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Abstract: The purpose of this paper is to present some existence results for coupled fixed point of a
.';  /�contractive condition for mixed monotone operators in metric spaces endowed with a directed graph. Our
results generalize the results obtained by Jain et al. in (International Journal of Analysis, Volume 2014, Article ID
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1 Introduction and preliminaries

The classical Banach’s contraction principle (BCP) [1] is a power tool in nonlinear analysis and has been extended
and improved by many authors (see [2]-[6]). In 2004, the existence of fixed points for contraction mappings in
partially ordered metric spaces has been studied by Ran and Reurings [7], Nietto and Lopez [8]. Extensions and
applications of these works appear in (see [9]-[13]).

A concept of coupled fixed point theorem was introduced by Guo and Lakshmikantham [14]. In 2006, Bhaskar
and Lakshmikantham [15] introduced the concept of the mixed monotone property as follows.

Definition 1.1 ([15]). Let .X;4/ be a partially ordered set and F W X2 ! X be a mapping. Then a map F is said
to have the mixed monotone property if F .x; y/ is monotone nondecreasing in x and is monotone non-increasing in
y; that is, for any x; y 2 X ,

x1; x2 2 X; x1 4 x2 implies F .x1; y/ 4 F .x2; y/

and
y1; y2 2 X; y1 4 y2 implies F .x; y1/ < F .x; y2/ :

Definition 1.2 ([15]). An element .x; y/ 2 X2 is said to be a coupled fixed point of the mapping F W X2 ! X if
F .x; y/ D x and F .y; x/ D y:
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Coupled fixed point theorems in complete metric spaces 735

Lakshmikantham and Ćirić [16] extended the concept of mixed monotone property to mixed g-monotone property
as follows.

Definition 1.3 ([16]). Let .X;4/ be a partially ordered set and F W X2 ! X and g W X ! X . We say F is called
the mixed g-monotone property if for any x; y 2 X ,

x1; x2 2 X; gx1 4 gx2 implies F .x1; y/ 4 F .x2; y/

and
y1; y2 2 X; gy1 4 gy2 implies F .x; y1/ < F .x; y2/ :

Definition 1.4 ([16]). An element .x; y/ 2 X2 is said to be a coupled coincidence point of the mappings F W X2 !

X and g W X ! X if F .x; y/ D gx and F .y; x/ D gy:

Definition 1.5 ([16]). An element .x; y/ 2 X2 is said to be a coupled common fixed point of the mappings F W
X2 ! X and g W X ! X if F .x; y/ D gx D x and F .y; x/ D gy D y:

Definition 1.6 ([16]). LetX be a nonempty set and F W X2 ! X and g W X ! X . We say F and g are commutative
if gF .x; y/ D F .gx; gy/ for all x; y 2 X .

In 2010, Choudhury and Kundu [17] introduced the notion of compatibility in the context of coupled coincidence
point problems as follows.

Definition 1.7 ([17]). The mappings F W X2 ! X and g W X ! X are said to be compatible if

lim
n!1

d .g .F .xn; yn// ; F .gxn; gyn// D 0 and lim
n!1

d .g .F .yn; xn// ; F .gyn; gxn// D 0

whenever fxng and fyng are sequences in X such that limn!1 F .xn; yn/ D limn!1 gxn D x and
limn!1 F .yn; xn/ D limn!1 gyn D y with x; y 2 X:

Definition 1.8 ([18]). Let ˆ denote the class of functions ' W Œ0;1/ ! Œ0;1/ which satisfies the following
conditions:

('1) ' is lower semi-continuous and (strictly) increasing;
('2) ' .t/ < t for all t > 0I
('3) ' .t C s/ � ' .t/C ' .s/ for all t; s 2 Œ0;1/ :
Note that limn!1 ' .tn/ D 0, limn!1 tn D 0 for tn 2 Œ0;1/ :
Also, for ' 2 ˆ, ‰' denote all functions  W Œ0;1/! Œ0;1/ which satisfy the following conditions:
. 1/ lim supn!1  .tn/ < ' .r/ if limn!1 tn D r > 0I

. 2/ limn!1  .tn/ D 0 if limn!1 tn D 0 for tn 2 Œ0;1/ :

Now, we have the following coupled fixed point theorems as the main result of Jain et al. in [18].

