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Abstract: Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease, leading to articular
cartilage breakdown, osteophyte formation, and synovitis, caused by an initial joint trauma. Pro-
inflammatory cytokines increase catabolic activity and may perpetuate inflammation following joint
trauma. Interleukin-15 (IL-15), a pro-inflammatory cytokine, is increased in OA patients, although
its roles in PTOA pathophysiology are not well characterized. Here, we utilized Il15 deficient rats
to examine the role of IL-15 in PTOA pathogenesis in an injury-induced model. OA was surgically
induced in Il15 deficient Holtzman Sprague-Dawley rats and control wild-type rats to compare PTOA
progression. Semi-quantitative scoring of the articular cartilage, subchondral bone, osteophyte size,
and synovium was performed by two blinded observers. There was no significant difference between
Il15 deficient rats and wild-type rats following PTOA-induction across articular cartilage damage,
subchondral bone damage, and osteophyte scoring. Similarly, synovitis scoring across six parameters
found no significant difference between genetic variants. Overall, IL-15 does not appear to play a key
role in the development of structural changes in this surgically-induced rat model of PTOA.

Keywords: interleukin-15; post-traumatic osteoarthritis; articular cartilage; synovial joint; transgenic rats

1. Introduction

Osteoarthritis (OA) is a musculoskeletal disorder that presents a significant global
burden, with over 303 million cases of hip and knee OA, which is expected to increase [1].
OA is a disorder of the entire joint, initially categorized by abnormal joint tissue metabolism
and later by structural joint tissue changes. Each tissue reacts to the disease both indepen-
dently and in response to changes in neighbouring tissue, resulting in joint pathologies
including cartilage degeneration, subchondral bone remodeling, osteophyte formation,
and synovial inflammation [2]. Post-traumatic osteoarthritis (PTOA) is a subtype of OA
that develops after joint trauma, such as meniscal or ligament injury, and occurs most often
in the lower extremities [3]. PTOA is estimated to account for 12% of all lower extremity
OA cases, with costs of about USD 3 billion annually [4]. Although PTOA may affect any
joint, knees and ankles are the most commonly affected [3].

A proposed mechanism of PTOA is the perpetuation of inflammation, in which some
patients are unable to resolve the acute inflammation following joint injury and thus
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develop chronic inflammation with symptomatic PTOA [5]. Inflammation in arthritis is
typically associated with rheumatoid arthritis (RA), a systemic disease with joint swelling
and damage, although it plays a role in OA as well [6,7]. OA inflammation is distinctly
different from RA in many ways, with OA having lower levels of inflammatory proteins,
less pronounced synovitis, and no response to conventional biologics used in RA, to name a
few [7]. OA is characterized by a chronic, low grade form of inflammation that involves pro-
inflammatory cytokine release, such as interleukin 1 (IL-1) and tumor necrosis factor alpha
(TNFa) [7,8]. Pro-inflammatory cytokines are present in healthy synovium, although there
seems to be a higher presence of anti-inflammatory cytokines that successfully suppress
inflammation, suggesting there is an imbalance in OA [9]. In fact, levels of IL-1β and
TNF are increased in the synovial fluid, synovium, subchondral bone, and cartilage of
the OA joint [10]. The prolonged increase in these pro-inflammatory cytokines within the
joint leads to an increase in expression of downstream catabolic factors, such as matrix
metalloproteinases (MMPs) [11]. These MMPs are zinc-dependent enzymes that play
a major role in extracellular matrix (ECM) degradation through the cleavage of type II
collagen and other ECM components (e.g., aggrecan, fibronectin, and laminin) [12].

Unfortunately, cytokine-based OA treatment has not been successful, which may be
due to multiple factors (i.e., drug penetration and disease stage), but most importantly
could be due to the pleiotropic nature of cytokines [8,13]. Many cytokines have overlapping
actions due to shared receptors and downstream signaling pathways, making cytokine
treatment difficult if targeting one individual cytokine [13]. The inflammation of the
synovium, termed synovitis, is an important aspect in this perpetuation of inflammation
model, as the failure to resolve this inflammation results in drastic changes to the resident
cells, leading to hyperplasia, angiogenesis, and infiltrates within the synovial membrane.
Infiltrating cells, such as T-cells, B-cells, plasma cells, and macrophages, then contribute to
further destruction of the cartilage matrix and subchondral bone [14].

