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RESEARCH ARTICLE
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Abstract

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that

may modulate cortical excitability, metabolite concentration, and human behaviour. The

supplementary motor area (SMA) has been largely ignored as a potential target for tDCS

neurorehabilitation but is an important region in motor compensation after brain injury with

strong efferent connections to the primary motor cortex (M1). The objective of this work was

to measure tissue metabolite changes in the human motor cortex immediately following

tDCS. We hypothesized that bihemispheric tDCS would change levels of metabolites

involved in neuromodulation including N-acetylaspartate (NAA), glutamate (Glu), and crea-

tine (tCr). In this single-blind, randomized, cross-over study, fifteen healthy adults aged 21–

60 participated in two 7T MRI sessions, to identify changes in metabolite concentrations by

magnetic resonance spectroscopy. Immediately after 20 minutes of tDCS, there were no

significant changes in metabolite levels or metabolite ratios comparing tDCS to sham. How-

ever there was a trend toward increased NAA/tCr concentration (p = 0.08) in M1 under the

stimulating cathode. There was a strong, positive correlation between the change in the

absolute concentration of NAA and the change in the absolute concentration of tCr

(p<0.001) suggesting an effect of tDCS. Both NAA and creatine are important markers of

neurometabolism. Our findings provide novel insight into the modulation of neural metabo-

lites in the motor cortex immediately following application of bihemispheric tDCS.

Introduction

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation

that has shown promise in modulating cortical excitability and behaviour in humans [1–4].

However, many facets of its use remain controversial. For example, the optimization of stimu-

lation parameters (current level, duration, electrode montage, etc.), characterization of
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individual response variability, and the physiological mechanism of action are still under active

investigation.

Several potential mechanisms of action have been proposed based on pharmacological,

behavioural, and imaging studies [1–3, 5, 6]. A review by Stagg and colleagues summarized the

evidence linking the effects of tDCS to a physiological mechanism. They concluded that tDCS

modulates cortical excitability by altering membrane potential during the stimulation period,

while the after effects are driven by synaptic modification and plasticity[6]. At current levels of

~1 mA, tDCS is thought to induce alterations of the membrane potential, with anodal tDCS

making it more likely, and cathodal tDCS making it less likely, for an action potential to fire

[7, 8]. However, the level of current may also impact the neuronal response to stimulation. At

2 mA, cathodal stimulation has been shown to have an excitatory influence on membrane

potential. This has been thought to occur due to an increased release of calcium (Ca2+) at the

higher current [9]. Furthermore, higher current penetrates deeper into cortical tissues, poten-

tially causing dendritic depolarization at a sufficient level to modulate excitation of adjacent

neuronal structures [9]. Magnetic resonance spectroscopy (MRS) provides a means to investi-

gate the effects of tDCS on cellular metabolism and synaptic transmission as it can be used to

non-invasively quantify cerebral metabolites in vivo, including glutamate (Glu) and gamma-

aminobutyric acid (GABA). Previous MRS studies have shown changes in excitatory and

inhibitory neurotransmitter levels, minutes after tDCS, with current levels ranging from 1–2

mA [6, 7, 10–14]. Other studies have suggested that creatine may have an important role in

bioenergetics and neuromodulation [15–17]. For example, Rae et al. found an increase in

adenosine-triphosphate (ATP) synthesis, with a decrease in the concentration of phosphocrea-

tine in the left temporo-frontal region following anodal tDCS to the left dorsolateral prefrontal

cortex [17]. In another study, 2mA of anodal tDCS to the right parietal cortex caused an

increase in both Glx and total N-aceytl-aspartate (NAA + NAAG) relative to sham, measured

from the parietal cortex [10], while a study by Stagg and colleagues found that 1 mA of cath-

odal stimulation to left M1 decreased Glx under the electrode[7]. Other studies have found no

effect. For example, Kim et. al. found no changes after 1.5 mA of cathodal tDCS to left M1 in

any metabolite measured under the stimulating electrode [18]. Similarly, using 1mA of current

in an M1-M1 bihemispheric montage, Tremblay et. al. found no significant changes in any

metabolite in left M1 [19]. These conflicting results are difficult to interpret, and leads to

uncertainty with regards to the implementation of an optimum stimulation paradigm.

