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RESEARCH ARTICLE

Expansion of myeloid-derived suppressor 
cells contributes to metabolic osteoarthritis 
through subchondral bone remodeling
Lixia Zhang1, Cameron L. Kirkwood1, Jiho Sohn2, Ashley Lau1, Mary Bayers‑Thering3, Supinder Kour Bali4,5, 
Sridhar Rachala3, John M. Marzo3, Mark J. Anders3, Frank Beier4,5 and Keith L. Kirkwood1,6*  

Abstract 

Background: Osteoarthritis (OA) subsequent to acute joint injury accounts for a significant proportion of all 
arthropathies. Myeloid‑derived suppressor cells (MDSCs) are a heterogeneous population of myeloid progenitor cells 
classically known for potent immune‑suppressive activity; however, MDSCs can also differentiate into osteoclasts. In 
addition, this population is known to be expanded during metabolic disease. The objective of this study was to deter‑
mine the role of MDSCs in the context of OA pathophysiology.

Methods: In this study, we examined the differentiation and functional capacity of MDSCs to become osteoclasts 
in vitro and in vivo using mouse models of OA and in MDSC quantitation in humans with OA pathology relative to 
obesity status.

Results: We observed that MDSCs are expanded in mice and humans during obesity. MDSCs were expanded in 
peripheral blood of OA subjects relative to body mass index and in mice fed a high‑fat diet (HFD) compared to mice 
fed a low‑fat diet (LFD). In mice, monocytic MDSC (M‑MDSC) was expanded in diet‑induced obesity (DIO) with a 
further expansion after destabilization of the medial meniscus (DMM) surgery to induce post‑traumatic OA (PTOA) 
(compared to sham‑operated controls). M‑MDSCs from DIO mice had a greater capacity to form osteoclasts in culture 
with increased subchondral bone osteoclast number. In humans, we observed an expansion of M‑MDSCs in periph‑
eral blood and synovial fluid of obese subjects compared to lean subjects with OA.

Conclusion: These data suggest that MDSCs are reprogrammed in metabolic disease, with the potential to contrib‑
ute towards OA progression and severity.
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Introduction
Osteoarthritis (OA) is a highly prevalent and disabling 
disease that remains a challenge to develop effective ther-
apeutics primarily since there is a limited understand-
ing of the early-stage disease which results in later-stage 

diagnoses [1, 2]. In OA of the knee, there is a progres-
sive loss of cartilage associated with changes in chondro-
cyte phenotype, including the activation of a catabolic 
state. In response to several different stimuli, including 
inappropriate mechanical loading and catabolic factors 
within the synovium, chondrocytes modify their pheno-
type and express a subset of factors, such as cytokines, 
chemokines, alarmins, DAMPs, and adipokines. All 
of these mediators act as paracrine factors to initiate a 
vicious cycle of cellular-induced inflammatory processes, 
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which both promote inflammation in the synovium and 
participate in cartilage damage [3]. In addition, numer-
ous inflammatory cytokines are increased in joint tissues 
during the acute post-injury phase, including IL-1β, IL-6, 
IL-17, and TNFα, and act as primary drivers of syno-
vial inflammation [4]. Evidence that innate and adaptive 
immune systems play roles in the post-traumatic joint 
exists, with increases in activated macrophages,  CD4+ 
T cells, complement (C3a), and inflammatory cytokines 
described in injured knee joints [5]. Despite this knowl-
edge, current therapies for OA are restricted and no 
treatment has been conclusively shown to alter OA dis-
ease progression. Thus, a deeper understanding of the 
immunological dynamics that drive OA disease progres-
sion, particularly early-stage disease, is warranted to 
develop precision-based therapies to arrest progression.

The development of obesity and other metabolic dis-
eases is a complex process involving genetic and envi-
ronmental interactions that connect metabolism with the 
immune system. Chronic low-grade systemic inflamma-
tion in response to obesity (termed metainflammation) is 
a consequence of immune dysregulation that results from 
the continuous exposure to bacterial lipopolysaccharide 
(LPS) and saturated free fatty acids under hyperglycemic 
conditions [6]. Metainflammation generated by increased 
circulating cytokines/adipokines may influence immu-
nity and cellular homeostasis [7]. In addition to the cur-
rent paradigm of inflammation in OA pathophysiology is 
the awareness that metabolic disease is associated with 
OA (termed metabolic osteoarthritis), in part through 
proinflammatory conditions and oxidative stress [8]. This 
new appreciation of metainflammation and impact in OA 
creates new challenges and opportunities, especially in 
this era of precision medicine.