Interleukin-15 (IL-15) is a pro-inflammatory cytokine that is crucial for natural killer
cell (NK) ontogeny and CD8 T cell memory [15]. IL-15 is widely expressed by monocytes,
macrophages, dendritic cells, fibroblasts, epithelial cells, and skeletal muscle [16]. There
are three receptors for IL-15: (1) the specific IL-15Rα, (2) the shared IL-2/IL-15Rβ, and
(3) the common IL-15Rγ, binding IL-15, -2, -4, -7, and -19. IL-15 has a high affinity for the
IL-15α chain but can only transduce signals in the presence of the IL-15Rβ and γ recep-
tors, for which there is intermediate affinity. Important downstream signaling pathways
include JAK1/STAT3, JAK3/STAT5, and NF-κB [15]. Additionally, IL-15 signaling plays
a vital role in the bone turnover process. IL-15Rα ensures efficient osteoblast/osteoclast
coupling, as well as determining osteoblast phosphate homeostasis and mineralization
capacity [17]. Female Il15Rα−/− mice have impaired osteoclast activity and are protected
from age related trabecular bone loss when ovariectomized [18]. Indeed, single nucleotide
polymorphisms (SNP) of IL-15Rα positively correlate to total bone volume, as well as
cortical bone volume [19]. Overall, IL-15 plays an important role in many body tissues
and processes.

Although the role of IL-15 in RA pathology has been more established, it needs to
be studied separately in OA due to their differing pathological presentations [20]. IL-15
protein and mRNA levels are reported to be significantly increased in patients with OA
compared to the control group [21]. Further, Scanzello et al. (2009) found that IL-15
protein levels are higher in the synovial fluid during early OA compared to late stage,
suggesting a role for IL-15 in the early stages of the disease [22]. Interestingly, another study
found a positive correlation between SNPs in the human IL-15Rα gene and prevalence
of symptomatic OA [23]. Additionally, serum IL-15 levels independently correlate to
pain intensity as measured by the Western Ontario McMaster University Osteoarthritis
Index (WOMAC) pain score, although they do not correlate with Kellgren–Lawrence (KL)
radiographic severity [24]. The increase of IL-15 in the synovial fluid of OA patients is also
positively correlated to other pro-inflammatory cytokines, as well as MMP activity [25].
Specifically, Tao and colleagues (2015) demonstrated a strong correlation between MMP-7
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serum levels and IL-15 [21]. A recent study showed that IL-15Rα is present on chondrocytes,
and treatment with IL-15 in vitro causes an increase in MMP1 and -3 release, but does
not alter generation of soluble glycosaminoglycan (GAG) fragments [23]. Therefore, IL-15
may play a role in OA pathogenesis through an increase in pro-inflammatory activity that
results in increased MMP activity. This MMP activity may then lead to increased tissue
breakdown, and thus more pain and other symptoms.

In the present study, we investigated the role of IL-15 in the development of structural
joint changes related to knee PTOA using a well-established rat model of surgically-induced
PTOA in Il15−/− rats and control Il15+/+ rats. We hypothesized that Il15−/−rats would
demonstrate a slower progression of PTOA compared to Il15+/+ rats.

