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Abstract: Various approaches are developed that provide a unification of the early inflationary epoch of the universe and

dark energy (cosmic accelerating expansion case). In one respect, we express this unification in a universal thermodynamic

framework within the context of F (T, TG) gravity, where T represents the torsion invariant and TG is the teleparallel

equivalent of the Gauss–Bonnet term. For a Friedmann–Robertson–Walker universe model bounded by the dynamical

apparent horizon, we explore the generalized second law of gravitational thermodynamics (GSLT). Finally, we discuss

the super inflation mechanism, the deceleration case (radiation and dust regions), and the late time cosmic acceleration

of the universe into the validity of the GSLT that we obtain.
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1. Introduction

The current observational data show that the universe is in the accelerating expansion phase. This case has

been tried to be explained by the dark energy concept. This concept is dealt with by different approaches

like modified gravity theories or scalar fields. In this study we take into account modified gravity theories,

which are modifications of Einstein’s field equations. Some of these theories are f(R) gravity [1–3], modified

Gauss–Bonnet gravity R+ f(G) [4], torsion gravity f(T ) [5], and f(R,G) gravity [6], where R , G , T are the

Ricci scalar, Gauss–Bonnet invariant, and torsion scalar, respectively. The extra terms coming from the field

equations of these gravity theories produce a large negative pressure in the equation of the state parameter

(EOS) w =p
ρ , where p , ρ represent the pressure and the energy density, respectively. According to the different

values of this parameter, it can be said that the universe is in different phases. That is:

• w = 1
3 and w = 0 describe the radiation and the dust regions, respectively.

• −1 < w < −1
3 , w = −1, and w < −1, which show the large negative pressure and describe the

quintessence, de Sitter, and phantom phases, respectively.

On the other hand, in the early time inflationary universe it is possible to see the quintessential inflation

(−1 < w <−1
3 ) [7], quasi-de Sitter vacuum inflation w ∼= −1 [8,9], or a unification of both types of the expansion

[10] in F (T , TG) gravity theory [11–13]. However, the early time inflation and the late time acceleration of the

universe in a unified form could be observed in the literature [14–16]. In order to verify the early or the current
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acceleration of the universe from the thermodynamics aspect, many studies have been done by researchers.

In this direction, the connection between gravity dynamics and horizon thermodynamics was first established

by Bekenstein, Hawking, Gibbons, Unruh [17–21], etc. Accordingly, Einstein’s field equations and the field

equations in modified gravity theories can be derived from thermodynamics properties [22–25]. However, in the

Friedmann–Robertson–Walker (FRW) universe, Cai and Cao obtained an entropy expression for the apparent

horizon by using the unified first law of thermodynamics method [26,27]. They also showed that the Lovelock

gravity and the scalar-tensor theories could be achieved from the unified first law. The method is associated

with the projection of the unified first law along the direction of a tangent vector ξ . In this approach, the

unified first law can be written as < Aψξ >= κ
8πG̃

< dAξ > , where A is the surface area of the horizon, and

ψ is energy-supply vector that indicates energy flux, which is defined by the energy-momentum tensor of the

matter. It is seen that this equation is similar to the Clausius relation δQ = TdS for a dynamical black hole.

Recently, Mitra et al. [28–30] examined the unified first law (equation above) for different gravity theories in a

FRW universe model that is bounded by an apparent horizon or event horizon. However, Zubair and Jawad [31]

obtained the generalized second law of gravitational thermodynamics (GSLT) inequality for F (T , TG) gravity

theory. In the present study, we have used the unified first law of thermodynamics method, which was proposed

by Cai and Cao [27], to obtain the entropy expression on the apparent horizon of the FRW universe model for

F (T , TG) gravity. Then we obtain a GSLT inequality that differs from that obtained in [31].

In this paper, we study the theory of F (T, TG) gravity, and for this gravity we derive the entropy of the

apparent horizon by using the unified first law of thermodynamics method in the context of the FRW universe.