Myeloid-derived suppressor cells (MDSCs) have 
been widely described as a heterogeneous population 
of myeloid progenitor cells and immature myeloid cells 
with potent immune-suppressive activity [9]. Increased 
frequency of MDSCs has been commonly reported in 
the context of cancer immunology; however, MDSCs 
have also been shown to contribute to chronic and 
acute inflammatory processes associated with infec-
tions, immune responses in sepsis, transplantation, 
autoimmune diseases, and aging [9]. Hence, MDSCs 
are frequently detected in different inflammatory-based 
pathological disorders. Since the first characterization 
of MDSCs, the cellular origin and nature of these cells 
have been a subject of debate. MDSCs are very simi-
lar to monocytes and granulocytes and share common 
morphologic features. In mice,  CD11b+Ly6G+Ly6Clow 
phenotype of PMN-MDSC is identical to that of neu-
trophils, and the  CD11b+Ly6G−Ly6Chigh phenotype of 
M-MDSC is the same as inflammatory monocytes. In 

acute infections, it is proposed that MDSCs may have 
a beneficial role when the stimulus has been cleared by 
limiting tissue damage produced for a persistent immune 
response [9]. In contrast, during chronic inflammation, 
expansion and activation of MDSCs contribute to immu-
nosuppression and oxidative stress [10, 11]. However, dif-
ferentiation and function of MDSCs are influenced by the 
inflammatory microenvironment generated, suggesting a 
disease-specific function of MDSCs. For example, it has 
been reported in numerous autoimmune diseases that 
while MDSCs are increased they cannot suppress disease 
progression [12–14]. Hence, their contribution to patho-
logical processes goes far beyond immune suppression. 
To date, no published studies have focused on MDSCs in 
PTOA disease development.

A number of recent publications have reported that 
MDSCs can function as osteoclast progenitors in patho-
logical conditions with complications associated with 
bone destruction [10, 11, 15, 16], including collagen-
induced arthritis models [17]. However, no studies have 
addressed MDSCs in the context of osteoarthritis. Obe-
sity has been shown to enhance MDSC expansion and 
obesity-related metabolic factors [11, 18], and our group 
has recently shown that MDSCs are metaboloically 
regrogrammed during osteoclast differentiation [19]. In 
particular, altered levels of adipokines contribute to OA 
development by inducing the expression of proinflam-
matory factors as well as degradative enzymes, lead-
ing to the breakdown of cartilage matrix, inhibition of 
new cartilage matrix synthesis, and stimulation of sub-
chondral bone remodeling [20]. Herein, we report that 
MDSCs are expanded in OA during metabolic disease 
and that MDSCs have an increased capacity of MDSCs 
to degrade subchondral bone that can contribute towards 
OA progression.

Materials and methods
Animals
The animal protocol used in this study was approved by 
the Institutional Animal Care and Use Committee at the 
University at Buffalo. All mice were kept in a controlled 
temperature and environment under a 12-h light/12-h 
dark cycle. Male C57BL/6J mice were initially purchased 
from the Jackson Laboratory (Bar Harbor, ME, USA). 
Diet-induced obesity (DIO) mice were fed with 45% 
kcal fat diet (D12451; Research Diets; HFD) starting at 4 
weeks of age. The control group was fed with 10% kcal 
fat diet (D12450H; Research Diets; LFD) with all other 
micronutrients matched. After mice were fed HDF/LFD 
diets for 12 weeks, the destabilized medical meniscus 
(DMM) model to surgically induced OA in the mouse 
knee joint was performed by transection of the medial 
meniscotibial ligament as we have shown previously 
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[21–23]. Sham control mice had the same surgery except 
that the meniscotibial ligament was not transected. The 
mice were housed in groups of 4–5 and allowed free 
activity. Mice were euthanized 8 weeks after surgery [24]. 
Only male mice were used for these studies since there is 
a clear sex difference with DMM severity between sexes 
[25, 26]. The ARRIVE Guidelines Checklist was imple-
mented for this study.