The application of tDCS to improve motor performance and recovery in neurological dis-

orders requires optimization of stimulation parameters. Bihemispheric tDCS can enhance

both behaviour and physiological responses in healthy and neurologically injured individuals

[20–22]. The supplementary motor area (SMA) has proven to be an important area of the

brain during the execution of bimanual hand movements [23], and plays a compensatory role

during the recovery of both stroke and spinal cord injury [24–26]. With its strongest efferent

projections to M1 and the corticospinal tract, SMA is a unique target for tDCS [27]. Support

for this notion comes from a recent study that showed enhanced motor performance by target-

ing the left SMA with 0.4 mA of anodal tDCS for 90 min over three days [28]. By targeting

both SMA and M1 with 2mA of tDCS, it may be possible to induce additive effects on M1 excit-

ability via interhemispheric connections, which are thought to be more focal than those associ-

ated with M1-supraortibal stimulation [19, 20].

The purpose of the current study was to demonstrate the feasibility of concurrent tDCS and

7T MRI, and to determine whether targeting both SMA and M1 using a bihemispheric tDCS

montage would produce immediate changes in metabolite concentrations in M1 measured

using ultra high-field (7T) MRS. To our knowledge, this is the first study to examine the meta-

bolic changes after bihemispheric tDCS, delivered in the MR environment, at an ultra-high

MRS of motor cortex after tDCS
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magnetic field strength. Based on previous studies, we hypothesized that 2 mA bihemispheric

tDCS would enhance synaptic and metabolic activity [10, 11, 15, 17]. As such, metabolites

involved in neurometabolism such as NAA, glutamate, and creatine would be altered by

stimulation.

Methods

Participants and study design

15 healthy adults aged 21–60 years (mean ± standard deviation: 28 ± 10, 9 female), with no

reported history of mental or neurological illness, participated in two sessions on a 7 Tesla

(Siemens, Erlangen) head–only MRI scanner. All participants had 1H MRS in this single blind,

sham controlled, cross-over design. Participants were randomized to receive tDCS stimulation

or sham stimulation on their initial visit, and the contrary on their second visit, at least 7 days

apart. Informed written consent was obtained for all procedures according to the Declaration

of Helinski (World Medical Association, 2008) and the study was approved by the Western

University Health Sciences Research Ethics Board.

Transcranial direct current stimulation

Using an MR-compatible DC-STIMULATOR (NeuroConn, Germany), 2 mA of current was

applied to bihemispheric motor areas in the MRI scanner, for a total of 20 minutes. Electrodes

were 3x3 cm2, providing a total current density of 0.22 mA/cm2 and a total charge with respect

to time of 0.27 C/cm2. For use inside the scanner, electrodes were fit with 5 kOhm resistors

placed next to the electrode to minimize the possibility of eddy currents induced in the leads

during MRS acquisition. Electrodes were positioned on each participant outside the magnet

using the electroencephalography (EEG) 10–10 system, which has been shown to be a reliable

localization tool [29]. The cathode was placed on the left primary motor cortex (C3), anode on

the right supplementary motor area (FC2). For stimulation, current was ramped up over 10

seconds to reach 2 mA and held constant for 20 minutes, followed by a 10 s ramp down period.

During sham stimulation, current was ramped up over 10 s and then immediately turned off.

This method has been shown to be a reliable blinding method, as participants are unable to

distinguish the difference between sham and true tDCS using this paradigm. We used this

measurement as a baseline comparison [3, 30].

Temperature monitoring

To ensure the safety of the participants during tDCS in the MRI, temperature was monitored

on all subjects throughout the duration of the scan (approximately an hour and 15 minutes).