2. Materials and Methods
2.1. Animals and Surgery

Holtzman Sprague-Dawley rats possessing a 7 base pair frameshift deletion in the
second exon of Il15 were utilized, as described previously (Figure 1) [26]. These rats
do not produce mature IL-15 protein and were bred in-house. Rats were housed in a
temperature- and humidity-controlled room (20–25 ◦C, 40–60%), with good ventilation.
Water and standard rat chow were freely available. Rats were housed in colony cages and
on a standard 12 h light/dark cycle. Male Il15+/+ and Il15−/− rats were then randomly
allocated to either a surgical group (N = 15/genotype) or control (N = 9/genotype). The
surgical group underwent anterior cruciate ligament transection with destabilizing medial
meniscus (ACLT-DMM) surgery on the right knee at 9.5 weeks old, as described by Apple-
ton et al. (2007) with one modification to reduce the speed of joint damage progression in
this model [27]. Instead of performing partial medial meniscectomy, the medial meniscus
was destabilized by transecting the medial meniscotibial ligament. Surgical anesthesia was
induced using 5% isoflurane, then decreased to 2% for maintenance. Ampicillin (40 mg/kg)
was administered subcutaneously as a prophylactic antibiotic, and slow release Buprenor-
phine (1 mg/mL) was administered subcutaneously as a post-operative analgesic. A sham
surgery is normally performed, with joint arthrotomy but no cruciate or meniscotibial
ligament transection, although it was not used here as we did not want to induce any
inflammation in the control group. Instead, we utilized age-matched surgically-naive rats
as the control condition. Weights were measured daily for the first 4 days post-operatively,
and then weekly. All rats were euthanized by asphyxiation with CO2 8 weeks after PTOA
induction. All animal experiments were in accordance with the Canadian Council on
Animal Care guidelines and were approved by the Animal Use Subcommittee at Western
University (2019-029).

2.2. Histopathology and Scoring

Right knees were dissected and fixed in 4% paraformaldehyde at 4 ◦C overnight.
Decalcification with Decal StatTM (StatLab, Baltimore, MD, USA) and Formical-2000TM

(StatLab, Baltimore, MD, USA) was carried out on coronally bisected joints. Following
processing and paraffin embedding, knees were frontally sectioned at 6 µm. Surface
decalcification with Decal StatTM was used as required. The centre of the joint was analyzed
by staining 3–5 serial sections, 200 µm apart, stained in 0.04% Toluidine Blue for cartilage
and bone histopathology or with Hematoxylin and Eosin (H&E) for synovial histopathology
analysis. Slides were randomized and blinded for scoring by 2 observers.

Toluidine Blue stained sections were analyzed using the Osteoarthritis Research
Society International (OARSI) rat histopathologic system [28,29]. Cartilage degeneration,
subchondral bone damage, and osteophytes were graded in four knee quadrants—Medial
Femoral Condyle (MFC), Medial Tibial Plateau (MTP), Lateral Femoral Condyle (LFC), and
Lateral Tibial Plateau (LTP). For each animal, a score per parameter was assigned based on
the summed score for the slides, where there is a maximum score of 75 for total cartilage
damage, 25 for subchondral bone damage, and 20 for osteophyte scores.
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Figure 1. Genetically modified Holtzmann Sprague-Dawley rats. Holtzmann Sprague-Dawley rats 
were genetically modified via zinc finger nucleases (ZFN) by Dr. Renaud to delete Il15 [26]. (A) The 
second coding exon of the rat Il15 gene was targeted via ZFN. Non-coding exon regions are repre-
sented with white boxes, coding exon regions with black boxes. The red box outlines the ZFN target 
sequence, which resulted in a 7-nucleotide deletion and subsequent frameshift (red text) for the 
Il15−/− rats. (B,C) Four primers from Sigma-Aldrich were used to genotype the rats through PCR. 
The reverse primer (R1704) was specific to Il15+/+ rats and produced a 152-bp band in combination 
with F1552. The forward primer (F1666) was specific to Il15−/− rats and produced a 252bp-band in 
combination with R1918. 
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Figure 1. Genetically modified Holtzmann Sprague-Dawley rats. Holtzmann Sprague-Dawley
rats were genetically modified via zinc finger nucleases (ZFN) by Dr. Renaud to delete Il15 [26].
(A) The second coding exon of the rat Il15 gene was targeted via ZFN. Non-coding exon regions are
represented with white boxes, coding exon regions with black boxes. The red box outlines the ZFN
target sequence, which resulted in a 7-nucleotide deletion and subsequent frameshift (red text) for
the Il15−/− rats. (B,C) Four primers from Sigma-Aldrich were used to genotype the rats through PCR.
The reverse primer (R1704) was specific to Il15+/+ rats and produced a 152-bp band in combination
with F1552. The forward primer (F1666) was specific to Il15−/− rats and produced a 252bp-band in
combination with R1918.