Histopathological analyses
Knee joints were dissected free of the skin or excess 
muscle, formalin fixed, decalcified and processed, and 
embedded frontally in paraffin. Five-micromolar sagittal 
sections were generated using a rotary microtome (Leica) 
of frontal sections to examine the anterior cruciate liga-
ment [27]. Sections were stained with fast green and 
Safranin-O and evaluated for cartilage damage and syno-
vial inflammation by two independent assessors. Carti-
lage damage and histological scoring was based upon the 
OARSI histopathology initiative [28].

Osteoclast scoring and the subchondral bone thickness, 
area, and osteoclast density
Following histologic processing serial frontal sections 
were stained for osteoclasts using tartrate-resistant acid 
phosphatase (TRAP) stain and fast green for contrast. 
Osteoclasts were defined as multinucleated (>3 nuclei) 
giant cells that stained red and were in contact with the 
surface of trabecular bone within the subchondral bone 
area. Osteoclast numbers were calculated by two inde-
pendent evaluators. Five measurements of the  TRAP+ 
cells at 200× magnification were made in the subchon-
dral bone area where the average number of osteoclasts 
presented. Osteoclast area and subchondral bone thick-
ness were also measured following outlining areas of 
interest using a Wacom board coupled with ImageJ2 soft-
ware for image and data analysis [29]. Subchondral bone 
was histologically graded using an established protocol 
shown to have a significant relationship with the OARSI 
grading for cartilage using a scoring system of 0–3 where 
0 is normal, 1 = mild, 2 = moderate, and 3 = severe 
changes for subchondral bone changes [30, 31].

Mouse MDSC isolation and characterization
Single-cell suspensions from the bone marrow of HFD 
and LFD mice having DMM-induced PTOA and sham 
control were isolated. Red blood cells were lysed using 
a lysis buffer (eBioscience, San Diego, USA) and cells 
were washed with PBS, filtered through a 70-μM nylon 
membrane to obtain final cell suspensions (1 ×  106 per 
tube), and then incubated with Fc blocked for 10 min, 
using 2 μl anti-CD32 (BD Biosciences). The following 
antibodies were added in staining buffer (eBioscience) 

for 30 min: CD11b-APC (clone M1/70, # 130-113-
231, Miltenyi), Ly6G-PE (clone 1A8,130-102-392), and 
Ly6C-FITC (clone REA796, #130-111-915, Miltenyi). 
Data was acquired by the BD flow cytometer (Fortessa, 
BD Bioscience) with data analysis using FlowJo V10.0.7 
software (FlowJo, OR, USA). Cytological examination of 
M-MDSCs was achieved through cytospin isolation and 
imaging. Briefly, M-MDSC isolated from the bone mar-
row of LFD and HFD mice was obtained by MACs sort-
ing (described below) and 100μl of a cell suspension was 
loaded into a cytospin chamber and spun for 5 min at 500 
rpm (Cytospin 2; Shandon). Slides were air dried at room 
temperature and subsequently stained with the Leuko-
Stat staining kit (Fisher Scientific, Pittsburgh, PA).

