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Abstract Viability of the super inflation scenario is dis-
cussed in F(T ) modified teleparallel gravity. We calculate
the power spectrum of the primordial curvature and tensor
perturbations, and we derive two important parameters cor-
responding to these perturbations, i.e., spectral index param-
eter ns and scalar-to-tensor ratio r . We observe that the super
inflation scenario provides a nearly scale invariant power
spectrum of scalar and tensor perturbations in the observa-
tional bounds of ns and r , according to choosing the proper
values interval of the power-term of the scale factor, a ∼ th .

1 Introduction

The inflation scenario [1–3], which is supported by observa-
tional data [4], is appeared as a successful mechanism which
describes the the early-time evolution of the universe. This
scenario working at the high energy densities of the universe
is generally described by a scalar field which is minimal
coupled with gravity, whose potential function is nearly a
flat form. When the scalar field slowly exhibits a motion
on the flat-potential hill, the universe inflates exponentially,
which this results an accelerated expansion case (quasi-de
Sitter expansion), named as slow-rolling mechanism. In this
mechanism, the accelerated expansion case is provided as
long as the slow-roll parameter, ε = Ḣ

H2 , is smaller than one
[5]. However, the large-structure of the universe is connected
to beginning evolution of the universe, as the inflation sce-
nario predicts quantum perturbations which plant the seeds
on spacetime tissue. The traces of this primordial fluctuations
are observed in the cosmic microwave background (CMB)
which spreads freely in the universe. Hence, testing the infla-
tion scenarios are made by measuring CMB anisotropies and
by calculating useful two parameters coming from the two
types of perturbations [6] which are related to metric per-
turbations: as mentioned above, the first is the scalar (curva-
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ture) perturbations, PR , take on a task as producing the seeds
which form the present universe, and the second is the tensor
perturbations, PT , which are dubbed as gravitational waves
of the early-universe. In the literature, under the slow-roll
condition ε � 1 it was developed many different inflation
scenarios such as the chaotic inflation [7], the quintessential
inflation [8], k-inflation [9], the Brane inflation [10,11], the
warm inflation [12–14], the intermediate inflation [15], the
super inflation [16] and so on.

In this study, we examine the super inflation scenario in the
context of F(T ) gravity theory. This gravity theory, which
is formed by tetrad fields eAμ [17] instead of metric tensor
gμν , was developed as an alternative theory to the standard
Einstein’s gravity. In the fundamental idea of teleparallelism,
there is only a torsion T corresponding to Weitzenböck con-
nection which is formed by dynamical objects eAμ of the grav-
ity theory. A generalized version of the torsion gravity is
F(T ) gravity theory constructed by [18], where the func-
tional form of T is appeared in the action integral (which is
similar to the structure of the F(R) gravity in the Einstein–
Hilbert action). In the context of F(T ) gravity, late-time cos-
mic acceleration (dark energy) of the universe was discussed
in several studies [19–28], and particular cosmological solu-
tions and applications can be found in Refs. [29,30]. The
studies on the intermediate inflation scenario in the context
of this gravity theory were performed in Refs. [31–35]. Cos-
mological perturbations for inflationary scenarios were stud-
ied in Refs. [36–39], and also some examinations on inflation
of the universe in the context of F(T ) gravity can be seen
in Refs. [40–42] . However, investigations of thermodynam-
ical perspective of the gravity theory were discussed in Refs.
[43–45].

In this study, we show the super inflation scenario in the
framework of F(T ) modified teleparallel gravity. Using a
notation A [46] we re-construct an energy equation (fried-
mann eq.), and we realize a unified solution [47,48] of it.
However, using a notation M which is similar to A, we re-
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construct the perturbation equations of F(T ) gravity. After
that we calculate the power spectrum of the primordial cur-
vature and tensor perturbations, and two important parame-
ters corresponding to these perturbations, i.e., spectral index
parameter ns and scalar-to-tensor ratio r . We observe that
the super inflation scenario provides a nearly scale invari-
ant power spectrum of scalar and tensor perturbations in the
observational bounds of ns and r [4].

