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RESEARCH ARTICLE Open Access

Diet-induced obesity leads to behavioral
indicators of pain preceding structural joint
damage in wild-type mice
Geoffrey J. Kerr1, Bethia To1, Ian White1, Magali Millecamps2, Frank Beier1, Matthew W. Grol1, Laura S. Stone3 and
Cheryle A. Séguin1*

Abstract

Introduction: Obesity is one of the largest modifiable risk factors for the development of musculoskeletal diseases,
including intervertebral disc (IVD) degeneration and back pain. Despite the clinical association, no studies have
directly assessed whether diet-induced obesity accelerates IVD degeneration, back pain, or investigated the
biological mediators underlying this association. In this study, we examine the effects of chronic consumption of a
high-fat or high-fat/high-sugar (western) diet on the IVD, knee joint, and pain-associated outcomes.

Methods: Male C57BL/6N mice were randomized into one of three diet groups (chow control; high-fat; high-fat,
high-sugar western diet) at 10 weeks of age and remained on the diet for 12, 24, or 40 weeks. At endpoint, animals
were assessed for behavioral indicators of pain, joint tissues were collected for histological and molecular analysis,
serum was collected to assess for markers of systemic inflammation, and IBA-1, GFAP, and CGRP were measured in
spinal cords by immunohistochemistry.

Results: Animals fed obesogenic (high-fat or western) diets showed behavioral indicators of pain beginning at 12
weeks and persisting up to 40 weeks of diet consumption. Histological indicators of moderate joint degeneration
were detected in the IVD and knee following 40 weeks on the experimental diets. Mice fed the obesogenic diets
showed synovitis, increased intradiscal expression of inflammatory cytokines and circulating levels of MCP-1
compared to control. Linear regression modeling demonstrated that age and diet were both significant predictors
of most pain-related behavioral outcomes, but not histopathological joint degeneration. Synovitis was associated
with alterations in spontaneous activity.

Conclusion: Diet-induced obesity accelerates IVD degeneration and knee OA in mice; however, pain-related
behaviors precede and are independent of histopathological structural damage. These findings contribute to
understanding the source of obesity-related back pain and the contribution of structural IVD degeneration.

Keywords: Obesity, High-fat diet, Western diet, Behavioral measures of pain, Intervertebral disc degeneration,
Osteoarthritis
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Background
Obesity—traditionally defined as a body mass index over
30—is a worldwide epidemic. Obesity substantially in-
creases the risk of developing metabolic, cardiovascular,
neurological, and musculoskeletal diseases [1], and with
the prevalence nearly tripling over the last 30 years [1], it
poses a large public health concern. Obesity decreases
both life expectancy [2] and quality of life and is associ-
ated with increased disability, mental illness, and
unemployment [1, 3]. A significant contributor to
obesity-induced disability is low back pain (LBP) [4, 5],
which is the single most common cause of long-term
pain and disability worldwide [6]. Despite efforts to im-
prove the clinical management of LBP, treatments are
largely limited to symptomatic relief, often without treat-
ing the underlying cause of the pain [7]. This is largely
due to an incomplete understanding of the tissues and
pathways involved in the initiation and progression of
LBP. While several tissues appear to be involved in LBP,
including the paraspinal muscles, ligaments, and facet
joints [8–10], degeneration of the fibrocartilaginous
intervertebral disc (IVD) is believed to be the major con-
tributor to pain in an approximately 40% of cases [8].
Despite the clinical associations between LBP, IVD de-

generation, and obesity, the underlying mechanisms and
biological pathways responsible remain unknown. One
contributing factor appears to be increased mechanical
loading. Excess weight alters the mechanical load experi-
enced by the IVD [11], a known regulator of IVD cellu-
lar function [12, 13]. Increased body weight is associated
with indices of lumbar disc degeneration including disc
space narrowing and decreased lumbar disc signal inten-
sity detected by MRI [14–16]. In articular cartilage, ex-
cess weight and altered mechanical loading has also
been suggested to contribute to osteoarthritis (OA) [16],
a degenerative musculoskeletal disease with many simi-
larities to IVD degeneration [17]. Of note, increased
mechanical load alone does not account for the associ-
ation between obesity and OA, as obese individuals also
present more frequently with OA in non-weight bearing
joints, such as the hand [18].
In addition to increased mechanical load, metabolic

abnormalities associated with obesity impact musculo-
skeletal health [19, 20]. Obesity is associated with
chronic metabolic disorders including hypertension, dia-
betes mellitus, and dyslipidemia, collectively known as
metabolic syndrome [21]. In the context of OA, it is pos-
tulated that each component of metabolic syndrome
may independently contribute to disease progression, as
comprehensively reviewed by Zhuo et al. [22] Specific-
ally, alterations in the release of systemic factors (inflam-
matory cytokines, adipokines), nutrient exchange,
advanced glycation end-products (AGEs) levels, and
glucose/lipid metabolism are believed to be major

contributors to OA progression [19, 22]. Studies from
multiple groups have demonstrated using mouse models
that obesity induced by a high-fat diet accelerates the
progression of both age- and surgically induced knee
OA [23–27], accompanied by behavioral indicators of
pain [23]. Aside from its role in energy storage, adipose
tissue is also a major endocrine organ and has been
shown to secrete hormones termed adipokines (e.g.,
leptin, adiponectin, visfatin, resistin) and inflammatory
cytokines (e.g., TNF-α, IL-6, TGF-β) [28]. Studies inves-
tigating the role of adipokines have highlighted their im-
portance in obesity-associated pathologies. For example,
leptin-deficient mice become obese yet they do not de-
velop knee OA, suggesting leptin may play a key role in
obesity-induced OA [29]. In the IVD, exposure of nu-
cleus pulposus (NP) cells to adipokines, such as leptin
and resistin, promotes catabolic metabolism associated
with increased expression of matrix remodeling enzymes
such as MMP and ADAMTS genes [30, 31]. Adipokines
also appear to play a role systemically as modulators of
pain sensitivity [32]. In addition to back pain, obese indi-
viduals are more likely to develop chronic pain condi-
tions such as fibromyalgia, headaches, and abdominal
pain [33]. While the underlying mechanisms linking
obesity and chronic pain remains unknown, it has been
suggested that systemic immune and endocrine alter-
ations play a role in the altered pain response [34]. This
systemic modulation of pain may contribute to LBP in
addition to structural alterations and local inflammation
within the IVD itself.
While there is extensive clinical evidence supporting

the association between obesity, LBP, and IVD degener-
ation [35, 36], no studies have directly assessed whether
diet-induced obesity accelerates IVD degeneration, back
pain, or investigated biological mediators underlying this
association. The current study was designed to investi-
gate whether chronic consumption of a high-fat or high-
fat, high-sugar western diet alters the progression of
age-related IVD degeneration or back pain using the
mouse as a model.

Materials and methods
Mice and diets
Wild-type, male, C57BL/6N (Charles River: Wilmington,
MA, USA) mice were fed standard chow (Envigo 2018)
after weaning and randomized at 10 weeks of age into
one of three diet groups (n = 9–16 mice/group; Supple-
mentary Table 1) based on previous reports of obesity
and metabolic derangement in mice [26, 37]: high-fat
diet (60% kcal fat, 21% kcal carbohydrate; Envigo
TD.06414), western diet (45% kcal fat, 41% kcal carbohy-
drate; Envigo TD.10885), or standard chow (18% kcal
fat, 58% kcal carbohydrate). Mice remained on the ex-
perimental diets until sacrifice at 5, 8, or 11.5 months-
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of-age (12, 24, 40 weeks on diet, respectively). Mice were
housed in standard cages and maintained on a 12 h
light/dark cycle, with food and water consumed ad libi-
tum; food consumption and body weight were measured
weekly. All aspects of this study were conducted in ac-
cordance with the policies and guidelines set forth by
the Canadian Council on Animal Care and were ap-
proved by the Animal Use Subcommittee of the Univer-
sity of Western Ontario (protocol 2017–154).

Characterization of pain-associated behaviors
Behavioral analysis was conducted on mice following 12,
24, or 40 weeks on experimental or control diets. Behav-
ioral studies were preceded by a 2-week habituation to
the neurobehavioral testing facility, and mice were habit-
uated to all tests 1 week prior to data collection. On data
collection days, animals were habituated to the testing
room for 1 h before test start. To avoid confounding var-
iables associated with the diurnal cycle, all behavioral as-
sessments were conducted between 8 and 11 AM.

Stretch-induced axial discomfort
Stretch-induced axial discomfort was measured using
the tail suspension test and grip force during axial
stretch, as described previously [38–40]. For the tail sus-
pension test, spontaneous reaction to gravity-induced
stretch was assessed in mice suspended by the base of
their tails for 180 s. Two observers blinded to the experi-
mental groups independently scored video recordings
for the duration of time spent by mice in immobility, full
extension, rearing, or self-supporting using ANY-maze
software (Stoelting Co.: Wood Dale, IL). Voluntary activ-
ity was quantified for 5 min immediately before (pre)
and after (post) tail suspension using open-field activity
monitors (AccuScan Instruments, Omnitech Electronic:
Columbus, OH), to quantify movement-evoked discom-
fort. The difference in total distance between the two
open-field sessions (post-pre) was calculated for each
mouse.
For the grip force assay, mice were positioned to grab

onto a metal bar attached to a grip force meter (Stoelt-
ing Co.: Wood Dale, IL) and then gently pulled back by
their tails to exert axial stretch. Tolerance was assessed
by measuring the grip strength, in grams, for each
mouse at the point of release averaged over 3 trials.