Specifically, four T1C 1.7 mm diameter fibre optic temperature sensors (Neoptix, Quebec,

Canada) were located under both electrode pads and the nearest cable chokes. Temperature

was monitored in real time with a calibrated Reflex signal conditioner (Neoptix, Quebec, Can-

ada) and a custom data collection program written in LabVIEW 2010 (National Instruments).

Magnetic resonance image acquisition and analysis

A 7 Tesla Siemens (Erlangen, Germany), head-only MRI (Magnetom) was used to acquire

spectroscopy and imaging data. Data were acquired using an 8 channel transmit and 32 chan-

nel receive coil array. T1-weighted MP2RAGE anatomical images (TE/TR = 2.83/6000 ms and

750 μm isotropic resolution) were acquired and used for voxel positioning. These images were

also used to estimate white-matter (WM), gray-matter (GM) and cerebrospinal fluid (CSF)

fractions for partial volume correction when determining metabolite concentration. The MRS

MRS of motor cortex after tDCS
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acquisition began immediately following the completion of the stimulation to capture alter-

ations in metabolite concentration due to tDCS. Water suppressed (64 averages) and unsup-

pressed (8 averages) 1H MR spectra were acquired from a single voxel (1.6×2.0×1.8 cm3)

located in the left primary motor cortex (under the cathode) (Fig 1) using the semi Localiza-

tion by Adiabatic Selective Refocusing (semi-LASER) pulse sequence [31]: TE/TR = 60/7500

ms, voxel size = 1.6×2.0×1.8 cm3,total MRS acquisition time was approximately 10 minutes. A

localized B0 and B1 shim were applied prior to data acquisition. The B0 shim was optimized

using a two-echo gradient recalled echo (GRE) shimming technique [32] and the B1 field was

optimized such that the phases of the transmit channels added constructively within the MRS

voxel. Spectra were lineshape corrected using combined QUALITY deconvolution and eddy

current correction (QUECC) with 400 QUALITY points [33]. Simulated prior knowledge

metabolite lineshapes were fitted to post-processed spectra using the fitMAN software devel-

oped in-house (Fig 2) [34]. Metabolite concentrations were examined as ratios normalized to

creatine and also as absolute concentrations using unsuppressed water as an internal reference

standard as previously described [35]. Measurement of tissue partial volume with the voxel

was made using the MP2RAGE images in FMRIB Software Library (FSL) [36] to obtain the

fraction of WM, GM and CSF within the voxel. In addition, relaxation rates of the metabolites

were incorporated into the quantification to correct for T1 and T2 relaxation induced signal

loss [37–40].

Metabolites measured with a group coefficient of variation of less than<30% in the sham

condition were included in statistical analyses. To identify differences in metabolite levels and

metabolite ratios between sham and tDCS conditions, repeated measures MANOVA was per-

formed in SPSS (IBM SPSS Statistics Version 25). The main factors were the type of stimula-

tion (two levels: sham and tDCS) and the metabolite (six levels: N-acetyl aspartate (NAA),

myo-inositol (mI), creatine (Cr), choline (Cho), glutamate (Glu), glutathione (GSH) or metab-

olite ratio (five levels: NAA/Cr, mI/Cr, Cho/Cr, Glu/Cr, GSH/Cr) measured. In addition, dif-

ferences between sham and tDCS conditions were compared separately for each metabolite

and metabolite ratio using paired t-tests. Correlation analysis was completed using the Pearson

Product Correlation Coefficient and the coefficient of determination (R2).

Results

Temperature monitoring

The tDCS was safely and successfully applied in the 7T MRI environment in all subjects. The

average temperature change in all four probes was 4.3 ± 0.2˚C throughout the duration of the

experiment. This temperature increase was largely due to warming of the bore and from the

participant’s natural body heating. Once equilibrium was established, small fluctuations on the

order of 1˚C were observed during periods when radio frequency (RF) fields were turned on.

