
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

Point Counting On Genus 2 Curves Point Counting On Genus 2 Curves

Javad Nazari Doliskani

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Doliskani, Javad Nazari, "Point Counting On Genus 2 Curves" (2011). Digitized Theses. 3460.
https://ir.lib.uwo.ca/digitizedtheses/3460

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3460?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3460&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Point Counting On Genus 2 Curves
(Thesis format: Monograph)

Javad D oliskani

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

(e) J. N. Doliskani 2011

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

C E R T IF IC A T E O F E X A M IN A T IO N

Supervisor Examiners

Dr. Eric Schost Dr. Marc Moreno Maza

Dr. Jân Minâc

Dr. Roberto Solis-Oba

The thesis by

Javad N azari D oliskani

entitled:

P o in t C oun ting O n G enus 2 C urves

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date
Chair of the Thesis Examination Board

A bstract

For cryptographic purposes, counting points on the jacobian variety of a given hyperelliptic
curve is of great importance. There has been several approaches to obtain the cardinality
of such a group, specially for hyperelliptic curves of genus 2. The best known algorithm
for counting points on genus 2 curves over prime fields of large characteristic is a variant of
Schoof’s genus 1 algorithm. Following a recent work of Gaudry and Schost, we show how to
speed up the current state of the art genus 2 point counting algorithm by proposing various
computational improvements to its basic arithmetical ingredients.

K eyw ords. Point counting, Hyperelliptic curves, Schoof’s algorithm, Elliptic curves

m

Contents

C ertifica te of E x am in a tio n ii

A b s tra c t iii

1 In tro d u c tio n 1

2 E llip tic C urves 4
2.1 The Weierstrass equation and the group l a w ... 4
2.2 Endom orphism s... 6
2.3 Division po lynom ials.. 8

3 E llip tic C urves O ver F in ite F ields 11
3.1 The Weil p a i r i n g .. 11
3.2 The Hasse’s T heorem .. 13
3.3 The structure of E (F9) .. 14
3.4 Point counting on E(¥q) ... 14

3.4.1 The naive m ethod ... 15
3.4.2 The Baby-step G ia n t-s te p ... 16
3.4.3 Schoofs A lgo rithm .. 17

4 H ypere llip tic C urves 19
4.1 Basic definitions... 19
4.2 Rational functions ... 20
4.3 D iv iso rs .. 23
4.4 Mumford Representation... 27
4.5 Addition on the jacobian J(H) .. 28
4.6 Hyperelliptic curves over Fq ... 29

5 F ast In teg e r M a trix M u ltip lica tio n 33
5.1 Modular representation.. 33
5.2 Im plem entation... 35
5.3 Some computational speed-ups... 36

6 C o m pu ting R o o ts O ver F in ite F ields 42
6.1 Discrete logarithm in cyclic p -g ro u p s ... 42
6.2 Randomized search for irreducible polynom ials.. 43

IV

6.3 General approaches... 45
6.4 Computing square r o o t s ... 45
-6.5 Computing higher roots .. 49

7 P o in t C oun ting on G enus 2 C urves 53
7.1 Preliminaries .. 53
7.2 Representing ¿-torsion divisors.. 54
7.3 A Schoof algorithm for genus 2 55
7.4 Lifting ¿^-torsion divisors... 56
7.5 Experimental r e s u l t s .. 56

B ib liography 58

C u rricu lu m V itae 66

v

Chapter 1

Introduction

A one way function is, roughly speaking, a function that is easy to compute and hard to in-
.vert. The theory of one way functions forms the foundations of the modern cryptography

[55, 38]. Given a certain finite cyclic group G, and a generator g of G, the function

ip : N<|G| — > G
x i— > gx

is expected to be a one way function. The problem of computing p~l is called the discrete
logarithm problem (DLP) to the base g in G. The security of many cryptographic schemes
is based on DLP [43, 68]. The group G is suitable for this purpose if the DLP is hard in G,
the elements of G are easily and efficiently representable, computation in G is fast, and the
order of G can be computed efficiently. As a general assumption, it is always assumed that
G has a non-smooth order, i.e. its order is a prime or a product of a large prime and some
other very small factors; otherwise it is vulnerable to the Pohlig-Hellman attack [71].
The traditional candidates for the group G are multiplicative subgroups of finite fields. The
arithmetic on finite fields is fast, but on the other hand, there are subexponential algorithms
for computing discrete logarithm in these fields [61]. Another candidate for the group G,
proposed by Koblitz [41] and Miller [62] independently in 1985, is a cyclic subgroup of the
group of points of an elliptic curve over a finite field. The advantage of systems based on
such groups is that there is no known subexponential algorithm for DLP in these groups,
for example the index-calculus algorithm does not apply to elliptic curves except to those of
very special structures [87, 62]. This leads to equally secure systems with smaller parameter
sizes. The primary disadvantage of elliptic curve systems is that the addition of points is a
relatively costly operation which is now reasonably fast due to the advances made in both
theory and implementations, e.g. see [32] and the references therein. Furthermore, Koblitz
[45, 47] proposed a special family of curves allowing fast arithmetic. Computing the order
of the group of a given elliptic curve is called point counting. There are polynomial time
algorithms for counting points on elliptic curves, e.g. [80].
As another candidate for group G suitable for cryptosystems, Koblitz [44] proposed the
jacobian variety of a hyperelliptic curve over a finite field, which is indeed a generalization
of the elliptic case. This leads to even smaller field sizes, and larger number of choices. Also,
the elements of the jacobian can be represented using pairs of finite degree polynomials
called the Mumford representation. According to Riemman-Roch theorem, there is a unique

1

integer attached to every curve, called the genus of the curve. For example, a curve is elliptic
if and only if it is genus one with at least one rational point. The main drawback of the
hyperelliptic curve systems is that the addition on the jacobian is generally slower than the
group operation on elliptic curves, and the higher the genus goes the slower would be the
arithmetic. Moreover, for large enough genera, there is a version of index-calculus method
for computing the discrete logarithm in the jacobian [3, 23, 65, 29].
In terms of efficiency, genus 2 curves provide the closest hyperelliptic alternative for elliptic
curve cryptosystems [69, 28, 50]. Furthermore, for an equally secure system, and the same
parameter lengths, the base field for the genus 2 curve is almost twice smaller. To find secure
hyperelliptic curves, there are two main approaches:

P o in t coun ting In which one tries several random curves over a given finite field until a
good one is found, and then computes the cardinality of the jacobian.

C M m eth o d In which, instead of trying random curves, one starts with the endomorphism
ring and vary the base field until a curve with a good jacobian order is found, e.g. [17,
ch. 18], and [105].

There are other methods, e.g. [90], that work under special conditions. There are also known
special families of curves with good jacobian order, e.g. [42]. The complex multiplication
method is efficient, but curves found by this method have more special structures, and it is
not generally known if they are stronger or weaker than general curves. In this thesis, we
investigate point counting on genus 2 curves.
Various approaches have been proposed for point counting on hyperelliptic curves, from which
we can name (i) Schoof’s algorithm which is the generalization of the Schoof’s algorithm for
elliptic curves, and it is polynomial time, (ii) Kedlaya’s algorithm [39] which is exponential
time in general, but efficient in small characteristics, (iii) Satoh’s algorithm [75] which
is polynomial time in small characteristic, but exponential in general. The best of the
above approaches, for large characteristics, is the Schoof’s algorithm. The generalization is
essentially due to Pila [70]. The Schoof’s algorithm for hyperelliptic curves of genus 2 was
then presented in Gaudry and Harley [26], and Gaudry and Schost [27, 30]. In particular,
the following is the timeline for point counting on genus 2 curves.

• Gaudry and Harley (2000): 126 bit Jacobian

• Gaudry and Schost (2004): 164 bit, secure Jacobian

• Sutherland (2007): 188 bit, secure Jacobian (works for special curves)

• Gaudry and Schost (2008): 256 bit, secure Jacobian

• Gaudry and Schost (present): 256 bit, doubly-secure Jacobian

In this thesis, we show how to improve the work of Gaudry and Schost by improving the
arithmetical ingredients of their algorithm both theoretically and in terms of implementa
tion. According to their most recent work, their algorithm makes extensive use of square
(or higher) root computing, modular polynomial composition, and power projection. Both
modular polynomial composition, and power projection are based on matrix multiplication.

2

For example, to have a fast modular polynomial composition, the natural choice is the algo
rithm of Brent and Kung [9], which is still practically the best. So, we have proposed and
implemented an algorithm for fast multiplication of matrices with integer entries of arbitrary
length. This small parallel low level library, with high level interfaces, is embedded into the
NTL library [85]. Consequently, the new modular composition, and power projection im
plementations have been embedded into NTL. For the square root computation, we have
proposed a new algorithm, implemented it, and integrated it into NTL. This algorithm uses
polynomial composition for computing a trace-like map that reduces the problem to the
same problem over the prime field.
In this thesis, rather than an abstract general description of materials, specially the theory of
elliptic and hyperelliptic curves, we have tried to conduct a concrete and intuitive approach.
We have made an effort to make this document as self contained as possible with respect to
the needed materials by giving clean proofs, unless the proofs are too long or there is no point
in quoting other’s proofs. The reader is assumed to have a basic knowledge of algebra, and
polynomial arithmetic. We shall denote the asymptotic complexity bounds of polynomial
multiplication, and modular polynomial composition by 0(M (n))1 and 0(C(n)) respectively.
The best known M(n) is n log n log log n achieved by using Fast Fourier Transform (FFT)
[79], and the best know C(n) is n 1*69. See Section 5.3 for more details on C(n).
A brief summary of the thesis follows.
To make the introduction of hyperelliptic curves, specially the Schoof s algorithm, smooth,
and for the sake of completeness, Chapters 2 and 3 are dedicated to elliptic curves. A short
introduction to the theory of elliptic curves over general fields, including the group law,
endomorphisms, division polynomials, and torsion subgroups is given in Chapter 2. Chapter
3 includes more specific properties of elliptic curves over finite fields, and it is concluded with
some point counting methods on elliptic curves. In Chapter 4, we give an introduction to
the theory hyperelliptic curves of general genera. Chapter 5 consists of the description and
implementation of a fast integer matrix multiplication algorithm, and it is concluded with
applications of this algorithm to modular polynomial composition, and power projection. In
Chapter 6, we first present various algorithms, including a new one, for computing square
roots in finite field, and then extend each of those algorithms to compute &-th roots for
arbitrary k G N. The last chapter consists of a quick review of a genus 2 Schoof algorithm,
and some experimental results.

3

Chapter 2

Elliptic Curves

The origin of the elliptic curves goes back to the 18th century when mathematicians tried
to calculate the arc length of an ellipse. This led to the study of elliptic integrals, and
then elliptic functions, and the brilliant works of Weierstrass. Of course, all these where
happening in the complex field C. But the theory was extended over arbitrary fields, specially
finite fields, afterwards, and today, there is a huge literature on elliptic curves and their
applications. In this chapter, we give a brief introduction to the basic concepts of the theory
of elliptic curves over general fields.

2.1 The Weierstrass equation and the group law
Let A; be a field. The set Aj: = {(x,y) E k x k} is called the affine plane over k. Any
nonconstant squarefree polynomial / E A;[x,y] defines an affine plane curve Cj whose points
are the zero set of / in A |. We say that Cf is defined over k. For an extension L I> fc, the
zero set of / in A2L is denoted by Cf(L). The projective plane over k , denoted by P |, is
the set of all triples (x,y, z) E ks with (x,y, z) ^ (0,0,0) modulo an equivalence relation ~
where (x, y, z) ~ (xj, yi, Z\) if and only if there exists a nonzero y E k such that (zi, yi, Z\) =
(fix, yy, /iz). The class of the point (x, y, z) is denoted by (x : y : z). A projective plane curve
is defined similar to the affine curve except that the defining polynomial / E fc[x, y, z] should
be homogeneous, otherwise the zero set of / in P | is not well defined. A point (x : y : z) E
is a finite point if z 7̂ 0, and a point at infinity if z = 0. There is a natural embedding

ip: A 2k ^
(x,y) i-> (x : y : l)

A plane curve Cf is said to be singular at a point P if f f (-P) = |^ (P) = 0 , where the partial
derivative of a polynomial is defined in the usual way, and nonsingular at P otherwise.
The curve Cf is nonsingular if it has no singular points. An elliptic curve over /c, denoted
by Ek, is a nonsingular projective plane curve defined over A; by a polynomial of the form
/(x , y) = y2z + a^xyz + a^yz2 — (x3 + a2x2z + a4xz2 + aGz3) E A;[x, y, z]. Thus, the points of
Ek are the solution set in Pj: of an equation of the form

Ek : y2z + axxyz + a3yz2 = x3 + a2X2z + (Z4XZ2 + a^z3 (2.1)

4

with ai, a3, a2, a4, a6 € fc. If we let z = 0 in Equation (2.1) then x3 = 0, and hence (0 : 1 : 0)
is the only point at infinity of Ek. Therefore, all point of Ek are of the form (x : y : 1), i.e.
are in the finite plane, except the above point which we denote by oo. So, the set of points
on Ek is the solution set in Ajr of

y2 + a\xy + a3y = x3 + a2x2 + a4x + a6 (2.2)

together with oo. For an extension L D k, the points on Ek with coordinates in L will be
denoted by Ek(L), i.e.

Ek(L) = {oo} U {(x, y) € A 2L \ y2 + c^xy + a3y = x3 + a2x2 + a4x + a$}

Equation (2.2) is called the generalized Weierstrass equation of Ek- If the characteristic of
k is not 2 then, applying the change variables y »->• y — aqx/2 — a3/2, Equation (2.2) can be
rewritten as

o o b2 o bd bf y + —X + ~ X + - (2.3)

where b2 = a2 + 4a2, 64 = a ia3 + 2a4, = a,2 + 4a6- Let us also define = a2a6 + 4a2a6 —
aia3a4 + a2a3 — for future references. If the characteristic is also not 3 then the change of
variables x i-> x — b2/7 results in

y2 = x3 + Ax + B (2.4)

for some constants A, B £ k. Equation (2.4) is called the Weierstrass equation of £*..
We shall simply use E instead of Ek when k is uniquely known from the context. Unless
otherwise specified, by an elliptic curve E we shall mean an elliptic curve defined by Equation
(2.4) . Since E is nonsingular, the cubic x3 + Ax + B cannot have repeated roots and hence
A = —4A3 — 27B2 ^ 0 where A is the discriminant of the cubic. So, we always have
4A3 + 21B2 ^ 0. Let P = {xp,yp) and Q = (xq7 yq) be two points on E. Define the
addition R = (xR^yp) = P + Q as follows. For any point P , P + 00 = P , so for example
oo + oo — oo. For P, Q ^ 00:

1. If Xp ^ XQ then xR = (f | +) - xP - xQ and yR = ^ ~ (x P - xR) - yP.

2. If xp = xq but yp =£ yQ then P + Q — 00.

3. If P = Q and yP ± 0 then xR = (3x2+) - 2xP and yR = {xp - xR) - yP.

4. If P — Q and yP = 0 then P + Q = oo.

It is not hard to prove that under the above addition, the points on E form an abelian group
with oo as identity (e.g. [102, Sec. 2.4] or [22, Sec. 2.11]). From rule 2 and 4, and Equation
(2.4) we have —P = (xp, —yp). Figure 2.1 illustrates the geometrical view of the group law
for the curve y2 = x3 + x2 — 2x over the real field R when xp ^ xq, i.e. Case 1 of the above.
The two ends of the y-axis are labelled with oo to show that they meet at infinity.

5

°?y

R'
f

Q
p

-> X

R \

\

• y y> i 2 ooo // = ./• + x - 2•/•

Figure 2.1: P + Q = R

2.2 Endomorphisms
Let E 1 and E2 be elliptic curves defined over the field k and let k be the algebraic closure
of k. An isogeny from E 1 to E 2 is a group homomorphism

a : E l (k) — > E2(k)
(x,y) 1—> (f{x,y),g(x,y))

where f , g £ kfx, y) are rational functions. Replacingy2 by x3+Ax+E> in / (x , y) we can write
f (x , y) = (a(x)+yb(x)) /(c(x)+yd(x)) where a, b, c, d are polynomials. Removing y from the
denominator by multiplying c.(x) — yd(x) on both denominator and numerator, and using
the fact that (f (x , - y) , g (x , - y)) = a (x , - y) = a (- (x , y)) = (f (x , y) , - g (x , y)) we have
f (x ,y) = r(x) where r(x) is a rational function in x. By a similar process g{x,y) = ys(x)
for some rational function s(x). So, we can always write a(x,y) = (r(x),ys(x)) for some
rational functions r and s.
Let r(x) = r i (x) / r 2(x) where g cd (ri(x),r2(x)) = 1. The degree of a is defined to be
m ax jd eg r^ x), deg7'2(x)} when a is nontrivial. If a = 0 then deg a = 0. A nontrivial
isogeny a is se p a ra b le if the derivative r'(x) is not the zero function.

L em m a 2.1. Every nontrivial isogeny a : E l (k) —> E 2{k) of elliptic curves is surjective.

P ro o f. See [102] for an elementary proof, and [25] for a proof for general projective curves.
□

By the kernel of an isogeny a we mean its kernel as a group homomorphism.

P ro p o s itio n 2.2. For any nontrivial isogeny a, # k e r (a) < deg(<r) with equality if a is
separable.

P ro o f. See [88, Sec. 3.4] or [102], □

6

An endom orph ism of elliptic curve E is an isogeny p : E(k) E(k). The set of all
endomorphisms of E is denoted by End(jE’). For every two endomorphisms a,/? E End(P)
define (a + /3)(P) = a(P) + 0 (P), and (a/3){P) = a(/3(P)) for P € E. Then it can easily be
verified that End(P) is a ring. Two basic maps on E are

id : E(k) -> E(k)
P i—y P and [n] : E(k) -+ E(k)

P h+ [n]P = P + P + * ■ • + P (n times)

The first one is clearly an endomorphism. Using the addition laws and a simple induction
shows that the map [n\ is also an endomorphism. This means that End(P) always contains
a copy of the integer ring Z. We will show that [n] is separable if and only if n is relatively
prime to char(fc). To this end, let first prove the following result.

L em m a 2,3. Let p \ , p 2 £ End(P) such that pi(x,y) = (rl(x),ysl(x)), i — 1,2 where Si
are rational functions. Let p(x,y) = (r(x), ys(x)) such that p — p\ + p 2- If r[{x) / Si{x) = ci
for some constants C{, ¿ = 1,2 then rf(x)/s(x) — c\ + c2.

P roo f. Let Tg(x,y) = (/, y) be the translation-by-Q map on E. Then it is straightforward,
but lengthy, to show that §£ + Let ip{x,y) = (x3,y3), and let <Pi(x,y) = (xu yi),
* = 1,2. If we let Q = {x1:y)̂ then + = f2, and if Q = (x2,y2) then

Therefore
2/1

dx3 , dm 3x3
dx\ dx i dy\

r'(x) dxs dx\ dxs
dx dx dx\
dx i j/3 dx2 y3

2/j dx y2

dx2 dx3 dx\ dy\ dx$ dx2 dy2 dx
T —;---- ;---- -̂----bdx dx2

ys ,c i y C2

dx dx i <9yi
Vs
y

dx dx2 dy

= (ci + C2)s(x)

3

2

as desired. □

C oro llary 2.4. Let P = (x,y) be a point on E , and let [n)P = (r(x)1ys(x)) for some
rational functions r, 5. Then rf(x)/s(x) = n. Therefore, the mapping [n] is separable if and
only ¿/gcd(n,char(fc)) = 1.

P roof. The statement is clear for n — 1. Assume it is true for all k < n. Let [n — 1]P =
(ri(x),ysi(x)). Then r[(x)/si(x) = n — 1. We have (r(x),ys(x)) = [n]P = [n — 1 \P + P =
(ri(x), ysj(x)) + (x, y), so by Lemma 2.3, r \x) / s (x) = n — 1 + 1 — n. □

We will give explicit formulae for the endomorphism [n] in Section 2.3. In the theory of
elliptic curves over finite fields, i.e. k — Fq, the following map plays an important role.

