
RESEARCH PAPER

Effect of Silver Nanoparticles on Production of Indole Alkaloids in Isatis
constricta
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Abstract
Silver nanoparticles (AgNPs) are widely used in many applications of biotechnology, including medicine and agriculture.

They are released to the nature as waste materials, which can cause physiological and biochemical effects on plants. Indigo,

indirubin and tryptanthrin are valuable indole alkaloid compounds in Isatis constricta due to both medicinal effects and dye

properties. This research was conducted to determine the effects of different concentrations (0, 0.25, 0.5, 1, 1.5 and

2 mg L-1) of AgNPs on the production of indigo, indirubin and tryptanthrin compounds in leaves of in vitro grown shoots

of I. constricta Davis. Indigo production was 1.15-fold of control (869 ± 8.33 lg g-1) in the leaves of shoots regenerated

in Murashige and Skoog supplemented with 2 mg L-1 of AgNPs (1003 ± 11.42 lg g-1) on 5 days post-treatment.

Tryptanthrin production showed an increase in all applications of AgNPs, but the highest increase was observed at a

concentration of 2 mg L-1 (4.59 ± 0.046 lg g-1) and this increase was 1.71-fold of control (2.68 ± 0.031 lg g-1) on

5 days post-treatment. The production of indigo and tryptanthrin decreased on 10 and 15 days post-treatment with AgNPs.

The contents of indirubin decreased during day 5-10-15 and at all concentrations of AgNPs compared to the control.
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1 Introduction

Plants are important sources of secondary metabolites.

Major roles of these metabolites are to protect plants

against various biotic and abiotic stresses. Many of the

secondary metabolites synthesized by plants are used in

drug industry and as source of dyestuff in textile industries

(Guerriero et al. 2018), but their quantities are generally

very low (Bourgaud et al. 2001). These secondary

metabolites are accumulated in plants when subjected to

various signal molecules and chemical elicitors (Ramakr-

ishna and Ravishankar 2011).

Plant tissue culture has been used to enhance the pro-

duction of many valuable compounds which are synthe-

sized in small amounts by plants but of great commercial

importance (Zhao et al. 2005; Abouzid 2014). In order to

increase secondary metabolite production in plants, it may

be effective to apply various precursors, elicitors, heavy

metals and nanoparticles to plants grown in vitro (Giri and

Zaheer 2016).

Nanoparticles are substances that are less than 100 nm

and have unique physical and chemical properties (Yan and

Chen 2019). Nanoparticles have different effects on plants

depending on the concentrations, properties and exposure

time of the nanoparticles (Stampoulis et al. 2009). Among

the nanoparticles, silver nanoparticles are the ones of the

most using due to antiseptic, antibacterial and antifungal

properties, as well as in household products, textiles and

medical devices (Duran et al. 2007; Nelson et al. 2007;

Tran et al. 2013). In agricultural applications, nanoparticles

have important roles, especially in minimizing the use of

chemical fertilizers, and improve growth and yield of crops

(Siddiqui and Al-Whaibi 2014). Besides, AgNPs have been

used influencing plant cell growth, biomass production and

production of some valuable secondary metabolites in

in vitro cultures (Elechiguerra et al. 2005).

I. constricta Davis is a biennial member of genus Isatis

(Cruciferae) and an endemic to the South-Eastern Anatolia

Region of Turkey (Mısırdalı 1985). Species belonging to

& Özgür Karakaş
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genus Isatis have been widely cultivated in China for

features of medicinal and dye. Particularly, I. tinctoria and

I. indigotica have been used in modern and traditional

medicine for the treatment of hepatitis, viral pneumonia,

influenza, snake bites, hemorrhoids and various inflam-

matory diseases (Chang et al. 2012; Hamburger 2002).

Diverse bioactive constituents have been reported from

methanol extracts of leaves and roots of the Isatis species

(Liau et al. 2007; Karakas 2019). Alkaloids, which are

used in both treatments and source of dyestuff, are eval-

uated as characteristic compounds of these plants (Bektas

et al. 2016). Up to now, more than 100 alkaloids have been

identified in Isatis species, such as quinoline alkaloids,

quinazoline alkaloids and indole alkaloids (Zhang et al.

2019). Particularly, the leaves of these plants are used as a

source of dark blue dye (indigo) for thousands of years in

China and for centuries in Europe (Puchalska et al. 2004).

