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   Title:  Formal Innovations to Clinical Cognitive Science and Assessment:                                                     

                                                      Abstract

Mathematical modeling is increasingly driving progress in clinical cognitive science and  

assessment. Mathematical modeling is essential for detecting certain effects of psychopathology 

– mental disturbance--through comprehensive understanding of tell-tale cognitive variables such 

as workload capacity and efficiency in using capacity, and their contrast under quantitative 

measurement. The research paradigm guiding this formal clinical science is outlined. An 

example using a distinctive cognitive abnormality in schizophrenia – taking longer to cognitively 

represent encountered stimulation – provides an illustration of a quantitative framework for 

studying intricate mental health-impairing phenomena. Added benefits of formal developments, 

among others, include symptom description and prediction, new methods of cognitive- and 

statistical-science grounded clinical assessment over time, both for individuals and treatment 

regimens, and refinement of the cognitive-function side of clinical functional neuroimaging. 

Key Words

Clinical mathematical modeling, cognitive assessment, schizophrenia cognition, formal cognitive 

neuroimaging, cognitive mixture models
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                     Formal Innovations to Clinical Cognitive Science and Assessment

Contemporary directions in translational clinical science have taken on a wave of 

mathematical modeling of symptom-related cognitive abnormalities. The basic research 

paradigm for this movement is illustrated in Figure 1. Mathematical models of cognitive 

performance among healthy individuals are adjusted to accommodate deviations from normal 

performance, among participants with selected forms of psychopathology—mental disturbance. 

Such deviations typically center around cognitive-performance speed and/or accuracy. Parts of 

the model remaining intact are considered to indicate cognitive functions that are spared, while 

those parts where performance deviations compel modification of the model are flagged as 

signifying disorder-affected functions. Minimal adjustment of the model is desired, in the interest 

of parsimony. In this way, models provide a formal framework to determine which cognitive 

processes do or do not differ between clinical groups and healthy controls.  

Such formal theoretical developments can offer multiple advantages in explanation and 

measurement of psychopathology. A case study of developments and advantages is presented, 

involving symptom-related cognitive neuroscience of schizophrenia.  

Rounding out the research paradigm depicted in Figure 1, the domain of clinical 

mathematical cognitive neuroscience stands to uniquely contribute to mainstream mathematical 
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cognitive neuroscience. It can do so according to model generalization testing (Busemeyer & 

Wang, 2000). Generalization testing evaluates the robustness of model performance with new 

experimental paradigms or populations. Clinical mathematical cognitive neuroscience provides 

key opportunities for generalization testing with respect to extreme individual differences, 

associated with psychopathology. Models that readily accommodate performance deviations are 

preferred to those that fail, or that are strained in doing so.  That is, a model is supported when 

observed results comprising psychopathology-related abnormalities, can be well-predicted 

without major adjustment of the model’s workings.  

Figure 1. Relations between Mathematical Cognitive Neuroscience, and Clinical Mathematical 

Cognitive Neuroscience. 

Note that clinical mathematical modeling, the subject of this paper, involves analytical 

theorems and proofs, and algebraic derivations expressing cognitive transactions relevant to 
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clinical disorders. It should be distinguished from another conspicuous, somewhat related type of 

modeling, known as “computational psychiatry”. Computational psychiatry addresses how 

cognitive transactions might be realized at the level of neural organization and operations. By 

and large, computational psychiatry delegates disorder-related deviations of neural functioning to 

computer simulation of neural networks and neuro-dynamics (neuronal conductance properties). 

Accounts and examples of computational psychiatry are available in Montague, Dolan, Friston, 

et al (2012), Huys, Maia & Frank (2016), Wang and Krystal (2014) and Grossberg (1999). For a 

rigorous, comprehensive treatment of artificial neural networks, see Golden (1996).  

Computational psychiatry and clinical mathematical modeling potentially are complementary 

when it comes to quantitative accounts of clinical disorders (e.g., Carter & Neufeld, 1999; 2007). 

Extensive elaboration on distinctions among alternate forms of modeling clinical phenomena can 

be found in Neufeld (2007a).                                        

Case Study: Cognitive Neuroscience of Stimulus Encoding in Schizophrenia

Schizophrenia affects approximately 0.5 percent of the North American population. 