0<7 : E (^q) E (^q) (2 5)
(x, y) (xq, y*7), oo i-> oo

It is called the Frobenius map. It is, indeed, the curve version of the Frobenius automorphism
4>q : Fq Fq. Since aq — a for every a £ Fq, the field Fq is characterized by <f)q. Thus,
applying <fq to the equation of E , it is clear that <f>q(x,y) £ E(Fq). We also have P £ E(Fq)
if and only if 4>q(P) = P. By the group laws defined in Section 2.1, it can be easily seen that
0 is an endomorphism of E. Also it is clear that <pq is not separable. In fact we have

7

C oro llary 2.5. Let E be an elliptic curve defined over ¥ q. For integers a and b, not both
zero, and the Frobenius endomorphism <fq, the endomorphism a<f>q-\-b is separable if and only
*/gcd(M) = 1-

P roof. Lemma 2.3 and Corollary 2.4. □

P ro p o s itio n 2.6. Let E be an elliptic curve defined over ¥ q, and <f)q the Frobenius endo
morphism. Then 1. #E(Fqn) = deg(0™ — 1), and 2. ker(0™ — 1) = E(¥qn)

P roof. The map f>q is equivalent to the Frobenius map on E(¥qn). So, (0£ — 1)(P) = 0
if and only if P G E(¥qn) which proves 2. By Corollary 2.5, (0™ — 1) is separable hence
#E(Fqn) = #ker((f)q — 1) = deg(0™ — 1) by Proposition 2.2. This proves 1. □

2.3 Division polynomials
For a positive integer n and a point P on an elliptic curve E , [n\P can be computed using
the repeated squaring algorithm. Another way of computing [n]P is using explicit formulae
expressed by division polynomials. The division polynomials for an elliptic curve defined by
Equation (2.2) are defined recursively as follows.

"00 — 0
A = i
02 = 2y + a\x + a 3
03 = 3x4 + b2x3 + 364X2 + 3 b6x + b$
04 = 02 * (2 x 6 + b2x 5 + 564x4 + 10bGxs + 10b$x2 + (b2bs — hb6)x + (6463 — fcg))

02m+l “ 0m+20m 0m—10m+] 7̂, — 2
02m = 0 2' 10m(0^_i0m+2 ~ 0m-20m+l) for m > 2

where b2,b ,̂b§, and are the values defined in Equation (2.3). Also define

0m — *̂ 0m 0m—10mH-l
â m — (20m) (02m (<̂ 10m 4” ^30 m)0m)

where ujm is defined when the field k is not of characteristic 2. In the following let R —
Z[au . .. , a6,x , 0 |].

L em m a 2.7. If m is odd then 0 m G R. If m is even then (02)_10m £ R-

P roof. The lemma is clear for m < 4. Assume it is true for N<fc. If k is odd, say k = 2£+ 1,
then 0^ — 0f+20 | ~~ 0 ^ -i0 3+i- If I is odd then 0^_i0f+1 G 02-ft C i? hence 0^ G /?.
If £ is even then 0^+20^ G 0 4/? C i? hence 0^ G i?. If fc is even, say k = 20 then 0^ —
0 ^ 10^(0|_i0£+2 — 0f-20|+i)- If ̂is odd then 0f_1,0 |+1 G ff^R hence 0^ G 0^~1(0|-R) = 02-R.
If t is even then 0*,0m-2,0£-2 € 02-R hence 0^ G 0 0 1(02-R) = 02-R* □

8

A direct consequence of Lemma 2.7 is that G R for all m. From Equation (2.3) we
have = (2y + aix + a3)2 = 4(y2 + a]Xy + a3y) + (aiX + a3)2 = 4(^3 + a2x2 + a4x + a6) + (a1x +
a3)2 G Z[ai , . . . , a6, x] hence R = Z[aq,. . . , a6, x]. Therefore, ^ and (j)m are polynomials in
x over the ring Z[ai , . . . , ao\ for all m. For a polynomial / over an arbitrary polynomial ring
A[x,y], let A(/) denote the leading term of / as a polynomial of x.

L em m a 2.8.

A (V̂ m) —
m:r(m2 l)/2

f ^ 2 ^ (m2"4)/2
if m is odd
if m is even

P roof. We will proceed by induction on m. The lemma is true for m < 4. Let m = 2£ + 1
with £ even. Since A(V^) = 4x3 and (£ + 2)^3 ^ (£ — \){£ + l)3, we have A('0£+2'0|) 7̂
A(V^-i'i/’f+i)- Thus

A(V»m) = A(t/}e+2ipi - ipe-i-0f+i)
= A(A(V^+2^) - A(Vp-iV’m))

= A (^ x^ +4^ 2- x3̂ - 4)/2(16x6) - (£ - l) ^ 2- 2̂ 2(£+ 1)
\ 2 8

= ((£ + 2) f x ^ e2+i^ 2 - (£ - !) (£ + i)V « 2+«)/2)

3a,3(i2+2^)/2^

= (2£ + 1)x («2+^)/2 = m x(m2-l)/2

as desired. The other cases of m can be verified similarly. □

C oro llary 2.9. A (^) — m2xm2_1? and A(<pm) = x™2.

P roof. The first identity is trivial from Lemma 2.8. For the second identity assume m is
odd. Then A(x^4) 7̂ A^m -iVW i)* Thus

= A(m2Xm2 - ! ^ a.(m2-2m-3) /2 !^ + lx (m2+2m-3)/2(4;E3))
2 2

- rn2xm2 - (m2 - l)xm2 = xm2

The case of even m is treated similarly. □

It can be shown that polynomials ■i/̂ and <f)m are coprime [78, Sec. 1.3]. Let P = (x,y) be
a point on the elliptic curve E defined by the generalized Weierstrass equation, (2.2), over a
field k with char (A;) ^ 2. Then for any integer n G N

(4> n { P) U n { P)

U l (p y ^ n(p)
(2.6)

This is usually proved by a complex analytic approach using the Weierstrass p function,
see for example [48]. One of the important properties of the division polynomials implied
from Equation (2.6) is that if n is relatively prime to char(fc) then [n]P = oo if and only
if ipn(x,y) = 0; For if y n{x,y) ± 0 then <̂n(P)/V 2(P), un(P)/if%(P) <E k hence [n\P ±

9

oo. Conversely, if [n]P ^ oo then i/jn(x,y) ^ 0, since <f>n(P)/ iip2(P) £ k is defined and
gcd = 1-
For an elliptic curve E defined over a field k, and a positive integer n, define the n-torsion
subgroup of E to be

E[n] = { P e E(k) | [n\P = 00}

which is the kernel of the endomorphism [n\ : E(k) —¥ E(k). From Equation (2.6), the
degree of [n\ is n2, and by Corollary 2.4, [n] is separable if and only if char(A;) \ n. So,
=f=E[n] < n2 if char(fc) | n, and #E[n] — n2 if char(/c) f n by Proposition 2.2. For the field k
of characteristic p > 0, E is called o rd in a ry if E\p] = Zp, and supersingu lar if E\p] ~ 0.
The structure of E[n\ for an arbitrary n is determined by the following.

T heo rem 2.10. Let E be an elliptic curve over a field K with char(K) — p , and let n be
a positive integer. Let m — 1 if p = 0. Otherwise, let m — pr where r is the largest integer
such that pr | n. Then

E[n] = Z 5m © Z n/m © Z n/m

where 8 = 0 if the curve is super singular, and 8 = 1 if it is ordinary.

P roof. Let i be a prime divisor of n. Then we consider two cases for ¿:
Case 1: t = p. We have #E\p] < p2 hence E\p] = 0 or Zp. If E\p\ = 0 then E\pk] = 0 for all
k. So let E\p] = Zp. Since the endomorphism \p] is surjective, there are points of order pp
for all j . Therefore E\pk] is cyclic of order pk hence E\pk] = Zpk.
Case 2: t ^ p. We have # E [tk] = t2k so that E[tk] is a finite abelian ¿-group. Every finite
abelian ¿-group can be expressed as a direct product of cyclic groups, hence E[tk] = Z t8t
where > 1. Thus, E[tk] contains t£ — 1 elements of order ¿ which implies that E[t] C E[tk]
is of order te hence £ = 2. Therefore, E[tk} — Z t^ © Z t&2 with = 2ASince E[tk] is
not cyclic, we have jdx < k and hence = k, i = 1, 2.
Now, assume first that p ^ 0. Let n = pap±1 - • -p^k be the prime factorization of n in which
a > 0 and a x > 0 for i = 1 , . . . , /c, and let m = pa. Then by case 1 and 2

E[n] = E\pa]® © £ [p :
i = l
k

= E M ® ® Z „ ,.
P ii=1

m ^ —n /m © ^ n /m

= E\p°]m 0 V ® z b
\ i =1

^pai) = E\pa] © %n/m © %n/m
i= 1

ZjL © Zr> Im © Z

If p = 0 then assume n = p“1 * * ■ p^k is the prime factorization of n, and let m = 1. Then
the same process results in E[n\ = Z n ® Z n = Zn/m © Zn/m which completes the proof. □

10

Chapter 3

Elliptic Curves Over Finite Fields

Let Fg be a finite field where q = pn is a power of a prime. Then, the group E(¥q) is
finite. As a finite abelian group, its order is one of the most important quantities attached
to it. Computing the quantity # E (¥ q) is referred to as point counting. In this chapter,
we present some point counting algorithms. We start by deducing some general properties
of the endomorphisms of E(¥q) by means of the Weil pairing. Then we prove the Hasse’s
theorem which puts a bound on the number of points. Before the final section, we will give
some comments on the structure of E(¥q).

3.1 The Weil pairing
The Weil pairing, introduced by Weil [104], is a major computational and theoretical tool in
the theory of elliptic curves, connecting the torsion subgroups to the roots of unity1.

T heorem 3.1. Let E be an elliptic curve over a field k and let m be a positive integer such
that char (A;) { m. Let also \xm C k be the subgroup of m-th roots of unity. Then there exist
a mapping

em : E[m] x E[m] — > /im

called the Weil pairing with the following properties:

1. Bilinearity

Zm(Si + £2, T) = em(Sij T)em(5<2, T)
em(S,Ti + T2) = em(5,Ti)em(5 ,r 2), for all T, Tj, T2, S, Si, S2 € E[m\.

2. Nondegeneracy.

em(5, T) = 1 for all T G E[m\ S = oo
em(S(, T) = 1 for all S E E[m\ & T = oo

1The Weil pairing is of great importance in pairing based cryptography. See chapters IX and X of [8] for
details. Also see [63] for an efficient computation of the pairing.

11

3. Identity. em(T:T) = 1 for all T G E[m].

4 . Alternation. em(S, T) = em(T, S')**1 for all S :T G J5[m].

5. Endomorphism compatibility. For any a G End(E)? em(a(5), <a(T)) = em(S: T)dega.

6. Galois invariancy. em(aS,aT) = a(em(S, T)) for any a G Gal(A;/A;)7 where Gdl(k/k)
is the Galois group of the extension k/k.

P roof, The proof needs some knowledge of divisors on elliptic curves, which is beyond the
scope of this chapter. See [88, Sec. 3.8]. □

R em ark . In some cases, one may work in a subfield of k over which the full n-torsion may
not be available. There is a pairing, called T ate-L ich tenbaum Pairing , that can be used
in those cases [24, 56].
Since char(k) \ m, we have E[n\ = Z2 by Theorem 2.10 i.e. E[m] is a Z-module of rank 2.
If a is an endomorphism of E then a|^[m] is a homomorphism of Z-modules. Therefore, the
action of a on a basis { B i ,B 2} of E[m] is a matrix am = [ay?]2x2 over Zn.

T heo rem 3.2. Let E be an elliptic curve defined over a field k, and a be a nontrivial
endomorphism of E. Let n be a positive integer such that char(fc) j n. Then det(an) = deg a
(mod n).

P roof. Let en(Bi ,B2)k = 1- Then for every T G E[n],

en(kBy,T) = en(hBi,aBi + bB2) for some a, t G Zn
= en(Bu B1)aken(kB1, B2)h by bilinearity
= en(Bi, B2)kb = 1 by bilinearity and identity

which implies that kB\ = oo, and hence n \ k. Thus, en(Bi ,B2) is a primitive n-th root of
unity. Therefore, by the properties of the Weil pairing,

en(Bi, B2)dega = en(a(R i), a(B2)) = en(a\\Bi + a2\B2, a \2B\ + a 22B2)
= en(Bu B1)ai^ e n(Bu B2)a^ e n(B2j B1) ^ 2en(B2, 5 2)aaiaaa

= en(Bu B2)aiia22~ai2a21 = en(B1:B2)det{ari)

which implies det(a„) = deg a (mod n), since en(B\ , B2) is a primitive n-th root of unity. □

C oro llary 3.3. Let p îp £ End(E)? and a, b be integers. Then for the endomorphism a<p +
bip G E nd(£)? deg(a</? + bip) = a2 deg ip + b2 degip + ab(deg(p + %p) — deg p — deg^).

P roo f. Let p n and ipn be the matrices representing p \e[ti} and ^\e[ti] respectively. Then
(cap + bif)\E[n\ is represented by apn + bipn. It can easily be seen that det(a^n + b'lpn) =
a2 det(<p„) + b2 det(^n) + a6(det(</?n d-^n) — det(y?n) — det(V’n)) which implies deg(ap + bip) =
a2 degp + b2 degip + ab(deg(p + ip) — deg(^ + degip) (mod n)/ Since the degrees are finite
and this holds for infinitely many n, it is an equality. □

12

3.2 The Hasse’s Theorem
In this section, we prove the following result, first proved by Hasse [33] in 1934.
T heo rem 3.4 (Hasse). Let E be an elliptic curve over the finite field Fq, and let (f)q be the
Frobenius endomorphism of E. Assume /fE(Fq) = q + 1 — t for some integer t. Then

1. \t\ < 2Jq .

2. the endomorphism <j>2 — t<f>q + q € End(E) is trivial.

Moreover7 t is the unique integer £ such that fi2 — £(pq + q — 0.

P ro o f of 1. Let a and b be nonzero integers. Then by Corollary 3.3,

deg(a<t>q - b) = a2deg<j>q + b2 deg(-id) + ab(deg(<pq - 1) — adeg<j>q - bdeg(-id))
= a2q + b2 + ab(#E(Fq) — q — 1) by Proposition 2.6
= a2q + b2 — abt

Since deg(a<j)q — b) > 0, we have a2q + b2 — abt > 0 hence q + (b/a)2 — (b/a)t > 0. This is
true for all rational numbers b/a, and since the set of such numbers is dense in R, we have
x2 — tx + q > 0 for all x € R. This implies that t2 — Aq > 0 which yields the result. □
To prove part 2, we need the following result from commutative algebra.

L em m a 3.5. Let R be a commutative ring, and let M be a finitely generated R-module of
rank n. Let I be an Ideal of R 7 and let ip be an R-module endomorphism of M such that
p(M) C IM. Then p satisfies an equation of the form

p n + axp n 1 + * * * + an^ip + an = 0

where ai G / , i = 1 , . . . , n.

P roo f. See [5, page 21]. □

P ro o f of 2. Let n be a positive integer relatively prime to q. As noted earlier, E[n] =
is a Zn-module of rank 2. Let I = Zn be the unit ideal of Zn. For the endomorphism
{4>q)n = <t>q\E[n] °f E[n], where 4>q is the Frobenius endomorphism, we have (4>q)n(E[n\) C
E[n\ = IE[n\. So, by Lemma 3.5, (4>q)2n + a{4>q)n + b = 0 for some a,b G Zn. Let {4>q)n be
represented by [ap]2x2- Then, by elementary linear algebra, an + a22 = t r ((0?)n) = a, and
a iia22 — «i2«2i = det((</>g)n) = b. On the other hand, since cf>q — 1 is separable,

#E (F q) = ker(09 — 1) by Proposition 2.6
= deg(4>q — 1) = det(((f>q)n — / 2) (mod n) by Theorem 3.2
= «11 «22 — «12«21 — («11 + «22) + 1 = det((09)n) — tr ((4>q)n) + 1
= q — a + 1 by Theorem 3.2

Therefore, a = t,b = q hence (4>g)n + t(<f>q)n + q = 0. This means that (4>2q + t<f>q + q)\E[n] = 0.
Since this holds for infinitely many n, the endomorphism (j>2 + t<f)q + q has an infinite kernel
which is not possible by Proposition 2.2. So, it is the zero endomorphism. For the uniqueness
assume that <p2+s(j)q+q = 0 for some integer s. Then (t —s)(f>g = (cj)2+t(j)q+q) — (<p2+s(j)q+q) =
0. Since 4>g is surjective, [t — s]E(Fg) = 00 which implies that the endomorphism [t — s] is
trivial. This is not true unless t — s = 0. This completes the proof. □

13

3.3 The structure of E(¥q)
The group i?(Fg) is a finite abelian group. So, by the fundamental theorem of finite abelian
groups, E(¥q) is isomorphic to a direct sum of cyclic groups E(¥q) = Zni © Zn2 © • * * © Znfc
such that rii \ ni+1 for i = 1 , . . . , k — 1. This means that there are n\ elements of E(¥q) of
order n\. But, by Theorem 2.10, there are < n\ such elements. Thus, k < 2 hence

E(¥q) = Zn or E(¥q) = Zni © Zn2

for some positive integer n, or some positive integers n i , n 2 with n\ | n2. We show that
rii | q — 1 in the second case. Let first prove the following.

L em m a 3.6. Let E be an elliptic curve defined over a field k, and let n be a positive integer
not divisible by char(A;). If E[n] C E(k) then fin C k where ¡in is the group of n-th roots of
unity.

P roof. Let en be the Weil pairing on the n-torsion E[n\: and let {B i, I?2} be a basis for E[n\.
Then en(# i, J52) is a primitive root of unity by the proof of Theorem 3.2. Since E[n\ C E(k),
B \ ,B 2 6 E(k). For any a G Gai(k/k) we have a(en(Bi, Z?2)) = en(aB i,irB 2) = en(5 i ,B 2)
by part 6 of Theorem 3.1. By the fundamental theorem of Galois theory, the primitive n-th
root of unity is contained in k hence fin C k. □

Since Zni © Zni C E(Fq), E(¥q) contains all nj elements of the ni-torsion subgroup hence
p \ ni- By Lemma 3.6, /¿ni C ¥ q hence n x | q — 1.
So, we have determined the structure of E(¥q). The converse to this problem is that given
a finite field ¥ q and a positive integer l, is there an elliptic curve E over Fg such that
E (¥ q) = E! The answer to this is given in [74] and [103].

3.4 Point counting on E(¥q)
There have been various approaches for determining the number of rational points on elliptic
curves over finite fields, see [7] for a survey. In this section, we present three point counting
algorithms on elliptic curves over finite fields: the naive counting, the baby-step giant-step,
and the Schoof s algorithm. Over this section, by a polynomial time algorithm we shall mean
an algorithm with running time polynomial in \ogq. Therefore, for example, an algorithm
with the running time O(^fq), or more generally 0 (q ° ^) , is not a polynomial time algorithm.
Let first make the following observation.

T heorem 3.7 (W eil). Let E be an elliptic curve over ¥ q, and let # E (¥ q) = q + l — t. Write
x2 — tx + q = (x — X\)(x — A2) with Ai, A2 G C. Then #E(Fqn) = qn + 1 — (A™ + A£) for all
n > 0.

P roo f. Let £ be a positive integer relatively prime to g, and let <pq be the Frobenius endomor
phism of E. Then {<j)q)2 — t{<j>q)t + q = 0 by Theorem 3.4. So, A] and A2 are the eigenvalues
of (cf>q)e hence t r ((</>q)e) = A2 + A2- From linear algebra we have tr((0g)”) = + A£ for any

14

positive integer n. Also, it is trivial that det(A — I2) = 1 + det(A) — tr(A) for all 2 x 2
matrices A. Thus

E (F qn) = # ker(<% - 1) = deg(0£ - 1) = det((0,)? - h) (mod £)
= 1 + d e t ((«) - t r ((0,)?) = 1 + çn — (A" -f A2")

Since this holds for infinitely many £, it must be an equality. □

Theorem 3.7 says that if we know # E (¥ q) then we can easily compute #E(Fqn). So if, for
example, the elements of Fq are represented by polynomials, which is usually the case, then
computing # E (F qn) amounts to computing # E (Fp).