H&E-stained sections were analyzed using a six parameter synovial scoring system,
assessing synovial lining thickness, sub-synovial infiltration, fibrin deposition, vasculariza-
tion, fibrosis, and perivascular edema [30]. Scoring was assessed separately in the medial
and lateral parapatellar, superior, and inferior compartments (6 compartments total). Each
synovial histopathology parameter was assigned a score of 0 (none) to 3 (severe). Final
scores for each synovial histopathology parameter were calculated for each animal by
summation of the mean score (3–5 slides per knee) from each of the 6 joint compartments,
producing a maximum score of 18.

2.3. Statistical Analysis

Statistical analyses were performed in GraphPad Prism v.8.2 and IBM SPSS Statistics v.23.
SPSS was used for Cohen’s kappa and Chi-Squared analysis, and Prism for any remain-
ing statistics. Cohen’s kappa was run for inter-rater reliability of cartilage degeneration,
subchondral bone damage, and synovitis scoring. The Chi-Squared test of independence
with Cramer’s V was run between groups for the presence of osteophytes. Normality was
assessed via the D’Agostino & Pearson test. A two-way analysis of variance (ANOVA) with
Tukey’s multiple comparison test was run for all OARSI histological scoring. Synovitis
scores were analyzed using a one-way ANOVA with Tukey’s multiple comparison test, or
the Kruskal–Wallis with Dunn’s multiple comparison test, depending on normality. Weight
was compared using a two-way ANOVA with repeated measures, and Tukey’s multiple
comparison test. p < 0.05 was considered statistically significant.
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3. Results
3.1. No Differences in Weight Gain between Surgical Groups or Genotypes

In order to study PTOA in the rat model, OA was surgically induced at 9.5 weeks
of age via ACLT-DMM surgery. Age-matched rats that did not have any kind of surgery
were used as the controls, termed the Naive group. In order to assess whether surgery
affected weight of Il15+/+ or Il15−/− rats, all animals were weighed daily for the first 4
days post-operation (or timepoint start in the case of the Naive group), then weekly until
the end of the 8 weeks. There was no significant weight difference between any groups
at any timepoints (Figure 2). The Il15+/+ PTOA rats were the only group to lose weight
during the first 4 days post-op, although the change in weight in Il15+/+ PTOA rats was
not significantly different compared to the remaining groups. Additionally, Il15−/− rats, in
both the PTOA and Naive groups, trend towards weighing less than the Il15+/+, although
this was not statistically significant (Il15+/+ and Il15−/− PTOA mean difference = 26.00,
95% CI [−14.59, 66.59] and Naive mean difference = 29.78, 95% CI [−32.42, 91.98]). The
general health of all animals was deemed to be good, with no adverse events observed
following surgery or otherwise.
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Figure 2. All groups gained weight similarly over the 8 weeks. Weight, in grams (g), was measured
daily for the first 4 days post-operation, and then weekly for 8 weeks. A two-way ANOVA with
repeated measures and Tukey’s multiple comparison was run post-hoc. There was no significant
difference between the groups at any timepoint, with all groups steadily gaining weight throughout
the experiment. (N = 15 rats/PTOA group, and N = 9 rats/Naive group, p > 0.05, data represented
are mean with 95% CI).