In vitro osteoclastogenesis
Primary cultures of mouse osteoclast precursor cells in 
the form of bone marrow-derived monocytes (BMM) 
were obtained from femurs and tibias of HFD/LFD fed 
mice that were DMM/sham operated as described previ-
ously [32]. Red blood cells were lysed using an RBC lysis 
buffer (eBioscience, San Diego, USA), and cells washed 
with PBS and filtered through a 70-μM nylon membrane 
to obtain final cell suspensions. MDSC subpopulations 
were isolated from BMM using autoMACs pro (Miltenyi) 
by myeloid-derived suppressor cell isolation kit (# 130-
094-538, Miltenyi). Granulocytic MDSCs were isolated 
through a positive selection for Ly6G using the mouse 
Ly6G microbeads (Miltenyi). The  Ly6G− fraction was 
used to gate to obtain the monocytic MDSC fraction. The 
monocytic MDSC cells (2.5 ×  105 cells) were seeded into 
48-well plates in α-MEM (Gibco, USA), 10% heat-inacti-
vated FCS (Hyclone, USA), supplemented with 10 ng/ml 
monocyte colony-stimulating factor (M-CSF) for 4 days. 
Osteoclastogenesis was induced with 25 ng/ml M-CSF 
and 50 ng/ml RANKL for an additional 4 days. Cells were 
fixed and stained for TRAP activity using a leukocyte 
tartrate-resistant acid phosphatase (TRAP) kit (Sigma). 
Osteoclasts were identified as red-stained cells contain-
ing three or more nuclei. The number of osteoclasts was 
enumerated as described by our group [32–35].

Human subjects
This study was conducted in accordance with the Hel-
sinki Declaration and approved by the University at Buf-
falo Institutional Review Board. All subjects gave written 
informed consent for participation. All patient partici-
pants were recruited through a patient cohort database 
of existing patients diagnosed with OA/PTOA from the 
Buffalo General and Kaleida Health. OA subjects over 
18 years of age were recruited with inclusion criteria 
that included patient subjects who report no autoim-
mune disease and no history of any immune-modulating 
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systemic medications (including prednisone, biologics, 
methotrexate, cyclosporine, retinoids). Patients had at 
least one femoro-tibial joint with OA for inclusion in the 
pilot study. Exclusion criteria included HIV disease, preg-
nancy, immunosuppressant medications, anticoagulants 
or bleeding orders, bisphosphonates or steroids, and 
antibiotic therapy within the previous 3 months. Body 
mass index (BMI) was used as a surrogate measure to 
assess body fat. BMI was categorized as non-obese (<29.9 
kg/m2) or obese (>30.0 kg/m2).

Human MDSC immunophenotyping
Peripheral blood was obtained by venipuncture and 
synovial fluid was obtained by needle aspiration of the 
femoro-tibial joint OA patients exhibiting joint effusion. 
Mononuclear cells were isolated from whole blood by 
Ficoll-Paque density gradient centrifugation and analyzed 
within 6 h following blood sampling. The following anti-
human antibodies were purchased from Miltenyi Biotec 
(Germany): CD11b-APC (clone M1/70, # 130-113-793), 
HLA-DR–PE (clone AC122, #130-113-402), CD14-flu-
orescein isothiocyanate (FITC) (clone Tuk4, #130-113-
146), CD15-APCvio770 (clone VIMC6, #130-104-992), 
CD33-viobright515 (clone REA775, #130-111-027), 
CD66b-PEvio770 (cloneREA306, #130-119-808), and 
their corresponding isotype controls, along with corre-
sponding isotype controls. Cellular phenotype was char-
acterized by flow cytometry (Fortessa, BD Bioscience), 
and data were analyzed with the FlowJo V10.0.7 (FlowJo, 
OR, USA). Gating was performed according to standard 
protocols where cellular debris and dead cells were ini-
tially gated out.  HLADR− and  CD11b+ populations were 
selected and then M-MDSC  (HLADR−CD11b+CD14+) 
and PMN-MDSC  (HLADR−CD11b+CD15+) obtained 
from the  HLADR−  CD11b+ populations.

Statistical considerations
All statistical analysis was performed using GraphPad 
Prism version 8.2.1 for macOS (GraphPad Software, Inc., 
San Diego, CA). A two-tailed unpaired t-test was used 
when comparing the means of two variables. A two-way 
analysis of variance (ANOVA) followed by Tukey’s mul-
tiple comparison posttest was used to compare means of 
greater than 2 variables. Results are presented using an 
uncertainty with a 95% confidence interval.