3.4.1 T he naive m ethod
When the size of the field Fq is small we can simply run through all its elements to find pairs
satisfying the equation of E. This amounts to check, for every x G Fg, if x3 + Ax + B is a
square in Fq. Let

)
| 1 if a is a square in F*

— < — 1 if a is not a square in F*

I 0 otherwise
be the Legendre symbol over Fq. For every a G Fg if) = 1 or —1 or 0 then there
are two points (a, dry) or no points or one point (a, 0) on E(Fq) respectively. Therefore, the
number of points with first coordinate a is 1 + (Q +pQ+'g). Summing over all a G Fg, and
taking into account the point oo, gives

E (V ,) 1+ EaGFg
1 + a 3 + Aa + B + Aa + B \

)

A lgorithm 3.1 Naive algorithm for counting points on £7(Fg)
In p u t: The elliptic curve E defined by y2 = xs + Ax + B with A, .B G Fq
O u tp u t: The number of points on E(Fq)

1. n -f- q + 1
2. for all a G Fq do
3. n < r - n +
4. end for
5. re tu rn n

We have ^q3+^q+b j — (a 3 + Aa + B)^Q b /2. So the Legendre symbol can be computed in
O(logy) multiplications in Fq. Therefore, the running time of Algorithm 3.1 is O(qlogq)
operations in Fg.

15

3.4.2 T he B aby-step G iant-step
Assume we know how to compute the order of an arbitrary point P G E(Fq). By the Hasse’s
theorem, q + 1 — 2y/q < # E (F q) < q + 1 + 2y/q. For large enough q there is exactly one
multiple of #E(Wq) in this interval. The order of any point P € E(Fq) divides the order of
the group JE^F^). So, for a randomly selected point Pi G E(Fq), if Afi = ord(Pi) has only one
multiple in the above interval then # E (F q) — Afi, otherwise select another point P2 and let
N2 — lcm(Afi,ord(P2)) and do the same for N2. This process continues, by selecting further
random points and taking least common multiples, until Nk has a unique multiple in the
Hasse interval for some k.
To compute the order of a point P G E(Fq), we can first find an integer £ such that [£]P — oo.
Then Algorithm 3.2 computes the order of P from £.

A lgorithm 3.2 Compute the order of a point from a given annihilator
In p u t: A point P G E(Fq) and an integer £ such that [£]P = oo
O u tp u t: The order of P

1. n <— l
2. for all prime divisors p of n do
3. w hile [n]P = oo do
4. n <— n/p
5. end while
6. end for
7. r e tu rn n

To find an integer q + 1 — 2y/q < £ < q + 1 + 2y/q such that [£\P = oo, one can try all
elements of this interval which takes around 4y/q steps. But, using an adaptation of the
Shanks’s algorithm [82], the number of steps can be reduced to around 4tfq as follows. Let
m > tfq be an integer. Compute the sequences of points B = {[j}P, j = 0, ± 1 , . . . , ± m) and
G = {[q + 1 + 2mk\P, k = — m, —m + 1 , . . . , m — 1, m}. Then there is an element occurring
in both sequences, because: in the identity #E (F q) = q+ 1 — t we have |t| < 2m2, then there
are always — m < to < rn and —m < t\ < m such that t = 2mii + to- Now, letting k — —t\
we have G 3 [q + 1 — 2m ti]P = [q + 1 — t + to]P — [#£*(Fq) + t0]P = [to]F G B.

A lgorithm 3.3 baby-step giant-step point counting
In p u t: An elliptic curve E over Fq
O u tp u t: The number of point on E(Fq)

1. m i - \tfq\, d i— 1
2. select a random point P G E(Fq)
3. Pi G- [2m]P
4. Bo ^ oo
5. G <T- [q + l] P ~ H Pi,, j 0
6. for i — 1 to m do
7. B{ G~ P i - i + P
8. end for
9. w hile G ± P i, 0 < i < m do

16

10. G i r - G + Pu j i - j + l
11. end w hile
12. £ <— q + 1 + 2m j =F i
13. compute ord(P) using Algorithm 3.2 with input £
14. d 4— lcm(d, ord(P))
15. if d has only one multiple in the range [q + 1 — 2y/q, q + 1 + 2y/q\ th e n
16. r e tu rn d
17. end if
18. go to Step 2

It is not hard to show that the expected running time of Algorithm 3.3 is 0(^/q log3 q) group
operations, and it needs storage for O(tfq) group elements, see [22] for details.

3.4.3 S ch oof’s A lgorithm
The first polynomial time algorithm for counting points on E(Fq) was introduced by Schoof
[80]. By the Hasse’s theorem # E (F q) = q + l — t with |i| < 2y/q. The idea of the algorithm is
to compute t modulo many small primes, and then recombine the results using the Chinese
remaindering theorem to obtain t. Let <j>q be the Frobenius map on E. By Theorem 3.4,
02 — t(j)q + q = 0. Let 7 > 2 be a prime not equal to char(Fg) = p. Assume P = (x, y) ^ oc
is a 7-torsion point. Then <j>q(P) — [i7]0g(P) + [g7]P = 0 where i7 = t (mod 7), and qy = q
(mod 7). In other words,

(■xQ\ y q2) - [i7](x9,y9) + [qy](x,y) = 0 (3.1)

hence [t1](xq,yq) = , yq2)-\-[q1\{x,y). Since we know the right side, and 7 is small, we can
try all values in the range [0,7— 1] to find the t7 satisfying the above equation. The problem
is how to obtain a point P € E[7]. As we saw in Section 2.3, P is a 7-torsion if and only if
'ipy(P) = 0, where is the 7-th division polynomial. Since 7 is odd, G Fg[x]. Therefore,
we can compute a root of ^7 to obtain the x-coordinate of a 7-torsion point P, and then
compute the y-coordinate using the equation of E. But, the roots of the division polynomials
y;7 usually occupy in extensions K /Fq of fairly large degree. The crucial observation is that
Equation (3.1) holds for all 7-torsion points so that we can work modulo i.e. work with
all 7-torsion points simultaneously.
In other words, if / and g are the x-coordinates of [a\(xq,yq) and (xq ,yq) + [<?7](x,y),
for some integer a, respectively, then a is the desired value for t7 if / — g = 0 (mod ?/?7).
Therefore, we shall do all computations in the quotient ring A7 = Fg[x, y \ / (^7(x), y2 — f(x))
where y2 = f(x) is the equation of E. Let {7i}i<k be the set of primes required by the
Chinese remaindering theorem to uniquely reconstruct the value of t. Then we should have

k
Y[~fi>4y/q (3.2)
¿=1

A lgorithm 3.4 Schoof’s point counting
In p u t: An elliptic curve E over Fq

17

O u tp u t: The number of point on E(¥q)
1. M <- 1, 7 <— 3
2. w hile M < 4y/q do
3. P <r- (xq, yq) mod y2 - f(x))
4. Q <- (xq\ y q2) + [g7j(x,j/) mod (V>7(x),y2 - / (x))
5. for n = 0 to 7 — 1 do
6. if Q = 0 (mod (i/;7(a;), j/2 — f(x))) th e n
7. tn G- n, go to Step 12
8. else
9. Q <— Q — P

10. end if
11. end for
12. M e- M.7
13.
14 ^ the next largest prime
15. end while
16. use the Chinese remaindering theorem to solve the system

of congruences t = t7 (mod 7), 7 € V.
17. r e tu rn q + 1 — t

The prime number theorem says that lim ^oo 7r(x) log(x)/x = 1 where n(x) is the number
of primes not larger than x. It can be shown that this is equivalent to Hindoo d(x)/x — 1
where

= 5 3 log 7
7 < x

7 prime

is the Chebyshev’s ^-function. This implies

1 = lim
x —*oc

#(x]
X

lim — log 7"—vr*~i 'T* * JX—*OG X 7<z
7 prime

lim — logX—KX) X n
7< x

7 prime

7

which means that Yl i<x 7 ~ . So if we take 7^ ~ |log(16g) G O(logg) then the set
7 prime

of primes {7?}z<fc satisfies condition (3.2). Therefore, for any prime 7 produced in Step 14
of Algorithm 3.4, we have 7 G O(logg). The outer loop in Algorithm 3.4 iterates 0(\ogq)
times. Steps 3 and 4 require 0(logq) multiplications of polynomials of order 0 (y 2) in A1
which can be accomplished in 0 (M (^ 2)logq) = 0(M (log2 q) logq) operations in Fq. The
total cost of the execution of the inner loop is 0 (j M (j 2)) = O(M(log2 q) logq) operations
in Fq. Therefore, the running time of Algorithm 3.4 is 0(M (log2 q) log2 q) operations in Fq.
There have been many theoretical and practical improvements on the Schoof’s algorithm, see,
for example, [7, 21, 81]. An improvement suggested by Atkin and Elkis, called Schoof-Elkies-
Atkin (SEA) algorithm, is currently the fastest known algorithm for general characteristics
[7]. There are other polynomial time algorithm, that work for small characteristics, like
Satoh’s algorithm [75]. For refinements of Satoh’s algorithm see [77, 76, 97].

18

Chapter 4

H yperelliptic Curves

By the increasing applications of hyperelliptic curves in various areas of computational com
puter science, the theory of these curves has been advanced significantly during recent years.
They have mainly been used in areas such as public-key cryptography [44, 17], primality
testing [2], integer factorization [53, 54], and error-correcting codes [51]. In this chapter,
we give an introduction to the basic theory of hyperelliptic curves. We will discuss rational
functions on the curve by following a bit of more general theory to give a clear description of
concepts like uniformizers. Then, we will give a brief treatment on divisors, and their basic
properties. The Mumford representation, and how to add divisors in the set of divisor classes
of degree zero, which is a group called the jacobian of the curve, will be discussed next. At
the last section, we summarize some basic facts about hyperelliptic curves over finite fields.

4.1 Basic definitions
Let k be field and k be its algebraic closure, and let g > 2 be an integer. A hyperelliptic
curve of genus g over k is a nonsingular plane curve T-L C Aj: of the form

U : y2 + h(x)y = f(x) (4.1)

together with a point at infinity, where f(x) £ k[x] is monic with deg / = 2g + 1, and
h(x) £ k[x] with deg h < g. Here, nonsingularity means there is no point P — (x,y) £ A |
such that y2 + h(x)y — f(x) = 2y + h(x) = h'(x)y — f'(x) = 0. When g = 1, Equation
(4.1) is the generalized Weierstrass equation of an elliptic curve, see Section 2.1. Therefore,
hyperelliptic curves can be thought of as a generalization of elliptic curves. If char(fc) > 2
then the change of variables y t-> y — \h(x) in (4.1) gives

n : y2 = f(x) (4.2)

for some monic polynomial f(x) of degree 2g + l. This implies that Ti is nonsingular if there
is no point P = (x, y) G A | satisfying y2 — f(x) = 2y = f'(x) = 0 which is simply equivalent
to saying that f(x) has no repeated roots. Throughout this chapter, we assume char(fc) > 2,
unless otherwise specified. For an extension L /k , as in the case of elliptic curves, the set of
points in A \ satisfying (4.2) is denoted by 'H(L).

19

D efin ition 4.1. Let P = (x,y) be a finite point on T-L. The involu tion of P is defined to
be P = (x, ~y). We also define ob = oo. The point P is special if y = 0, it is called ordinary
otherwise.

Therefore, there are only a finite number of special points on H, namely the points with
roots of f(x) as their first coordinate. Throughout this chapter, except for Section 4.6, we
assume that k = fc, i.e. k is algebraically closed.

4.2 Rational functions
Let C C be an affine plane curve, defined over the field and given by the equation
F = 0 where F G k[x,y] is irreducible. Therefore, the ideal (F) C k[x,y] is a prime ideal.
The coordinate ring of C, denoted by I \(C) , is defined to be the quotient ring

T k(C) = k[x,y]/(F)

which is an integral domain. Elements of Tfc(C') are called polynomial functions on C. We
simply write T(C) when k is clear from the context. Since T(C) is an integral domain, we can
form its field of fractions denoted by k(C). Elements of k(C) are called ra tio n a l functions
on C, and k(C) itself is called the field of rational functions on C. Every element / G k(C)
is of the form g/h where g and h are polynomial functions on C. For a rational function
/ G k(C), and a point P G C, we say that / is defined at P if there are some polynomial
functions g,h £ T(C) such that / = g/h, and h(P) ^ 0. Otherwise, / is said to have a pole
at P , or P is called a pole of / , and we write / (P) = oo.

D efin ition 4.2. A ring R is called a local ring if it has a unique maximal ideal.

Assume the set of non-units of a ring R form an ideal m. Then R is clearly a local ring with
m as its maximal ideal. This is sometime used as a definition of local rings. For a point
P G C, let Op(C) denote the set of elements of k(C) defined a P. Then Op(C) is clearly a
ring such that T(C) C Op(C) C k(C). Let / G Op(C), and write / = g/h with g,h G T(C'),
h(P) 7̂ 0. The value of / at P is defined as f {P) = g(P)/h(P) which is independent of the
choice of g and h.

L em m a 4.3. Gp(C) is a local ring.

P roof. An element / G Op(C) is a non-unit if and only if f (P) = 0. Let tn = { / G Gp(C) |
f (P) = 0}. Let <j) : Gp(C) —» k be the map / / (P) . Then is surjective, and ker</> = m.
Therefore, m is a maximal ideal hence Gp(C) is a local ring. □

A partial order on a set A is a reflexive, antisymmetric, and transitive relation on A. Let
A be a set partially ordered by a relation <. Then the following statements are equivalent:
i) Every non-decreasing sequence in A is stationary, ii) Every non-empty subset of A has
a maximal element. Assume that i) is true. If ii) is false, then there is a non-empty subset
S of A with no maximal element. So, one can construct an infinite strictly increasing
sequence in T, a contradiction. Conversely, for any non-decreasing sequence X\ < X2 < * • •
let S = {xi,i G N}. Then S has a maximal element xn for some integer n, hence x\ <

20

x2 < ■ • ■ < = %n+i = * * •. Now, for a ring R , let J* be the set of ideals of R ordered by
inclusion C. Then the condition i) on is called the ascending chain condition (acc). The
ring R is said to be Noetherian if it satisfies either of i) or ii).

P ro p o s itio n 4.4. A ring R is Noetherian if and only if every ideal of R is finitely generated.

P roof. Let I be an ideal of R, and let be the set of all finitely generated ideals
contained in I. Then, by Zorn’s lemma, J* has a maximal element, say J. If J ^ I then let
a G / , and a £ J . Then J is a proper ideal of the finitely generated ideal J + Ra which is a
contradiction.
'<=\ Let /j C I2 C • • * be an ascending chain of ideals of R. Then J = (J ^ In is an ideal of
R hence finitely generated, say by {ai , <22, - . . , ar}. We have a% G IUi for some n2, i = 1 , . . . , r.
Let k = max[=1 n*, then J = /*., and hence we have I\ C I2 ^ ^ h — Ik+\ = * * * ■ Q

P ro p o s itio n 4.5. Op(C) is a Noetherian ring.

P roof. It can easily be seen that r(C') is a Noetherian ring. Let I be an ideal of Op(C), and
let {ai, a2, . - -, a*} be a set of generators for the ideal /nT(C') of T(C'). Now, let a G / , then
there is an element c G F(C') with c(P) / 0 such that ca G r(C'). So, ca G I H T(C) hence
ca — 1 dn&n where dn G T(C). Thus, a = Yln=1 ^ an which means that a* generate / in
Op(C). This completes the proof. □

R em ark . If a commutative ring R is Noetherian, and p is a prime ideal of R , then the
localization of R with respect to p, denoted by i?p, is also Noetherian. The ring Op(C) is
indeed the localization of the ring T(C) with respect to the prime ideal p = { / G T(C') |
HP) = 0}.
P ro p o s itio n 4.6. Let R be a Noetherian local domain that is not a field, and let m be its
maximal ideal If m is principal then there is an element a G R such that every nonzero
element a G R can be uniquely expressed in the form a = ¡3an for some unit fd G R and
nonnegative integer n.

P roof. Let m = (a) for some non-unit a G R. We may assume that a is not a unit. Then
(a) Q m. We have a — b^a for some bi G R . If b\ is a unit we are done; otherwise let
bi == b2ct. The same thing holds for b2 and so on. If this process does not terminate then
we have chain of ideals (61) C (b2) C ■ • •. Since R is Noetherian, this chain is stationary
so that (bn) = (bn+i) — ■ * * for some n. So, bn+1 = cbn = cabn+1 hence ca = 1, and a is a
unit which is a contradiction. Therefore, a = (3ak for some unit ¡3 and some integer k > 1.
For the uniqueness let fd}a m — a = /32a n with m > n, and fdi,/d2 units. Then /3jam~n = 02
which implies m = n, and hence ¡3\ = fd2. □

R em ark . For an ideal m / (1) of a Noetherian domain R we have f)™= 1 tnn = 0. This means
that there is an integer k > 1 such that (a) C mk and (a) ^ mfc+1. Then a = f3ak for some
unique (3 G R, and /5 should be a unit because (a) m ^ 1.

A ring R satisfying the conditions of Proposition 4.6 is called a discrete valuation ring (DVR),
and the element a is called a uniformizer for R. For any element a G R write a = f3ad for
some unit f3 G R and some integer d > 0. Then the order of a, denoted by ord(a), is defined

21

to be d. There maybe more than one uniformizer for a discrete valuation ring R. Let a and
A be two uniformizers for R. Then A = ¡3\ani , and a = f32An2. Thus, a = /3™2 f32ani712 which
implies that a 711™2-1 is a unit. So, n^n2 = 1 hence ni = n2 = 1. Therefore, the ring R has a
unique, up to a unit, uniformizer. In particular, the order of an element a is independent of
the choice of the uniformizer.

L em m a 4.7. Let R be a DVR, and let a,b £ R. Then

1. ord(a6) = ord(a) + ord(ft).

2. ord(a + b) > min(ord(a) + ord(6)).

P roo f. Let a be a uniformizer for R , and let a — f t a " 1, and b = /32a n2 with /5X, /32 € R units.
Also let m > n2. Then ab = f3i/32a ni+n2 which proves 1. Also a+b = a n2((3iani~n2 + (32). We
can write (¡3\a ni~n2 + [32) = foa713 for some n3 > 0, and some unit ¡3$. So, a + b = ¡3$o ni+n3
which proves 2. □

Let K be the field of fractions of R. The definition domain of the order function on R can
be extended to K in a natural way as follows. Let / G K, and let / = a/b for some a,b G R.
Then ord(/) = ord(a) — ord(b). This is clearly independent of choices of a and 6, and also
Lemma 4.7 remains true for elements of K.

T heo rem 4.8. Let P be a nonsingular point on C . Then Op{C) is a discrete valuation
ring. Moreover, any line L intersecting C nontangentially at P is a uniformizer for Op(C).