Theorem 1.9 ([18]). Let .X;�/ be a partially ordered set and there is a metric d onX such that .X; d/ is a complete
metric space. Suppose that F W X2 ! X is a mapping having the mixed monotone property on X . Assume there
exists ' 2 ˆ and  2 ‰' such that

'
�
fd .F .x; y/ ; F .u; v//C d .F .y; x/ ; F .v; u//g � 2�1

�
�  

�
fd .x; u/C d .y; v/g � 2�1

� (1)

for all x; y; u; v 2 X with x � u and y � v.
Suppose that either
(a) F is continuous or;
(b) X has the following properties:

1. if a non-decreasing sequence fxng ! x, then xn � x for all n;
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736 M. Kir et al.

2. if a non-increasing sequence fyng ! y, then y � yn for all n:
If there exist two elements x0; y0 2 X with x0 � F .x0; y0/ and y0 � F .y0; x0/. Then there exist x; y 2 X such
that x D F .x; y/, y D F .y; x/ ;that is, F has a coupled fixed point in X .

The fixed point theorem using the context of metric spaces endowed with a graph was initiated by Jachymski [19].
Other results for single valued and multivalued operators in such metric spaces were given by Beg et al. [20], Bajor
[21], Alfuraid [22, 23], Chifu and Petrusel [24] and Suantai et al. [25].

Let .X; d/ be a metric space,� be a diagonal of X2, and G be a directed graph with no parallel edges such that
the set V .G/ of its vertices coincides with X and� � E .G/, where E .G/ is the set of the edges of the graph. That
is, G is determined by .V .G/ ;E .G//. We will use this notation of G throughout this work.

In 2014, Chifu and Petrusel [24] introduced the notion of G�continuity for a mapping F W X2 ! X and the
property A as follows.

Definition 1.10 ([24]). Let .X; d/ be a complete metric space, G be a directed graph, and F W X2 ! X be a
mapping. Then

(i) F is called G�continuous if for all .x�; y�/ 2 X2 and for any sequence fni gi 2 N of positive
integers such that F

�
xni

; yni

�
! x�, F

�
yni

; xni

�
! y� as i ! 1 and

�
F
�
xni

; yni

�
; F

�
xniC1; yniC1

��
,�

F
�
yni

; xni

�
; F

�
yniC1; xniC1

��
2 E .G/, we have that

F
�
F
�
xni

; yni

�
; F

�
yni

; xni

��
! F .x�; y�/ as i !1

and
F
�
F
�
yni

; xni

�
; F

�
xni

; yni

��
! F .x�; y�/ as i !1I

(ii) .X; d;G/ has property A if for any sequence fxngn2N � X with xn ! x as n!1 and .xn; xnC1/ 2 E .G/

for n 2 N, then .xn; x/ 2 E .G/.

Consider the set CcF ix .F / of all coupled coincidence points of mappings F W X2 ! X , g W X ! X and the set�
X2
�F

g
as follows:

CcF ix .F / D
n
.x; y/ 2 X2

W gx D F .x; y/ and gy D F .y; x/
o

and �
X2
�F

g
D

n
.x; y/ 2 X2

W .gx; F .x; y// ; .gy; F .y; x// 2 E .G/
o
:

In 2015, Suantai et al. [25] introduced the concept of G�edge preserving and the transitivity property as follows.

Definition 1.11 ([25]). F W X2 ! X , g W X ! X are G�edge preserving if

Œ.gx; gu/ ; .gy; gv/ 2 E .G/�) Œ.F .x; y/ ; F .u; v// ; .F .y; x/ ; F .v; u// 2 E .G/� :

Definition 1.12 ([25]). Let .X; d/ be a complete metric space, andE .G/ be the set of the edges of the graph.E .G/
satisfies the transitivity property if and only if, for all x; y; t 2 X;

.x; t/ ; .t; y/ 2 E .G/! .x; y/ 2 E .G/ :

The purpose of this paper is to present some existence results for coupled fixed points of .';  /�contractive
mappings in metric spaces endowed with a directed graph. Our results generalize the results obtained by Jain et al.
in (International Journal of Analysis, Volume 2014, Article ID 586096, 9 pages). Moreover, we have an application
to some integral system to support the results.

2 Main results

Definition 2.1. Let .X; d/ be a complete metric space endowed with a directed graph G. The mappings F W X2 !