2 F(T ) modified teleparallel gravity

The action integral of F(T ) gravity is given by

S =
∫

d4x |e|
[
F(T )

2κ2 + Lm

]
(1)

Variation of the action with respect to tetrad field gives the
following equation,

e−1∂μ(eSμν
A )FT − eλ

AT
ρ
μλS

νμ
ρ FT + Sμν

A ∂μT FTT

+1

4
eν
AF = κ2

2
eρ
AT

ν
ρ , (2)

where FT is derivative with respect to the torsion scalar. In
this study, we shall use the notations in Ref. [37]. Hence,
indices A shows the numbers 0,1,2,3 on the tangent space-
time, and metric tensor gμν indicates the relation gμν =
ηABeAμe

B
ν in which all coordinate space-time are transported

on the tangent spacetime manifold via tetrad fields eAμ . The
torsion T ρ

μν and the contorsion tensors are defined as [17]

T λ
μν = eλ

A

(
∂μe

A
ν − ∂νe

A
μ

)
,

Kμν
ρ = −1

2

(
Tμν

ρ − T νμ
ρ − Tμν

ρ

)
. (3)

Also, the torsion scalar T is defined by

T ≡ Sρ
μνT ρ

μν, (4)

with Sρ
μν = 1

2 (Kμν
ρ + δ

μ
ρ T αν

α − δν
ρT

αμ
α). In the back-

ground of the following metric function,

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (5)

the following friedmann equations can be derived from Eq.
(2),

3H2 = κ2(ρm + ρd) = κ2ρe, (6)

−(2Ḣ + 3H2) = κ2(pm + pd) = κ2 pe. (7)

where

ρd = 1

2κ2 (−T − F + 2T FT ), (8)

pd = 1

2κ2 (−4Ḣ + 4Ḣ FT

+8ḢT FTT + T + F − 2T FT ). (9)

Herein, T = −6H2. For a general expression, Friedmann
Eqs. (6), (7) can be re-constructed by using the following
notation[16]

A = 8πG(pe − ρew) + 2Ḣ + 3H2(1 + w), (10)

then we can write the following energy equation

2Ḣ FT + 4ḢT FTT

+ (1 + w)

2
(T + F − 2T FT )) + 3H2(1 + w) = A, (11)

where A = 0, with the defination of the effective parameter
we = −1 − 2Ḣ

3H2 and w = we. The Eq. (11) has a second-
order structure and can be used to describe evolution of the
early inflationary universe because it includes the Hubble
parameter and its derivatives and also the effective parameter.

2.1 Perturbation equations

Scalar-type metric fluctuations are descibed by the following
perturbed metric function:

ds2 = (1 + 2�)dt2 − a(t)(1 − 2)
∑

dx2
i , (12)

where � and  are two scalar functions which characterize
scalar metric fluctuations. In this case, the torsion scalar can
be expressed in terms of these functions as

δT = 12H(�̇ + H). (13)

According to perturbed metric (12), perturbation equations
corresponding to

F(T ) = T + f (T ) (14)
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gravity are obtained as [31,37]

(1 + fT )
∇2

a2 − 3(1 + fT )Ḣ

−3(1 + fT )H2� + 36 fT T H
3(̇ + H�)

= 4πGδρ, (15)

(1 + fT − 12H2 fT T )(̇ + H�) = 4πGδq, (16)

(1 + fT )( − �) = 8πGδs, (17)

(1 + fT − 12H2 fT T )̈ + 3H(1 + fT − 12H2 fT T

−12Ḣ fT T + 48H2 Ḣ fT T T )̇ + [3H2

×(1 + fT − 12H2 fT T ) + 2Ḣ(1 + fT − 30H2 fT T

+72H4 fT T T )]� + 1 + fT
2a2 ∇2( − �) = 4πGδp.

(18)

Herein, functions δρ, δp, δq and δs show the fluctuations
of energy density, pressure, fluid velocity, and anisotropic
stress, respectively. We assume that the matter component is
in the form of canonical scalar field which has a potential
V (φ). In this case the equation of motion for scalar field is
as follows,

φ̈ + 3H φ̇ + Vφ = 0. (19)

Then, for perturbed quantities we can write [37]

δρ = φ̇(δφ̇ − φ̇�) + Vφδφ, (20)

δq = φ̇δφ, (21)

δs = 0, (22)

δp = φ̇(δφ̇ − φ̇�) − Vφδφ. (23)

The condition (22) in (17) implies that � = . Hence, the
complete equation of scalar perturbations is determined by
gravitational potential �. To write perturbed equation in a
unified form we shall use the following notation,