P roof. Let P — (a, b). It can easily be seen that m = (x — a, y — b) is the maximal ideal of
Op(C). We can write

F = {x ~ a) ^ (P) + (y - b) ^ (P) + g{x,y)

for some g € k[x,y]. Since F is nonsingular at P , either § f(P) ^ 0 or |^ (P) ^ 0. Assume
|^ (P) ^ 0. Then, grouping together the terms with (x — a) we have F = (x — a)r(x,y) —
(y — b)es{x1y) where r(P) ^ 0, and s(P) ^ 0, and i > 1 is the largest integer such that
^F(P) = 0 for all 1 < i < t — 1. Let f, s be the images of r and s in Op(C) respectively.
Then (x — a)r(x,y) = (y — b)es(x,y) hence (x — a) = (y — b)es(x,y)r~1(x,y) G (y — b). Thus,
m = (y — b) is principal, and so, by Proposition 4.6, Op(C) is a discrete valuation ring. For
the second part of the theorem, let L' be the tangent to F at P. Since the line L is distinct
from Z/, there is always an affine transformation taking L,L' ,P t o y —b,x —a, P respectively.
By the first part, y — b is a uniformizer for Op(C), hence also L. □

Now, let T-L be the hyperelliptic curve (4.2). The polynomial F(x,y) = y2 — f{x) is irreducible
over k] For the only nontrivial factorization of F is of the form F(x, y) = (y — a(x))(y — b(x))
which implies that a(x) + b(x) = 0 hence deg a = deg b. Thus, 2 deg a = deg a + deg b =
deg / = 2g + 1 which is a contradiction. We denote by ordp the order function on k{Ji)
defined by the discrete valuation ring Op{T-L). For an ordinary point P = (a, b) on H,
^ (P) = 2b ^ 0. So, L : x — a is not a tangent to T-L at P , and hence it is a uniformizer for

22

Op (TL) by Theorem 4.8. If P — (a, 0) is a special point then ^ (P) = 2b — 0 hence L : y is
not a tangent, and so a uniformizer for Op(TL).
To find a uniformizer at P = oo we need to use the projective equation of TL. Let f(x) ~
x2p+i _|_ a2gX29 _|_ . . . _|_ aiX + ao> Then the projective equation is TL : z2g~xy2 = x2d+1 +
d2gZX2g H-------b a-[Z2gx + aoz2g+1, and the point at infinity is T = (0 : 1 : 0). Changing to the
coordinates w = z j y , v — x /y gives the affine curve

G : w2g~l — v2gJrl + CL2gWV2g + • * * + a\W2gv + aow2g+l (4-3)

with Q — (0,0) correspond to the point at infinity. Let a = 1 + a2g(w/v)~\------ \-ao(w/v)2g+l.
From (4.3) we have (w/v)2g+1 / a = w2 which implies that w/v = 0 at Q hence a G Oq (G)
is a unit. Again from (4.3) we have w2g~x = v2g+1a. Let u = v9/w 9~l . It can easily
be seen that m — (w,v) is the maximal ideal of O q (Q). We have u2 = a~lw /v = 0 at
Q hence u G m. It can be readily verified that v = a9~lu2g~l , and w = a9u2g+l. So, u
is a uniformizer for Gq (G)- Therefore, u = v9jw 9~x = x9fyz9~1 is a uniformizer for the
projective local ring Ot (TL), and hence x9/y is a imiformizer for the affine local ring O^TL).
From the above we have ordoo(x) = ordt {%/z) = ordq (v/ w) — 2g — 1 — 2g — 1 — —2, and
ord^{y) = ordT{y/z) = ordQ(l /w) = - 2 g - 1.

C oro llary 4.9. Let P — (a, 0) be a special point on TL. Then ordp(x — a) = 2. In other
words, x — a — y2g(x, y) where g{P) ^ 0, oo.

P roo f. It is clear from the proof of Theorem 4.8. □

C oro lla ry 4.10. Let f G k(TL)x be a rational function. Then f has a finite number of zeros
and poles, and ^2p£nordp(f) = 0.

P roo f. It suffices to prove the statement for polynomial functions. Let l(x) — x — a G fc[x],
and let P G TL be a point with a as its x-coordinate. Then fix) has only one pole of order
2 at oo. If P is an ordinary point then fix) has a simple zero at P , and a simple zero at
P; otherwise fix) has a double zero at P. Consequently, any polynomial fix) G k[x] has a
finite number of zeros and poles such that if deg fix) = n then Ylpeu\{oo} ordp(/) = 2n, and
°rdQO(/) = —2n.
Let g G F (TL) be a nonzero polynomial function. Then we can write g ~ a(x) + yb{x) for
some polynomials a, 6 G k[x]. Let g = a(x) — yb(x). Since the mapping tp : Op(TL)
Op(TL), p (f) = f is an isomorphism, we have ordp(gr) = ordp(g) for all P G Li, and hence
T ,peh ovdp(g) = E p ^ M d) = Z p €p ordH<?)- But 99 € fc[x], and by above, both g and
g have finite number of zeros and poles, and

^2 °vdp(d)
pen

I ovdp(99) = 0.
Pen

□

4.3 Divisors
A divisor D on a hyperelliptic curve TL is a formal sum D = ^2Pen npP where np G Z, and
np = 0 for almost all P g H. Therefore, the set D of all divisors D on TL is a free Z-module,

23

i.e. a free abelian group. The degree of a divisor D is defined to be deg(D) = Yhpeu nP ^
For divisors D\ and D2, we clearly have deg(Di + D2) — deg(Lh) + deg(Z?2). We denote by
D° the set of all divisors of degree zero, which is clearly a subgroup of D.

D efin ition 4.11. For divisors D\ — ^2 TripP and D2 = '22p(E'HnpP we say D\ > D2 if
mp > np for all P E TL. We also define the greatest common divisor of Di and D2 as

gcd(L>i,A>) = E min(np, mp)(P — oo)
pen

Let / E k(TL)x be a rational function. Then define the divisor of / to be div(/) —
^2p<eh ovdp(f)Pj which is well defined, and has degree zero by Corollary 4.10. For example,
for a finite point P = (a, b) E TL, divp(:r — a) = P + P — 2oo; Because if P is special then x — a
has a double zero at P — P , otherwise, it has a simple zero at P, and simple zero at P. For
every f u f 2 € k(U) we have d iv (/i /2) = div(/!) + div(/2), and d iv (/ i / /2) = d iv (/i) -d iv (/2).
These are simply inherited from the order function. A divisor D E D is said to be a principal
divisor if there is a rational function / E k(TL) such that D — div(/).

P ro p o s itio n 4,12. Let / i , / 2 G k(7i)x be rational functions. Then

1. d iv(/i) > 0 ^ / i E i c .

2. d iv(/i) = d iv(/2) ^ / i = cf2 for some c E k.

P roof. Since div(/i) > 0, /] E Op(TL) for all P ETL. Let f i(P) — c E k for some P E TL.
Then we still have d iv (/x — c) > 0 , but deg(div(/i — c)) > 0 which is a impossible by
Corollary 4.10 unless f\ — c = 0 hence f\ = c. This proves part 1. For part 2, we have
div(/i) = div(/2) d iv (/ i / /2) = 0 / i / / 2 E k by part 1. □

D efin ition 4.13. The set of all principal divisors is a subgroup of D° denoted by P . The
quotient group J{TL) = D ° /P is called the jaco b ian of TL. An element D E J{TL) is called
a divisor class of degree zero.

Let D E D, and define

C(D) — { f E m) I div(/) + D > 0} U {0}

It can easily be verified that C(D) is a vector space over k. Let £(D) = dim^ C(D).

L em m a 4.14. Let D E D be a divisor, and let P ETL. Then dim*.(£(£) + P)/C(D)) < 1.

P roo f. It clear that C(D) C C(D + P). Let a be a uniformizer for Op(TL), and let np be the
coefficient of P in D. Define the mapping <fc : C(D + P) -> k by <p(f) = (anpJrlf)(P). Since
/ E C(D + P)j ordp(/) > —np — 1 hence </> is well-defined. It can easily be verified that (f> is a
/c-linear map with ker 0 = C(D). Therefore, there exists an embedding C(D + P)/C(D) /c,
and the result follows. □

P ro p o s itio n 4.15. Let D ,D y ,D 2 E D be divisors on TL. Then

1. £ (0) — k. Also C(D) — 0 if deg(D) < 0.

24

2. If D x < D2 then C(Df) C C(D2), and dimk(C(D2)/ C(DX)) < deg(D2 — D\).

3. If D1 = D2 (mod P) then £(£>0 = C(D2).

4 . 1(D) < oo. Moreover, if deg(D) > 0 then 1(D) < deg(D) + 1.

P roof. 1. We have / G £(0) ^ div(/) > 0 <=> / G k By Proposition 4.12.(1). Let
deg(D) < 0, and / G £(.D). Then d iv(/) + D > 0, so 0 < deg(div(/) + D) = deg(div(/)) +
deg(D) = deg(£>) < 0 which impossible unless / = 0.
2. If / G C(D\) then div(/) + D2 > d iv(/) + D x > 0, so / G C(D2) hence C(DX) C C(D2).
Let D2 = D x + Px + P2 -\------ b Pn where P, are not necessarily distinct. Using induction and
Lemma 4.14 we have dimfc(£(£>2)/£(Z)i)) < n = deg(D2 — D x).
3. Assume D\ = D2 + d iv(/) for some / G k(H)x. Then the mapping (f> : C(Df) —b C(D2),
4>(g) = fg is an isomorphism of vector spaces.
4. By part 1, we my assume deg(P>) > 0. Let P G FL be an arbitrary point, and let
D3 = D —(deg(D)+l)P. Then C(D3) = 0 by part 1, and hence 1(D) = d\mk(C(D) / C(D$)) <
deg(D) + 1 by part 2. □

D efin ition 4.16. Let D = "^P£PLnPP be a divisor. Then the support of D is defined
to be supp(D) = (P G W | ^ 0}. A semi-reduced divisor is a divisor of the form
E l i n,i(Pl — oo) such that

(i) Hi > 0 for all i,

(ii) if Pj is a special point then n* < 1,

(iii) if Pi G supp(D) then p ^ supp(P).

If we also have Y%=\ ni — I- where g is the genus of Ft, then D is said to be a reduced divisor.

L em m a 4.17. For every divisor D = ^¿=1 £ D° there is a semi-reduced divisor D\ =
Y?i=1 mi(p i - 00) such that D x = D (mod P). Moreover, Yfi=1 m suPP(z))\oo W -

Proof. Let D = 'f2P£-HnPP. For every finite point P = (a ,b) G supp(P), if nP < 0
then the term npP can be eliminated by subtracting the principal divisor div((x — a)np) =
nP(P + P — 2oc) from D. So, we obtain a divisor D x = ^) m , (P — 00) G D° such that
rrii > 0 for all i, and D x = D (mod P). Now, for every finite point P = (a, b) G supp(Pi)
we do the following. If P is a special point then we subtract div((x — a)(mp-<5)/2), where
8 = mP (mod 2), from Dx. Otherwise, if P G supp(Dj) then we subtract div((m — a)r),
where r = min(mp,mP), from D\. This way, we obtain a divisor D2 = D\ (mod P) which
is clearly a semi-reduced divisor. The second part is clear by the construction. □

P ro p o sitio n 4.18. For every polynomial g(x) G k[x\ the divisor div(g(:r) — y) is semi-
reduced. Moreover, if g(x)2 — f(x) = f)[”=1(£ — ai)mi then div(p(s) — y) = m,j(Pj — 00)
where Pi = (ai,g(ai)).

25

P roof. We have

diy{g(x) - y) + div(y(:r) + y) = div(g(x)2 - /(re)) = div(JJ(x - ai)mi)
i = 1

n n

= div((x — ai)mi) = rrii div(x — a*)
t=i i=i

n

= ^ 2 mi(p i + P i~ 2oo)
¿=1

where Py = (aj,y(aj)). If Pi is an ordinary point then Pi is a zero of g(x) — y if and only
if Pi is a zero of g(x) + y, and Pi or Pt can not be a zero of both g(x) — y and g(x) + y.
If Pi is a special point, i.e. Pi — (a,,0), then g{af) = /(a*) = 0 so that g(x) has a double
zero at Pi. Since y has a simple zero at Pu g(x) — y has a simple zero at Pi. Also we have
(x — ai)2 \ g(x)2 — f{x), because otherwise, since (x — a¿)2 | g{x)2, we have (x — a¿)2 | f(x)
which is a contradiction because f(x) has no multiple roots. Thus, rrii = 1. Putting all this
together yields div(g(x) - y) = mi{Pi ~ °°), and div(y(x) + y) = XZILi ”h(-Pj - °o)
where rrii — 1 if Pi is a special point. □

T heo rem 4.19 (R iem ann-R och). For any algebraic curve C, there exists a divisor ur and
an integer g such that for any divisor D on C ,

£{D) = deg (D) — g + 1 + £(uj — D)

P roof. See [49, ch. 1] or [10, ch. 12]. □

R em ark . The divisor u is the divisor of a differential on C , and g is called the genus of C.

T heo rem 4.20. For any divisor D € D°, there exists a unique reduced divisor D i such that
Di = D (mod P).

P roo f. (Existence) By Theorem 4.19, £(D) > deg(D) — g + 1 for any divisor D.1 Replacing
D by D+goo we have £(D+goo) > g — g+1 = 1. This means that there is a rational function
/ G k(fH)x such that div(/) + D + goo > 0. Let D\ = div(/) + D. Then Dy + goo > 0 which
means that Dy is of the form — oo) with n{ > 0, and Y lini = 9- The result now
follows from Lemma 4.17.
(Uniqueness) Letting D = 0 in Theorem 4.19, we have £(0) = 0 — g + l+£(u). By Proposition
4.15.(1), t'(O) = 1 hence £(oj) = g. Similarly, £{uj) = deg(u) — g + 2 by setting D = oj.
Therefore, deg(tu) = 2y — 2. Now, let Dy = D2 (mod P) be two reduced divisors. Assume
that Dy 7̂ D2, and let D = Dy — D2 be a principal divisor. By Lemma 4.17, there is
a principal divisor P 3 = D (mod P) with D3 + 2goc > 0. It can easily be verified that
D3 / 0 by the proof of Lemma 4.17. Let d iv(/) = D3 for some / G k(H)x. Then / G
C(2goo). Letting D = 2goo in Theorem 4.19, we have £{2goo) = g + 1 — £(oj — 2goo).
Since deg(Lo> — 2goo) = —2 by above, £(cu — 2goo) = 0 by Proposition 4.15.(1), and hence
£(2goo) = g + 1. But, xl G C(2goo) for all i = 0 , . . . ,y. Since l , x , . . . ,x9 have poles of

1 'th is is called Riemann inequality.

26

different order, they are linearly independent. So, they form a basis for C(2goo). This
means that / is a function in x. If / in nonconstant then it has a root a E k. Let P — (a, b)
be a point on PL. If P is ordinary then P is also a zero of / hence P, P E supp(D3) which
is a contradiction, since is semi reduced. If P is special then / has a double zero at P
hence the coefficient of P in D3 is at least 2, contradiction again. Thus, / is constant hence
-D3 = 0, a contradiction. □

R em ark . The group J(PL) can be considered as an algebraic variety. It is, indeed, an abelian
variety of dimension g called the jacobian variety. For any point P g H, the divisor P — 00
is reduced. Therefore, by Theorem 4.20, the mapping

<p : PL — > J(H)
p |--- y p — co

is an embedding of PL into its jacobian. In the case of elliptic curves, this is clearly an
isomorphism, hence an elliptic curve is an abelian variety of dimension 1. If l is an integer
such that char(fc) \ l\ then the ¿-torsion subgroup of J(PL), denoted by J{PL)[i], is isomorphic
to (Z/TZ)25, see [17, ch. 4, 5]. When g = 1, i.e. PL is an elliptic curve, this is a special case
of Theorem 2.10. Analogous to the case of elliptic curves, there are division polynomials for
hyperelliptic curves closely related to the torsion elements of J(PL). In 1994, Cantor [13]
gave these polynomials defined by efficiently computable recurrences.

4.4 Mumford Representation
By Theorem 4.20, the elements of the group J{PL) are indeed reduced divisors. So, theoret
ically, given two reduced divisors Dj, D2, we can add them, and reduce the result to obtain
another reduced divisor. However, representing elements of J(PL) by divisor classes, i.e by
formal sums of points on PL, is not computationally very useful. In this section, we present a
concrete representation of the elements of J(PL) by pairs of polynomials, which was proposed
by Mumford [67].
Let P = (a,b) be a point on PL, and let g E k(PL) be a rational function. Let Op(PL) be the
local ring at P , and let f be a uniformizer for it. Then g = tmh for a unique, not necessarily
positive, integer m, and rational function h E k(PL) such that h(P) ^ 0,oc. If h is not a
constant then let h(P) = c E k. Then h(x, y) ~ c has a zero at P , so h(x, y) — c = , y)
for a unique integer m-[> 1, and a rational function h\ such that h\{P) 7̂ 0,oo. Hence
h(x,y) = c + thi(x,y). The same thing can be done to hi, and so on. Therefore, for any
given k > m, we can uniquely write

k—l
g(x, y) = Y2 y)n + fa* y)k}ifai y) (4-4)

n = m

where m E Z, and h^ E k(PL) w ith hk(P) 7̂ 0,oo.

P ro p o s itio n 4.21. Let f be the polynomial in 1̂ .2. For any ordinary point P = (a, 6) E PL7
and any integer k > 1, there exists a unique polynomial g E k[x] such that g(a) = b, and
g(x)2 = f (x) mod (x — a)k.

27

P roof. Since P is ordinary, and y is a polynomial function, m — 0, and t = (x — a) in (4.4).
Thus, y = Yln^obn(x - a)n + (x - a)kh(x, y) where 60 = b. Let g(x) = Y ^ o bn(x ~ a)n-
Then g(a) = b0 = b and obviously g(x)2 = y2 = f(x) mod (x — a)k. □

T heo rem 4.22. Let S be the set of all semi-reduced divisors on TL, and let V be the set of
pairs of of polynomials (u,v) G k[x\ x k[x] such that (i) u is monic, and degu < degu (ii)
u \ u2 — f . Then the following mapping is a bijection.

: V
(u,v) gcd(div(n), div(u — y)) (4.5)

P roo f. Let (u, v) be a pair of polynomials as in the theorem. By Proposition 4.18, di\ (v — y)
is semi-reduced hence gcd(div(n),div(n — y)) is semi-reduced.

is surjective: Let D = mi{Pi ~ °°) G S, where Pi = (aj,6,), be a semi-reduced
divisor. Let u(x) = n^LiO^ — ai)mi• We will find a set of polynomials Vi(x), i = 1 , . . . , k
such that Vi(x)2 = f(x) mod (x — ai)mi, and v^af) = bi. If P* is a special point then
mi = 1. Set Vi(x) = 0. Then we have Vi(x)2 = 0 = / mod (x — af), and Vifaf) = 0 = 6,.
If Pi is ordinary then let Vi(x) be the polynomial g(x) in Proposition 4.21 with k = mi.
By the Chinese remaindering theorem, there exists a a unique polynomial v(x) G k[x\ such
that v(x) = Vi(x) mod (x — af)711* for all i, and degv(x) < = degn(r). We
clearly have u | v2 — f . Let v(x)2 — f(x) = n f = i — ai)mi Y^j=i(x ~ cj)ni■ Then by
Proposition 4.18, div(n(x) — y) = D + X^=i ni(Pj ~ °°) where Pj = (cj,v(cj)). Therefore,
D = gcd(div(u),div(n — y)) hence if{u,v) = D.

is injective: Let ip(ui,vi) = f>(u2,v2). By construction u\ = u2. We have V\(x) — v2(x) =
(vi(x) — y) — (v2(x) — y). So, vi(x) — v2(x) vanishes at least to order m^ at Pi hence it has at
least ^¿= i mi = deg?/(z) zeros. This is a contradiction since deg(ui(x) — v2(x)) < deg u(x).
Therefore vi(x) — v2(x) is the zero polynomial. □

A direct corollary of Theorem 4.20, and the proof of Theorem 4.22 is that every reduced
divisor D , i.e. every element of J(TL), corresponds to a pair (u, v) as in (4.5), with degu < g.
This pair is called the M um ford R e p resen ta tio n of D.

4.5 Addition on the jacobian J(7i)
Assume the elements of J(H)> i.e the reduced divisors, are given by their Mumford repre
sentations. In this section, we present an algorithm due to Cantor [12] for addition on «/(H)
based on the Mumford representation. Let us first see how to obtain the reduced divisor
corresponding to a given semi-reduced divisor.

A lgorithm 4.5 Reduction of semi-reduced divisors * 1 2 3
In p u t: A pair (u,v) representing a semi-reduced divisor D.
O u tp u t: A pair representing the reduced divisor D\ = D (mod P).

1. w hile deg(ii) > g do
2. Ml G- (V2 - f) /u
3. V \ i--- v mod u \

28

4. make u\ monic by dividing it by its leading coefficient.
5. U <— U j , V V \ .

6. end w hile
7. r e tu rn (u,v)

T heorem 4.23. Algorithm 4-5 works correctly.