3.2. Cartilage Damage after Surgery Is Not Affected by Genotype

Following tissue collection, OARSI histological analysis was carried out by two scorers,
using a semi-quantitative scoring system with a scale from 0 (no damage) to 5 (severe dam-
age) to quantify articular cartilage damage across four quadrants. Further, the cartilage in
each quadrant was assessed in three equal zones, with scores summed in order to represent
the total cartilage damage (maximum total of 15). Reliability testing of cartilage histopathol-
ogy scores revealed a weighted kappa score was 0.71, 95% CI [0.45, 0.51], demonstrating
substantial rater agreement, according to the Landis and Koch (1977) guidelines [31]. The
PTOA groups had evidence of cartilage damage (Figure 3), but the Naive groups did not
(Figure 4). As expected, all PTOA groups had significantly higher OARSI scores com-
pared to the Naive groups, which was more pronounced in the medial femoral and tibial
cartilage, with the highest scores in the MTP (Figure 5). However, damage across the
articular cartilage was not significantly different between Il15+/+ PTOA and Il15−/− PTOA
rats. The Naive group did not show consistent evidence of articular cartilage damage,
which was consistent between genotypes. Zonal analysis revealed that Zone 2 (middle
part of the plateau/condyle) had significantly higher scores for the PTOA group, although
this was also non-significant when comparing Il15+/+ to Il15−/− animals. Overall, while
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surgery induced clear structural changes in articular cartilage, damage does not appear to
be significantly different between Il15+/+ PTOA and Il15−/− PTOA rats.
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Figure 3. Representative histological images demonstrate greatest damage in the medial compart-
ment of the PTOA group. Representative images of toluidine blue-stained paraffin sections of rat
knees, demonstrating that the PTOA group had the greatest damage in the medial aspect as seen
by osteophytes (red arrow), cartilage loss, and subchondral bone damage (red arrow heads). This
damage was not significantly different between the Il15+/+ PTOA and Il15−/−PTOA rats. Images
taken at 4× magnification, scale bars represent 200 µm (N = 15 rats/PTOA group).
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Figure 4. Representative histological images demonstrate healthy joint tissues in Naive rats. Rep-
resentative images of toluidine blue-stained paraffin sections of rat knees, demonstrating that
the Naive group had no significant differences between genotypes and appeared healthy. Semi-
quantitative scoring demonstrates no significant damage to the articular cartilage, subchondral bone,
and osteophyte formation. Images were taken at 4× magnification, scale bars represent 200 µm
(N = 9 rats/Naive group).
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Figure 5. Cartilage damage is not significantly different between Il15+/+ PTOA and Il15−/− PTOA
rats. Animals either underwent ACLT-DMM surgery to induce PTOA or served as control with no
surgery (Naive). Semi-quantitative scoring (scale 0–5) of toluidine blue-stained paraffin sections was
used to determine the extent of cartilage damage in the joint via 4 compartments; medial femoral
condyle (MFC), medial tibial plateau (MTP), lateral femoral condyle (LFC), and lateral tibial plateau
(LTP). Two-way ANOVA with Tukey’s multiple comparison test was used for statistical analysis;
data represents mean with 95% CI. There was no significant difference in the summed scores between
the Il15+/+ PTOA and Il15−/− PTOA groups. The PTOA groups scored significantly higher than the
Naive groups in the medial compartment. (*** p < 0.001, **** p < 0.0001, N = 15 rats/PTOA group
and 9 rats/Naive group).

3.3. Subchondral Bone Damage and Osteophytes Is Similar between Genotypes after Surgery

Subchondral bone damage was assessed similarly to the articular cartilage damage,
with a semi-quantitative score from 0–5. There was almost perfect inter-rater agreement in
this parameter, with a weighted kappa of 0.86, 95% CI [0.60, 0.69], using the guidelines by
Landis and Koch [31]. Only the medial tibial plateau demonstrated significantly higher
scores in the PTOA groups compared to the Naive groups (Figure 6). The OARSI scores
between the Il15+/+ PTOA and Il15−/− PTOA rats were not significantly different in any of
quadrants. The Naive group did not have consistent evidence of subchondral bone damage,
which was consistent between genetic variants (Figure 6). Osteophytes were analyzed
by recording the presence or absence by both raters, and subsequently measured by one
rater. The presence of osteophytes was analyzed first, revealing a significant relationship
between groups and osteophyte presence in the medial compartment (Figure 7A). Further
analysis found this to be a strong association in both the medial femur and tibia, with
the PTOA groups more likely to present with osteophytes (Cramer’s V = 0.64 and 0.60,
respectively). In the lateral compartment, the same relationship was present in only the
femoral condyle, with a moderate association (Cramer’s V = 0.43). Examination of the
osteophyte size reveals no significant difference between the Il15+/+ PTOA and Il15−/−

PTOA rats in the OARSI scores. Similarly, there is no significant difference within the
Naive group (Figure 7B). Overall, there was no significant difference in the severity of
subchondral bone damage or osteophytes between the Il15+/+ PTOA and Il15−/− PTOA
rats. Generally, OARSI scoring revealed greater OA damage in the medial compartment of
the PTOA group (Figure 3), with healthy tissue in the Naive group (Figure 4).