Results
HFD promotes DMM‑induced OA disease pathology
To investigate the effect of HFD on cartilage, we used the 
PTOA model induced by surgical destabilization of the 
medial meniscus (DMM) after mice were fed an HFD 
or micronutrient matched LFD for 12 weeks. Knee joint 
tissues from the four groups were harvested 8 weeks 

after DMM or sham control surgery (Fig.  1A). Mice on 
HFD weighed significantly more than mice on LFD, 
while the type of surgery did not affect weight signifi-
cantly on either diet (Fig. 1B). Histological sections were 
stained with Safranin-O (glycosaminoglycans) and fast 
green (bone and tendon). Representative images from 
each experimental group are presented (Fig.  1C). We 
performed Glasson Modified OARSI semi-quantitative 
scoring system to quantitatively assess the pathological 
difference in experimental groups (Fig. 1D). Qualitatively, 
the surface of the cartilage was smooth in the sham con-
trol group; however, the DMM group showed massive 
proteoglycan loss. The cartilage in the DMM group pre-
sented with denudation and deformation. OARSI scor-
ing data indicated a significant degeneration of articular 
cartilage in DMM groups compared to the sham control, 
with significantly higher OARSI scores in HFD/DMM 
mice than in LFD/DMM mice. These changes were char-
acterized by increased thickness of the synovial mem-
brane layer and disorganized structure.

HFD increases MDSC expansion and osteoclast 
differentiation in DMM mice
M-MDSCs are immature myeloid cells classically 
described as possessing immunosuppressive functions. 
However, we and others have shown that this lineage can 
also differentiate into osteoclasts in the presence of mac-
rophage colony-stimulating factor (M-CSF) and receptor 
activator of NF-kB ligand (RANKL) [10, 15]. To deter-
mine the effects of HFD on MDSC levels and the ability 
to form osteoclasts from HFD/LFD mice that had DMM 
or sham control surgery, we obtained M-MDSCs from 
the bone marrow of these mice. Data in Fig. 2A displays 
the gating strategy used in the present study to obtain 
M-MDSC  (CD11b+Ly6C+) cells from the bone mar-
row. To further characterize this population, we used 
cytospin morphology (Fig. 2B) and flow cytometry from 
the bone marrow of LFD and HFD mice at 16 weeks 
of age to determine phenotypic differences (Fig.  2C). 
The appearance of M-MDSCs from cytospin samples 
from LFD and HFD appears similar without any obvi-
ous differences in cellular morphology. M-MDSCs were 
expanded (both total number and percentage) under 
HFD conditions with a concurrent significant reduction 
of  CD8+ T-cells and a slight reduction in  CD4+ T-cells. 
Figure  2D shows the total number and percentage of 
M-MDSCs  (Ly6C+CD11b+ cells) in the bone marrow 
from all four experimental groups of mice, respectively. 
We observed that M-MDSC cell populations were sig-
nificantly expanded in the bone marrow after DMM 
surgery, compared to sham controls. Remarkably, there 
were significantly more M-MDSCs in the HFD/DMM 
than in the LFD/DMM mice. Following cell sorting, bone 
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marrow-derived M-MDSC cells were plated with M-CSF 
and RANKL to induce M-MDSC cellular differentiation 
into large multinucleated osteoclasts in  vitro (Fig.  3A). 
Quantitative analysis of  TRAP+ staining of osteoclast 
formation indicated that the number of osteoclasts in 
the DMM group was significantly higher than in sham 
groups, as well as being also higher in HFD than LFD 
mice (Fig.  3B). M-MDSC cells from the DMM groups 
exhibited a significantly increased capacity to form 
mature osteoclasts (more nuclei OC) compared to the 
sham control (Fig.  3C) with significantly more mature 
osteoclasts formed in HFD DMM cultures compared 
to LFD DMM cultures under the same experimental 
conditions.

HFD alters subchondral bone parameters
To understand if in  vitro osteoclastogenesis observa-
tions translated into exacerbated DMM-induced pathol-
ogy during the metabolic stress of obesity, we examined 
the subchondral bone for pathological changes in DMM 
mice on HFD versus LFD controls. Tartrate-resistant acid 