Proof. We first show that the terminates. Assume degu > 0 + 1. Then deg(u2 — /) <
max(degr;2, deg/) < max(deg'u2,deg'u2) = 2degw. Thus, degui = deg(u2 — /) — deg?/ <
2 deg u — deg u — deg u. Therefore, the degree of u decreases strictly by each iteration, hence
the while loop iterates finitely many times.
Let Di = gcd(div(ui),div(n — y)) where ui,v\ are as in steps 2 and 3 of the algorithm
repectively. Then u\ is monic, and deg v\ < deg u\ by steps 3 and 4. Also v\ — f = v2 — f = 0
(mod Ui). Therefore, D\ is semi-reduced by Theorem 4.22.
For a divisor D = Y lp e v np P ’ ^ ^ ~ ^2pev up P- Then div(u) = D + D. By Proposition
4.18, div(u — y) = D + A, and div(t> + y) = D + A, where K — h{P% ~ °°) ̂ for some
Pi G *H, and k{ > 0. Thus, div(ui) = div((v2 — f)/u)) = div(u2 — /) — div(u) = D4- K + D +
K — D — D = K + K. Since div(v + y) is semi-reduced, supp{D\oo} n supp{ A \oc} = 0 ,
which implies that gcd(div(?/i), div(t> + y)) — K hence D\ = gcd(div(î/i),div(n + y)) = K.
On the other hand, D — D x = D — K = div(u — y) — K — div(ui) + K = div(v — y) — div(iii)
which means that D\ = D (mod P). □

A lgorithm 4.6 Cantor’s algorithm for adding reduced divisors
In p u t: Pairs (ui,i?i), (u2,v2) representing reduced divisors D\, and D2 respectively.
O u tp u t: A pair (u, v) representing the reduced divisor D = Di + D2 (mod P).

1. compute d i , r i , r 2 such that d\ = gcd(ui,zi2), and d\ = r\U\ + r2u2 using the extended
Euclidean algorithm.

2. compute d ,s \ , s2 such that d = gcd(d1,^i + v2), and d = Sid\ + s2(vi + v2) using the
extended Euclidean algorithm.

3. let 0] = s in , 92 = s2r2, and gz = s2 so that d = giUi + g2u2 + g3(vi + v2).
4. u <— UiU2/d2.
5. v G- {v>\V2Q\ + u2vxg2 + (viv2 + f)gz)/d mod u
6. use Algorithm 4.5 to reduce (u,v)
7. r e tu rn (u,v)

T heorem 4.24. Algorithm 4-6 works correctly.

P roof. The algorithm first generates a pair (u,v) representing a semi-reduced divisor D =
Di + D2 (mod P), and then uses Algorithm 4.5 to obtain the desired reduced divisor. Here,
we omit the lengthy proof, and refer the reader to [102, ch. 13] or [46, appendix]. □

4.6 Hyperelliptic curves over ¥q
In this section we assume the hyperelliptic curve "H, Equation (4.2), is defined over the finite
field k — ¥g where q — pn with p > 3 prime. Let <f>q be the q-th power Frobenius map

29

on TL. For a divisor we define <f>g{D) = ^2Pen Tip<f>q(P). Also for a rational
function g £ ¥ g(TL), let g^q be g with (¡>q applied to its coefficients. A divisor D is said to
be defined over ¥ q if <f>q{D) = D. Consequently, a divisor class D £ J(H) is defined over ¥q
if 4>q(D) = D (mod P). We denote by Jfq{TL), the elements of J{TL) defined over ¥ q. The
following is a consequence of Theorem 4.22 for the restriction ¥ q of k = ¥ g.

P ro p o s itio n 4.25. Let V^q be the set of pairs of of polynomials (u,v) £ Fj:r] x Fg[x] such
that (i) u is moniCf and degu < degu < g (ii) u \ v2 — / . Then the following mapping is a
bijection.

■ VVq — ► Jw.i'H) /4_6\
(u,v) i— > gcd(div(u), div(u — y)) ̂ ’

Proof. Let D G Jrq('H), and let E be the unique reduced divisor in the class of D. Then
D — E = div(g) for some function g, and hence (f>q(D) — (f>q(E) = div(</>g(F)), which implies
that 4>q(E) is in the class of 4>q(D). By uniqueness, E = <f>q(E). Let (u,v) be the Mumford
representation of E. Then (u<l>v,iA) is the Mumford representation of <fiq{E), hence (u,v) =
(rA ,tA). Therefore, u,v € F9[x]. Conversely, let u,v G F9, and let D = iprq(u,v). Then

4>q(D) = <^<j(gcd(div(ii), div(u - y))) = gcd(09(div(u)), (j)q(div(v - y)))
= gcd(div(09(n)), div(0q(n - y))) = gcd(div(u), div(u — y)) — D □

Since there are finitely many polynomials in Fg[x] of degree less than or equal to g , Jrq('H) is
a finite set. It is clear that Jrq(T-L) is closed under addition and inversion, hence it is a group.
As in the case of elliptic curves, 4>q is an inseparable endomorphism of J(H) of degree q9.
We have Jrq('H) = ker(A — 1), and hence # J r q(H) = # k e r (4>q — 1) = deg(^ — 1). Denote
by Xq{t) the characteristic polynomial of 4>q. It can be shown that y9(i) G Z[i] is monic of
degree 2g, and that deg(A — 1) = Xq{!)• For an integer n prime to p, the restriction 4>q\j(u)\n]
has the characteristic polynomial Xq(V (mod n); see [17, ch. 4, 5] or [66].
Let Nk denote the number of F9fc-rational points of 'H. Define the generating function

Z{U, t) = exp ^ tk J (4.7)

which is called the ze ta function of TL over ¥ q. The function Z(TL,t) is of fundamental
importance in the theory of hyperelliptic curves over finite fields. The following theorem
states some known properties of this function.

T heo rem 4.26 (W eil C on jectu res). Let TL be a hyperelliptic curve of genus g over ¥ q,
and Z(TL,t) be the zeta function ofTL.

1. Z(TL,t) £ Q[[i]] is a rational function.

2. Z(TL,t) satisfies the functional equation

z (n , T j = q1~9t2~29Z('H,t)

30

3. We have

where L(t) G Z[t] is of degree 2g such that L(t) = n X i (l — a$) where a* are algebraic
. integers such that ag+i = cq and |cq| = yfq for i = 1, . . . ,g.

P roo f. See [89, ch. 5] or [96, part II]. □

C oro llary 4.27. L(t) is of the form L(t) = a ̂+ ait + * * • + a2gt29 where a$ = l 1a2g = q9,
and a2g-i — q9~lai for i = 0 , . . . , g.

P roof. The functional equation of Z(TL,t), Theorem 4.26.(2), gives

L(t) = qgt2gL (1) = + ^ ± t + • • ■ + qga0t2g
K \ q t) q9 qg~l

and by Theorem 4.26. (3), a0 = 1. □

C oro lla ry 4.28. Let i — 1, . . . , 2g be as in Theorem 4-26.(3). Then j^Tt(¥qn) = qn +
i - E g , < •

P roof. Taking the logarithm of both sides of (4.8), gives

2 9
In(Z(TL, t)) = ln(l — cq£) — ln(l — t) — ln(l — qt)

¿=1
^ ^ aHk 00 ¿k 00 „k+k

- E E ^ + E i + E ^ fi—1 k=1 fc=l k=1
oo 2 9

k=1 i~l

Comparing this to (4.7) yields the result. □

It can be shown that Xq{h) — t29L(l/ t) . Therefore, when g — 1, Corollary 4.28 gives Theorem
3.7. By Corollary 4.27,

Xq(t) = t29 + ait2g~l H------ b ag_it9~l + agt9 + ag-iqt9~l H------ h a2q9~2t2 + axqq~lt + q9 (4.9)

In particular y9(i) = which means that the eigenvalues of cfiq are cq, i = 1 , . . . , 2g.
Therefore, the eigenvalues of (f>qk = (f)g are a f, i = 1, . . . ,2g. Hence Xqk(t) — I I i = i “ a i)*
As mentioned earlier, # ^ (7 ^) — Xq{!)> consequently,

2<?
j ¥qk(n) = x A 1) = W 1 - a ^ (4-10)

i=l

31

Theorem 4.29 (Weil bounds). Let % be a hyperelliptic curve of genus g over ¥ q. Then

l # W ^) - (9 n + l) | < 2 ffv^ ,

(v ^ ~ l)29 < # A n (H) < (V r + V 2a

P roof. By Corollary 4.28 and Theorem 4.26. (3),

- (qn + 1)1
2 9

E
2 = 1

a .
2 g 2 g

< £ k nl = £ N " =
2 = 1 2=1

which proves the first part. For the second part, by (4.10) and Theorem 4.26.(3),

which establishes the upper bound. The lower bound is established the same way

2 g
IP -«?)
i - 1

2 g 2 g

= II |(1 - a?)| < 11(1 + |af |) = (V r + 1)29
i= 1 ! = 1

□

32

Chapter 5

Fast Integer M atrix M ultiplication

In this chapter, we describe and implement an algorithm for fast multiplication of matrices
with integer entries of arbitrary length. Assume that we are able to multiply matrices with
machine level integer entries efficiently. Then the idea is to find a multiplication preserving
mapping that enables us to uniquely represent matrices with big entries by matrices with
machine level entries. This mapping and its inverse should be efficiently computable. To
this end, we present the modular representation technique for matrices. This is not a new
idea, e.g. see [40] for the modular representation technique for arithmetic on large integers.
We first describe the method, and then propose some practical improvements to it. In the
last section, we describe two computational problems: modular composition, and power
projection. We show how the new implementations of the solutions to these problems, based
on the fast matrix multiplication, lead to major speed-ups.

5.1 Modular representation
Let R be a commutative ring with 1 and let /], / 2, . . . , Ik be ideals of R. Then there is a
natural homomorphism

¥> : & --- > ©m=l R/1™
a i— > (a + / i, a + /2, * * * ,a + /fc)

If the ideals Im are pairwise coprime i.e. I{ + Ij = R whenever i ^ j then cp is surjective
with kernel J]m=i An so that

k k
ip : R / J] Im — ► 0 R /Im

771=1 771=1

is an isomorphism [5]. Therefore, every element a in the left side ring can be uniquely
represented as a fc-tuple (a1; a2, • • • , ak) in the right side ring. The fc-tuple (ai, a2, • ■ • , ak) is
called the modular representation of a. Computing if) is not usually computationally hard.
One can compute ip-1 as follows. Let Mi = Ij- Then and M* are coprime. So, there
are x* € I ŷ% € Mi such that xt + y, = 1. Then 1 — yt E Ii and y, € M* C Ij for all j ^ i.

33

Now let a — amy-m- It can be easily seen that p(a) = (ai ,a2,*** , a*;). Therefore,
multiplication in R/Ylm=i can carried out by multiplication in ® m=1 R/Im via the
mapping ip. This is done by Algorithm 5.7.

A lgo rithm 5.7 Nlultiplication in R/Ylm=i

In p u t: a,b E R / I l C i A
O u tp u t: the product ab

1- (ai, ■ • • ,ak) i - -0(a)
2- (bi, • • • A) ^(b)
3. compute ,akbk)
4. re tu rn V>~1(aibi,--- , a A) __

Let Mn(R) be the ring of n x n square matrices over R . The mapping ip induces the
isomorphism

* : U — > e L i * * „ (« / «
(a i j) '— > (([a + h] i j) , ([a + h] i j) , • • • , ([a + h \ i j))

where ([a + Ir\ij) is the matrix (a^) with entries reduced modulo Ir. This means we can
have a multiplication algorithm similar to Algorithm 5.7 in Mn(R/ Yim=i A™)*

A lgorithm 5.8 Multiplication in Mn(R/ Y[m=i An)

In p u t: A, B € Mn(B / Ilm=i A)
O u tp u t: the product AB

1. (A , - - - ,A k) <- 'J'(A)
2. (Bi, • • • , Bk) ^(B)
3. compute (A-B],-- - ,A kBk)
4. re tu rn 'I'-1 (A A , • • • , AkBk)__

Now, consider the special case R = Z. In this case, the ideals are principal and computing
ip, and ip~l reduces to the usual modular integer operations. Let I{ = (p*), z = with
Pi prime; Then computing ip~l is equivalent to solving the system of congruences x =
(mod pP), i — 1 which can be done as follows. Let M = JliLiPi, and ^ = M /p%.
Compute U = M “ 1 (mod p*). Then x = 'Ŷ ki=laitiMi (mod M) (see Algorithm 5.9). Since
Z is a normed ring, we can talk about the sizes of the elements so that Algorithm 5.7 can
be used in the following way. Let a, 6 E Z be of arbitrary length. Chose p{ such that a%
and bi fit into machine words. Compute machine level products (ai&i, • * * , and finally
compute ip~l (aibi, • * • ,akbk) by Algorithm 5.9.
Accordingly, Algorithm 5.8 can be used in a similar way to multiply integer matrices. It first
reduces matrices A , B to tuples (All - • * , Ak), (jBj , • * • , Bk) of matrices with entries that can
fit into machine words. It then computes the matrix products {A\Bi, * • * , AkBk) and at last
^~x(AiBi, • • • ,A kBk) by applying Algorithm 5.9 to corresponding entries of the matrices
AlBi. In the case of matrices, the values M and Mi can be precomputed for the entire
process. We shall discuss some optimization techniques in Section 5.2.

34

A lg o rith m 5.9 Computing 'ip 1 in Z

In p u t: (ai, • • ■ ,a k) e ® f=1 ZPi
O u tp u t: a e Z

l m n t i Pi
2. for i from 1 to k do
3. Mi <- rij^i Pi
4. e n d for
5. for i from 1 to k do
6. ti M f 1 mod Pi
7 . + d i U M i

8. en d for
9. r e tu rn x mod M

5.2 Im p lem en tation
The algorithm described in Section 5.1 for multiplication of integer matrices has been imple
mented and embedded into the NTL library [85]. It is a low level implementation with high
level interfaces. For both compatibility and handling low level fast big integer arithmetic,
the GMP library [92] is used. For multiplication of matrices with machine level entries,
ATLAS library [91] is used. A simple parallelism scheme is used, which results in an es
sentially linear speed up. The number of processors the algorithm is allowed to use can be
set for each call; otherwise, it uses all processors of the system. Various techniques, with
different performances depending on the shapes of the inputs, for computing T “ 1 have been
implemented so one can set the computation mode for each call. Figure 5.1 compares the
running times of the proposed matrix multiplication, in sequential mode, and the one built
in Magma [93] on a Core 2 Quad machine. 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
dimension

Figure 5.1: Matrix multiplication with bitsize 200

1 Magma, which probably uses the same idea for m atrix multiplication, is apparently the fastest computer
algebra system in this respect.

35

A natural way of computing 'I' is to simply iterate over all entries of the input matrix and
reduce each entry module each prime Pi by a fast reduction function. But a more clever way
is to do reduction by m atrix multiplication as follows. Let v = (¿1,^2, • • • , tn) be a row of
the m atrix A. Write ti = ¿¿1^2 • • ’Ur in a basis of the form u = 2d. Then compute

(ur (mod pi) u r 1 (mod pi) ^ 1 1 ¿ 2 1 ‘ tnl^

c =
u r (mod P2) u r~l (mod p2) • • • 1 tl2 ¿ 2 2 * tn2

yUr (mod pk) u r-1 (mod pk) ■ •
• V \tlr ^2 r tnr J

The *th, 1 < i < k, row of the m atrix C is the row v reduced mod Pi. The same thing can
be done for all rows of A to compute the tuple (Al5. . . , Ak). The Vandermonde like matrix
of u l is precomputed.
If the entries of the input matrices are very large then the value x = £V=1 a ^ M i in Step
5 of Algorithm 5.9 can be computed by a divide and conquer algorithm [99]: Let a =
Pk/2+\Pk/2+2 ■ ■ -Pk and ¡5 = p Yp2 ■ ■ ■ pk/ 2 then

x = < y . (a i t \ M i / a a k / 2tk/2Mk/2/o)
A/3(ak/2+i'tk/2+iMic/2+i/f3 + • • • + aktkMk/(3)

All the values a and ¡3 are precomputed. Another way of computing x = aAi^i is
using a similar matrix multiplication technique as above with tt replaced by Mj. Figure 5.2
shows a timing for different phases of Algorithm 5.8 where red u c tio n , re s id u e mul, and
in v e rse are steps {1, 2}, 3, and 4 of the algorithm respectively.

Figure 5.2: Multiplication phases with bitsize 200

5.3 Som e com p u tation al speed-ups
Matrix multiplication is the building block of many computational algorithms. Therefore,
having a fast matrix multiplication library results in a speed-up in many computational

36

areas. In this section, we present some specific problems, required in subsequent chapters,
and show how to have major speed-ups by giving new implementations of the solutions based
on matrix multiplication.

M o d u la r Polynom ial C om position . Let F be a field and let p(x) = po+piX-\------\-pnxn,
q(x) = q<3 + q\x-\------\~qnxn, and f (x) be polynomials in F[x\. Then the problem is to compute
p(q) mod / . Here, we implement an algorithm by Brent and Rung [9] which was proposed
for computation of the first n G N>i coefficients of the composition of two formal power
series. But it also works for polynomial composition modulo an arbitrary polynomial f(x).

A lgorithm 5.10 Modular Polynomial Composition
In p u t: polynomials p, q, f E F[z]
O u tp u t: q(p) mod /

1. h —̂ [" yf71 T 1 j
2. write q(x) = Q0{x) + Qi(x)xk H-------h Qk~i(x)(xfc)fc_1
3. compute pl (x), i = 2 , . . . , k
4. let T(s) = pk(x) and compute Tl(x), i = 2 , . . . , k — 1
5. compute Qi(p(x))} i = 0 , . . . , k — 1 from the Step 3.
6. compute Qi{p{x))Tl{x)1 i = 1 ,. . . , k — 1 from the steps 4 and 5.
7. compute h(x) = Qi(p(x))Tl(x) from Step 6.
8. re tu rn h(x)

Note that all computations of Algorithm 5.10 are done modulo f(x). Let p*(x) = Y^=o Pi^x\
j = 0 , . . . , k. Then

k—1 n n / k—\ \

Qi(p(x)) = J 2 ^ + j J 2 p(iJ)xl =) xl
j = 0 ¿ = 0 Z = 0 \ j ' = 0 /

which is essentially the following matrix multiplication.

(p f Po] ■ 1 qo Qk 9(fc-i)fe ^
p i0) P{1] ■ • P{r] <7i Qk+1 • q{k-\)k+\

\Pn} • P[t V \Qk-1 Q2k-1 ' Qk2-1 }

Therefore, Step 5 of Algorithm 5.10 can be done using matrix multiplication. Let assume
that 0 (n w) is the achievable bound for multiplication of two n x n matrices. For the classical
matrix multiplication u = 3, and for the best known algorithm u — 2.37 [19]. Except Step
5, all steps of the algorithm can be done in 0(kM(n)) = 0(yfn,M(n)) multiplications in F.
Multiplication of the matrices of size n x yfn and y/n x yjn in Step 5 is indeed equivalent
to yfn multiplications of square matrices of dimension yfn x yfn, which can be done in
0(y/nnUJ/2) — 0 (n ^ +b /2) operations in F. Therefore, the running time of Algorithm 5.10
is 0(y/nM(n) + n (w+i)/2) operations in F. So, assuming M(n) = 0(n log n log log n), and
cj = 2.37, the best running time for modular composition is 0 (n 169).2 A new implementation

2Huang and Pan [35] showed that for the special dimensions f n x f n times fri x n, oj < 1.67. So for
their algorithm C(n) = 0(n167).

37

Figure 5.3: Modular Polynomial Composition

of the polynomial composition using our m atrix multiplication algorithm has been embedded
into NTL. Figure 5.3 compares the new and the old algorithm for modular polynomial
composition in NTL.
Now that we have a fast modular polynomial composition we briefly show how to use it in
polynomial factorization over finite fields. Let us first briefly review a factorization method.
Let f (x) £ Fg[x] be of degree n, where q = pm and ¥ q is represented as the quotient ¥p[y]/g(y)
with g(y) £ Fp[?/] monic irreducible of degree m. An efficient way of factoring / over ¥ q is
breaking the factoring into three steps:

1. squarefree factorization: taking the square-free part of / ;

2. distinct-degree factorization: splitting the square-free polynomial into polynomials
whose irreducible factors have the same degree;

3. equal-degree factorization: completely factoring the square-free polynomial whose irre
ducible factors have the same degree.