Metabolite ratio changes

Spectral quality measures including signal to noise ration and linewidth are summarized in

Table 1 for all participants. There were no age or gender related effects. When examining the

metabolite ratios the repeated measures MANOVA indicated a trend for the effect of stimula-

tion (F(1,14) = 3.52, p = 0.08). In addition, there was a significant main effect of metabolite

(F(12,3) = 343.35, p<0.001). There was no main interaction effect (F(12,3) = 1.25, p = 0.33)

(Table 2). Post-hoc t-tests (uncorrected for multiple comparisons) were performed to confirm

alterations in metabolite ratios. Our results showed a trend toward a 4% increase in the NAA/

tCr ratio between sham and tDCS conditions (p = 0.08, Cohen’s d = 0.52) and no significant

changes in any other metabolite ratios (Fig 3, Table 2).

MRS of motor cortex after tDCS
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Metabolite concentration changes

Using repeated measures MANOVA, there was no main effect of bihemispheric M1-SMA

tDCS on the absolute concentration of any metabolite (F(1,14) = 1.55, p = 0.23). There was also

no significant interaction effect of metabolite and condition (F(4,11) = 1.42, p = 0.29). Table 3

displays the absolute metabolite concentrations. Post-hoc comparisons using paired t-tests

(uncorrected for multiple comparisons) showed a trend toward decreased tCr (p = 0.07,

Cohen’s d = 0.42) and decreased mI (p = 0.08, Cohen’s d = 0.48), with no significant changes

in any metabolites.

Correlation between NAA and tCr

We observed a strong, positive correlation between the change in the absolute concentration

of NAA and the change in the absolute concentration of tCr (stimulation–sham, R2 = 0.64,

p< 0.001, Fig 4).

Discussion

Bihemispheric tDCS was safely and successfully performed in the 7T MRI environment with

minimal heating effects. However, the bihemispheric tDCS of M1-SMA produced no signifi-

cant metabolite level changes in the left primary motor cortex (M1) immediately after 20 min-

utes of stimulation measured by 7T MR spectroscopy. Post-hoc analysis did show a trend

toward increased NAA/tCr and decreased levels of tCr. In addition, we observed a strong asso-

ciation between the change in absolute concentration of NAA and the change in absolute con-

centration of tCr that may indicate a coupling between these metabolites following tDCS.

The trends toward lower NAA/tCr and tCr observed in the current study may be due to

changes in brain activity induced by tDCS. Brain activity has been shown to decrease both

NAA and tCr levels. Specifically, NAA is associated with metabolic and mitochondrial activity

[16, 41]. Following visual stimulation, Baslow and colleagues found that the concentration of

NAA decreased by approximately 13% in the visual cortex [42]. Similarly, Castellano and col-

leagues observed a 20% decrease in NAA after visual stimulation [43]. This decrease in NAA

was attributed to a lower rate of NAA synthesis compared to hydrolysis during periods of cor-

tical activation, suggesting that the brain used NAA faster than it could be synthesized [42, 43].

NAA is the precursor for the synthesis of N-acetylaspartylglutamate (NAAG), a modulator of

glutamate and GABA neurotransmitter release. When neural activity is increased, there is an

Fig 1. Voxel positioning. Typical MP2RAGE anatomical images used for voxel placement were brain extracted using FSL. The voxel shown in

green (2x2x2 cm3) was placed over the left primary motor cortex (under the cathode).

https://doi.org/10.1371/journal.pone.0198053.g001

MRS of motor cortex after tDCS
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Fig 2. Spectrum of left motor cortex. 7 Tesla semi-LASER 1H MRS (TE = 60 ms) of the left primary motor cortex. The spectrum (grey) is overlaid on the fitted result

(black) with the residual shown above (black). Select metabolite peaks are identified.

https://doi.org/10.1371/journal.pone.0198053.g002

MRS of motor cortex after tDCS
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increased release of NAAG from the synapse [43, 44]. It has been suggested that the reduction

in NAA upon neural activation is due to increased demand for NAAG. In support of this

hypothesis, both Landim et al. and Castellano et al. observed a decrease in NAA concentration

with a subsequent increase in NAAG upon stimulation [43, 44].