In addition to be a source of indigo dye, numerous studies

were carried out on Isatis plants due to their bioactive

constituents that have numerous pharmacological effects.

Indirubin and tryptanthrin, which are also important indole

alkaloids obtained from Isatis, have therapeutic and dye

properties (Honda et al. 1980; Mohn et al. 2009; Namgung

et al. 2019). Moreover, tryptanthrin is a yellow, and

indirubin is a red-colored compound. In terms of medicinal

effects, tryptanthrin has anti-inflammatory, antibacterial

and anticancer effects (Jahng 2013; Kaur et al. 2017). In

addition to the dye properties, due to its biological and

pharmaceutical activities, indirubin and its derivatives

have been used for the treatment of type 2 diabetes

(Bertrand et al. 2003), Down syndrome, Alzheimer’s

(Myrianthopoulos et al. 2013) and chronic myelocytic

leukemia (CML) (Kim et al. 2013).

In this research, it was aimed to investigate the effects of

silver nanoparticles (AgNPs) on the production of indigo,

indirubin and tryptanthrin in the leaf extracts of I. con-

stricta Davis grown under in vitro conditions.

2 Experimental

2.1 Plant Material and In Vitro Culture
Conditions

The seeds of I. constricta were collected in June 2017

from Diyarbakır District, Ergani Province (942 m above

sea level), Turkey. The samples of the plant were identi-

fied by Prof. Dr. Ömer SAYA from Dicle University,

Science Faculty, Department of Biology. The mature seeds

were used as initial material. Firstly, the seeds of plant

were washed in tap water for 5 min and surface-sterilized

by submerging in a 70% ethanol solution for 60 s, fol-

lowed by immersion in a 10% sodium hypochlorite

(NaOCl) for 6 min, and then rinsed with sterile distilled

water five times. The sterilized seeds were inoculated in

hormone-free MS solid medium (Murashige and Skoog

1962)27 that contained 0.6% agar and 3% sucrose. The pH

of medium was adjusted to 5.8 with 2 N NaOH prior to

autoclaving at 1 atm, 121 �C for 20 min. Later on, the

cultures were incubated under a photoperiod of 16/8 h

light and darkness in a growth chamber at 25 ± 2 �C.

After 3 weeks initiation of cultures, plantlets were sub-

cultured in hormone-free solid MS basal medium con-

taining 0.6% agar and 3% sucrose for plant proliferation

(Karakas 2019).

2.2 Treatment with AgNPs

Before being added to the culture medium, AgNPs were

exposed to ultrasonication for 10 min followed by filtration

(pore size of 0.45 lm). Micropropagated plantlets at the

end of third subculture were transferred to a solid MS

medium containing different concentrations of AgNPs (0,

0.25, 0.5, 1, 1.5 and 2 mg L-1). The application of

nanoparticles was maintained for 15 days. On day 5-10-15

of AgNPs application, plantlets were harvested for deter-

mining the effects of AgNPs on the production of indigo,

indirubin and tryptanthrin in the leaf explants.

2.3 Reagents and Chemicals

Silver nanoparticles (AgNPs, 99.9%) were purchased from

Gute Chemie-abcr Gmbh, Deutsch. Standard compounds of

indigo (C 98%), indirubin (C 98%) and tryptanthrin

(C 98%) were purchased from Sigma (St. Louis, Mo,

USA). N,N-Dimethylformamide (DMF, C 99.9%), ace-

tonitrile (ACN, C 99.9%) and methanol (C 99.9%) were

purchased from Merck (Darmstadt, Germany), and triflu-

oroacetic acid (TFA, C 99%) was purchased from Merck

(Hohenbrunn, Germany). ACN and MeOH in HPLC grade

purity and double distilled water were used.

