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Abstract 1 

Most listeners have an implicit understanding of the rules that govern how music unfolds over time. This 2 

knowledge is acquired in part through statistical learning, a robust learning mechanism that allows 3 

individuals to extract regularities from the environment. However, it is presently unclear how this prior 4 

musical knowledge might facilitate or interfere with the learning of novel tone sequences that do not 5 

conform to familiar musical rules. In the present experiment, participants listened to novel, statistically 6 

structured tone sequences composed of pitch intervals not typically found in Western music. Between 7 

participants, the tone sequences either had the timbre of artificial, computerized instruments or familiar 8 

instruments (piano or violin). Knowledge of the statistical regularities was measured as by a two-9 

alternative forced choice recognition task, requiring discrimination between novel sequences that 10 

followed versus violated the statistical structure, assessed at three time points (immediately post-training, 11 

as well as one day and one week post-training). Compared to artificial instruments, training on familiar 12 

instruments resulted in reduced accuracy. Moreover, sequences from familiar instruments – but not 13 

artificial instruments – were more likely to be judged as grammatical when they contained intervals that 14 

approximated those commonly used in Western music, even though this cue was non-informative. 15 

Overall, these results demonstrate that instrument familiarity can interfere with the learning of novel 16 

statistical regularities, presumably through biasing memory representations to be aligned with Western 17 

musical structures. These results demonstrate that real-world experience influences statistical learning in a 18 

non-linguistic domain, supporting the view that statistical learning involves the continuous updating of 19 

existing representations, rather than the establishment of entirely novel ones.  20 

 21 
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1 Introduction 1 

Imagine that you have been tasked with visiting an alien civilization to learn its language, 2 

customs, and cultural practices. Upon arriving, you are bombarded with completely unfamiliar sights and 3 

sounds, with no translator to help you make sense of your new environment. How can you hope to learn 4 

anything in such a seemingly impossible situation? This farfetched scenario resembles the challenges 5 

faced by infants, who must figure out a new system of complex rules and regularities without a priori 6 

knowledge of what environmental features are informative. Statistical learning – commonly defined as the 7 

process of becoming sensitive to patterns in the environment – has been proposed as a powerful and 8 

domain-general learning mechanism that allows individuals to implicitly pick up on these kinds of 9 

regularities in their environments (e.g., see Saffran & Kirkham, 2018). This sensitivity to statistical 10 

regularities allows learners to discover higher-order structure in an unsupervised manner (Fiser & Aslin, 11 

2001), and has been proposed to underlie the learning of regularities in both language and music 12 

(McMullin & Saffran, 2004). The seminal observation that eight-month-old infants can track statistical 13 

patterns in a stream of continuous speech (Saffran et al., 1996) and musical tones (Saffran et al., 1999) 14 

further highlights the potential importance of statistical learning in the initial development of relevant 15 

units in both language (e.g., words and syntax) and music (e.g., melodic and harmonic sequences). 16 

Given that statistical learning facilitates the learning of perceptual structures in the environment, 17 

researchers studying statistical learning often design their stimuli to be novel (i.e., unlikely to have been 18 

encountered outside of the experimental context), to minimize the possibility of prior learning influencing 19 

the results. For example, linguistic statistical learning paradigms typically involve presenting learners 20 

with sequences composed of trisyllabic nonsense words that do not resemble existing words in the 21 

learners’ own language (e.g., bidaku).  Learning is then assessed by a post-exposure test, in which 22 

participants are asked to discriminate between target items (from the exposure period) and foil items, 23 

composed of individual units presented in a different order (e.g., Saffran et al., 1996). In non-linguistic 24 

statistical learning paradigms that use tone sequences, the relative pitches in the sequence are often 25 

carefully selected to not overlap with any Western musical scales, in order to reduce the possibility that 26 

previously acquired knowledge will systematically influence learning (e.g., Loui, 2012; Loui & Wessel, 27 

2008; though see Saffran et al., 1999). Similarly, visual statistical learning paradigms often use abstract 28 

geometric shapes that cannot be readily labeled in order to minimize the role of prior experience (Turk-29 

Browne et al., 2005).  30 

However, despite these careful considerations to make the items novel in statistical learning 31 

paradigms, prior knowledge may still have an impact on learning outcomes. Listeners in statistical 32 

learning experiments unavoidably have extensive expertise in relevant domains, such as language and 33 
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music (e.g., Bigand & Poulin-Charronnat, 2006; Ettlinger, Margulis, & Wong, 2011; Rohrmeier & 1 

Rebuschat, 2012). Even infant listeners cannot be viewed as entirely naïve to the underlying statistical 2 

structures of their environments (e.g., Kuhl, 2000, 2004; Werker & Tees, 1984, 1999). Although 3 

researchers’ use of novel sequences in statistical learning tasks is an attempt to minimize the role of pre-4 

existing memory representations, the stimuli to be learned may still overlap considerably with 5 

individuals’ prior experiences accumulated outside of the lab.  6 

In particular, linguistic statistical learning paradigms have displayed some puzzling patterns of 7 

results that suggest prior knowledge does indeed influence learning (Frost et al., 2019). For example, 8 

Siegelman and Frost (2015) found that individuals displayed stable statistical learning performance within 9 

separate visual and auditory tasks, yet performance across modalities and tasks was essentially 10 

uncorrelated. Such independence of learning across domains is especially perplexing given that statistical 11 

learning is commonly described as a domain-general learning mechanism (e.g., Saffran & Kirkham, 12 

2018), though the extent to which statistical learning is considered a unified learning mechanism is 13 

debated (e.g., see Endress & Bonatti, 2016; Thiessen, 2017; Zhao et al., 2011). Perhaps even more 14 

striking, Erickson, Kaschak, Thiessen, and Berry (2016) examined auditory statistical learning using 15 

different “languages” (syllable collections) and found stable test-retest performance within a language, 16 

yet the correlation between languages was surprisingly low and not significant.  Finn and Hudson Kam 17 

(2008) also showed that statistical learning did not occur if the nonsense words in the speech stream were 18 

phototactically impossible in English. Once again, such large syllable-based effects suggest that learning 19 

is more context dependent than typically thought. Prior linguistic knowledge has also been shown to 20 

interfere with other aspects of language learning. For instance, Finn and Hudson Kam (2015) found that 21 

adults’ native language knowledge interferes with learning morphological variation in a novel, 22 

unsegmented language. In this sense, prior knowledge of phonotactics can have a cascading impact, 23 

influencing word segmentation and the perception of morphological variation that relies upon proper 24 

segmentation. 25 

 Siegelman et al. (2018) propose that “entrenchment” may account for these results. The principle 26 

of entrenchment suggests that the validity of tabula rasa assumptions in a statistical learning paradigm 27 

may depend on how closely the learning task engages prior knowledge. In the case of learning sequences 28 

of abstract geometric shapes or novel fractal images (Schapiro et al., 2016; Turk-Browne et al., 2005), the 29 

tabula rasa assumptions may be more valid, as individuals do not typically encounter sequences of 30 

discrete, static geometric patterns outside of experimental contexts. In contrast, in the case of learning 31 

novel linguistic structures (e.g., Saffran et al., 1996), adult listeners have already accrued vast amounts of 32 

linguistic experience outside of the experiment and thus may show more variable or idiosyncratic 33 
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performance compared to a less “entrenched” domain.  For example, some novel “words” in an artificial 1 

language may closely align with the phonotactic regularities of the participant’s native language, and thus 2 

be more easily learned than items that do not conform to the native language. Prior knowledge and 3 

expectations about linguistic units thus appear to have a measurable influence on statistical learning 4 

performance. 5 

 Despite growing evidence that prior knowledge influences language-based statistical learning 6 

tasks, it is presently unclear whether statistical learning in non-linguistic domains is similarly influenced 7 

by prior knowledge. This question is of theoretical and practical importance to the understanding of 8 

statistical learning. If statistical learning is influenced by prior knowledge in a non-linguistic domain, this 9 

suggests that statistical learning may be more broadly conceptualized as a process of continuously 10 

updating acquired representations. In other words, the assumption that statistical learning reflects 11 

“isolated” learning, as opposed to some interaction between learning and pre-existing long-term memory 12 

representations, may only be tenable under limited and artificial experimental circumstances. 13 

Furthermore, examining how prior knowledge influences statistical learning of non-linguistic stimuli will 14 

also inform the degree to which findings from language paradigms generalize to other domains.  15 

