
28

Journal of Balkan Libraries Union

ISSN 2148-077X

ht tp : / /www.ba lkan l ib ra r ies .o rg / journa l
h t tp : / /derg ipark .gov . t r / j b lu

Block-Matching Motion Estimation Algorithms for Video Processing and

Compression: a Brief Overview

Samsun Mustafa Başarıcı

Adnan Menderes University, Aydın, Turkey

Tel.: +90-256-213-75-03 (Ext 3618); fax: +90-256-213-66-86; e-mail: sbasarici@adu.edu.tr

I. Introduction

One of the main problems in video processing and

compression is motion estimation. This problem affects

the main process of designing video CODECs, and is not

only relevant in the design process but has also huge

influence on computational complexity. Without a good

knowledge of motion estimation, it is nearly impossible to

create an effective video CODEC. Here we want to give a

general overview and survey of existing approaches. This

paper should therefore be considered only as an outline

and does not have the claim to develop and improve new

methods.

The area of video processing is a very dynamic area,

which shows an emerging field of research. Because of

this here, we focus only to the last few years. The

historical evolution and basic concepts of video and

image processing can be read in (Bovik, 2000;

Richardson, 2002; Richardson 2003).

The rest of this paper gives an overview on block-

matching motion estimation in general and concluded

with suggestions and cautious projection.

II. Block-Matching Motion Estimation (BMME)

One of the essential parts of every video coding

standard is block-matching motion estimation (BMME).

In general, full-search block-matching is used as a

benchmark in the reference software. The idea of BMME

is to partition the image into several blocks in the

reference frame, perform a search inside a previously

coded frame, and select the best match by using a

predetermined criterion. The best match is used to predict

the current block, whereas the displacement between the

two blocks defines a motion vector (MV), which is

associated with the current block.

Full-search block-matching motion estimation (FS-

BMME) algorithm estimates motion vector by testing all

Research Article

ARTICLE INFORMATION ABSTRACT

Article history:

Received 11 January 2017

Received in revised form 18 March 2017

Accepted 2 April 2017

Available online 30 May 2017

Humanity created different methods for sharing information. One of the first forms of

sharing information and knowledge were images. In the beginning, the process of sharing was

relying on static appearances. With the invention of moving pictures by Eadweard Muybridge in

the first part of 1870s, this exchange and sharing gained a new quality. Now it was possible to

show and preserve motion too. Since that time, technology has changed rapidly. The latest

discoveries and improvements from the point of view of technology use computer and IT

technologies extensively. Today it is possible for everybody to create and record movies by

themselves using affordable and convenient technological devices.

Also the process of sharing evolved rapidly and become cheaper and cheaper. We are now

able to record some movies and share them through the Internet or other carriers in real time or

near real time. However, this also creates serious problems due to the huge volume of data to be

sent through the data lines. Therefore, research has concentrated on methods to decrease the

data volume without losing the quality. One way to do that is to create effective CODECs. A

major drawback of moving pictures is the motion itself. CODECs have to minimize the size of

videos without paying the price of quality losses but have also to reduce the computational

complexity. Both of these requirements can be achieved with a solid knowledge of motion

estimation among others. This paper gives a general overview and survey of some existing and

important approaches without the claim of having a complete overview of the field.

Keywords: Video processing, Video compression, Motion estimation, Block-matching.

Journal of Balkan Libraries Union

Vol. 5, No. 1, pp. 28-34, 2017.

Copyright © 2017 Balkan Libraries Union - All rights reserved.

Journal of Balkan Libraries Union

29

possible positions in the search area exhaustively. As it

can been seen this approach brings a high computational

complexity both in time and space requirements. Many

algorithms are introduced who sacrifice reducing the

computational complexity compared to FS.

Based on the centre-biased characteristics of MVs,

several fast BMAs have been developed, including the

three-step search (TSS), the new TSS (NTSS), the block-

based gradient-descent search (GDS), the diamond search

(DS), and PMVFAST.

The block-matching algorithm (BMA) is extensively

employed to extract motion vectors. Typically, the

algorithm consumes 60–80% of the total computation in a

video encoder, and it strongly affects the visual quality at

a given bit-rate. The regular data flow of full-search BMA

makes it especially amenable to hardware

implementation. Many efficient hardware designs have

been proposed for FS in recent decades, with many

focusing on data reuse. However, FS—a brute-force

algorithm—does not utilize information on motion

activity in video sequences, and hence it is possible to

improve the performance of FS hardware designs by

considering this issue. Although these fast BMAs greatly

reduce the computation required for motion estimation,

their irregular search patterns result in complicated

hardware design.