Next, the GSLT inequality is obtained. The super inflation mechanism, which was proposed by Keskin [10],

and dark energy are discussed in terms of the validity of the GSLT frame that we obtain. It is observed that

the results coming from the GSLT analysis verify these cases (i.e. super inflation mechanism and dark energy

cases) in a unified picture. The paper is organized as follows: in Section 2, we briefly mention the unified

solutions of the field equations of F (T, TG) gravity, and in Section 3, we obtain the GSLT inequality for the

gravity theory and investigate the solutions corresponding to the field equations in the GSLT frame. Section 4

gives a summary of our findings.

2. The field equations and unified solutions

The action integral of this gravity is given by [11–13]:

S =
1

2k2

∫
d4xeF (T, TG) + Sm, (1)

where k2 = 8πG̃ , Sm =
∫
d4x

√
−g L

m
, and e = det(eαµ) =

√
|g| are the dynamical vielbein fields, eα(x

µ),

in the teleparallel gravity theory. T and TG represent the torsion scalar and the teleparallel equivalent of the

Gauss–Bonnet term, respectively. In this study, we take the flat-FRW geometry given by

ds2 = dt2 − a2(t)
[
dx2 + dy2 + dz2

]
. (2)

The variation of the action of Eq. (1) gives the Friedmann equations as follows [11,12]:

−12H2FT − TGFTG
+ F (T, TG) + 24H3ḞTG

= 2k2ρ, (3)
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F (T, TG)− 4HḞT − TGFTG
+

2

3H
TGḞTG

+ 8H2F̈TG
− 4

(
Ḣ + 3H2

)
FT = −2k2p, (4)

where FTG
= ∂F (T,TG)

∂TG
, FT = ∂F (T,TG)

∂T , and H = ȧ
a is the Hubble parameter. The over dot denotes the time

derivative that is given as follows:

ḞT = FTT Ṫ + FTTG
ṪG, (5)

ḞTG
= FTTG

Ṫ + FTGTG
ṪG, (6)

F̈TG
= FTTTG

Ṫ 2 + 2FTTGTG
Ṫ ṪG + FTGTGTG

Ṫ 2
G + FTTG

T̈ + FTGTG
T̈G. (7)

For the geometry of Eq. (2), T and TG are defined by [11,12]:

T = 6H2 (8)

TG = 24H2(Ḣ +H2). (9)

Eqs. (3) and (4) can be written in the form of the standard Einstein equations:

H2 =
8πG̃

3
(ρ+ ρe), (10)

Ḣ = −4πG̃(ρ+ p+ ρe + pe). (11)

Herein, the effective energy density and the pressure are defined by [11,12]:

ρe =
1

16πG̃
(6H2 + TGFTG

− F (T, TG) + 12H2FT − 24H3ḞTG
), (12)

pe =
1

16πG̃
(−2

(
2Ḣ + 3H2

)
+ F (T, TG)− 4(Ḣ + 3H2)FT − 4HḞT − TGFTG

+
2

3H
TGḞTG + 8H2F̈TG), (13)

respectively. The sum of these expressions is:

ρe + pe =
1

8πG̃

[
4H2F̈TG + 8HḢḞTG − 4H3ḞTG − 2Ḣ − 2ḢFT − 2HḞT

]
. (14)

The conservation law satisfies the following relations:

ρ̇+ 3H (ρ+ p) = 0, ρ̇e + 3H (ρe + pe) = 0. (15)

Now, we briefly show the unified solutions Eqs. (10) and (11), which are discussed in ref. [10]. For this, we use

the relationship M = 8πG̃ (pe − wρe) + 2Ḣ + 3H2 (1 + w) that satisfies the following equation:

4H2F̈TG + 8ḢHḞTG + 4H3ḞTG (2 + 3w)− 12
(
ḢH2 +H4

)
(1 + w)FTG
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+
F (T, TG)