 In the present study, we tested whether prior knowledge influences statistical learning 16 

performance outside of a linguistic context by using sequences of discrete tones that may invoke listeners’ 17 

prior musical knowledge. Music is an excellent parallel system to language to assess the domain 18 

generality of “entrenchment” in statistical learning. Both theoretical and empirical work has demonstrated 19 

that listeners are sensitive to the statistical input of their musical environments, just as in the speech 20 

domain (McMullin & Saffran, 2004). In fact, the observation that listeners show similar performance in  21 

statistical learning and artificial grammar learning paradigms when linguistic stimuli are replaced with 22 

tones was foundational to the understanding of statistical learning as a more domain-general process (e.g., 23 

Loui, Wessel, & Hudson Kam, 2010; Saffran, Johnson, Aslin, & Newport, 1999). Additionally, listeners 24 

typically develop a rich understanding of musical structures implicitly – i.e., from mere exposure, without 25 

explicit musical training (Tillmann & Bigand, 2000). For example, listeners can implicitly learn several 26 

musical features, including timbre and melodic pitch relationships, from their listening environments 27 

(e.g., see Rohrmeier & Rebuschat, 2012). 28 

Another important parallel between language and music is that perceptual and memory processes 29 

within both systems are strongly shaped by experience. In speech, infants display an initial ability to learn 30 

phonetic contrasts found across all languages, but this perceptual sensitivity gradually becomes tuned 31 

specifically to the phonetic contrasts experienced within the first year of development (Kuhl et al., 1992; 32 

Stager & Werker, 1997; Werker & Tees, 1984). This perceptual narrowing can result in an inability to 33 



FAMILIARITY INFLUENCES STATISTICAL LEARNING  6 
 

 

perceive specific contrasts that are not used in one’s primary language (e.g., differentiating /r/ and /l/ in 1 

Japanese). Once adulthood has been reached, even extensive perceptual training generally produces only 2 

modest improvements in perceptual classification (Bradlow et al., 1997; Lim & Holt, 2011; Lively et al., 3 

1993). Similar processes have been described in music, specifically in the domains of pitch and rhythm 4 

perception. Western infants are equally adept at detecting whether a musical sequence contains an 5 

incorrect (mistuned) note, regardless of whether they are listening to Western or Javanese scales; in 6 

contrast, Western adult listeners are significantly better at detecting deviant notes in the context of 7 

Western scales (Lynch et al., 1990; Lynch & Eilers, 1992). Infants additionally display early preferences 8 

for the musical meter of their own culture (Soley & Hannon, 2010) and patterns of culture-specific 9 

learning that emerges over the first year of life (Hannon et al., 2012; Hannon & Trehub, 2005a, 2005b). 10 

Importantly, similar to perceptual narrowing in speech perception, the culture-specific knowledge of 11 

adults appears to be extensive and might interfere with the learning of novel rhythmic information 12 

(Hannon & Trehub, 2005b). Taken together, these results suggest that our perceptual experiences of the 13 

world are continually narrowed and refined to align with the experiences we have accumulated in both 14 

speech and music. Thus, the extent to which statistical learning sequences overlap with this prior 15 

knowledge should influence performance in both language- and tone-based statistical learning paradigms.  16 

However, experimental variability across previous studies has made it difficult to systematically 17 

assess how prior knowledge and experience influence tonal sequence learning, if at all. Specifically, the 18 

constituent tone frequencies sometimes adhere to conventional musical note values (e.g., Saffran et al., 19 

1999) and sometimes are specifically tuned to avoid typical musical intervals (e.g., Loui et al., 2010). 20 

Most previous studies use timbres that are generally unfamiliar in musical contexts, such as sine tones 21 

(Loui & Wessel, 2008; Saffran et al., 1999), yet some studies use familiar timbres, such as that of a piano 22 

(e.g., Kuhn & Dienes, 2005; Leung & Dean, 2018). These inter-study differences make it difficult to 23 

quantify the relative effects of prior knowledge on learning efficacy.  24 

To address this issue, the present experiment directly assessed whether statistical learning of tone 25 

sequences is influenced by prior musical experience.  If so, we would expect that the extent of overlap or 26 

resemblance between experimental stimuli and musical elements heard outside the laboratory should 27 

influence learning. Specifically, we manipulated the timbre of the individual tones to either be unfamiliar 28 

(computer-synthesized specifically for this experiment, and unlikely to have been previously encountered) 29 

or highly familiar in a musical context (piano or violin). 30 

 31 

 32 
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1.1 Importance of Timbre in Music Processing 1 

Timbre is defined as the quality of a musical note that is not loudness or pitch; it is the quality 2 

that, for example, allows one to distinguish a middle “C” played on a piano from one played on an oboe. 3 

Several converging results suggest that timbre is an integral part of how tonal information is perceived 4 

(e.g., Hutchins et al., 2012) and remembered in melodic contexts (Schellenberg & Habashi, 2015; Weiss 5 

et al., 2012), suggesting that timbre might modulate the extent to which prior musical representations are 6 

brought online. First, expert musicians show enhanced perception for their primary instruments, which is 7 

accompanied by both cortical and subcortical neurophysiological changes (Margulis et al., 2009; Strait et 8 

al., 2012) and is driven in part by auditory-motor interactions (Lahav et al., 2005). Second, individuals 9 

with absolute pitch – the rare ability to name or produce a musical note without a reference (Takeuchi & 10 

Hulse, 1993) – consistently show timbre-specific effects in terms of speed and accuracy of note 11 

identification, with familiar timbres (e.g., piano) identified significantly faster and more accurately than 12 

other complex timbres (Bahr et al., 2005; Miyazaki, 1989; Van Hedger & Nusbaum, 2018; Vanzella & 13 

Schellenberg, 2010). Notably, even individuals without extensive musical training or absolute pitch have 14 

demonstrated some influence of instrumental timbre on judging whether an instrument is “in tune.” 15 

Musicians and non-musicians alike show a “vocal generosity effect,” characterized by more lenient 16 

judgments of tuning for notes with the timbre of a singing voice compared to a violin (Hutchins et al., 17 

2012). Most listeners are also able to judge when an isolated note is “in tune” according to conventional 18 

Western tuning standards, though only when judging familiar timbres; complex but non-musical timbres 19 

were not reliably differentiated based on tuning (Van Hedger et al., 2017). Taken together, these findings 20 

indicate that instrumental timbre invokes specific prior knowledge, influencing perceptual and memory 21 

processes, and thus may also influence statistical learning of novel tone sequences.  22 

1.2 Overview of Design and Predictions 23 

In the present experiment, we adopted the paradigm outlined by Durrant et al. (2011), which uses 24 

tonal intervals that are specifically designed to not overlap with previously learned musical categories. 25 

However, unlike Durrant and colleagues, we manipulated the timbre of the sequences. In our experiment, 26 

timbre was manipulated between participants such that individual tones had completely novel timbres 27 

(synthesized specifically for this experiment) or highly familiar timbres (produced by a standard musical 28 

instrument, either piano or violin). By keeping all other aspects of the experiment identical, we directly 29 

tested whether familiarity of a surface-level stimulus feature – in this case, timbre - influenced statistical 30 

learning performance. 31 
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All participants were exposed to a ~7 minute structured sequence of tones during training. After 1 

training, learning was tested via a two-alternative forced-choice task, in which participants heard two 2 

shorter tonal sequences on each trial and determined which one sounded grammatical (i.e., more similar 3 

to the longer sequence heard in training). Participants additionally rated their confidence in their answers. 4 

To determine the robustness of learning, we manipulated the extent to which the test sequences resembled 5 

those heard in training, in two primary ways. The first way was in terms of perceptual tone similarity. 6 

Specifically, test sequences could be composed of individual tones that were acoustically identical to 7 

those in the training sequence (“Specific Test”) or that varied in pitch and/or timbre (“Transfer Test”). 8 

The second way was in terms of grammatical adherence to the trained probabilistic structure, resulting in 9 

two levels of “Difficulty.” Specifically, some sequences contained a high number of expected tone 10 

transitions (comparable to the training sequence) whereas other sequences contained a relatively fewer 11 

number of expected tone transitions and thus can be considered more challenging assessments of learning, 12 

allowing us to assess participant sensitivity to the learned structure under “noisier” conditions. These 13 

learning tests were repeated three times: (1) immediately after training, (2) one day after training, and (3) 14 

at least one week after training.  15 

We hypothesized that instrument familiarity should influence statistical learning performance, 16 

given the integral relationship between instrumental timbre and the activation of specific musical 17 

representations, although the effect could go in either direction. It is possible that familiar instruments 18 

might improve overall statistical learning performance, similar to findings outside the music domain 19 

showing that source familiarity improves performance (e.g., familiar talkers leading to better 20 

intelligibility for novel linguistic phrases; Holmes et al., 2018; Johnsrude et al., 2013; Nygaard & Pisoni, 21 

