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Abstract

The phantom behavior of the Universe is discussed in an extended version of Gauss-Bonnet

(GB) gravity. Following the method proposed by (doi.org/10.1142/S0218271818500785 (2018)),

we obtain a viable cosmological model for the phantom phase of the Universe. We find a condition

for m in the model ∼ Gm which shows a phantom expansion of the Universe. On the other hand,

using a phantom source-term ∼ T 2n in the model we observe that the term ∼ Gn, with n > 3
4 ,

gives a phantomic space-time expansion. This form (Gn+T 2n) obtained for the phantom phase of

the Universe exhibits a similar form to the Einstein’s gravity theory (R + Lm). However, we are

addressed the cosmic coincidence problem for the model.
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I. INTRODUCTION

The observational data [1–3] indicate that the late-time (present) universe has a spatial-

flat geometry with a unknown (dark) energy component which causes an accelerating expan-

sion. After it was noticed that an additional term (may be cosmological constant Λ) in the

Einstein equations presented a dynamic universe, in theoretical background the modifica-

tions of the Einstein’s gravity theory have been considered by researchers. Some gravitational

theories such as F (R) [4, 5], F (T ) [6], f(R,G) [7], f(R, T ) [8], F (R,T ) [9], F (G, T ) [10]

and F (R, TµνT
µν)[11, 12] gravity theories, with matter lagrangian Lm, are examples for the

modifications of the standard Einstein’s gravity (R+Lm), where T and TµνT
µν are respec-

tively the torsion scalar and a scalar constructed from the square of the energy-momentum

tensor Tµν . While the solutions of the Einstein’s field equations without the additional term

produce the dust era and the radiation era of the universe in context of the spatial-flat

FriedmannRobertsonWalker (FRW) universe, modifications give a cosmic accelerated ex-

pansion in both two eras (for the early-inflationary universe and the late-time universe). In

the observational frame these cases can be evaluated by taking into account an important

parameter, i.e. the equation-of-state (EoS) parameter, w = p
ρ
, where p and ρ respectively

denote the pressure and the density of ordinary matter obtained from the matter lagrangian,

Lm. For the certain values interval of the EoS parameter showing a negative pressure, it

can be stated that the universe is in an accelerated phase. For instance, while the range

−1 < w < −1
3
[13] show a quintessential expansion, w < −1 [2] expresses a phantomic

expansion. However, the case w = −1 describes de Sitter expansion (Λ-cold-dark-matter

cosmology, ΛCDM model). ΛCDM model is faced with some cosmological problems. One of

these is coincide problem related to a specific expansion of the beginning universe (inflation).

Since the current ratio of dark energy density to matter energy density are nearly equal to

one (why now?), this case requires a specific condition of the beginning inflation. However,

in a future cosmic time both dark energy and matter energy densities become different rates

as long as the Universe expands[14–17]. In the present study, we are addressed this problem

for a phantom phase of the universe.

On the other hand, another approach for modifications is based on scalar fields modifications

which are minimal-coupled with gravity. Namely, with helping of a scalar field, ϕ, in the

standard Einstein gravity the cosmic acceleration of the universe can be shown in both the
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early and the late-time universe. In this study, we consider theory of R + F (G, T ) + Lm

[18] gravity together with the scalar field lagrangian Lϕ to show the phantom phase of the

universe. For phantom phase of the universe we have obtained a viable cosmological model

arising from the terms in the consideration gravity. We find a condition for m in the geomet-

ric model ∼ Gm which shows a phantom expansion of the universe. On the other side, with

another geometric term in the system, ∼ Gn with n > 3
4
, we obtain a phantomic expansion

in which the geometric term is supported by the phantom source-term ∼ T 2n. This gets a

difference from the other pure geometric term, ∼ Gm. Therefore, we have observed that the

structure (Gn + T 2n) for phantom phase exhibits a similar form to Einstein’s gravity theory

(R+Lm). However, for a long cosmic time we observe that the ratio of dark energy density

and matter energy density are nearly equal to one, ρd
ρ
∼= 1, which this can be a solution of

the coincide problem for late-time evolution of the universe at least.

II. PHANTOM PHASE SOLUTIONS OF THE GRAVITY THEORY

We consider the following action integral which includes a canonical scalar field lagrangian

[18], Lϕ = −1
2
gµν∂µϕ∂νϕ− V (ϕ),

S =
∫
[
(R + F (G, T ))

2k2
+ Lm + Lϕ]

√
−gd4x, (1)

where k2 = 8πG̃ with Newton constant G̃ = 1. The field equations are derived by varying

the action (1) with respect to inverse metric, gαβ. Then we obtain

Rαβ −
1

2
gαβR = k2Tαβ + k2T

(ϕ)
αβ +

1

2
gαβF (G, T )

