However, within a

limited class time it may not be feasible; teachers may still attempt to concentrate more on motivating

students through increased reflection and pair-explanation rather than simply targeting students to

complete the activities as quickly as possible.

Pair programming has been associated with problems related to increased noise levels

in computer laboratories (Isong et al., 2016). However, on the positive side, pair programming

can help teachers to manage lessons better with peers helping each other (Nagappan et al.,

2003). With simple questions being handled within pairs, the teacher can use their time better

in addressing the more significant questions (Nagappan et al., 2003). Moreover, with pair

programming, fewer assignments need to be evaluated by the teacher, instances of cheating

being reduced (Williams & Upchurch, 2001), and teacher stress diminished as a result

(Williams et al., 2002). Therefore, the current study supports the use of pair programming to

help teachers as well as their students. Exploring teachers’ perspectives on pair programming

can be valuable.

The current research was designed and conducted as a case study, and therefore the

results may not be generalizable to other contexts or student groups. One limitation of the

current study is that pair programmers’ individual performances were not measured. The study

instead attempted to reveal any differences in achievement and confidence scores between two

distinct groups. Moreover, due to the age level of the students, the participants of the current

study did not provide in-depth explanations during their interviews. The application of different

research designs for the purposes of generalization could help future studies to be comparable

to the current study. Moreover, the use of pair programming with other programming

environments, different participant age groups, and different expertise level students in other

contexts could provide a valuable addition to the literature. Compared to pair programming

with adult software developers, whose focus is largely on software quality, cost, and

development duration, the current study contributes to the literature by providing an educator’s

perspective that could guide further studies in applying this method to other K-12 educational

contexts.

6. REFERENCES

Akpinar, Y., & Aslan, U. (2015). Supporting children’s learning of probability through video game

programming. Journal of Educational Computing Research, 53(2), 228-259.

doi:10.1177/0735633115598492

Bailey, R., & Mentz, E. (2017). The value of pair programming in the IT classroom. Independent Journal of

Teaching and Learning, 12(1), 90-103.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70-77.

doi:10.1109/2.796139

DeClue, T. H. (2003). Pair programming and pair trading: Effects on learning and motivation in a CS2 course.

Journal of Computing Sciences in Colleges, 18(5), 49-56.

Demir, Ö., & Seferoğlu, S. S. (2017, October). İşbirlikli problem çözmenin kodlama öğretimine yansıması

olarak eşli kodlamanın incelenmesi. Paper presented at the International Instructional Technologies &

Habibe ÇAL, Gülfidan CAN

236

Teacher Education Symposium (ITTES 2017), İzmir, Turkey. Abstract retrieved from

https://www.researchgate.net/publication/321824838_Isbirlikli_Problem_Cozmenin_Kodlama_Ogreti

mine_Yansimasi_Olarak_Esli_Kodlamanin_Incelenmesi

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to

measure understanding of computer science concepts? Computers & Education, 58(1), 240-249.

doi:10.1016/j.compedu.2011.08.006

Dongo, T., Reed, A. H., & O’Hara, M. (2016). Exploring pair programming benefits for MIS majors. Journal of

Information Technology Education-Innovations in Practice, 15, 223-239. doi:10.28945/3625

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kindergarten children in a

computer programming environment: A case study. Computers & Education, 63, 87-97.

doi:10.1016/j.compedu.2012.11.016

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational

Researcher, 42(1), 38-43. doi:10.3102/0013189x12463051

Isong, B., Moemi, T., Dladlu, N., Motlhabane, N., Ifeoma, O., & Gasela, N. (2016). Empirical confirmation of

pair programming effectiveness in the teaching of computer programming. In H. R. Arabnia, L.

Deligiannidis, & M. Yang (Eds.), Proceedings of the International Conference on Computational

Science and Computational Intelligence (CSCI) (pp. 276-281). IEEE/ Conference Publishing Services

(CPS). doi:10.1109/csci.2016.59

Kalelioğlu, F., & Gülbahar, Y. (2014). The effects of teaching programming via Scratch on problem solving

skills: A discussion from learners’ perspective. Informatics in Education, 13(1), 33-50.