3.4. Synovitis Is Not Affected by IL15 Genotype

Synovitis was similarly assessed using a semi-quantitative six-parameter scoring sys-
tem. A score from 0 (none) to 3 (severe) was given across six compartments (medial and
lateral parapatellar, superior, and inferior compartments) for six parameters: (1) synovial
lining thickness, (2) sub-synovial infiltration, (3) surface fibrin deposition, (4) vascular-
ization, (5) fibrosis, and (6) perivascular edema. Inter-rater reliability testing reveals
substantial to almost perfect agreement, with a weighted kappa ranging from 0.67 to 0.85
across the six parameters [31]. As expected, signs of severe synovitis including vascular-
ization, fibrosis, and vascular edema were similar between PTOA and Naive groups at
this early stage of PTOA development. In keeping with early stage PTOA development,
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only the sub-synovial infiltrate and surface fibrin scores were increased in PTOA animals.
However, there was no clear difference between genetic strains (Figure 8). There was no
significant statistical difference between the Il15+/+ and Il15−/− PTOA rats across all six
parameters (Figure 9). Overall, synovitis did not clearly differ between the Il15+/+ PTOA
and Il15−/− PTOA rats 8 weeks after PTOA induction.
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Figure 6. Subchondral bone damage is not significantly different between Il15+/+ PTOA and Il15−/−

PTOA rats. Rats either underwent ACLT-DMM surgery to induce PTOA or served as a control
with no surgery (Naive). Semi-quantitative scoring (scale 0–5) was used to determine the extent of
subchondral bone damage in the joint via 4 compartments: medial femoral condyle (MFC), medial
tibial plateau (MTP), lateral femoral condyle (LFC), and lateral tibial plateau (LTP). Two-way ANOVA
with Tukey’s multiple comparison test was used for statistical analysis; data represents mean with
95% CI. There was no significant difference in summed scores between the Il15+/+ PTOA and Il15−/−

PTOA groups. The PTOA groups scored significantly higher than the Naive groups only in the MTP.
(**** p < 0.0001, N = 15 rats/PTOA group and 9 rats/Naive).
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Figure 7. Osteophyte size is not significantly different between Il15+/+ PTOA and Il15−/− PTOA rats. Animals either
underwent ACLT-DMM surgery to induce PTOA or served as control with no surgery (Naive). Osteophytes were analyzed
for absence/presence and size in the 4 compartments: medial femoral condyle (MFC), medial tibial plateau (MTP), lateral
femoral condyle (LFC), and lateral tibial plateau (LTP). (A) Presence of osteophytes was determined and agreed upon
by two scorers. Chi-squared analysis with Cramer’s V established that the PTOA groups were strongly associated with
osteophyte presence in the medial compartment, and moderately associated in the LFC, with no significance in the LTP.
(MFC = X2 (3, N = 45) = 18.24, p < 0.0001, Cramer’s V = 0.64, MTP = X2 (3, N = 45) = 16.38, p < 0.005, Cramer’s V = 0.60,
LFC = X2 (6, N = 45) = 16.90, p < 0.05, Cramer’s V = 0.43, LTP = X2 (3, N = 45) = 7.05, p > 0.05). (B) Two-way ANOVA with
Tukey’s multiple comparison test was run, and data represents mean with 95% CI. There was no significant difference
in the summed scores between the Il15+/+ PTOA and Il15−/− PTOA groups (p > 0.05, N = 15 rats/PTOA group and
9 rats/Naive group).
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Figure 8. Representative images of synovitis in the PTOA group. Histological images of the synovitis,
as demonstrated by surface fibrin and sub-synovial infiltration, found in the PTOA animals. Healthy
synovium (first box) is presented as a comparison and represents Naive tissue. Surface fibrin (red
arrow) and sub-synovial infiltration (red arrowheads) were found significantly more in the PTOA
group compared to the Naive, but was not different between genetic variants. Images take at 20×
magnification, scale bars represent 100 µm (N = 15 rats/PTOA group and N = 9 rats/Naive group).
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Figure 9. Synovitis is not significantly different between Il15+/+ PTOA and Il15−/− PTOA rats.
Rats either underwent ACLT-DMM surgery to induce PTOA or served as control with no surgery
(Naive). Semi-quantitative scoring was used to assess synovitis across 6 parameters, ranging from
0 (none) to 3 (severe), measured in 6 zones (medial and lateral parapatellar, superior, and inferior
compartments). A one-way ANOVA with Tukey’s multiple comparison test or the Kruskal–Wallis
with Dunn’s multiple comparison test was run, depending on normality. Data represents mean
with 95% CI. Analysis reveals that the PTOA group had scored significantly higher for sub-synovial
infiltration and surface fibrin, although there was no significant difference between genetic strains.
The remaining 4 parameters were non-significant across all groups (* p < 0.05, N = 15 rats/PTOA
group and 9 rats/Naive group).
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4. Discussion