In general all fast search algorithms use only a subset

of the search area in order to reduce the total number of

searches. Most of the existing fast algorithms focus on

macro-block full-pel (MBFP) ME.

There are four rules, which should be considered in the

design of BMAs:

1. Searching points should be chosen in the direction

of the current best improvement for faster

convergence to an optimum solution.

2. The spatial and temporal correlation of MVs should

be exploited to determine the initial searching point.

3. Searching points should be examined in a pattern

around the initial position so as to exploit the centre-

biased distribution of MVs.

4. The search should stop as soon as possible once the

matching is good enough.

The baseline MPEG-4 introduces a new 8x8 block full-

pel (BFP) ME. The H.264 standard defines seven

different modes for variable block sizes (Fig. 1).

Fig. 1. Variable block sizes in H. 264 (Khan, Masud & Ahmad, 2006)

The baseline MPEG-4 ME algorithm consists of four

main tasks. These are a full-pel search for 16x16 MB

(MBFP), a full-pel search for 8x8 block (BFP), a half-pel

search for 16x16 MB (MBHP) and a half-pel search for

8x8 block (BHP) as follows:

Fig. 2. Tasks for MPEG-4 baseline ME algorithms (Yang, 2003)

Considering these tasks an example for the ME

estimation process can be given.

Fig. 3. Example of a baseline MPEG-4 ME estimation process (Yang,

2003)

X denotes search points in MBFP process+ denotes

search points in MBHP process

0 denotes search points in BFP process denotes search

points in BHP process

In the example above, the first task (MBFP) matches

the current MB with every candidate at the full-pel

position in the search window in the reference frame. The

search window is centred at the same coordinate as the

current MB and is extended in each direction by an

amount determined by the search range. The second task

(BFP) matches each 8x8 block (blocks inside current MB)

with every candidate at full-pel positions in the search

window. Each window center is at the corresponding

blocks of the best matched MB from the first task and

each side is extended by W (default value is 2 in reference

software) full pixels for a total number of (2*W+1)

candidate search points. The third task (MBHP) then

matches the current MB with every candidate at the half-

pel position in the search window. The window center is

at the position of the best-matched MB from the first task

and each side is extended by one half-pel for a total of

nine candidate MBs. Finally, the last task (BHP) matches

the four blocks of the current MB with every candidate at

the half-pel position in their respective windows. The

window centers are at the positions of the corresponding

best matched blocks from the second task and each side is

extended by half-pel for a total of nine candidate blocks

(Yang, 2003).

In this model detecting of optimal motion vector is

based on the mean absolute differences (MAD) error

Journal of Balkan Libraries Union

30

calculation at all possible positions. The MAD matching

criterion is a widely used method because of its low

complexity and relatively good matching results respect

to other methods such as mean square error (MAE). The

definition of MAD is:

IJ

lnjmiIkjiI

nmMAD

J

j

SS

I

i

∑∑
−

=

−

=

++−

=

1

0

1

0

),,(),,(

),(
 (1)

where m an n denotes the relative displacement in search

area, which is defined by (M, N), I and J are the sizes of

the predicted block and IS(i, j, k) is the kth frame image.

In (Yang, 2003) the author proposes a new ME

implementation which is shown below.

Start of task 1: MBFP

Fig. 4. Flowchart of the proposed MPEG-4 ME algorithm (Yang, 2003)

In task l (MBFP), this implementation breaks down the

16x16 full-pel search cost into four 8x8 full-pel block

costs. When the 16x16 full-pel search is performed in first

task, the vectors and costs for the four best matched 8x8

full-pel block are stored. Stored values can be passed to

task 2. Task 2 will check the redundancy when doing

iteration of full-pel block estimation. The redundant

points are discarded, i.e. do not need to compute again.

When processing task 2, video encoder can

simultaneously process task 3, because there are no data

dependency between these two tasks. This implies that an

effective multi-core video encoder can do the procession

in task 2 and 3 in distributed parallel way to improve its

real-time performance.