Hind limb sensitivity to mechanical and cold stimuli
Mechanical sensitivity was measured through application
of calibrated Von Frey filaments (Stoelting Co.: Wood
Dale, IL) to the plantar surface of the hind paw for 3 s or
withdrawal. Fifty-percent withdrawal threshold was cal-
culated using the Chaplan up-down method [41]. The
stimulus intensity ranged from 0.07 to 6.0 g, beginning
with a stimulus intensity of 1.4 g. Cold sensitivity was

assessed by measuring the total time spent by mice in
behavior evoked by evaporative cooling of acetone (flick-
ing, stamping, or licking of ventral surface of the paw)
during the first 40 s following application of 50 μL
acetone to the ventral surface of the hind paw. The test
was carried out twice for each paw, with at least 5 min
recovery between each test. Times were then averaged
between paws.

Spontaneous activity
Voluntary locomotor activity was assessed using open
field activity monitors (AccuScan Instruments,
Omnitech Electronic: Columbus, OH). Mice were placed
into individual boxes and their activity was monitored
over 2 h. This was repeated for 3 consecutive days and
values were averaged for each mouse.

Micro-computed tomography (micro-CT)
Forty-eight hours before sacrifice, μCT imaging was per-
formed using a cone-beam imaging system (eXplore
SpeCZT scanner, GE Healthcare Biosciences: London,
CAN). For imaging, mice were anesthetized using 2–3%
inhaled isoflurane (CA2L9100, Baxter: Mississauga,
CAN) infused with oxygen at a flow rate of 1.0 mL/min.
To maintain sedation, a nose cone apparatus was used
to administer 1.75% inhaled isoflurane for 20 min while
scanning was performed. During a single 5 min rotation
of the gantry, 900 X-ray projections were acquired (peak
voltage of 90 kVp, peak tube current of 40 mA, and inte-
gration time of 16 ms). A calibrating phantom composed
of air, water, and cortical bone-mimicking epoxy (SB3;
Gammex, Middleton WI, USA) was included in each
scan. Data were reconstructed into 3D volumes with an
isotropic voxel spacing of 50 μm and scaled into
Hounsfield units (HU). Using MicroView software (GE
Healthcare Biosciences) three signal-intensity thresholds
(− 200, − 30, and 190 HU) were used to classify each
voxel as adipose, lean, or skeletal tissue, respectively.
Custom software was used to calculate tissue masses
from assumed densities of 0.95 (adipose), 1.05 (lean),
and 1.92 (skeletal) g/cm3, as previously reported [42].

Histological analysis
Intact lumbar spine segments (L1-S1) and knees were
isolated, fixed, decalcified, and paraffin embedded, as
previously described [43]. Spines were sectioned sagit-
tally, and knees were sectioned coronally at a thickness
of 5 μm using a microtome (Leica Microsystems:
Wetzlar, DEU). Lumbar spines were stained using a
0.1% Safranin-O/0.05% Fast Green. Knees were stained
with 0.04% Toluidine Blue. Sections were imaged on a
Leica DM1000 microscope, with Leica Application Suite
(Leica Microsystems: Wetzlar, DEU).
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To evaluate IVD degeneration, spine sections were
scored by two blinded observers using the modified Boos
system [44]. Knee joint health was assessed using the
murine Osteoarthritis Research Society International
(OARSI) histopathological scale [45]. Articular surfaces
of the medial femoral condyle (MFC), medial tibial plat-
eau (MTP), lateral femoral condyle (LFC), and lateral
tibial plateau (LTP) were scored by two blinded ob-
servers and averaged. For each knee joint surface, scores
from 10 serial sections spanning 500 μm of the joint
were summed to represent OARSI score for each quad-
rant. Total scores from each of the four quadrants were
then added together to generate whole joint OARSI
score. To assess synovitis, a 3-point histopathological
scale [46] was used to evaluate synovial hyperplasia and
inflammatory infiltration by a blinded observer. For each
mouse, scores corresponding to both the medial and lat-
eral synovium were summed across 7 serial sections.
Thickness of articular cartilage of the medial tibial plat-
eau (MTP) and LTP was quantified using the OsteoMea-
sure7 Program (v.4.2.0.1, OsteoMetrics Inc., Decatur,
GA, USA). Articular cartilage thickness within each
quadrant was averaged using three serial sections span-
ning 150 μM of the weight-bearing region of the knee.
Using the same histomorphometry system, trabecular
bone area was calculated by measuring the total surface
area of the bone between the articular cartilage and
growth plate and subtracting the area of bone marrow.
Measurements were taken for both medial and lateral
compartments of the joint and averaged from 3 serial
sections.

Gene expression analysis
Intact thoracic IVDs (inclusive of NP, AF, and CEP) (4–
5 per mouse; 5–8 mice per diet/per timepoint) were iso-
lated by microdissection, placed in TRIzol reagent
(Thermo Fisher Canada: Mississauga, ON, CAN) and
homogenized using a PRO250 tissue homogenizer (PRO
Scientific: Oxford, CT, USA). RNA was extracted ac-
cording to manufacturer’s instructions, quantified using
a NanoDrop 2000 spectrophotometer (Thermo Fisher
Canada: Mississauga, ON, CAN), and 0.5 μg was reverse
transcribed into complementary DNA (cDNA) (iScript;
Bio-Rad Laboratories (Canada): Mississauga, ON, CAN).
Gene expression was assessed by real-time PCR using a
Bio-Rad CFX384 instrument. PCR analyses were run in
triplicate using 120 ng of cDNA per reaction and 310
nM forward and reverse primers with 2x SsoFast Eva-
Green Supermix (Bio-Rad Laboratories (Canada): Missis-
sauga, ON, CAN) using optimized PCR parameters and
primers (Supplementary Table 2). Primers were designed
and validated to have efficiency values between 90 and
120%. Transcript levels were calculated relative to a 6-
point standard curve made from pooled cDNA

generated from murine IVD explants treated with lipo-
polysaccharide for 4 days (50 mg/mL; Thermo Fisher
Canada: Mississauga, ON, CAN).

Immunohistochemistry
The intact spinal cord was removed, separated into the
upper (L1-L2) and lower (L3-L6) segments of the lumbar
enlargement and fixed in 4% paraformaldehyde (PFA) for
24 h at 4 °C. Tissues were cryoprotected for 4 days in 10%
sucrose and embedded in optimal cutting temperature
compound (Tissue-Tek O.C.T; Sakura Finetek US:
Torrance, CA, USA) and stored at − 20 °C. Tissues were
sectioned on a cryostat (Leica Microsystems: Wetzlar,
DEU) in the transverse plane at a thickness of 14 μm, thaw
mounted onto gelatin-coated slides, and stored at − 80 °C.
Slides were brought to room temperature, washed

twice in PBS and blocked using 5% donkey serum, 0.1%
Triton X-100 in PBS for 2 h at room temperature. Sec-
tions were incubated overnight in a humidified chamber
at 4 °C in 5% donkey serum in PBS (with 0.1% Triton-X)
containing primary antibodies directed against glial fi-
brillary acidic protein (GFAP) (1:500; G3893, Sigma-
Aldrich: St. Louis, MO, USA), ionized calcium-binding
adaptor molecule 1 (IBA-1) (1:1000; AB-10341, Abcam:
Cambridge, UK), or calcitonin gene-related peptide
(CGRP) (1:750; BML-CA1137, Enzo Biochem: New
York, NY, USA). Slides were rinsed 3 × 10 min in PBS-T
(PBS + 0.01% Triton X-100) and then incubated for 45
min at room temperature with secondary antibodies di-
luted 1:500 in PBS: Alexa Fluor 488 conjugated donkey
anti-mouse IgG for GFAP (A-21202, Thermofisher: Wal-
tham, MA, USA), Alexa Fluor 594 conjugated donkey
anti-rabbit IgG for Iba-1 (A-21207, Thermofisher:
Waltham, MA, USA), or Alexa Fluor 488 donkey anti-
sheep IgG for CGRP (A-11015, Thermofisher: Waltham,
MA, USA). Slides were rinsed 3 × 10min in PBS, dipped
in deionized water, and cover slips mounted using
Fluoroshield Mounting Medium with 4′,6-diamidino-2-
phenylindole to visualize nuclei (ab104139, Abcam:
Cambridge, UK). Tissue sections were imaged using a
Leica Microsystems DMI6000B fluorescence microscope
and DFC360FX camera with Leica Advanced Applica-
tion Suite software (Version 2.7.0-9329, Leica Microsys-
tems: Wetzlar, DEU). A region of interest (ROI) was
manually defined to contain lamellae 1-4 of the spinal
cord dorsal horn using ImageJ software. The dorsal horn
was differentiated from surrounding white mater based
on brightfield images. Integrated density of fluorescence
within the ROI was used to quantify astrocyte/microglia
density, and CGRP-immunoreactivity.

