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Abstract
With the recent advances in embedded systems and very low power , wireless tech
nologies, there has been a great interest in the development and application of a new 
class of distributed Wireless body area network for health monitoring.

The first part of the thesis presents a remote patient monitoring system within 
the scope of Body Area Network standardization. In this regime, wireless sensor 
networks are used to continuously acquire the patient’s Electrocardiogram signs and 
transmit data to the base station via IEEE.802.15. The personal Server (PS) which 
is responsible to provide real-time displaying, storing, and analyzing the patient’s 
vital signs is developed in MATLAB. It also transfers ECG streams in real-time to 
a remote client such as a physician or medical center through internet. The PS has 
the potential to be integrated with home or hospital computer systems. A prototype 
of this system has been developed and implemented. Tlie developed system takes 
advantage of two important features for healthcare monitoring: (i) ECG data acqui
sition using wearable sensors and (ii) real-time data remote through internet. The 
fact that our system is interacting with sensor network nodes using MATLAB makes 
it distinct from other previous works. The second part is devoted to the study of 
indoor body-area channel model for 2.4 GHz narrowband communications. To un
derstand the narrowband radio propagation near the body, several measurements are 
carried out in two separate environments for different on body locations. On the basis 
of these measurements, we have characterized the fading statistics on body links and 
we have provided a physical interpretation of our results.

;

K eyw ords: WBAN, ECG, statistics, PDF, CDF, GMM, MATLAB, TinyOS.
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Chapter 1 
Introduction

During the past decades, advances in miniaturization, low power wireless communica

tion, sensor design, and energy storage technologies enabled development of Wireless 

Sensor Network (WSN) with pervasive computing capabilities [1]. A WSN is a net

work of many small sensing and communicating devices called sensor nodes (or motes). 

Each node has a CPU, a power supply and a radio transceiver for communication [2].

Sensor Networks have shown potential application in changing the way of living 

ranging from medical to military and from home to industry [3]. There are various 

applications for WSNs which can be categorized into Health, environment, military 

and other commercial applications. The two important applications are discussed 

below: . ' ' ■

1. Healthcare monitoring applications, which include (i) activities of daily living 

monitoring, (ii) fall and movement detection, (iii) location tracking, (iv) medi

cation intake monitoring, and (v) medical status monitoring [4].

2. Environment applications in which the sensors are employed to detect environ

mental temperature, humidity, and pressure or disasters such as earthquakes, 

volcanoes, and tornadoes [5].



1.1 Healthcare Monitoring Applications

Pervasive health or patient monitoring systems integrated into a telemedicine system 

are new information technology that will be able to support early finding of abnormal 

conditions and prevention of serious consequences. The concept of health monitoring 

is advanced by which health parameters are automatically monitored at home without 

disturbing daily activities. The most vital signs monitored are ECG, EEG, pulse 

oximetry, body temperature, heart rate, and blood pressure.

In this work, the main focus is to develop a prototype system which provides 

a long-term continuous monitoring of Electrocardiogram (ECG) data; however, we 

believe that many different body sensors can be potentially integrated to the wireless 

platform developed by our group. The reason we chose ECG sensor is that Cardio

vascular disease is the leading cause of death in the world; Claimed 34.3 percent of all 

deaths in the United States [6], more than 30 in Asia [7],"and an estimated 4.3 million 

people in Europe [8]. These deaths can often be prevented with proper healthcare 

and continuous monitoring with the help of WSN. Most of the cardiac abnormalities 

occur outside of the hospital and new strategies are needed to reduce the time before 

treatment and to detect the onset of cardiac events. The ECG is the only valuable, 

noninvasive, easily repeatable, and inexpensive diagnostic tool that is immediately 

available to assess the probability of cardiac events such as myocardial infarction, 

ischemia, and ventricular hypertrophy, and it is unequaled in the analysis of cardiac 

arrhythmias [9]. Also, in the past few decades the clinical information that can be 

derived from the electrocardiogram has grown continually. Wireless technologies have 

a significant role in the cardiac patient remote monitoring in different environments 

such as homes and hospitals.

By definition, ECG records the variations in voltage that are produced by depo

Chapter 1: Introduction _______________________________________  2



Chapter 1: Introduction 3

larization and repolarization of heart muscles. The variations in voltage are measured 

at the surface of the body using surface electrodes [10].

Today, three different types of ECG recording are available in general use [11]:

1. In the first one which has been the standard approach for almost half a century, 

a short sampling of patient cardiac data is needed. For this type of standard 

ECG, the signs are recorded from 12 leads for a short sampling (lower than 

thirty seconds).

2. Some cardiac conditions which are irregular or intermittent would not be diag

nosed by standard ECG as it provides a snapshot of the patient’s cardiovascular 

activity in time. Continues ECG monitoring should be used for these kinds of 

diagnosis. Continuous ECG monitoring can be done offline or remotely. In this 

regard, ECG signals can be stored to be diagnosed offline after completion of 

data collection. Holter monitors and event recorders became available portable 

tools for offline ECG recording at hospitals. /  » ^

3. Although Holter monitors are valuable tools for continuous monitoring, these 

devices only provide recording and monitoring capabilities and no real-time 

classification of ECGs as the diagnosis is performed offline. Remote real time 

diagnosis might be needed to improve the level of diagnosis. Many cardiac 

abnormalities cannot be diagnosed by offline processing without real-time feed

back provided by Holter monitors. In this system, cell phone or personal digital 

assistants are utilized for collecting the ECG data and sending them to a remote 

computer [12],

Therefore, significant research efforts on cardiac monitoring in real-time have been 

started in the past few years. Several research groups and commercial vendors are



already developing prototype system for transmitting the vital physiological data such 

as ECG from a patient to a remote monitoring station. A large number of applications 

have been developed in US, EU and Asia, deployed at different stages (pilots, clinical 

trials or regular operation [13]) and operating in different settings (ambulatory, home, 

mobile, and clinical [14]). The deployment of telehealth system pursues a variety of 

goals, ranging from organizational to medical improvement [15].

Using telecommunications for remote diagnosis was the basis for several earlier 

products and projects. However, the first projects such as ECG Holter recorder for 

the cardiopulmonary diagnostics [16] and the European project ’’EPI-MEDICS” [17] 

for the early detection of cardiac events, used wired connection to the patient. EPI- 

MEDICS [18] is the European project stands for Enhanced Personal, Intelligent and 

Mobile system for early detection and interpretation of Cardiological Syndromes, uses 

embedded Personal ECG Monitor (PEM) for the early detection and prevention of 

cardiac events. Using EPI-MEDICS, a patient can record aibECG data in patient’s 

electronic health record (EHR) on a smart media card in the PEM device. All the 

data will be processed and in case that a medium alarm situation has been detected 

the PEM connects to the patient’s mobile phone via BlueTooth and sends an alarm 

message to a dedicated PEM server. The PEM server notifies this event to the 

patient’s attending physician by a SMS (Short Message Service) or an email. The 

GP receives the SMS message and calls the patient back to tell him that he handles 

the alarm. He then connects to Internet and reaches quickly and reviews the alarm 

[17]. However, the system will normally require wired connection to a wearable device.

New wireless technology for telecardiology gives new possibilities for monitor

ing vital parameters using body worn wireless sensors. Implementation of wearable 

biomedical sensors, makes patients feel freedom of movement. They will experience a 

greater physical mobility as it removes cables around patient’s body and frees them

Chapter 1: Introduction ___________________ ______________________________ 4



from the confinement of wires [3]. One example of ECG measuring systems is Physical 

Activities Healthcare System (PATHS) [19] which has a wearable wireless sensor unit 

(W2SU) including ECG sensor, dual-axis accelerometer sensor, a hand-held Blue

tooth device to receive data from the wearable unit. The wearable unit is equipped 

with a Secure Digital Memory Card (SD Card) interface and a high speed USB port; 

Hence, the recorded vital data can be transmitted to the hand-held device for further 

use or can be displayed on a monitor. Furthermore, the hand-held device can relay 

data and abnormality alarms to the Internet for the use of healthcare professionals.

With the advent of body worn wireless sensors, the radio channel between 

sensor nodes became more difficult to characterize due to the stochastic influence 

of human body. Thus, a number of researches relating to characterization of on- 

body propagation have appeared in the literature. These literatures investigated how 

the human body affects the wireless connection link qualities by characterizing the 

wireless radio propagation between the nodes placed on huriian body. Propagation 

model can be characterized by study the path loss exponent under various condition 

[20]-[27]. Another related studies focus on the variability of the signal power in close 

spatial proximity to a particular location and fading statistics [28]-[31]. Furthermore, 

some literatures explore the impact of realistic channels on network level performance 

and link estimation metrics [32]-[34].

1.2 Thesis Organizations

Current advances in wireless communications integrated with development in per

vasive and wearable biomedical sensor technologies would have a radical impact on 

healthcare monitoring systems. ;

Chapter 1: Introduction__________________________________ ___________________________________ 5



6Chapter 1: Introduction

In this study, we develop a wireless body area network for health monitoring 

which supports ECG wearable sensor and contains an online personal server for real

time data acquisition, visualization, memorizing, analyzing, and transmission to local 

network and internet. We will also characterize the narrowband body area propaga

tion environment through measurements in order to predict the link level performance. 

In this work we try to bridge the gap between wireless sensor networks and the effect 

of human body on wireless links.

This thesis is organized in two main parts. The first part - Chapter 2 provides a 

background on Wireless Sensor Network and Chapter 3 introduces the WBAN archi

tecture that can meet the requirements for real-time ECG streaming and monitoring. 

Our system supports following requirements: (i) periodic transmission of ECG vital 

signs, (ii) addressing practical issues such as user comfort and mobility by deploy

ing wearable and portable sensors and wireless platforms, (iii) displaying the ECG 

streams on a friendly user GUI and (iv) providing high s^eed access to the local 

networks such as internet. In terms of real-time remote access to the ECG data, 

our developed system is totally adopted for immediate data transmission. In this 

study, the personal server as an interface between sensor nodes and local network is 

implemented on MATLAB environment for a first time. Finally, the proposed system 

implementation and some practical results will be shown at the end of this chapter.

The second part - Chapter 4 is devoted to the study of indoor body-area channel
i

model for 2.4 GHz narrowband communications. In order for a Body Area Network 

(BAN) to work in the preferred manner, it is essential to assure that the commu

nication between the mounted sensor nodes and base node takes place in the right 

way. We also considered the nature of local environment on the performance of radio 

communication systems. The measurement set up, environment, and procedure used 

for extracting channel parameters for two separate environments are all described in
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this chapter. The main contributions, we obtained are summarized in the followings;

1. Identification of link estimation metrics (RSSI, LQI, and PRR) for several body 

locations in the real channel condition.

2. Characterization of the fading statistics on body links based on the variation of 

received signal level (RSSI) over different locations and times.

3. Evaluation of the bit error rate (BER) performance of; the narrowband-based 

WBAN system.

In addition to the main parts, the remainder of the thesis focuses on conclusion and 

two Appendixes. The step by step software design manual for developing a Health 

Monitoring System based on WSN using the IRIS platform in TinyOS is presented 

in Appendix A. The Appendix B is a collection of MATLAB functions built on the 

MATLAB technical computing environment. It is a framework for communicating 

with motes supporting the serial port interface.
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Chapter 2 

Background

In the following chapter, we will discuss the notion of a wireless sensor network, its 

applications, and related challenges. The wireless body area network,, the hardware 

and software platform, commonly designed for health application of wireless sensor 

network will also be considered.

2.1 Wireless Body Area Network

Integration of low power wireless sensor network devices into medical settings gives 

raise to Wireless Body Area Network (WBAN) for measuring and monitoring pa

tient’s vital signs. WBAN is a radio frequency based wireless networking technology 

that interconnects intelligent nodes capable of sensing, sampling, processing, and 

communicating of biological signals, attached on or around human body [35]. This 

allows people in the hospital, at home, or on the move to monitor changes in their 

physiological parameters. Therefore, the need for face-to-face contact with the care 

professional will be reduced and patients feel freedom of movement. They will experi

ence a greater physical mobility as it removes cables around patient’s body and frees 

them from the confinement of wires [4]. WBAN has also made the costs for pervasive 

healthcare systems inexpensive. Three group of people are interacting with WBAN 

system [3].
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Chronically 111: Chronic conditions. are health conditions that , either have 

symptoms on a constant basis or flare up episodically. Such as: diabetes, heart disease, 

pulmonary conditions, hypertension, mental disorders, stroke and cancer. Based on 

last statistics, 162 million people are suffering from chronic conditions in the United 

States [36]. Chronic diseases are among the most prevalent, costly and preventable 

of all health problems. According to the Centers of Disease Control and Prevention, 

seven in ten Americans who die each year die of a chronic disease [37]. Hence, Real

time monitoring of patients’ physiological status and analysis systems seem crucial 

for this group of people as it helps chronically ill people with different degrees of 

cognitive and physical disabilities will be capable of having more dependent life. In 

this regime, they will be able to closely monitor changes in their vital physiological 

signs and bring feedback to maintain an optimal health status. For real-time systems, 

the physician will have access to vital signs of chronic patients at their home without 

need of hospitalization. Moreover, emergency situation will Ue identified with a little 

latency and in a few seconds.

Elderly: this group includes peoples being past middle age and approaching 

old age. 80% of older adults have at least one chronic condition, and 50% have at 

least two [38]. Besides, they are more susceptible to sudden falls. Health monitoring 

and analysis systems are crucial for many older people live independently and avoid 

expensive trips to the emergency room or nursing homes.

Children: this group is known as a person younger than the age of majority 

who are not capable of taking care of themselves like babies, infants, toddlers and 

needed to be continuously monitored.

Healthcare monitoring application of Wireless Body Area Network involves a 

number of issues and challenges including needs to interoperability, privacy and secu

rity, low-power communication, biosensor design, power consumption, communication



link between the implanted device and external monitoring control equipment which 

needs to be resolved. Some of leading challenges are listed below, )

• Security, Privacy, and Reliability: Security must be guaranteed all the way 

through the healthcare application state. In terms of security requirements, the 

patients’ sensitive health information must be viewed only by authorized parties, 

resistant against security tracks. Moreover, the application must ensure a well 

defined degree of privacy with precisely planed rules. The application should 

also be reliable. Reliable data communication, analysis, and measurement are 

the three main categories involved in the issues of reliability.

• Node size: It is essential for the wireless medical sensors to be light weight and 

small since they should be worn by patients. The size and weight of batteries 

determine the node sizes. However, the batteries’ capacity depends on their 

size. With advances in technology and integrated circuits, it can be expected 

to have efficient sensors with small sizes.

\

• Energy efficiency: as the sensor nodes are designed to be used for a long period 

of time, the power sources should be efficient enough and long lasting [5].

Chapter 2: Background____________________________________ ________________________________ 10

2.2 W SN s Software Platform

Tiny OS [39] is an open-source operating system designed for wireless embedded sensor 

networks. However, Programming TinyOS can be challenging because it requires 

using a new language, nesC.
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2.2.1 Tiny Microthreading Operating System(TinyOS)

TinyOS features a component-based architecture, which enables rapid innovation 

and implementation while minimizing code size as required by the severe memory 

constraints inherent in sensor networks. TinyOSs component library includes network 

protocols, distributed services, sensor drivers, and data acquisition tools all of which 

can be used for a custom application. TinyOSs event-driven execution model enables 

fine-grained power management yet allows the scheduling flexibility made necessary 

by the unpredictable nature of wireless communication and physical world interfaces.

TinyOS is not an operating system (OS) in the traditional sense; it is a program

ming framework for embedded systems and set of components that enable building 

an application-specific OS into each application. The reason for this is to ensure that 

the application code has an extremely small memory foot print. In addition TinyOS 

is designed to have no file system, supports only static memory allocation, implement 

a simple task model, and provide minimal device and networking abstractions.

TinyOS has a component-based programming model (codified by the nesC lan

guage). Like other operating systems, TinyOS organizes its software components into 

layers. The lower the layer the closer it is to the hardware; the higher the compo

nent, the closer it is to the application. A complete TinyOS application is a graph of 

components, each of which is an independent computational entity [40]. .

2.2.2 Network Embedded System C (NesC)

The TinyOS operating system, libraries, and applications are all written in nesC, 

a new structured component-based language. The nesC language is primarily in

tended for embedded systems such as sensor networks. The nesC has a C-like syntax, 

but supports the TinyOS concurrency model, as well as mechanisms for structuring,



naming, and linking together software components into robust network embedded sys

tems. The principal goal is to allow application designers to build components that 

can be easily composed into complete, concurrent systems, and yet perform extensive 

checking at compile time.

2.3 W SN s Hardware Platform

The sensor network hardware platforms usually consist of three components:

2.3.1 IRIS mote

In this experiment, the IRIS developed by UC Berkeley and manufactured by Cross

bow Technology [41] operates as a primary embedded platform for the ECG sensor. 

The IRIS is the company’s latest generation of Motes. The name ’’motes” refers to a 

general class of technologies comprising an embedded microcbntroller and low-power 

radio. In comparison with previous company’s motes, the IRIS Mote platform pro

vides more improved RF range, lower sleep current, and double the program memory. 

Each IRIS board makes use of ATmegal281 microprocessor [42] as data processing 

unit and AT86RF230 [43], a low-power 2.4 GHz radio transceiver especially designed 

for ZigBee/IEEE 802.15.4 as data transmission unit. The Atmel ATmegal28/128L 

devices are members of the Atmel’s 8-bit AVR microcontroller family. Peripher

als include a 10-bit analog to digital converter, real time clock, timers, and asyn- 

chronous/synchronous serial interfaces (with SPI and I2C modes). The ATmegal28L 

device is specified for supply voltages of 2.7 through 5.5 volts. Internal memory in

cludes 128 KBytes program flash, 4 KBytes SRAM, and 4 KBytes EEPROM. IRIS 

has programmable output power from -17 dBm up to 3 dBm and receiver sensitivity

Chapter 2: Background____________________________________________  ___________  ________12
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Figure 2.1: Photo of the XM2110IRIS with standard antenna.

of -101 dBm. As a power supply, two AA batteries are typically used, but a mote is 

powered through USB bus if connected to an interface board. -

2.3.2 RF230 transceiver

The radio used by the IRIS is an IEEE 802.15.4 compliant RF transceiver designed 

for low-power and low-voltage wireless applications. It uses Atmel’s AT86RF230 

radio that employs O-QPSK (’’ offset quadrature phase shift keying” ) with half sine 

pulse shaping. The 802.15.4 radio includes a DSSS (digital direct sequence spread 

spectrum) baseband modem providing a spreading gain of 9 dB and an effective data 

rate of 250 kbps. The radio is a highly integrated solution for wireless communication 

in the 2.4 GHz unlicensed ISM band [41].