Similarity with the flow progress of the relation

between MBFP and BFP tasks, this implementation

breaks down the 16x16 half-pel search cost into four 8x8

half-pel block costs. When the 16x16 half-pel search is

performed in MBHP task, the vectors and costs for the

four best matched 8x8 half-pel blocks are stored and

passed to BHP task. BHP task will check the redundancy

when doing iteration of half-pel block estimation in 9

candidate positions. The redundant points are discarded,

i.e. do not need to compute again. The author also gives

the required formulae to calculate the number of

discarded and non-discarded points in the 8x8 blocks

(Yang, 2003). Hence it is not our purpose to go further

into the details of each introduced algorithm we don’t

give the formulae and the test results.

Based on the four principles mentioned before, a

directional squared search (DSS) algorithm and a

pipelined parallel architecture are presented in (Huang &

Tsai, 2004). The authors of the introduced DSS follow

the first rule, as shown in Fig.5. A square 3x3 search

window of nine points is initially applied to the search

area with the center recommended by the second rule. The

algorithm stops if the center of the 3x3 window is the

position of the best matching point; otherwise, the search

center is moved to the best matching point. Only

neighbouring points of the center position are investigated

in the next search step. If the best matching point is in the

corner, then five additional points should be checked,

whereas three points must be checked when the best

matching point is an edge point. The above process is

repeated until the center of the window is the position of

the best matching point (Huang & Tsai, 2004).

The main purpose of (Huang & Tsai, 2004) is to

implement the algorithm as hardware. Typically, the

initial search step of GDS can be considered to be a

special case of FS with a ±1 search range, and it can be

efficiently implemented in many hardware designs.

However, the data flow when investigating neighbouring

points during subsequent searches is not as regular as

during the initial step, and hence special hardware is

required. Actually, FS is the best choice for motion

estimation from the viewpoint of hardware

implementation. The basic idea of (Huang & Tsai, 2004),

as shown in Fig. 5, is to modify the searching points

employed by the subsequent searches of GDS such that

they can also be performed by ±1 FS without redundant

computation. Irrespective of whether the best matching

point is located at a corner or edge, the modified GDS

(MGDS) successively applies a square 3x3 search

window of new nine points.

Fig. 5. Structure of GDS and MGDS (Huang & Tsai, 2004)

The major advantage of the proposed MGDS scheme is

that all operations can be performed by ±1 FS. Thus, we

can employ an array of ±1 FSs as the search engine of

motion estimation. This feature is especially useful for

Journal of Balkan Libraries Union

31

personal visual communication because types of handheld

devices that are now being used are various, such as

PDAs and handsets. The large variation in the

computation power amongst these heterogeneous devices

makes conventional BMAs impractical, since their

parameters cannot be tuned automatically according to the

available computational power. In contrast, the

computational power of the search engine can be easily

updated by changing the number of elements in the FS

array. To efficiently utilize the available computation of

the search engine, an adaptive computation distribution

mechanism is further presented in (Huang & Tsai, 2004).

Experimental results indicate that MGDS can uniformly

achieve a quality improvement over original FS under the

same computation. That is, the computation distortion

(CD) performance of FS hardware designs can be

improved when they are assembled into the proposed

array structure and cooperate in the manner of MGDS.

Current video codec predicts MV of a given

macroblock (MB) based on the MVs of neighbouring

MBs for efficient entropy coding. However, the search

center, (xc, yc) of the current MB can only be set as (0, 0)

for parallel extracting MV in MGDS. A square 3x3 search

window of nine points is then applied to the initial center,

i.e. (0, 0). In MGDS, distortion is measured by the sum of

absolute differences (SAD) due to its lower computation

cost. Similar to GDS, MGDS immediately stops if the

center is the position of the best matching point;

otherwise a series of subsequent searches will be

performed toward the best matching point. Unlike GDS, a

square 3x3 search window of nine points is applied

successively irrespective of whether the best matching

point is located at a corner or edge. The center of the next

search (xn, yn) is generated by

)*3,*3(),(),(ccccnn jiyxyx +=
 (2)

where (ic, jc) is the placement of the best matching point.