Serum analysis by multiplex assay
At euthanasia, blood was obtained by cardiac puncture,
coagulated for 30 min at room temperature, and
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centrifuged at 3000 rpm for 10min at 4 °C to collect
serum. Serum (n = 5–6 mice per diet/per timepoint) was
diluted 2-fold in DPBS and analyzed using the MILLIP
LEX Mouse Cytokine/Chemokine 32-plex kit (Millipore,
St. Charles, MO, USA) on the Luminex™ 200 system
(Luminex, Austin, TX, USA) by Eve Technologies Corp.
(Calgary, Alberta). The multiplex assay quantified Eotaxin,
G-CSF, GM-CSF, IFNγ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-
5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13,
IL-15, IL-17, IP-10, KC, LIF, LIX, MCP-1, M-CSF, MIG,
MIP-1α, MIP-1β, MIP-2, RANTES, TNFα, and VEGF.
The assay sensitivities range from 0.3 to 30.6 pg/mL.

Statistical analysis
For all assays except histopathological scoring of the
joints, outcome measures for mice within each time
point were compared between the different diet groups
by one-way ANOVA with Tukey’s multiple comparisons
test. For histopathological analysis, within each time-
point scores for mice were compared between the differ-
ent diet groups by non-parametric Kruskal-Wallis test
with Dunn’s multiple comparison test. P < 0.05 was con-
sidered significant. Statistical analysis was conducted
using GraphPad Prism 8 (Graphpad Software: San Diego,
CA, USA).
To assess the effect of diet, adiposity, knee OA, and

IVD degeneration on behavioral, molecular, and histo-
logical changes assessed, bivariate and multivariate linear

regression models were used to identify which variables
remained independently associated with the other out-
comes. Bivariate and multivariate modeling was con-
ducted using STATA 16 (StataCorp LLC: College
Station, TX, USA).

Results
Weight and adiposity
As expected, following 12, 24, and 40 weeks mice fed the
high-fat and western diets showed a significant increase
in body mass and weight gain compared to age-matched
chow-fed controls (Fig. 1a). Analysis of body compos-
ition by micro-CT (Fig. 1b) demonstrated that the in-
crease in adiposity in mice fed the experimental diets
was accompanied by a significant decrease in the per-
centage of both lean and skeletal tissues at all time
points (Fig. 1c). This analysis also showed a significant
increase in overall bone mineral density (BMD) in mice
fed the high-fat diet at all timepoints, and at the 24- and
40-week timepoints for mice fed the western diet, com-
pared to age-matched chow-fed controls (Fig. 1c).

Behavioral indicators of axial discomfort
We first investigated whether mice fed the high-fat or
western diet showed behavioral indicators of stretch-
induced axial discomfort using three complimentary as-
says established as indicators of discogenic back pain in
a mouse model of degeneration [40]: behavior during tail
suspension, changes in spontaneous activity after tail

Fig. 1 Chronic consumption of the high-fat and western diets increases adiposity in C57BL/6N mice. a At all timepoints, mice fed the high-fat
and western diets showed significant increases in overall weight and in weight-gain from baseline compared to age-matched chow-fed controls.
b Representative reconstructed micro-CT images of mice following 40 weeks of experimental diets. Isotropic surface-rendering of skeletal tissue
(indicated in white) is overlaid with a mid-coronal slice where lean tissue is indicated in red and adipose tissue is indicated in yellow. c
Quantitative micro-CT analysis of whole-body composition showed a significant increase in adiposity and significant decreases in both
percentage of lean and skeletal and in mice fed the high-fat and western diet mice compared to age-matched chow-fed controls at all time
points. A significant increase was also seen in bone mineral density in mice following consumption of the high-fat and western diets at the 24-
and 40-week timepoints. n = 9–16 mice per timepoint, per diet. Data are displayed as mean ± 95% CI; data points for each mouse are graphed
within each group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by 2-way ANOVA
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suspension, and tolerance to axial stretching in the grip
force assay. In the tail suspension test, no significant dif-
ferences were observed between diet groups at any time
point investigated (Fig. 2a). Similarly, changes in spon-
taneously activity induced by the tail suspension assay
(locomotion pre versus post tail suspension) were not al-
tered between experimental diet groups and age-
matched chow-fed controls (Fig. 2b). Grip force during
axial stretch was reduced in mice fed the high-fat diet
compared to age-matched chow-fed controls at 12 and
40 weeks and in mice fed the western diet at all time
points compared to control (Fig. 2c), suggesting de-
creased tolerance to axial stretch.

Behavioral indicators of mechanical and cold sensitivity
Mechanical and cold sensitivity were assessed in the
hind paw using the Von Frey assay and by measuring
the response of mice to the evaporative cooling of acet-
one, respectively. Mice fed the western diet showed a
significant increase in mechanical sensitivity at the 24-
and 40-week time points compared to age-matched
chow-fed controls, while mice fed a high-fat diet showed
a significant increase in sensitivity only at the 24-week
timepoint compared to controls (Fig. 3a). In contrast, no
significant difference was observed in sensitivity to cold

between mice in either experimental diet group com-
pared to age-matched chow-fed controls at any time
point (Fig. 3b).

Spontaneous locomotion
Behavior and locomotion in open field was assessed for all
mice over a 2 h period. Mice fed the western diet showed
a significant decrease in total distance traveled following
12 and 24weeks compared to age-matched chow-fed con-
trols. Mice fed the high-fat diet showed a significant re-
duction in locomotion following 24 weeks compared to
age-matched controls (Fig. 3c). The number of rearing
events was also significantly decreased in mice fed the
high-fat and western diets at the 40-week time point com-
pared to age-matched chow-fed controls (Fig. 3c).

Assessment of IVD degeneration
The effects of the high-fat and western diets on IVD
health were assessed using both histopathological evalu-
ation and molecular analysis (Fig. 4). On average, no
overt differences were detected in the histological ap-
pearance of lumbar IVDs between mice fed either the
high-fat or western diet for 12 and 24 weeks compared
to age-matched chow-fed controls (Fig. 4a). Accordingly,
histopathological scoring using the modified Boos

Fig. 2 Diet-induced obesity reduces grip strength but does not alter behavior in tail suspension. a During tail suspension, the duration of time
spent by mice immobile, in full extension, rearing or self-supported was quantified. No significant differences were detected between diet groups
at any of the time points assessed. b Stretch-evoked discomfort was assessed using the open field assay, in which the total distance covered in 5
min immediately before (pre) and after (post) the 3 min tail suspension assay was quantified. Obesity induced by the high-fat and western diets
did not alter behavior of mice in open field compared to age-matched chow-fed controls at any of the time points assessed. However, a
significant difference was seen between mice fed a high-fat and western diet at the 40-week timepoint. c Grip force during axial stretch was
reduced in obese mice. Mice fed the high-fat diet showed a significant decrease in grip force at the 12- and 40-week time points compared to
age-matched chow-fed controls. Mice fed the western diet showed a significant decrease in grip force compared to age-matched chow-fed
controls at all time points. n = 9–16 animals per timepoint, per diet. Data are plotted mean ± 95% CI; data points for each mouse are graphed
within each group. *P < 0.05, **P < 0.01, ***P < 0.001 by 2-way ANOVA
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system showed no significant differences in degeneration
between the groups. However, when data was analyzed
by individual spinal level, mice fed the western diet
showed significantly lower scores than their high-fat or
chow-fed counterparts at the L6S1 spinal level at the 12-
week timepoint (Fig. 4b). Following 40 weeks on the ex-
perimental diets, an accumulation of hypertrophic cells
surrounded by a glycosaminoglycan-rich pericellular
matrix was consistently detected in the inner annulus
fibrosus of mice fed both the high-fat and western diets,
but not in age-matched chow-fed control mice (Fig. 4a—
black arrows). Despite this observation, histopathological
scoring revealed no significant degeneration in the diet
groups compared to chow-fed controls at the 40-week
time point (Fig. 4b).
qPCR was used to quantify expression of markers of

inflammation, neural ingrowth, and matrix degrading
enzymes in thoracic IVDs to further investigate molecu-
lar changes associated with diet-induced obesity. Mice
fed the high-fat or western diets showed no significant
differences in the expression of the genes investigated at
the 12-week timepoint compared to age-matched chow-

fed controls (Fig. 4c). Mice fed the high-fat diet showed
no significant differences in gene expression compared
to chow-fed controls at the 24-week timepoint for any of
the genes investigated. At the 40-week timepoint, mice
fed the high-fat diet showed increased expression of in-
flammatory mediators (Il-6, Ptsg2), neurotrophins (Bdnf),
and matrix degrading enzymes (Adamts5) compared to
age-matched chow-fed controls (Fig. 4c). Mice fed the
western diet showed increased expression of the inflam-
matory mediators Il-1b and Ptgs2 compared to chow-fed
controls at 24 weeks; however, no significant differences
in gene expression were detected at the 40-week time-
point (Fig. 4c).