1998). In the context of the present experiment, it could be the case that familiar instruments allow 22 

listeners to scaffold upon existing representations to better encode and remember the novel sequences, 23 

despite the fact that the sequences are designed to not overlap with typical musical intervals. In the 24 

present paradigm, this could manifest in terms of higher overall accuracy for participants trained with 25 

familiar instruments, in addition to better generalization (e.g., to a different frequency range) and better 26 

retention of learning over time.  27 

Alternatively, it is possible that familiar instruments may attenuate overall statistical learning 28 

performance. This could occur because the use of familiar instruments might more strongly evoke 29 

previously learned musical structures, ultimately resulting in the misperception of the novel tonal 30 

sequences. This misperception could manifest in the moment of hearing the sounds, which would be 31 

consistent with a framework of categorical perception (e.g., Liberman & Mattingly, 1985; Siegel & 32 

Siegel, 1977). However, even in the absence of classic categorical perception effects, listeners might form 33 
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weaker and/or biased long-term memory representations of the true intervallic relationships when played 1 

on a familiar instrument, as the memory representations would be more likely to be warped to align with 2 

Western musical structures in the time since training (cf. Bartlett, 1932). In contrast, the artificial 3 

instruments – which were generated specifically for the purpose of this experiment – might not activate 4 

categorical representations for listeners, as these sounds presumably would not evoke prior musical 5 

representations to the same extent as familiar instruments. In the present paradigm, this could manifest in 6 

terms of lower overall accuracy for participants trained with familiar instruments, in addition to worse 7 

generalization and a more severe loss of learning in the time since training. Additionally, the association 8 

between confidence ratings and accuracy might be weakened, ostensibly because participants might 9 

conflate instrument familiarity with sequence familiarity. Finally, if familiar instruments lead to 10 

misperceiving the novel tonal sequences to be in line with existing musical representations, participants 11 

may be more likely to judge a sequence as grammatical if it happens to contain elements that resemble 12 

familiar music (such as familiar Western intervals), even if these cues are orthogonal to the grammatical 13 

structure. 14 

If statistical learning performance is influenced by instrument familiarity, this would advance our 15 

understanding of how prior knowledge influences statistical learning in two ways. First, it would suggest 16 

that knowledge entrenchment in statistical learning is not limited to linguistic paradigms. Second, it 17 

would suggest that prior knowledge is activated dynamically based on the extent to which the statistical 18 

learning stimuli overlap with previously acquired knowledge structures (i.e., implying that the influence 19 

of prior knowledge can be modulated by context – in this case, the timbre of the sequence). In other 20 

words, it would suggest that timbral cues are a critical component for learning, not simply a surface-level 21 

feature that is stripped away in service of forming a more abstract memory representation.  22 

 23 

2 Method 24 

2.1 Participants 25 

We recruited 200 participants through Amazon’s Mechanical Turk (MTurk), an online 26 

crowdsourcing platform. Participants were recruited via Turk Prime, which was recently rebranded as 27 

CloudResearch (Litman et al., 2017). CloudResearch is a service that interfaces with MTurk and allows 28 

for additional participant recruitment control. Participants had to be residing in the United States or 29 

Canada and had to have a minimum 90% approval rating from at least 100 prior assignments to qualify. 30 

All participants gave consent through checking a box on the computer screen and were compensated for 31 

their participation. Participants were assigned either to the Artificial Instrument Training Group (n = 32 
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100), which used an unfamiliar timbre (see below), or the Familiar Instrument Training Group (n = 100), 1 

determined by the order run. Both conditions were run within six weeks of each other, with the Artificial 2 

Instrument Training Group run first (early June 2019) and the Familiar Instrument Training Group run 3 

second (mid July 2019). Two participants’ data in the Familiar Instrument condition were not successfully 4 

sent to the data server, resulting in 98 participants. The research protocol was approved by Western 5 

University’s Non-Medical Research Ethics Board.   6 

2.2 Tone Sequence Description 7 

The sequences used in the present experiment were modeled on those described in Durrant et al. 8 

(2011) and consisted of intervals not heard in Western tonal music. In contrast to Western music, in 9 

which an octave is divided into twelve equal steps, our experimental tonal system divided the octave into 10 

five equal steps. The difference between individual notes can be quantified by a logarithmic unit known as 11 

cents. Adjacent notes in Western music are separated by 100 cents, whereas adjacent notes in our 12 

experimental tonal system are separated by 240 cents. Situating this interval size in the context of 13 

Western music, if one were to establish the starting note of this novel tuning system as an “A,” the next 14 

note in the system would be unplayable (at least on an instrument like the piano), as it would fall between 15 

the notes B and C.  16 

These five tones formed the foundation of the statistical sequences. Similar to Durrant et al. 17 

(2011), the sequences were structured with a second-order Markov chain. This means that the prior two 18 

tones of the sequence determined the probability of hearing the next tone. The longer tone sequences used 19 

in training adhered to a high probability transition matrix (Figure 1A), in which the prior two tones were 20 

highly predictive of the third tone (90%). For example, if the tone sequence started with repeats of tone 1 21 

(i.e., the first row in Figure 1A), then tone 4 would be 90% likely to occur. If tone 4 indeed occurred, then 22 

there would be a 90% probability of hearing tone 1 next (as the prior two tones would be tone 1 and tone 23 

4 – i.e., the fourth row in Figure 1A). The test sequences, which were meant to assess learning during 24 

training, could either be constructed from the same high probability transition matrix as the training 25 

stimuli (Figure 1A) or a lower probability transition matrix (prior two tones are 65% predictive rather 26 

than 90%; Figure 1B). Each test sequence was paired with a “non-grammatical” sequence, which was 27 

generated from a uniform transition matrix (Figure 1C), in which the prior two tones of the sequence 28 

could not be used to predict the next tone. 29 

2.3 Materials 30 

The experiment was coded in jsPsych 6 (de Leeuw, 2015). A Matlab script was used to generate 31 

second-order Markov chains according to a transition probability matrix (see Figure 1). These chains 32 
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were saved as an audio file (44.1 kHz, 16-bit depth; RMS normalized). There were two frequency ranges 1 

used in the experiment. The first (hereafter referred to as “low”) was identical to Durrant et al. (2011) (T1: 2 

261.63 Hz, T2: 300.53 Hz, T3: 345.22 Hz, T4: 396.55 Hz, T5: 455.52 Hz), whereas the second (hereafter 3 

referred to as “high”) was shifted up in pitch by 50% (T1: 392.45 Hz, T2: 450.80 Hz, T3: 517.83 Hz, T4: 4 

594.83 Hz, T5: 683.28 Hz). Each individual tone was 200ms in duration. 5 

The two unfamiliar instrumental timbres were synthesized in Matlab and designed to be distinct 6 

from one another, both in terms of amplitude envelope (Figure 2A) and harmonic spectrum (Figure 2B). 7 

The first unfamiliar instrument (Artificial 1) had a tapered cosine envelope with a 50ms rise and decay. 8 

The second unfamiliar instrument (Artificial 2) had a 10ms linear rise combined with an exponential 9 

decay window. Both Artificial 1 and Artificial 2 were synthesized with seven harmonics; however, these 10 

harmonic series did not overlap (Artificial 1 consisted of harmonics 2, 3, 6, 7, 10, 11, and 13, whereas 11 

Artificial 2 consisted of harmonics 1, 4, 5, 8, 9, 12, and 14).  Sample sequences generated from Artificial 12 

1 and Artificial 2 can be heard accessed via Open Science Framework (Artificial 1: https://osf.io/67sca; 13 

Artificial 2: https://osf.io/emx8g). 14 

 The familiar instruments were sampled from a sound library associated with Reason 4 software 15 

(Propellerhead: Stockholm). We selected a piano and violin as the two familiar instruments, as these are 16 

both common instruments heard across a variety of musical genres, while still having distinct envelopes 17 

and harmonic spectra (see Figure 2C-D; Patil, Pressnitzer, Shamma, & Elhilali, 2012). Moreover, the 18 

piano and violin have been previously shown to activate implicit representations of Western intonation 19 