Creatine (Cr) may also be altered as a consequence of neuronal stimulation due to its role

in energy metabolism through its conversion to phosphocreatine (PCr) [15, 45]. In the central

nervous system, Cr and PCr are involved in maintaining the high energy levels necessary for

the maintenance of membrane potentials, ion gradients, calcium homeostasis, and intracellu-

lar signalling [46]. Cr has also been observed as a potential modulator of neurotransmission

[15, 45]. The Cr peak measured by MR spectroscopy represents intracellular contributions

from both Cr and PCr (tCr). Rango et. al. have also discovered a transient decrease in PCr

after short bursts of visual stimulation, concluding that functional activation reduces PCr [47].

Furthermore, Cr is released from the neuron in an action potential dependent manner. An

increase in the resting membrane potential, induced by tDCS, may result in release of Cr from

the neuron to act as a co-transmitter. Early studies on rodents indicate Cr may modulate post-

synaptic neurotransmitters such as GABA, inhibiting its action [48, 49]. Release of Cr from

intracellular stores would decrease the measureable concentration of Cr.

A trend towards a decrease in absolute concentration of myo-inositol was also observed in

the current study. To our knowledge only one other study examined a change in myoinositol

after tDCS. Contrary to our results, Rango et al. observed an increase in the concentration of

myo-inositol 30 minutes after 1.5 mA of anodal tDCS to the right motor cortex [12]. The use

of different current levels, electrode montage, and area measured, could all contribute to this

discrepancy.

Table 1. Spectral quality and quantification: Characterization of spectral quality and voxel tissue composition.

Signal to noise ratio represents the intensity of the NAACH3 peak divided by the standard deviation of the baseline

noise after Fourier transformation of the initial 0.3 seconds. The linewidth represents the full width at half maximum

(FWHM) of the unsuppressed water signal. The water area represents the area of the unsuppressed water spectrum.

The voxel tissue partial volume is provided for gray matter (GM), white matter (WM) and cerebral spinal fluid (CSF).

Data is presented as mean ± standard error of the mean. Repeated measured t-tests were conducted on all spectral

parameters; no significant changes between sham and stimulation were observed.

Sham tDCS

Signal to noise ratio 78.9 ± 5.2 82.3 ± 4.6

Linewidth (Hz) 13.5 ± 1.2 13.6 ± 1.3

Water Area 4.8 ± 0.16 4.9 ± 0.02

GM Fraction 0.37 ± 0.01 0.37 ± 0.02

WM Fraction 0.53 ± 0.02 0.53 ± 0.03

CSF Fraction 0.09 ± 0.008 0.10 ± 0.009

https://doi.org/10.1371/journal.pone.0198053.t001

Table 2. Analysis of metabolic ratios: Metabolite ratios relative to total creatine. The p-values were calculated in

post-hoc analysis of individual metabolite ratios using paired t-tests.

Sham tDCS p-value

NAA/Cr 1.67 ± 0.03 1.73 ± 0.03 0.08

Cho/Cr 0.68 ± 0.02 0.67± 0.02 0.78

Myo/Cr 0.72 ± 0.02 0.72 ± 0.02 0.79

Glu/Cr 0.71 ± 0.06 0.79 ± 0.07 0.21

GSH/Cr 1.28 ± 0.05 1.40 ± 0.06 0.21

https://doi.org/10.1371/journal.pone.0198053.t002

MRS of motor cortex after tDCS
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The observed association between ΔNAA and ΔtCr indicates that individuals that had a

decrease in NAA following tDCS relative to sham also had a decrease in tCr levels (Fig 4). One

possible explanation for the correlation between NAA and tCr is related to the neuronal

response to excitatory stimulation. Specifically, in response to excitatory potentials, glutamate,