The cost of Step 1, which is done by Yun’s algorithm [107], is 0 (M (n) \o g n + nlog(q/p))
operations in ¥ q which is dominated by the cost of other steps. So, let assume / is squarefree.
The distinct-degree factorization is based on the fact tha t xqd — x is the product of all monic
irreducible polynomials of degree dividing d. So, taking gcd(a:9 — x, /) isolates all factors of
degree d of / . This idea is attributed to Arwin [4],

A lg o rith m 5.11 Distinct-degree factorization * 2 3 4
In p u t: A squarefree monic polynomial / £ ¥ q[x] of degree n
O u tp u t: The distinct-degree decomposition of /

!• /o f i s <— [f]
2. for i from 1 to s do
3. h 4— xql mod /
4. gi <- gcd(h - x, f i)

38

5. £ <- ^
4,1 9i

6. end for
7. return ,g8)

Each gi produced by Algorithm 5.11 is a squarefree product of monic irreducible factors of
degree i of / . The equal-degree factorization takes gi and splits it into its irreducible factors.
This is usually done recursively, i.e. the polynomial is split into two parts then the same
is done for each of the two parts and so on. The idea, which is due to [11], is as follows.
Let / € Fq[x\ be a squarefree monic polynomial of degree n with £ — n/d irreducible factors
fi, i — 1 , . . . , l of degree d. Then

t

i= 1

which induces the mapping

a i— » (ax, . . .,ap)

where cq = a (<7d-i)/2 — 1 mod /¿. Assume ¡3 G Fq[x\/(f) is selected at random, and c(/3) =
(f t , . . . , ft). If q — gcd(ft f) ^ 1 then a is a nontrivial factor of f; otherwise gcd(ft f) = 1,
and gcdCfl^“ 1)/2 - 1, /) is a nontrivial factor of / unless f t - f t = = f t 3.

A lgo rithm 5.12 Equal-degree spitting
In p u t: A squarefree monic polynomial / G ¥q[x] of degree n and a divisor d of n such that

all irreducible factors of / have degree d.
O u tp u t: a proper monic factor of / or "failure”

1. ¡3 G- a nonconstant random element of ¥ q[x] of degree less than n
2- g <- gcd(/3, /)
3. if g ft 1 then
4. return g
5. end if
6. g <— gcd(/3^d_1^ 2 — 1 mod / , /)
7- if 9 ± 1 ,/ then
8. return g
9. else

10. return ” failure”
11. end if

The costliest part of Algorithm 5.12 is Step 6. We show how to compute /3̂ qd — 1 mod /
efficiently. Let A G F ftx], and assume we are asked to compute a = A1+p+p +‘"+p mod / for

3If /? is selected uniformly at random then f t = -1 or 1 with probability 1/2. So, f t = f t = . . . , = ftp
occurs with probability 2-i+ 1 .

39

a given integer k > 0. Let e), = \ p+p2+-+p1 mod / , Q = xpl mod / , and & = ypl mod g(y).
Then we have the following recurrence relations

6i =

if * = 0 \cf/2 if i = 0 ' cPi/2
V 2

W f_i
= Xp

if i = 1 & = { $ - ! if i = l
[Ci = xp

■'v*-----
II

t f-i
= y

The initial values <5i, £i> and 6 are computed using the usual exponentiation algorithm at
a total cost of 0(M(n)M(m) logp) operations in Fp. Assume, inductively, that we have
computed ôr, Ç, and £r . Then

n—1 n—1

= E m / ' X xr’y
j =o 3 = o
n—1
5 ^ aj(Cr)Cr m0d (f (X)i9(y))
3 = 0

This means that 52r and <52r+i can be computed using 0(n) modular compositions over
Fp, which totally costs 0(nC(m)) operations in Fp, and 0(1) modular multiplications
and modular compositions over ¥ qi which totally costs 0(C(n)M(m)) operations in Fp.
The values Ĉ r and C2r+i are computed similarly. The cost of computing £2r and <̂ 2r+i
is dominated by the above. Therefore, 8̂ and hence a* = A5̂ can be computed using
0(log k(M(n)M(m) logp + nC(m) + C(n)M(m))) operations in Fp. Now, let A —
then

^ - D / 2 = 1)/2 = (/3 (P- 1)/2) 1+P+P2 + - + ^ 1 = A 1 + p + p 2 + ...+ p ^ - 1 m ()d (/(£), 5 (y))

which can be computed at a cost of 0(\og(md)(M(n)M(m) logp + nC(m) + C(n)M(m)))
operations in Fp. The above idea of using modular composition for raising to the powers of
the characteristic is essentially due to Kaltofen and Shoup [36]. 2 sTo speed the distinct-degree factorization up, Algorithm 5.11, the values xq,xq , . . . , xq can
be computed at once. For this, we first compute xq = xprn using the above algorithm and
then compute xq2, . . . , xqS using the algorithm introduced in [98].

Pow er P ro je c tio n . Let / E Fp[x] with deg/ = n. Given g E Fp[x\/(f), and the vector
v E the problem is to compute the sequence

(u,l) ,(u, (u,3m_1) (5.1)

for a positive integer m; Here, (.,.) is the inner product operator. Let h o v E F£ be the
unique vector such that {h on , a) = (v ,h a) for all a E Fp[x\/(f). Sequence (5.1) can be
computed by Algorithm 5.13 due to Shoup [86]. Step 2 of the algorithm can be replaced by a
matrix multiplication. As in the case of polynomial composition, this new power projection
algorithm has been embedded into NTL. Figure 5.4 compares the performance of the old
and the new algorithm.

40

A lg o rith m 5.13 Power Projection
In p u t: v e ¥£ , / G Fp[x],g € ¥p[x]/{f)
O u tp u t: The sequence (v, 1), (v ,g) , . . . , (v, g171̂ 1)

1. k <r- [l1/2\, k' <- \ l /k1
2. for i from 0 to k' — 1 do
3. cik+j < - (v,gj) (0 < j < k)
4. v t— gk o v
5. e n d for
6. r e tu r n c0, . . . , cm_i

41

Chapter 6

Com puting R oots Over Finite Fields

Let R be a ring and let a £ R. Computing a 1/71, where n is an integer, beside its intrinsic
interest, is of great importance in many areas of mathematics and computer science. This
problem can equivalently be considered as finding a root of xn — a G R[x] in some extension
of R. In this chapter, we focus on the cases where R is a finite field, and devote some more
space to the case n = 2 which is of special interest in point counting and cryptography. The
first two sections are preliminary for subsequent sections. We first present some square root
algorithms, and then extend them to compute higher roots.

6.1 Discrete logarithm in cyclic p-groups
A finite p-group G is a group of order n = pm where p is a prime. A special case of the
discrete logarithm problem occurring in root computation is the one in finite cyclic p-groups.
The algorithm we present here is due to Pohlig and Heilman [71]. Let p ,a G G with g a
generator of G. The problem is to find the integer 0 < x < n — 1 such that gx = a. Suppose
that x has the expansion x = xiPli 0 < < p — 1 in base p. Then

ap = gxp — (gv)x = (<p)^i=0 XiV% — {g^)Xo = Cx° (6-1)

where £ = gp is a primitive p-th root of unity. Therefore, xo is uniquely determined by (6.1).
Let assume aq, . . . , x^, k < m are determined. Then

(ag~^=°Xipi)n/pk+2 = (gv)Xk+2 = C k+2

so that Xfc+i is uniquely determined, and hence x is determined by induction. When p is
small, the values 0 < X{ < p — 1 can be found by a brute force search. But when p is large, one
can use techniques like Shank’s baby-step giant-step [82] and Pollard’s rho method [72]. The
baby-step giant-step algorithm needs memory for 0{y/p) group elements, and its running
time is 0{y/p) group multiplications; while the running time of the Pollard’s rho method
is the same, but it requires a negligible amount of memory. The expected running time of
the above algorithm, which requires m exponentiations and applications of, say Pollard’s
method, for discrete logarithm in G is 0(m (log2n + y/p)) group multiplications.

42

6.2 Randomized search for irreducible polynomials
In this section, we briefly discuss the asymptotic probability for a randomly selected poly
nomial, with prescribed constraints, to be irreducible over a finite field. Let N(n,q) denote
the number of monic irreducible polynomials of degree n over ¥ q. It is not hard to prove
that

N(n,q) =
d\n

where p is the Möbius function. This formula was discovered by Gauss [31] for the case
q = p. There are qn monic polynomials of degree n over ¥ q. So, the probability P(n,q)
for a uniformly random monic polynomial of degree n to be irreducible is N(n,q)/qn. The
following lemma shows that P(n,q) G ©(“)•

L em m a 6.1. The number N(n,q) of monic irreducible polynomials of degree n over Fg
satisfies

~qn ~ < N(q,n) < -(<f - q) n > 2n n{q — 1) n
with equality on the right if and only if n is prime.

P roo f. The equality on the right is trivial when n is prime. By the Möbius inversion

qn = ^ 2 dN(d , q) = nN(n, q) + q + dN(d , q) > nN(n , q) + q
d\n d\n

d=̂ l,n

which establishes the upper bound. Once we proved the upper bound it can be used to prove
the lower bound:

Qn ^ 2 dN(d, q) = nN(n, q) + ^ dN(d, q)
d\n d\n

d̂ n
n/2

< nN(n , q) + qd = nN(n , q) + q
d = 1

□

The coefficient of xn~l of the monic polynomial / of degree n is called the trace of / . Let
Nfin^q) denote the number of polynomials of degree n and trace 7 over ¥q. Carlitz [14]
showed that

^7 (n,q) = — ^ M q * 7 7^0
jid\n
pfd

which means that N7(n, q) does not depend on the trace 7. Let n = pkm with p \ m. Then

1
N0(n, q) = — ^ 2 M q * - ~ T j ^ q qn z ' n L '

d\m d\m

dp 7 + 0

where e = 1 if k > 0 and e = 0 if k = 0 [106], Let N(n, c, q) denote the number of monic
irreducible polynomial of degree n and constant term c. Let Dn = {r : r \ qn — l , r f

43

qm — 1 for m < n}, and let A be the order of c. For each r G Dn let r — mrdr where
dr — gcd(r, (qn — 1)/(q — 1)). An explicit formula for N(n,c,q) was obtained in [106] as
follows.

N(n, c, q)
1

mp(X) 52 ^
r£Dn
m r = \

(6.2)

where p is the Euler’s function. Following the same notation as above let Â7(n, c, q) denote
the number of irreducible polynomials of degree n, trace 7, and constant term c. The
following bound was established by Wan [101]. See [64] for an improvement to this bound.

N-y(n,c,q) n{q - 1) n
(6.3)

Let P(n,c,q) denote the probability for a uniformly random monic polynomial of degree n
and constant term c to be irreducible. Summing both sides of (6.2) over all elements of Fq
we have

3 g (n+2)/2 = — q n/2 > W
n ■' n ~7CFq 7€F9

.71— 1

Ny(n,c,q) -
n(q ~ 1)

> 5 2 Ny(n,c,q) - J 2
,71—1

7€Fc 7 ^ n (q - 1)

N(n,c ,q) - Q
n(q ~ 1)

Since the number of all polynomials of degree n and a prescribed constant term is qn
the above bound shows that P(n,c ,q) € ©(^). This means that for a monic polynomial
/ e F , [x] of degree n, if the constant term is fixed and all other coefficients are selected
in a uniformly random way then there still is a reasonable chance for / to be irreducible.
The surprising fact is that the above asymptotic results hold for some polynomials of very
special form. Extensive research has been done on the number of irreducible binomials and
trinomials over finite fields. These polynomials are very computationally useful, and result
in simpler representations of extensions of finite fields.
Let Tn(p) be the number of irreducible polynomials of the form xn + x + a G Fp[x] over Fp.
Then Tn(p) is asymptotic to p/n for a fixed n and p —> 00. This was first conjectured by
Chowla [15]. The following more general result was proved by Cohen [18] and Ree [73].

T heorem 6.2. For an integer n such that p \ n(n — 1), let Tn(q) denote the number of
trinomials xn + x + a G Fq[x] that are irreducible over Fq. Then

< Cnq5

where Cn is a constant depending only on n .

44

6.3 General approaches
There are many polynomial factorization algorithms that can be used as general algorithms
to find an nth root of an element of a finite field. See [100] for a survey of polynomial factor
ization over finite fields and [57] for special root finding algorithms based on factorization.
For an element a E ¥ q if tfa £ F9 then there is a finite extension Fqm/Fq containing ¡¡/a.
Therefore, given a E Fg, we can always assume that an n-th root of a is contained in Fq,
since a polynomial over Fq can always be viewed as a polynomial over Fq™. Let / E Fq[x\
be an arbitrary polynomial. To find the zeros of / in Fg, it is sufficient to apply the equal
degree factorization algorithm to gcd(xq — x , /) .

A lgo rithm 6.14 Root finding using factorization
In p u t: A nonconstant / E Fq[x\
O u tp u t: Zeros of / in Fq

1. h 4— xQ mod / .
2 . g 4 - g c d{ h - x , f) , d* - de g g
3. if d = 0 th e n
4. r e tu rn 0
5. end if
6. factorize g using equal degree factorization to get the linear factors x — z — l , . . . , d
7. re tu rn % — 1 , . . . , d

Algorithm 6.14 can be applied to the polynomial xn — a to compute an n-th root of a. It is
essentially due to Legendre [52]. He suggested, in the case q = p, splitting gcd(/, xp~l — 1)
by computing gcd(/, x̂ p~1̂ 2 ± 1) and substituting x by x + a for a random a E Fp in the
case of a trivial split. The dominant steps of the algorithm are steps 1 and 2 which take
0(M(n) log q) and 0((logg +log n)M (n) logn) operations in F^ respectively. Therefore, the
running time is 0(M(n) lognlog(ng)) or 0(n log q) operations in Fq.

6.4 Computing square roots
Let G be a group with an odd order n. Then the mapping / : G —> G: f(x) = x2 is an
automorphism of G, hence every element x G G has a unique square root which is x^n+1^ 2.
For the cyclic group F* if q = 2m then the square root of x G F* is x271 . In fact, this is true
in general, i.e. for q = pn the p-th root of x £ F* is xpn 1. If q = 3 (mod 4) then for any
x G (F*)2 the square root is x ^ +1^ 4. The latter is because (F*)2 is a subgroup of odd order
(9 - l) / 2 -
An interesting field theoretic approach to computing square roots in Fg was introduced by
Cipolla [16]. Let K = WQm be a finite extension of F9, and let Nx/fq : K —> Fg be the
norm function NK/¥q(a) = ofl' = . Then NK/¥q is surjective. The idea
of Cipolla’s algorithm is as follows. Let a G F9, and assume we find a quadratic extension
K = F92 of Fg by adjoining a quadratic nonresidue to Fg. Then, there is an element x G K
such that NK/fq(x) = a. But NK/rq(x) = xq+l hence y/a = x̂ q+1̂ 2.

A lgorithm 6.15 Cipolla’s square root

45

Input: A nonzero a G ¥q
Output: Square root of a in ¥ q2

1. choose a random b € Fg
2. if b2 — 4a is a square then
3. return failure.
4. end if
5. c «— x ^ +1^ 2 mod x2 — bx + a
6. return c

jf ^^_4a j __ the polynomial /(x) = x2 — bx + a is irreducible over Fg hence ¥ q[x]/(f)
is a field. Since / is the minimal polynomial of x over ¥ q, c2 = A ^/f9(x) — a. According to
Section 6.2, finding a quadratic nonresidue of the form b2 — 4a by choosing random b E ¥q,
which is equivalent to choosing a uniformly random polynomial of degree 2 and constant
term a, does not require too many trials. More precisely [6, page 158],

L em m a 6.3. The probability of = —1 for a randomly chosen b G ¥ g is (q — l) /2q.

Algorithm 6.15 fails with probability (q+ l) /2q. The quadratic residue test, and Step 5 take
O(logg) and O(logg) multiplications in ¥ q respectively. Therefore, its expected complexity
is O(logg) multiplications in ¥ q.
Another algorithm for computing square roots is the algorithm of Tonelli [94]. The algorithm,
which is more group theoretic, was improved by Shanks [83] and is known as Tonelli-Shanks
algorithm. The idea of the algorithm is to use discrete logarithm to reduce the problem to
a subgroup of F* of an odd order. Let q — 1 = 2r£ with (¿,2) = 1. Let H be the unique
subgroup of F* of order £. Then we have a chain of subgroups

H = H o C H l C . . . c H r = ¥ *

where 'Hi/Hi-i is a simple group of order 2 for i — 1, . . . , r. The natural homomorphism
Fg -> ¥*/H sends any quadratic nonresidue of F* to a generator of Fq/H. Assume we find
a quadratic nonresidue g G F*. Then the square root of an element a G F* can be computed
as follows. We can be express a as glh £ glH by solving a discrete logarithm in ¥*/H. Now,
t is necessarily even, so that y/a = gll2h ^ 1̂ 2, Here is the algorithm.

A lgorithm 6.16 Tonelli-Shanks square root * 1 2 3 4 5 6 7 8
In p u t: A nonzero a G ¥q with q odd
O u tp u t: Square root of a in F̂

1. choose a random g £ ¥ q
2. if g is a square th e n
3. re tu rn failure.
4. end if
5. let q — 1 = 2ri with 2 \ £.
6. let H be the subgroup of F* of order £
7. t <— the discrete logarithm of aH in base gH
8. h ag~l

46

9. return gl/2h^+1̂ 2

According to Section 6.1, Step 7 of Algorithm 6.16 requires 0 (r 2) multiplications in ¥ q where
r is the highest power of 2 dividing q — 1. All other steps take O(logç) multiplications in
¥ q. Hence, the expected running time of the algorithm is 0 (r 2 + logç) multiplications in ¥ q.
Despite Algorithm 6.15, the efficiency of this algorithm depends on the structure of F*. Let
r and £ be as in Step 5 of the algorithm. For most ç, r is fairly small *, and Algorithm 6.16
requires few exponentiations in F*, and hence preferred over Algorithm 6.15 which requires
exponentiation in ¥q2. If 2r is comparable to £ then the running time of Algorithm 6.16 is
0((logg)2). In this case, Algorithm 6.15 is preferable. The latter case can happen quite
naturally:

T heorem 6.4. Let a and b be positive coprime integers. Then there are infinitely many
primes p such that p = a.

This is due to Dirichlet [20], and known as DirichleVs theorem on arithmetic progressions;
Because it equivalently says that if a and b are positive coprime integers then the arithmetic
progression a, a + 5, a + 2b,. . . contains infinitely many primes. Let p(a, b) be the least prime
in this arithmetic progression. Linnik [58] proved that there is a constant L > 0 such that
p(a,b) < bL. This constant is not too large, e.g. it is shown in [34] that L < 11/2. By
Theorem 6.4, for any given integer r > 0, there are infinitely many primes in the progression
1,1 + 2.2r , 1 + 3.2r , . . . , l + fc.2r , Let q be the least prime in this sequence. Then 2r | q~ 1,
and q < 2llr/2, and hence 21ogg/ll < r. This shows the bound 0((\ogq)2) for Algorithm
6.16 is tight.
Let V — IJtcN Ohe least prime pi such that pi = 2* + 1 mod 2i+1}. Then V is clearly not
finite. Let {gn}neN be an increasing sequence of elements of V , and let C(q) and T(q) be
the expected complexity of algorithms 6.15 and 6.16 respectively, averaged over all quadratic
residue and non-residue inputs. Then it is not hard to prove, see [95], that

lim
n—» oo

T(qn)
C(qn)

= (X) .

which means we have found an infinite sequence of primes for which Algorithm 6.15 is
asymptotically better.
The last square root algorithm we present is a new algorithm based on the trace function.
Assume that the field ¥ q, where q = pn, is represented, as usual, by a quotient ¥p m n x))
with f(x) G Fp[:r] a monic irreducible polynomial of degree n. Let T¥q/Vp : F9 —>■ ¥ p be the
trace function Tjp?/Fp(a:) = Ym Zq where a G F9 . Given a G F£, let 7 G F, be a square
root of it. Then

71—1

FP 9 /5 = TF?/Kp(7) = E + = 7(! + 7P_1 + I"2“1 + • ' ■ + 7pn~1“1)
i= 1

= 7 (1 + a (p- 1)/2 + a^2- ^ 2 + • • - + a ^ - 1- ^ 2)

1For example, primes used in public-key cryptography, see [60, 59].