(Van Hedger et al., 2017).  The specific piano and violin samples that we selected also shared similarities 20 

in amplitude envelope with the unfamiliar instruments. To quantify this relationship between our artificial 21 

and familiar instruments, we correlated the amplitude envelopes, extracted using a Hilbert transform, for 22 

all timbres (Artificial 1, Artificial 2, piano, violin). The strongest correlations were between Artificial 2 23 

and piano (r = .66), followed by Artificial 1 and violin (r = .60). For comparison, all other correlations 24 

ranged between r = .32 and .44.  Given the non-standard tuning of the constituent tones, the tuning setting 25 

was adjusted in Reason to achieve the desired frequency (e.g., 300.53 Hz could be represented as D4 + 40 26 

cents). Individual tones were exported as audio files and then imported into Matlab to generate the test 27 

and training sequences. 28 

 29 

 30 

 31 

 32 
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Figure 1: Transition matrices underlying the construction of the tone sequences for high grammatical (A), 1 
low grammatical (B), and ungrammatical (uniform) sequences (C). 2 

 3 

Note: The row indexes the last two tones that have occurred, the column indexes the next tone that could 4 
occur, and the value gives the probability of this transition. For example, if listeners heard Tone 5 5 
followed by Tone 5 (final row), there would be a 90% probability of hearing Tone 3 in the high 6 
grammatical sequences (A), a 65% probability of hearing Tone 3 in the low grammatical sequences (B), 7 
and a 20% probability of hearing Tone 3 in the ungrammatical (uniform) sequences (C). Training 8 
sequences always adhered to the high grammatical probabilities in panel A.  9 

 10 

The training sequence contained 2000 tones, corresponding to a duration of 6 minutes and 40 11 

seconds. This sequence was subdivided into smaller sequences consisting of 200, 400, 600, and 800 12 

tones, which allowed us to incorporate a behavioural task designed to ensure task compliance and monitor 13 

participants’ attention (see Section 2.5 for details). The sequences used for testing consisted of 22 notes 14 

(4.4 seconds in duration) which resulted in 20 transitions that could either adhere to or violate the 15 

transition matrix. The high grammatical test sequences consisted of 17, 18, or 19 high-probability 16 
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transitions, generated with the transition matrix in Figure 1A. The low grammatical test sequences 1 

consisted of 12, 13, or 14 high-probability transitions, generated with the transition matrix in Figure 1B. 2 

The inclusion of both high and low grammatical trials parallels Durrant et al. (2011) and increases the 3 

sensitivity of the test by probing performance across a range of difficulty levels. The ungrammatical 4 

stimuli were generated with a uniform transition probability matrix (i.e., there was a 20% probability of 5 

hearing any of the five tones), represented in Figure 1C. As such, although some of the transitions in the 6 

ungrammatical sequences adhered to the second-order Markov transitions displayed in Figures 1A-B, 7 

these occurred much less frequently than in the high and low grammatical sequences, and the mean 8 

number of “grammatical” transitions was constrained to be 20% (M = 4.00, SD = 1.68, range: 0 to 8). 9 

Figure 3B provides samples of each type of grammatical sequence (high, low, and ungrammatical) 10 

generated by the transition matrices from Figure 1. The training sequences always adhered to the high 11 

grammatical transition matrix. During testing, either a high or low grammatical sequence was always 12 

paired with an ungrammatical sequence. 13 

The high, low, and ungrammatical sequences were well matched on general contour and interval 14 

measures (see Supplementary Material 1: Analysis of Contours and Intervals in Test Sequences). In 15 

particular, the three stimulus types did not differ in terms of (1) the number of tone repeats, (2) the total 16 

number of ascending intervals, (3) the total number of descending intervals, (4) mean interval size, (5) 17 

standard deviation of the interval size, (6) the distribution of specific intervals, or (7) first-order (i.e., 18 

tone-to-tone) transitions, represented in terms of general contour and specific interval size. The fact that 19 

the three stimulus types were matched on these contour and interval attributes means that participants 20 

could not rely on more local cues (e.g., the number of times a tone repeated, the relative distribution of 21 

large and small interval changes) to accurately judge whether a sequence was grammatical or not. This is 22 

important to note given that prior grammar sequence learning studies have discussed that patterns of 23 

repetition may alert individuals to the grammar category of a test sequence (Brooks & Vokey, 1991; 24 

Tunney & Altmann, 2001), including within atonal auditory sequences (Endress et al., 2007).  25 

 26 

 27 

 28 

 29 

  30 
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Figure 2: Visualization of the auditory stimuli used in the experiment.  1 

 2 

Note: (A) Amplitude envelope (left) and harmonic spectrum (right) of the artificial tones. (B) Amplitude 3 
envelope (left) and harmonic spectrum (right) of the familiar tones. 4 

 5 

2.4 Procedure 6 

After providing informed consent, participants completed an auditory calibration and headphone 7 

assessment. First, participants were presented with a 30-second pink noise, root-mean-square normalized 8 

to the same level as the auditory sequences and were asked to adjust their computer’s volume to a 9 
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comfortable listening level. Next, participants completed a short headphone assessment in which, on each 1 

trial, they judged which of three sounds was quietest (see Woods, Siegel, Traer, & McDermott, 2017). 2 

The sounds were designed such that the loudness judgments should be easy when wearing headphones 3 

but difficult if participants were listening over standard computer speakers. There were six trials in total. 4 

 Participants then completed the main statistical learning task (Figure 3). Participants were first 5 

introduced to the training component of the experiment. The instructions stated that participants would 6 

hear a long sequence of tones, which may sound like an unfamiliar melody. The training sequence was 7 

generated from the high grammatical transition matrix shown in Figure 1A, meaning the prior two tones 8 

of the sequence would result in the “expected” transition 90% of the time. Participants were instructed to 9 

monitor this sequence for interruptions – i.e., periods of silence that could last up to ten seconds. 10 

Whenever participants heard such an interruption, they were instructed to press the spacebar as quickly as 11 

possible. If participants did not press the spacebar within ten seconds, the experiment advanced 12 

automatically, and the trial was marked as a timeout. There were four “interruption-detection” trials, 13 

corresponding to the breaks between the subdivided audio files for training (200, 400, 600, and 800 14 

tones). As such, the shortest span of time between responses was 40 seconds (for the 200-tone audio file) 15 

and the longest span of time between responses was 2 minutes 40 seconds (for the 800-tone audio file). 16 

The four audio files were presented randomly. This interruption-detection task was implemented given 17 

our Internet-based sample, which precluded direct participant monitoring. Performance on this 18 

interruption-detection task was used to cull participants from the primary analyses (See Section 2.5). 19 

Within each instrument training group (Artificial, Familiar) the instrument (e.g., Artificial 1 vs. Artificial 20 

2 or piano vs. violin) and pitch level (low vs. high) for the training sequence was randomly assigned 21 

across participants. Thus, there were eight total between-participant combinations of the training sounds 22 

(Artificial Instrument condition: Artificial 1/high, Artificial 1/low, Artificial 2/high, Artificial 2/low, 23 

Familiar Instrument condition: piano/high, piano/low, violin/high, violin/low).  24 

 Following training, participants completed the Specific Test, which used the same instrument and 25 

pitch level as the training sequence, and a two-alternative forced-choice (2AFC) procedure (Figure 3C). 26 

On each trial, participants heard two shorter sequences of tones, with one of the two sequences being 27 

grammatical (either high or low), and the other sequence being ungrammatical After hearing both 28 

sequences, participants indicated which alternative (first or second) sounded more like the training 29 

sequence. Participants then rated their confidence on a three-point scale (complete guess, somewhat 30 

confident, and extremely confident). Although the resolution of the confidence judgments was coarse, it 31 

provided a means of assessing whether participants had accurate meta-cognition of their judgments (e.g., 32 

whether “complete guess” trials were indeed at chance or whether accuracy increased with confidence). 33 
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There were 24 trials in the Specific Test (12 trials in which the correct answer was a high grammatical 1 

sequence and 12 trials in which the correct answer was a low grammatical sequence), with the 2 

grammatical sequence as the first alternative 50% of the time. The Specific Test included a simple 3 

auditory attention check (in which an audio file played and notified participants to click on one of three 4 

labeled buttons presented on the screen). 5 

 Participants then completed the Transfer Test, which was also a 2AFC procedure but was three 6 

times as long, as it consisted of three subtests, with trials in which both alternatives were: (1) sequences 7 

that differed in timbre but had the same auditory frequency range as training (Transfer/Timbre Test); (2) 8 

sequences that had the same timbre as the training but had an auditory frequency range shifted 50% 9 

relative to training (Transfer/Pitch Test), and (3) sequences that differed in timbre and also had a 50% 10 

shifted auditory frequency range compared to the training (Transfer/Timbre-Pitch Test). Trials from these 11 

three conditions were presented in random order within the Transfer Test. Participants were explicitly 12 

instructed that the sequences could differ in timbre or auditory frequency (framed to the participants in 13 

terms of instrument and pitch height, respectively) compared to the previous parts of the experiment. 14 