M = (δp − wδρ)8πG, (24)

which is similar to the notation (10), where κ2 = 8πG. Then
we find

�̈k + α�̇k + μ2�k + c2
s
k2

a2 �k = 0. (25)

Herein, �k is one Fourier mode of the potential � and k is
the comoving wave vectors [49]. Also, α, μ2 and c2

s denote
the frictional term, the effective mass and the speed of sound
parameter, respectively, given by

α = 7H +
2Vφφ̇ − 36H Ḣ( fT T −4H2 fT T T )

1+ fT −12H2 fT T
,

μ2 = 6H2 + 2Ḣ + 2VφH

φ̇
− 36H2 Ḣ( fT T − 4H2 fT T T )

1 + fT − 12H2 fT T
,

c2
s = −w(1 + fT )

1 + fT − 12H2 fT T
. (26)

Thus, using energy Eq. (6) the master Eq. (11) can be written
as

Ḣ fT −12Ḣ H2 fT T = −4πG(ρφ + pφ) = −4πGφ̇2, (27)

where the pressure pφ = φ̇2

2 −V (φ) and energy density ρφ =
φ̇2

2 + V (φ) of the scalar field show the following continuity
equation

ρ̇φ + 3H(ρφ + pφ) = 0. (28)

In order to write the perturbation Eq. (25) in a simple form,
we use time derivative of Eq. (27), which gives the following
expression,

36H( fT T − 4H2 fT T T )

fT − 12H2 fT T
= 6H

Ḣ
+ 2Vφ

Ḣ φ̇
+ Ḧ

Ḣ2
, (29)

where Eq. (19) is used. We now proceed by finding the form
of f (T ) gravity to write the Eq. (29) in a simple frame. For
this, we use master Eq. (27), which can be written as follows

2T 2 fT T + T fT = − κ2ρ0(1 + wφ)3h

(−6h2)
3h(1+wφ)

2 T
3h(1+wφ)

2

− T, (30)

where the power law solutions of the scale factor are used,

a ∼ th, t = (−6h2)
1
2 T− 1

2 . (31)

Also, wφ = pφ

ρφ
is equation-of-state (EoS) parameter for

scalar field and ρ0 is an integral constant coming from the
solution of Eq. (28). The solution of differential Eq. (30) is

f (T ) = −T − 6− 3h(1+wφ)

2 κ2ρ0

2−1(−h2)
3h(1+wφ)

2 (−1 + 3h(1 + wφ))

T
3h(1+wφ)

2 + 2
√
T c1 + c2. (32)

Due to the metric (5) showing spatial flat-FRW universe
model, to obtain real value of the function (32) we use stan-
dart FRW solutions, κ2ρ0 = 3h2 and h = 2

3(1+wφ)
. Then

we find f (T ) = 0 with integral constants c1 = c2 = 0.
Hence, F(T ) gravity given by (14) is read as F(T ) = T .
And inserting F(T ) = T into (29) we obtain

(3H + Ḧ

2Ḣ
)φ̇ = −Vφ. (33)
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Thus, the expressions in (26) can be written as follows,

α = H − Ḧ

Ḣ
,

μ2 = 2Ḣ − Ḧ H

Ḣ
,

c2
s = −wφ. (34)

As a result, perturbation Eq. (25) is converted into the per-
turbation equation in the standard Einstein gravity [50] if
wφ = 0,

�̈k +
[
H − Ḧ

Ḣ

]
�̇k

+
[

2Ḣ − Ḧ H

Ḣ

]
�k − wφ

k2

a2 �k = 0. (35)

It is know that the speed of sound parameter takes the values
0 ≤ c2

s ≤ 1 interval which provides that −1 ≤ wφ ≤ 0. This
range is similar to the range of EoS parameter of a tachyon
scalar field [51,52] which can be written for the metric (5).
Hence, the nature of this parameter can produce an acceler-
ation. Therefore, with the standard Einstein approximation
F(T ) = T we shall show that the super inflation scenario
produces a nearly scale invariant power spectrum compati-
ble with observations, as perturbation Eq. (35) is governed
by last term which includes a tachyon-like EoS parameter.
Therefore, the last term is an important point of the present
study which separates it from the standard Einstein-FRW
cosmology.