X , g W X ! X are called a .';  /�contractive if:
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Coupled fixed point theorems in complete metric spaces 737

1. F and g is G�edge preserving;
2. there exists ' 2 ˆ and  2 ‰' such that for all x; y; u; v 2 X satisfying .gx; gu/, .gy; gv/ 2 E .G/ ;

'
�
fd .F .x; y/ ; F .u; v//C d .F .y; x/ ; F .v; u//g � 2�1

�
�  

�
fd .gx; gu/C d .gy; gv/g � 2�1

�
:

(2)

Theorem 2.2. Let .X; d/ be a complete metric space endowed with a directed graph G, and let F W X2 ! X ,
g W X ! X be a .';  /�contractive mapping. Suppose that:

(i) g is continuous and g .X/ is closed;
(ii) F

�
X2
�
� g .X/, and .F; g/ is compatible;

(iii)
1. F is G�continuous, or
2. the tripled .X; d;G/ has a property AI

(iv) E .G/ satisfies the transitivity property.
Under these conditions, CcF ix .F / ¤ ; iff

�
X2
�F

g
¤ ;.

Proof. Consider x0; y0, t0; s0 2 X followed by assumptions. Since F
�
X2
�
� g .X/, then there exists x1; y1, t1;

s1 2 X such that F .x0; y0/ D gx1 and F .y0; x0/ D gy1; F .t0; s0/ D gt1 and F .s0; t0/ D gs1 continuing the
procedure above we have the sequence fxng, fyng, ftng, fsng in X for which

F .xn; yn/ D gxnC1 and F .yn; xn/ D gynC1;

F .tn; sn/ D gtnC1 and F .sn; tn/ D gsnC1; for all n 2 N:
(3)

CcF ix .F / ¤ ;. Let .u; v/ 2 CcF ix .F / such that

.gu; F .u; v// D .gu; gu/ , .gv; F .v; u// D .gv; gv/ 2 � � E .G/ :

Hence, .gu; F .u; v//, .gv; F .v; u// 2 E .G/. Then we have .u; v/ 2
�
X2
�F

g
, thereby

�
X2
�F

g
¤ ;:

Next, assume that
�
X2
�F

g
¤ ;. Let x0; y0 2 X such that .x0; y0/ 2

�
X2
�F

g
. In that case, .gx0; F .x0; y0//,

.gy0; F .y0; x0// 2 E .G/. By (3), we obtain

.gx0; F .x0; y0// D .gx0; gx1/ and .gy0; F .y0; x0// D .gy0; gy1/ 2 E .G/ : (4)

Since F and g are G�edge preserving and by (4), we get

.F .x0; y0/ ; F .x1; y1// D .gx1; gx2/ and .F .y0; x0/ ; F .y1; x1// D .gy1; gy2/ 2 E .G/ :

Continuing this process, we can construct .gxn; gxnC1/ and .gyn; gynC1/ 2 E .G/ for each n 2 N.
Denote �n WD .d .gxn; gxnC1/C d .gyn; gynC1// � 2

�1 for all n 2 N.
Using the .';  /�contractive type operator (2) and (3), we get that

'

�
d .gxnC1; gxnC2/C d .gynC1; gynC2/

2

�
D '

�
d .F .xn; yn/ ; F .xnC1; ynC1//C d .F .yn; xn/ ; F .ynC1; xnC1//

2

�
�  

�
d .gxn; gxnC1/C d .gyn; gynC1/

2

�
(5)

for all n 2 N, then we obtain
' .�nC1/ �  .�n/ < ' .�n/ : (6)

From (6) and monotonicity of ', we get that f�ng is a nonnegative decreasing. Then �n ! � as n ! 1 for some
� � 0. If possible, let � > 0. Taking the limit as n!1 in (6) and using the properties of ',  , we obtain

' .�/ � lim sup
n!1

' .�nC1/ � lim sup
n!1

 .�n/ < ' .�/ ; (7)
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which is a contradiction. Thus � D 0 and then we have

lim
n!1

�n D lim
n!1

.d .gxn; gxnC1/C d .gyn; gynC1// � 2
�1
D 0: (8)

Now we shall prove that fgxng and fgyng are Cauchy sequences. Let at least one of fgxng and fgyng be not Cauchy
sequences. Then there exists " > 0 for which we can find subsequences fgxn.k/g, fgxm.k/g of fgxng and fgyn.k/g,
fgym.k/g of fgyng with n .k/ > m .k/ � k such that