2
(1 + w)− 6H2FT (1 + w)− 2HḞT − 2ḢFT = 0, (16)

with w = we = pe

ρe
and w = −1 − 2Ḣ

3H2 . Here, w = p
ρ is the equation of the state parameter (EOS) for the

normal matter, which equals its effective value, i.e. we . The model F (T, TG) = f1 (TG) + f2 (T ) is investigated

in Eq. (16), where f2 (T ) = −T + αT 2 , with a small α parameter. Substituting the model into Eq. (16), we

have

4H2f̈1TG + 8ḢHḟ1TG + 4H3ḟ1TG (2 + 3w)− 12
(
ḢH2 +H4

)
(1 + w) f1TG

+(
f1 (TG)

2
+
f2 (T )

2
) (1 + w)− 6H2f2T (1 + w)− 2Hḟ2T − 2Ḣf2T = 0. (17)

This equation can be written as

4H2f̈1TG
+ 8ḢHḟ1TG

+ 4H3ḟ1TG
(2 + 3w)− 12

(
ḢH2 +H4

)
(1 + w) f1TG

+
f1 (TG)

2
(1 + w) = 0, (18)

−2Hḟ2T − 2Ḣf2T − 6H2f2T (1 + w) +
f2 (T )

2
(1 + w) = 0. (19)

When using Eqs. (6), (7), and (15) and the following solutions,

a (t) = a0t
h, H =

h

t
, Ḣ =

−h
t2
, (20)

Eq. (18) can be written in terms of TG :

4TGFTGTGTG + (7 + h)FTGTG =
−k2ρ0 (1 + w) (γ)

−3h(1+w)
4

16h2
T

3h(1+w)−8
4

G +
3 (1 + w)

16
γ

1
2T

−3
2

G

− 54α(1 +W )h2

16
T−1
G (21)

The solution of this differential equation is

f1 (TG) = A

(
TG
γ

) 3h(1+w)
4

+B(TG)
1
2 +DTG (lnTG − 1) +

4c1
(h+ 3) (h− 1)

T
−h+1

4

G + c2TG, (22)

where A = −k2ρ(1+w)γ
h2(−3h(1+w)−h+1)(−3h(1+w)+4)(3h(1+w)) , B = −3(1+w)γ

1
2

4(h+1) , D = − 54h2(1+w)α
16(h+3) , and c1 , c2 are

integration constants where c2 = 0. Next, using f2 (T ) = −T + αT 2 and Eqs. (8) and (19), the following

equation is obtained:

6αh3 [4− 3h(1 + w)] t−4 − h [2− 3h(1 + w)] t−2 = 0. (23)

This equation produces the super accelerated h1 = 4
3(1+w) and the FRW h2 = 2

3(1+w) solutions due to t > 0.

The real value of the Lagrangian function can be written as follows [10]:

F (T, TG) = DTG (lnTG − 1) + FTn
G − T + αT 2, (24)

119



KESKİN/Turk J Phys

where F = 36(1+w)2c1
(1−3w)(9w+13) , n = −h+1

4 = 3w+1
12(1+w) . This Lagrangian describes the evolutionary stages of the

universe in a unified form:

1- The three regions in the inflationary stage: the first is the region where there is a de Sitter type inflation

(vacuum state), which is described by the term −T + αT 2 . The second is the super accelerated phase,

which is composed of two regions, i.e. quintessential and matter creation regions. This phase is described

by the DTG (lnTG − 1) term.

2- The radiation and dust regions are expressed by the −T term.

3- The late time cosmic acceleration (dark energy) case is explained by the FTn
G term, with n < 0 .

4- de Sitter expansion in the late time universe is shown by −T + αT 2 .

In this study we discuss the first, the second, and the third cases in the GSLT frame.

3. The dynamical entropy term for the apparent horizon

In this section, we will derive the entropy of the apparent horizon for the gravity theory. With this purpose, we

follow the method proposed by Cai and Cao [27]. They showed that the unified first law in Einstein’s gravity

can be written as follows:

δQ = TdS= < Aψmξ >=
κ

8πG̃
< dAξ > − < Aψeξ >, (25)

where:

• δQ = TdS is the Clausius relation and the symbol < , > denotes the inner product.