Cytokine activity is a well-defined research area in OA, offering many potential
therapeutic targets to be explored. Interleukin-15 (IL-15), a pro-inflammatory cytokine, with
important roles in innate immunity, has increased levels in OA tissue and can potentially
increase catabolic activity within the joint. Our study utilized a Holtzmann Sprague-Dawley
male global Il15−/− model to study the contribution of IL-15 in PTOA progression. Our
work demonstrated that Il15−/− rats present with normal joint morphology in the absence
of surgery and display similar structural features of PTOA to their Il15+/+ counterparts.
Through the analysis of cartilage damage, subchondral bone damage, osteophyte formation,
and synovitis we did not see any significant differences between genotypes, suggesting
that IL-15 does not play a vital role in PTOA progression in this rat model, at least at the
stage investigated. These data do not support our initial hypothesis.

Weight was recorded as a measure of general health, especially for the PTOA group
following surgery. There was no significant difference in weight at any timepoint between
all groups, similar to the findings from Renaud et al. (2017) who compared weight of Il15+/+

and Il15−/− female rats [26]. Even though the Il15+/+ PTOA rats lost weight during the
first 4 days post-op, this loss was not statistically significant, and they continued to gain
weight in the weeks following. Interestingly, the Il15−/− rats, in both the PTOA and Naive
groups, consistently weighed less than their Il15+/+ counterparts, although not enough to
reach statistical significance. Il15−/− mice have varied in their reported weight differences
in the literature; for example, Kennedy et al. (2000) reported that Il15−/− mice were not
significantly different in body weight compared to Il15+/+ mice, but another study reported
that female Il15−/− mice weighed less [32,33]. Similarly, studies using Il15Rα−/− mice have
conflicting reports of weight, either reporting similar weights or a decrease in weight in
mutants compared to controls [34,35]. Interestingly, Il15−/− mice on a high fat diet are
resistant to diet-induced weight gain due to increased thermogenic capacity in brown and
beige fat cells [36]. Our male Il15−/− rats trend towards weighing less, perhaps due to a
similar increased thermogenic capacity, although not enough to reach statistical significance
at the timepoints used in our study.

In order to assess PTOA progression, ACLT-DMM surgery was utilized in both Il15−/−

and Il15+/+ rats. Early stage PTOA was successfully induced 8 weeks following surgery, as
determined by statistically higher scores for cartilage damage, subchondral bone damage,
and osteophyte presence compared to the Naive group. As expected, the damage was
generally contained to the more weight bearing medial compartment. There is also evidence
of synovitis developing in the PTOA group, as they scored significantly higher for sub-
synovial infiltration and surface fibrin deposition, compared to the Naive group. Overall,
ACLT-DMM surgery successfully induced early PTOA.