�k D
�
d
�
gxn.k/; gxm.k/

�
C d

�
gyn.k/; gym.k/

��
� 2�1

� ": (9)

Further, corresponding to m.k/, we can choose n .k/ in such a manner that it is the smallest integer for which (9)
holds. Then, �

d
�
gxn.k/�1; gxm.k/

�
C d

�
gyn.k/�1; gym.k/

��
� 2�1 < ": (10)

From (9), (10), and triangular inequality, we get

" � �k < "C
�
d
�
gxn.k/; gxn.k/�1

�
C d

�
gyn.k/; gyn.k/�1

��
� 2�1: (11)

By using (8) in (11), we obtain

�k D
�
d
�
gxn.k/; gxm.k/

�
C d

�
gyn.k/; gym.k/

��
� 2�1

! " as k !1: (12)

Again, by the triangle inequality

�k D
�
d
�
gxn.k/; gxm.k/

�
C d

�
gyn.k/; gym.k/

��
� 2�1

� �n.k/ C �m.k/ C
�
d
�
gxn.k/C1; gxm.k/C1

�
C d

�
gyn.k/C1; gym.k/C1

��
� 2�1:

From monotonicity of ' and property ('3), we obtain

' .�k/ � '
�
�n.k/

�
C '

�
�m.k/

�
C'

��
d
�
gxn.k/C1; gxm.k/C1

�
C d

�
gyn.k/C1; gym.k/C1

��
� 2�1

�
� '

�
�n.k/

�
C '

�
�m.k/

�
C'

  
d
�
F
�
xn.k/; yn.k/

�
; F

�
xm.k/; ym.k/

��
Cd

�
F
�
yn.k/; xn.k/

�
; F

�
ym.k/; xm.k/

��! � 2�1

!
� '

�
�n.k/

�
C '

�
�m.k/

�
C 

��
d
�
gxn.k/; gxm.k/

�
C d

�
gyn.k/; gym.k/

��
� 2�1

�
� '

�
�n.k/

�
C '

�
�m.k/

�
C ' .�k/ : (13)

As ' is lower semi-continuous by taking limit as k !1, we obtain

' ."/ � lim sup
k!1

' .�k/

� lim
k!1

'
�
�n.k/

�
C lim

k!1
'
�
�m.k/

�
C lim sup

k!1

 .�k/

< ' ."/ ; (14)

a contradiction. Therefore, fgxng and fgyng are Cauchy sequences in X . From assumption (i) there exist u, v 2
g .X/ such that limn!1 F .xn; yn/ D limn!1 gxn D u and limn!1 F .yn; xn/ D limn!1 gyn D v. Since
F and g are compatible mappings, we have

lim
n!1

d .g .F .xn; yn// ; F .gxn; gyn// D 0 D lim
n!1

d .g .F .yn; xn// ; F .gyn; gxn// : (15)

Let the assumption (1) hold. For all n � 0, we have

d .F .gxn; gyn/ ; gu/ � d .F .gxn; gyn/ ; gF .xn; yn//C d .gF .xn; yn/ ; gu/ :
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Letting n ! 1, using (15), by assumption (i) and (iii), we have d .F .u; v/ ; gu/ D 0, that is, F .u; v/ D gu.
Similarly, we also have F .v; u/ D gv. Then CcF ix .F / ¤ ;.

Next, we suppose that the assumption (2) holds. Let u D gx and v D gy for some x; y 2 X . In this way,
.gxn; gx/, .gyn; gy/ 2 E .G/ for each n 2 N. Then

d .gx; F .x; y// � d .gx; gxnC1/C d .gxnC1; F .x; y//

D d .gx; gxnC1/C d .F .xn; yn/ ; F .x; y//

d .gx; F .x; y// � d .gx; gxnC1/ � d .F .xn; yn/ ; F .x; y//

(16)

and
d .gy; F .y; x// � d .gy; gynC1/C d .gynC1; F .y; x//

D d .gy; gynC1/C d .F .yn; xn/ ; F .y; x//

d .gy; F .y; x// � d .gy; gynC1/ � d .F .yn; xn/ ; F .y; x// :

(17)

Combining (16) and (17), we have

fd .gx; F .x; y// � d .gx; gxnC1/C d .gy; F .y; x// � d .gy; gynC1/g � 2
�1

� fd .F .xn; yn/ ; F .x; y//C d .F .yn; xn/ ; F .y; x//g � 2
�1

by the monotonicity of '