2.3.1 Calibration Curves of Tryptanthrin and Indirubin

Standards of indigo, indirubin and tryptanthrin were dis-

solved in N,N-dimethylformamide (DMF). Each standard

solution of indigo, indirubin and tryptanthrin was prepared

at seven different concentrations (0.05, 0.1, 0.25, 0.5, 1,

2.5, 5 mg L-1) by diluting their stock solutions

(1 mg mL-1) with DMF. To generate calibration curves,

each standard solution was injected in triplicate to high-

pressure liquid chromatography (HPLC). The concentra-

tions of indigo, indirubin and tryptanthrin in the extracts

were calculated using calibration curves of the compounds

(Fig. 1a–c).
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2.4 Extraction of Indigo, Indirubin
and Tryptanthrin

The protocol developed by Liau et al. (2007) was used for

the extraction of indole alkaloids. Briefly, the leaf explants

of plantlets were powdered using a laboratory blender. A

quantity of 200 mg of air-dried leaf samples were accu-

rately weighed and exposed to sonication (Jeiotech, US-05,

Korea) in 10 ml of MeOH for 5 min at 48 �C. These

processes were carried out in triplicate (10 mL 9 3). After

sonication, methanolic parts obtained were combined in a

50-mL flask, and MeOH in the flasks was removed in

vacuo (LabTech EV311, Evaporator). The final samples

were mixed with MeOH/DMF (2.5:2.5) of 5 mL, and the

final volume was adjusted to 40 mL with MeOH. The

solution was filtered through a 0.45-mm nylon filter

membrane (Merck Millipore� syringe filter) prior to

analysis.

2.5 Analysis of Indigo, Indirubin
and Tryptanthrin Using HPLC

HPLC analysis was performed using an autosampler (SIL

20A-HT) injecting 20 lL of each sample, a binary pump

(LC-20AT) solvent delivery system working at a flow rate

of 0.5 mL min-1, a dual-wavelength absorbance detector

(SPD M-20A PDA) and degasser (DGU 20A5R). The

column, Inertsil ODS-3 (GL Sciences Inc., Japan) with

5 lm 9 4.6 mm 9 250 mm in length and 5 lm particle

size, was kept warm at 30 �C in a column oven system

(CTO-10AS VP SHIMADZU). Isocratic flow was per-

formed using CH3CN/H2O 65/35 with 0.1% TFA, running

20 min.

Separation process of three compounds was performed

at room temperature. The mobile phase was the same for

indigo, indirubin and tryptanthrin, but the wavelengths

were different (indigo 279 nm, indirubin 275 nm and

tryptanthrin 305 nm). Retention times of indigo, indirubin

and tryptanthrin were 16.2, 11.4 and 15.2 min, respectively

(Fig. 2a–c). The correlation coefficients (R) of the standard

compounds were 0.9999 for indigo and tryptanthrin; it was

0.9997 for indirubin. Quantification of the three com-

pounds was carried out by comparing the retention time of

the standard compounds.

2.6 Statistical Analysis

All experiments were done as three replicates for the

determination of changes in amount of each alkaloid

depending on application time and different concentrations

of AgNPs. Analysis of variance (ANOVA) was performed

using SPSS Software Version 16.0 for Windows. The

means were compared using DUNCAN’s at p B 0.05 level

of significance as the mean ± standard deviation.

3 Results and Discussion

3.1 Influences of AgNPs on the Production
of Indigo, Indirubin and Tryptanthrin

In the present study, effects of different concentrations of

AgNPs (0.25, 0.5, 1, 1.5 and 2 mg L-1) were investigated

on indigo, indirubin and tryptanthrin production in the leaf

explants of I. constricta grown under in vitro conditions for

15 days. HPLC chromatogram of leaf extracts was

obtained according to retention times of standard com-

pounds (Fig. 3a–c).

Figure 4a–c shows the effects of AgNPs on indole alka-

loids (indigo, indirubin and tryptanthrin) production in the

leaves of I. constricta grown in vitro. The treatment with

different concentrations of AgNPs to plantlets showed

Fig. 1 Calibration curves of a indigo, b indirubin, c tryptanthrin
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significant effects on indigo, indirubin and tryptanthrin

production. Treatments of AgNPs at concentrations between

0.25 and 1.5 mg L-1 and production of indigo exhibited no

effect, but at a concentration of 2 mg L-1 (1003 lg g-1), it

was 1.15-fold of control (869 ± 7.50 lg g-1) in plantlets

harvested on the day 5 of experiment. On day 10 and 15 of

AgNPs application, production of indigo showed a signifi-

cant decrease at all concentrations and the highest decrease

was observed in the leaf explants treated with 2 mg L-1

AgNPs (382 ± 0.76 lg g-1) on day 15, about 2.2-fold of

control. The production of indirubin was low during the

experiment, at the three periods (on day 5, 10 and 15 post-

treatment) and at all concentrations of AgNPs applications.