Inconsistent with our hypothesis, there was no significant difference between the
Il15−/− and Il15+/+ PTOA rats, indicating that IL-15 may not play a vital role in rat PTOA
pathophysiology. This finding is also inconsistent with previous studies that found a
relationship between IL-15 activity and OA, which may be due to a few factors. Firstly,
it is possible that the rodent model is not ideal for translating studies in IL-15, as current
literature on IL-15 and OA has exclusively been reported from human studies [21–25].
Additionally, our study examined only the 8-week timepoint, but the activity of IL-15
may be more robust at an earlier or end stage of disease. Another pitfall could be due to
differing OA phenotypes. The current literature examining IL-15 and OA has excluded
patients with a history of traumatic joint injury [21–25], thus excluding PTOA, which could
be another reason for the lack of significance between groups in our study. IL-15 may play
a more vital role in other OA phenotypes, such as primary OA, where risk factors such
as aging and metabolic syndrome may have effects on OA pathophysiology that involve
IL-15, but were not examined in this study. Research utilizing Il15−/− mice on a high fat
diet revealed an important role for IL-15 in metabolic syndrome, as it seems to promote
chronic inflammation in adipose tissue [36]. Perhaps the inflammatory role of IL-15 is
more substantial in metabolic OA than in PTOA. Finally, the redundant and pleiotropic
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nature of cytokines could explain why the absence of IL-15 did not cause a change in
PTOA progression. This is partly due to the ability of cytokines to signal through multiple
receptor complexes and shared receptors; for example, IL-15 has a shared β receptor with
IL-2 and a common γ receptor shared by five interleukins [15]. IL-15 additionally activates
similar signaling cascades to other cytokines, namely IL-2 [16]. Therefore, redundancy
with other cytokines presented a challenge to our study. Additionally, the activity of IL-15
on catabolic factors, like MMPs, may be more indirect, as suggested by recent work by
Warner and colleagues (2020). Chondrocytes treated with IL-15 in vitro demonstrate a
delayed release of MMP-1 and -3, compared to TNFα, which may point to an indirect effect
of IL-15 on these MMPs [23]. Therefore, the action of IL-15 to increase catabolic activity
in the joint may be taken over by another cytokine when IL-15 is absent, especially if this
activity is indirect.

IL-15 is critical for NK cell maturation and functional activity [16]. Il15−/− rats
are therefore deficient in NK cells, which was successfully demonstrated by work from
Renaud and colleagues (2017) [26]. Interestingly, NK cells have been demonstrated to be
a main infiltrating lymphocyte in the synovial tissue of OA patients with a functionally
distinct phenotype from peripheral blood NK cells. Further, OA synovial fluid contains
both NK-cell chemoattractants and NK-cell activating cytokines [37]. Recent work has
characterized the CD56+/CD16- NK cells as the main NK phenotype found in OA synovial
fluid, expressing higher levels of granzyme A and correlating to higher pro-inflammatory
cytokine levels [38]. Our work did not demonstrate a significant difference in the sub-
synovial infiltration of Il15−/− rats even though there was a NK-cell deficiency. This may be
due to previously discussed factors, such as species difference and timepoint, as the above
mentioned studies examined human synovial tissue at the disease end stage. Regardless, a
further examination of NK-cell activity in our rat PTOA model would be of great benefit.

It is important to consider the limitations involved in this work. Many of these
limitations were due to the laboratory shutdown during the COVID-19 pandemic, which
intervened with completion of additional in vivo experiments. Our work also lacked
immunohistochemistry (IHC) or other molecular data, we attempted to demonstrate IL-15
presence in the joint through IHC. Since IL-15 is mandatory for NK cell maturation we
targeted perforin, a pore-forming protein found in NK cells, as a surrogate marker for
IL-15 activity [15,16]. Unfortunately, we were not able to obtain convincing data using
this approach. Future work would benefit from an optimized method of IL-15 detection
in the joint through immunohistochemistry in order to assess the expression of IL-15 in
the rodent joint. As previously discussed, exploring multiple timepoints and perhaps a
metabolic or aging OA model could be beneficial to exploring the role of IL-15 in OA.
Pain and behavioral responses could not be fully assessed in our model due to restrictions,
and so future studies should therefore include an examination of pain in this model. In
addition, we were only able to study male rats, so inclusion of female rats in future studies
would be beneficial.

Further, the use of a solely in vivo model limits the scope of our work in understanding
the mechanisms of IL-15 in a more complex manner. An in vitro model studying primary
rat or human synoviocytes that are treated with IL-15 would be of interest, investigating
the effects and mechanism of IL-15 in the synovium. Finally, our ACLT-DMM model is
invasive and does not perfectly mimic the injuries associated with PTOA in patients. Future
work could utilize a non-invasive model, where the ACL is ruptured via tibial compression
in order to induce PTOA [38,39].

Overall, while our work did not demonstrate a significant difference in IL-15 and
PTOA, there are still many avenues to explore with IL-15 to elucidate its potential role in
OA pathogenesis.
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