2.3.3 MIB520 USB interface

The MIB520 provides USB connectivity to the IRIS and MICA family of Motes for 

communication and in-system programming. It supplies power to the devices through 

USB bus. MIB520CB has a male connector while MIB520CA has female connector.
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,  MICA-series 
connector

Power OK LED 
^  (green)
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Figure 2.2: Photo of top view of the MIB520CB.

2.4 Summary

The IRIS Mote operates as a primary embedded platform for the ECG sensor in 

our system. In February 2008, Crossbow announced the availability of the TinyOS 

2.x Operating System for Crossbow’s advanced IRIS Motes. IRIS Motes are also 

supported by Crossbow’s MoteWorks software development environment based on 

open-source TinyOS 1.x. We preferred to run our application in the TinyOS 2.x Op

erating System because it provides a better hardware abstraction model, improved 

timers, sensor interfaces, power management, arbitration, and much more. Our de

veloped wireless body area network for health monitoring is composed of two IRIS 

motes, one MIB520 USB interface board, and one analogue ECG sensor. The per

sonal Server (PS) which is responsible to provide real-time displaying, storing, and 

analyzing the patient’s vital signs is developed in MATLAB. It also transfers ECG 

streams in real-time to a remote client such as a physician or medical center through 

internet. The complete hardware and software architectures for developing a health

care monitoring instrument using a Wireless Sensor Network are given in Chapter



15

Chapter 3

W B A N  System Architecture

3.1 Introduction

With the growing needs in communications and recent advances in very-low power 

wireless technologies, there has been considerable interest in the development and 

application of wireless networks around humans. The wearable sensors technology 

as an important development in the healthcare monitoring system has been focused

by several international researches. Body worn devices-make patients experience a
- . ■ . v

greater physical mobility as they remove cables around their body.

Fensli et al. [44] measures the ECG-signal by a wearable sensor which con

tinuously transmits the signal using RF radio transmitter to the Personal Digital 

Assistant (PDA). In case of observing abnormalities, PDA will start transmitting the 

recorded ECG-signal to the Clinical Diagnostic Station. The system is supposed to 

be able to detect the rare occurrences of cardiac arrhythmias and to follow up critical 

patients from their home [45]. However, the system prototype seems to be too large 

for routine use by out patients. Similarly, MobiHealth, the European Commission’s 

wide-ranging project started in May 2002 [46] has developed health body area net

work system by which the patients can be monitored and receive medical care in 

emergency situations. They were successful in designing and implementing a Health 

Body Area Network service platform by developing a concept of a 3G enabled Body



Area Network [47]. In a recent project, CodeBlue [48], performed at Harvard Uni

versity, the combined hardware and software sensor Networks platform for Medical 

Care has been developed. CodeBlue is one of the most comprehensive projects in

cluding combination of mote, ad-hoc network [49], multi-hop communication design, 

and location tracking system called MoteTrack [50]. The hardware design part has 

composed of three mote-based sensors; pulse oximeter, ECG [11], and motion sensors. 

These sensor boards are connected to commercially available Mica2, Micaz, and Te- 

los Motes. They also; developed a new miniaturized sensor mote designed for medical 

use. CodeBlue is a protocol and middleware framework based on publish/subscribe 

routing framework in which sensors publish data to a specific channel and end-user 

devices subscribe to channels of interest [51]. A multi-tier WBAN system prototype 

has been also proposed by Otto et al. [52] and Jovanov et al. [53]. Their system han

dles data transmission between the WBAN and a medical server. The communication 

between the sensor nodes and network nodes is single-hop,'•slotted and uses ZigBee 

or Bluetooth. The Zheng et al. [13] provided long-term continuous monitoring of 

cardiovascular patients using wearable sensor with ability to automatically launch an 

emergency call once it detects abnormal situations. Their Mobihealth care system 

composed of three parts; the wearable sensor called WS, the PPU providing real-time 

collection and analysis and MSC which is composed of a MDS (medical data server) 

and MT (monitoring terminals). In new studies, the work carried out by Chipara et 

al. [54] is similar to CodeBlue project. They have developed a system for detecting 

clinical deterioration using WSN based on real-time vital signs. Moreover, Yan et al. 

[55] developed a WSN based e-health system which estimates the location of targets 

without making any interference to their normal life.

Despite the increased interest in the WSN areas, there are few studies on the 

system development with ’real-time’ remote access to the vital signs via internet

Chapter 3: WBAN System Architecture____________________________________________________  16
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which is the other essential factor for Health monitoring. In terms of real-time data 

transmission through local network, majority of previous works focused on sending 

an alarm to the medical center in case of observing abnormalities while our system 

is completely adopted for real time data transmission. To the best of our knowledge, 

this is a first work which develops MATLAB based system for interaction with sensor 

network nodes. MATLAB contains advanced numerical computing ability, powerful 

libraries and elaborate toolboxes for plotting and analyzing data in real-time that 

eases data processing operations.

In this chapter, we will introduce the WBAN system developed in the Bell 

Centre for Information Engineering (BCIE) for remote patient monitoring in real

time and illustrated in Figure 3.1. The prototype system developed by our group 

can be functionally divided into two subsystems: (i) WBAN nodes, and (ii) Personal 

Server, being presented in this chapter. The primary function of WBAN nodes is to 

sample ECG signs and transfer the data to a personal server through IEEE 802.15.4. 

The Personal server implemented on computer controls, display the data and also

transfer vital information to the local network through internet.
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Figure 3.1: WBAN System for real-time patient monitoring.
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3.2 Wireless Body Area Network nodes

This section describes development of a combined hardware and software platform 

for the Wireless Body Area Network nodes.

3.2.1 Hardware Design

Sensors play an important role in WBAN, as they connect the physical world to 

the electronic systems. Many different body sensors can be used in remote medical 

monitoring. The Vernier EKG [56] (Electrocardiogram or ECG), Sensor is the analog 

wearable sensor board which we employed in our system to acquire ECG signals. It 

measures cardiac electrical potential waveforms for standard 3-lead ECG tracings. 

The sensor produces an analogue signal between 0 and 5 volts, with 1 volt being the 

isoelectric line.

The IRIS developed by UC Berkeley and manufactured by Crossbow Technol

ogy [41] operates as a primary embedded platform for the ECG sensor in our system. 

The IRIS is the company’s latest generation of Motes. The name ’’motes” refers to a 

general class of technologies comprising an embedded microcontroller and low-power 

radio. In comparison with previous company’s motes, the IRIS mote platform pro

vides more improved RF range, lower sleep current, and double the program memory. 

Even though crossbow motes were not preliminary designed for body-worn appli

cations, they have been successfully used in several body health monitoring projects 

such as Harvard’s CodeBlue project [48], remote monitoring cardiac activity [57], pro

filing the body channel for patients with chronic illnesses [58], and finally mounting 

the motes onto fast-moving athletes [59].

The block diagrams of hardware platforms for WBAN nodes are indicated in 

Figure 3.2. Each IRIS board contains ATmegal281 microprocessor [42] as a data pro-

Chapter 3: WBAN System Architecture
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cessing unit and AT86RF230 [43], a low-power 2.4 GHz radio transceiver especially 

designed for ZigBee/IEEE 802.15.4, as a data transmission unit. The RF230 single

chip radio transceiver provides a complete radio transceiver interface between the 

antenna and the microcontroller. It comprises the analog radio transceiver and the 

digital demodulation including time and frequency synchronization, and data buffer

ing. The AT86RF230 is designed for low-power and low-voltage wireless applications. 

All RF-critical components except the antenna, crystal and de-coupling capacitors are 

integrated on-chip. Therefore, the AT86RF230 is particularly suitable for 2.4 GHz 

IEEE 802.15.4 and ZigBee systems applications. The transmit modulation scheme is 

OQPSK with half-sine pulse shaping and 32-length block coding (spreading).

The IRIS platform is powered by 2 AA batteries and has a detachable, quarter 

wave, monopole antenna and a 51-pin expansion connector for external sensor boards. 

We choose to connect our ECG sensor to Crossbow’s IRIS platform via the MDA100 

[60] sensor board prototyping area which supports connection to all eight channels of 

the mote’s analog to digital converter node (the integration is shown in Figure 3.3). 

On the patient body, the ECG sensor node is mounted on the waist and lets the 

subject feel freedom of movement (Figure 3.4). The ECG signs are acquired by the 

sensor node and transmitted to the base station in realtime. The base station (Figure 

3.5), is composed of MIB520 [41] and is responsible for data collection, communication 

and in-system programming to PC.
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ZigBee

To PC

Figure 3.2: The block diagrams of hardware platforms for WBAN nodes.

Figure 3.3: The Vernier EKG sensor integrated to IRIS mote.
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Figure 3.5: The base station which is composed of MIB520
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3.2.2 Software Design

It is the fact that an operating system framework is needed for retaining small physical 

size, modest active power load, and tiny inactive load characteristics of wireless sensor 

network platforms. To address this problem, a tiny microthreaded OS, called TinyOS 

[39] has been developed by researchers at UC Berkeley. In this application, both IRIS 

motes run TinyOS 2.x as it provides a better hardware abstraction model, improved 

timers, sensor interfaces, power management, and arbitration. In this application, 

motes are programmed based on their functions and tasks. As a result, two types of 

motes are programmed: Mobile and Base.

TinyOS organizes its software components into three distinct layers: Hardware 

Presentation Layer (HPL), Hardware Adaptation Layer (HAL), and Hardware Inter

face Layer (HIL) [61]. Each layer has clearly defined responsibilities and is dependent 

on interfaces provided by lower layers. All componentsjn HPL layer have access the 

hardware in the usual way (by I/O ) and are Hardware dependent. Components in 

HAL use interfaces provided by the HPL. HIL contains hardware-independent inter

faces. The block diagram of software HIL components running on both mobile and 

base motes are shown in Figure 3.6. The HIL ECGsensorC.nc component is a generic 

component that virtualizes access to the integrated ECG sensor. This generic com

ponent is linked to the HAL AdcReadClientC component providing arbitrated access 

to the Atmegal28 ADC.

The Mobile IRIS mote that is connected to an ECG sensor runs an appropri

ate software which uses the ADC to sample the analog ECG data from the sensor, 

construct a message out of them, and send it over IEEE 802.15.4 (ZigBee) [9] to 

the IRIS mote connected to the base station. The ADC channel continuously reads 

the ECG data and when enough ECG samples are collected in the message buffer,



the application passes the message to the networking stack. ECG usually digitized at 

sampling frequency of 500-1000 Hz. Even though 1 kHz is less than Nyquist frequency 

for ECG signal, fine temporal precision is needed with respect to expected variations 

in cardiac period. The sampling rate and packet transmission rate over the network 

are dependent on each other such that a higher sampling rate requires higher packet 

transmission rates. . .

One of the challenges is to determine the suitable sampling rate of the ECG 

signal/ On one hand, this is due to limitation of IRIS mote packet transmissions rate. 

IRIS mote can handle only 200 packet transmissions in a second which leads to a 

period interval of 5 ms for each packet. In order to satisfy desired sampling rate, 

each packet includes ten ECG data with a period interval of 1.4 ms. On the other 

hand, one has to find appropriate TinyOS Source and Sink Independent Driver (SID) 

interface compatible with ECG sampling rate. As shown in Figure 3.6, the application 

uses TimerMilliC which gives an independent millisecond granularity timer. On the 

IRIS motes, the 32 KHz external clock is divided by 32, so the best resolution we can 

get from that timer is 1 ms. To avoid timing issues with IRIS, a lower limit of 5 ms 

should be used. As a result, we have two options to get 1.4 ms sampling interval from 

Timer hardware in Atmegal28: (i) using the Alarm interface which is asynchronous, 

and (ii) running the ADC module in streaming mode. As ECG provides a continuous 

stream of data, we programmed an IRIS to read data in block instead of individually 

by using ReadStream SID interface.

Moreover, the motes are programmed to obtain link estimation metrics such as 

the received signal strength indicator (RSSI), packet error rate (PER), and sequence 

numbers. The packet number, showing the sequence number, is increased by one 

each time it is sent to the destination node. The sequence number is utilized to 

identify a packet within a burst. The received signal strength (RSSI) and link quality
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indicator (LQI) information are also requested for each packet by the receiver. The 

RSSI is an estimation of the received signal power within the bandwidth of an IEEE 

802.15.4 channel. The IEEE 802.15.4 standard determines the LQI measurement as 

a characterization of the strength and quality of a received packet. The LQI values 

are associated with an expected packet error rate (PER). All data (20 bytes for the 

ECG data, 1 byte for RSSI, 1 byte for LQI, and 1 byte for Counter (showing sequence 

numbers)) are collected into one TinyOS message and then sent to. the base station 

(see Figure 3.7). A TinyOS message is a generic message structure with a reserved 

payload for application data. More details on our software design is performed in our 

application note [62] and has been presented in Appendix A. .
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Figure 3.6: The block diagram of software HIL components running on both mobile 
and base motes.



3.3 Development of Personal Server

The personal server (PS) which is the core processing element has the potential to 

be implemented on home computers or hand held devices. The multithreading PS 

application runs on MATLAB environment and provides users with the following ser

vices: (i) continually receiving data from the wireless sensor network and storing it in 

a specified database, (ii) applying an efficient signal processing analysis on ECG data 

for powerline noise elimination from signal and extracting R peaks of ECG wave, 

(iii) establishing a Web Application Server responsible for performing an interface 

which enables physicians and medical centers to have real-time and continues access 

to patients vital sign through internet, and (iv) providing a graphical user interface 

for real-time visualization of patients’ vital signs. Functional architecture of PS ser

vices is shown in Figure 3.8. The PS communicates to the base station using serial 

port interface provided by MATLAB Instrument Control Toolbox. PS deploys dedi- 

cated threads with framework of callbacks and events to process the incoming TinyOS 

802.15.4 frames containing ECG data samples. In this regard, an event occurs after 

a packet is received and consequences in associated callbacks. Callback functions are 

responsible for reading, parsing, verifying, and managing incoming packets. In addi

tion to reading, the data payloads such as ECG, RSSI, LQI, and Counter values will 

be extracted for further processing. LQI and Counter values are utilized for tracking 

lost packets in a packet stream. A buffer is assigned for storing packet’s contents (a 

FIFO-first in first out) which isolates the processes of reception and storing. Signal 

processing (Digital notch filtering and ECG peak extraction) and TCP/IP algorithms 

are executed in their own callbacks and applied to all packets saved in FIFO buffer 

in real-time. '
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3.3.1 Design of HR digital notch filter

The 60 Hz powerline noise passes through the ECG waveform because of magnetic 

induction in wires, displacement currents in the electrode leads and body. This in

terference distorts the data, and obscures the behavior of the body [63]. Thus, the 

signal should pass through a IIR digital notch filter for removing the powerline inter

ference in an ECG. Here, we investigate the use of pole-zero placements at the desired
! i

frequency locations on the unit circle in the design of IIR notch filter. Based on this 

method, the zeros are located on the unit circle while the poles are located inside 

the circle at the same angular values and within a radial distance from the zeros in 

order to flatten the frequency response away from the notch frequencies. In theory, 

the number of poles (order) that a notch filter has determines the drop-off rate; the 

higher the order the greater the rate. The transfer function of an IIR notch filter

designed by the pole zero placements on the unit circle is given by [64]:
v  ’

zT(r7 \ _  ^li=o(z ~  z(0) _  Go +  a\z~  ̂ +  ... +  anz~n fo 1 ^

( j "  U lo (P  ~ P fi)  1 +  +  -  +  bnP~n ' ,  ̂ J

Pole-zero design and the frequency response of the 6th order IIR digital notch filter 

with a pole radius equal to 0.95 and sampling frequency of 740 for ECG data is shown 

in Figure 3.9. The de-noised signal (Figure 3.10(b)) can be obtained by passing the 

noisy ECG signal (Figure 3.10(a)) through the notch filter.

3.3.2 ECG Peak Detection using Discrete Wavelet 

Transform

The peak of the QRS complex, or R-wave, is a readily identifiable fiduciary mark 

on the ECG which can be used to indicate a heartbeat. A wavelet analysis based
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Figure 3.9: Frequency response of the notch filter.

(b)

Figure 3.10: (a) Noisy ECG Signal, (b) Filtered ECG signal.
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on Discrete Wavelet Transform is developed in this study to calculate particular 

parameters of ECG signal such as R wave. Even though, there are some works on 

detection of heartbeats using Fourier analysis [65], recently, the wavelet analysis is 

found more suitable for heartbeats calculation [66].

Fourier analysis is as a mathematical technique for transforming our view of 

the signal from time-based to frequency-based. It is important to note that in trans

forming to the frequency domain, time information is lost. It is not possible to tell 

when a particular event took place by looking at a Fourier transform of a signal. Most 

biomedical signals include several non stationary characteristics which are the most 

important parts of the signal, and Fourier analysis is not suited to detecting them. 

To address this problem, wavelet analysis has been introduced to be a requisite addi

tion to the analyst’s collection of tools and continue to enjoy a burgeoning popularity 

today. Wavelet analysis is capable of revealing aspects of data which might be missed 

by other signal analysis techniques such as Fourier transform.

A wavelet is a waveform of efficiently restricted duration with an average value 

of zero. To compare with wavelet, sine waves which are the basis of Fourier transform 

extend from minus to plus infinity without having limited duration. The difference 

between wavelet and sine wave is shown in Figure 3.11. Fourier analysis is breaking 

up a signal into sine waves of various frequencies. Similarly, wavelet analysis consists 

of breaking up of a signal into shifted and scaled versions of the wavelet [67].

The Wavelet transform depends upon two parameters; scale and position. If 

the scale parameter is set based on powers of two, then the wavelet is called a dyadic 

wavelet. The corresponding transform is also called Discrete Wavelet Transform 

(DWT) [68]. In practice, the DWT of a signal x, as shown in Figure 3.12 is calculated 

by passing it through a series of complementary filters; low pass and high pass filter. 