(6.4)

47

Let 6 = 1 + + (Zp2~1̂ 2 + • • • + a^n 1_1)/2. We may assume 6 ^ 0 ; because otherwise,
we can start by ac2 for different random elements c G F* until we get a nonzero 6, and at
the end multiply the result by c_1. Squaring both side of the Equation (6.4) results in the
quadratic equation (32 = ab2 over Fp from which ¡3 can be determined. Then 7 = f3b~l .
Computing ¡3 from the above quadratic equation takes O(logp) operation in Fp. Therefore,
efficient computation of 7 needs an efficient computation of b. For this, we use a recursive
technique, similar to the one used in Section 5.3, as follows. Let A € Fg, and assume we are
asked to compute

a k = A 1+p + A 1+p+p2 + • • • + x 1+p+p2+ -+ pIc

= xpl. Then we have the following recurrence relations

1 &i/2 + Ci/2<̂ f/2 if i = 0 \ h4 , 2 i f ^ O I

- + C1C1 if * — 1 Cj — < CiCf-i i f « = 1 & = S
/ i = Ap

aII

i = \ p+p2+"'+p\ and

k / a if 1 = 0

U f-i if i = 1
i i = x p

r / n_i .\pr
Assume, inductively, tha t we have computed Sr, £r , and £r . Then 5pT = (YZ]=o aj xJ) ~

cij (xJ)pT = YẐ Zq aj (xpTy — YZZjZo which means tha t raising dr to the power of pr
is indeed computing the modular polynomial composition Sr o £r over Fp. Thus, ignoring
the additions, computing <$2r and <52r+i costs 0 (1) polynomial multiplications and modular
polynomial compositions over Fp. The same can be done for computing £2r, C2r+i> £2r, and
£2r+i. Therefore, Sk and hence a k = A5k can by computed using 0(C(n) log k) operations
in Fp. Now, let A = a ^ -1^ 2, then b = 1 + A + a n_2. Computing A needs 0 (M (n) logp)
operations in Fp, and hence computing b needs 0 (M (n) logp + C '(n)logn) operations in
Fp. Thus, the expected running time of the above algorithm for computing a square of an
element a £ ¥ q is 0(M (n) logp + C(n) logn) operations in Fp.

Figure 6.1: The new square root algorithm

We have implemented the above algorithm, and Algorithm 6.15 in NTL. Figure 6.1 compares
the two algorithms in ¥ q with q = pn, for a randomly selected prime p = 348975609381470

48

925634534573457497, and different values of the extension degree n. Since Figure 6.1 does
not reveal the behaviour of the new algorithm, a better view of the asymptotic description
of the algorithm for extension degrees < 10000 is provided in Figure 6.2.

extension degree

Figure 6.2: The new square root algorithm for high extensions

6.5 C om puting higher roots
All of the algorithms presented in Section 6.4 for computing square roots can somehow be
extended to compute m -th roots where m > 3 is an arbitrary integer. In this section, we
present such extensions, but let us first make the following observation. Let G be a group
of order n and let k be an integer such tha t (n, k) = 1. Then every a £ G has a unique k-th
root b = ak 1 mod n in G ; for if c is another A;-th root of a then bk = ck so (c6-1)fc = 1 which
implies ord(cb-1) | k hence ord(cf)“ 1) | (k,n) = 1. Therefore cb~l — 1 hence c = b. Suppose
we can find a £-th root of a € ¥ q when £ is a prime divisor of q — 1. Then computing an m -th
root of a for an arbitrary m is as follows. Let m = m im 2 with mi | q — 1 and (m2, q — 1) = 1.
Then we can compute a0 = m̂ /a by simply inverting m 2 mod q — 1. Let m x = Y\i=iPT be
the prime factorization of m i. Then we can compute a = v^/dh-1, k = 1 , . . . , aq and hence
aa 1 = pî /oq. The same process can be applied to compute p2̂ /a^ and so on. Therefore,
the problem is reduced to computing t-th roots when £ is a prime divisor of q — 1, and so
the algorithms we present in this section will compute i-th roots for such a t.
A natural extension of Algorithm 6.16 was introduced in [1]. Let £ be a prime divisor of q — 1
and let q — 1 = tr£ such tha t t \ t . As before, let H be the unique subgroup of ¥* of order i.
Then we have a chain of subgroups

H = H0 C Hi C • • • C Hr = F*

where //¿///¿_i is a simple group of order £ for i = 1 , . . . , r. If ^ is not a £-th power then gH
generates F */H so tha t a can be represented as gsh with h 6 H. Since a is a £-th power, it
can easily be seen tha t £ | s. On the other hand (\H \ ,£) = 1. Therefore, a £-th root of a is

mod l

49

Algorithm 6.17 Tonelli-Shanks t~th root when t is a prime divisor of q — 1
Input: A nonzero a £ ¥ q with q odd
Output: a ¿-th root of a in

1. choose a random g £ Fg
2. if g is a t-th power then
3. return failure.
4. end if
5. let q — 1 = tr £ with ¿ \ l.
6. let H be the subgroup of F* of order £
7. s <— the discrete logarithm of aH in base gH
8. h ag~s
9. u t~* l mod £

10. return gŝ hu

By the following lemma, a randomly chosen g £ ¥ q is a ¿-th power with probability 1/t.
Therefore, Algorithm 6.17 fails with probability 1/t < 1/2.

L em m a 6.5. Let G be a cyclic group of order n . Then a £ G is a d-th power if and only if
an/(d,n) _ p

P roof. ’=>’ is trivial. For the converse let g be a generator of G, and a = gt . Then
1 = anI^ n) — g?n/{d,n)_ gQ̂ n | and hence (d,n) \ £. Therefore a = gl — g£ 1̂d,n) —
gti(rm+sid) _ (ĝtis ŷ ag □

The expected cost of finding a non ¿-th power is (^(¿logg) multiplications. Step 7 is done in
(^ (^ ¿ r 4- y/i)) operations, see Section 6.1, and the rest of the algorithm is accomplished
in 0(logq) operations. Therefore, the expected running time of Algorithm 6.17 is 0(t logq +
r2 log¿ + ry/i) multiplications in Fq.
Next, we extend Algorithm 6.15 to compute ¿-th roots where ¿ is a prime divisor of q — 1.
Given an element a £ Fg we can find a monic irreducible polynomial f(x) £ FJx] of degree ¿
and constant term a by a random search. According to Section 6.2, this needs ©(¿) trials in
average. The primality of ¿, and the following theorem result in a simple irreducibility test.

L em m a 6.6. A monic polynomial f £ Fg[x] of degree n > 1 is irreducible if and only if

/. / divides xqn — x

II. (xqU/t — x, f) = 1 for all prime divisors t of n.

P roof. It is well known that xqU — x is the product of all monic irreducible polynomials over
Fg of degree dividing n. In other words, a monic irreducible polynomial / £ F jx] divides
xqU — x if and only if deg(/) | n. So, If / is irreducible then it clearly satisfies the conditions.
Conversely, let h be an irreducible factor of / of degree d < n. Since h | xqU — x , we have
d | n, and so d \ j for some prime divisor ¿ of n. This means h \ xqn/t — x which contradicts
(II). Therefore, d = n and hence / is irreducible. □

50

Therefore, the polynomial / is irreducible if and only if gcd(xq — x, f) = 1 and / \ xqt — x.
Once we found an irreducible / , the norm of x £ ¥q[x]/(f(x)) is a, hence x̂ qt~d/(Q-d = a.
It can easily be seen that (ql — 1)/(q — 1) is divisible by t so that jg a ¿_th root
of a.

Algorithm 6.18 Cipolla’s f-th root when f is a prime divisor of q — 1
Input: A nonzero a E F9
Output: a f-th root of a in Fqi

1. choose a random / € Fjar] with constant term a
2. if gcd(xq — x, /) 1 then
3. return failure.
4. end if
5. if f \ xqt — x then
6. return failure.
7. end if
8. c +- mocj f
9. return c

Step 2 requires 0(M(t) \ogq) multiplications, and Step 5 requires 0(C(t) log t) multiplica
tions [98], assuming we have xq from Step 2. Thus, the expected number of operations
for finding an irreducible polynomial of degree t is 0(M (t) t log q + C(t)t\ogt). Step 8 also
needs 0(M(t)t \ogq) multiplications. Therefore, the expected complexity of Algorithm 6.18
is 0 (M (t) t logq + C(t)t\ogt) operations in Fq.
Finally, we extend the new square root algorithm proposed at the end of Section 6.4 to
compute f-th roots where t is a prime divisor of q — 1. Given a € Fg, let 7 € Fg be a f-th
root of it. Since t \ q — 1 = pn — 1 = (p — 1){pn~l + • • • + p + 1), we consider two cases:
Case 1: Assume that f | p — 1. Then

n —1

Fp 3 f> = r VK„(7) = J2 v ‘ = 7(1 + Y~' + 7 '2' 1 + • • • + Y ’"-')
¡.1 (6-5)

= 7(1 + ab-W + + • • • + a(pn- 1- 1)A)

Analogous to the square root case, letting 6 = 1 + + ah’2-1)/« + . . . + alp"-1- 1)/*, and
raising both side of the Equation (6.5) to the power of t result in the equation /T = atf over
Fp. Computing (3 from the above equation takes O(flogp) operations in Fp. Computing
b and then bl needs 0(M(n) logp + C(n)logn) and then 0(M(n)\ogt) operations in Fp
respectively. Therefore, the expected running time of the algorithm in this case is 0((t +
M(n)) logp + C(n) logn) operations in Fp.
C ase 2: If f \ p — 1 then (t,p — 1) = 1. Let (q — 1)/(p — 1) = trl with t \ t . Then

Fp 9 = 7 « = (7ef = atr l((6.6)

which gives us an equation of degree tr over Fp from which 7 ̂ can be computed as fol
lows. Let k be the order of p in Z /frZ, then k \ ip(tr) = fr — fr_1 where ip is the Euler
function. Let f(x) € Fp[x] be an irreducible polynomial of degree k and constant term

51

o f l£. Then x&k ^ = N$ k/$p(x) = a£r l£, where iV(-) is the norm function. Thus,
^ There exist integers such that ut + vt — 1, and hence au(j £)v —

(7t)u(7*)v — y ut+v£ = 7. Finding f(x) requires an average Q(k) applications of irreducibility
test. Each irreducibility test takes 0(C(k) log k + M(k) logp) operation in Fp, see [84]. So,
finding / takes 0(C(k)klogk + M(k)k\ogp) operations in Fp. Computing a? £, x£, au,
and {rf)v requires 0(M(n) logq) = 0(M(n)n\ogp) multiplications in Fp. Therefore, the ex
pected complexity of the algorithm in this case is 0{C{k)k\ogk + M{k)k\ogp+M{n)n\ogp)
operations in Fp.

52

Chapter 7

Point Counting on Genus 2 Curves

By counting points on a genus 2 curve over a finite field we mean computing the order of
its jacobian. For cryptographic purposes, the order of the jacobian should be a non-smooth
number. A curve is called a secure curve if it is also defined over a large enough base field.
In this chapter, as mentioned in Chapter 1, we present a generalization of the genus 1 Schoof
algorithm for point counting on genus 2 curves. We first present a general picture of the
work of Gaudry and Schost, without going into details, we refer the reader to the original
reference [30] for great detail. Then we report the practical improvements on their work by
applying the contributions presented in previous chapters.

7.1 Preliminaries
Let p > 2 be a fixed prime and let Fp be a finite field of p elements. A hyperelliptic curve of
genus 2 over Fp is a curve W defined by Equation (4.2) by setting g = 2. Let simply denote

by J{H) in this chapter. For a divisor D £ J(?7) with Mumford representation
(u, v), the weight of D is defined to be the degree of u. Let 0 denote the set of divisors of
weight smaller than 2. Then the representation of an element D £ J(?£)\0 is of the form
(x2 + U\X + uo, v\x + Vo). By Equation (4.9), the characteristic polynomial of the Frobenius
endomorphism 4>p of J(H) is yp(t) = t4~ a1t3+ a 2t2 — aipt+p2 with a4 = a 1+ a 2+ a 3+ a 4, and
a2 = a 4a 2 + a }a3 + ■ • • + «304 where a, are as in Theorem 4.26.(3). Therefore, |a i| < 4^/p,
and \a2\ < 6p. Also by Equation (4.10), #J(W) = XP(1) = p2 + 1 — a\(p + 1) + a2. For a
positive integer £ prime to p, the Atorsion subgroup J(T-L)[£} is isomorphic to (Z /fZ)4. Since
Xp(D) = 0 for all D £ J(H), we have

(frp(D) - [ai mod £]4>p(D) + [a2 mod £]0p(L>) - [a4p mod £]4>P(D) + \p2 mod £\D = 0 (7.1)

for all D £ J {%)[£]. According to a result of [37], for any odd prime power £, J(7i)\Q
contains a Z/TZ-basis of J{'H)[£\. Hence, (j>p\j(u)\t\ is completely determined by its action
on J(T-L)[£]\Q. The goal is to imitate the elliptic version of the Schoof’s algorithm by
computing xP(i) mod £ for small primes or prime powers £, and then recombine the results
using Chinese remaindering theorem to get yp(t). By the above, we can always assume that
D is a divisor of weight 2.

53

7.2 R epresenting ^-torsion divisors
Let ¿ be a prime or prime power such that gcd{£,p) = 1. In the case of elliptic curves, i.e.
curves of genus 1, a divisor D , which is a indeed a point on the curve, is an ¿-torsion divisor
if and only if ipt{D) = 0 where tpf is the ¿-th division polynomial. Therefore, an ¿-torsion
divisor can be obtained by extracting a root of tpf. A similar situation holds for genus 2
curves. Let D be a divisor of weight 2 given by (x2 + uxx + u0, vxx + v0). Then there exist a
radical ideal A C Fp[C/i, Uq, Vi, Vo] such that D € J(H)[£\ if and only if s(ui,wo,'ih,^o) = 0
for all s £ If. The ideal I(is called the £-th division ideal. See [37] for an explicit set of
generators for If .
It can be shown that the Grobner basis of the ideal If has the form

I,

Go - VXZ(UX)
V 2 - W(UX)
Uo - S(UX)

R(Ui)

where R £ Fp[i7i] is a squarefree monic polynomial of degree (£4 — l)/2 , and Z, W, S £ Fp[Ui\
are polynomials of degree less than (£4 —1)/2. Therefore, we can use a hyperelliptic analogous
of the Schoof’s algorithm by working in the quotient algebra Fp[Ui, Uo, Vi, Vo]/Ie. This
algorithm has polynomial time. But since there is no computationally efficient recurrence
relations, like for division polynomials of elliptic curves, for the Grobner bases of the division
ideals, the algorithm requires computation of Grobner bases, which is time consuming in
practice. A more efficient approach is to use Cantor’s division polynomials. Let P =
(x — xp, yp) be a divisor of weight 1. Then there are polynomials do, d\, ¿2, eo, ei, e2 G FP[X],
depending on such that

(2 , di(xp) , d2{xp) ex{xP) e2{xp)\I x A — . rx + — — - , y P— ----x + yP —-— -]
v d0(xp) do{xp) e0{xp) e0{xP))

For I odd, the degrees of the above polynomials are 2£2 — 1,2£2 — 2 ,2£2 — 3 ,3£2 — 2 ,3£2 — 2,
and 3£2 — 3 respectively, and for £ even, these degrees are reduced by 5. These division
polynomials can be easily computed using recurrence relations. Now, let D = (x2 + Uxx +
Uq,Vxx + Vo) = (u,v) € J(H)[7]\0 be a generic divisor. Then we can write D = Px + P2
where Px = (x — X \ ,Y x), and P2 = (x — X 2,Y2) such that X x, X 2 are roots of u, and
Yt — v(Xi), i — 1,2. Therefore, [£}D = 0 if and only if [£}P\ = —[£)P2. Rewriting this
equation using (7.2) results in the following system of equations

E

Ex{Xx, X 2)
E2(X x, X 2)
F1(X u X 2,Y1,Y2)
F2(X u X 2,Yu Y2)

(d ^ X ^ i X ,) - d1(X2)d2(X1) / {X 1 - X 2) = 0,
(d0(Xx)d2(X2) - d o i X M X ^ / i X , - X 2) = 0,
Yxe i (X x)eo(X2) + Y2e i(X2)eo(Xi) = 0,
Yxe2(Xx)eo(X2) + Y2e2(X2)eo(Xi) = 0,

which encodes the ¿-torsion divisors in J(H)[£]\Q. It can be shown that the division ideal
If can be reconstructed from the system E.

54

7.3 A Schoof algorithm for genus 2
Assume we have the £-th division ideal reconstructed from the system E of Section 7.2. Then
we can extract a root r of R(Ui) and obtain the coordinates of a weight 2 divisor D by substi
tuting r into equations of E or /¿. The divisor D can then be plugged into the characteristic
polynomial Xp(t) f°r computing a\ mod and a2 mod L With this descriptions, the sketch
of a genus 2 Schoof algorithm is the following.

A lgorithm 7.19 A genus 2 Schoof algorithm
In p u t: A genus 2 hyperelliptic curve T~L over ¥p
O u tp u t: The number # J(*H)

1. A 4- 0
2. for enough number of small primes or prime powers £ do
3. Let L = { (a i,a2); a l7a2 G [0,£ — 1]}
4. while > 1 do
5. construct a new ¿-torsion divisor D
6. eliminate the pairs (ai ,a2) in L such that

4>p(D) - [a ^ ^ D) + [a2](pl(D) - [a p̂ mod £\(j>p(D) + \p2 mod £]D ± 0
7. end while
8. use the elements of L to deduce xP(i) mod £
9. A A U {{Xp{t) mod £)}

10. end for
11. deduce Xp(t) from the elements of A by Chinese remaindering
12. return \p(1)

An efficient way of extracting a root of R(Ui) is to extract an irreducible factor of it, and then
construct an extension of using this factor. Since factoring is rather time consuming,
when £ is prime, we may avoid factoring R(Ui) as follows. Define the quotient algebra

B = ¥P[UU C70, VU V0]/{V0 - VxZ(lh),V? - W(U,),U0 - S i U ^ R ^))

Then we may define divisors with coordinates in B, although it may not a field. In particular,
we let = (x2 + U\x + Uq, V\x + Vo) = (x2 + U\X + V\x + Vo). We can also use the
standard addition formulae to add such divisor. Since B may contain zero divisors, and the
addition law of the jacobian involves inversions, we may encounter a division by zero. In
that case, we can instead factor R(Ui), and work modulo all factors separately. Computing

for a positive integer i is also straightforward. Now, since Equation (7.1) holds for
all D € J('H)[f’], we have the equality

<t>p(De) — [ax mod £]<f>p(De) + [a2 mod £}4>p(De) — [a\p mod £]4>p(De) + [p2 mod £\De = 0

over B. Therefore, to find the pairs (ai ,a2) € [0,£ — l]2 satisfying this relation, we can
proceed as in Algorithm 7.19.

55

Let £ be a prime different from p. Since the [£\ : J{T-L) —> J("H) is surjective, for any
D € J(R), there is a divisor D\ € J(R) such that [£}Di = D. This is a division by £ in
the jacobian. In the following, we show how to obtain a sequence of f*-torsion divisors Pfc,
such that [£]Pk+1 = Pfc, and Pi G J("H)[£]. For fc = 1, an Gtorsion divisor Pi is obtained by
factoring the polynomial R in the Gròbner basis of the division ideal R (see Section 7.2).
Now, assume we have computed an £fc-torsion divisor Pk = (x2 + UiX + u0) vix + v0). Suppose
that Pk+1 = (x2 + Uix + P0, V\x + Vo) such that [£\Pk+i = Pk• Using the addition law on the
jacobian, this equality yields the system of equations

7.4 Lifting ¿^-torsion divisors

Hi(Uu U0,Vu V0) = ui,
H2(U1,Uo,V1,Vo) = uo,

k H3(Uu U0,Vi,V0) = vi,
H4(Ui ,Uo,Vu V0) = v0,

where ip are rational functions. Clearing the denominators results in a system of polynomial
equations Vk in four variables Ui,Uo,Vi,V0. We may assume that the ideal (Vk) admits a
Grobner basis of the form

Vk

Uo - Gi(Ui)
Vi - G2{Ui)
Uo - Ga(CA)

M(Ui)

Let Fg be the field of definition of Pk, and let ek be the degree of the extension Fg/F p. Let
F € FP[T] be a monic irreducible polynomial of degree ek so that F9 = Fp[P]/P. Then
Ui,uo,Vi,vo are expressed as polynomials in Fp[P] of degree less than efc, and hence Pk+1 is
described by a system of the form

Uo — Z(T)
u = W(T)
Uo = S(T)
P i = R(T)

F(T) = 0

where Z, W, S ,R € FP[T]. At each step of computing the sequence Pl5 P2, . . . , we can use Pi
to obtain modular information on the polynomial Xp{t) modulo £l as in Algorithm 7.19.