phosphatase (TRAP) staining of frontal sections of exper-
imental groups was performed to evaluate the degree of 
osteoclast formation in the subchondral bone (Fig.  4A). 
The number of TRAP-positive cells in subchondral bone 
was significantly increased in DMM/HFD mice com-
pared to sham/HFD or DMM/LFD mice (Fig. 4B). Also, 
the osteoclast area was significantly increased in DMM/
HFD mice compared to sham/HFD. However, we did not 
observe any significant differences with the osteoclast 
area within the subchondral bone of the tibia or femur 
sections in all other comparisons, including DMM versus 
sham in LFD or in DMM in HFD versus LFD (Fig. 4C). 
Still, we discovered that the subchondral pathology score 
increased in both DMM groups, but without a significant 
difference between LFD or HFD DMM experimental 
groups (Fig.  4D). Lastly, there was a reduction in sub-
chondral bone thickness in DMM/HFD compared with 
sham/HFD, and a trend towards subchondral bone thick-
ness reduction in the DMM groups (Fig. 4E).

Fig. 1 High‑fat diet promotes post‑traumatic osteoarthritis in mice. A Overview of the experimental design. Mice were fed either a low‑fat diet 
(LFD) or a high‑fat diet (HFD) for 12 weeks and sham or destabilization of the medial meniscus (DMM) surgery was performed at weeks 16–17. 
Sham group (n = 6), DMM group (n = 5). B Changes in weight over time. Arrow represents the time of the surgery. HFD increases body weight 
compared to LFD. C Representative histopathological section from mouse knee joints stained with fast green and Safranin‑O. D Glasson Modified 
OARSI pathology score measuring osteoarthritic damage (n = 6 in the sham group, n = 5 in the DMM group). E Synovial thickness score (n = 6 in 
the sham group, n = 5 in the DMM group). Scale bar = 100μM. **P < 0.01, ****P < 0.0001. Two‑way ANOVA Tukey’s multiple comparison test



Page 6 of 11Zhang et al. Arthritis Research & Therapy          (2021) 23:287 

MDSCs are expanded in obese patients with OA
MDSC populations in 15 OA patients who were obese 
(>30 kg/m2; n = 10) or non-obese (<29.9 kg/m2; n = 
5) were determined by flow cytometry. A summary of 

patient demographics with Kellgren-Lawrence stage 
of OA disease is presented (Fig.  5A) where all patients 
exhibited later-stage disease. The gating strategy for 
PMN-MDSC(HLA-DR−/lowCD11b+CD14−  CD15+) 

Fig. 2 High‑fat diet increases monocytic‑MDSC expansion during PTOA. A Gating strategy used to define the M‑MDSC subpopulation 
 (CD11b+Ly6C+Ly6G− cells) in mouse bone marrow. Following the initial FS/SC discrimination, the gate was set on  CD11b+ cells. After exclusion of 
doublets (not shown), live  CD11b+ cells were gated and  Ly6C+ and  Ly6G+ populations. B Cytospin images of M‑MDSC cells from the bone marrow 
from LFD and HFD mice (at 16 weeks). Scale bar denotes 10 microns. C HFD increases the BM M‑MDSC population in mice (n = 4 in each group) by 
total number and percentage with concomitant suppression of  CD8+ and  CD4+ T‑cells compared to LFD mice (n = 6 in each group, at 16 weeks). 
D HFD increases the BM M‑MDSC population in DMM mice (n = 3 in each group). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by two‑way 
ANOVA Tukey’s multiple comparison test

Fig. 3 High‑fat diet (HFD) increases osteoclastogenesis in DMM mice. A Representative images of isolated bone marrow M‑MDSC post‑M‑CSF 
and RANKL stimulation stained with tartrate‑resistant acid phosphatase (TRAP; n = 3 in each group). B Osteoclast number (n = 3 in each group), 
number of osteoclasts per field of view, each enumeration utilized 5 fields of view/slide at 20×. C Osteoclast nuclei number per osteoclast (n = 3 in 
each group). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by two‑way ANOVA Tukey’s multiple comparison test
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and M-MDSC(HLA-DR−/low  CD11b+CD14+CD15−) 
quantitation in peripheral blood and synovial fluid of 
OA patients is presented in Fig.  5B. We observed that 
M-MDSC levels (Fig. 5C) in obese OA patients (median 
6.12%, range 0.84–21.9%) were increased compared with 
non-obese OA patients (median 0.882%, range 0.54–
1.77%); however, this did not quite reach significance. In 
synovial fluid, there was a trend towards M-MDSC cell 
expansion in obese OA patients compared with non-
obese OA patients (Fig.  5D). Although PMN-MDSC 
populations appear to be reduced in Fig. 5B, we did not 
observe any significant differences when all patients were 
compared (data not presented).