Due to F(T ) = T cosmology, to characterize the pertur-
bation Eq. (35) we make use of a gauge-invariant variable ζ

which is defined in the standard cosmological perturbation
theory,

ζ = � − H

Ḣ
(�̇ + H�). (36)

From the time derivatives of ζ we can write

ζ ′ = −wφk2�

εaH
,

ζ ′′ = wφk
2ζ − 2ζ ′ȧ, (37)

where “prime” shows differentiation with respect to the con-
formal time which is defined as follows

τ =
∫

dt

a
. (38)

However, we define a new variable as

υk = zζ, (39)

where

z = aθ. (40)

Also, θ is a real constant parameter. As a result, equation of
motion for each mode function υk is obtained as

υ ′′
k +

(
−wφk

2 − z′′

z

)
υk = 0. (41)

Using the solution (31) we can re-write Eq. (41) as follows

υ ′′
k +

[
−wφk

2 − h(2h − 1)

(1 − h)2τ 2

]
υk = 0. (42)

2.2 Viability of super inflation scenario

The super inflation mechanism predicts the three phase
regions for the early universe. The first is a vacuum state
wφ ∼ −1. The second is a quintessential region −1 <

wφ < − 1
3 , with super accelerated solution h = 4

3(1+wφ)
,

where h > 2. Then the matter creation region is followed
− 1

3 < wφ < 1
3 , where 1 < h < 2. We examine perturbation

Eq. (42) of F(T ) cosmology for these regions.

2.2.1 Vacuum state and quintessential expansion

In a vacuum-like case (quasi-de Sitter case) wφ ∼ −1, and
so at the limit h = 4

3(1+wφ)
→ ∞, Eq. (42) is reduced to the

form,

υ ′′
k +

[
k2 − 2

τ 2

]
υk = 0, (43)

which is known as the Mukhanov–Sasaki equation. At
subhorizon scale τ → −∞ or k � aH , the Eq. (43) is read
as a simple oscillator equation υ ′′

k + k2υk = 0. The solution
is found as [37,53]

υk(τ ) � e−ikτ

√
2k

, (44)

which is known as the Bunch–Davies vacuum state. This
means that the initial condition of the super inflation scenario
is a Bunch–Davies vacuum state as a result of fluctuations
at quantum zero point energy level. On the other hand, the
amplitude of each mode function υk should be determined
at horizon crossing k = aH . Hence, the solution of Eq. (42)
will be as follows,

υk(τ ) = √
τ

[
C1 J(A)(−ikτ

√
wφ) + C2Y(A)(−ikτ

√
wφ)

]
,

(45)
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where A = 3h−1
2(h−1)

, and J(A), Y(A) show the first and the
second kinds of bessel functions, respectively, which is given
by

J(A)(−ikτ
√

wφ) = 1

�(A + 1)

[−ikτ
√

wφ

2

]A

, (46)

Y(A)(−ikτ
√

wφ) = −�(A)

π

[
2

−ikτ
√

wφ

]A

−cos(Aπ)�(−A)

π

[−ikτ
√

wφ

2

]A

. (47)

As we have discussed in Eq. (35), for the real arguments
of functions (47) and (46), the possible values of the EoS
parameter should be in −1 ≤ wφ < 0 interval. Therefore, in
this range of the EoS parameter the solution is possible. In
other words, the quintessential expansion −1 < wφ < − 1

3
and dust-like oscillations (matter creation region wφ ∼ 0)
can be observed in the solution above.

Under the approximation A > 0 and at subhorizon scale
τ → −∞ or t → 0+, the mode function υk(τ ) given by (45)
can be written as follows,

υk(τ ) = c2
√

τ(�(A)2A(−ikτ
√

wφ)−A

π
. (48)

Herein, the constant c2 can be determined by comparing (48)
with the initial condition (44), which yields to

c2 = 2−Aπ(−ikτ
√

wφ)A

�(A)k
1
2 2

1
2 τ

1
2

. (49)

The power spectrum of the primordial curvature perturba-
tions should be calculated at k = aH [31,37,53],

Pζ = k3

2π2 |υk
z

|2k=aH . (50)

From (40) the function z(τ ) can be written as follows,

z(τ ) = (1 − h)
h

1−h θτ
h

1−h . (51)

Using (48) and z(τ ), at horizon crossing k = aH , we can
write

Pζ = h
2h
h−1

4π2θ2 k
2

1−h . (52)

The power spectrum is not scale invariant as it depends the
value h. But, in the observational bounds of the spectral index
parameter, we can obtain a nearly scale invariant spectrum.