For many signals, the low-frequency component of the signal called approximations
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Wavelet (db10)

Figure 3.11: A wavelet is a waveform of effectively limited duration that has an 
average value of zero.

is high scale and the most important part. The high-frequency content, called detail 

is low scale and passes on flavor or nuance. As the output signals of both filters wind 

up with twice as much data as the signal passed through filters, the filter outputs 

are then down sampled by 2. The downsampling process indicated in the Figure 3.12 

produces DWT coefficients. A plot of wavelet coefficients clearly illustrates the exact 

location in time of the particular events. This decomposition has divided the time 

resolution in two as only half of each filter output characterizes the signal. However, 

each output has half the frequency band of the input so the frequency resolution has 

been doubled. The decomposition process can be repeated further in order to break 

down the signal into many lower resolution components. This is called the wavelet de

composition tree (The ECG signal’s wavelet decomposition tree is displayed in Figure 

3.13).
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Figure 3.12: Block diagram of filter analysis for DWT.
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Figure 3.13: The ECG signal’s wavelet decomposition tree.



Chapter 3: WBAN System Architecture 34

In this study, we decompose the ECG signal (Figure 3.14(a)) into 3 levels by 

applying DWT and rebuild the Level 3 approximation (A3) and detail (D3) from 

DWT coefficients (Figure 3.14(b)). Consequently, the low frequency ECG (Figure 

3.14(c)) will be reconstructed from the Level 3 approximation (A3) and detail (D3). 

In order to remove.baseline wandering, this regenerated ECG will be subtracted from 

original ECG (Figure 3.14(d)). The de-trended ECG contains high amplitudes spikes 

which are R-waves. A threshold level is set up based on the average amplitudes of the 

R-waves. As all the noisy spikes from supply lines were removed by the notch filter 

described in previous section, all the spikes in the signal are denoting R peaks. Peaks 

exceeded the threshold level are considered as R-waves if the slope of the signal is 

positive before the spike, and the slope is negative after that. Consecutive R waves are 

detected based on the algorithm explained steps by steps.; After determining R-wave, 

the R-R intervals are detected, a percentage of the shortest and longest intervals are 

discarded, and the remaining intervals are averaged to arrive at the patient’s heart 

rate. This consequences in a robust calculation of the heartbeat even in the presence 

of noise falsely detected as heartbeats and missed beats, both of which are common 

in noisy environments.
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Figure 3.14: (a) Original Signal, (b) The Level 3 approximation (A3) and detail (D3). 
(c) Low level ECG. (d) De-trended ECG. (e) R-detected ECG.
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3.3.3 TCP/IP  Data Transfer

Once three cycles of ECG are stored in the FIFO buffer, the previous callbacks pass 

the data to the callback responsible for establishing TCP/IP transfer. This appli

cation allows physicians or medical centers to have access to patient’s vital sign via 

cell phone or PC through internet. The internet is chosen for remote monitoring 

as it is a wide spread and low-cost communication infrastructure. Two protocols, 

TCP/IP and UDP have been considered for the data transmission. Between them, 

TCP/IP was chosen for implementing persistent connection, as it was more reliable 

than UDP. For establishing a connection, a local TCP socket was created and a speci

fied port number was bound to it. The reason we used persistent connection was that 

it lies in fewer TCP connection meaning lower responses latency, less overhead on the 

underlying networks, less memory used for buffers, and less CPU time. In usual con

nection, a client opens a TCP connection and sends ajequest, and the server closes 

the connection after transmitting a copy of the requested item: However, in persistent 

connection, instead of using a TCP connection per packet transfer, the client leaves 

the connection in place after opening a TCP connection to a particular server. In 

each transmission, three cycles of ECG stream will be written on connection buffer. 

When a client or server aims to close the connection, it lets the other side know the 

intent and the connection is closed. We also send a sentinel value after the item in 

order to mark the end and identify the beginning and end of each item sent over the 

connection.

3.3.4 Graphical User Interface

A graphical user interface (GUI) is embedded into PS which enables users to perform 

multiple interactive tasks. The GUI, shown in Figure 3.15, allows users to switch



between three different options: Monitor, Record, and Send. The upper-left panel 

contains the three tasks which should be enabled by the users. In this Scenario, 

the users can visualize the ECG data in real-time by choosing the Monitor option. 

The Record option stores all the ECG data received from the base station and lets 

the users to save all the important information including name, age, and weight into 

the database specified for them. The data transmission to clients over the internet 

occurs when the users select Send option. In addition to transferring data, the socket 

addresses of both server and client will be shown in Socket Address panel. The 

Start and Stop push buttons are responsible for opening and closing the serial port 

connection. The ECG signal is plotted on an axis located on the upper right of GUI. 

In addition to plotting the real-time ECG signal, the RSSI value of each received 

packets will be plotted on the axis in the lower right. This option is extremely useful 

as it makes the users aware of their positions and distances from the base station.

v

3.4 Implementation and Verification

To evaluate the performance of our developed system in a real practice, the sys

tem has been tested on a real subject, and all important steps comprising real-time 

ECG acquisition, peak detection, data storage and transmission via TCP/IP through 

internet have been assessed. The ECG wireless sensor node (Vernier EKG sensor 

integrated to IRIS mote) was placed on the subject’s chest and three electrode tabs 

were attached to his arms. The ECG data were successfully collected, sampled at 740 

Hz frequency by IRIS mote and transmitted over sensor network to the base station. 

The first test was to check the performance of notch filter on the powerline noise 

removal. The 60 Hz hum noise on the subject’s ECG data has been removed via 

two different methods: (i) wiring the ECG sensor to the earth ground which confined
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Figure 3.15: The graphical user interface developed in MATLAB for providing real
time monitoring, recording and transmission of the ECG signs.

the subject’s movement, (ii) using designed HR digital notch filter which gives the 

subject free movement. The results obtained by two methods had excellent consis

tency which verifies the performance of notch filter. In the next step, subject’s heart 

beat has been calculated by ECG peak detection using DW T and compared to the 

simultaneous results obtained by high accurate digital wrist heart beat meter; the re

sults were well matched. Finally data transfer was also evaluated by communication 

between two computers and one Computer and a Black Berry cell phone (server and 

client), via TC P/IP ; the monitoring of received ECG data on the client system was
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successfully and precisely performed with 5 seconds delay.

In a joint project, the smartphone-based platform for client remote visualiza

tion has been also developed by Eliud Kyale. This BlackBerry ECG Application 

was completely designed by him as a partial fulfillment of the requirements for his 

Bachelor degree at University of Western Ontario. This client program runs on Black- 

Berry smartphone as it offers unique features for developing Java application. The 

BlackBerry communicates with Personal Server using TCP/IP connection. On the 

BlackBerry cell phone, we had the option of writing the cell phone client software in 

Java. To develop the code, we used the BlackBerry Java Plug-in for Eclipse including 

an updated Eclipse Software Update for the BlackBerry Java SDK [69]. The Eclipse 

Software Update includes updated APIs, such as an API to build a context-sensitive 

pop-up menu. The Java Plug-in for Eclipse provides an integrated BlackBerry smart

phone specific development, debugging and simulation workflow. After developing our 

application, we set the BlackBerry Java Development Environment to use a Black

Berry Smartphone Simulator [70]. With a BlackBerry Smartphone Simulator, we can 

run and debug applications as if they were on an actual BlackBerry smartphone. In 

this application, we used Simulator Model Bold 9700. We designed a communication 

protocol called EKGCommProtocol which establishes the communication between 

the BlackBerry and the server. This protocol includes commands such as Handshake 

Command, Send Data Command and Closed Connection Command. As three cycles 

of ECG data (almost 5 KB) arrives at the phone in real time, the TCP/IP thread 

sends the data to the plotting thread for displaying the ECG graph on the screen. 

To improve the aesthetics of the ECG signals display on the application, we have 

included an animated background to mimic the heartbeat rhythm. A screenshot of 

the Black Berry Java development environment and simulator for the Bold 9700 is 

shown in Figure 3.16.
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Figure 3.16: A screenshot of the Black Berry Java development environment and 
Smartphone Simulator for the Bold 9700.

3.5 Conclusion

This Chapter presented a system prototype of wireless sensors for medical care within 

the framework of Body Area Network standardization. Our approach to develop a 

combined hardware and software platform for the WBAN nodes were described and 

discussed. In addition to developing WBAN nodes, the personal server interfacing 

between the WBAN sensor nodes and Wide Area Network was implemented on PC. 

The PS was responsible for providing multiple functionalities such as real-time visual

ization, memorizing, analyzing and communication with clients requesting connection 

over internet. The developed system takes advantage of interaction with sensor net

work nodes using MATLAB. Several test has been performed to assure the feasibility 

and accuracy of the system. The system features a clean design based on the unique 

characteristics of patient monitoring in general hospital units which include of (i) 

maintaining periodic and real-time transmission of ECG signs , (ii) providing a user 

feel of comfort, and (iii) giving high speed access to wireless networks.



Chapter 4

Statistical Characterization of Wireless 

Channel between Body Area Network

Nodes

4.1 Introduction

In this chapter we characterize the wireless channel structure for the communication 

link between the sensor node placed on human body surfaceumd the external receiver 

node placed near the computer server. In order for a Body Area Network (BAN) to 

operate in the desired manner, it is essential to guarantee that the communication 

between the mounted sensor nodes and base node takes place in the right way. In 

BAN, the dynamic nature of the human body, complexity of the human tissues struc

ture and body shape give variation to the traditional radio channel [71]. Hence, it 

becomes difficult to extract a simple channel model.

In wireless communication, two types of mathematical channel modeling are 

employed to describe the radio channel,and evaluate the performance of different 

physical layer proposals; (i) a stochastic modeling and (ii) theoretical modeling.

The statistical modeling has proven to be a powerful approach to considera

tion of most problems related to information transmission. It is the fact that any 

real signal, propagation channel, and interference all have stochastic nature [72]. In



this approach, the essential properties of the signal propagation, such as narrowband 

fading, are captured by probability distributions. It is involved in collecting a set 

of measurements for a very large population of transmit-receive (T-R) paths in a 

specific environment [73]. The alternative approach -theoretical modeling- contains 

fundamental principles of electromagnetic propagation and precise modeling of a spe

cific situation at radio link level. This approach benefits from computer programs 

that (1) emulate the physical environment, (2) use wave propagation physics to pre

dict the radio signal produced at any receive point from any transmit point, and (3) 

account for transmission through walls and diffraction around walls. '

Thus far, a limited number of studies have been carried out to characterize the 

statistical on-body wireless channel. These studies exist on modeling the pathloss 

and amplitude distribution of both narrowband and UWB wireless BAN’s at differ

ent frequencies [24, 28]. Fading characteristics within the European 868 MHz band 

have previously been investigated for body worn communication in WBAN applica

tions [74]. The authors used Mica2Dot wireless sensor motes (based on CC1000) in 

their study. Alomainy et al. [27] studied on body pathloss distribution for a sta

tionary user in an anechoic chamber and laboratory environment using microstrip 

patch antennas at 2.45 GHz. The authors suggested that the pathloss distribution 

was well described by the Lognormal, distribution and that the human body is the 

leading shadowing factor in WBAN. Fort et al. [24] have carried out one of the most 

comprehensive studies on describing both the UWB and narrowband radio channel 

around the human body in a typical indoor environment. They have published several 

papers in this regard [20]-[24]. They also developed practical models which have been 

used to evaluate their performance in WBANs. They have been able to report some 

first order statistics for small scale fading in an indoor environment while the user 

was stationary [22] and in the case of partial movement of arms [23]. Furthermore,
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to understand the narrowband radio propagation near the body, they have measured 

electromagnetic waves of the 915 MHz and 2.45 GHz around torso [24]. Their mea

surement showed that the pathloss of energy diffracting around the body follows the 

expected exponential trend, but flattens out due to the influence of multipath compo

nents reflecting from the surrounding, environment. The small-scale fading has been 

represented by a Ricean distribution with a K-factor decreasing as the amplitude.of 

the initial diffracting wave decreases. It approaches the Rayleigh distribution when 

the transmitter and receiver located on opposite sides of the body; in this situation 

the multipath reflections from the surrounding environment are dominant; Reusens 

et al. [31] have characterized the physical layer in terms of pathloss, delay spread, 

and mean excess delay for narrowband communication at 2.45 GHz between two half 

wavelength dipoles near a realistic human body. In their study, the GDF of the devia

tion of measured pathloss and models were described by a Lognormal distribution. In 

addition, the pathloss exponent was about 3.1 when the subject located in free space. 

Kim et al. [26] has introduced the dynamic on-body channel measurements obtained 

using a real-time channel sounding systems. The measurement were performed using 

a. male subject in a radio anechoic chamber and the investigation of the statistical 

characteristics in specific action scenarios were presented. In their studies, they found 

that the Weibull distribution has the best match under dynamic channel behavior.

Beside the amplitude distribution and the pathloss model, the link estimation is 

also an important factor in protocol design and has been focused by many researchers 

interested in extracting asymmetry correlation between RSSI, LQI and PRR. One of 

the first attempts on systematic measurements of packet delivery in wireless sensor 

networks has been performed by Zhao et al. [75]. They positioned Mica motes in 

a simple linear topology in three separate environments. From their measurements 

(without any encoding), they indicated that links with PRR of at least 95% has high
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RSSI while the converse is not true. It was concluded that such PRR was most
' 1 o

likely due to multipath effects as there was little correlation between high RSSI and 

PRR. Later, Polastre et al. [76] presented preliminary evaluation results for Telos 

motes (based on CC2420) and recommended that the average LQI is a better indi

cator of PRR than RSSI. Soon after, Srinivasan et al. [77] at Stanford University 

presented preliminary evaluation for Telos motes. Their results contradicted the pre

vious works as they showed that RSSI has a good correlation with PRR rather than 

LQI. Moreover, they explored a temporal and spatial correlation of packet delivery 

and link asymmetry in their recent publication [78]. Their study clarified a funda

mental challenge in packet-based network studies: one can only measure successfully 

received packets. Simply disabling CRC checking does not result in meaningful data, 

as random RF noise can often appear to be a start symbol. Therefore, all measure

ments are biased. A number of studies have discussed the interference caused by the 

human body and diverging environments on radio communications. In this regard, 

Jea et al. [34] presented some results on connectivity in a body area network using 

the mica2dot motes. They have measured link qualities between nodes at different 

on body positions under various RF power levels for two scenarios of standing and 

walking. Their results suggested good connectivity among all nodes on a body be

yond a certain transmit power. The works carried out by Papagiannaki et al. [33] 

took another steps toward understanding of the on body 2.4 GHz link characteristics. 

They used Intel Mote 2 devices and placed them on three areas: the chest, the right 

side of the waist and the right ankle, while setting the transmit power of the radio 

at 0 dBm. They showed that nodes location, as well as body location, significantly 

affects connectivity.

In all the above mentioned works on sensor networking, the authors presented 

preliminary results which are the initial step toward a better exploring the charac



teristics of wireless communication between on body sensor nodes especially for prior 

crossbow motes such as micaZ, Mica2Dot, and Telos. In this thesis, we will evalu

ate the newer set of crossbow motes called IRIS (based on RF230) and we believe 

that measuring these network characteristics can facilitate exploration of protocols 

functionalities in that network. In this network, it is necessary for the wireless com

munication channel between nodes to be studied in the environment that wearable 

systems are implemented. In fact, the nature of local environment is responsible for 

the performance of radio communication systems. Environment plays an important 

role in variation of communication channel and link estimation metrics due to complex 

propagation mechanisms such as diffraction, reflection and scattering. Furthermore, 

the propagation channels vary as the mobile device moves behind the walls, desks, 

and other objects.

4.2 On-Body measurements ^ <

This section describes the measurement set up, environment, and procedure used for
' \ .

extracting channel parameters.

4.2.1 System

The body worn measurement system consists of two Crossbow IRIS wireless sen

sor motes and one MIB520 base station. Each IRIS board contains ATmegal281 

microprocessor [42] as a data processing unit and AT86RF230 [43], a low-power ra

dio transceiver. The radio used by the IRIS is an IEEE 802.15.4 compliant RF 

transceiver designed for low-power and low-voltage wireless applications. It uses At- 

mel’s AT86RF230 radio that employs O-QPSK (’’ offset quadrature phase shift key

ing” ) with half sine pulse shaping. The 802.15.4 radio includes a DSSS (digital direct
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sequence spread spectrum) baseband modem providing a spreading gain of 9 dB and 

an effective data rate of 250 kbps. The radio is a highly integrated solution for wireless 

communication in the 2.4 GHz unlicensed ISM band [41]. In this experiment, one of 

the IRIS mote acts as the base station receiving the packets and the other IRIS mote 

is mounted on the subject’s waist as a RF source. For IRIS, RF transmission power is 

programmable from 3 dBm to -17.2 dBm. Lower transmission power can be useful by 

minimizing interference, maximizing energy efficiency, and decreasing human expo

sure to electromagnetic radiation. On the other hand, the higher transmission power 

reduces the fading, We therefore programmed the transmission power to the medium 

value of 0.5 dBm for having both sides advantages. Moreover, the radio was tuned 

within the channel 11 of IEEE 802.15.4 with a bandwidth of 5 MHz. The receiver is 

kept stationary on the desk (with the height of 90 cm), connected to computer server 

via USB. The Computer Server is programmed to record the link estimation metrics 

(RSSI, LQI and the number of received packets), in each cpcle of broadcast.

The Sending IRIS broadcasts packets with a rate of 70 packets/second for a 

period of 10 seconds. The motes were programmed with TinyOS and running the 

code developed and explained in Chapter 3. A man of age 28, mass of 80 kg and 

height of 178 cm, served as a test subject. The IRIS mote was fixed on his waist and 

all the measurements were taken in two distinct indoor environments; office room and 

corridor.

4.2.2 Environment

The experiments were performed in two different environments: (1) The indoor office 

labeled with 344 and (2) corridor labeled with TA 37 in Figure 4.1. The floor and 

ceiling of the indoor office and corridor consist of 3 1/2 inch concrete over a corrugated
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steel deck. The interior partitions are 1/2 inch drywall over 2 x 4  steel studs. The 

office area also contains several PCs, chairs, desks, and shelves.

4.2.3 Procedure

The floor plan of environments was uniformly meshed having total number of 31 

and 36 nodes in the office and corridor (shown in Figure 4.2), respectively. For 

each action scenario, several measurements were conducted on the labeled nodes. 

However, there were some nodes in corridor marked with green color in Figure 4.2 

which were out of network coverage and couldn’t communicate with base station. The 

measurements therefore were made at 24 locations marked with red circles in corridor. 