• The energy-supply vector ψ α = T β
α∂βRA +W∂αRA , with radius of apparent horizon RA = ar , which is

defined as RA = 1√
H2+ k

a2

.

• The work term W = −1
2T

αβhαβ , with the metric of two-dimensional space hαβ = diag(−1, a2

1−kr2
).

• Tαβ = diag(ρm,
pma2

1−kr2 ), T
β
α = diag(−ρmpm).

• ξ shows a tangent vector to the trapping horizon and κ is the surface gravity, respectively defined by

ξ =

[
∂

∂t
− (1− 2ε)Hr

∂

∂r

]
κ = − (1− ε)

RA
. (26)

The energy-supply vector and the work term can be written as follows:

W =Wm +We =
1

2
(ρ− p) +

1

2
(ρe − pe), (27)

ψ = ψm + ψe = −1

2
(ρ+ p+ ρe + pe)HRAdt+

1

2
(ρ+ p+ ρe + pe) adr, (28)
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respectively. Herein, ψm = −1
2 (ρ+ p)HRAdt+

1
2 (ρ+ p) adr and ψe = −1

2 (ρe + pe)HRAdt+
1
2 (ρe + pe) adr .

Using Eqs. (14) and (26), the term < Aψeξ > given in Eq. (25) is found as follows:

< Aψeξ >= −AHRA(1− ε)

8πG̃

[
4H2F̈TG

+ 8HḢḞTG
− 4H3ḞTG

− 2Ḣ − 2ḢFT − 2HḞT

]
. (29)

Using the expressions given by Eq. (26) and dA = 8πRA(HRAdt+ adr), the following equality is obtained:

κ

8πG̃
< dAξ >= − (1− ε) 2εHRA

G̃
. (30)

We assume the Hawking temperature on the apparent horizon, i.e. T = |κ|
2π . Then the unified first law can be

written as:

δQ = − (1− ε) 2εHRA

G̃
− AHRA (1− ε)

8πG̃
(4H2F̈TG + 8HḢḞTG − 4H3ḞTG − 2Ḣ − 2ḢFT − 2HḞT ) (31)

or (G̃ = 1),

δQ = T < dS1 + dS2, ξ > , (32)

where dS1 = −2πH−3Ḣdt , dS2 = −πR4
AH(4H2F̈TG

+8HḢḞTG
− 4H3ḞTG

− 2Ḣ − 2ḢFT − 2HḞT )dt . Taking

into account Eq. (32) and the Clausius relation δQ = TdS , the dynamical entropy term, ṠA , takes the following

form:

ṠA = −πH−3
[
4H2F̈TG

+ 8HḢḞTG
− 4H3ḞTG

− 2ḢFT − 2HḞT

]
, (33)

where ṠA = Ṡ1 + Ṡ2 .

3.1. Generalized second law of thermodynamics

Now we will derive the GSLT inequality for this gravity theory. It is known that the GSLT always satisfies the

following relation:

GSLT = ṠA + Ṡm ≥ 0, (34)

where Ṡm is the dynamics of matter entropy that flows inside the horizon. To find Ṡm one can use the first

law of thermodynamics, dE + pdV = TmdSm , where Tm is the matter temperature inside the horizon. Using

E = mc2 = ρV (c = 1), we have:

V dρ+ (ρ+ p)dV = TmdSm. (35)

Also, when using V = 4
3πR

3
A , the dynamic of matter entropy is obtained as follows:

Ṡm = −8π2H−5
(
Ḣ +H2

)
(ρ+ p). (36)

Here, we assume that the matter temperature inside the horizon is in thermal equilibrium with the temperature

in the area of the horizon (i.e. Tm = T ). As a result, the GSLT given by Eq. (34) is constructed as:

−πH−3
[
4H2F̈TG + 8HḢḞTG − 4H3ḞTG − 2ḢFT − 2HḞT

]
− 8π2H−5

(
Ḣ +H2

)
(ρ+ p) ≥ 0. (37)
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Using Eq. (3) and (4), the inequality of Eq. (37) can be rewritten in a useful form:

πḢH−5
[
4H2F̈TG

+ 8HḢḞTG
− 4H3ḞTG

− 2ḢFT − 2HḞT

]
≥ 0. (38)

Now we investigate the solution of Eq. (24) in the validity of the GSLT frame. Substituting Eq. (24) into the

inequality of Eq. (38), with the solutions of Eq. (20), the GSLT is obtained as:

18αh [−4 + 3h(1 + w)] ≥ 16n (n− 1)Fβn−1(4n− 1 + h)t−4n+4 − 2

h
t2. (39)

The super inflation mechanism predicts the three regions for the early time universe as we explained before and

provides a unification of the two types of the scale factor (i.e. exponential and power-law types). The first region,

which is a vacuum state, is described by the exponential form of the scale factor. Next, the super accelerated

period, which is composed of quintessential and matter creation regions, is described by the power-law form of

the scale factor. Accordingly:

1. When n → ∞ [10] the EOS parameter goes to w = −1 (due to Ḣ = 0), which shows de Sitter type

inflation. The general expression of the GSLT inequality given by Eq. (38) due to Ḣ = 0 is equal to

zero. Namely, the universe should be initially started with zero entropy. After this point, we must take

the value of n as n < 0. Otherwise, the universe does not enter a new phase [10].

2. When n < 0 the inflation process continues with the first term given by Eq. (24). This case can be seen

in Eq. (39). For instance, the second term (i.e. ∼ t2) in the right side of the inequality of Eq. (39)

dominates the first term (i.e. ∼ t−4n+4) for very early time universe. When using the super accelerated

solution h = 4
3(1+w) , it is observed that there are two regions:

(a) For h > 2 the equation of the state parameter is in the range −1 < w < −1
3 , which describes the

quintessence type of expansion.

(b) For 1 < h < 2 the equation of the state parameter is in the range −1
3 < w < 1

3 , which shows the

ordinary matter creation region.

The GSLT inequality given by Eq. (39) for the super accelerated period is as follows:

3(1 + w)

2
t2 ≥ 0, (40)

with the super accelerated solution h = 4
3(1+w) . The GSLT is protected for −1 < w < 1

3 , and conditions a)

and b) are naturally provided.

In the Figure it is seen that the GSLT is increasing with cosmic time after the vacuum state, where the

universe has zero entropy.

After the inflation stage the universe enters the decelerated case (i.e. the radiation and the dust regions),

and then the quintessence type acceleration is observed until the de Sitter point. Therefore, the standard FRW

solutions h = 2
3(1+w) are valid in these stages. The inequality of Eq. (39) can be written as:

t2 ≥ 8α

(1 + w)
2 , (41)
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Figure. Evolution of the GSLT versus t and w given in the ranges of 10−3 ≤ t ≤ 1 and −1 < w < 1
3
, respectively.

The universe initially has zero entropy and then the entropy of the universe is increasing as expected.

where we use n = −h+1
4 = 3w+1

12(1+w) (see Eq. (24)). When the universe is in the radiation w = 1
3 and the dust

w = 0 regions the GSLT due to α < 0 [10] is protected. However, in the case of n < 0 we have the quintessence

type of dark energy. Namely, for all the cases the GSLT of Eq. (41) is valid.

Hence, we show the super inflation mechanism and dark energy in the validity of the GSLT frame given

by Eq. (39) in a unified form besides the radiation and the dust regions. In other words, it is observed that

the cosmological entropy law clarifies the super inflation mechanism with the quintessence type of dark energy

from the aspect of the horizon thermodynamics principle.

4. Conclusion

In this study, we have examined the validity of the GSLT in F (T,TG) gravity for the flat FRW universe

model. After deriving the dynamical entropy expression of the apparent horizon by using the unified first law

of thermodynamics method we have constructed the GSLT inequality given by Eq. (38), in which the Hawking

temperature is assumed on the horizons. Next, by applying the solutions in the GSLT frame, the super inflation

mechanism, deceleration, and dark energy cases have been shown in a unified form in the GSLT frame given by

Eq. (39).
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