In MGDS, three additional stopping conditions are

employed to reduce the computation. Let the immediately

preceding search center and the SAD of the best matching

point be (xp, yp) and SADp, respectively. It is pointless

examining the searched area if the next search center (xn,

yn) is equal to one of the previous search centers. For

simplicity, only the immediately preceding search center

(xp, yp) is checked in MGDS. Therefore, MGDS stops if

(xn, yn) = (xp, yp). The second stopping condition is SADp

≤ SADc, where SADc is the best SAD of the current MB.

This condition implies that the optimum occurs at the best

matching point of the previous nine points. The third

stopping condition is SADc ≤ TH, where TH is the given

threshold. This condition indicates that the current SAD is

below an acceptable threshold.

Suppose the value of TH is 350. MGDS first examines

nine searching points labeled as 1 in the figure, resulting

in (1, 0) and 500 as the displacement and SAD of the best

matching point, respectively. Since the best matching

point is not at the center and the best SAD is larger than

TH (i.e. 500>350), the second search center (3, 0) is

derived using the equation above and nine searching

points depicted as 2 in the figure are then checked,

resulting in (1, 1) as the displacement and 400 as the

SAD. Similarly, nine searching points labeled as 3 in the

figure with the search center (6, 3) are examined because

the displacement of the best matching point is not (0, 0),

the current SAD is smaller than that of the previous (i.e.

400<500), the next search center (6, 3) is not examined

and the best SAD is still larger than TH (i.e. 400>350) in

this situation. After the third ±1 FS, (ic, jc) = (-1, 0) and

SADc = 300. The algorithm then stops because the current

best SAD is below TH (i.e., 300<350). Therefore, the MV

of this MB is (5, 3) since the current SAD is smaller than

the previous value. Another example for explaining

MGDS is shown in Fig. 2(b). The processing of this

example is initially the same as for the above example,

except the resulting displacement of the second ±1 FS is

(-1, 0). MGDS stops because the next search center is (0,

0) = (3 x -1, 3 x 0) which has already been examined by

the first ±1 FS. Thus, (2, 0) is the final MV (Huang &

Tsai, 2004).

Fig. 6. (a), (b) Examples to illustrate the MGDS algorithm (Huang &

Tsai, 2004)

Another interesting approach is introduced in (Tsai &

Pan, 2006). In this approach a 3-D predict hexagon

search algorithm for fast block motion estimation on

H.264 is used. The main motivation of the authors can be

coarsely given as the growing of the internet. Because the

internet is more and more universal (Meiappane,

Venkataesan, & Premanand, 2015) and the technology of

multimedia has been progressed largely, the

communication of the video data is an essential part in

our life.

Just for retrospection the basic structure of multiframe

motion estimation in MPEG-4/AVC/H.264 is given in

Fig. 7. For each block of the encoding mode, the motion

Journal of Balkan Libraries Union

32

vector is searched in a frame by frame manner. Adopting

the full search scheme to search the motion vector for

each encoding mode in each reference frame consumes

considerable search time. The computational load of

motion estimation increases markedly in H.264 owing to

the new features. As we mentioned before, according to

statistics, it consumes approximately 60%-80% of the

entire encoding time (Chen, Li, Chiang, & Hsu, 2006).

Fig. 7. Multiframe motion estimation in MPEG-4/AVC/H.264 (Chen,

Li, Chiang &Hsu, 2006)

As mentioned before the main critical issue in H.264

motion estimation is to reduce the complexity of the

motion estimation. According to Tsai & Pan (2006), there

are three methods to achieve it.

� Reducing the complexity of mode decision when

doing motion estimation.

� Reducing the complexity of reference frames when

doing motion estimation.

� Reducing the number of search points: the well-

known Full Search (FS) algorithm exhaustively

evaluates all possible candidate motion vectors over

a predetermined neighbourhood search window to

find the global minimum block distortion position.

Although FS can get the best matching blocks but it

expenses a high computational complexity.

Tsai & Pan (2006) is mainly focused on the effect of

reducing search points. The 3-D consideration indicates

the three critical predictions; it includes the object

movement in vertical and horizontal directions, the search

center with variable block sizes, and the search center

with multiple reference frames. In addition, because the

analysis of motion vector distribution is used to make a

local search range, two different search patterns are used

to reduce the search points effectively.

In most of the previous algorithms, such as DS and

HEXBS (Hexagon Based Search), the searching process

often uses the large search pattern first and then uses the

small search pattern. The difference between them can be

seen in Fig. 8.