'
�
fd .gx; F .x; y// � d .gx; gxnC1/C d .gy; F .y; x// � d .gy; gynC1/g � 2

�1
�

� '
�
fd .F .xn; yn/ ; F .x; y//C d .F .yn; xn/ ; F .y; x//g � 2

�1
�

�  
�
fd .gxn; gx/C d .gyn; gy/g � 2

�1
�
:

As ' is lower semi-continuous, letting k !1 and by . 2/, we obtain gx D F .x; y/ and gy D F .y; x/ :

Denote by CmF ix .F / the set of all common fixed points of mappings F W X2 ! X , g W X ! X , that is,

CmF ix .F / D
n
.x; y/ 2 X2

W x D gx D F .x; y/ and y D gy D F .y; x/
o
:

Theorem 2.3. In addition to Theorem 2.2, suppose that
(v) for any two elements .x; y/ ; .u; v/ 2 X2, there exists .t; s/ 2 X2 such that .gx; gt/, .gu; gt/, .gy; gs/,

.gv; gs/ 2 E .G/.
Then, CmF ix .F / ¤ ; iff

�
X2
�F

g
¤ ;.

Proof. Theorem 2.2 implies that there exists .x; y/ 2 X2 such that F .x; y/ D gx and F .y; x/ D gy. Assume that
there exists another .u; v/ 2 X2 such that F .u; v/ D gu and F .v; u/ D gv. Now, we shall prove that gu D gx

and gv D gy.
From assumption (v), there exists .t; s/ 2 X2 such that .gx; gt/, .gu; gt/, .gy; gs/, .gv; gs/ 2 E .G/. By

using (3), we define the sequences fxng, fyng, fung, fvng, ftng and fsng in X as follows:

x D x0, y D y0, u D u0, v D v0, t D t0, s D s0,
F .xn; yn/ D gxnC1 and F .yn; xn/ D gynC1;

F .un; vn/ D gunC1 and F .vn; un/ D gvnC1;

F .tn; sn/ D gtnC1 and F .sn; tn/ D gsnC1;

(18)

for all n 2 N. From the properties of coincidence points, x D xn, y D yn and u D un, v D vn, namely,

F .x; y/ D gxn, F .y; x/ D gyn and F .u; v/ D gun, F .v; u/ D gvn

for all n 2 N. As .gx; gt/, .gy; gs/ 2 E .G/, we get .gx; gt0/, .gy; gs0/ 2 E .G/. Since F and g are
G�edge preserving, we obtain .F .x; y/ ; F .t0; s0// D .gx; gt1/ and .F .y; x/ ; F .s0; t0// D .gy; gs1/ 2 E .G/.
Similarly, .gx; gtn/ and .gy; gsn/ 2 E .G/. By (2), we have

'
�
fd .gtnC1; gx/C d .gsnC1; gy/g � 2

�1
�

Unauthenticated
Download Date | 7/5/17 4:51 AM



740 M. Kir et al.

D '
�
fd .F .tn; sn/ ; F .x; y//C d .F .sn; tn/ ; F .y; x//g � 2

�1
�

�  
�
fd .gtn; gx/C d .gsn; gy/g � 2

�1
�
: (19)

Then, we get ' .�nC1/ �  .�n/, where �n WD fd .gtn; gx/C d .gsn; gy/g � 2
�1. The sequence f�ng is a

monotonically decreasing sequence of nonnegative real numbers, thus there exists some � � 0 such that �n ! � as
n!1. Now, we shall show that � D 0. Suppose, to the contrary, that � > 0. Letting n!1 in (19), we have

' .�/ � lim sup
n!1

' .�nC1/ � lim sup
n!1

 .�n/ < ' .�/ ;

a contradiction. Hence, � D 0; that is; limn!1

�
fd .gtn; gx/C d .gsn; gy/g � 2

�1
�
D 0, which implies

lim
n!1

d .gtn; gx/ D 0 D lim
n!1

d .gsn; gy/ :

Similarly, .gt; gu/, .gs; gv/ 2 E .G/, we have

lim
n!1

d .gtn; gu/ D 0 D lim
n!1

d .gsn; gv/ :

From the triangular inequality we obtain

d .gu; gx/ � d .gu; gtn/C d .gtn; gx/ ;

d .gv; gy/ � d .gv; gsn/C d .gsn; gy/
(20)

for all n 2 N. Letting n ! 1 in (20), we obtain that d .gu; gx/ D 0 D d .gv; gy/. Hence, we get gu D gx and
gv D gy:

The proof of the existence and uniqueness of the coupled common fixed point for our main results can be
obtained by using a similar assertion as in Theorem 9 in [18].