− (Tαβ +Θαβ)FT − [2RRαβ − 4Rµ
αRµβ

+ 2Rµνξ
α Rβµνξ]FG − [2Rgαβ − 4Rαβ

− 2R∇α∇β + 4Rµ
β∇α∇µ + 4Rµ

α∇β∇µ

− 4gαβR
µν∇µ∇ν + 4Rαµβν∇µ∇ν ]FG, (2)

where FT and FG show derivatives with respect to the energy-momentum tensor (EMT) and

the GB invariant, respectively. Also, T
(ϕ)
αβ and Θαβ are defined by
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T
(ϕ)
αβ = ∇αϕ∇βϕ+ gαβLϕ, Tαβ = gαβLm − 2

∂Lm

∂gαβ
,

Θαβ = −2Tαβ + gαβLm − 2gµν
∂2Lm

∂gαβ∂gµν
. (3)

Spatial-flat FRW metric is described by the following metric function,

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2]. (4)

Herein, a is the scale factor of the universe. After choosing Lm = p [19] in eq. (3) we obtain

3H2 = k2(ρ+ ρϕ) + (ρ+ p)FT − 1

2
F (G, T ) +

G

2
FG − 12H3ḞG, (5)

−(3H2 + 2Ḣ) = k2(p+ pϕ) +
1

2
F (G, T )

− G

2
FG + 8H3ḞG + 8HḢḞG + 4H2F̈G, (6)

where the trace of the EMT is gµνTµν = T = −ρ+ 3p due to metric (4). However, the over

dot shows derivative with respect to cosmic time and H = ȧ
a
represents Hubble parameter.

According to metric (4), the energy density and pressure of the scalar field, respectively, are

as the following

ρϕ =
ϕ̇2

2
+ V (ϕ), pϕ =

ϕ̇2

2
− V (ϕ). (7)

We assume that the lagrangian function is a sum of the two functions as[18, 20]

F (G, T ) = f(G) + f(T ). (8)

Then, the equations (5), (6) can be rewritten as follows,

3H2 = k2ρt, (9)

−(2Ḣ + 3H2) = k2pt, (10)

where ρt = (ρ+ ρe) and pt = (p+ pe). The effective density and the pressure are given by

ρe = ρϕ +
1

k2
[(ρ+ p)fT − f(T )

2
− f(G)

2
+

G

2
fG − 12H3ḟG], (11)
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pe = pϕ +
1

k2
[−G

2
fG +

f(G)

2
+

f(T )

2
+ 8H3ḟG + 8HḢḟG + 4H2f̈G]. (12)

On the other side, the continuity equations for total energy density and the energy density

of the scalar field can be written from the equations (7), (9) and (10)

ρ̇ϕ + 3H(ρϕ + pϕ) = 0, ρ̇t + 3H(ρt + pt) = 0, (13)

and therefore we have

ρ̇e + 3H(ρe + pe) = 0. (14)

Also, from the second equation in (13), for ordinary matter, we have

ρ̇+ 3H(ρ+ p) = − 1

k2 + fT
[(ṗ− Ṫ

2
)fT + (ρ+ p)ḟT ]. (15)

Hence, conservation of ordinary matter satisfies the following condition

(1− w)fT + 2TfTT (1 + w) = 0, (16)

where w = p
ρ
is the equation-of-state (EoS) parameter of ordinary matter. However, from

first equation in (13) we obtain the equation of motion for the scalar field,

ϕ̈+ 3Hϕ̇ = −V ′(ϕ), (17)

with V ′(ϕ) = ∂V (ϕ)
∂ϕ

.

We construct the master equation by using equations (11), (12), (16) and the notation

A = k2(pe − ρewϕ) + 2Ḣ + 3H2(1 + wϕ)[18, 21] which shows the following equation

4H2f̈G + 8HḢḟG − 4H3ḟG = −k2(ρ+ ρϕ)

(1 + wϕ) + 3H2(1 + wϕ)−
2ρ(1 + w)2

(w − 1)
TfTT , (18)

with we
∼= wϕ = −1 − 2Ḣ

3H2 . In effect, this equation can be easily created by utilizing the

equations (5), (6). However the notation A gets an advantage to us. Because, in this

notation we have an equality between dark energy density and matter energy density. In

order to illustrate this case, we can utilize the continuity equation (14) and first equation in

(13),
ρe
ρϕ

∼= a3(wϕ−we). (19)
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Hence, the case we
∼= wϕ in the notation, A, provides that ρe ∼= ρϕ. It is observed that the

ratio of the densities will not different with cosmic time as it does not depends on the scale

factor. For investigation we now proceed to find phantomic lagrangian function. To this

purpose, we take into account the phantom solutions of the scale factor given by

a(t) = (ts − t)−h → G = 24h3(h+ 1)(ts − t)−4 = γ(ts − t)−4, (20)

where h > 0 and ts = t shows ’Big-Rip’ singularity. Considering a general form of the EMT

source, f(T ) = βTα, the equation (17) can be written as follows,

Ṗ (t)−HP (t) = (1 + wϕ)[−k2ρ0(ts − t)3h(1+w)