Assessment of degenerative changes in the knee
Since diet-induced obesity leads to arthropathies such as
knee OA [23], we investigated degenerative changes to
the knee joint as a potential contributor to the pain-
related behavioral outcomes assessed. We focused this
analysis on the 24- and 40-week timepoints where
changes in behavioral measures were most consistently
identified. No overt histological differences were

Fig. 3 Diet-induced obesity increases sensitivity to mechanical stimulation and alters spontaneous locomotion. a Mechanical sensitivity of the
hind paw was assessed by manual application of Von Frey filaments using the Chaplin up-down method. Mice fed the western diet showed a
significant decrease in withdrawal threshold at the 24- and 40-week time points compared to age-matched chow-fed controls, indicative of
increased mechanical sensitivity. Mice fed a high-fat diet showed a significant decrease in withdrawal threshold at the 24-week timepoint
compared to control. b Sensitivity to cold was assessed by measuring the time spent in behavior evoked by evaporative cooling of acetone
(flicking, stamping, or licking of ventral surface of the paw) during the first 40 s following application of acetone to the ventral surface of the hind
paw. No significant differences were seen between the diet groups at any timepoint. c Spontaneous locomotor activity was recorded over three
2-h sessions and averaged. Mice fed the western diet showed a significant decrease in the total distance traveled at the 12- and 24-week
timepoint compared to age-matched chow-fed controls, while mice fed the high-fat diet showed a decrease at the 24-week timepoint. The
number of rearing events was significantly decreased in mice fed the high-fat and western diets compared to controls at the 40-week timepoint.
n = 9–16 animals per timepoint, per diet. Data are plotted mean ± 95% CI; data points for each mouse are graphed within each group. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001 by 2-way ANOVA
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detected in the knee joints of mice fed either the high-
fat or western diet for 24 weeks compared to age-
matched chow-fed controls (Fig. 5a). Histopathological
scoring using the OARSI system supported these obser-
vations (Fig. 5b). At the 40-week timepoint, mice fed the
western diet showed focal areas of decreased proteogly-
can staining in the medial femoral condyle (MFC)
(Fig. 5a), resulting in significantly higher OARSI scores
compared to age-matched controls (Fig. 5b). No signifi-
cant differences were detected in the other compart-
ments of the knee joint or in the cumulative OARSI
scores for the whole joint.
In addition to histopathological analysis, histomorpho-

metry was used to assess morphological changes in the
knee. Although no significant differences in cartilage
thickness were detected in mice following 24 weeks on
the experimental diets, mice fed the high-fat diet for 40
weeks showed a significant decrease in cartilage thick-
ness compared to age-matched chow-fed controls, spe-
cific to the lateral femoral condyle (Fig. 5c). Mice fed the
western diet for 40 weeks showed a significant increase
in subchondral trabecular bone in the medial tibial plat-
eau (measured as the area of trabecular bone between
the articular cartilage and growth plate) compared to
age-matched chow-fed controls, suggesting sclerosis of
the subchondral bone (Fig. 5d). Mice fed the high-fat
and western diet for 24 or 40 weeks also showed a sig-
nificant increase in osteophyte formation compared to
chow-fed controls (Fig. 5e). Lastly, a significant increase
in synovial hyperplasia and inflammatory infiltration,
hallmarks of synovitis, were detected in mice fed the
high-fat diet at the 24- and 40-week timepoints and in
mice fed the western diet at the 24-week timepoint com-
pared to chow-fed controls (Fig. 6).

Analysis of sensory neuroplasticity within the lumbar
spinal cord
To assess neuroplastic changes associated with neuroin-
flammation and chronic pain, lumbar spinal cords from
mice at the 40-week time point were assessed for
markers of astrocytes (glial fibrillary acidic protein,

GFAP), microglia (ionized calcium-binding adapter mol-
ecule 1, IBA-1), and nociceptive innervation (calcitonin
gene-related peptide, CGRP; Fig. 7a). Although multiple
mice in both the high-fat and western diet groups
showed increased GFAP and IBA-1 staining in the upper
and lower lumbar spinal cord compared to the average
values for chow-fed controls, quantification of fluores-
cent intensity within the dorsal horn showed no signifi-
cant difference between diet conditions for any of the
proteins investigated (Fig. 7b).

Circulating inflammatory factors
Luminex xMAP multiplex assays were used to quantify a
panel of 32 cytokines, chemokines, and growth factors in
the serum of experimental mice. Mice fed the western
diet showed increased levels of interleukin (IL)-1β, IL-6,
IL-10, and tumor necrosis factor alpha (TNFα) at the
12- and 40-week timepoints; however, no significant
differences were seen when compared to chow-fed con-
trol due to variability between animals (Table 1). Despite
this variability, at the 40-week timepoint, a significant in-
crease in circulating monocyte chemoattractant protein
1 (MCP-1) was observed in mice fed a western diet com-
pared to chow-fed controls (Table 1). Animals fed a
western diet for 24 weeks also showed significantly lower
levels of circulating eotaxin and IL-1α compared to
chow-fed controls, but no differences in any of the other
cytokines investigated (Supplementary Table 3).

Linear regression analysis
To directly examine associations in the context of the
variability observed within each experimental group in
our study, linear regression modeling was conducted to
determine whether diet, adiposity, or age were predictors
of behavioral, histological, or systemic outcomes
(Table 2). Bivariate modeling demonstrated that both
adiposity and age are independent predictors of multiple
indicators of pain including stretch-induced axial dis-
comfort (grip force), mechanical sensitivity (Von Frey
assay), and spontaneous locomotion (open field). Despite
their association with behavioral alterations, neither

(See figure on previous page.)
Fig. 4 Effect of diet-induced obesity on the intervertebral disc. a Representative histological sections of the L6/S1 spinal level of the lumbar spine
stained with safranin-o/fast green from mice fed control chow, high-fat, or western diet for 12, 24, or 40 weeks. The accumulation of hypertrophic
cells was detected within the inner annulus fibrosus of mice fed the high-fat and western diets for 40 weeks (highlighted by black arrows). b
Evaluation of the grade of histopathological IVD degeneration using the modified Boos scoring system showed no significant differences
between mice fed the control chow, high-fat, or western diets at the 24- and 40-week timepoints. At the 12-week timepoint, mice fed the
western diet showed a significant decrease in the degenerative score compared to mice fed chow and high-fat diets. n = 9–16 animals per
timepoint, per diet. Data are analyzed by Kruskal-Wallis test. c SYBR-based qPCR of intact thoracic intervertebral discs showed no significant
difference between mice fed a chow, high-fat, or western diet at the 12-week timepoint for any genes investigated. At the 24-week timepoint,
significant increases in Il-1b and Ptgs2 expression were seen in mice fed the western diet compared to control. By 40 weeks, significant increases
in Il-6, Ptgs2, Bdnf, and Adamts5 expression were seen in mice fed the high-fat diet compared to control. n = 5–8 animals per diet/per timepoint.
Analyzed by one-way ANOVA. All data are plotted mean ± 95% CI; data points for each mouse are graphed within each group.
*P < 0.05, ***P < 0.001
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adiposity nor age was associated with measures of joint
degeneration or most circulating factors assessed
(Table 2). However, synovitis and systemic TNFα were
associated with adiposity (bivariate/ multivariate) and
age (bivariate), respectively (Table 2). When diet, adipos-
ity, and age were accounted for, age was found to be the
most robust predictor of all outcomes measured
(Table 2). The multivariate model also showed that diet
and adiposity are covariates for grip force and rearing in
open field, respectively (Table 2). To determine if histo-
pathological scores for joint damage were independently
associated with behavioral indicators of pain, bivariate
and multivariate regression modeling was completed. In

this study, no significant association was detected be-
tween histopathological scores for IVD degeneration and
pain-related behaviors. A weak but significant associ-
ation was detected between histopathological scores for
knee OA and grip force, but not for any of the other be-
havioral metrics assessed (Supplementary Table 4).
Synovitis was significantly associated with alterations in
spontaneous activity, including distance traveled, rest
time, and rearing in open field (Supplementary Table 4).

Discussion
Obesity is one of the largest modifiable risk factors for
IVD degeneration and LBP [35, 36], yet the biological

(See figure on previous page.)
Fig. 5 Effect of diet-induced obesity on the knee joint. a Representative histological coronal sections of the medial knee compartment stained
with toluidine blue from mice fed either control chow, high-fat, or western diet for 24 or 40 weeks. Images are oriented with the medial femoral
condyle (MFC) located superiorly, and the medial tibial plateau (MTP) inferiorly. White arrows indicate a loss of proteoglycan staining and focal
fibrillation of the cartilage, and yellow asterisks indicate osteophyte formation. b Histopathological grading of the knee joints using the murine
Osteoarthritis Research Society International (OARSI) scale corresponding to MTP, MFC, lateral tibial plateau (LTP), and lateral femoral condyle
(LFC), combined to generate the summed score for the whole joint. Mice fed the western diet for 40 weeks showed a significant increase in the
degenerative score in the MFC compared to those fed the control chow. However, no difference was seen in the whole joint score between any
of the groups at either timepoint. c Average articular cartilage thickness. After 40 weeks on the high-fat diet, mice presented with decreased
articular cartilage thickness on the LTP. No other differences were seen in any other joint compartment. Data analyzed by Kruskal-Wallis test. d
Percent trabecular bone in the medial and lateral subchondral compartments of the tibia. Mice fed the western diet for 40 weeks exhibited
significantly more trabecular bone in the medial compartment for the tibia. Analyzed by one-way ANOVA. e Presence and absence of
osteophytes was assessed in all mice. Mice fed the high-fat and western diets showed increased osteophyte formation compared to chow-fed
controls at both timepoints. Analyzed by Kruskal-Wallis test. n = 9–16 animals per diet/per timepoint. All data are plotted mean ± 95% CI, *P <
0.05, **P < 0.01, ***P < 0.001