The measurements in each environment include three action scenarios of standing, 

sitting, and walking. The test subject was instructed to stand/sit motionless with 

arms hanging at his side on each node in both test environment for 10s. The test 

subject then asked to walk in a natural manner along thevmarked locations. For 

robustness, the measurements were repeated for two individual trials of each action 

scenario. It should be noted that during experiment, the receiver was kept stationary 

near the computer server inside an office area marked with black rectangle. Roughly 

342 snapshots (interval of 10s) at each marked location and each action scenario were 

taken via IRIS motes.
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Figure 4.1: The floor plan of the indoor office and Corridor area.
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Figure 4.2: The floor plan of environments was uniformly meshed having total number 
of 31 and 36 nodes in the office and corridor area. v :



4.3 Spatial correlation of link estimation metrics

Since link estimation is an important factor in protocol design, in this section, we 

shall examine the correlation between link estimation metrics, i.e: RSSI, LQI, and 

PRR, for the real channel condition. The data used in this section are based on 

the measurement explained in section 4.2. The data were processed in two different 

environments (Indoor office and corridor) and for three actions of standing, sitting, 

and walking resulting in 6 scenarios. Link estimation metrics are referred as physical 

layer parameters that the node can measure. They can be categorized and defines as 

follow:

• Received signal Strength (RSSI), which is the strength of a received RF signal. 

The RSSI is read directly from the AT86RF230 Radio and sent with every radio 

packet received.

• Link Quality Indication (LQI), which is the characterization of the strength and 

the quality of the received packets varying from 0 to 255 in IRIS motes.

• Packet Reception Rate (PRR), which is the ratio between the number of received 

packets and transmitted packets.

4.3.1 Packet Reception Rate (PRR)

In order to extract the correlation between physical layer parameters, we have plotted 

the PRR versus variations of RSSI, LQI, and distance. As explained in section 4.2.3, 

for each environment, the measurements were conducted at different grid nodes. In 

each node, the link estimation metrics were recorded during 10 seconds and repeated 

for two trials. Figure 4.3 and 4.4 depict the plots of PRR versus variations of RSSI for 

office area and corridor, respectively. For the PRR versus RSSI plots, we first plotted
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average RSSI and PRR (computed over 70 packets received) at each grid node shown 

with circles and triangles for first and second trials respectively. On the same axis, 

we then plotted the variation of PRR versus the mean RSSI which are computed 

over all packets received in each gride node shown by dashed and solid lines (only 

for standing and sitting scenarios). In each location grid, receiving 70 packets takes 

approximately 1 second, so circles and triangles display the channel variation over 

time while the dashed and solid lines indicate the spatial behavior of the channel.

In general, the diagrams show a strong correlation between RSSI and PRR 

values which proves the stability of RSSI over different locations and times. In detail, 

it can be concluded from Figures 4.3(a) and 4.3(b) that for all RSSI values measured 

in standing and sitting scenarios inside office area, the PRR is at least 80% indicating 

a very reliable link. However, small variations are observed in RSSI values which are 

made by attenuation and noise floor. We will investigate modeling their variations 

in next section. Moreover, the few outliers surrounded by red triangles in both plots 

(Figures 4.3(a) and 4.3(b)) have PRR values less than 80%. However, for the walking 

scenario shown in Figure 4.3(c), for the RSSI values less than -75 dBm, the PRR 

values are less than 80% which point out the weakness of link for the subject walks 

along marked locations inside office.
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Figure 4 .3 : Variation of P R R  w ith respect to R SSI for three actions of (a) Standing,
(b) Sitting, and (c) W alking in indoor office area.
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(a)

(b)

(c)

Figure 4 .4 : Variation o f P R R  with respect to R SSI for three actions of (a) Standing,
(b ) Sitting, and (c) W alking in corridor area.



Figure 4.4 displays the variation of PRR versus RSSI values for measurements 

taken in corridor area. The plots show that for weak RSSI values, we enter a rectangle 

region where the PRR varies too much. Within this range, the PRR-RSSI curve is 

sharp and PRR varies from 100% to almost 0%. The instability of PRR vs. RSSI is 

particularly true as there is no direct line of sight from transmitter node to the base 

node in corridor. The width of instability region is about 3, 2, and 5 dB for standing, 

sitting, and walking actions, respectively. In brief, more significant variations are 

found when the transmitter is located and the link is weak for RSSI values below -86 

dBm. It is important to note that the -86 dBm is close to the sensitivity threshold 

of RF230 radio chip which is -91 dBm. That’s why for the RSSI values less than -86 

dBm, the Packet Reception Rates drops dramatically.

In addition to investigation of varication of PRR versus RSSI values, the vari

ation of PRR with respect to LQI has been considered in this study as depicted in 

Figure 4.5 for office area and Figure 4.6 for all users scenarios in corridor. For LQI 

plots, we repeated the same procedure we carried out for RSSI plots.
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(a)

(b)

(c)

Figure 4 .5 : P R R  versus L Q I for three actions of (a) Standing, (b) Sitting, and (c)

W alking in indoor office area.
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(a)

(b)

( c )

Figure 4 .6 : P R R  versus L Q I for three actions of(a) Standing, (b) Sitting, and (c)
W alking and in corridor area.
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Figure 4.7: Conditional Packet Error Rate versus LQI

Figures 4.5 and 4.6 show that there is a high variation on PRR values for any 

given LQI value. Based on the RF230 datasheet [43], the LQI values between 200 and 

255 correspond to maximum quality frame and Packet error rate of 0% as shown in 

Figure 4.7. As a result, LQI values above 250 should indicate good and reliable link. 

However, in this study, even some high values of LQI ard~ corresponding to Packet 

Reception Rates of 70%. Similarly, if we look at the variations of average LQI values 

computed for all received packets in each location, we can figure out that they don’t 

follow a smooth curve suggesting weak correlation with PRR; It is important to note 

that this curve is even sharper for corridor measurements displayed in Figure 4.6(a) 

and 4.6(b). Our observation on plots of PRR versus LQI for all 6 scenarios suggests 

that a single LQI value is insufficient to be measured as link metrics. This fact 

support the work carried out by researcher [78] at Stanford University on the micaZ 

motes equipped with CC2420 radio chip. They proved that LQI is a probabilistic 

quantity and thus a single LQI value can not be used as a link quality indicator for 

intermediate links.



Besides investigation of the correlation between physical layer parameters of 

the network, we also tried to figure out the relation between PRR and distance. 

Our focus lies on verifying the PRR variation with respect to the distance between 

transmitter and receiver nodes. We can, therefore, evaluate the performance of link 

estimation metrics while the subject wearing the RF source is mobile and moves to 

different locations. The plots of PRR versus distance for standing and sitting scenarios 

performed in both environments are demonstrated in Figure 4.8 and 4.9. Remember 

that for walking scenario, the subject was asked to walk in a natural manner along all 

the marked locations inside office and corridor without any stops. Hence, all the link 

estimation metrics were recorded continually without specifying subject’s location. 

So, we couldn’t extract corresponding PRR for each distance between nodes and our 

observations are limited to standing and sitting scenarios.

The plots of PRR versus distance (Figures 4.8 and 4.9) show that PRR values 

and distances between nodes are not correlated. For measurements taken in office 

area (Figure 4.8(a) and 4.8(b)), at every distances between nodes, the PRR values 

are above 80% and no specific relation between PRR and distance is found. The same 

behavior can be observed from the measurements made in corridor for sitting scenario 

(Figure 4.9(a)). However, for user standing state in corridor, there is a distance range 

in which PRR values drop below 80%. The width of this range is almost 9 meters as 

shown in Figure 4.9(b).
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(a)

(b)

Figure 4 .8 : P R R  versus distance for two actions o f (a) Standing and (b) Sitting in
indoor office area.



PR
R

Chapter 4-' Statistical Characterization of Wireless Channel between Body Area Network Nodes 60

£O'
Q.

•  PRR over 70 packets received in 1 sec for Trial 1 
► PRR over 70 packets received in 1 sec for Trial 2 

0-1 PRR over all packets received in each location for Trial 
—  PRR over all packets received in each location for Trial
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Figure 4 .9 : P R R  versus distance for two actions o f (a) Standing and (b) Sitting in
corridor area.
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Environment State n RSSIq [dBm] do [m]
Office Standing 1.503 -52.06 1.47
Office Sitting 0.92 -58.7 1.47

Corridor Standing 1.685 -71.12 5.18
Corridor Sitting 1.515 -72.23 5.18

Table 4.1: The curve fitting results for Lognormal pathloss model for indoor office 
environment.

Since, we couldn’t determine a relation between distance and Packet Reception 

Rates for all scenarios, we will instead investigate the relation between RSSI and 

distance rather than PRR and distance. Moreover, RSSI was also found as a good 

candidate for indicating the link quality. This knowledge can be used for tracking 

the user while wearing the RF source. This relation can also adapt the route if the 

links reliability suddenly drops. Note that RSSI values are usually used for distance 

estimation.

4.3.2 Pathloss model

Figure 4.10 and Figure 4.11 represent the variation of RSSI as a function of distance 

between nodes; this suggests that a strong correlation exists. Clearly, the RSSI 

decreases as the distance from the RF source increases. In order to find their relation, 

we fitted the known log-normal pathloss model to the average RSSI values versus 

distance computed for all packets received in each location for actions of standing 

and sitting in test environments. The curve fitting results are listed in Table 4.1.
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Figure 4 .1 0 : R SSI versus distance for two actions of (a) Standing and (b) Sitting in
indoor office area.
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Figure 4 .1 1 : R SSI versus distance for two actions o f (a) Standing and (b) Sitting in
corridor area.



Before comparing results, we briefly review the log-normal pathloss. The widely 

used radio propagation model, the log-distance path loss model, considers the received 

power as a function of the transmitter-receiver distance raised to some power. The 

log-distance path loss model defined as:

RSSI(d)[dBm] =  RSSI0 -  lOnlg A ,  (4.1)
“ 0

where d is the transmitter-receiver distance, n the attenuation constant (rate at which 

the signal decays), and RSSIq the signal strength value at reference distance do. 

Usually, n is obtained through curve fitting of empirical data. Here, we used the 

Curve Fitting Tool ( CFTool) available in MATLAB toolbox for fitting the Lognormal 

pathloss model to the empirical RSSI values. As listed in Table 4.1 for all scenarios, 

an attenuation constant, n, is less than 2 used for free space. This is caused by the 

signal reflection from walls, ground, and ceiling. Reflection also causes the variation 

in the RSSI value as it strengthens or weakens the signal. Note that the n values

for indoor office area are less than corridor because the reflection and scattering in
\

office area are intensified since the indoor office contains several desks, cupboards, 

and PC. For the experiments conducted in corridor area, no direct line of sight path 

is available due to the location of the transmitter at the waist of the human body 

and the receiver near a computer server in the office area. So, it is expected for the 

received signal powers undergo more attenuation. This fact has been experimentally 

observed from the range of RSSIq values for do in both environments. As listed in 

Table 4.1, the RSSIq values for corridor environment are -71.12 dBm, -72.23 dBm 

which are more than the values estimated in indoor office, -52.06 dBm and 58.7 dBm.

As the RSSI values have strong correlation with the packet reception rate and 

distance, they can be counted as good link indicators. We also focus the rest of
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our study on providing a statistical model to determine the variation of the received 

signal level over time and location. The proposed model would characterize the effect 

of multipath and pathloss pattern on received signal attenuation and distortion.

4.4 Fitting of Amplitude Distribution

A reliable statistical model is needed to determine how much the received signal level 

(RSSI) can vary. Using this approach, we can characterize the fading statistics on 

body links that occur with body motion and change of body position in the test 

environment. Based on the measurements explained in section 4.2, a total of 242820 

samples of received power are logged at a rate of 70 Hz for two different environments. 

For each environment, the data are analyzed for three actions of standing  ̂ sitting,' 

and walking resulting in 6 scenarios. We analyze the combination of multipath and 

pathloss effects by processing the distribution of the received signal power obtained 

over different locations inside the environment.

We characterize both large scale and small scale statistics by fitting the received 

powers'at different locations of the measurement grid to the well known distributions 

including Normal, Lognormal, Gamma, Rician, and Weibull [26]. The probability 

density function (PDF) of the well-known distributions for the power of received 

signal, x, is given by:

• Normal

f(x\n,a) =  —^ = exp { ^  } (4.2)
o\f 27t

• Lognormal

/(X|" ' a) =  ~ (fal2 ^  * l }  : ■ <43)
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Gamma

= W M x“' lexp{ï } ' (4.4)

Weibull

f(x\d,b) =  .«
ba ^exp{-^-Ÿ if x  >  0 

0, else

• Rician

f(x\s,a) =  ~^exp{ K o (p ) , (4.5)

All distribution parameter estimations are obtained on a 95 confidence interval using 

the maximum likelihood estimation via mle(.) function available in the statistics 

toolbox of MATLAB. We used the Akaike information criterion (AIC) rather than 

a hypothesis tests such as KStets for choosing the best model among the set of 

candidates [23]. The Akaike criterion will be briefly described in the next section.

4.4.1 Akaike Information Criterion

The AIC is an entropy-based model selection criterion that rewards goodness of fit, 

while at the same time penalizing for increased model orders with the aim of avoiding 

over fitting. The first-order AIC is defined as follows [79];

AIC =  —21oge(£(6)\data) +  2k, (4.6)

where the expression \oge{t{6)\data) is the numerical value of the log-likelihood at 

its maximum point. The maximum point on the log-likelihood function keeps up a 

correspondence to the values of the maximum likelihood estimates. The number of 

estimable parameters in the model is denoted by k. The first term (loge(i(6)\data))



represents the log-likelihood estimates which, indicates that better models have a 

lower AIC and tends to decrease as more parameters are added to the approximation 

model. On the other hand, the second term, 2k, increases as more parameters are 

added to the approximation model. This is a trade of between under fitting and over 

fitting which helps us to select the model that has the best fit with the least number 

of parameters.

The AIC is on a relative scale which is strongly dependent on sample size and 

an individual AIC value, by itself, is not meaningful due to the unknown constant 

scale. In practice, the relative values of AIC among the model sets are used to select 

the best models. Thus, AIC differences Equation (4.7) and weights Equation (4.9) 

are usually interpreted as follows:
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A 2- =  AlCi — min(AIC), (4.7)

where AIC\ is the AIC value for the model index i. A i values are used for a quick 

comparison, ranking of candidate models, and AIC weights. Clearly, the best model 

among the set of models has a delta AIC of 0. The larger Aj is, the less plausible 

it is in the way that values between 37 indicate that the model has considerably less 

support, while values greater than ten indicate that the model is very unlikely. The 

Akaike weight (Equation (4.9)) gives an efficient way to scale and interpret the A$ 

values. It is also called as the probability of being the best model in the set [23].

(4.8)

where R is the number of models. The uji depends on the whole set and it should 

be recomputed if a model is added or dropped. Moreover, the ratio of two AIC



weights depicts how much more likely one model is better compared to the other. 

To summarize, in fitting application, the AIC value, difference, and weight should be 

computed for each of the candidate models.
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4.4.2 Analysis of the results for Indoor office environment

Five probability distributions (Normal, Lognormal, Gamma, Rician, and Weibull) 

which all have been used to model WBAN channel [26], are considered in this study. 

Table 4.2 shows the summary of distribution parameter estimates, subsequent AIC 

values, deltas (Aj-) and weights (wj). The results are reported separately for measure

ments taken in different actions of standing, sitting, and walking scenarios.

Model selection is based on the AIC theory. According to Akaike’s theory, 

(explained in section 4.4.1) the most accurate model has the smallest AIC and its 

Akaike weight is one. Clearly, the AIC values provejhat the Normal distribution 

provides a stronger fit to the received amplitude for action of standing. In addition 

to Normal distribution, this action is also supported by Rician distribution as its 

AIC weight is equal to 0.4. AIC indices calculated for the sitting scenario favored 

the Lognormal distribution to the received power signals. Although the AIC can be 

deployed to choose the best fitting distributions in the set of candidates, it is not 

surprising if none of the models provides the best fit to the measured received signal. 

In other words, if all the models are very poor, AIC will still choose the one estimated 

to be best even though that relatively best model might become poor in an absolute 

sense. Thus, every effort must be made to ensure that the set of models is well 

founded. We, therefore, need to confirm the best model graphically using Probability 

Density Function (PDF), and Cumulative Density Function (CDF). The theoretical 

Normal, Lognormal, Gamma, Rician, and Weibull models fitted to empirical PDF



and CDF of the received amplitude are illustrated in Figure 4.12, Figure 4.13, and 

Figure 4.14. I

Table 4.2: MLE parameter estimated and AIC values 

computed for five common distributions for indoor office 

environment.  ̂ :
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State Distribution AIC

105 o
 

>
CO

OJi Parameter

Estimate

Mean

(dBm)

Std. Dev. 

(dB)

Standing Normal 2.98048 0 0.8 /i =  -70.42 

<7 =  7.3

-70.43 53.29

Lognormal 3.00026 1.978 0 H =  4.24 

a =  0.11

-70.43 56.72

Gamma 2.99146 1.098 0 a__f= 90.08 

b =  0>8

-70.43 55.05

Rician 2.98052 0.004 0.11 s =  70.04 

a =  7.32

-70.42 53.29

Weibull 3.01208 3.160 0 a =  73.67 

b =  6.38

-70.16 68.40

Sitting Normal 2.90162 1.860 0 ft =  -69.72 

a =  6.38

-69.72 . 40.76

Lognormal 2.88302 0 1 fi =  4.24 

a =  0.09

-69.72 39.56

Gamma 2.88798 0.496 0 a =  122.32 

b =  0.57

-69.72 39.74

Rician 2.90154 1.852 0 s =  69.42 -69.72 40.75

Continued on next page
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Table 4.2 -  continued from previous page

State Distribution AIC

105 o
 

>
CO

 
**• Ui Parameter

Estimate

Mean

(dBm)

Std. Dev. 