Remark 2.4. In this case where .X;4/ is partially ordered complete metric space, taking E .G/ D˚
.x; y/ 2 X2 W x 4 y

	
, we obtain Theorem 5 in [18]. By using Remark 6, Remark 7 in [18], we get that our

results generalize the results obtained by Bhaskar and Lakshmikantham in Theorem 2.1 of [15], Luong and Thuan
in Theorem 2.1 of [26], Berinde in Theorem 3 of [27] and Berinde in Theorem 2 of [28].

3 Application

In this section, we study the existence of solution of the nonlinear integral equations, as an application of the fixed
point theorem proved in Main Results.

Consider the following nonlinear integral equation:

x .t/ D q .t/C
R T

0
A .t; s/ h .s; x .s/ ; y .s// ds;

y .t/ D q .t/C
R T

0
A .t; s/ h .s; y .s/ ; x .s// ds;

(21)

where t 2 I D Œ0; T � with T > 0.
We considered the space X WD C .I;Rn/. Let kxk D maxt2I jx .t/j, for x 2 X:
Consider the graph G with partial order relation by

x; y 2 X , x � y , x .t/ � y .t/ for any t 2 I .

Then .X; k:k/ is a complete metric space endowed with a directed graph G.
Let E .G/ D

˚
.x; y/ 2 X2 W x � y

	
. Thus E .G/ satisfies the transitivity property, and .X; k:k ; G/ has

property A.
We consider the following conditions:

1. h W I � Rn � Rn ! Rn and q W I ! Rn are continuous;
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2. there exists a continuous 0 � ˛ < 1 such that

jh .s; x; y/ � h .s; u; v/j � ˛ .jx � uj C jy � vj/ (22)

for all x; y; u; v 2 Rn and for all s 2 I ;
3. for all t; s 2 I , there exists a continuous A W I � R! R such that

sup
t2T

TZ
0

A .t; s/ ds < 1I (23)

4. there exists .x0; y0/ 2 X
2 such that

x0 .t/ � q .t/C
R T

0
A .t; s/ h .s; x0 .s/ ; y0 .s// ds;

y0 .t/ � q .t/C
R T

0
A .t; s/ h .s; y0 .s/ ; x0 .s// ds;

(24)

where t 2 I:

Theorem 3.1. Suppose that conditions .1/ � .4/ are satisfied. Then (21) has a unique solution in C .I;Rn/.

Proof. Let F W X2 ! X , .x; y/! F .x; y/, where

F .x; y/ .t/ D q .t/C

TZ
0

A .t; s/ h .s; x .s/ ; y .s// ds, t 2 I; (25)

and define g W X ! X by gx .t/ D 2x .t/ : (21) can be stated as

x D F .x; y/ and y D F .y; x/ : (26)

Let x; y; u; v 2 X be such that gx � gu and gy � gv. We get x � u and y � v and

F .x; y/ .t/ D q .t/C

TZ
0

A .t; s/ h .s; x .s/ ; y .s// ds

� q .t/C

TZ
0

A .t; s/ h .s; u .s/ ; v .s// ds D F .u; v/ .t/ for all t 2 I;

F .y; x/ .t/ D q .t/C

TZ
0

A .t; s/ h .s; y .s/ ; x .s// ds

� q .t/C

TZ
0

A .t; s/ h .s; v .s/ ; u .s// ds D F .v; u/ .t/ for all t 2 I:

Then, F and g are G�edge preserving.
From (22) and (23) for all t 2 I , we have

fjF .x; y/ .t/ � F .u; v/ .t/j C jF .y; x/ .t/ � F .v; u/ .t/jg � 2�1

D

8<:
ˇ̌̌̌
ˇ̌q .t/C TZ

0

A .t; s/ h .s; x .s/ ; y .s// ds � q .t/ �

TZ
0

A .t; s/ h .s; u .s/ ; v .s// ds

ˇ̌̌̌
ˇ̌
9=; � 2�1

C

8<:
ˇ̌̌̌
ˇ̌q .t/C TZ

0

A .t; s/ h .s; y .s/ ; x .s// ds � q .t/ �

TZ
0

A .t; s/ h .s; v .s/ ; u .s// ds

ˇ̌̌̌
ˇ̌
9=; � 2�1
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�

8<:
TZ

0

A .t; s/ jh .s; x .s/ ; y .s// � h .s; u .s/ ; v .s//j ds

9=; � 2�1

C

8<:
TZ

0

A .t; s/ jh .s; y .s/ ; x .s// � h .s; v .s/ ; u .s//j ds

9=; � 2�1

� f˛ .jx .s/ � u .s/j C jy .s/ � v .s/j/C ˛ .ju .s/ � x .s/j C jv .s/ � y .s/j/g � 2�1

� ˛

�
kgx � guk C kgy � gvk

2

�
:

Then, there exists ' .t/ D t and  .t/ D ˛t for ˛ 2 Œ0; 1/ such that

'

�
kF .x; y/ � F .u; v/k C kF .y; x/ � F .v; u/k

2

�
�  

�
kgx � guk C kgy � gvk

2

�
:

Thus, F and g are a .';  /�contractive.
By assumption (4) shows that there exists .x0; y0/ 2 X

2 such that gx0 � F .x0; y0/ and gy0 � F .y0; x0/,
which implies that

�
X2
�F

g
¤ ;.

Hence, there exists a coupled common fixed point .x�; y�/ 2 X2 of the mapping F and g, which is the solution
of the integral system (21).

The following illustrative example, considered as X WD C .I;R/, h W I � R � R ! R, q W I ! R, x; y; u; v 2 R
and g W X ! X by gx D x. Inspired and motivated by Example 3.1 of [29], we present an example of a functional
integral equation.

Example 3.2. Consider the following functional integral equation:

x .t/ D
t2

1C t4
C

1Z
0

sin s3�se�s

9 .t C 3/

�
jx .s/j

1C jx .s/j
C
jy .s/j

1C jy .s/j

�
ds

y .t/ D
t2

1C t4
C

1Z
0

sin s3�se�s

9 .t C 3/

�
jy .s/j

1C jy .s/j
C
jx .s/j

1C jx .s/j

�
ds

for t 2 I . Observe that this equation is a special case of (21) with

q .t/ D
t2

1C t4
;

A .t; s/ D
3�se�s

t C 3
;

h .s; x; y/ D
sin s
9

�
jx .s/j

1C jx .s/j
C
jy .s/j

1C jy .s/j

�
;

h .s; y; x/ D
sin s
9

�
jy .s/j

1C jy .s/j
C
jx .s/j

1C jx .s/j

�
:

It also easily seen that these functions are continuous.
For arbitrary x; y; u; v 2 R and for all s 2 I , we have

jh .s; x; y/ � h .s; u; v/j D

ˇ̌̌̌
sin s
9

�
jx .s/j

1C jx .s/j
C
jy .s/j

1C jy .s/j

�
�

sin s
9

�
ju .s/j

1C ju .s/j
C
jv .s/j

1C jv .s/j

�ˇ̌̌̌
�
1

9
.jx � uj C jy � vj/ :

Therefore, the function h satisfies (22) with ˛ D 1
9
:

For all t; s 2 I , there exists a continuous A W I � R! R such that

1Z
0

A .t; s/ ds D

1Z
0

3�se�s

t C 3
ds D �

1

3

e�1 � 3

.ln 3C 1/ .t C 3/
D

�
1 �

1

3e

�
1

.ln 3C 1/ .t C 3/
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� 1 �
1

3e
�
9

10
< 1:

We put x0 .t/ D
5t2

7.1Ct4/
, we obtain

x0 .t/ D
5t2

7
�
1C t4

� � t2

1C t4
�

t2

1C t4
C

1Z
0

sin s
9

�
jx .s/j

1C jx .s/j
C
jy .s/j

1C jy .s/j

�
ds

D q .t/C

TZ
0

A .t; s/ h .s; x0 .s/ ; y0 .s// ds:

Similarly, we have y0 .t/ � q .t/C
R T

0
A .t; s/ h .s; y0 .s/ ; x0 .s// ds. This shows that (24) holds.

Hence the integral equation (21) has a unique solution in X:
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