Symptoms can take the form of delusions and hallucinations (“thought-content disorder”), 

incoherent speech, reduced cognitive efficiency, and impoverished motivation. Applying the 

research strategy depicted in Figure 1, a deviation in cognitive performance recurrently singled 

out in schizophrenia, across multiple experimental tasks, and levels of patient status (e.g., first-

episode, never-treated, outpatient, inpatient) consists of delayed completion of stimulus 

encoding. Here, stimulus encoding refers to cognitively preparing and transforming  cognitive-

task stimuli into a format facilitating collateral processes. For instance, participants might be 

asked to memorize a set of novel stimuli (e.g., TZAM, CEYP). After a delay, they are presented 

with additional stimuli, some of which have been seen before and some of which have not, and 
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they are asked whether each stimulus was part of the original set. To do well in this task the 

participant must encode a presented stimulus into a cognitive format facilitating comparison to 

the previously memorized set of stimuli. For example, in the case of basic visual-template 

matching, it may be necessary to cognitively extract the presented stimulus’ physical features, 

like curves, lines and intersections; or in the case of stimulus-name matching, it may be 

necessary to tag a presented digit or letter stimulus with its name, for comparison to names of the 

stimuli in the previously memorized set. 

Mathematical modeling enables quantitative dissection of cognitive processes, to help 

pinpoint specific sources of cognitive performance deviation. With respect to encoding, for 

example, the process can be broken down, as follows. First, the process is made up of constituent 

encoding operations-- encoding subprocesses, such as registration of curves, lines, and 

intersections of a presented stimulus. Second, the encoding subprocesses themselves take place 

with a certain speed, known as subprocess-level cognitive workload capacity (e.g., Neufeld, 

Townsend & Jette, 2007; Wenger & Townsend, 2000). A recurrent result of the model-

adjustment operation of Figure 1, has consisted of the following combination of spared and 

disorder-affected parts of the encoding process: subprocess-level cognitive-workload capacity 

remains intact, but the number of encoding subprocesses undertaken is elevated. Cognitive 

workload capacity escapes impairment, whereas efficiency of its implementation does not. This 

combination of spared and affected components of encoding performance is analogous to a race-

horse striding at a normal pace, but running closer to the outside rail, thus increasing the requisite 

paces, and therefore time, for course completion. This combination also illustrates the nature of 

adjusting the model of healthy encoding, so that the altered model conforms to the specific 

pattern of empirical deviations among clinical (schizophrenia) participants   
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The developments described above defensibly have tracked the abnormality in the 

process of interest to a specific formalized property—the subprocess-number parameter of the 

stimulus-encoding process. Identification of such a property stands to open the way to potentially 

important advances in this domain of psychological clinical science. The abnormality arguably 

represents a critical deficit, compromising activities into which timely stimulus encoding 

routinely enters (e.g., daily self-maintenance functions and meeting environmental stresses and 

demands). The quantitative apparatus in which this property is embedded provides for certain 

methodological benefits, including theory-guided measurement and clinical assessment, and 

stipulation of the cognitive side of cognitive neurophysiology. It also can be shown to be 

potentially symptom related, notably with respect to thought-content disorder (delusions and 

thematic hallucinations). Such symptomatology is considered to emanate from failure to encode 

specifically context-related features of a stimulus complex, during episodes of information 

intake. With weakened influence of reality-grounding, objectifying cues, other information that 

successfully is taken in during an episode, is open to false interpretation (this symptom extension 

quantitatively is expanded upon in Neufeld, 2007b, and Neufeld, Boksman, Vollick, et al, 2010). 

The formal theoretical account of symptomatology consequences is in the spirit of meeting 

recent calls for “defining a mechanism of complex behaviors” and formulating 

“computationally-defined behaviors” (National Institutes of Mental Health Web Site, 2017; 

2018). It also accords with the research-domain criterion initiative (e.g., Kozak & Cuthbert, 

2016), inasmuch as the identified mechanism  evidently extends to other forms of clinical 

disturbance (e.g., major depressive disorder; Taylor, Théberge, Williamson, et al, 2016), and non-

clinical populations (Nicholson & Neufeld, 1993). 
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Note that model adjustment capturing changes in cognition associated with clinical 

disorder typically takes the form of altering model-parameter values (“scalar differences”), such 

as encoding-subprocess quantity, or rate of subprocess completion. Model architecture (non-

scalar differences), meaning the number of model parameters involved, or their arrangement in 

relation to each other, ordinarily is common to clinical and non-clinical groups alike (see, e.g., 

Neufeld & Broga, 1981; Wallsten, Pleskac & Lejuez, 2005). In other words, the basic mental 

apparatus meeting a cognitive challenge is common across groups, but modification of one or 

more of its parts (parameters) accompanies clinical disorder.