Fig. 6 Effect of diet-induced obesity on synovial inflammation and hyperplasia. a Representative coronal sections of the medial compartment of
the knee stained with toluidine blue from mice fed either control chow, high-fat, or western diets for 24 or 40 weeks. Images are oriented with
medial femoral condyle (MFC) located superiorly, and the medial tibial plateau (MTP) inferiorly. Black arrows indicate synovial hyperplasia. b
Histopathological scoring assessed indicators of synovial hyperplasia and inflammatory infiltration. Summed scores represent the sum of the
medial and lateral compartments scores across 7 serial sections. Mice fed a high-fat diet showed a significant increase in synovial inflammation
and hyperplasia compared to chow-fed control at both the 24 and 40 week timepoint, while mice fed a western diet showed a significant
increase in synovitis at only the 24-week timepoint. n = 8–12 animals per diet/per timepoint. Analyzed by Kruskal-Wallis test. All data are plotted
mean ± 95% CI, **P < 0.01
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Fig. 7 Effect of diet-induced obesity on neuroplastic changes within the lumbar spinal cord. a Representative images showing transverse sections
of the dorsal horn of the lumbar spinal cord used for immunohistochemical analysis of neuroplastic changes associated with chronic pain. Tissues
were isolated from mice following 40 weeks of experimental diet. Slides were stained for glial fibrillary acidic protein (GFAP), ionized calcium-
binding adapter molecule 1 (IBA1), and calcitonin gene-related peptide (CGRP). Yellow boxes indicate the region of interest for high
magnification images (second row) for GFAP and IBA-1. (b) The fluorescence intensity was averaged across the region of interest (lamellae 1-4 of
the dorsal horn) of the upper (L1-L2) and lower (L3-L6) lumbar spinal cords. Mice fed a high-fat or western diet for 40 weeks showed no
significant differences in immunoreactivity for any of the proteins investigated. n = 6–8 animals/group. Individual data points of the same color
indicate the same animal. Data are plotted mean ± 95% CI
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mechanisms underlying this association are unknown.
The current study was designed to investigate the longi-
tudinal effects of diet-induced obesity on inflammation,
IVD degeneration, knee OA, sensory neuroplasticity, and
pain using the mouse as a pre-clinical model. We show
that obesity induced by both a high-fat and high-fat/
high-sugar western diet led to behavioral indicators of
pain in as little as 12 weeks, preceding gross structural
changes to the IVD and articular cartilage of the knee.
Following 40 weeks, changes in cellular morphology
within the inner AF of the IVD were detected in mice
fed both obesogenic diets compared to chow-fed con-
trols; however, these changes were not associated with
increased histopathological degeneration. Chronic con-
sumption of the high-fat diet was associated with in-
creased expression of Il-6, Ptgs2, Bdnf, Adamts-5, and
Mmp-3 within the IVD, a decrease in articular cartilage
thickness, osteophyte formation, and synovitis. In con-
trast, chronic consumption of the western diet was asso-
ciated with increased expression of Il-1b and Ptgs2
within the IVD, histopathological features of early OA,
osteophyte formation, synovitis, subchondral bone scler-
osis, and increased serum MCP-1 levels. These findings
highlight the complex interplay between diet, adiposity,
pain, inflammation, and joint health.
Rodent models are useful to study IVD biology since

they allow insight into biological processes that regulate
tissue homeostasis and degeneration, yet few studies
have investigated the association between IVD degener-
ation and clinically relevant pain [47]. Given the discord-
ance between structural IVD degeneration and pain in
humans [10, 48, 49] and pre-clinical models [50], it is
important to investigate pain, structural IVD degener-
ation, and their association. Several indirect, quantitative
behavioral assays have been developed to evaluate pain-
like behaviors in animals for a variety of different pain
states [51, 52]. Many of these metrics are not specific to

back pain but are used to assess joint, inflammatory, and
neuropathic pain [53, 54]. However, stretch-induced
axial discomfort (measured by grip force and tail suspen-
sion assays) is established as a reliable measure of axial
back pain in mice [40]. In the current study, mice fed
obesogenic diets showed significant impairments in grip
force at all timepoints compared to control mice, sug-
gesting axial discomfort. In contrast, no difference was
detected in tail suspension between groups. This poten-
tially contradictory data may be influenced by the nature
of the tail suspension assay, which was originally devel-
oped for depressive behavior in mice [55], since obesity
is also associated with depression [33]. In fact, recent
studies demonstrated that mice fed a high-fat diet for 8
weeks showed increased immobility in tail suspension,
interpreted as depression-like behavior [56]. In addition to
changes in body mass that may impact activity in suspen-
sion, this confounding factor may impact the outcome
and interpretation of our findings in tail suspension.
Obese mice also displayed mechanical but not thermal
(cold) hypersensitivity of the hind paw. These alterations
are consistent with reports of surgically induced IVD de-
generation in rats [57] yet contrast the SPARC-null mouse
model of IVD degeneration which shows thermal but not
mechanical hypersensitivity [39]. While the mechanisms
underlying these differences are unclear, mechanical sensi-
tivity is common in both inflammatory and neuropathic
pain [58], and different models of pain likely impact noci-
ception through different mechanisms [59]. Obesity also
altered non-reflexive (spontaneous) behaviors including
distanced traveled and rearing in open field—measure-
ments that have been shown to decrease in both inflam-
matory and neuropathic pain models [60].
Previous studies have established that high-fat diet-

induced obesity accelerates OA progression in mice [23,
26]; however, pain-related behaviors were independent
of OA severity [23]. As IVD degeneration is associated

Table 1 Multiplex analysis of cytokines, chemokines, and growth factors in serum
Analyte 12Week 24Week 40Week

Chow,
n = 6

HF, n = 6 Western,
n = 6

p
value

Chow,
n = 5

HF, n = 6 Western,
n = 6

p
value

Chow,
n = 5

HF, n = 6 Western,
n = 6

p
value

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

IL-1B 13.9 (17.5) 32.3 (58.6) 39.4 (43.8) 0.54 22.5 (26.9) 15.3 (15.7) 41.1 (89.3) 0.72 2.0 (1.8) 2.0 (1.4) 6.4 (6.7) 0.16

IL-6 17.2 (14.3) 20.9 (28.1) 47.6 (67.0) 0.43 25.7 (31.9) 28.7 (35.0) 13.6 (12.2) 0.63 2.7 (3.8) 4.1 (1.9) 20.0 (30.2) 0.24

IL-10 45.8 (51.4) 56.6 (85.1) 153 (261.2) 0.47 19.0 (24.1) 17.2 (18.7) 15.1 (18.7) 0.95 0.5 (1.0) 0.4 (0.9) 2.1 (2.9) 0.25

IP-10 129.4 (53.8) 122.0 (32.4) 139.5 (38.7) 0.78 90.9 (53.2) 105.9 (43.8) 63.6 (49.5) 0.34 106 (14.3) 113.7 (24.2) 144.7 (67.9) 0.32

KC 453.4 (323.3) 690.2 (843.0) 856.0 (1324) 0.75 527.2 (363.1) 452.0 (230.1) 240.7 (108.5) 0.17 191.1 (85.0) 355.3 (223.4) 258.8 (139.5) 0.28

MCP-1 53.7 (58.7) 51.6 (46.4) 78.3 (65.6) 0.68 54.3 (23.8) 68.1 (42.3) 165.2 (259.5) 0.45 13.6 (9.6) 63.8 (39.1) 135.3 (93.7) *# 0.02*

TNFa 28.4 (31.4) 37.8 (54.2) 41.9 (35.0) 0.85 23.9 (23.6) 16.0 (22.7) 53.4 (96.2) 0.54 1.0 (1.9) 2.2 (4.1) 3.0 (5.1) 0.63

VEGF 2.2 (1.87) 6.8 (14.2) 13.1 (27.8) 0.59 2.9 (4.2) 1.5 (2.5) 1.9 (2.1) 0.73 5.4 (8.4) 2.1 (3.1) 1.0 (0.5) 0.33

Values are displayed in pg/mL and analyzed by one-way ANOVA. P < 0.05 is significant
*Significantly different from chow diet by Tukey's post hoc test
#Significantly different from HF diet by Tukey’s post hoc test
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with pain-related behaviors common to OA [38], we
characterized both IVD degeneration and knee OA in
our experimental mice. Histopathological scoring of
lumbar IVDs did not reveal significant degeneration
caused by the high-fat or western diets. However, mice
fed both obesogenic diets showed an accumulation of
hypertrophic cells in the inner annulus fibrosus at 40

weeks, suggesting early degenerative change. Moreover,
increased expression of inflammatory mediators (Il-1b,
Il-6, Ptgs2), matrix degrading enzymes (Adamts5) and
neurotrophins (Bdnf) were detected in the IVDs of mice
fed the high-fat and western diets. These inflammatory
cytokines drive IVD pathogenesis associated with ECM
degeneration and expression of neurogenic factors such

Table 2 Impact of diet-induced obesity and age on behavioral, molecular, and histological changes

Parameter Bivariate (r) Multivariate (β, r2)

%
Adipose

Timepoint Diet (β) %
Adipose
(β)

Timepoint
(β)

Whole
model
(r2)

Experimental
(Obesogenic)

Western

Behavioral

Grip force − 0.41*** − 0.45*** − 21.96** − 6.23 0.4 − 0.841** 0.45***

Mechanical sensitivity (Von Frey) − 0.42*** − 0.21* − 0.35 − 0.14 − 0.0007 − 0.006 0.26***