However, the instructions also emphasized that, despite these differences, one of the two alternatives in 15 

each trial would still sound more like the training sequence. Each of the three conditions was tested with 16 

24 trials (12 trials in which the correct answer was a high grammatical sequence and 12 trials in which the 17 

correct answer was a low grammatical sequence), with the grammatical sequence in the first alternative 18 

50% of the time. The Transfer Test also included a simple auditory attention check (in which an audio file 19 

played and notified participants to click on one of three labeled buttons presented on the screen). 20 

 Following the Transfer Test, participants completed a basic demographic, language experience, 21 

music experience, and hearing assessment questionnaire. After this questionnaire, participants were 22 

redirected to Qualtrics, in which they completed a password-protected short-form version of the Raven’s 23 

Advanced Progressive Matrices (Arthur & Day, 1994). Participants were given 20 minutes to solve 12 24 

items from the Advanced Matrices Set.  25 

2.4.1 Follow-Up Sessions 26 

 Participants were invited to complete two follow-up sessions to assess retention of learning. The 27 

first follow-up (Session 1) was available between 24 and 48 hours after the initial session (Session 1), and 28 

the second follow-up (Session 3) was available one week after Session 1. The majority of participants in 29 

both the Artificial (41 of 51) and Familiar (46 of 53) Instrument Training Groups completed Session 3 the 30 

day it became available (i.e., seven days post-training; M ± SD: 7.27 ± 0.77 days, range of 7 to 12 days). 31 

The procedure was similar to Session 1, with the key difference being that the two follow-up sessions did 32 
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not include training. After providing informed consent, participants completed a basic volume adjustment 1 

and headphone assessment. Following this auditory calibration, participants completed the Specific Test 2 

(which used the same instrument / pitch combination that the participant experienced in training of 3 

Session 1). After the Specific Test, participants completed the Transfer Tests (Transfer/Timbre, 4 

Transfer/Pitch, Transfer/Pitch-Timbre). The tests in Sessions 2 and 3 were identical in structure to the 5 

ones administered in Session 1, although the specific note sequences were always novel, as we did not 6 

want memory for specific exemplars to influence performance (cf. Agus, Thorpe, & Pressnitzer, 2010). In 7 

Session 2, following the Transfer Tests, participants completed a questionnaire assessing their sleep 8 

duration and quality the previous night (i.e., to confirm that participants slept). There were no additional 9 

assessments following the Transfer Tests in Session 3. Data across sessions were linked via participants’ 10 

Amazon MTurk Worker IDs. Participants were compensated at the end of each session.  11 

 12 

 13 

 14 

  15 
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Figure 3: Overview of the training and testing procedure 1 

 2 

Note: Panel A outlines the flow of the experiment, in which participants first completed a training block 3 
consisting of 2000 tones that adhered to the high probability transition matrix. Following this training, 4 
participants completed two assessments of learning. The Specific Test used short test sequences that were 5 
identical in pitch and timbre to the training sequences. The Transfer Test used short test sequences that 6 
could differ in either pitch or timbre from the training sequence. Panel B provides samples of the different 7 
categories of test sequences. high grammatical (HG) sequences contained an average of 90% expected 8 
transitions, low grammatical (LG) sequences contained an average of 65% expected transitions, and 9 
ungrammatical (UG) sequences contained an average of 20% expected transitions. Expected transitions 10 
are printed in green. Panel C outlines the general procedure for the Specific and Transfer Tests. Each 11 
trial consisted of a forced-choice judgment, in which participants had to judge whether the first or second 12 
sequence sounded more like the training sequence. Participants also provided a confidence rating in their 13 
answer. 14 

 15 

2.5 Participant Culling 16 

The data were subjected to three culling considerations prior to full analysis. Failure to pass these 17 

considerations resulted in the participant being excluded from the analyses. The first consideration was 18 

that participants detected at least three of the four interruptions during the training sequence (i.e., 19 

achieved at least 75% accuracy). Ten participants in the Artificial Instrument condition and 14 20 

participants in the Familiar Instrument condition were discarded at this stage, leaving 90 analyzable 21 

participants in the Artificial Instrument Condition and 84 analyzable participants in the Familiar 22 

Instrument Condition. The majority of the remaining participants performed perfectly on the interruption-23 
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detection task (89 of 90 Artificial Instrument participants, 80 of 84 Familiar Instrument participants). The 1 

second consideration was that participants correctly answered at least one of the two auditory attention 2 

checks presented during the Specific and Transfer Tests. No additional participants were discarded based 3 

on this threshold. Overall, performance on the auditory attention checks was high (Artificial Instrument: 4 

88 of 90 analyzable participants correctly answered both checks; Familiar Instrument: 80 of 84 analyzable 5 

participants correctly answered both checks).  6 

The third consideration was that participants completed the entire experiment – i.e., all three 7 

experimental sessions. Of the 174 participants who completed Session 1 and passed the attention checks, 8 

132 participants completed Session 2 (Artificial: n = 73, Familiar: n = 59). A total of 104 participants 9 

successfully completed Session 3 (Artificial: n = 51, Familiar: n = 53). Given that our hypotheses related 10 

to how learned tonal sequences are remembered, only participants who completed all three sessions were 11 

considered in the primary analyses. Table 1 provides a comparison of participants who completed all 12 

testing sessions in both Instrument Training Groups. 13 

 14 

Table 1: Comparison of participants across instrument conditions 15 

Measure Artificial (n = 51) Familiar (n = 53) BF01 

Age (years) 37.16 ± 10.90 38.04 ± 11.20 4.48 

Gender (prop. female) 0.47 ± 0.50 0.51 ± 0.50 4.50 

Bachelor’s Degree (prop. yes) 0.43 ± 0.50 0.53 ± 0.50 3.13 

Num. Lang. (familiar with) 1.47 ± 0.70 1.53 ± 0.85 4.53 

Musician (prop. yes) 0.61 ± 0.49 0.51 ± 0.50 3.08 

Hearing Issues (yes) 0.04 ± 0.20 0.15 ± 0.36 0.90 

Raven’s Matrices (max. 12) 5.59 ± 2.55 5.15 ± 2.81 3.55 

Note: The BF01 reflects the relative evidence in favor of the null hypothesis. For example, comparing the 16 
mean ages of the two groups suggests that the null hypothesis is 4.48 times more likely than the 17 
alternative hypothesis that the groups differ in age. These analyses suggest that the two groups were well-18 
matched on all measured variables. Artificial: Artificial Instrument Condition, Familiar: Familiar 19 
Instrument Condition 20 

 21 

2.6 Data Analysis 22 

All analyses used generalized linear mixed-effects models (GLMMs) with a binomial link, given 23 

that performance on each trial was binary (i.e., correct / incorrect). The GLMMs were run in R (R Core 24 

Team, 2016) using the lme4 package (Bates et al., 2015). In Section 3.1, we assessed whether the 25 

proportion of correct responses was above the chance estimate (i.e., 0.50). This analysis used an intercept-26 
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only GLMM. This intercept-only model additionally modeled random intercepts for participant and 1 

sequence (both grammatical and ungrammatical). In Section 3.2, we assessed how performance accuracy 2 

varied as a function of our experimental factors (Instrument Training Group, Session, Difficulty, and 3 

Test). In this GLMM, we assessed the main effect of Instrument Training Group on performance, as well 4 

as the interactions of Instrument Training Group with Session (1, 2, 3), Difficulty (high grammaticality, 5 

low grammaticality), and Test (Specific, Transfer/Pitch, Transfer/Timbre, Transfer/Pitch-Timbre). 6 

Session was treated as an ordered factor. The Specific Test was used as the reference category. This 7 

GLMM additionally modeled random intercepts for participant and sequence (both grammatical and 8 

ungrammatical). 9 

In Section 3.3, we assessed how participant accuracy related to confidence judgments, to 10 

determine whether participants in the Familiar Instrument Training Group might exhibit overconfidence 11 

relative to Artificial Instrument participants, presumably because confidence could be influenced by 12 

instrumental familiarity (in addition to perceived sequence familiarity). The GLMM approach was 13 

particularly advantageous in this case because it could account for the uneven observations of confidence 14 

ratings across participants. Confidence judgments were treated as an ordered factor and were modeled to 15 

interact with Instrument Training Group. The GLMM also included Session, Difficulty, and Test. 16 

Participant and sequence intercepts were included as random effects. 17 

In Section 3.4 we modeled performance accuracy as a function of the specific intervallic features 18 

of each sequence – in other words, features related to the pattern of rises and falls in the melodic 19 

sequences. Given that the high grammatical, low grammatical, and ungrammatical sequences did not 20 

differ on a variety of contour and interval measures, including first-order note-to-note transitions (see 21 