Measurement and Clinical Assessment Guided by Formal Theory

Individual performance samples, for instance of encoding-intensive tasks, permit 

estimation of cognitive-process parameter values. Parameter-value estimation is available 

through established methods applied to performance durations of cognitive-task trials. Such 

methods include maximum-likelihood, distribution-moment matching (e.g., Evans, Hastings & 

Peacock, 2000), and Bayesian parameter estimation (e.g., Alexandrowicz & Gula, 2020, as used 

with a mathematical model of decision and choice, finding application with clinical disorders). 

Clinically relevant cognitive processing is concealed in raw data but can be revealed via 

mathematical modeling.  

Often it may not be reasonable to assume that all individuals within a clinical group have 

(roughly) the same level of cognitive processing, as indexed for example by a fixed value for a 

model parameter. Fortunately, mathematical models can be expanded to account for this, notably 

through expansion as mixture models. Mixture models treat the overall performance of a group 

as a mixture of different levels of performance among individual group members (e.g., Carter, 

Neufeld & Benn, 1998; Cutler & Neufeld, 2017). 
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Mixing distributions can be important, not only in systematically accommodating 

individual differences, but also because the parameters that mathematically govern the random 

distributions of model properties (mixing-distribution hyper parameters) can be clinically 

meaningful in their own right. To illustrate, mixture-model hyper-parameters can convey a 

particular group’s general level of facility with undertaking the elements of the cognitive process 

at hand (e.g., encoding-subprocesses); they can also be used to indicate susceptibility of such 

undertaking to the occurrence of psychological stress (exemplified with concrete examples in 

Neufeld, 2016). 

          Altogether, mixture-model expansions, illustrated in Figure 2, can increase the span of 

model explanation by incorporating individual differences. They additionally can tap clinically 

meaningful constructs, such as cognitive-task amenability, and performance vulnerability to 

psychological stress. 

Page 8 of 22

http://mc.manuscriptcentral.com/cdps

Current Directions in Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9

Figure 2. Design of Stimulus-Encoding Mixture Model Accommodating Individual Differences 

in Parameters of Encoding; The Rate at which Encoding Subprocesses Unfold is Shared by 

Control and Schizophrenia Participants, whereas the Number of Encoding Subprocesses is 

Greater among Schizophrenia than Control Participants.

Measuring better with Bayes

Mixture models allow for the likelihood that individuals systematically differ in 

properties of mathematically expressed cognitive performance. They go an important step 

further, in providing for efficient estimation of model properties for the individual. They do so 

by customizing the properties to the person, through Bayesian statistical methodology, as 

follows. Bayes’ Theorem1, appropriated to the present context, states that 

                                               ,                                                     (1)𝑃r (𝐴│{ ∗ }) =
𝑃𝑟 (𝐴)𝑃𝑟 ({ ∗ }|𝐴)

Pr ({ ∗ })

where,  is the Bayesian probability of an eligible value of a predicted entity A --such 𝑃r (𝐴│{ ∗ })

as a cognitive- process parameter (e.g., encoding-subprocess amount), given relevant 

observations {*} (e.g., a cognitive-performance specimen);  is the likelihood of the 𝑃𝑟 ({ ∗ }|𝐴)

performance specimen, given the eligible value;  is the probability of the value under 𝑃𝑟 (𝐴)

consideration, according to the relevant mixing distribution, entity-related observations {*} 

aside; and  is the probability of the observations, all candidate values of the predicted 𝑃𝑟({ ∗ })

entity considered (for accounts of  Bayesian modeling generally, see classic works such as 

Berger, 1985, and O’Hagan & Forster, 2004). 