(dB)

a =  6.4

Weibull 2.99662 11.360 0 a =  72.37 

b =  10.42

-69.31 64.28

Walking Normal 0.68208 2.912 0 ß — 69.35 

a =  6.37

-69.35 40.65

Lognormal 0.67917 0 l ß =  4.23 

a =  0.091

-69.35 40.03

Gamma 0.67984 0.668 0 a =  120.19 

b =  0.57

-69.35 40.01

Rician 0.68207 2.9 0 s~= 69.05 

a — 6̂ 38

-69.35 60.12

Weibull

1

0.70076 21.592 o a =  72.33 

b =  10.68

-69.35 74.35
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(a)

(b)

Figure 4 .1 2 : Em pirical and M L E  fitted (a) P D F  and (b) C D F  of the received signal

power for the action of standing in indoor office area.
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(a)

(b)

Figure 4 .1 3 : Em pirical and M L E  fitted (a) P D F  and (b) C D F  of the received signal

power for the action of sitting in indoor office area.
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(a)

(b)

Figure 4 .1 4 : Em pirical and M L E  fitted (a) P D F  and (b) C D F  of the received signal

power for the action of walking in indoor office area.
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The PDF and CDF plots (Figure 4.12, Figure 4.13, and Figure 4.14) suggest 

that , the analysis of the indoor office wireless , channel using traditional distribution 

may not be entirely appropriate. It is clear from the Figure 4.12(a) that for standing 

scenario the Normal and for sitting (Figure 4.13(a)) and walking (Figure 4.14(a)) the 

lognormal models provide a good but not the best fit. This notices that we need 

to consider the other models which have not been concluded in the set. We shall 

add a new model to the set and the AIC deltas (A¿) and AIC weights (u^) must be 

recomputed for all the models in the newly defined set. In our case, an inspection of 

the distributions of the received signal power (Figures 4.12(a), 4.13(a), and 4.14(a)) 

reflects a mixture of distributions rather than one distribution. Obviously, their PDFs 

consist of several random and deterministic clusters. A practical method for modeling 

the probability density function including multiple clusters is to fit the resulting 

amplitude distributions with a mixture of a number of Gaussian probability density 

functions. For this reason, we concentrate on Gaussian Mixture Model (GMM) to 

explain the Wireless body Area Network propagation channel in an indoor office. A 

main advantage of using GMM is that it leads to mathematically tractable signal 

processing solutions. A GMM (Equation (4.9)) is a weighted sum of k components 

Gaussian densities as given by the following equation [80],

K
/(z|A) =  J2wig(x\M,ai), (4.9)

¿ = 1

where x  is a D-dimensional continuous-valued data vector, Wi,i =  1 , K, are the 

mixture weights, and g(x\fii, crj),z =  1, K  are the component Gaussian densities, 

with the mean vector and covariance matrix a g The mixture weights satisfy 

the constraint that =  1. The mixture weight can be interpreted as the

expected fraction of the number of vectors from the process X{ associated with the



mixture. The complete Gaussian mixture model is parameterized by the mean 

vectors, covariance matrices and mixture weights from all component densities. These 

parameters are collectively represented by the notation,

X =  {w i,fii,ai},i =  l,2 ,...,K . (4.10)

The EM algorithm [81] which is an iterative maximum likelihood (ML) estimation 

method has been employed to calculate the parameters of a k-mixture Gaussian PDF 

model for measured signals. In the statistics toolbox of MATLAB, the function fit ' 

(gmdistribution) fits GMM to the data utilizing the expectation maximization (EM) 

algorithm. This algorithm assigns posterior probabilities to each component density 

with respect to each observation. Clusters are assigned by selecting the component 

that maximizes the posterior probability. Similar to k-means clustering, GMM uses 

an iterative algorithm that converges to a local optimum.

Besides graphical visualization using PDF and CDF, the Akaike Information 

Criterion (AIC) is also used to determine an appropriate number of components for 

a model when the number of components is unspecified in GMM. Here, we computed 

AIC for GMM with finite number of components (k =  1,2,..., 10) and the results 

are shown in Figure 4.15. As indicated in the figure, the AIC value decreases as the 

number of component increases.
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(a)

(b)

(c)

Figure 4.15: The Akaike Information Criterion computed for GMM with finite num
ber of components (k =  1, 2, 10) for the actions of (a)standing, (b)sitting, and 
(c)walking.



In order to determine the appropriate number of GMM components with respect 

to AIC values, two different methods have been deployed in this study. The first 

approach seeks to characterize the physical propagation by extracting several clusters 

from the distribution, While the second one tries to analyze the system performance 

for the signals transmitted from the RF source worn by subject in different scenarios.

4.4.2.1 First approach: Cluster and Ray components

The distributions of received signal consist of several clusters due to especial condition 

of the measurement environment and shape of human body. The indoor office contains 

several desks, cupboards, and PCs which intensify scattering and reflection effects. 

We characterize these clusters by fitting the resulting amplitude distributions with 

a mixture of a number of gaussian probability density functions; Gaussian Mixture 

Models are the most statistically mature methods for clustering.

As stated before, we use the MATLAB function, gmdistribution.fit, in order to 

fit the multivariate Gaussian mixture to the data set. Each multivariate Gaussian 

component is defined by its mean and variance, and the mixing proportions. For the 

sake of simplicity, we assume that each local maximum in distribution corresponds 

to an individual cluster, and each cluster is distributed normally. We, therefore, 

estimate the mean, variance, and mixing proportions of each cluster as a separate 

component of Gaussian Mixture Model. As a result, the number of discrete picks or 

local maximum defines the number of components for GMM.

Figures 4.16, 1.17, and 4.18 display the clusters extracted from all measure

ments in an indoor office. For standing scenario, we found that the GMM with 10 

components gives the best fit with the empirical distribution (Figure 4.16(a)). This 

is particularly true as it can totally characterize the mixture of clusters observed in 

distribution and its subsequent AIC value is the minimum among the.AIC values of
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the GMM with finite components from 1 to 10 (Fig. 4.15(a)). However, we tried to 

fit the GMM with less components to the data set but an ill-conditioned covariance 

matrix occurred while estimating the parameters in a GMM with number of compo

nents between 5 and 10. For instance, we applied the GMM with 9 components to 

the empirical distribution and the ill-conditioned covariance matrices were removed 

by adding a very small positive number to the diagonal of covariance matrix. The 

empirical PDF and CDF diagrams of GMM with 9 components are plotted to ensure 

that GMM with 10 components provides a better fit. The results are shown in the 

same plot (Figure 1.16). It is obvious from the PDF plot (Figure 4.16(a)) that 9 

components can’t characterize all the clusters as well as 10 components. However, 

the difference between CDF plots, Figure 4.16(b), is negligible.

The GMM with 9 components was also found to account for user sitting scenario 

in this environment (Figure 4.17(a) and 4.17(b)). Similar to standing scenario, there 

were an ill-conditioned covariance matrix for estimating the parameters in a Gaussian 

Mixture Model with number of components less than 9, for instance 8 components.

Finally, the GMM with 9 components provided a superior fit to the measured 

received power for walking scenario (Figure 4.18(a) and 4.18(b)).

Chapter 4■' Statistical Characterization of Wireless Channel between Body Area Network Nodes 78



cd
f

Chapter f :  Statistical Characterization of Wireless Channel between Body Area Network Nodes 79

(a)

(b)

Figure 4 .1 6 : E stim ated G M M  (a) P D F  and (b) C D F  w ith 9 and 10 com ponents for

the action of standing in indoor office area.



Chapter Statistical Characterization of Wireless Channel between Body Area Network Nodes 80

-75 -70 -65
Received Signal Power [dBm]

(a)

(b)

Figure 4 .1 7 : E stim ated G M M  (a) P D F  and (b) C D F  w ith 8 and 9 com ponents for

the action o f sitting in indoor office area.
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(a)

(b)

Figure 4 .1 8 : E stim ated G M M  (a) P D F  and (b) C D F  w ith 8 and 9 com ponents for
the action o f walking in indoor office area.



Table 4.3 presents the detail of GMM parameter estimated using EM algorithm 

and subsequent AIC values computed for extracting clusters in an indoor offices.

Table 4.3: Properties of GMM properties computed for : 

extracting clusters in indoor office area. :i
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State AIC

105

No. of

components

Parameter Estimate

■Ï Mean

(dBm)

Std.Dev.

(dBm)

Mixing

proportions

Standing 2.8233 10 1 -81.46 21.34 0.13

2 -78.89 0.42 0.043

3 -75.99 0.56 0.083

4 -72.88 0.73 0.14

5 -69.96 _ 0 .5 3 0.21

6 -67.11 0.^3 0.20

7 -64.20 0.62 0.09

8 -61.25 0.55 0.03

9 -58.23 0.21 0.007

10 -52.05 1.8 0.05

Sitting 2.98048 9 1 -83.81 15.30 0.064.

2 -76.74 5.18 0.17

3 -72.66 0.54 0.11

4 -69.72 0.68 0.20

5 -67.11 0.33 0.21

6 -63.94 0.38 0.13

Continued on next page
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Table 4.3 -  continued from previous page

State AIC

105

' No. of 

components

Parameter Estimate

Mean

(dBm)

Std.Dev.

(dBm)

Mixing

proportions

7 -61.01 0.33 0.08

8 -58.51 0.3 0.021

9 -54.78 1.84 0.006

Walking 2.98048 13 1 -77.82 25.12 0.2

2 -76 2e-20 0.04

3 -73.00 1.088 0.11

4 -69.83 0.57 0.14

5 -67.01 0.35 0.22

6 -64.06 0.54 0.14

7 -61.07 0^0 0.08

7 -58.41 0.27 0.025

9 -54.77 1.057 0.014

4.4.2.2 Second approach: the system performance analysis

The presented channel model can be also utilized in performance evaluation of the 

prototype system. In this section, we first determine the appropriate number of 

components for the GMM required to compute the probability of error. Then we 

apply the proposed channel model in evaluating the probability of error (section 4.5) 

for the modulation signals.

To obtain the error probabilities, one should average the conditional probability 

of error for the OQPSK modulation over the probability density function of signal



which depends on the ratio and not on any other detailed characteristics of the signals 

distribution. As a result, in contrast with the previous approach, here we don’t need 

to characterize the channel with many components. Theretofore, we shall minimize 

the number of components. For this sake, AIC will be employed to determine an 

appropriate number of components for a model. In this case, the GMM with 1,2, and 

3 were applied to the data set in this environment. The results of fitted model and 

empirical PDF and CDF of the received signal powers are displayed in Figures 4.19, 

4.20 and 4.21 for different scenarios of standing, sitting, and walking, respectively. 

Table 4.4 presents the estimated GMM with 1,2, and 3 number of component and 

subsequent AIC values, deltas and weights. Based on the AIC values, we found that 

GMM with three components obtains the superior fit compare to all three user status 

models in this environment. It is particularly true as their subsequent AIC values 

and deltas are minimum. The goodness of this fitting can be also observed from the 

PDF plots of GMM fitted to the data set (Figures 4.19(a), 4>20(a), and 4.21(a)). The 

parameters of the GMM with 3 components are listed in Table 4.5.
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(a)

(b)

Figure 4 .1 9 : E stim ated G M M  (a) P D F  and (b) C D F  w ith 1,2 and 3 com ponents for
the action of standing in indoor office area.
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(a)

(b)

Figure 4 .2 0 : E stim ated G M M  (a) P D F  and (b) C D F  with 1,2 and 3 com ponents for
the action o f sitting in indoor office area.
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(a)

(b)

Figure 4 .2 1 : E stim ated G M M  (a) P D F  and (b) C D F  w ith 1,2 and 3 com ponents for
the action of walking in indoor office area.
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Table 4.4: Estimated GMM with finite number of com

ponent 1,2,and 3 and subsequent AIC values, deltas and 

weights.

State No. of . AIC Ai UJi

Components 105 IO3

Standing 1 2.9805 9.562 0

2 2.9404 5.5537 0

3 2.8849 0 1

Sitting 1 2.9016 3.026 0

.... 2 ■ . 2.8714 0.0065. 0.0375

3 2.8715 0 0.9625

Walking 1 0.68208 0438 0

2 0.67806 0.036 v 0

3 0.67769 0 1

Table 4.5: Properties of GMM with 3 components com

puted for analyzing system performance in indoor office.

State No. of 

components

Parameter Estimate

Mean(dBm) Std.Dev.(dBm) ) Mixing proportions

Standing 3 1 -51.74 0.76 0.04

2 -73.06 50.77 0.58

3 -68.48 8.67 0.37

Continued on next page
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Table 4.5 -  continued from previous page

State No. of Parameter Estimate

components Mean(dBm) Std.Dev.(dBm) Mixing proportions

Sitting 3 1 -67.63 16.97 0.36

2 -74.32 46.46 0.36

3 -66.52 20.91 0.28

Walking 3 1 -76.99 32.95 0.15

2 -68.53 43.9 35.03

3 -66.28 5.6 9.61 :

We will use this channel model in order to calculate the probability of error for 

the O-QPSK modulated signals in the next section 4.5.

4.4.3 Analysis of the results for Corridor Environment

Again, the five common probability distributions (i.e. Normal, Lognormal, Gamma, 

Rician, and Weibull) are considered to model the wireless channel between BAN 

nodes for the case that experiment performed in corridor environment. Table 4.6 

briefly presents the distribution parameter estimates, subsequent AIC values, deltas 

(Af) and weights (u^).



Table 4.6: MLE parameter estimated and AIC values 

computed for five common distributions in corridor envi- 

i ronment.
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State Distribution AIC

105

A*

IO3

UJi Parameter

Estimate

Mean

(dBm)

Std. Dev. 

(dB)

Standing Normal 2.00224 0 0.5 pi =  -81.64 

a =  46.51

-81.64 6.82

Lognormal 2.00496 272 0 pi =  4.4 

o- =  0.08

-81.64 47.44

Gamma 2.00360 136 0 a =  141.98 

b =  0.57

-81.64 46.94

Rician 2.00224 0 0.5 s =  81.35 

a =  6.83X

-81.64 46.51

Weibull 3.01208 4360 0 a =  84.77 

b =  13.7

-81.62 52.98

Sitting Normal 1.771 I860 0 pi =  82.17 

a =  5.44

-82.17 29.65

Lognormal 1.6761 1558 0
? *

H =  4.4

(7 =  0.06

-82.17 30.74

Gamma 1.6732 1262 0 a =  222.91 

b =  0.36

-82.17 30.28

Rician 1.6683 772 0 s -  81.98 

a =  5.45

-82.17 29.65

Continued on next page
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Table 4.6 — continued from previous page

State Distribution AIC

105

Ai

IO3

OJi Parameter

Estimate

Mean

(dBm)

Std. Dev. 

(dB)

Weibull 1.6606 0 1 a =  84.64 

b =  17.68

-82.13 32.88

Walking Normal 5.9109 421 0 ¡j =  83.00 

a =  6.28

-83.00 39.42

Lognormal 5.9350 662 0 p =  4.41 

cr =0.076

-83.01 40.48

Gamma 5.9258 570 0 a =  171.27 

b =  0.48

-83.00 40.23

Rician 5.9108 420 ; 0 s =  82.77 

a =  6.29

-83.00 39.42

Weibull 5.8688 0 1 a =  85.86 

b =  15.91

-83.06 41.18

Weibull distribution suggests a superior fit to the distribution of received power 

while the user is sitting in different locations along corridor. The AIC indices also 

verify the accuracy of this fitting. It is apparat in the the Figures 4.22(a) and 4.22(b) 

that the weibull model provides the best fit among all candidates.
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(a)

(b)

Figure 4 .2 2 : Em pirical and M L E  fitted (a) P D F  and (b) C D F  of the received signal

power for the sitting scenario in corridor area.



For the action of standing, the AIC theory suggests the Normal and Rician 

distribution as the best fits with the same weights. To ensure that these two distri

butions provide the strongest fit, the empirical PDF and CDF of received power have 

been plotted for the user state of standing in Figure 4.23. As shown in Figure 4.23(a), 

its PDF contains a cluster for signal powers less than -87 [dBm], thus, the Normal 

and Rician distribution can not provide an adequate description of the data at the 

lower signal levels. Again, the GMM is used as a practical method for modeling the 

probability density function of received signal power while the user is standing. We
i

found that GMM with 2 components can describe the distribution of signal powers 

from all levels for this user state (shown in Figure 4.24).

For the walking scenario, we also found that the GMM gives the best agreement 

with the empirical distribution. Although the AIC indices listed in Table 4.6 favored 

the Weibull distribution as the best model for user action of walking, this model 

cannot characterize the cluster of lower level signals similar to the standing scenario. 

Figure 4.25 illustrates the plots of common distributions fitted to the data set for 

walking scenario. However, to ensure that GMM with 2 components gives a better 

fit, its PDF and CDF have been estimated and displayed in Figure 4.26. The GMM 

properties estimated using EM algorithm are listed in Table 4.7 for both actions of 

standing and walking.
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(a)

(b)

Figure 4 .2 3 : Em pirical and M L E  fitted (a) P D F  and (b) C D F  of the received signal

power for the standing scenario in corridor area.
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(a)

(b)

Figure 4 .2 4 : E stim ated G M M  and M L E  fitted (a) P D F  and (b) C D F  of the received

signal power for the standing scenario in corridor area.
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(a)

(b)

Figure 4 .2 5 : Em pirical and M L E  fitted (a) P D F  and (b) C D F  o f the received signal

power for the walking scenario in corridor area.
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(a)

(b)

Figure 4 .2 6 : E stim ated G M M  and M L E  fitted (a) P D F  and (b) C D F  of the received

signal power for the walking scenario in corridor area.
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Table 4.7: Properties of GMM with 2 components com

puted for actions of standing and walking in corridor.

State No. of Parameter Estimate

components Mean(dBm) Std.Dev.(dBm) Mixing proportions

Standing 2 i -90.74 0.20 0.22

2 -79.10 29.90 0.78

Walking 2 1 -90.78 0.17 0.2

2 -81.01 30.03 ' 0.79

4.5 Probability of Error for OQPSK modulation

In this section, the proposed channel model has been applied in evaluation of the BER 

performance of the narrowband-based WBAN system. Since AT86RF230 radio uses 

orthogonal quadrature phase shift keying (OQPSK), we will illustrate the performance 

evaluation of the O-QPSK modulated signals.

Let us assume that s; represents a OQPSK signal which is transmitted over a 

frequency-nonselective, and slowly fading channel. The corresponding received equiv

alent low pass signal in one signaling interval is:

ri(t) =  ae~j<t>si{t) +  n{t), (4.11)

where n(t) represents the complex-valued white Gaussian noise process corrupting 

the signal.

For error probability analysis, we assumed our modeled WBAN channel fading 

is sufficiently slow that the phase shift 4> can be estimated from the received signal



without error. For a fixed attenuation a, the conditional bit error probability for 

QPSK modulation as a function of the received SNR 75 is:

P2(%) = Q(V*r~b), (4-12)

where 75 =  P%P? =  a ê^/NQ. As explained, the probability of error is always ex- 

pressed in terms of the probability of the Q-function which is frequently used for the 

area under the tail of the Gaussian PDF represented by Q{x) and defined as:

Q(x) =  ~ = s ' [ e  T d x , x >  0, (4.13)
v27r J

Equation (4.12) is viewed as conditional error probabilities, where the condition 

is that a is fixed. In order to obtain the error probabilities when a is random, we 

must average P2 (lb) over the probability density function of 75 explained by [82]:

0 0

P2 =  J P2(lb)p(lb)d(lb)  ̂ v (4-14)
0 '

where p ^ )  is the PDF of 75 when a is random.