The production of indirubin showed a decrease between

about 1.54- and 2.15-fold, compared with the control group.

The highest decrease was obtained at the leaf extracts treated

with 0.25 mg L-1 of AgNPs (about 2.15-fold).

The production of tryptanthrin increased in all the treat-

ments of AgNPs, but the highest increase was observed at a

concentration of 2 mg L-1 (4.59 ± 0.006 lg g-1), and this

increase was 1.71-fold of control (2.68 ± 0.007 lg g-1) on

day 5. On 10 and 15 days, although tryptanthrin contents

showed a decrease, the concentrations of 2 mg L-1 of

AgNPs, which had the highest tryptanthrin production, were

1.48- and 1.19-fold, respectively, compared with the control.

Production of indole alkaloids was altered in in vitro

cultures of Isatis after exogenous application of

phytohormones and chemical elicitors. It was reported that

while treatments of methyl jasmonate enhanced the pro-

duction of tryptanthrin and indirubin (indole alkaloids),

putrescine treatments decreased the tryptanthrin production

and it did not affect the indirubin production in leaf

explants of I. demiriziana Mısırdalı in vitro grown (Kar-

akas 2019).

It was reported that silver nanoparticles, as chemical

elicitors, encouraged the production of important sec-

ondary metabolites, synthesized by the medicinal plants

(Shahin 2018). The production of atropine showed a sig-

nificant increase (up to 2.42-fold of control) with treatment

of silver nanoparticles in hairy roots of Datura metel,

depending on treatment times (12, 24 and 48 h) (Shakeran

et al. 2015). Jamshidi et al. (2014) reported that taxol

production was increased after the treatment with AgNPs

to cell suspension cultures of Corylus avellana L.

Moreover, many researches showed that silver nanopar-

ticles had also significant effects on the production of phe-

nolic and flavonoid compounds. The production of some

phenolic and flavonoids in the in vitro cultures was increased

as depending on concentration and exposure time of plants to

AgNPs added to MS medium (Jasim et al. 2017; Fazal et al.

2016; Kim et al. 2017; Spinoso-Castillo et al. 2017; Chung

et al. 2018). The production of anthocyanin in leaves of

plantlets in vitro grown was enhanced after both 1 and

Fig. 2 HPLC chromatogram for the standard compounds of a indigo, b indirubin, c tryptanthrin

Fig. 3 HPLC chromatogram of the leaf extracts treated with 2 mg L-1 of AgNPs. a Indigo. b Indirubin. c Tryptanthrin
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2 weeks of treatment with 0.5 and 3.0 mg L-1 AgNPs, about

5.99-fold that of the control (Qian et al. 2013).

Changes in the production of plant secondary metabo-

lites are associated with oxidative stress, which is caused

by the production of excess amount of reactive oxygen

species (ROS) after NPs exposure. ROS can also serve as

signals for other messengers like jasmonic acid (Wu and

Ge 2004), salicylic acid (Baxter et al. 2014), ethylene, etc.,

which are capable of modulating secondary metabolisms

directly or indirectly (Zhang et al. 2016). To avoid the

detrimental effects of ROS, a set of antioxidant defense

mechanisms are activated in plant cells. Treatment with

AgNPs increased the production of phenolics, which might

act as antioxidants to scavenge the ROS (Franklin et al.

2009; Comotto et al. 2014. AgNPs triggered ROS signaling

and production of anthocyanin and flavonoid in

Fig. 4 Effects of AgNPs on the production of a indigo, b indirubin and c tryptanthrin production in the leaves of I. constricta plantlets harvested

on day 5, 10 and 15 at five concentrations (0.25, 0.5, 1, 1.5 and 2 ppm). Error bars show standard deviations
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Arabidopsis thaliana (Sosan et al. 2016). Treatment with

AgNPs increased the antioxidant enzymes in Brassica

juncea (Sharma et al. 2012), Spirodela polyrhiza (Thwala

et al. 2013) and Pisum sativum (Tripathi et al. 2017).

4 Conclusion

The present study demonstrated that the treatments of

AgNPs to in vitro grown plantlets showed different effects on

indigo, indirubin and tryptanthrin production in leaf explant

of I. constricta depending on different concentrations and the

treatment times. While treatments of AgNPs were not

effective for indirubin production for decreasing its quantity,

they were effective for indigo and tryptanthrin production for

increasing their quantities in in vitro conditions.
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