1 A landmark contribution to statistical science, by the Reverend Thomas Bayes of Tunbridge Wells, England, whose 
theorem was published in the Proceedings of the Royal Society in 1763. 
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With Bayes’ theorem and a person’s cognitive-performance specimen in hand, ushered in 

is a versatile cognitive- and statistical-science disciplined estimation of individual attributes of 

clinical interest. Predicted entities A actually can be as diverse as the parameter expressing model 

encoding-subprocess amount, or the symptomatology to which the mathematical model and 

estimated model parameter(s) relate (e.g., severity of thought-content disorder; elaborated upon, 

under Dynamic assessment of treatment-regimen efficacy, below). Importantly, Bayesian 

estimation makes for stabilization of estimated values, through the anchoring effects of mixing 

distributions, which act as “Bayesian priors” [e.g.,  , above]. Variance in estimates Pr (𝐴)

(“statistical inefficiency”) thus is reduced through the formal device known as “Bayesian 

shrinkage”. Altogether, estimation is solidified by feeding into its calculation specifically that 

information supplied by a pre-established referent, the Bayesian prior established by the mixing 

distribution.  

The operation of mixing-distribution Bayesian priors can help alleviate the problem of 

“small-N mathematical modeling”, ubiquitous in applied settings. The approach allows us to 

work with smaller sample sizes, which is particularly helpful when undertaking person-specific 

cognitive-performance modeling for assessment or research purposes. Valid mixing distributions 

supply a consolidating influence on estimates of model properties as they apply to the individual. 

They help compensate for small performance samples essentially by bringing into play 

performance-relevant information about the group to which the individual at hand belongs. 

Again, this information is conveyed by the mixing distribution(s) that quantifies the relative 

frequencies of the target(s) of prediction in a membership group. Such a scenario resembles that 

of a hematology laboratory, where a substantial extant bank of hematological information, 
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applicable collectively, is brought to bear individually on a modest blood sample from the person 

at hand.

Availed, moreover, is the dynamic assessment of changes in clinical condition, through 

undertaking the Bayesian estimation at designated times of clinical interest (e.g., after a selected 

bout of treatment). Specifically, equation (1) can be used to track changes in the status of 

symptom-related (e.g., thought-content symptomatology) cognitive-model parameters (e.g., 

stimulus-encoding-subprocess number, identified as inflated according to the model-adjustment 

operation of Figure 1).  Changes can be monitored as they occur over the natural passage of time, 

over the course of treatment, or subsequent to an experimental manipulation. In these ways, the 

described formal methodology can be an important constituent in the arsenal of clinical 

assessment technology. Here, mixing-distribution Bayesian priors have replaced the usual 

actuarial standardization tables of multi-item psychometric inventories. 

Bayesian individualization of model properties also allows for vetting of model 

performance at the person-specific level of model operation. Doing so ascertains model validity 

for an individual participant; it also affords strong tests of overall model performance. Fit of 

model predictions to empirical observations at both the group, and individual levels of data 

assembly, represents an added level of model evaluation. This unique form of model evaluation 

potentially bears on the currently prominent issue of robustness of findings in cognitive 

modeling (Neufeld & Cutler, 2019). 

Dynamic assessment of treatment-regimen efficacy

With a modest expansion of equation (1), the present assessment methodology naturally 

extends beyond that of the individual; it can be applied to estimating the representation of 
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varying levels of symptom severity in a clinically treated cohort. With A of equation (1) now 

standing for cognition related symptom severity and given performance specimens from a 

random subsample of individuals in a treated cohort, changes in proportions of relative severity 

levels can be estimated and monitored repeatedly over time. The procedure loosely resembles 

one from mathematical ecology, where the stocks of various fish species are estimated according 

to netted samples, taken over the course of a fishing season. In the present case, the moving 

profile of symptom-severity proportions addresses the efficacy of the treatment regimen, in 

moving the treated cohort toward more healthy cognitive functioning. Note that inferences to the 

individual and treatment cohort levels are both centered on a cognitive, symptom-related 

mechanism (e.g., parameterized cognitive-encoding deviation). Such estimation is of special 

interest, for example where the administered treatment is a central-nervous-system directed drug 

treatment. Existing resources can be consulted for elaboration on mathematical and 

computational specifics, assumptions and methodological caveats of the assessment procedure 

described here (e.g., Neufeld, 2007a; Neufeld, Vollick, Boksman, et al, 2002; Neufeld, et al, 

2010).  

Implications for Clinical Functional Neurophysiology

Mathematical modeling of the cognitive side of vascular and electrophysiological 

cognitive neurophysiology conveys several methodological assets. Cognitive neurophysiology 

(aka functional, neurophysiology) comprises what technically are known as functional magnetic 

resonance (neuro)imaging (popularly, fMRI, for short), functional magnetic resonance 

spectroscopy (fMRS), magnetoencephalography (MEG), and electroencephalography (EEG). 