NAAG, and creatine are released from the neuron in a Ca2+ dependent manner [15, 44]. A

change in visible tCr may occur for two reasons. First, when creatine is released, it acts on

GABAa receptors and consequently MRS visibility may be reduced. Second, in areas of high

energy demand, such as neuronal activation, PCr is used to convert adenosine diphosphate

(ADP) to adenosine triphosphate (ATP), reducing intracellular stores of PCr and increasing

Cr [15, 17, 45, 49]. A change in NAA may also occur for several reasons. First, NAA may be

used to synthesize NAAG for neurotransmission. Second, recent studies have linked NAA to

mitochondrial energy metabolism and indirectly to neuronal activation [50]. Third, in a study

by Yan et al., NAA was found to be involved in excitation of the neuron by acting on glutamate

receptors (mGluR) to induce an inward current [51]. Although the current study was not

Fig 3. Metabolic ratios–sham vs stim. tDCS increases NAA/tCr ratio when measured immediately after a 20 minute stimulation period (� p = 0.08). No difference was

observed in Glu/Cr. Error bars indicate SEM.

https://doi.org/10.1371/journal.pone.0198053.g003

Table 3. Analysis of absolute metabolic concentration: Absolute concentration of metabolites measured by MRS.

The p-values were measured by post-hoc analysis of individual metabolites using paired t-tests.

Metabolite Sham tDCS tDCS p-value

NAA (mM) 16.2 ± 0.65 15.6 ± 0.46 0.40

Cho (mM) 2.4 ± 0.1 2.3 ± 0.11 0.14

Myo (mM) 6.4 ± 0.28 5.9 ± 0.24 0.08

tCr (mM) 10.9 ± 0.4 10.1 ± 0.3 0.07

Glu (mM) 7.9 ± 0.71 8.2 ± 0.79 0.69

GSH (mM) 2.4 ± 0.18 2.4 ± 0.13 0.88

https://doi.org/10.1371/journal.pone.0198053.t003

MRS of motor cortex after tDCS
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designed to elucidate the biological basis for the observed association between NAA and tCr,

previous studies have shown that both metabolites do have roles in neuronal excitation.

The after effects of tDCS are thought to be dependent on alterations of the membrane

potential and changes in glutamate and GABA signalling, relating to synaptic plasticity [3, 6].

As such, we expected to observe changes in glutamate and GABA following tDCS. However,

the literature presents conflicting results [7, 10–12, 17, 19, 52, 53]. In a study observing metab-

olite concentration both during and after tDCS, Bachtiar et. al. observed a significant decrease

of GABA concentration in left M1 after anodal tDCS to the same area compared to sham, but

no differences between sham and anodal tDCS during the stimulation period [52]. This indi-

cates that the alteration of neurotransmitters that occurs due to tDCS is predominantly evident

after the stimulation period. It is possible that our measurement of metabolite concentration

occurred outside the optimal window of neurotransmitter modulation, and instead we

observed upstream events. Further studies are required to identify the mechanism by which

GABA and Glu are altered to enhance or depress synaptic activity and the optimal time to

observe the peak change in these neurotransmitters.

The current study is the first to measure metabolite concentrations of the motor cortex

using a bihemispheric montage in an ultra-high-field MRI (7T). Currently, there are only two

studies that have examined the metabolism of the motor cortex following tDCS at 7T, both

using the conventional M1-supraorbital (unihemispheric) montage, and both stimulating out-

side of the scanner [7, 18]. Both studies examined the effects of 1 mA of cathodal stimulation

over left M1 for 15 [18] and 10 [7] minutes with differing results. Stagg et. al. found a decrease

in Glu/Cr after cathodal stimulation, while Kim and colleagues reported no significant change

in Glu concentration following cathodal stimulation. Kim et. al. did report a significant reduc-

tion in GABA following anodal stimulation, and no changes in other key metabolites [18]. The

Fig 4. NAA and tCr coupling. The association between the Δ in the absolute concentration of NAA and tCr