Table S2), relying on this adjacent interval information would not help a listener make an accurate 22 

judgment. However, if familiar instruments biased listeners to perceive and process the novel sequences 23 

more musically, then we would expect a stronger association between intervallic information and 24 

grammaticality judgments, as adjacent changes in relative pitch are critical for melodic understanding in 25 

Western music (e.g., Attneave & Olson, 1971). To assess how particular features of the test sequences 26 

related to performance, we created GLMMs for a variety of interval measures (see Table 2). In each 27 

model, accuracy (correct, incorrect) was the dependent variable. Each model contained interval 28 

information for both the grammatical and the ungrammatical sequence for each trial (e.g., the number of 29 

repeats contained within the grammatical and ungrammatical sequence). Instrument Training Group was 30 

included as a main effect and was also allowed to interact with the interval measures. We additionally 31 

included Session, Difficulty, and Test in each model. Only participant intercepts were included as random 32 

effects, as including sequence intercepts resulted in nonconvergence of the models. 33 
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3 Results 1 
 2 

3.1 Testing Performance against Chance 3 

The grand mean of accuracy across all factors was 60.0%, which was well above the chance 4 

estimate (B = 0.43, z = 10.11, p < .001). This evidence of successful learning conceptually replicates 5 

previous work (Durrant et al., 2011) using an Internet-based sample. Participants in both the Artificial (B 6 

= 0.54, z = 8.05, p < .001) and Familiar (B = 0.32, z = 7.34, p < .001) Instrument Training Groups were 7 

independently above chance. 8 

 9 

3.2. Modeling Performance in Terms of Experimental Factors 10 

There was a significant main effect of Instrument Training Group (B = -0.19, z = 2.14, p = .033), 11 

with Familiar Instrument participants performing more poorly than Artificial Instrument participants 12 

(57.8% vs. 62.2%; Figure 4A). Furthermore, relative to the Specific Test, this attenuation in performance 13 

for the Familiar Instrument participants was particularly pronounced in the Transfer/Pitch Test, as 14 

evidenced by a significant interaction between Instrument and Transfer/Pitch (B = -0.19, z = -2.70, p = 15 

.007; Figure 4B).  16 

There was a large main effect of Difficulty (B = -0.36, z = -8.92, p < .001), with participants 17 

performing better on high grammatical trials (66.3%) compared to low grammatical trials (56.6%). 18 

Instrument Training Group additionally interacted with Difficulty (B = 0.12, z = 2.38, p = .017; Figure 19 

4C). This interaction was characterized by pronounced accuracy differences between Artificial and 20 

Familiar Instrument participants for high grammatical trials (66.2% versus 60.6%, respectively), as 21 

opposed to more comparable, attenuated performance for low grammar trials (58.3% versus 54.9%, 22 

respectively) 23 

Instrument Training Group did not significantly interact with Session (B = -0.28, z = -0.68, p = 24 

.499), suggesting that the attenuation in performance in the Familiar Instrument participants was not 25 

significantly modulated by timescale. There was additionally no significant main effect of Session (B = -26 

0.01, z = -0.28, p = .780), indicating the performance was maintained across the three time points. We 27 

observed a marginal effect of the Transfer/Pitch Test (B = -0.09, z = -1.83, p = .068), meaning 28 

performance in this Transfer Test was attenuated relative to the Specific Test (see Figure 4B).  This 29 

marginal main effect was primarily driven by the Familiar Instrument participants, as evidenced by the 30 

interaction between Instrument Training Group and the Transfer/Pitch Test described previously. No 31 

other terms in the model were significant. 32 
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Figure 4: Instrument-related effects on experiment factors 1 

 2 
 3 
Note: (A) Main effect of Instrument training group, depicted by summary statistics (dot and error bar, 4 
left) and distributional representation (right). (B) Interaction of Test and Instrument Training Group.  (C) 5 
Interaction of Instrument and Difficulty. (D) Interaction of Instrument and Confidence Rating. Error bars 6 
represent ± 1 standard error of the mean. Across panels, Artificial Instrument is plotted in blue and 7 
Familiar Instrument is plotted in red. S: Specific Test, T/T: Transfer/Timbre Test, T/P: Transfer/Pitch 8 
Test, T/P-T: Transfer/Pitch-Timbre Test, * p < .05 9 

 10 
 11 
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3.3 Confidence Ratings 1 

Participants in both Instrument Training Groups showed similar distributions of confidence 2 

ratings (Artificial Instrument: Guess = 22%, Somewhat = 59%, High = 18%; Familiar Instrument: Guess 3 

= 24%, Somewhat = 58%, High = 18%), suggesting that participants in both groups used the confidence 4 

ratings in a similar manner (χ2 (2) < 1). Yet, performance on guess trials was significantly above chance 5 

for participants in both the Familiar (B = 0.14, z = 3.12, p = .002) and Artificial (B = 0.21, z = 4.12, p < 6 

.001) Instrument Training Groups, suggesting some dissociation between metacognition and accuracy. 7 

In our model, we observed a highly significant effect of confidence ratings. This effect of 8 

confidence ratings was significant using both a linear fit (B = 0.82, z = 17.28, p < .001) and quadratic fit 9 

(B = 0.22, z = 6.72, p < .001), reflecting the fact that participants tended to have higher accuracy as a 10 

function of higher confidence ratings, with a particular difference between “somewhat” and “high” 11 

confidence answers. Importantly, both the linear and quadratic effects of confidence rating significantly 12 

interacted with Instrument Training Group (linear: B = -0.35, z = 5.40, p < .001; quadratic: B = -0.16, z = 13 

-3.53, p < .001), with Familiar Instrument participants showing attenuated linear and quadratic 14 

associations of confidence with accuracy (Figure 4D). The significant main effects of Instrument Training 15 

Group (B = -0.28, z = -3.54, p < .001) and Difficulty (B = -0.26, z = -8.34, p < .001) reported in Section 16 

3.2 were also observed in this model.  17 

3.4 Predicting Accuracy from Intervals 18 

Two main findings emerged from the models predicting accuracy from contour and intervallic 19 

features of the test sequences. First, interval information in the ungrammatical sequences predicted 20 

performance accuracy more strongly than interval information in the grammatical sequences. Of the six 21 

interval measures described in Table 2, five were significantly or marginally associated with accuracy for 22 

ungrammatical sequences. Essentially, this means that despite the random construction of ungrammatical 23 

trials (Figure 1C), participants were more likely to judge these sequences as grammatical if they contained 24 

fewer note repeats and had relatively larger and more variable intervals. This suggests that participants 25 

were basing their decisions of grammaticality on the (perceived) structure of the ungrammatical 26 

sequences (e.g., Brooks & Vokey, 1991). These effects in the ungrammatical sequences, however, did not 27 

interact with Instrument Training Group. 28 

 29 

 30 

 31 
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Table 2: Summary of interval model terms predicting performance accuracy 1 

Interval Measure Grammatical 

Sequence 

Ungrammatical 

Sequence 

Instrument x 

Grammatical 

Sequence 

Instrument x 

Ungrammatical 

Sequence 

Tone Repeats (#) B = -0.028 (0.014) + B = 0.024 (0.010) * B = 0.010 (0.020)  B = -0.005 (0.013) 

Ascending Contours (#) B = -0.010 (0.014) B = -0.023 (0.012) + B = 0.013 (0.020) B = 0.007 (0.017) 

Descending Contours (#) B = 0.052 (0.017) ** B = -0.020 (0.013) B = -0.033 (0.023) B = 0.000 (0.019) 

Mean Interval Size B = 0.041 (0.084) B = -0.29 (0.064) *** B = 0.283 (0.116) * B = -0.064 (0.089) 

St. Dev. of Interval Size B = 0.029 (0.125) B = -0.211 (0.101) * B = 0.275 (0.172) B = -0.088 (0.140) 

± 2 / ± 3 Intervals B = -0.005 (0.030) B = -0.113 (0.032) *** B = 0.082 (0.041) * B = -0.02 (0.044) 

Note: Standard errors are represented in parentheses. + p < .10 * p < .05 ** p < .01 *** p < .001 2 

 3 

 Second, we found that Instrument Training Group interacted with mean interval size in the 4 

grammatical sequences, with Familiar Instrument participants’ accuracy positively associated with larger 5 

mean interval sizes. This finding may be explained by the nature of the tonal system used in the present 6 

study. Specifically, by dividing the octave into five equal steps, intervals of ± 2 tones (e.g., Tone 1 to 7 