The scalar spectral index parameter, ns − 1 = d lnPζ

d ln k =
2

1−h , is found as

ns = 3 − h

1 − h
. (53)

The observational data is constrained the value of the spectral
index parameter as follows [4]

ns = 0.965 ± 0.004 or ns = [0.961, 0.969]. (54)

Inserting (53) into (54) we obtain special range of h as fol-
lows,

52.28 < h < 65.51, (55)

which shows a quintessential expansion interval, −0.979 <

wφ < −0.974, with the super accelerated solution h =
4

3(1+wφ)
. For each certain value of h in the range (55), the

power spectrum is almost scale invariant.

2.2.2 Matter creation region

After the quintessential expansion, the matter (at least a dust-
like matter) should be created from this quintessential type
of dark energy. To illustrate this, we shall follow the method
proposed by [54] because in our case at hand the left side of
the master Eq. (30) can be identified by using the following
differential operator

D̂ = d

dt

[
φ

φ̈

d

dt

]
. (56)

This operator produces a similar structure to the left side of
master Eq. (30) in terms of cosmic time when applying any
function. Because, the scalar field is a power-law form of
cosmic time. That is, the solution (33) with (31) is in a form
as follows,

φ =
[
n(2 − n)

2(1 − 3h)

] 1
(2−n)

t
2

(2−n) , (57)

with an integral constant c = 0. Herein, we assume the
chaotic polynomial potential [7],

V (φ) = φn . (58)

On the other hand, we now take the following notation

K = ρφ(wφ − wx ), (59)

which is equal to zero when wφ = wx . In other words, the
notation K , which is a function of density, is a term that

123



705 Page 6 of 8 Eur. Phys. J. C (2018) 78 :705

is zero when the equation (10) is constructed. Applying the
operator (56) to the notation (59) we obtain [54]

D̂K = d

dt

{
φφ̇

φ̈

[
φ̈(1 − wx ) − Vφ(1 + wx )

]}
(60)

Using Eqs. (28) and (19) we can write

D̂ρφ(1 + wφ) = 2(φ̇2 + φ̈φ), (61)

where we take into account the friction term 3H φ̇ in Eqs.
(19) or (33) for the vacuum state. Then the vacuum case
φ̇2 � 1 and φ̈ � 1 in Eq. (61) provides that wφ ∼ −1 as
we expected. Next, for the quintessential expansion case we
can write Eq. (60) as follows,

D̂ρφ(wφ − wx ) = 2(φ̇2 − φVφ), (62)

where we have neglected the friction term 3H φ̇, that is, the
velocity term φ̇2 is dominate in the quintessential region.
From zero point condition wφ

∼= wx in which we have
obtained the mode function (48) under the condition τ →
−∞ which implies a vacuum case for the quintessential
region, we have a quantization of the potential as follows,

φ̇2 = nV (φ). (63)

Then the oscillation EoS parameter of the scalar field can be
written as follows,

wφ = n − 2

n + 2
. (64)

Using (64) we now examine dust-like oscillations, which
occurs after the quintessential region. For dust-like oscilla-
tions wφ ∼ 0 corresponding to n ∼ 2, the perturbation Eq.
(42) is as the following

υ ′′
k − 20

τ 2 υk = 0, (65)

In effect, this equation corresponds to the superhorizon scale√−wφk � aH corresponding to frozen fluctuations. At
end of the inflation this means that the freezed modes re-
enter the horizon at the superhorizon scale, and so the modes
of frozen promordial fluctuations are appeared as particles
in spacetime tissue at superhorizon (low energy densities)
scale.

The solution of Eq. (65) is as the following,

υκ(τ ) = c3τ
5 + c4τ

−4, (66)

with the constants c3, c4. For end of the inflation τ → 0−,
the second term c4τ

−4 dominates. And the value of c4 can
be determined by comparing (48) with (66). Then we find

c4 = τ 4k
−1
2√

2
. (67)

When the same procedure as made in the previous section is
followed, we again obtain the equality (53) for the spectral
index parameter. This means that the three regions of the
super inflation scenario in the context of the perturbation
equations of F(T ) = T gravity are a single field.