Cold sensitivity (Acetone) 0.04 0.01 – – – – 0.08

Tail suspension

Rearing 0.01 0.11 – – – – 0.02

Immobility 0.18 0.19 – – – – 0.05

Self-support − 0.22* − 0.30** 1.73 − 0.46 − 0.71 − 0.74* 0.10*

Stretch 0.06 0.10 – – – – 0.07

Open field

Locomotion − 0.49*** − 0.35*** − 1226 − 59.3 − 92.7 − 93.5*** 0.33***

Rearing − 0.52*** − 0.40*** − 0.88 − 7.41 − 2.87* − 2.059*** 0.39***

Histopathology

IVD degeneration (average Boos) 0.065 0.04 – – – – 0.03

Knee OA (cumulative OARSI) 0.07 0.08 – – – – 0.05

Synovitis 0.68*** 0.102 3.535 − 0.692 0.325* 0.063 0.478***

Neuro-inflammation

Lower spinal cord

GFAP 0.23 – – 0.30

IBA-1 0.23 – – – – – 0.06

CGRP 0.024 – – – – – 0.18

Upper spinal cord

GFAP 0.21 – – – – – 0.08

IBA-1 0.33 – – – – – 0.12

CGRP 0.31 – – – – – 0.18

Systemic factors

IL-1B 0.04 0.21 – – – – 0.12

IL-6 0.06 0.22 – – – – 0.09

IL-10 0.03 0.21 – – – – 0.14

IP-10 0.03 0.07 – – – – 0.001

KC 0.002 0.25 – – – – 0.08

MCP-1 0.23 0.04 – – – – 0.18

TNFa 0.03 0.30* – – – – 0.16

VEGF 0.01 0.12 – – – – 0.06

Experimental/obesogenic diets include the high-fat and western diet
*P < 0.05, **P < 0.01, ***P < 0.001
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as NGF and BDNF that contribute to pain [61]. Simi-
larly, moderate histopathological degeneration articular
cartilage was detected in the knee at the 40-week time-
point in mice fed the western diet. Linear regression
modeling indicates that the behavioral indicators of pain
assessed are independent of joint degeneration, except
for the grip force assay where knee OA was a significant
predictor of impairment. Together these findings suggest
that chronic diet-induced obesity may accelerate the
progression of IVD degeneration and knee OA; however,
these changes are mild and likely independent of most
pain-related behaviors.
Our findings suggesting that pain-related behaviors

precede molecular and structural degradation of joint
tissues raise questions related to the source of the pain
observed. These findings are consistent with the hypoth-
esis that pain is multifactorial. Obesity is a state of
chronic inflammation associated with increases in circu-
lating inflammatory cytokines including TNFα and IL-6
in humans [62]. Inflammation can contribute to periph-
eral and central sensitization and may lead to hyper-
excitability of the nervous system and chronic pain [63].
While its role in LBP is not well characterized, synovial
inflammation is considered a major contributor to OA-
related pain [64–66]. We show that consumption of
high-fat and western diets led to synovitis (synovial
hyperplasia and increased inflammatory infiltration) and
that consumption of the western diet led to increased
levels of circulating MCP-1, a pro-algesic mediator that
can increase primary afferent neuron activity [67, 68].
Linear regression modeling also identified synovitis as a
predictor of diminished spontaneous movement. Obesity
may also impact central pain processing; in mice,
consumption of a high-fat diet increased the activation
of microglia [69] while exposure of cultured astrocytes
to saturated fatty acids induces cytokine release and astro-
cyte inflammation [70]. These neuroplastic changes can
contribute to central sensitization through multiple mech-
anisms, including increased release of inflammatory
factors contributing to modulation of synaptic activity
[63]. Although the averaged values of GFAP and IBA-1
detected in the spinal cord were not significantly different
between groups in our study, multiple mice in both the
high-fat and western diet groups showed increased activa-
tion of both microglia and astrocytes at the 40-week time-
point. These alterations to the nociceptive pathways at
either the peripheral or central level may contribute to the
pain response seen. Our findings of obesity-induced syno-
vitis and subchondral bone sclerosis also highlight the
possibility that other musculoskeletal structures (i.e.,
joints, muscle, bone, ligaments) may be affected by obesity
and contribute to pain.
Although the average weight gain was similar between

the two obesogenic diets evaluated in this study,

important differences in outcomes were detected. Mice
fed the western diet showed a more consistent pain re-
sponse compared to control at all timepoints than did
mice fed the high-fat diet. Furthermore, although syno-
vitis and osteophyte formation were observed for both,
cartilage degeneration resulting in histopathological de-
tection of knee OA and systemic inflammation were
only detected in mice fed the western diet. These find-
ings highlight the importance of dietary composition. In
the context of OA, dietary fatty acid and carbohydrate
composition can significantly impact joint health [24,
71]. Diets high in saturated fatty acids or ω-6 polyunsat-
urated fatty acids (PUFAs) induce more severe metabolic
dysregulation and OA progression than diets enriched
with ω-3 PUFAs [24]. These findings may explain our
results, as the western diet is higher in saturated fats
than the high-fat diet. Dietary composition also impacts
IVD health. Diets rich in advanced glycation end-
products (AGE) precursors accelerate IVD degeneration
in mice in parallel with insulin resistance [72–74].
A confounding factor in the interpretation of our find-

ings was the variability for many of the outcomes inves-
tigated, including substantial differences in weight gain
between mice on both obesogenic diets. Despite control-
ling for genetics using an inbred strain, susceptibility to
diet-induced obesity can be affected by social stress,
microbiome composition, and epigenetic mechanisms
[75–77]. Previous studies in mice demonstrated that car-
tilage damage induced by a high-fat diet is proportional
to adiposity [23]. In the current study, adiposity did not
predict histopathological measures of joint degeneration;
however, adiposity and age were predictors of pain-
related behaviors. As adiposity does not directly correl-
ate with systemic or neuro-inflammation in the current
model, it is important to investigate all aspects of meta-
bolic syndrome (i.e., circulating lipids, glucose, cyto-
kines/adipokines, blood pressure) and their impact on
the musculoskeletal and nervous systems in future
studies.

Conclusions
Taken together, this study highlights the complexity of
the relationship between obesity, joint degeneration, and
pain. Mice fed a high-fat or western diet showed pain-
related behaviors that preceded structural joint degener-
ation in both the IVD and knee. The chronology of these
findings may be of clinical importance, as pain may
affect the progression of radiographic joint degeneration.
While not directly investigated in IVD degeneration,
knee pain has been shown to be a predictor of acceler-
ated radiographic OA through inflammation and re-
duced mobility [78], which is also seen in IVD
degeneration [79]. This raises the intriguing possibility
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that back pain may be both a consequence of and a con-
tributor to structural IVD degeneration in the current
model.
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Additional file 1: Supplementary Figure 1. Spontaneous locomotion
(continued). Spontaneous Locomotion activity was recorded over three 2
h sessions and averaged. (A) Mice fed the western diet showed a
significant decrease in the average movement velocity at all timepoints
compared to age-matched chow fed controls, while mice fed the high-
fat diet showed a decrease at the 24-week timepoint. (B) The amount of
time spent in the anxiety-inducing center area of the open field enclos-
ure was decreased in mice fed the high-fat and western diets compared
to controls but not significant at any timepoint. n = 9–16 animals per
timepoint, per diet. Data are plotted mean ± 95% CI; data points for each
mouse are graphed within each group. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001 by one-way ANOVA.

Additional file 2: Supplementary Figure 2. SYBR-based qPCR of thor-
acic IVDs (continued). SYBR-based qPCR of intact thoracic intervertebral
discs showed no significant difference between mice fed a chow, high-
fat or western diet at the 12-week and 24-week timepoint for any genes
investigated. At 40-weeks a significant increase was seen in Mmp12 ex-
pression in mice fed a high-fat diet compared to chow control. n = 5–8
animals per diet/per timepoint. Analyzed by one-way ANOVA. All data are
plotted mean ± 95% CI; data points for each mouse are graphed within
each group. *P < 0.05, ***P < 0.001.

Additional file 3: Supplementary Table 1. Experimental diet
compositions.

Additional file 4: Supplementary Table 2. Real-time qPCR primer
sequences.

Additional file 5: Supplementary Table 3. Multiplex analysis of
cytokines, chemokines and growth factors in serum (Continued).

Additional file 6: Supplementary Table 4. Association between
behavioral indicators of pain and histological joint damage.

Acknowledgements
The authors would like to thank Dr. Marco Prado and Matthew Cowan for
access to the neurobehavioral core and assistance with behavioral testing.
They also thank Diana Quinonez for her help with sample and data
collection as well as its analysis.

Authors’ contributions
G.J.K. contributed to study design, directed data collection/analysis of all
aspects of the study, and drafted the manuscript. B.T. participated in the
collection and analysis of data from the knee joints. I.W. participated in the
collection and analysis of data from the spinal cords. M.W.G. participated in
the scoring and analysis of synovial inflammation/hyperplasia and
participated in the interpretation of all study results. M.M. and L.S.S.
contributed to the experimental design and analysis of data from the pain-

related behavior assays and participated in the interpretation of all study re-
sults. F.B. contributed to the experimental design and analysis of the data
from the knee joint and participated in the interpretation of all study results.
C.A.S. contributed to the study design, data analysis and interpretation, and
manuscript preparation. All authors read and approved the final manuscript.