Note that in this study we have statistically modeled the distributions of re

ceived signal (referred as r; in Equation (4.11)) which has been discussed in Section 

4.4. As shown in both Equations (4.12) and (4.14), we need to compute the proba

bility density function of the SNR values (75) for calculating the conditional bit error 

probability of QPSK modulation. The PDF of SNR values (p(7&)) can be estimated 

using the distribution model of the received signals (RSSTvalues) with parameters 

explained and listed in Sections 4.4.2.2 and 4.4.3.

From Equation (4.11), the expression for the SNR values 75 as a function of
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received signal and noise power is:

76
PgPs

Pn

Pr_
Pn

1, (4,15)

where Ps is the transmitted signal power, Pr is the received signal power, and Pn is 

the noise power. The noise power can be calculated by:

1 Pn =  N0B, (4.16)

where noise spectral density N q is the noise power per unit of bandwidth and is given

by N q =  kTe, k is Boltzmann’s constant in joules per kelvin, and Te is the receiver 

system noise temperature in kelvins. B is the total bandwidth (Hz) over which that 

noise power is measured. In the 2.4 GHz band there are 16 ZigBee channels, with

each channel requiring B =  5 MHz of bandwidth. __

The noise temperature Te can be computed from the noise factor of a device F

by: '

o
(4.17)

Where T0 is the operating temperature. For the RF230 radio chip, the F is given to 

be 6 for the T0 — 22c°.

Based on Equations (4.16) and (4.17), we can obtain the noise power Pn and 

substitute Equation (4.16) into Equation (4.15) and calculate the range of SNR val

ues in terms of received power signals. Now, the parameters of the PDF of can be 

computed by linear transformation of parameters of the PDF of r/ shown in Equation 

(4.15). The statistical details corresponding to the distribution model of the received 

signals are indicated in Tables 4.5 and 4.7 for Indoor office area-and corridor, re

spectively. Table 4.8 shows the computed parameters of probability density function
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of SNR values 75 for three different actions of standing, sitting, and walking in two. 

distinct environment.

Table 4.8: The parameters of the probability density 

function of SNR values 75.

Environment State distribution Parameter Estimate

Mean Std.Dev. Mixing

(dBm) (dBm) proportions

Indoor office Standing GMM, k=3 35.37 0.76 0.04

14.05 50.77 0.58

18.63 8.67 0.37

Sitting GMM, k=3 19.48 16.97 0.36

19.48 46.46 . 0.36

20.59 20Ì91 0.28

Walking GMM, k=3 10.12 32.95 0.15

18.58 43.9 35.03

20.83 5.6 ; 9.61

Corridor Standing GMM, k=2 -3.62 0.2 0.22

* 8.01 29.9 0.78.

Sitting Weibul 4.98 32.88 -

Walking GMM, k=2 -3.66 0.17 0.2

6.1 30.03 0.79

The distribution models fitted to empirical PDF of SNR values for the actions of 

standing, sitting, and walking in both environments are illustrated in Figure 4.27(a), 

4.28(a), and 4.29(a), 4.30(a), 4.31(a), and 4.32(a). The conditional probability of



error which are computed for all 6 scenarios are also demonstrated in Figure 4.27(b), 

4.28(b), and 4.29(b), 4.30(b), 4.31(b), and 4.32(b).

After extraction of the probability density function of SNR values for all sce

narios, we can carry out the integration for P2 (75) as given by Equation (4.14). The 

result of this integration for binary OQPSK modulated signals in all six scenarios 

are listed in Table 4.9. An acceptable average probability of error against 75 is also 

indicated in Figure 4.33, where is the average SNR (signal to noise ratio), defined 

as:

7l = ^ E { a \  (4.18)

Table 4.9: An average Probability of error for binary 

OQPSK modulated signals in all six scenarios.
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Environment State Average SNR 7  ̂-v BER

Indoor office Standing 16.69 0.005

Sitting 17.39 0.0039

Walking 17.76 0.0011

Corridor Standing 5.47 0.082

r Sitting 4.94 0.083

Walking 4.1 0.09
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SNR [dB]

(a)

(b)

Figure 4 .2 7 : (a) T h e distribution m odels fitted to  empirical p d f of S N R  values, (b)
the conditional probability o f error com puted for the action of standing in indoor

office area.



C
on

di
tio

na
l B

ER
 o

f b
in

ar
y 

O
Q

PS
K

Chapter Statistical Characterization of Wireless Channel between Body Area Network Nodes 104

(a)

(b)

Figure 4 .2 8 : (a) T h e  distribution m odels fitted to  empirical p d f o f S N R  values and
(b) the conditional probability o f error com puted for the action o f sitting in indoor
office area.
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(a)

(b )

Figure 4 .2 9 : (a) T h e  distribution m odels fitted to  empirical p d f o f S N R  values and
(b) the conditional probability of error com puted for the action o f walking in corridor
area.
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(a)

(b)

Figure 4 .3 0 : (a) T h e  distribution m odels fitted to  empirical p d f of S N R  values and (b)
the conditional probability of error com puted for the action of standing in corridor

area.



Chapter Statistical Characterization of Wireless Channel between Body Area Network Nodes 107

(b)

Figure 4 .3 1 : (a) T h e  distribution m odels fitted to  empirical p d f o f S N R  values and
(b) the conditional probability o f error com puted for the action o f sitting in corridor
area.
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SNR [dBm]

(a)

(b)

Figure 4 .3 2 : (a) T h e distribution m odels fitted to  empirical p d f of S N R  values and
(b) the conditional probability of error com puted for the action o f walking in corridor
area.
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Figure 4.33: An average Probability of error for binary OQPSK modulated signals.

As illustrated in Figure 4.33, in all three scenarios (standing, sitting, and walk

ing) for indoor office area, excellent system performance achieved. For other three 

scenarios taken in corridor, the lower SNR values results in degrading the overall 

system performance.

4.6 The Physical Interpretation of channel 

modeling

In this section, we give a brief physical explanation for supporting the characterized 

fading statistics and measurement results on link estimation metrics for different body 

postures presented in previous sections.

The Gaussian Mixture Model was found to account for the majority of user



states models in each of the test environments except the sitting scenario in corridor. 

The number of Gaussian components in the corridor (k =  2) was found to be less than 

those of the indoor office area (k — 3). In fact the propagation of wireless channel be

tween BAN nodes is affected by two factors; (i) the shape of human body, and (ii) the 

combination of transmission path, user state and environment [30]. Since, we men

tioned the same subject with same postures in two different environments, the results 

particularly reflect the effects of environment. The environment and its subsequent 

objects plays an important role in the strength of received signal power. The indoor 

office area (Figure 4.2) contains lots of desks, computers, cupboards besides walls, 

floor, and ceiling. Consequently, the reflection, diffraction, and scattering from the 

office components and walls have a great influence on appearance of multiple clusters 

in distribution of received signal power. Alb of these obstacles near the mobile unit 

cause signal shadowing manifested as an attenuation of the direct wave. Hence, the 

distributions of the signals received in indoor office area consist of more clusters than 

the distribution of received signal power in corridor area.

For the experiments conducted in the corridor area, no direct line of sight path 

is available due to the location of the transmitter (at the waist of the human body) 

and the receiver (near a computer server in the office area). So, it is expected that the 

received signal powers undergo more attenuation. This fact has been experimentally 

proven from the range of RSSI values for both test environments. If we compare 

the range of RSSI values measured for two separate environments (Figure 4.8 and 

4.16), we will figure out the differences between the strength of the received powers. 

Moreover, based on the pathloss model given in section 4.3.2, the reference RSSI 

values (RSSIq) in corridor (standing =  —71.12 dBm and sitting =  —72.23 dBm) 

are less than those of the indoor office area (standing =  —52.06 dBm and sitting 

=  —58.7 dBm) listed in table 4.1. The estimated attenuation coefficient n is about
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1.5 for line of sight communication while the user is standing in indoor office area. 

However, the pathloss exponent n for the sitting state decreased to 0.92. The similar 

trend is observed when comparing the non-line of sight pathloss exponent of standing 

(n =  1.7) and sitting (n — 1.5) scenarios in corridor area. It can be concluded that 

when the user sits, less significant signal attenuation is observed. This is due to the 

fact that the reflection is less pronounced in sitting scenario than standing scenario.

Furthermore, as it was illustrated before in Figure 4.3, and 4.4, significant 

variations are found for the computed packet reception rates (PRR) with respect to 

RSSI values in corridor. The PRR drop is particularly true as the transmission path 

is weak and there is no direct line of sight from transmitter (IRIS node) to the base 

node. More significant variation on the PRR plot versus RSSI were observed when the 

user starts moving. It is true because when the user walks, he blocks the line of sight 

between the two antennas. Moreover, the scatter and reflected contributions, and 

diffraction around the body is expected to be intensified duetto changes in geometrical 

body shape and posture. It is concluded that significant attenuation can occur which 

also affects the packet recaption rate indicated in Figures 4.3(c) and 4.4(c).

4.7 Conclusion

In this chapter, we focused on the spatial correlations of link estimation metrics and 

characterization of fading statistics on body area propagation in an indoor environ

ment. The body worn nodes were operating at 2.4 GHz for three user states (standing, 

sitting, and walking) in two separate environments (indoor office area and corridor 

area) resulting in 6 scenarios.

In this study, we showed that the RSSI can be a promising indicator rather than 

LQI when its value is above the sensitivity threshold of RF230 (-91 dBm). Above this
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i ■

threshold, RSSI shows stable behavior and good correlation with PRR. However, no 

specific correlation has been found between LQI and PRR for all user states. We also
i '

derived channel models on pathloss through plotting variation of RSSI with respect 

to distances between nodes. The pathloss exponent is about 1.5 for line of sight 

communication while the user is standing in indoor office area. It decreased to 0.92 

for the sitting state. For the user states in corridor, the pathloss exponents are about 

1.6.

A reliable statistical model was extracted to determine the variation of received 

signal level (RSSI). Based on this model, it has been concluded that the user states 

and local environment were responsible for the variation of received signal strength. 

For all the user states in indoor offi e area and actions of standing and walking in 

corridor area, the Gaussian Mixture Model provided the best fit. Using GMM, we 

have shown that the distribution of received signal strength consists of cluster of 

components diffracting around the body and reflecting from the surrounding objects 

in the environment. The number of Gaussian components in the corridor (k =  2) 

was found to be less than those of the indoor office area (k =  3). Weibull distribu

tion suggests a superior fit to the distribution of received power while the user sits 

in different locations in corridor. Furthermore, performance evaluation for narrow- 

band WBAN employing OQPSK modulation was provided through BER analysis by 

deploying proposed channel model.

’A

)



Chapter 5 

Conclusion

This thesis deals with the development of prototype system for real-time patient mon

itoring within the standardization of WBAN. It is going to be a very useful technology 

with the capability of offering a wide range of benefits to patients, physicians, and 

society through continuous monitoring and early detection of serious conditions.

A lot of research has been focused on pervasive health or patient monitoring 

systems. However, majority of previous works focused solely on developing prototype

system for WBAN or characterizing the statistical on-body wireless channel. The
v .

results of those studies were helpful in pointing out the dark spots and uncertainties

in our knowledge of subject and consequently giving important considerations when
\

designing our own experience. However, our study is different from the prior studies 

presented here as; (a) we have carried out a project which is the combination of 

developing unique prototype WBAN system and investigating a wide range of issues 

affecting the wireless channel structure for the communication link between WBAN 

nodes, (b) we have evaluated the newer set of crossbow motes called IRIS (based on 

RF230) and we believe that measuring these network characteristics can facilitate us 

explore how protocols may work in that network, and (c) the characterized wireless 

communication channel model and measurements between nodes are specific to our 

particular environment that wearable systems are implemented.

The main contributions of this study are summarized in the followings:



Chapter 5: Conclusion 114

1. This study discusses our effort on developing combined hardware and software 

platform for the proposed WBAN patient monitoring system. We have devel

oped a system of wearable ECG sensor, wireless sensor network, and a personal 

server implemented on desktop computer. The personal server interfacing be

tween the WBAN sensor nodes and Wide Area Network is implemented on PC. 

The PS is responsible for providing multiple functionalities such as real-time vi

sualization, memorizing, analyzing and communication with clients requesting 

connection over internet. The prototype system takes advantage of (i) main

taining periodic and real-time transmission of ECG signs, (ii) providing a user 

feel of comfort, (iii) giving high speed access to wireless networks, and (iv) 

increasing the ECG sampling rates from 200 Hz to 800 Hz.

2. It focuses on signal processing analysis of heart beat calculation and noise re

moval, implementation, and validation of a patient monitoring system. The key
x

contribution of this thesis is developing MATLAB based system for interaction 

with sensor network nodes. MATLAB contains advanced numerical computing 

ability, powerful libraries and elaborate toolboxes for plotting and analyzing 

data in real-time that eases data processing operations. Moreover, it supports 

patient mobility using low-cost reliable system.

3. It investigates how the human body affects wireless link communication by 

attaching IRIS sensor nodes onto the waist of the human body. Despite wire 

connection, wireless connections are unstable and vulnerable to environments. 

We believe that the measurements carried out in this part of the thesis support 

predicting the impact of realistic channel on network level performance. In 

this regard, the wireless channel structure for the communication link between 

the sensor node placed on human body surface and the external receiver node
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placed near the computer server has been characterized.

• Firstly, we identified spatial correlation of link estimation metrics (RSSI, 

LQI, and PRR) as three characteristics of a network. We believe that ob

serving network characteristics is essential in understanding how protocols 

may work in that network. Moreover, they can be employed to predict 

link level performance and development of more effective antennas. For 

instance, in this study, we figured out that the RSSI can be a promising 

indicator rather than LQI when its value is above the sensitivity threshold 

of RF230 (-91 dBm). Above this threshold, RSSI is correlated with PRR 

and the distance between nodes. As a result, protocol designers should 

better choose RSSI over LQI as inexpensive link estimators.

• Secondly, we characterized the fading statistics on body links by modeling 

the distribution of the received signal power." The Akaike information 

criterion (AIC) has been employed to choose the best model among the 

set of candidates. Our modeling is clearly different from the previous work 

which tried to use well known probability density functions for modeling. 

In this study, the Gaussian Mixture Model is found to account for the 

majority of user states models in each of the two test environments and 

the number of Gaussian components is describing the cluster of components 

diffracting around the body and reflecting off of the surrounding objects 

in the environment.

• Finally, the proposed channel model has been applied in evaluating the 

BER performance of the narrowband-based WBAN system. We expect 

these experimental results can be deployed to assist developing reliable 

and efficient wireless connections between on-body sensor nodes for future
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biomedical researches.

We believe that the work carried out as part of this thesis can be the basis of 

considerable future research. This study presented a telecardiology system in which an 

ECG sensor is integrated into the wireless platform. However, we believe that many 

other different body sensors such as EEG, blood pressure, and etc can be potentially 

integrated to our developed wireless platform or other sensor network platforms such 

as Telos, MicaZ, and Mica2. The system can become more sophisticated and com

prehensive by utilizing several on body sensor networks. As this application scenario 

would be different from our particular system prototype, challenges such as network 

configuration and power management need to be revisited. Based on the new set 

up, the sensor nodes should be able to join or leave the network at any time. Dy

namic management of the resources such as sensor functionalities and communication 

bandwidth should be also considered. —...
v

Security and privacy are two open resources issues which should be addressed 

before WBAN technologies become widely applied. Different levels of security should 

be recognized, and appropriate encryption mechanism should be improved to iden

tify security attacks. Following security requirements such as data confidentiality, 

data authenticity, and access control should be assured before acceptance of WBAN. 

Although providing adequate security is a crucial factor in the widely approval of 

WBAN, little research has been carried out to follow security requirements. Privacy 

requires effective authentication techniques such as human faces, hand features, or 

EEG signals. Using privacy, the users can have control over their information in such 

a way that they can decide which information to be transferred. Note that security 

and privacy protection mechanisms make use of noticeable energy. Other WBAN de

vices also require energy for data collection, analyzing, and transferring. So, another
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possibility for future work is to develop algorithms in order to decrease radio trans

missions and enhance energy saving capabilities. It is a fact that the sensor nodes 

are designed to be used for a long period of time and the power sources should be 

efficient enough and long lasting.