 (a) DS Algorithm (b) HEXBS Algorithm

Fig. 8. Minimum possible search points for each motion vector (Tsai &

Pan; 2006)

In the proposed Predict Hexagon Search (PHS)

algorithm the search pattern is constructed as shown in

Fig. 9.

Fig. 9. (a) Small PHS Pattern (SPHSP), (b) Vertical Large PHS Pattern

(vertical LPHSP), (c) Horizontal Large PHS Pattern (horizontal LPHSP)

(Tsai & Pan; 2006)

The algorithm proposes the search process as follows.

Step 1) The SPHSP with five search points is used. If

the minimum RD-Cost point is located in the center point

of SPHSP, the center point is the final point of the motion

vector; otherwise, the point which is the minimum RD-

Cost (Rate Distortion) point will be the center point and

the flow proceeds to step 2. This case is shown in Fig.

10(a). If the minimum RD-Cost point is located on up or

down dots, we identify the object is moving in the vertical

direction and vertical LPHSP will be used in step 3. On

the other hand, if the minimum RD-Cost point is located

on left or right dots, horizontal LPHSP will be used in

step 3.

Step 2) With the minimum RD-Cost point in the

previous searching step as the center, the SPHSP is

formed and still used in this step. Three new candidate

points are checked and the minimum RD-Cost point is

identified again. If the minimum RD-Cost point is located

on the center point of SPHSP, the center point is the final

point of the motion vector; otherwise, the point which is

the minimum RD-Cost point will be the center point and

the flow proceeds to step 3. When finishing the step 1 and

step 2, we complete the rood side in 2 searching first.

Step 3) With the minimum RD-Cost point in the

previous searching step as the center, switch the search

pattern from SPHSP to suitable LPHSP. For case 2 as

shown in Fig. 10(b), three new candidate points are

checked and the minimum RD-Cost point is identified

again. For case 3 as shown in Fig. 10(c), four points are

added as the new candidate points. If the minimum RD-

Cost point is located on the center point of LPHSP, then

the flow goes to step 5; otherwise, the flow proceeds to

step 4.

Step 4) With the minimum RD-Cost point in previous

searching step checked as the center point, a new large

Journal of Balkan Libraries Union

33

hexagon is generated. Three new candidate points are

checked and the minimum RD-Cost point is identified

again. If the minimum RD-Cost point is the center point

of the LPHSP, then the flow goes to step 5; otherwise, the

flow repeats this step continuously.

Step 5) Switch the search pattern form LPHSP to

SPHSP. In Fig. 10(d), four new candidate points are

evaluated to compare with the current minimum RD-Cost

point. The new minimum RD-Cost point is the final point

of the motion vector. Fig. 11 illustrates the overall scheme

of proposed PHS algorithm for H.264.

Fig. 10. Four special cases of checking points overlapping when the

minimum RD-Cost point found in the previous search step (Tsai & Pan,

2006)

Fig. 11. Flowchart for proposed PHS algorithm (Tsai & Pan, 2006)

In Fig. 12 an example is given to show the search path

strategy. In this example, the motion vector is (5, -1) and

six searching steps are needed. Totally, there are 21

search points with 5, 3, 3, 3, 3, and 4 search points in each

sequential step.

Fig. 12. Search path example leading to the MV (5, -1) in six searching

steps (Tsai & Pan, 2006)

Just for comparison Fig. 13 shows the minimum

possible number of search points for each MV location by

PHS algorithm.

Fig. 13. Minimum possible search points for each motion vector by PHS

(Tsai & Pan, 2006)

III. Conclusion and Future Work

Here we introduced briefly three different methods for

motion estimation. There are many different approaches

just like using likelihood and correlation of motion field

(Kuo & Chan, 2006), subpixel accuracy (Hill, Chiew,

Bull & Canagarajah, 2006), contextual knowledge

(Namuduri, 2004), or even well known mathematical

models like Markov (Chen, Chen, Hung, Fang, Shie &

Lai, 2006). It would blast the frame of this work to

examine all of them so we just give a list of papers as

references. This list does not have the claim of being

complete. It should be seen as an impulse to be concerned

with this area. It is expected that the next years will give

us more sophisticated works.