Discussion
Numerous studies have focused on the interactions 
between cartilage, bone, and the synovium in OA. Sub-
chondral bone and hematopoietic stem cells play cru-
cial roles in the initiation and progression of cartilage 
degeneration and OA pathology through bone remod-
eling where osteoclast activity is the instigating ele-
ment [36–39]. Increased bone remodeling ultimately 
results in increased subchondral bone volume and 

density (sclerosis), which are both features of late-stage 
OA disease identifiable on X-ray film [40]. However, ear-
lier boney changes in the subchondral bone are detected 
on magnetic resonance images (MRI) and described as 
bone marrow lesions (BMLs) which precede joint degen-
eration and thus present a possible predictive candidate 
for OA pathology [39]. In the present study, we show that 
there is an increase in osteoclast formation in DMM-
induced OA in mice in the subchondral bone, where 
there were more osteoclasts found in obese mice than 
non-obese DMM OA controls. These data are consistent 
with others who have shown increased numbers of oste-
oclasts following surgically induced OA in mice in sub-
chondral bone [41–44]. Similarly, others have shown that 
HFD results in increased OA disease pathology [45, 46]; 
however, this is the only study to date that indicates an 
increased level of osteoclasts in subchondral bone during 
obesity.

Since their initial description in cancer patients 
nearly two decades ago, MDSCs have been linked to 
several different types of inflammatory-associated path-
ologic conditions. In the present study, we observed 
that MDSCs are expanded in mice and humans during 

Fig. 4 High‑fat diet (HFD) alters subchondral bone parameters with increased osteoclast formation. A Representative histopathological section 
from mouse subchondral bone stained with tartrate‑resistant acid phosphatase (TRAP). B HFD increases osteoclast number in DMM. C Osteoclast 
area (μm2). D Subchondral bone score. E Subchondral bone thickness. n = 6 in the sham group, n = 5 in the DMM group; scale bar = 100μM. *P < 
0.05, ****P < 0.0001 two‑way ANOVA Tukey’s multiple comparison test
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obesity with OA. MDSCs were expanded in periph-
eral blood of OA patient subjects relative to body 
mass index and in mice fed a high-fat diet (HFD) com-
pared to mice fed a low-fat diet (LFD). Although other 
myeloid cells share the  CD11b+Ly6C+ phenotype, we 
demonstrated that this population also suppressed 
T-cell subsets from animals fed an HFD, consistent 
with their immunosuppressive activity. However, addi-
tional in vitro experiments are necessary to definitively 
characterize this population [47]. M-MDSCs from 
obese mice had a greater capacity to form osteoclasts 
in culture with increased subchondral bone osteoclast 
number. These data are similar to a recent report that 
indicated that macrophages were a major component 
of obesity-associated OA and depletion of macrophage 
using clodronate-loaded liposomes decreased obesity-
associated OA in mice [45]. In this study, we show that 
M-MDSCs were expanded in mice and humans with 
enhanced osteoclastogenic capacity and increased oste-
oclasts found in the subchondral bone area following 

histopathological examination. Similar to Sun et  al., 
we tried a depletion strategy to address the role of a 
specific cell population using an anti-GR-1 antibody 
to deplete MDSC populations. However, this strategy 
failed to deplete MDSCs as determined by flow cytome-
try without seemingly any effect on OA histopathology. 
Other studies have reported issues with this antibody 
for MDSC depletion [48]. Nevertheless, the positive 
association of M-MDSC expansion and ability to dif-
ferentiate into osteoclasts more efficiently from obese 
mice suggests a plausible role of M-MDSCs to migrate 
to the subchondral bone area to participate in the bone 
uncoupling process.