Funding
G.J.K. was supported by a Doctoral Scholarship from the National Sciences
and Engineering Research Council (NSERC). G.J.K. and B.T. were also
supported by the Transdisciplinary Training Award from the Bone and Joint
Institute at the University of Western Ontario. This work was support by the
Canadian Institute of Health Research (grant # 169189 to C.A.S.; grant #
332438 to F.B.). F.B. is the Canada Research Chair in Musculoskeletal Research.
C.A.S. is supported by a Career Development Award from the Arthritis
Society and Early Researcher Award from the Ontario Ministry of Research
and Innovation.

Availability of data and materials
The data associated with the current study is available from the
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All aspects of this study were conducted in accordance with the policies and
guidelines set forth by the Canadian Council on Animal Care and were
approved by the Animal Use Subcommittee of the University of Western
Ontario (protocol 2017-154).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Physiology & Pharmacology, Schulich School of Medicine &
Dentistry, Bone and Joint Institute, The University of Western Ontario,
London, Ontario N6A 5C1, Canada. 2Alan Edwards Centre for Research on
Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.
3Department of Anesthesiology, Faculty of Medicine, University of Minnesota,
Minneapolis, Minnesota, USA.

Received: 9 September 2020 Accepted: 22 February 2021

References
1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev

Endocrinol. 2019;15(5):288-98.
2. De Gonzalez AB, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ, et al.

Body-mass index and mortality among 1.46 million white adults. N Engl J
Med. 2010;363(23):2211-9.

3. Taylor VH, Forhan M, Vigod SN, McIntyre RS, Morrison KM. The impact of
obesity on quality of life. Best Pract Res. 2013;27(2):139-46.

4. Samartzis D, Karppinen J, Cheung JP, Lotz J. Disk degeneration and low
back pain: are they fat-related conditions? Glob Spine J. 2013;3(3):133–44.

5. Shiri R, Karppinen J, Leino-Arjas P, Solovieva S, Viikari-Juntura E. The
association between obesity and low back pain: a meta-analysis. Am J
Epidemiol. 2010;171(2):135–54.

6. Global Burden of Disease Study C. Global, regional, and national incidence,
prevalence, and years lived with disability for 301 acute and chronic
diseases and injuries in 188 countries, 1990–2013: a systematic analysis for
the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.

7. Roelofs PDDM, Deyo RA, Koes BW, Scholten RJPM, Van Tulder MW.
Nonsteroidal anti-inflammatory drugs for low back pain: an updated
cochrane review. Spine (Phila Pa 1976). 2008;33(16):1766-74.

8. DePalma MJ, Ketchum JM, Saullo T. What is the source of chronic low back
pain and does age play a role? Pain Med. 2011;12(2):224–33.

9. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The relative
contributions of the disc and zygapophyseal joint in chronic low back pain.
Spine (Phila Pa 1976). 1994;19(7):801–6.

Kerr et al. Arthritis Research & Therapy           (2021) 23:93 Page 16 of 18

https://doi.org/10.1186/s13075-021-02463-5
https://doi.org/10.1186/s13075-021-02463-5


10. Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology. 2007;
245(1):43–61.

11. Rodriguez-Martinez NG, Perez-Orribo L, Kalb S, Reyes PM, Newcomb AGUS,
Hughes J, et al. The role of obesity in the biomechanics and radiological
changes of the spine: an in vitro study. J Neurosurg Spine. 2016;24(4):615–23.

12. Chan SC, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading
on the intervertebral disc. Eur Spine J. 2011;20(11):1796–812.

13. Kerr GJ, Veras MA, Kim MK, Seguin CA. Decoding the intervertebral disc:
unravelling the complexities of cell phenotypes and pathways associated
with degeneration and mechanotransduction. Semin Cell Dev Biol. 2017;62:
94–103.

14. Liuke M, Solovieva S, Lamminen A, Luoma K, Leino-Arjas P, Luukkonen R,
et al. Disc degeneration of the lumbar spine in relation to overweight. Int J
Obes. 2005;29(8):903–8.

15. Urquhart DM, Kurniadi I, Triangto K, Wang Y, Wluka AE, OʼSullivan R, et al.
Obesity is associated with reduced disc height in the lumbar spine but not
atthe lumbosacral junction. Spine (Phila Pa 1976). 2014;39(16):E962–6.

16. Sturmer T, Gunther KP, Brenner H. Obesity, overweight and patterns of
osteoarthritis: the Ulm osteoarthritis study. J Clin Epidemiol. 2000;53(3):307–13.

17. Rustenburg CME, Emanuel KS, Peeters M, Lems WF, Vergroesen P-PA, Smit
TH. Osteoarthritis and intervertebral disc degeneration: quite different, quite
similar. JOR Spine. 2018;1(4):e1033

18. Dahaghin S, Bierma-Zeinstra SM, Koes BW, Hazes JM, Pols HA. Do metabolic
factors add to the effect of overweight on hand osteoarthritis? The
Rotterdam Study. Ann Rheum Dis. 2007;66(7):916–20.

19. Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Jt Bone Spine.
2013;80(6):568–73.

20. Dario AB, Ferreira ML, Refshauge KM, Lima TS, Ordonana JR, Ferreira PH. The
relationship between obesity, low back pain, and lumbar disc degeneration
when genetics and the environment are considered: a systematic review of
twin studies. Spine J. 2015;15(5):1106–17.

21. Nguyen NT, Magno CP, Lane KT, Hinojosa MW, Lane JS. Association of
hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity:
findings from the National Health and Nutrition Examination Survey, 1999
to 2004. J Am Coll Surg. 2008;207(6):928–34.

22. Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis.
Nat Rev Rheumatol. 2012;8(12):729–37.

23. Griffin TM, Fermor B, Huebner JL, Kraus VB, Rodriguiz RM, Wetsel WC, et al. Diet-
induced obesity differentially regulates behavioral, biomechanical, and molecular
risk factors for osteoarthritis in mice. Arthritis Res Ther. 2010;12(4):R130.

24. Wu CL, Jain D, McNeill JN, Little D, Anderson JA, Huebner JL, et al. Dietary
fatty acid content regulates wound repair and the pathogenesis of
osteoarthritis following joint injury. Ann Rheum Dis. 2015;74(11):2076-83.

25. Griffin TM, Huebner JL, Kraus VB, Yan Z, Guilak F. Induction of osteoarthritis
and metabolic inflammation by a very high-fat diet in mice: effects of short-
term exercise. Arthritis Rheum. 2012;64(2):443–53.

26. Datta P, Zhang Y, Parousis A, Sharma A, Rossomacha E, Endisha H, et al.
High-fat diet-induced acceleration of osteoarthritis is associated with a
distinct and sustained plasma metabolite signature. Sci Rep. 2017;7(1):8205.

27. Collins KH, Paul HA, Reimer RA, Seerattan RA, Hart DA, Herzog W.
Relationship between inflammation, the gut microbiota, and metabolic
osteoarthritis development: studies in a rat model. Osteoarthr Cartil. 2015;
23(11):1989–98.

28. Das UN. Is obesity an inflammatory condition? Nutrition. 2001;17(11–12):
953–66.

29. Griffin TM, Huebner JL, Kraus VB, Guilak F. Extreme obesity due to impaired
leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum.
2009;60(10):2935–44.

30. Miao D, Zhang L. Leptin modulates the expression of catabolic genes in rat
nucleus pulposus cells through the mitogen-activated protein kinase and
Janus kinase 2/signal transducer and activator of transcription 3 pathways.
Mol Med Rep. 2015;12(2):1761–8.

31. Liu C, Yang H, Gao F, Li X, An Y, Wang J, et al. Resistin promotes
intervertebral disc degeneration by upregulation of ADAMTS-5 through p38
MAPK signaling pathway. Spine (Phila Pa 1976). 2016;41(18):1414–20.

32. Kutlu S, Canpolat S, Sandal S, Ozcan M, Sarsilmaz M, Kelestimur H. Effects of
central and peripheral administration of leptin on pain threshold in rats and
mice. Neuroendocrinol Lett. 2003;24(3-4):193-6.

33. Wright LJ, Schur E, Noonan C, Ahumada S, Buchwald D, Afari N. Chronic
pain, overweight, and obesity: findings from a community-based twin
registry. J Pain. 2010;11(7):628–35.

34. Okifuji A, Hare BD. The association between chronic pain and obesity. J Pain
Res. 2015;8:399–408.

35. Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Oka H, et al.
Metabolic syndrome components are associated with intervertebral disc
degeneration: the Wakayama spine study. Plos One. 2016;11(2):e0147565.

36. Jakoi AM, Pannu G, D’Oro A, Buser Z, Pham MH, Patel NN, et al. The clinical
correlations between diabetes, cigarette smoking and obesity on
intervertebral degenerative disc disease of the lumbar spine. Asian Spine J.
2017;11(3):337–47.

37. Smith BW, Miller RJ, Wilund KR, O’Brien WD Jr, Erdman JW Jr. Effects of
tomato and soy germ on lipid bioaccumulation and atherosclerosis in
ApoE-/- mice. J Food Sci. 2015;80(8):H1918–25.

38. Millecamps M, Tajerian M, Naso L, Sage EH, Stone LS. Lumbar intervertebral
disc degeneration associated with axial and radiating low back pain in
ageing SPARC-null mice. Pain. 2012;153(6):1167–79.