Chapter 5: Conclusion 117

v



References
[1] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, voi. 19, no. 4, 

1999. 1

[2] M. van de Goor, “Indoor localization in wireless sensor networks,” Master’s 
thesis, 2009. 1

[3] H. Alemdar and C. Ersoy, “Wireless sensor networks for healthcare: A survey,” 
Computer Networks, voi. 54, no. 15, Oct 2010. 1, 5, 8

[4] S. Kumar, K. Kambhatla, F. Hu, M. Lifson, and Y. Xiao, “Ubiquitous Comput
ing for Remote Cardiac Patient Monitoring: A Survey,” International Journal 
of Telemedicine and Applications, 2008. 1,8

[5] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. 1, 10

[6] Cardiovascular disease statistics. [Online]. Available: http://www.
americanheart.org/presenter .jhtml?identifier=4478..2

X

[7] (2001, February) Cardiovascular epidemiology in the asia-pacific region. 2

[8] Eurika. [Online]. Available: http://finance.yahoo.com/news/
Study-Shows-Cardiovascular-prnews-2927369358.html 2

[9] F. Vergari, V. Auteri, C. Corsi, and C. Lamberti, “A ZigBee—based ECG trans
mission for a low cost solution in home care services delivery,” Dipartimento di 
Elettronica, Università’ di Bologna,Viale Risorgimento, Tech. Rep. 2, 23

[10] J. Anderson and S. E. DiCarlo, “Virtual experiment for understanding the elec
trocardiogram and the mean electrical axis,” Advan Physiol Educ, voi. 23, pp. 
1-17, 2000. 3

[11] T. Fulford-Jones, G.-Y. Wei, and M. Welsh, “A portable, low-power, wireless 
two-lead ekg system,” in 26th IEEE EMBS Annual International Conference, 
September 2004. 3, 16

[12] J. Proulx, R. Clifford, S. Sorensen, D. J. Lee, and J. Archibald, “Development 
' and evaluation of a bluetooth EKG monitoring sensor,” Proceedings of the 19th
IEEE Symposium on Computer-Based Medical Systems (CBMS’06), pp. 2141- 
2144, June 2006. 3

http://www
http://finance.yahoo.com/news/


References 119

[13] J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth 
care system supporting real-time diagnosis and alarm,” Medical and Biological 
Engineering and Computing, vol. 45, pp. 877-885, July 2007. 4, 16

[14] Mobile remote monitoring4 project. MobiHealth. [Online]. Available: http:// 
www.mobihealth.com/home/en/home.php4

[15] C. Orwat, A. Graefe, and T. Faulwasser, “Towards pervasive computing in health 
care a literature review,” BMC Medical Informatics and Decision Making, vol. 8, 
p. 119, June 2008. 4

[16] Schiller, the art of diagnostics. [Online]. Available: http://www.schiller.ch/ 
index. php?id=l 4

[17] F. Gouaux, L. Simon-Chautemps, J. Fayn, and et al., “Ambient intelligence and 
pervasive systems for the monitoring of citizens at cardiac risk: New solutions 
from the epi-medics project,” in Proceedings of the Annual Conference on Com
puters in Cardiology, vol. 29, Sep 2002, p. 289292. 4

[18] P. Rubel, F. Gouaux, J. Fayn, and et al., “Towards intelligent and mobile systems 
for early detection and interpretation of cardiological syndromes,” in Proceedings 
of the Annual Conference on Computers in Cardiology, vol. 28, Jan 2001, pp. 193 
-  196. 4

v
[19] Z. Li and G. Zhang, “A physical activities healthcare system based on wireless 

sensing technology,” in 13th IEEE International Conference on Embedded and 
Real-Time Computing Systems and Applications, 2007. 5

[20] A. Fort, C. Desset, J. Ryckaert, P. D. Doncker, L. V. Biesen, and P. Wambacq, 
“Characterization of the ultra wideband body area propagation channel,” in 
IEEE Conference on Ultra- Wideband, September 2005. 5, 42

[21] ------ , “Ultra wide-band body area channel model,” in IEEE Conference on Com
munications, May 2005.

[22] A. Fort, J. Ryckaert, C. Desset, P. D. Doncker, P. Wambacq, and L. V. Biesen, 
“Ultra-wideband channel model for communication around the human body,” 
IEEE Journal on Selected Areas in Communications, vol. 24, pp. 927-933, April 
2006.42

[23] A. Fort, C. Desset, J. Ryckaert, P. D. Doncker, L. V. Biesen, and S. Donnay, “An 
ultra-wideband body area propagation channel model-from statistics to imple
mentation,” IEEE Journal on Microwave theory, techniques, vol. 54, pp. 1820- 
1826, June 2006. 42, 66, 67

http://www.mobihealth.com/home/en/home.php4
http://www.schiller.ch/


[24] S. Drude, “Indoor body-area channel model for narrowband communications,” in
IET Microwaves, Antennas and Propagation, vol. 1, December 2007, pp. 1197— 
1203. 42, 43 '

[25] K. Takizawa, T. Aoyagi, , and R. Kohno, “Channel modeling and performance 
evaluation of UWB-based wireless body area networks,” June 2009.

[26] M. Kim and J. ichi Takada, “Statistical model for 4.5-GHz narrowband on-body 
propagation channel with specific actions,” IEEE Antennas Wireless Propag. 
Lett., vol. 8, pp. 1250-1254, 2009. 43, 65, 68

[27] A. Alomainy, Y. Hao, A. Owadally, C. Parini, Y. Nechayev, C. Constantinou, 
and P. Hall, “Statistical analysis and performance evaluation for on-body radio 
propagation with microstrip patch antennas,” IEEE Trans. Antennas Propag., 
vol. 55, pp. 245-248, January 2007. 5, 42

[28] D. Smith, L. Hanlen, D. Miniutti, J. Zhang, D. Rodda, and B. Gilbert, “Statis
tical characterization of the dynamic narrowband body area channel,” in Proc. 
ISABEL 2008, Aalborg, 25-28, October 2008. 5, 42 ,

[29] W. G. Scanlon and S. L. Cotton, “Understanding on-body fading channels at 2.45
< GHz using measurements based on user state and environment,” in Antennas and 

Propagation Conference, Loughborough, 17-18 March.2008.
v .

[30] S. L. Cotton and W. G. Scanlon, “An experimental investigation into the in
fluence of user state and environment on fading characteristics in wireless body 
area networks at 2.45 ghz,” IEEE Trans. Wireless Commun., vol. 8, pp. 6-12, 
Jan 2009. 110

[31] E. Reusens, W. Joseph, B. Latre, B. Braem, G. Vermeeren, E. Tanghe, 
L. Martens, I. Moerman, and C. Blondia, “Characterization of on-body com
munication channel and energy efficient topology design for wireless body area 
networks,” IEEE Trans.. Inf. Technol. Biomed., vol. 13, pp. 933-945, Nov 2009.
5, 43 ■ • ■ ■-

[32] R. C. Shah and M. Yarvis, “Characteristics of on-body 802.15.4 networks,” in 
2nd IEEE Workshop on Wireless Mesh Networks, Sep 2006. 5

[33] K. Papagiannaki, M. Yarvis, and W. S. Conner, “Experimental characterization 
of home wireless networks and design implications,” in Proc. IEEE Infocom, 
April 2006. 44

[34] D. Jea and M. B. Srivastava, “Channels characteristics for on-body mica2dot 
wireless sensor networks,” in Proc. Mobiquitous, 2005. 5, 44

References . 120



References 121

[35] H. Cao, V. Leung, C. Chow, and H. Chan, “Enabling technologies for wireless 
body area networks: A survey and outlook,” IEEE Commun. Mag., vol. 47, pp. 
84-93, Dec 2009. 8

[36] Bedroussian, Armen, DeVol, and Ross. (2007, October) An Unhealthy America: 
The economic burden of chronic disease charting a new course to save lives and 
increase productivity and economic growth. Milken Institute. 9

[37] (2001, June) America’s most ignored health problem: Caring for the chronically 
ill. Washington: Alliance for Health Reform. 9

[38] (2009, February) Chronic disease prevention and promotion. Center for Disease 
Control. [Online]. Available: http://www.cdc.gov/nccdphp/ 9

[39] Tinyos. [Online], Available: http://docs.tinyos.net 10, 23

[40] P. Levis and D. Gay, TinyOS Programming. Camebridge University press, 2009. 
11

[41] IRIS, Crossbow Technology. [Online]. Available: http://www.xbow.com 12, 13, 
19, 20, 46

[42] 8 -bit AVR Microcontroller, ATMEL. [Online]. Available: http://www.atmel. 
com/dyn/resources 12, 19, 45

v ■"
[43] AVR Low Power 2.4 GHz Transceiver for ZigBee, IEEE 802.15.4, 6 L0 WPAN,

RF4 CE and ISM Applications, ATMEL. [Online]. Available: http://www.atmel. 
com/dyn/resources 12,20,45,57 .

[44] R. Fensli, E. Gunnarson, and O. Hejlesen, “A wireless ECG system for continuous 
event recording and communication to a clinical alarm station,” in Proceedings 
of the 26th Annual International Conference of the IEEE EMBS, Sep 2004. 15

[45] R. Fensli, E. Gunnarson, and T. Gundersen, “A wearable ECG-recording system 
for continuous arrhythmia monitoring in a wireless tele-home-care situation,” in 
18th IEEE Symposium on Computer-Based Medical Systems, June 2005. 15

[46] D. Konstantas, V. Jones, and R. Bults, “Mobihealth innovative 2.5/3G mobile 
services and applications for healthcare,” 1ST Mobile and Wireless Telecommu
nications Summit, 2002. 15

[47] A. V. Halteren, R. Bults, K. Wac, N. Dokovsky, G. Koprinkov, I. Widya, D. kon
stantas, and V. Jones, “Wireless body area networks for healthcare : the mobi
health project,” Wearable eHealth Systems for Personalised Health Management: 
State of the Art and Future Challenges, vol. 108, pp. 181-193, 2004. 16

http://www.cdc.gov/nccdphp/
http://docs.tinyos.net
http://www.xbow.com
http://www.atmel
http://www.atmel


References 122

[48] V. Shnayder, B. Chen, K. Lorincz, T. R. F. FulfordJones, and M. Welsh, “Sen
sor networks for medical care,” Division of Engineering and, Applied Science, 
Harvard University, Tech. Rep., Jan 2005. 16,19

[49] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “CodeBlue: An Ad 
Hoc sensor network infrastructure for emergency medical care,” in MobiSys 2004 
Workshop on Applications of Mobile Embedded Systems, June 2004. 16

[50] K. Lorincz and M. Welsh, “Motetrack: A robust, decentralized approach to rf- 
based location tracking,” in International Workshop on Location- and Context- 
Awareness (LoCA 2005), May 2005. 16

[51] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, 
G. Mainland, S. Moulton, and M. Welsh, “Sensor networks for emergency re
sponse: Challenges and opportunities,” in IEEE Pervasive Computing, Oct/Dec 
2004. 16

[52] E. Jovanov, A. Milenkovic, C. Sanders, C. Otto, and P. C. de Groen, “A wireless 
body area network of intelligent motion sensors for computer assisted physical 
rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 2, pp. lb -  
23, March 2005. 16

[53] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, “System architecture of a 
wireless body area sensor network for ubiquitous health monitoring,” Journal of 
Mobile Multimedia, vol. 1, pp. 307-326, Oct 2006. 16

[54] O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman, “Reliable clinical monitoring 
using wireless sensor networks: experiences in a step-down hospital unit,” in 
SenSys ’10 Proceedings of the 8th ACM Conference on Embedded Networked 
Sensor Systems, Nov 2010, pp. 155-168. 16

[55] H. Yan, H. Huo, Y. Xu, and M. Gidlund, “Wireless sensor network based e-health 
system - implementation and experimental results,” IEEE Trans. Consum. Elec
tron., vol. 56, no. 4, pp. 2288- 2295, Nov 2010. 16

[56] Vernier Software and Technology. [Online]. Available: http://www2.vernier. 
com/booklets/ekg-bta.pdf 19

[57] J. P. Shah, P. Aroul, A. Hande, and D. Bhatia, “Remote Cardiac Activity Mon
itoring Using Multi-Hop Wireless Sensor Networks,” in Proceedings of the 19th 
IEEE Symposium on Computer-Based Medical Systems (CBMS 06), Nov 2007,

, pp. 142-145. 19

[58] S. Xiao, A. Dhamdhere, V. Sivaraman, and A. Burdett, “Transmission Power 
Control in Body Area Sensor Networks for Healthcare Monitoring,” IEEE J. 
Sel. Areas Commun., vol. 27, pp. 37-48, Jan 2009. 19

http://www2.vernier


References 123

[59] V. Sivaramany, S. Grovery, A. Kurusingaly, A. Dhamdherey, D. Ostryz, and 
A. Burdett, “Mobility in the soccer field : from empirical data collection to 
modelling correlated connectivity,” IEEE Trans. Inf. Technol. Biomed., vol. 14, 
pp. 726-733, May 2010. 19

[60] MTS/MDA, sensor, data acquisition boards, Crossbow Technology. [Online]. 
Available: http://www.xbow.com/Products 20

[61] V. Handziski, J. Polastre, J. H. Hauer, C. Sharp, A. Wolisz, D. Culler, and 
D. Gay, “Hardware abstraction architecture,” TinyOS Documentation Wiki, 
TinyOS Enhancement Proposals, Tech. Rep. [Online]. Available: http://www. 
tinyos.net/tinyos-2.1.0/doc/html/tep2.html 23

[62] E. Dolatabadi and S. Primak, “Application note: Wireless sensor network for 
health monitoring,” CMC Microsystems, Tech. Rep. [Online]. Available: http:// 
www.cmc.ca/ 25

[63] J. C. Huhta and J. G. Webster, “60Hz interference in electrocardiography,” IEEE 
Trans. Biomed. Circuits Syst., vol. 20, 2007. 29

[64] M. Ferdjallah and R. E. Barr, “Adaptive digital notch filter design on the unit 
circle for the removal of powerline noise from biomedical signals,” IEEE Trans. 
Biomed. Circuits Syst., vol. 41, June 1994. 29

[65] J. M. Kortelainen and J. Virkkala, “FFT averaging of multichannel BCG signals 
from bed mattress sensor to improve estimation of heart beat interval,” in 29th 
Annual International Conference of the IEEE EMBS, Lyon, Aug 2007. 31

[66] S. S. Joshi and C. V. Ghule, “DWT based beat rate detection in ECG analysis,” 
in International Conference and Workshop on Emerging Trends in Technology 
(ICWET 2010), TCET, Mumbai, India, Feb. 2010, pp. 765-769. 31

[67] Wavelet Toolbox, Mathworks. [Online]. Available: http://www.mathworks.com/ 
help/toolbox/wavelet/gs/bsjspmn.html 31

[68] M. A. Khayer and M. A. Haque, “ECG peak detection using wavelet transform,” 
in 3rd International Conference on Electrical and Computer Engineering (ICECE 
2004), Dhaka, Bangladesh, Dec 2004. 31

[69] BlackBerry Java Plug-in for Eclipse. [Online]. Available: http://us.blackberry. 
com/developers/javaappdev/javaplugin.jsp 39

[70] BlackBerry Smartphone Simulators. [Online]. Available: http://us.blackberry. 
com/developers/resources/simulators.jsp 39

[71] K. Y. Yazdandoost, H. Sawada, S. T. Choi, J. ichi Takada, and 
R. Kohno, “Channel characterization for ban communications,” IEEE

http://www.xbow.com/Products
http://www
http://www.cmc.ca/
http://www.mathworks.com/
http://us.blackberry
http://us.blackberry


References 124

P802.15 Working Group for Wireless Personal Area Networks(WPANs); Tech.
. Rep. [Online], Available: http://www.ap.ide.titech.ac.jp/publications/Archive/ 

IEEE802-15-07-0641-00-0ban280703Kamya29.pdf 41

[72] S. Primak, V. Kontorovich, and V. Lyandres, Stochastic Methods and Their 
Applications to Communications: Stochastic Differential Equations Approach. 
John Wiley and Sons, 2005. 41

[73] K. A. zge, “Channel modeling approaches to wireless system design and analy
sis,” Ph.D. dissertation, New Brunswick, Rutgers, The State University of New 
Jersey, New Brunswick, New Jersey, October 2010. 42

[74] W. G. Scanlon and S. L. Cotton, “A statistical analysis of indoor multipath 
fading for a narrowband wireless body area network,” in IEEE 17th International 
Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, 
11-14 Sept 2006. 42

[75] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense 
wireless sensor networks,” in Proceedings of the First ACM Conference on Em
bedded Network Sensor Systems, 2003. 43

[76] J. Polastre, R. Szewczyk, and D. E. Culler, “Telos: enabling ultra-
lowpowerwireless research,” in IPSN, 2005. 44 —___

[77] K. Srinivasan and P. Levis, “RSSI is under appreciated,” in Proceedings of the 
Third Workshop on Embedded Networked Sensors, 2006. 44

[78] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study of low- 
power wireless,” ACM Transactions on Sensor Networks, vol. 6, Feb 2010. 44, 
57

[79] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: 
A Practical Information-Theoretic Approach. New York: Springer-Verlag, 2002. 
66

[80] D. Reynolds, “Gaussian mixture models,” MIT Lincoln Laboratory, USA, Tech. 
Rep. [Online]. Available: dar@ll.mit.edu 74

[81] Expectation-maximization algorithm. [Online]. Available: http://en.wikipedia. 
org/wiki/Expectation-maximization_algorithm 75

[82] J. Proakis, Digital Communications. McGraw-Hill Higher Education, 2001. 99

[83] Serial Port I/O, Mathworks. [Online]. Available: http://www.mathworks.com/ 
help/techdoc/matlab_external/f38496.html 137

http://www.ap.ide.titech.ac.jp/publications/Archive/
mailto:dar@ll.mit.edu
http://en.wikipedia
http://www.mathworks.com/


References 125

[84] serial, Mathworks. [Online]. Available: http://www.mathworks.com/help/
techdoc/ref/serial.html 138

[85] fread, Mathworks. [Online]. Available: http://www.mathworks.com/help/
techdoc/ref/serial.fread.html 139

[86] fopen, Mathworks. [Online]. Available: http://www.mathworks.com/help/
techdoc/ref/serial.fopen.html 139

[87] fclose, Mathworks. [Online]. Available: http://www.mathworks.com/help/
techdoc/ref/serial.fclose.html 139

[88] Events and Callbacks, Mathworks. [Online]. Available: http://www.mathworks. 
com/help/techdoc/matlab-external/f73779.html 140

[89] function-handle, Mathworks. [Online]. Available: http://www.mathworks.com/ 
help/techdoc/ref/function-handle.html 141

http://www.mathworks.com/help/
http://www.mathworks.com/help/
http://www.mathworks.com/help/
http://www.mathworks.com/help/
http://www.mathworks
http://www.mathworks.com/


126

Appendix A
Tiny OS programming for developing a 

Health Monitoring System

In February 2008, Crossbow announced the availability of the TinyOS 2.x Operat

ing System for Crossbow’s advanced IRIS Motes. IRIS Motes are also supported 

by Crossbow’s MoteWorks software development environment based on open-source 

TinyOS 1.x. We preferred to run our application in the TinyOS 2.x Operating Sys

tem because it provides a better hardware abstraction model, improved timers, sensor 

interfaces, power management, arbitration, and much more.

A .l  Creating the Sensor Board DriVer

The capabilities of a physical sensor are made available to a TinyOS application 

through a sensor driver. TinyOS device drivers provide hardware-independent inter

faces (HIL) and hardwaredependent interfaces (HAL). Custom sensor drivers must 

also follow HIL/HAL architecture for consistency. In TinyOS, each sensor should be 

characterized as an individual component. For a sensor board that contains different 

sensors, the collection of components should be represented. That is, a sensor board is 

a set of sensor components each with a predetermined name, intended for connection 

to several TinyOS platforms. These are the steps needed to create our ECG Sensor 

driver components:

• Each sensor board must have its own directory named < sensorboard >. De

fault TinyOS 2.x sensor boards are placed in ” tos/sensorboards/< sensorboard > ” ,



but sensor board directories can be placed anywhere as long as the nesC com

piler receives a -I directive pointing to the sensor board’s directory. We placed 

our Vernier EKG sensor board in the default TinyOS 2.x sensor board directory 

(see Figure A .l).