− k2ρϕ0(ts − t)3h(1+wϕ) + 3h2(ts − t)−2]− 2(1 + w)2

(w − 1)

ρα0βα(α− 1)(3w − 1)α−1(ts − t)3hα(1+w), (21)

where P (t) = 4H2ḟG. Then we find the solution

f(G) = A′G
−3h(1+w)

4 +B′G
−3h(1+wϕ)

4

+D′G
1
2 + F ′G

−3hα(1+w)
4 +K ′G

h+1
4 (22)

where

A′ =
(1 + wϕ)k

2ρ0γ
3h(1+w)+4

4

h2[3h(1 + w) + h+ 1][3h(1 + w) + 4][3h(1 + w)]
,

B′ =
k2ρϕ0(1 + wϕ)γ

3h(1+wϕ)+4

4

h2[3h(1 + wϕ) + h+ 1][3h(1 + wϕ) + 4][3h(1 + wϕ)]
,

D′ =
3(1 + wϕ)γ

1
2

4(h− 1)
,

F ′ =
2(1 + w)2(−1 + 3w)n−1

4h2(w − 1)[3hα(1 + w) + h+ 1][3hα(1 + w) + 4]

ρα0βα(α− 1)γ
3hα(1+w)+4

4

[3hα(1 + w)]
,

K ′ =
c1γ

−h+3
4

3h2(h+ 1)(3− h)
, (23)

where c1 is an integral constant. For the real value of the function (8) we can write

F (G, T ) = B′Gm + F ′Gn + βT 2n, (24)
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with c1 = 0, where the standard FRW solutions k2ρ0 = 3h2 and h = − 2
3(1+w)

[18, 21, 22] are

used. Also, m =
(1+wϕ)

2(1+w)
and α = 2n. On the other hand, from eq. (16) we obtain

α = 2n =
(1 + 3w)

2(1 + w)
. (25)

The phantomic system (22) describes a phantom spacetime expansion with the terms F ′Gn+

βT 2n. However, another geometrical term B′Gm also describes a phantom expansion of the

universe under the following condition,

m > 0 (26)

when w < −1. In this case the EoS parameter of the scalar field is wϕ < −1 interval. This

interval is provided by the condition m > 0.

On the other hand, from the equality (23) for the phantom phase of the universe, w < −1,

we obtain the following condition,

n >
3

4
. (27)

Thus, with the positive value of the power-term of the GB-term a phantomic expansion of

the universe is obtained. On the other side, the eq. (19) can be written as follows,

ρ

ρϕ
∼= a

6(2m−1)
3−4n , (28)

and if we are fixed the m = 1
2
in the interval given by (26), we obtain equality ρ ∼= ρϕ ∼= ρe

that is independent from the scale factor of the universe. In other words, under the condition

(27) a phantomic Einstein gravity is observed with F ′Gn + βT 2n. Even if the current value

of the EoS parameter is close to −1, in a future time one expects that w < −1, in which

matter components of the universe decrease for a long cosmic time. Therefore, the density

equality is break down in future. But, in the present study, we show that the density rates

can be protected for the conditions m = 1
2
and n > 3

4
even if the universe is in a phantom

phase. This can be a solution of the coincide problem.
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III. CONCLUSION

It is known that while one side of the Einstein equation describes a spacetime geometry

(curvature), the other side of it shows the matter which follows inside this curvature ge-

ometry. In one respect, this is described by the lagrangian R + Lm in the EH action, with

spacetime geometry R and matter Lm. Hence, in our case at hand we have F ′Gn + βT 2n

which shows a relation between spacetime geometry F ′Gn and the matter βT 2n. This form

obtained for the phantom phase of the universe is similar to the structure of the field equa-

tions of the general relativity theory. However, we state that the geometrical term, B′Gm,

with the positive values of m > 0 or especially the fixed value m = 1
2
supports the dark

energy term F ′Gn + βT 2n which can remove the coincide problem for the phantom phase

of the universe. It should be noted that for both the geometric Gauss-Bonnet invariants we

obtain positive values of the power-terms, n > 3
4
and m = 1

2
. The authors [5] show that

with the condition 0 < β < 1
2
in the term ∼ Gβ the universe does not reach the phantom

phase. Namely, with the positive values of β in 0 < β < 1
2
interval the universe can not be

in the phantom phase. But in the present study we have shown that the universe can be in

a phantom phase together with the positive values of the power terms of the Gauss-Bonnet

invariants. However, even if the energy densities of the matter component of the universe

decrease in future time, the rates will not a change. In effect, this case can be originated from

a fixed value of the EoS parameter of the extra dimensions in a non-accelerated expansion

phase.[23].
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