7.5 Experimental results
In this section, we compare timings for lifting 2fc-torsion divisors. For the case of i = 2, it is
more efficient to work on the Kummer surface associated to the curve than the jacobian. The
Kummer surface IC G P3 is the quotient of the jacobian J('H) by the hypereliptic involution.
More precisely, there is a surjective mapping tp : J{H) -> tC where is a set of two
opposite divisors for every k € /C. Because of the simple doubling formulae, division by 2 in
/C is done efficiently by taking four square roots and doing a few multiplications or divisions.

56

Therefore, for halving an element P E J(%), we can halve k — (fi(P) in /C, and then compute
which can be done rather efficiently [28].

Table 7.1 compares the timings (in seconds) obtained for lifting 2fc-torsion for the sample
curve

y2 - x5 + 168757993785992721416148486985004362096 x4
+22694776835380974819448515025325210463 x3
+77741235738513704233876669606862675128 x2
+150617856041609651434793310038133555411x
+143282909778412049875859459912573485378.

over Fp with p = 2127 - 1 - 170141183460469231731687303715884105727. The degree ek is
the degree of the field extension defined in Section 7.4. There are two main rows: the first
one gives the timings for computing all required square roots, and the second row gives the
timing for computing the Frobenius and searching for the pair (ai ,a2) as in Algorithm 7.19.
For a more precise profiling, each of the two main rows is divided into three subrows labelled
with I, II, and III: I denotes the original Guadry and Schost implementation; II denotes
the same implementation but with the new NTL containing the new modular composition
and power projection (Section 5.3); III is the same as II except that the new square root
algorithm (Section 6.4) has been used.

index 2k 26 1 27 28 | 29 210 | 211 212 213 1 214 215 216 217
degree ek 25 26 27 28 29 2i° 2n 212 213 214 215 216

I 0.2 0.4 1.2 3.5 11 33 109 365 1262 4466 16246 60689square II 0.3 0.6 1.5 4.0 12 36 114 360 1140 3610 11507 36938roots
111 0.2 10.5 1.2 2.9 8 23 1 73 232 J ■u CO 4̂ 2309 1 7368 j 23604

Frobenius i I ! 0.5 11.1 12.8 | 6.5 ! 14 1 32 ! 73 J 164 J 368 1 816 j 2020 (4827
+ finding j

H
0.5 1.1 2.7 6.5 14 32 72 162 366 813 2011 4827

(a-i, a2) i n 0.4 1.0 2.3 5.4 12 27 62 139 309 657 1609 3740

Table 7.1: Timings for lifting 2*-torsion

57

Bibliography

[1] Adleman, Manders, and Miller. On taking roots in finite fields. In IEEE Symposium
on Foundations of Computer Science (FOCS), pages 175-178, 1977.

[2] L. M. Adleman and M.-D. A. Huang. Primality Testing and Abelian Varieties over
Finite Fields, volume 1512 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-
Heidelberg-New York, 1992.

[3] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. A subexpo
nential algorithm for discrete logarithms over the rational subgroup of the jacobians
of large genus hyperelliptic curves over finite fields. In Algorithmic Number Theory,
volume 877 of Lecture Notes in Computer Science, pages 28-40. Springer-Verlag, 1994.

[4] A. Arwin. Uber Kongruenzen von dem fünften und höheren Graden nach einem
Primzahlmodulus. Ark. fr Mat., Astron. och Fys., 14:1-46, 1918.

[5] M. F. Atiyah and J. G. MacDonald. Introduction to Commutative Algebra. Addison-
Wesley, Reading, Massachusetts, 1969.

[6] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory; Volume I: Efficient Algo
rithms. The MIT Press, 1996.

[7] Ian F. Blake, G. Seroussi, and Nigel P. Smart. Elliptic curves in cryptography, volume
265 of London Mathematical Society lecture note series. Cambridge University Press,
1999.

[8] Ian F. Blake, G. (Gadiel) Seroussi, and Nigel P. (Nigel Paul) Smart, editors. Advances
in elliptic curve cryptography, volume 317 of London Mathematical Society lecture note
series. Cambridge University Press, 2004.

[9] Brent and Kung. Fast algorithms for manipulating formal power series. JACM: Journal
of the ACM, 25, 1978.

[10] Daniel Bump. Algebraic geometry. World Scientific Publishing Co., 1998.

[11] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation, 36:587-592, 1981. 12

[12] David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics of
Computation, 48(177):95-101, January 1987.

58

[13] David G. Cantor. On the analogue of the division polynomials for hyperelliptic curves.
J. Reine Angew. Math., 447:91-145, 1994.

[14] Leonard Carlitz. A theorem of dickson on irreducible polynomials. Proc. Am. Math.
Soc., 3:693-700, 1952.

[15] Sarvadaman Chowla. A note on the construction of finite Galois fields GF(pn). J.
Math. Anal. Appl, 15:53-54, 1966.

[16] M. Cipolla. Un metodo per la risoluzione della congruenza di secondo grado. Napoli
Rend., 9:153-163, 1903.

[17] Henri Cohen and Gerhard Frey, editors. Handbook of elliptic and hyperelliptic curve
cryptography. Discrete Mathematics and its Applications. Chapman & Hall/CRC,
Boca Raton, 2006.

[18] S.D. Cohen. The distribution of polynomials over finite fields. Acta Arith., 17:255-271,
1970.

[19] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro
gressions. J. Symb. Comput., 9(3):251-280, 1990.

[20] P. G. L. Dirichlet. Beweis des satzes, dass jede unbegrenzte arithmetische progression,
deren erstes glied und differenz ganze zahlen ohne gemeinschaftlichen factor sind, un
endlich viele primzahlen enthält. Abhandlungen der Königlich Preussischen Akademie
der Wissenschaften, pages 45-81, 1837.

[21] N. D. Eikies. Elliptic and modular curves over finite fields and related computational
issues. In Studies in Advanced Mathematics, volume 7, pages 21-76. American Math
ematical Society, International Press, 1998.

[22] Andreas Enge. Elliptic curves and their applications to cryptography: an introduction.
Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[23] Andreas Enge. Computing discrete logarithms in high-genus hyperelliptic jacobians in
provably subexponential time. Math. Comput., 71:729-742, 2002.

[24] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves. Mathematics of Computation,
62(206):865-874, April 1994.

[25] William Fulton. Algebraic curves. An introduction to algebraic geometry. Advanced
Book Classics. Redwood City, CA: Addison-Wesley Publishing Company, Inc., 2008.

[26] Gaudry and Harley. Counting points on hyperelliptic curves over finite fields. In ANTS:
4th International Algorithmic Number Theory Symposium (ANTS), pages 313-332,
2000.

59

[27] Gaudry and Schost. Construction of secure random curves of genus 2 over prime fields.
In Advances in Cryptology, Eurocrypt’Ô', volume 3027 of Lecture Notes in Computer
Science, pages 239-256, 2004.

[28] P. Gaudry. Fast genus 2 arithmetic based on theta functions. J. Math. Cryptol.,
1 (3) :243—265, 2007.

[29] Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In Advances in Cryptology-Eurocrypt 72000, volume 1807 of Lecture Notes in
Computer Science, pages 19-34. Springer-Verlag, 2000.

[30] Pierrick Gaudry and Eric Schost. Genus 2 point counting over prime fields, preprint
h t t p : / / h a l . i n r i a . fr /in r ia -0 0 5 4 2 6 5 0 /e n /, 2010.

[31] C. F. Gauss. Untersuchungen Uber Höhere Arithmetik. Chelsea publishing company,
New York, second edition, 1981.

[32] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

[33] H. Hasse. Abstrakte Begründung der komplexen multiplication und Riemannsche Ver
mutung in Funktionenkörpern. Abh. Math. Sem. Hamburg Univ., 10:325-347, 1934.

[34] D.R. Heath-Brown. Zero-free regions for Dirichlet L-functions and the least prime in
an arithmetic progression. Proc. Lond. Math. Soc I I I . 5er., 64(2):265-338, 1992.

[35] Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplications and im
proving parallel matrix computations. In Proceedings of the second international sym
posium on Parallel symbolic computation-PAS CO 737, pages 11-23. ACM, 1997.

[36] Erich Kaltofen and Victor Shoup. Fast polynomial factorization over high algebraic
extensions of finite fields. In ISSAC, pages 184-188, 1997.

[37] W. Kampkötter. Explizite Gleichungen für Jacobische Varietäten hyperelliptischer
Kurven. PhD thesis, Gesamthochschule Essen, 1991.

[38] Jonathan Katz and Yehuda Lindeil. Introduction to modern cryptoqraphy. Chapman
& Hall/CRC, 2008.

[39] Kiran S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer
cohomology. Journal of the Ramanujan Mathematical Society, 16(4) :323—338, 2001.

[40] Donald E. Knuth. The Art of Computer Programming: volume 2 / Seminumerical
Algorithms. Addison-Wesley, Reading, Mass., third edition, 1988.

[41] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203-
209, 1987.

60

http://hal.inria.fr/inria-00542650/en/

[42] N. Koblitz. A family of jacobians suitable for discrete log cryptosystems. In Proc.
Advances in Cryptology - CRYPTO ’88, volume 403 of Led. Notes Comput. Sci, pages
94-99, 1988.

[43] N. Koblitz and A. J. Menezes. A survey of public-key cryptosystems. SIAM Review,
46(4);599~634, 2004.

[44] Neal Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3): 139-150, 1989.

[45] Neal Koblitz. CM-curves with good cryptographic properties. In Advances in
Cryptology-Crypto '91, volume 576 of Lecture Notes in Computer Science, pages 279-
287. Springer-Verlag, 1991.

[46] Neal Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag, Berlin Heidelberg,
1998.

[47] Neal Koblitz. An elliptic curve implementation of the finite field digital signature
algorithm. In Advances in Cryptology-Crypto '98, volume 1462 of Lecture Notes in
Computer Science, pages 327-337. Springer-Verlag, 1998.

[48] Serge Lang. Elliptic curves: Diophantine analysis. Grundlehren der Mathematischen
Wissenschaften. 231. Berlin-Heidelberg-New York: Springer-Verlag, 1978.

[49] Serge Lang. Introduction to algebraic and abelian functions. Graduate Texts in Math
ematics; 89. Springer-Verlag, second edition, 1982.

[50] Tanja Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Appl Algebra
Eng. Commun. Comput, 15(5):295-328, 2005.

[51] D. Le Brigand. Decoding of codes on hyperelliptic curves. In EUROCODE '90. Inter
national Symposium on Coding Theory and Applications, volume 514 of Lecture Notes
in Computer Science, pages 126-134. 1991.

[52] A. M. Legendre. Recherches d ’analyse indéterminée. Mém. Acad. R. Sci, pages 465-
559, 1785.

[53] H.W.jun. Lenstra, J. Pila, and Cari Pomerance. A hyperelliptic smoothness test. I.
Philos. Trans. R. Soc. Lond., Ser. A, 345(1676):397-408, 1993.

[54] H.W.jun. Lenstra, J. Pila, and Cari Pomerance. A hyperelliptic smoothness test. IL
Proc. Lond. Math. Soc., III. Ser., 84(1): 105-146, 2002.

[55] L.A. Levin. The tale of one-way functions. Problems of Information Transmission,
39(1):92—103, 2003.

[56] S. Lichtenbaum. Duality theorems for curves over p-adic fields. Invent. Math., 7:120-
136, 1969.

[57] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, Cambridge, 1994.

61

[58] U. V Linnik. On the least prime in an arithmetic progression. I. the basic theorem.
Rec. Math., 15:139-178, 1944.

[59] Ueli M. Maurer. Fast generation of secure RSA-moduli with almost maximal diversity.
In Advances in CryptologyEUROCRYPT ?89 (LNCS 434), pages 636-647, 1989.

[60] Ueli M. Maurer. Some number-theoretic conjectures and their relation to the generation
of cryptographic primes, pages 173-191. Oxford University Press, 1992. Cryptography
and Coding, II.

[61] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanston, editors. Handbook of
Applied Cryptography. CRC Press, 1996.

[62] V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology-CRYPTO
785, volume 218 of Led. Notes in Comp. Sci., pages 417-426. Springer-Verlag, 1985.

[63] Victor S. Miller. The weil pairing, and its efficient calculation. J. Cryptology, 17(4):235—
261, 2004.

[64] Marko Moisio. Kloosterman sums, elliptic curves, and irreducible polynomials with
prescribed trace and norm, November 21 2007. Comment: 21 pages; revised version
with somewhat more clearer proofs; to appear in Acta Arithmetica.

[65] Volker Muller, Andreas Stein, and Christoph Thiel. Computing discrete logarithms in
real quadratic congruence function fields of large genus. Math. Comput., 68:807-822,
1999.

[66] David Mumford. Abelian varieties. With appendices by C. P. Ramanujam and Yuri
Manin. Tata Institute of Fundamental Research Studies in Mathematics, second edi
tion, 1974.

[67] M. Nori E. Previato M. Stillman Mumford, David With the collaboration of C. Musili
and H. Umemura. Tata lectures on theta. II: Jacobian theta functions and differential
equations, volume 43. Progress in Mathematics, 1984.

[68] Andrew M. Odlyzko. Discrete logarithms: The past and the future. Des. Codes
Cryptography, 19(2/3): 129—145, 2000.

[69] Jan Pelzl, Thomas Wollinger, Jorge Guajardo, and Christof Paar. Hyperelliptic curve
cryptosystems: Closing the performance gap to elliptic curves. Lecture Notes in Com
puter Science, 2779:351-365, 2003.

[70] Jonathan Pila. Frobenius maps of abelian varieties and finding roots of unity in finite
fields. Mathematics of Computation, 55:745-763, 1990.

[71] S. C. Pohlig and M. E. Heilman. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Transactions on Information Theory,
IT-24:106-110, 1978.

62

[72] J. M. Pollard. Monte carlo methods for index computation mod p. Mathematics of
Computation, 32:918-924, 1978.

[73] R. Ree. Proof of a conjecture of S. Chowla. J. Number Theory, 3:210-212, 1971.

[74] Hans-Georg Riick. A note on elliptic curves over finite fields. Mathematics of Compu
tation., 49(179):301-304, 1987.

[75] T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point
counting. J. Ramanujan Math. Soc., 15:247-270, 2000.

[76] Takakazu Satoh. On p-adic point counting algorithms for elliptic curves over finite
fields. In 5th International Algorithmic Number Theory Symposium (ANTS), volume
2369 of Lecture Notes in Comput. Set, pages 43-66. SpringerVerlag, 2002.

[77] Takakazu Satoh, Berit Skjernaa, and Yuichiro Taguchi. Fast computation of canonical
lifts of elliptic curves and its application to point counting. Finite Fields A ppi, 9(1):89-
101, 2003.

[78] Susanne Schmitt and Horst G. Zimmer. Elliptic curves. A computational approach.
With an appendix by Attila Petho. de Gruyter Studies in Mathematics 31. Berlin:
Walter de Gruyter, 2003.

[79] A. Schônhage and V. Strassen. Schnelle multiplikation grosser zahlen. Computing,
7:281-292, 1971.

[80] René Schoof. Elliptic curves over finite fields and the computation of square roots mod
p. Math. Comput., 44:483-494, 1985.

[81] René Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie
des Nombres de Bordeaux, 7(1):219—254, 1995.

[82] Daniel Shanks. Class number, a theory of factorization, and genera. In Analytic
Number Theory, volume 20 of Proceedings of Symposia in Pure Mathematics, pages
415-440. American Mathematical Society, 1971.

[83] Daniel Shanks. Five number-theoretic algorithms. In Proceedings of the Second Man
itoba Conference on Numerical Mathematics, pages 51-70, 1972.

[84] V. Shoup. Fast Construction of Irreducible Polynomials over Finite Fields” . Journal
of Symbolic Computation, 17(5):371—391, May 1994.

[85] V. Shoup. A library for doing number theory (NTL). h ttp ://w w w .sh o u p .n e t/n tl/ ,
2009.

[86] Victor Shoup. Efficient computation of minimal polynomials in algebraic extensions
of finite fields. In ISSAC, pages 53-58, 1999.

63

http://www.shoup.net/ntl/

[87] J. H. Silverman and J. Suzuki. Elliptic curve discrete logarithms and the index cal
culus. In Advances in Cryptology-ASIACRYPT ’98, volume 1514 of Lecture Notes in
Computer Science, pages 110-125. Springer-Verlag, 1998.

[88] Joseph H. Silverman. The arithmetic of elliptic curves. Graduate Texts in Mathematics
106. New York, NY: Springer, second edition, 2009.

[89] Henning Stichtenoth. Algebraic function fields and codes. Graduate Texts in Mathe
matics 254. Berlin: Springer, second edition, 2009.

[90] Andrew V. Sutherland. A generic approach to searching for Jacobians. Math. Comput.,
78(265) :485-507, 2009.

[91] ATLAS Team. Automatically tuned linear algebra software (ATLAS), h t t p : / /
m a th -a t la s .so u rc e fo rg e .n e t/, 2010.

[92] GMP Team. The gnu multiple precision arithmetic library (GMP). h t tp : / /g m p lib .
o rg /, 2010.

[93] Magma Team. Magma computational algebra system, h ttp ://m agm a.m aths.usyd .
edu .au /, 2010.

[94] A. Tonelli. Bemerkung über die auflösung quadratischer congruenzen. Göttinger
Nachrichten, pages 344-346, 1891.

[95] G. Tornaría. Square roots modulo p. In LATIN 2002: Theoretical Informatics, pages
430-434, 2002.

[96] Jacobus H. van Lint and Gerard van der Geer. Introduction to coding theory and
algebraic geometry. Birkhäuser Verlag, Basel, Germany, 1988.

[97] Vercauteren, Preneel, and Vandewalle. A memory efficient version of satoh’s algorithm.
In Advances in Cryptology: EUROCRYPT 2001, volume 2045 of Lecture Notes in
Comput. Sei., pages 1-13. SpringerVerlag, 2001.

[98] von zur Gathen and Shoup. Computing frobenius maps and factoring polynomials.
CMPCMPL: Computational Complexity, 2:187-224, 1992.

[99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, second edition, 1999.

[100] Joachim von zur Gathen and Daniel Panario. Factoring polynomials over finite fields:
A survey. J. Symb. Comput, 31(l/2):3-17, 2001.

[101] DaqingWan. Generators and irreducible polynomials over finite fields. Math. Comput.,
66:1195-1212, July 1997.

[102] Lawrence C. Washington. Elliptic curves Number theory and cryptography. Boca
Raton, FL: Chapman and Hall/CRC, second edition, 2008.

64

http://gmplib
http://magma.maths.usyd

[103] William C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. Ec. Norm. Sup.,
2(4):521-560, 1969.

[104] André Weil. Sur les fonctions algébriques â corps de constantes finis. C. R. Acad. Sci.
Paris, 210:592-594, 1940.

[105] Annegret Weng. Constructing hyperelliptic curves of genus 2 suitable for cryptography.
Math. Comput, 72(241):435-458, 2003.

[106] Joseph L. Yucas. Irreducible polynomials over finite fields with prescribed trace /
prescribed constant term. Finite Fields and Their Applications, 12(2):211—221, 2006.

[107] David Y. Y. Yun. On square-free decomposition algorithms. In Proc. ACM Symp.
Symbolic and Algebraic Comp., pages 26-35, 1976.

65

	Point Counting On Genus 2 Curves
	Recommended Citation

	tmp.1638231335.pdf.NOnLi