2.3 Tensor perturbations

The perturbed FRW metric with tensor perturbation hi j ,
which has properties such as symmetric, transverse, trace-
less, is given by

ds2 = a(τ )2(−dτ 2 + (δi j + hi j dx
i dx j )) (68)

Therefore, the tensor hi j has two degrees of freedom. The
evolution of the tensor perturbations is described by the fol-
lowing equation [31,53]

ḧi j + 3Hḣi j − ∇2

a2 hi j = 12H Ḣ fT T
1 + fT

ḣi j . (69)

In our case at hand in which f (T ) = 0, this equation has the
following form,

ḧi j + 3Hḣi j − ∇2

a2 hi j = 0. (70)

One can expand hi j in Fourier space to calculate the evolution
of each tensor Fourier mode hk(τ ),

hi j (τ, x) =
∫

d3x

(2π)
3
2

hk(τ, k)e
ikx . (71)

Inserting (71) into Eq. (70) we obtain

ḧk + 3Hḣk + k2

a2 hk = 0. (72)

However, when the following variable is used,

υkt = ahk, (73)

it is found the equation

υ ′′
kt + (k2 − ȧ2(2 − ε))υkt = 0, (74)

which describes how the perturbation modes are evolve in
conformal time. However, in the Eq. (74) the term ȧ2(2 − ε)
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is equal to 1
a
d2a
dτ 2 . Therefore, using the solution a ∼ th we

can write Eq. (74) as follows,

υ ′′
kt +

[
k2 − h(2h − 1)

(1 − h)2τ 2

]
υkt = 0, (75)

which is the same with Eq. (42) for wφ ∼ −1. Therefore, at
subhorizon and at superhorizon scales we find same solutions
with Eq. (42). Hence, tensor power spectrum PT matches at
horizon crossing k = aH , is given by [53]

PT = 2H2

π2 |k=aH = 2h2k
2

1−h

h
2

1−h π2
, (76)

which is the same with tensor power spectrum defined in
the standard Einstein gravity. In our case we have already
F(T ) = T gravity. Tensor-to-scalar ratio r = PT

Pζ
is found

as

r = 8θ2. (77)

Actually, for the possible small values of θ we can derive
observational bounds of the scalar-to-tensor ratio which are
given by [4]

r < 0.07, (78)

which corresponds to the range 0 < θ < 0.09354. On the
other hand, we can select a proper value of constant parameter
θ to get observational interval (78). For this, when choosing

θ =
√

ε

2 which leads to r = 2ε. Then, using super accel-
erated solution h = 4

3(1+wφ)
, with the definition of the EoS

parameter, we = wφ = −1 + 2ε
3 , we can write the spectral

index parameter (53) as follows,

ns = 4 − 3r

4 − r
, (79)

and from which we obtain

0.061 < r < 0.076 (80)

together with observational constraint of the spectral index
parameter given by (54). This range of the scalar-to tensor
ratio is compatible with the Planck data given by (78).

3 Conclusion

In this study, we have examined the super inflation scenario
in the context of F(T ) cosmology. We have used the notation
A to construct friedmann equation, and we realize a unified

solution of it. Herein, although this solution produces stan-
dard Einstein term, i.e., F(T ) = T , we obtain inflationary
regime of the universe with this form of F(T ), where the vac-
uum state and the quintessential region have been obtained at
subhorizon scale (high energy densities), and matter creation
region is shown at superhorizon scale (low energy densi-
ties). On the other hand, we have used the notation M which
is structurally similar to A (in which we have followed a
method which we refer to equation symmetry), and in this
way we obtain scalar perturbation Eq. (35). Viability of the
super inflation mechanism is discussed in this equation. We
observe that the super inflation scenario produces an ampli-
tude of power spectrum of scalar perturbation which is a
nearly scale invariant both at subhorizon and at superhori-
zon scales, according to special values of h as shown in (55).
On the other hand, in the present study, since left side of our
master Eq. (30) structurally can be constructed by differential
operator (56) in terms of cosmic time, with the scalar field
(57), we generally show all regions of the super inflation sce-
nario by using this operator and notation (59) which has the
lowest possible energy field when wφ � wx . On the other
side, after calculating power spectrum of the tensor pertur-
bation, by taking a proper value of the constant parameter,

θ =
√

ε

2 we obtain the range 0.061 < r < 0.076 for the
scalar-to-tensor ratio, which this is in good agreement with
the Planck data [4].
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