39. Miyagi M, Millecamps M, Danco AT, Ohtori S, Takahashi K, Stone LS. ISSLS
prize winner: increased innervation and sensory nervous system plasticity in
a mouse model of low back pain due to intervertebral disc degeneration.
Spine (Phila Pa 1976). 2014;39(17):1345–54.

40. Millecamps M, Czerminski JT, Mathieu AP, Stone LS. Behavioral signs of axial
low back pain and motor impairment correlate with the severity of
intervertebral disc degeneration in a mouse model. Spine J. 2015;15(12):
2524–37.

41. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative
assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;
53(1):55-63.

42. Beaucage KL, Pollmann SI, Sims SM, Dixon SJ, Holdsworth DW. Quantitative
in vivo micro-computed tomography for assessment of age-dependent
changes in murine whole-body composition. Bone Reports. 2016;5:70-80.

43. McCann MR, Patel P, Pest MA, Ratneswaran A, Lalli G, Beaucage KL, et al.
Repeated exposure to high-frequency low-amplitude vibration induces
degeneration of murine intervertebral discs and knee joints. Arthritis
Rheumatol. 2015;67(8):2164–75.

44. Rutges JP, Duit RA, Kummer JA, Bekkers JE, Oner FC, Castelein RM, et al. A
validated new histological classification for intervertebral disc degeneration.
Osteoarthr Cartil. 2013;21(12):2039–47.

45. Glasson SS, Chambers MG, Van Den Berg WB, Little CB. The OARSI
histopathology initiative - recommendations for histological assessments of
osteoarthritis in the mouse. Osteoarthr Cartil 2010;18 Suppl 3:S17–S23.

46. Jayaram P, Liu C, Dawson B, Ketkar S, Patel SJ, Lee BH, et al. Leukocyte-
dependent effects of platelet-rich plasma on cartilage loss and thermal
hyperalgesia in a mouse model of post-traumatic osteoarthritis. Osteoarthr
Cartil. 2020;28(10):1385-93.

47. Mosley GE, Evashwick-Rogler TW, Lai A, Iatridis JC. Looking beyond the
intervertebral disc: the need for behavioral assays in models of discogenic
pain. Ann N Y Acad Sci. 2017;1409(1):51-66.

48. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-
resonance scans of the lumbar spine in asymptomatic subjects. A
prospective investigation. J Bone Jt Surg Am. 1990;72(3):403–8.

49. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D,
Ross JS. Magnetic resonance imaging of the lumbar spine in people
without back pain. N Engl J Med. 1994;331(2):69–73.

50. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, et al. A novel
rabbit model of mild, reproducible disc degeneration by an anulus needle
puncture: correlation between the degree of disc injury and radiological
and histological appearances of disc degeneration. Spine (Phila Pa 1976).
2005;30(1):5-14.

51. Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors
in rodents. Front Mol Neurosci. 2017;10:284.

52. Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci.
2009;10(4):283-94.

53. Piel MJ, Kroin JS, van Wijnen AJ, Kc R, Im HJ. Pain assessment in animal
models of osteoarthritis. Gene. 2014;537(2):184–8.

54. Burma NE, Leduc-Pessah H, Fan CY, Trang T. Animal models of chronic pain:
advances and challenges for clinical translation. J Neurosci Res. 2017;95(6):1242-56.

55. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new
method for screening antidepressants in mice. Psychopharmacology. 1985;
85(3):367-70.

56. Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, et al. A high-fat
diet promotes depression-like behavior in mice by suppressing
hypothalamic PKA signaling. Transl Psychiatry. 2019;9(1):141.

Kerr et al. Arthritis Research & Therapy           (2021) 23:93 Page 17 of 18



57. Lai A, Moon A, Purmessur D, Skovrlj B, Laudier DM, Winkelstein BA, et al.
Annular puncture with tumor necrosis factor-alpha injection enhances
painful behavior with disc degeneration in vivo. Spine J. 2016;16(3):420-31.

58. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;
52(1):77-92.

59. Xu Q, Yaksh TL. A brief comparison of the pathophysiology of inflammatory
versus neuropathic pain. Curr Opin Anaesthesiol. 2011;24(4):400-7.

60. Cho H, Jang Y, Lee B, Chun H, Jung J, Kim SM, et al. Voluntary movements
as a possible non-reflexive pain assay. Mol Pain. 2013;9:25.

61. Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration:
pain and disc content. Nat Rev Rheumatol. 2014;10(1):44–56.

62. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent
advances in the relationship between obesity, inflammation, and insulin
resistance. European Cytokine Network. 2006;17(1):4-12.

63. Gangadharan V, Kuner R. Pain hypersensitivity mechanisms at a glance. Dis
Model Mech. 2013;6(4):889–95.

64. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical
symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625-35.

65. Hunter DJ, Guermazi A, Roemer F, Zhang Y, Neogi T. Structural correlates of
pain in joints with osteoarthritis. Osteoarthr Cartil. 2013;21(9):1170-8.

66. Hoshino T, Tsuji K, Onuma H, Udo M, Ueki H, Akiyama M, et al. Persistent
synovial inflammation plays important roles in persistent pain development
in the rat knee before cartilage degradation reaches the subchondral bone.
BMC Musculoskelet Disord. 2018;19(1):291.

67. Richards N, Batty T, Dilley A. CCL2 has similar excitatory effects to TNF-α in a
subgroup of inflamed C-fiber axons. J Neurophysiol. 2011;106(6):2838-48.

68. Jung H, Toth PT, White FA, Miller RJ. Monocyte chemoattractant protein-1
functions as a neuromodulator in dorsal root ganglia neurons. J
Neurochem. 2008;104(1):254-63.

69. Lee SH, Wu YS, Shi XQ, Zhang J. Characteristics of spinal microglia in aged
and obese mice: potential contributions to impaired sensory behavior.
Immun Ageing. 2015;12:22.

70. Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids
activate inflammatory signaling in astrocytes. J Neurochem. 2012;120(6):1060-71.

71. Donovan EL, Lopes EBP, Batushansky A, Kinter M, Griffin TM. Independent
effects of dietary fat and sucrose content on chondrocyte metabolism and
osteoarthritis pathology in mice. DMM Dis Model Mech. 2018;11(9):
dmm034827.

72. Illien-Junger S, Lu Y, Qureshi SA, Hecht AC, Cai W, Vlassara H, et al. Chronic
ingestion of advanced glycation end products induces degenerative spinal
changes and hypertrophy in aging pre-diabetic mice. Plos One. 2015;10(2):
e0116625.

73. Krishnamoorthy D, Hoy RC, Natelson DM, Torre OM, Laudier DM, Iatridis JC,
et al. Dietary advanced glycation end-product consumption leads to
mechanical stiffening of murine intervertebral discs. DMM Dis Model Mech.
2018;11(12):dmm036012.

74. Hoy RC, D’Erminio DN, Krishnamoorthy D, Natelson DM, Laudier DM, Illien-
Jünger S, et al. Advanced glycation end products cause RAGE-dependent
annulus fibrosus collagen disruption and loss identified using in situ second
harmonic generation imaging in mice intervertebral disk in vivo and in
organ culture models. JOR Spine. 2020;3(4):e1126.

75. Davis CD. The gut microbiome and its role in obesity. Nutr Today. 2016;
51(4):167-74.

76. Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, Faulk C, et al. Changes in
gene expression foreshadow diet-induced obesity in genetically identical
mice. Plos Genet. 2006;2(5):e81.

77. Bartolomucci A, Cabassi A, Govoni P, Ceresini G, Cero C, Berra D, et al.
Metabolic consequences and vulnerability to diet-induced obesity in male
mice under chronic social stress. Plos One. 2009;4(1):e4331.

78. Wang Y, Teichtahl AJ, Abram F, Hussain SM, Pelletier JP, Cicuttini FM, et al.
Knee pain as a predictor of structural progression over 4 years: data from
the Osteoarthritis Initiative, a prospective cohort study. Arthritis Res Ther.
2018;20(1):250.

79. Urquhart DM, Berry P, Wluka AE, Strauss BJ, Wang Y, Proietto J, et al. 2011
Young Investigator Award winner: increased fat mass is associated with
high levels of low back pain intensity and disability. Spine (Phila Pa 1976).
2011;36(16):1320–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kerr et al. Arthritis Research & Therapy           (2021) 23:93 Page 18 of 18


	Diet-induced obesity leads to behavioral indicators of pain preceding structural joint damage in wild-type mice
	Citation of this paper:
	Authors

	Abstract
	Introduction
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Mice and diets
	Characterization of pain-associated behaviors
	Stretch-induced axial discomfort
	Hind limb sensitivity to mechanical and cold stimuli
	Spontaneous activity

	Micro-computed tomography (micro-CT)
	Histological analysis
	Gene expression analysis
	Immunohistochemistry
	Serum analysis by multiplex assay
	Statistical analysis

	Results
	Weight and adiposity
	Behavioral indicators of axial discomfort
	Behavioral indicators of mechanical and cold sensitivity
	Spontaneous locomotion
	Assessment of IVD degeneration
	Assessment of degenerative changes in the knee
	Analysis of sensory neuroplasticity within the lumbar spinal cord
	Circulating inflammatory factors
	Linear regression analysis

	Discussion
	Conclusions
	Abbreviations
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