(stimulation − sham). We observed a strong, positive correlation, indicating NAA and tCr both change in the same

direction after stimulation (R2 = 0.64, p<0.001).

https://doi.org/10.1371/journal.pone.0198053.g004
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current study applied 2 mA of current for 20 minutes. It has recently been shown that cathodal

stimulation, which is believed to be inhibitory, reverses its polarity at 2 mA and becomes excit-

atory [9]. The higher current used in our study compared to previous studies may explain the

differing results. Increasing the current to 2 mA delays the time of peak metabolic change

from immediately after stimulation, to up to 90–120 minutes after stimulation [9]. This delay

may explain why we did not observe changes in Glu and GABA in the current study.

Only one other study has examined bihemispheric (M1-M1) tDCS on motor cortex metab-

olism [19]. Using this montage, and 1mA of current for 20 minutes, Tremblay and colleagues

reported no significant modulation in any metabolite concentration at 3T [19], consistent with

the current study. They concluded that the complex relationship between excitatory and inhib-

itory mechanisms within and between the primary motor cortices resulted in high inter indi-

vidual variability and response to tDCS stimulation. The ultra-high field MRS used in the

current study provided greater signal to noise ratio and spectral dispersion compared to Trem-

blay et al.,[19] increasing metabolite measurement precision. This greater measurement preci-

sion may be responsible for the observation of trends towards increased NAA/tCr and

decreased tCr in the current study.

Although there have been few studies observing the metabolic and functional changes fol-

lowing M1-M1 tDCS, the current study is the first to incorporate the SMA as a potential target

for bihemispheric tDCS. The SMA has been studied as a potential tDCS target in behavioural

studies of posture and visuomotor learning [28, 54]. Its anatomical positioning and strong

connections to M1 make it a well-suited target for motor network modulation. In addition, the

SMA has strong efferent connections to the corticospinal tract, making it an ideal candidate as

a target for neurorehabilitation [27]. Various studies have shown the importance of the SMA

and associated non primary motor areas after brain or spinal cord injury [24–26]. Neural

recruitment is an important aspect of recovery. SMA should be considered to enhance synaptic

connections of bilateral M1, subcortical structures, and further downstream to the corticosp-

inal tract.

One important limitation of the current study was the omission of a within session baseline

measurement. The MRS data acquired for this study was part of a longer imaging protocol that

incorporated anatomical and resting-state fMRI measurements (to be published elsewhere).

Therefore, time constraints prevented the inclusion of a baseline spectroscopy measurement.

However, the cross-over design of this study including a separate spectroscopy measurement

during sham stimulation on a separate day has previously been shown to be an acceptable

approach [30]. However, the inclusion of a baseline measurement in the future would likely

reduce inter-subject variability. A recent study at 7T has provided estimates of the reliability of

metabolite measurements taken on separate days (31). In addition, a comparable protocol,

using a sham control without baseline measurements observed no changes in metabolite con-

centration after 1 mA of bilateral dorsolateral prefrontal cortex (DLPFC), measured from the

left DLPFC [11]. Another limitation of the current study is that metabolite measurements

were not made in the SMA, again due to time constraints. Future studies would also benefit

from examining metabolite changes in this brain region following stimulation. Finally, the cur-

rent study was not designed to examine GABA levels. Although, previous studies have shown

changes in GABA concentration, we were not able to measure GABA with sufficient reproduc-

ibility using the spectroscopy method applied in the current study. Future studies using GABA

editing methods could help elucidate the modulation of GABA by tDCS.

In conclusion, bihemispheric transcranial direct current stimulation with anode over SMA

and cathode over M1 was safely applied during 7T MRI for 20 minutes at 2 mA. Immediately

following stimulation there were no changes in metabolite levels measured by 1H MR spectros-

copy of the left primary motor cortex in this sham controlled cross-over study. However, when
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comparing stimulation to sham conditions, there was a significant positive association

between the change in N-acetyl aspartate and the change in creatine in the same region.
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