Tone 3) and ±3 tones (e.g., Tone 1 to Tone 4) correspond to changes of 480 cents and 720 cents, 8 

respectively. These intervals are therefore quite close (±20 cents, or ~1.2%) to perfect fourth (500 cents) 9 

and perfect fifth (700 cents) intervals in Western music. Perfect fourths and fifths have a prioritized status 10 

in Western tonal music, as they are rated as highly consonant (Krumhansl, 1990) and represent common 11 

harmonic transitions (Krumhansl et al., 1982). 12 

 Given this incidental relationship between ± 2 / ± 3 intervals in the present tonal system and 13 

perfect fourths / fifths in Western music, we calculated the mean number of ± 2 and ± 3 intervals in each 14 

test sequence to assess whether the prevalence of these intervals was associated with accuracy (Table 2, 15 

final row). We found a main effect of the number of ± 2 and ± 3 intervals within the ungrammatical 16 

sequences on accuracy, with a greater number of these intervals being associated with lower accuracy 17 

(i.e., a greater likelihood of judging the ungrammatical sequence as grammatical). Critically, we also 18 

observed a significant interaction between Instrument Training Group and the number of ± 2 and ± 3 19 

intervals within the grammatical sequences, with Familiar Instrument participants showing a strong, 20 

positive relationship between the number of these intervals and accuracy and the Artificial Instrument 21 

participants showing no relationship between these intervals and accuracy (Figure 5). 22 
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 1 
Figure 5: Interaction of approximate perfect fourths and fifths and instrument familiarity in predicting 2 
accuracy 3 

 4 

Note: Plots represent the mean number of approximate perfect fourths and fifths for grammatical 5 
sequences. The mean number of approximate perfect fourth and fifths was calculated by averaging the 6 
number of -2, +2, -3, and +3 intervals in each sequence, as ± 2 intervals correspond to a change of 480 7 
cents and ± 3 intervals correspond to a change of 720 cents. Both intervals are within 20 cents (1.2%) of 8 
perfect fourths (500 cents) and perfect fifths (700 cents) in Western music. Ribbons represent ± 1 9 
standard error of the mean. 10 

 11 

 12 

 13 

 14 
 15 

 16 

  17 
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4 Discussion 1 

The present results suggest that instrument familiarity influences the statistical learning of novel 2 

tonal sequences. We found that the same tone-learning task – at least from an abstract, melodic 3 

perspective – results in different patterns of performance depending on whether the timbre is that of a 4 

familiar instrument or not. Compared to participants who trained and tested with artificial timbres, 5 

participants who were trained and tested with familiar instruments displayed (1) attenuated learning, (2) a 6 

larger dissociation between confidence and accuracy, and (3) a greater reliance on “musical” intervals in 7 

judging grammaticality, despite these cues being orthogonal to the present learning task. These findings 8 

not only extend the notion of knowledge entrenchment to a non-linguistic domain, but they also highlight 9 

that the influence of prior knowledge on statistical learning performance is sensitive to context and is 10 

shaped by stimulus features that are incidental to the assigned learning task.  11 

We deviated from prior investigations of knowledge entrenchment (Siegelman et al., 2018) both 12 

in terms of domain (musical versus linguistic knowledge) and in terms of paradigm (probabilistic learning 13 

of non-repeating sequences versus learning of specific trisyllabic “words”). Despite these differences, the 14 

results from the present experiment are consistent with a general framework of knowledge entrenchment 15 

across several measures. First, overall performance was poorer for familiar instruments, particularly for 16 

sounds that differed from the training sounds in pitch (i.e., Transfer/Pitch trials). This result supports the 17 

idea that familiar instruments more strongly evoked prior musical categories (e.g., representations of 18 

melodic sequences that pianos and violins typically play), with this activation of prior musical knowledge 19 

interfering with learning the present tonal grammar. Second, participants listening to familiar instruments 20 

had a significantly attenuated relationship between confidence and accuracy compared to participants 21 

listening to artificial instruments. This suggests that participants listening to familiar instruments had less 22 

meta-awareness of their knowledge – particularly when claiming “high” levels of confidence, possibly 23 

because confidence ratings were being influenced by additional factors such as instrument familiarity (cf. 24 

Busey, Loftus, & Loftus, 2000; Chua et al., 2012). Third, the prevalence of particular “musical” intervals 25 

biased participants’ judgments more in the familiar instrument compared to the artificial intrument 26 

condition, despite the fact that the prevalence of these intervals was not associated with the current tone 27 

grammar.  28 

While these results support the general principle of knowledge entrenchment in a novel domain 29 

(music), there are also a number of commonalities between the present results and previous reports of 30 

entrenchment effects in the domain of language. First, the overall attenuation in performance has been 31 

reported in a prior linguistic statistical learning study (e.g., Finn & Hudson Kam, 2008). In their study, 32 

Finn and Hudson Kam report attenuated learning when the statistical sequences contain phonotactic 33 
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violations (e.g., beginning a “word” with tl). In this sense, our paradigm is closely aligned with this 1 

approach taken by Finn and Hudson Kam, as both our individual notes and the intervals between notes 2 

violated the conventional rules of Western music. As such, it is possible that an increased familiarity with 3 

the constituent items in language-based statistical learning tasks scaffolds performance, meaning 4 

entrenchment is not observed as a simple main effect of performance when the individual items, as well 5 

as the transitions between items, are plausible in the particular domain. Second, the dissociation of 6 

confidence and accuracy conceptually aligns with language-based investigations of entrenchment, 7 

although to our knowledge these prior investigations have not explicitly examined participant confidence 8 

in learning as a measure of entrenchment. Third, our result showing an increased likelihood of judging a 9 

sequence as grammatical if it contains more “musical” intervals for familiar instruments is perhaps the 10 

most aligned with language-based reports of entrenchment. In both cases, performance at the individual 11 

trial level can be (somewhat) predicted by the extent to which overlap occurs between the experimental 12 

stimuli and prior knowledge. For example, Siegelman et al. (2018) reported that recognition performance 13 

correlates with the extent to which the target and foil stimuli resemble words in participants’ native 14 

language. Similarly, in the present experiment, we demonstrate that the incidental prevalence of 15 

“musical” intervals in target sequences influences participants’ judgments of grammaticality. 16 

Additionally, it is important to note that the present approach differs from language-based entrenchment 17 

studies in the sense that we demonstrate that patterns of entrenchment can change based on manipulating 18 

a more surface-level attribute (timbre) that should be irrelevant to learning the statistical structure of the 19 

sequences. In a language-based paradigm, this might be akin to generating syllables and being able to 20 

manipulate the extent to which knowledge entrenchment is observed based on whether the sounds are 21 

interpreted as language by the participants.   22 

 The fact that the manipulation of instrument was incidental to the learning task and not explicitly 23 

mentioned to participants makes the present results particularly compelling as evidence for the dynamic 24 

nature of knowledge entrenchment. At the same time, the present results also align with previous 25 

demonstrations that instrumental timbre is an important contextual cue in the activation of prior 26 

knowledge for both musical experts and novices. Many individuals with absolute pitch show some type of 27 

performance cost associated with switching between instruments (Van Hedger, Heald, & Nusbaum, 2015) 28 

or categorizing notes that are played with unfamiliar timbres in musical contexts (e.g., Lockhead & Byrd, 29 

1981). Additionally, most individuals, regardless of explicit musical training, have developed implicit 30 

associations of instrumental timbre and specific pitches (Van Hedger, Heald, Huang, Rutstein, & 31 