Journal of Balkan Libraries Union

34

References

Bovik, Al (ed.). (2000) “Video compression”, handbook

of image and Video processing. 555-629, San Diego:

Academic Press.

Chen, M., Li, G., Chiang, Y. & Hsu, C. (2006). Fast

multiframe motion estimation algorithms by motion

vector composition for the MPEG-4/AVC/H.264

standard. IEEE Trans. on Multimedia, 8(3), 478-487.

Chen, P.H., Chen, H.M, Hung, K.J., Fang, W.H., Shie, M.

C. & Lai, F. (2006). Markov model fuzzy-reasoning

based algorithm for fast block motion estimation. Journal

of Visual Communication and Image Representation,

17(1), 131-142.

Hill, P. R., Chiew, T. K., Bull, D. R & Canagarajah, C. N.

(2006). Interpolation free subpixel accuracy motion

estimation. IEEE Trans. on Circuits and Systems for

Video Technology, 16(12), 1519-1526.

Huang, S. & Tsai, W. (2004). A simple and efficient

block motion estimation algorithm based on full-search

array architecture. Signal Processing: Image

Communication, 19(10), 975-992.

Khan, N.A., Masud, S. & Ahmad, A. (2006). A variable

block size motion estimation algorithm for real-time

H.264 video encoding. Signal Processing: Image

Communication, 21(4), 306-315.

Kuo, T.Y. & Chan, C.H. (2006). Fast variable block size

motion estimation for H.264 using likelihood and

correlation of motion field. IEEE Trans. on Circuits and

Systems for Video Technology, 16(10), 1185-1195.

Lee, Y.G. & Ra, J.B. (2006). Fast motion estimation

robust to random motions based on a distance prediction.

IEEE Trans. on Circuits and Systems for Video

Technology, 16(7), 869-875.

Liang, Y., Ahmad, I., Luo, J., Sun, Y. & Swaminathan,

W. (2005). On using hierarchical motion history for

motion estimation in H.264/AVC. IEEE Trans. on

Circuits and Systems for Video Technology, 15(12), 1594-

1603.

Meiappane, A., Venkataesan, V. P. & Premanand, V.

(2015). Security Enhancement in Shoulder Surfing

Attacks using Passpoints for Random Similar Images

(PRSIm). International Journal of Computer Networks

and Applications (IJCNA), 2(2), 84-91.

Montrucchio, B. & Quaglia, D.(2005). New sorting-based

lossless motion estimation algorithms and a partial

distortion elimination performance analysis. IEEE Trans.

on Circuits and Systems for Video Technology, 15(2),

210-220.

Namuduri, K. R. (2004). Motion estimation using spatio-

temporal contextual information. IEEE Trans. on Circuits

and Systems for Video Technology, 14(8), 1111-1115.

Po, L.M., Ting, C. W., Wong, K.M. & Ng, K. H. (2007).

Novel point-oriented inner searches for fast block motion

estimation. IEEE Trans. on Multimedia, 9(1), 9-15.

Richardson, I.E. (2002). Video CODEC design. New

York: Wiley.

Richardson, I.E. (2003). H.264 and MPEG-4 video

compression. NewYork: Wiley.

Tsai, T. & Pan, Y. (2006). A novel 3-D predict hexagon

search algorithm for fast block motion estimation on

H.264 video coding. IEEE Trans. on Circuits and Systems

for Video Technology, 16(12), 1542-1549.

Tu, Y.K., Yang, J.F, Sun, M.T. & Tsai, Y.T. (2005). Fast

variable-size block motion estimation for efficient

H.264/AVC encoding. Signal Processing: Image

Communication, 20(7), 595-623.

Yang, W. (2003). An efficient motion estimation method

for MPEG-4 video encoder. IEEE Trans. on Consumer

Electronics, 49(2), 441-446.

Zhou, Z., Xin, J. & Sun, M.T. (2006). Fast motion

estimation and Inter-mode decision for H.264/MPEG-4

AVC encoding. Journal of Visual Communication and

Image Representation, 17(2), 243-263.

Samsun Mustafa Başarıcı is an Asst. Prof. at

the Department of Computer Engineering in

Adnan Menderes University, Turkey. He has

authored papers in refereed journals and

international conference proceedings and has

been actively serving as a reviewer for

international journals and conferences. He has

also authored a book and edited a conference

proceeding.