Certain of these divisions are returned to, and elaborated upon, below. Note for the present 

purposes that formally anchoring cognitive functions in a viable mathematical model represents 
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an antidote to a thorny problem in cognitive neurophysiology, known as reverse inference 

(Poldrack, 2011). This problem consists of circularly relying on measured neurophysiological 

signals to infer the cognitive functions whose very neuronal substrates purportedly are being 

charted. This inferential dilemma in principle can be overcome as follows. The cognitive 

functions at work while neurophysiological measurements are taken, are quantitatively stipulated 

in advance, anchored in a formal representation (e.g., Ahn, Krawitz, Kim, et al, 2011; White, 

Mumford & Poldrack, 2012). That is, cognitive functions whose neurophysiological substrates 

are being examined, are staked out in terms of a quantitative model—one that is a priori 

freestanding, independent of the examined neurophysiological activity itself. 

Note, further, that dynamical models of cognitive operations treat the development of 

cognitive processes as stochastic functions of time (Townsend & Ashby, 1983). The unfolding of 

target processes, such as stimulus encoding, can be overlaid against monitored neuroimaging 

signals, producing neuroimaging times of measurement interest, complementing brain regions of 

measurement interest. (e.g., a region known as the encoding-intensive Dorsal Anterior Cingulate 

Cortex; Broadman Area 32). In this way, mathematical cognitive models can contribute to the 

calibration of space-time coordinates of neuroimaging measurement (illustrated in Neufeld, et al, 

2010). Isolating critical times of target-process measurement has the advantage of allowing the 

target process (e.g., encoding of a presented stimulus) to function as it would alongside related 

processes involved in executing a cognitive task (e.g., comparing a presented stimulus to other 

stimuli held in memory). The approach, in other words, allows the target process to be examined 

as it operates in situ--as it were inside its cognitive ecological niche. 

Estimating individual differences in model parameters, as described above, also can 

facilitate the formation of parametrically homogeneous groups. Reducing participant-group 
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heterogeneity potentially achieves greater statistical power for detecting subtle but key 

neurophysiological anomalies.

At a broader level, formal cognitive modeling can provide a cognitive-functional nexus 

for integrating observations from alternate domains of functional neuroimaging, investigative 

settings and experimental sessions. Ascertaining mathematically that the cognition at play 

remains stable across different sources of data lends assurance that neurophysiological results 

converge on a shared set of cognitive operations. For example, essentially a common 

mathematical model of stimulus encoding, as activated by a widely used cognitive task (called 

the Stroop Task), has been shown to cut across different levels of cognitive neurophysiological 

investigations. The investigative levels included first what is known as functional magnetic 

resonance spectroscopy (above), where neurochemical mechanisms accompanying cognitive 

performance are examined; and, second, vascular-signal functional magnetic resonance imaging, 

where the focus is on the specific neuronal circuits involved in performing the cognitive task 

(Taylor, Neufeld, Schaefer, et al, 2015; Taylor, et al, 2016, 2017). 

All in all, by adopting the strategy portrayed in Figure 1, cognitive processing deviations 

can be identified and targeted, and the time course of the deviant processing during trials of an 

experimental task can be estimated. This time course then can be combined with measured 

activation of the brain region(s) apt to be involved in the suspected disorder-related cognitive 

process. The intended upshot consists of uncovering abnormality in neuronal operations 

paralleling abnormality in the targeted cognition. The combination of cognitive-functional and 

neurophysiological information on a disorder, in turn can profitably feed into clinical assessment 

and treatment activities. 

                                             Concluding Comments
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Clinical mathematical psychology stands at the ready for further inroads into clinical 

science and assessment (see also Treat & Viken, 2010). Some may be put off by the requisite 

engagement in analytical developments, but advanced undergraduate and graduate statistics and 

design courses often place psychologists in a unique position to access available tutorials (see 

Recommended Readings). It is motivating to note that the history of science by and large is 

replete with exemplary advances hinging on decidedly formal theoretical developments 

(“necessary propositions”; e.g., Braithwaite, 1968; Harper, 2011). The transparency of 

predictions stemming from closed-form derivations moreover is intrinsically rewarding and self-

vindicating, if rigorous, along with being self-indicting and potentially self-correcting if not. 
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