Nusbaum, 2017). In this study, listeners judged whether isolated notes were either “in-tune” or “out-of-32 

tune” (according to conventional Western tuning standards). Although participants were above chance in 33 

making these judgments for familiar instruments (piano and violin), performance was at chance for 34 
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computer-generated complex tones that are not commonly heard in musical contexts. Taken together, the 1 

results from both the explicit and implicit absolute pitch literature suggest that listeners have developed 2 

source-specific representations that can differentially engage prior knowledge. More broadly, this 3 

suggests that listeners are constantly extracting information from different sources in the environment in 4 

order to optimize processing and prediction.  5 

The incidental use of instrumental timbre in the current experiments also suggests that prior 6 

knowledge might not need to be explicitly or intentionally activated in order to observe effects of 7 

entrenchment. That being said, we did not assess participants’ awareness of this manipulation (e.g., their 8 

explicit recognition of the instruments as piano and violin), and thus it is unclear whether the observed 9 

entrenchment in the present experiments operates explicitly or more implicitly (i.e., occurring 10 

independently of participants’ explicit recognition of the familiar instruments). Given that there are both 11 

explicit and implicit contributions to statistical learning (Batterink et al., 2015), and to auditory 12 

processing (Holmes et al., 2018), exploring the role of intention and awareness will be an important future 13 

direction in further specifying the processes through which prior experiences can influence statistical 14 

learning. Additionally, it should be noted that, even though familiar instrument performance was 15 

attenuated relative to artificial instruments, it was still independently above chance. Thus, although prior 16 

knowledge disrupted statistical learning of novel (incompatible) tone sequences, learning was not 17 

completely disrupted.  This is not surprising, as learning requires both the ability to integrate new 18 

knowledge, as well as stability in order to prevent the forgetting of previous knowledge (e.g., McClelland 19 

et al., 1995). This consideration also raises an interesting theoretical possibility of whether the influence 20 

of prior knowledge can be sufficiently strong in some contexts to entirely disrupt learning, as has been 21 

found for phonotactic knowledge in linguistic statistical learning (Finn & Hudson Kam, 2008). This 22 

represents a potential avenue for future research to explore, perhaps through systematically manipulating 23 

multiple features (i.e., beyond instrument) to assess if greater degrees of entrenchment lead to graded 24 

performance declines. 25 

The present results did not support different trajectories of long-term memory retention for 26 

familiar versus artificial instrument sequences in the days following learning. Situated in a larger context 27 

of statistical learning and sleep-dependent memory consolidation, these results do not support the claim 28 

that statistical learning performance on this probabilistic sequence learning task is enhanced relative to 29 

baseline following a delay period containing sleep (e.g., Durrant et al., 2011). However, the fact that 30 

statistical learning performance for the Transfer Test trials was stable for at least one week after training 31 

across all participants, deviating by less than one percentage point (Session 1: 58.92%; Session 2: 32 

59.57%; Session 3: 59.63%), is consistent with previous research showing that statistical learning 33 
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produces stable long-term knowledge.  For example, memory for statistical learning appears robust over 1 

the span of a day (Kim et al., 2009) and even up to one year after initial learning (Kóbor et al., 2017). In 2 

addition, stimulus-specific attributes (such as instrumental timbre) clearly have lasting effects on learning 3 

and retention, beyond the short-lived effects on overall performance (cf. Schellenberg & Habashi, 2015).  4 

The present results do not inherently challenge conclusions stemming from  prior investigations 5 

of implicit tone sequence learning, as most studies have used sine tones (e.g., Creel, Newport, & Aslin, 6 

2004; Durrant, Cairney, & Lewis, 2013; Durrant et al., 2011; Furl et al., 2011; Loui, 2012; Loui & 7 

Wessel, 2008; Loui et al., 2010), which are uncommon in musical contexts and would not have strong 8 

associations with implicitly acquired musical knowledge (e.g., Van Hedger et al., 2017). However, the 9 

selection of timbre in these studies is rarely justified, especially compared to the thought that is put into 10 

selecting unfamiliar pitch intervals (e.g., from the Bohlen-Pierce scale; Mathews, Pierce, Reeves, & 11 

Roberts, 1988). Thus, one practical recommendation from the present findings is for researchers to 12 

carefully consider how stimuli used in statistical learning paradigms could engage prior knowledge, 13 

taking into account both “higher-order” elements (such as how tone or syllable sequences relate to known 14 

musical or linguistic patterns) as well as more perceptually oriented attributes (such as timbre). 15 

4.1 Possible Mechanisms Underlying Knowledge Entrenchment 16 

The present results are broadly consistent with the notion of knowledge entrenchment (Siegelman 17 

et al., 2015), but the precise cognitive mechanisms underlying these effects remain to be clarified. One 18 

possibility is that prior knowledge shapes the perception, encoding and/or long-term memory 19 

representations of the individual items in the present tonal system. In this view, entrenchment would be 20 

operating at the level of how the constituent items are perceived or remembered, not upon the mechanism 21 

of statistical learning itself. This possibility is supported in principle by research demonstrating how 22 

perception is tuned based on experience. Developmental research on the perceptual tuning of native 23 

versus nonnative sounds in speech (e.g., Werker & Tees, 1984, 1999) and music (Hannon et al., 2011; 24 

Lynch et al., 1990; Lynch & Eilers, 1992; Soley & Hannon, 2010) has found an enhanced ability to 25 

perceptually discriminate native sounds at the expense of nonnative sounds. Extending these findings to 26 

the present study, it is possible that listeners exhibited a warped perception (cf. Kuhl, 1991) of the basic 27 

interval in the novel tonal system (240 cents), perceiving this interval in terms of its nearest Western 28 

interval category - i.e., either an out-of-tune major second (200 cents) or an out-of-tune minor third (300 29 

cents). Listeners in our study were able to differentiate adjacent tones in the present system from their 30 

nearest Western interval categories for both familiar and artificial instruments (see Supplemental Material 31 

S2: Experiment Assessing the Perception of Intervals).  However, it is still possible that these novel 32 

intervals were encoded and/or stored in long-term memory less precisely (and more in line with Western 33 
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interval categories), particularly when the constituent tones had the timbre of familiar instruments. 1 

Indeed, even if listeners are able to perceptually differentiate two items, these items can still be 2 

remembered more categorically in the time since encoding (e.g., Heald et al., 2014; Olsson & Poom, 3 

2005). The present results are aligned with this possibility, and further indicate that the extent to which 4 

these memory representations are categorical and align with Western musical intervals depends on 5 

instrument familiarity, suggesting that this process is contextually driven.  6 

Second, it is possible that prior knowledge shapes processing of sequential relationships, 7 

operating at the level of statistical learning per se. If the artificial timbres used in this experiment were 8 

simply not heard as music, while the sequences presented in familiar timbres were heard more musically, 9 

listeners would process the two types of sequences under different sets of rules or assumptions. The study 10 

instructions did not refer to the tonal sequences as “music” as we did not want to bias how participants 11 

approached the learning task. Nevertheless, hearing these novel tonal sequences being played by a piano 12 

or violin might have encouraged the participants in the Familiar Instrument Group to approach the 13 

paradigm as a music-learning task.  Listeners in the Familiar Instrument Group thus may have had more 14 

difficulty abstracting the sequential statistics of the sequences, as they do not align with typical Western 15 

music.  This explanation would be in line with previous item effects observed in linguistic statistical 16 

learning paradigms (e.g., Siegelman & Frost, 2015). This possibility is also conceptually similar to 17 

research in degraded speech understanding, in which sinewave speech is attended to and processed 18 

differently based on whether it is actually interpreted as speech (e.g., Márcio et al., 2020; Möttönen et al., 19 

2006). This possibility is further supported by findings showing that statistical learning might operate 20 

differently across different domains – including in situations where the abstract statistical structure is the 21 

same but is interpreted as belonging to different domains (Tompson et al., 2019). Future research could 22 

test this idea by manipulating the instructions to highlight the “musical” nature of the sequences and 23 

assess whether artificial instruments, given this framing, would exhibit learning patterns that are more 24 

akin to those observed for familiar instruments. 25 

5 Conclusion 26 

Overall, the present results provide clear evidence that prior knowledge can influence statistical 27 

learning in a non-linguistic domain. Our findings have implications for understanding domain generality 28 

versus domain specificity in statistical learning (e.g., Conway & Christiansen, 2006). Specifically, our 29 

results emphasize how the relationship of the to-be-learned items to previous knowledge structures can 30 

result in more domain-specific and idiosyncratic patterns of results. These results suggest that statistical 31 

learning might be best conceptualized as a process in which representations are continually updated based 32 

on both long-term accumulated knowledge and more immediate exposure to new patterns.  33 
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These findings therefore have implications for how researchers conceptualize statistical learning 1 

more broadly. Even in paradigms in which prior knowledge is assumed to play a minimal or nonexistent 2 

role, researchers must acknowledge that stimuli are multidimensional and that experience with one 3 

dimension can affect learning relevant to a second dimension (e.g., Garner & Felfoldy, 1970; Herrmann 4 

& Johnsrude, 2018). Inconsistencies in statistical learning findings across paradigms and tested items may 5 

reflect multiple statistical learning abilities (e.g., see Doeller & Burgess, 2008; Endress, 2019) that are 6 

inextricably tied to the domains upon which they draw. Although the present results cannot conclusively 7 

determine whether statistical learning is best conceptualized as a singular versus multifaceted ability, it is 8 

clear that further specifying the ways in which prior knowledge influences statistical learning across 9 

domains is essential in refining our theories of how statistical learning operates and underlies long-term 10 

learning in language, music, and beyond.  11 

  12 
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