In addition, we have shown that obesity increased oste-
oclast number and number of nuclei within the osteo-
clasts. Indeed, it is well established that an increased 
number of nuclei in osteoclasts positively correlates 
with osteoclastic activity [49]. These data, coupled with 
human data where M-MDSCs are expanded in periph-
eral blood from OA patient subjects as well as supportive 

Fig. 5 MDSCs are expanded in obese patients with post‑traumatic osteoarthritis. A Demographic of the patient population. B Gating strategy 
used to define the M‑MDSC subpopulation  (CD11b+  HLADR−  CD14+  CD15− cells). The M‑MDSC population is expanded in C peripheral blood 
and D synovial fluid of obese (BMI > 30; N = 10) compared to non‑obese (BMI < 30; N = 5) patients diagnosed with post‑traumatic osteoarthritis. 
Two‑tailed unpaired Student t‑test
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data that they appear to be expanded in the synovial fluid 
of obese OA patients, suggests that they could likely con-
tribute towards OA pathology through increased osteo-
clastic activity and subchondral bone changes. However, 
additional studies would be needed to verify these data 
and provide more mechanistic data.

Over a decade ago, investigators noted that diet-
induced obesity caused alterations in bone remodeling 
[50, 51]. Obesity has been shown to enhance MDSC 
expansion and obesity-related metabolic factors [18]. 
More recently, a number of reports have demonstrated 
that MDSCs derived from either BM or spleen can dif-
ferentiate into osteoclasts [10, 15–17]. It should be noted 
that although there are several murine studies showing 
increased osteoclastogenesis potential in diet-induced 
obesity, few mechanistic studies have been conducted. 
These studies are mostly descriptive in nature showing 
changes in inflammatory cytokines that are usually asso-
ciated with adiposity and osteoclastogenesis, including 
TNF-α, IL-1β, IL-6, and RANKL, that would be altered in 
the bone marrow microenvironment [51, 52]. In a recent 
study from our group, we utilized a focused transcrip-
tomic platform to interrogate differential gene expression 
M-MDSC differentiation into osteoclasts. We observed 
several mRNAs were increased in M-MDSCs derived 
from HFD mice within the RANKL-stimulated signal-
ing pathway, including well-known osteoclastogenic 
signaling intermediates or definitive marker genes of 
osteoclast differentiation including Traf6 (tumor necro-
sis factor receptor (TNFR)-associated factor 6), Csf1r 
(colony-stimulating factor 1 receptor), Jun (transcription 
factor AP-1), Pparg (peroxisome proliferator-activated 
receptor gamma), and Calcr (calcitonin receptor) with 
the most significant increase in Calcr mRNA expres-
sion. Interestingly, Oscar (osteoclast-associated immu-
noglobulin-like receptor) was increased in HFD-derived 
M-MDSCs indicating both canonical and non-canonical 
osteoclastogenic pathways are activated during obesity-
induced osteoclastogenesis. The present study extends 
these concepts into murine OA models and potentially 
humans. In the present study, we did observe that HFD 
itself increased M-MDSC expansion as well as the abil-
ity of DMM trauma to dramatically increase both expan-
sion and differentiation capacity of MDSC populations 
derived from BM in metabolically challenged mice. In 
addition, data from both peripheral blood and syno-
vial fluid from OA patients with effusion suggests that 
M-MDSCs are expanded systemically and locally in 
obese subjects.

Conclusion
Consistent with the critical role of osteoclast-mediated 
bone resorption in OA pathology, treatment of OA with 
many anti-resorptive therapeutics shows efficacy in the 
clinical management of OA. Indeed, bisphosphonates, 
including zoledronate, cathepsin K inhibitors, and other 
anti-resorptive agents, have shown promise in experi-
mental OA models [53–55]. These studies highlight the 
prospective that subchondral bone acts in concert with 
other tissues surrounding the joint and the early remod-
eling events, induced by osteoclasts, may offer a thera-
peutic window to delay or reverse the temporal sequence 
of events that occur during OA pathology. Our results 
demonstrate that MDSCs expand in the peripheral blood 
of OA patients and the bone marrow of OA mice and 
are associated with bone destruction, in particular in the 
context of obesity. Thus, M-MDSCs represent a potential 
new source of osteoclast precursors that contribute to 
bone destruction in OA which has immediate therapeu-
tic target implications.
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