Lewis, C. M. (2011). Is pair programming more effective than other forms of collaboration for young students?

Computer Science Education, 21(2), 105-134.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury, CA: Sage.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch programming language

and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.

doi:10.1145/1868358.1868363

Martin, M. O., & Mullis, I. V. S. E. (2012). Methods and procedures in TIMSS and PIRLS 2011: The TIMSS

2011 students confident in mathematics scale, eighth grade. Retrieved from

https://timssandpirls.bc.edu/methods/pdf/T11_G8_M_Scales_SCM.pdf

McChesney, I. (2016). Three years of student pair programming: Action research insights and outcomes

In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE)

(pp. 84-89). New York, NY: ACM. doi:10.1145/2839509.2844565

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student retention,

confidence, and program quality. Communications of the ACM, 49(8), 90-95.

doi:10.1145/1145287.1145293

Mentz, E., van der Walt, J. L., & Goosen, L. (2008). The effect of incorporating cooperative learning principles

in pair programming for student teachers. Computer Science Education, 18(4), 247-260.

doi:10.1080/08993400802461396

Millî Eğitim Bakanlığı. (2018). Bilişim teknolojileri ve yazılım dersi öğretim programı. Ankara: Millî Eğitim

Bakanlığı. Retrieved from http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=374

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003). Improving the CS1

experience with pair programming. SIGCSE Bulletin, 35, 359-362. doi:10.1145/792548.612006

Nančovska, I., Kaučič, B., & Rugelj, J. (2008). Pair programming as a modern method of teaching computer

science. International Journal of Emerging Technologies in Learning, 3(S2), 45-49.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

doi:10.1007/978-3-0348-5357-6

Salge, C. A. L., & Berente, N. (2016). Pair programming vs. solo programming: What do we know after 15

years of research? In T. X. Bui & R. H. Sprague, Jr (Eds.), Proceedings of the Hawaii International

Conference on System Sciences (pp. 5398-5406). IEEE. doi:10.1109/HICSS.2016.667

Swamidurai, R., & Umphress, D. (2015). Inverted pair programming. In IEEE SoutheastCon-Proceedings.

IEEE. doi:10.1109/SECON.2015.7133010

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in computer programming

courses: Implications for educational practice. ACM Transactions on Computing Education, 17(4),

Article 16. doi:10.1145/2996201

Werner, L., & Denning, J. (2009). Pair programming in middle school: What does it look like? Journal of

Research on Technology in Education, 42(1), 29-49. doi:10.1080/15391523.2009.10782540

Wiebe, E., Williams, L., Yang, K., & Miller, C. (2003). Computer science attitude survey (Report No. TR-2003-

01). Raleigh, NC: NC State University.

Williams, L., & Upchurch, R. L. (2001). In support of student pair-programming. SIGCSE Bulletin, 33(1), 327-

331. doi:10.1145/364447.364614

Habibe ÇAL, Gülfidan CAN

237

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair programming in the

introductory computer science course. Computer Science Education, 12(3), 197-212.

doi:10.1076/csed.12.3.197.8618

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren to programming. In

J. Lawrance & R. Bellamy (Eds.), Proceedings of the 22nd annual workshop of the psychology of

programming interest group – PPIG2010, 64-74. Retrieved from

http://scratched.media.mit.edu/sites/default/files/wilson-moffat-ppig2010-final.pdf

Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (10th ed.). Ankara, Turkey:

Seçkin Yayıncılık.

Yin, R. K. (2003). Case study research, design and methods (3rd ed.). Newbury Park: Sage Publications.

Yünkül, E., Durak, G., Çankaya, S., & Mısırlı, Z. A. (2017). Scratch yazılımının öğrencilerin bilgisayarca

düşünme becerilerine etkisi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi,

11(2), 502-517.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2017). Investigating the period of switching roles in pair programming

in a primary school. Educational Technology & Society, 20(3), 220-233.