• Each sensor board directory must have a .sensor file. This file is a script which 

is executed as part of the ncc nesC compiler frontend. It can add or modify 

any compile-time options necessary for a particular sensor board.

• Because our ECG sensor is analog, we need to create only two components: one 

HIL component to present the sensor itself (ECGC.nc) and one HAL component 

to select the suitable hardware resources (ECGdeviceC.nc).

1. The sensor HIL component should contain one or more Source and Sink 

Independent Drivers (SID) interfaces for reading data (Figure A.2). SID 

presents two interfaces for reading data provided by the sensor board:

Read and ReadStream. When a client requests data through the Read or
\

ReadStream interface, the HIL will request access to the HAL using the 

Resource interface.

2. The ECGsensorC.nc component should be a generic component that virtu

alizes access to the sensor. As illustrated in Figure A.3 , this generic com

ponent is linked to two components: AdcReadClientC and ECGdeviceC. 

The AdcReadStreamClientC provides arbitrated access via ReadStream in

terface, respectively, to the Atmegal28 ADC. The ECGdeviceC, shown in 

Figure A.4, is a sensor’s HAL component and provides implementation of 

Atml28AdcConfig and the ADC parameters such as channel. As explained 

before, the HIL will ask for access to the HAL and after being accepted,
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it will pull the client’s ADC configuration using the Adcconfigure interface 

and convert the client’s ReadStream command to a chip-dependent HAL 

command. Once the HAL signals the conversion result to the HIL, HIL will 

release the ADC through the Resource interface and signal the conversion 

result to the client through the ReadStream interface [11].

3. The actual implementation of the ECG sensor’s HAL component (ECGde- 

viceC) is in the ECGdevicep module to provide power control and the ADC 

configuration. The MicaBusC component returns the ADC channel num

ber for the ADC pins (see Figure A.5). For this example, we chose the 5th 

channel of the ADC. The ECGdeviceP component selects the appropriate 

hardware resources, such as ADC port 5, reference voltage 2.56, and ADC 

prescaler settings (see Figure A.6).

Note: The header file Atml28adc.h, in tos/chips/atm!28/adc/, contains all 

configuration settings of the 8 channel 10-bit Atml28ADC. Atml28AdcC,

Atml28AdcMultiple, and Atml28AdcSingle are example HAL components
. \

that implement ADC conversion.
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A .2 How to Program the Mobile Mote and the 

Base Station

The way motes are programmed depends on their functions. Two types of motes are 

programmed in this application: Mobile and Base.
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Figure A .l: TinyOS 2.x Sensor Board Directory.

interface ReadStreanKval_t> { 

command error.t postBuffer(val_t* buf, uintl6_t count) 

command error_t read(uint32_t usPeriod);

event void bufferDone(error.t result, 
val_t* buf, uintl6_t count);

event void readDone(error_t result, uint32_t usActualPeriod);

Figure A.2: ReadStream Interface.

^include "ECG.h"

qeneric configuration ECGsensorC() { 
provides interface Read<uintl6_t>;

implementation {
components new AdcReadClientcO, ECGdeviceC; 

Read » AdcReadClientC;
AdcReadClientC.Atml28AdcConfig -> ECGdeviceC;

Figure A.3: ECGsensorC.nc component.

A .2.1 Mobile Mote, O scilloscope  Application

The Mobile IRIS mote is connected to the ECG sensor and runs an application 

which uses the ADC to sample the analog ECG data from the sensor, constructs 

a message out of them, and sends it over the radio to the IRIS mote connected to 

the base station. The ADC channel continuously reads the ECG data and when
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finclude "ECG.h"

configuration ECGdeviceC{ 
provides {

interface Atml28AdcConfig;

implementation { 
components ECGdevicep, MicaBusC;

Atml28AdcConfig « ECGdevicep; 
ECGdevicep.ECGAdc -> MicaBusC.Adc5;

Figure A.4: ECGdevicec Module.

Figure A.5: MicaBusC Component and its Ade Interfaces.

module ECGdevicep 

provides {
interface Atral28AdcConfig; 

uses {
interface MicaBusAdc as ECGAdc;

>

. . v V :

>
implementation

async command uint8_t Atml28AdcConfig.getChannel0  { 
^ return call ECGAdc.getChannelO;

async command uint8_t Atml28AdcConfig.getRefVoltageO { 
return ATMl28_ADC_VREF_OFF;

>

async command uint8_t Atml28AdcConfig.getPrescaler() { 
return ATM128_ADC_PRESCALE;

,}

Figure A.6: Component ECGdeviceP.

enough ECG samples are collected in the message buffer, the application passes the 

message to the networking stack. All details about radio communication and packet 

protocols in TinyOS are explained in [12]. Oscilloscope is an application available as 

part of TinyOS that lets us monitor sensor readings on the PC. By making minor 

modifications on the Oscilloscope application, we can visualize our Medical Sensor
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COMPONENT=OSC i110 scopeAppC 
SENSORBOARD = ECG 
include $(MAKERULES)

Figure A.7: Oscilloscope Application Makefile.

reading. The Oscilloscope application is located in tiny o s-2 .x /a p p s /O sc illo sc o p e .

To modify the Oscilloscope application:

1. The name of the sensor board driver we have created in to s /sen so rb o a rd s /E C G  

should be added to the makefile in Oscilloscope application file (see Figure A.7).

2. The O scilloscope application samples the default sensor via D em oS en sorC , and 

we should change the application so that it samples the ECG sensor board 

connected to the IRIS via the sensor board driver created in the previous section. 

Remember that E C G sen so rC , located in the E C G G  sensor board driver, is a 

means to achieve sensor data acquisition from a platform specific E C G d ev iceC  

component. As illustrated in Figure A.8, the DemoSensorC component has 

been changed to the E C G se n s o r C  component.

3. The actual implementation of the application is in Oscilloscope.nc, (tiny o s- 

2 .x /a p p s /O sc illo sc o p e /O sc illo sc o p eC .n c ) . This module (see Figure A.9) is a 

grouping of different TinyOS applications explained completely on the TinyOS 

tutorial homepage [3]. It uses a timer to periodically sample the connected 

external sensor. Whenever 10 samples of ECG are collected in the buffer, a 

sending packet is created and will be sent to the destination mote via the A M -  

Send  interface.
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configuration OscilloscopeAppC { } 
implementation

components OscilloscopeC, Maine, ActiveMessaqeC, LedsC, 
new TimerMilliCO, new ECGsensorC() as Sensor,
new AMSenderC(AM_OSCILLOSCOPE), new AMReceiverC(AM_OSCILLOSCOPE);

OscilloscopeC.Boot -> MainC;
OscilloscopeC.RadioControl -> ActiveMessaqeC;
OscilloscopeC.AMSend -> AMSenderC;
OscilloscopeC.Receive -> AMReceiverC;
OscilloscopeC.Timer -> TimerMilliC;
OscilloscopeC.Read -> Sensor;
OscilloscopeC.Leds -> LedsC;

Figure A.8: OscilloscopeAppC Configuration.

module OscilloscopeC fflsafeO 

uses {
interface Boot;
interface SplitControl as RadioControl 
interface AMSend; 
interface Receive; 
interface Timer<TMilli>; 
interface Read<uintl6_t>; 
interface Leds;

Figure A.9: OscilloscopeC Module Signature.

A .2.2 Base station

The IRIS Mote connected to the MIB520 USB interface should run the BaseStation 

application (the BaseStaion application can be found in tiny os-2.x/apps/BaseStation). 

BaseStation (see Figure A. 10) is a basic TinyOS utility application. It forwards pack

ets between the UART and the radio. It replaces the GenericBase of TinyOS 1.0 and 

the TOSBase of TinyOS 1.1. It provides a link between the serial port and radio 

network. It receives packets and sends them to the serial port via UARTSend.
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configuration BaseStationC {

Implementation {
components Maine, BaseStationP, LedsC;
components ActiveMessaqeC as Radio, SerialActiveMessaqeC as Serial;

Maine.Boot <- BaseStationP;

BaseStationP.RadioControl -> Radio;
BaseStationP.SerialControl -> Serial;

BaseStationP.UartSend -> Serial;
BaseStationP.UartReceive -> Serial.Receive;
BaseStationP.UartPacket -> Serial;
BaseStationP.UartAMPacket -> Serial;

BaseStationP.RadioSend -> Radio;
BaseStationP.RadioReceive -> Radio.Receive;
BaseStationP.RadioSnoop -> Radio.Snoop;
BaseStationP.RadioPacket -> Radio;
BaseStationP.RadioAMPacket -> Radio;

BaseStationP.Leds -> LedsC;}

Figure A. 10: BaseStationC Component Configuration.

A .3 How to Determine the Suitable Sampling 

Rate for the Wearable Medical Sensor 

Connected to an IRIS platform

The features of a physiological signal such as ECG are very different from environmen

tal signals such as temperature. Therefore, physiological signals are usually digitized 

at sampling rates from 500 Hz to 1000 Hz which lead to sampling periods from 1 to 

2 ms.

The Oscilloscope application uses TimerMilliC which gives an independent 

millisecond granularity timer. On the IRIS motes (Atmegal28 microcontroller), the 

32 KHz external clock is divided by 32, so the best resolution we can get from that 

timer is 1 ms. To avoid timing issues with IRIS, a lower limit of 5 ms was used. As a 

result, we have two options to arrive at the 1 to 2 ms sampling interval from Timer 

hardware in Atmegal28:

• using the Alarm interface which is asynchronous,

• running the ADC module in streaming mode.



Because most biomedical sensors such as ECG provide a continuous stream of 

readings, we programmed an IRIS to read data in blocks rather than in individual 

units. The ReadStream interface is used in TinyOS for a continuous stream of read

ings. It is intended for buffered high data rate reading, especially from medical sensor 

devices. Step by step instructions on how to use the ReadStream interface and to run 

the ADC module in streaming mode are explained as follows:

• First of all, some modification should be done in the sensor driver we have cre

ated in the previous section in order to run the ADC module in streaming mode. 

The Read interface provided by AdcReadClientC should be replaced by the 

ReadStream interface provided by AdcReadStreamClientC in the HIL compo

nent (ECGSensorC) of the ECG sensor board directory (tos/sensorboard/ECG). 

Or, we can create a new HIL component with the name of ECGSensorStreamC

which uses the ReadStream interface (see Figure AJL1)-
' . . . ■ v. • • ■ ■

• To use this interface, we should allocate a buffer, and declare the period in 

microseconds to acquire the samples to be buffered (see Figure A.12). Whenever 

enough samples of ECG are collected in the buffer, a sending packet is created 

and will be sent to the destination mote. As a result, the sampling rate and 

packet transmission rate over the network are dependent on each other such 

that higher sampling rates requires higher packet transmission rates. The IRIS 

mote can handle only 200 packet transmissions in a second which leads to a 

period interval of 5 ms for each packet. Therefore, we should define the size 

of the packet based on our desired sampling interval. In this application, the 

buffer contains 5 ECG samples.

• Whenever the timer is fired, by calling ReadStream.postBufferQ, the contents 

of the buffer are passed into the device. Then, with a call to ReadStream.read()
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«include "ECG.h”

qeneric configuration ECGsensorStreamQ { 
provides interface ReadStream<uintl6_t>;

implementation {
components ECGdeviceC, new AdcReadstreamClientcO:

ReadStream ■ AdcReadstreamClientC;
^ AdcReadStreamClientC.Atml28AdcConfiq -> ECGdevicec;

Figure A .ll: E C G S en sorS trea m C  Component Configuration.

enum {
ECG_NSAMPLES « 5. 
us_FREQUENCY ■ 1000,

*ui ntl6_t ECGSamples[ECG_NSAMPLES];

Figure A. 12: Buffer Allocation and Declaring the Sample Period in Microseconds.

the sampling process will be started and the device begins filling the buffer 

based on the sampling interval in microseconds shown in Figure A. 13 with the 

declaration of ¡aFREQUENCY  period. Figure 18 indicates two commands for 

calling R eadStream .postB uffer() and ReadStream. read ().

• A buffer D on e  () event will be signaled once the buffer has been filled with data. 

If the lower layer finishes signaling readD onef) and then finds that no more 

buffers have been posted, it will consider the read to be finished, and signal 

readD oneQ  (see Figure A .14).

Note: T  is the millisecond period the timer fires periodically, n the number of 

values the buffer should hold, and u the microsecond period between the samples in 

the buffer. T  should be larger than u .n . If the difference between T  and u .n  is small 

and about 1 — 2 ms, the sampling rate is close to l / u .
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/* At each sample period:
- if local sample buffer is full, send accumulated samples
- read next sample

V
event void Timer.fired() {

call ReadStream.postBuffer(ADCSamples. ECG_NSAMPLES); 
cal1 ReadStream.read(us_FREQUENCY);

Figure A. 13: Implementing the postBuffer Command.

event void AMSend.sendDone(messaqe_t* msq, error_t error) { 
if (error «* SUCCESS) 

report_sent();
else

report_problem(); 

sendBusy * FALSE;

event void ReadStream.readDone(error_t result, uint32_t usActualPeriod) { 
if^(result 1* s u c c e s s)

report_problemO I

for (i»0; i<10; 

focal.readings[i]
i+ + )

« ADCSamples[i]

event void ReadStream.bufferDone(error_t result, uintl6_t ‘Samples, uintl6_t 
ECG_NSAMPLES){)

Figure A. 14: Implementation of readDone and bufferDone Events.
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Appendix B

M ATLAB programming for 

communicating with motes

This appendix presents the MATLAB-based infrastructure for communicating with 

IRIS motes via serial port. The IRIS mote can directly control a serial port (pro

gramming boards basically connect the mote’s serial port pins to the actual serial 

port on the board).

The MATLAB serial port interface [83] provides direct access to the IRIS mote 

connected to our computer serial port via MIB520 USB. The serial port object pro

vides us following functionalities:

• Configuration the serial port communications

• Using serial port control pins

• Writing and reading data

• Using events and callbacks

• Recording information to disk

In order to establish the serial port interface, we need to create a serial port object.



B .l Creating a Serial Port Object

Using serial [84] function, we can create a serial port object. First, we should specify 

the port as serial requires the name of the serial port connected to the mote as an 

input argument. The MIB520 USB driver creates two sequentially numbered virtual 

COM ports. One of the COM port is for PC to MIB520 data communication which 

can be also used for MATLAB serial'port communication. In order to create a serial 

port object associated with a serial port, we should enter 

s =  serial(’port’);

Before starting writing and reading data, both the serial port object and the 

IRIS mote must have matching communication settings. Configuring serial port com

munications involves specifying values for Serial Port Communication Properties such 

as BaudRate. BaudRate specifies the rate at which bits are transmitted. The default

baud rate for IRIS platform is 57600. To specify the:BaudRate, we should enter
x

s.BaudRate =  57600; A

\

B.2 Reading Data

For serial port objects, we can determine whether read operations are synchronous or 

asynchronous using the ReadAsyncMode property. We can configure ReadAsyncMode 

to continuous or manual. If ReadAsyncMode is continuous, the serial port object 

continuously checks the mote to find out if data is available to be read. In case that 

data is available, it is asynchronously stored in the input buffer. The input buffer is a 

computer memory allocated by the serial port object to store data that is to be read 

from the mote. When the serial port is reading data from the mote, the data flow 

follows these two steps:
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% Creating serial port object 
s = serial('C0M5');
IBS— 1000000;
% Configure property values for serial 
s .InputBufferSize = IBS; 
s.BaudRate = 57600; 
s.ReadAsyncMode= 'continuous';

Figure B .l: creating a serial port object and configuring its communication settings.

1. The data read from the device is stored in the input buffer.

2. The data in the input buffer is returned to the MATLAB variable specified by 

the read function.

We can specify the maximum number of bytes that we can store in the input 

buffer with InputBufferSize. The BytesAvailable property shows the number of bytes 

currently available to be read from the input buffer. Figure B .l illustrates how to 

create a serial port object and configure its communication settings.

To transfer the data from the input buffer to the MATLAB workspace, we can 

use fread [85] function, fread function is used to read binary data from the device. 

Reading binary data means that we can return numerical values to MATLAB. By 

default, fread returns numerical values in double precision arrays. However, we can 

specify many other precisions as described in the fread reference pages. Before we can 

use the serial port object to read data, we have to connect it to our mote with fopen 

[86] function. Figure B.2 illustrates the commands used for reading binary data from 

a mote. When we don’t need to communicate with the device, we can disconnect it 

from the serial port object with the fclose [87] function (Figure B.3).
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%Connect to the device 
fopen(s)

S.read data
out *• fread(s,s.BytesAvailable,'uint8');

Figure B.2: The commands used for reading binary data from a mote.

%Disconnect and clean up 
fclose (s) 
delete (s) 
clear s

Figure B.3: Disconnecting the mote from the serial port object.

B.3 Events and Callbacks

In this application, the PS implemented on MATLAB environment is responsible for 

reading and displaying ECG signals in real-time. Hence, the serial port application 

should be able to display the ECG signals after a specified, number of bytes is available 

in the input buffer. We can enhance the power and flexibility of our serial port 

application by using events [88]. An event occurs after a condition is met and might 

result in one or more callbacks. While the serial port object is connected to the mote, 

we can use events to display ECG signals, records, analyze, and transfer data. All 

event types have an associated callback property. Callback functions are MATLAB 

functions that we make to suit our specific application needs. We should execute 

a callback when a particular event occurs by specifying the name of the callback 

function as the value for the associated callback property.

B.3.1 Bytes Available Event

For this application, Bytes available has been selected as the serial port event type 

and it involves in following callback properties;
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B_per_packet *= 37; % The Number of Bytes in each Packet
%Creating Callback Event for serial
set(s, 'BytesAvailableFcnCount', B_per_packet);
set (s, BytesAvailableFcnMode1, 'byte');

Figure B.4: Creating Callback Event for serial and configure its associated callback 
properties.

• BytesAvailableFcn, Specify the callback function to execute when a specified 

number of bytes is available in the input buffer.

• BytesAvailableFcnCount, Specify the number of bytes that must be available in 

the input buffer to generate a bytes-available event.

• BytesAvailableFcnMode, Specify if the bytes-available event is generated after 

a specified number of bytes is available in the input buffer.

A bytes available event is generated immediately after a predetermined number 

of bytes are available in the input buffer as determined by'th^BytesAvailableFcnMode 

property. If BytesAvailableFcnMode is byte, the bytes-available event executes the 

callback function specified for the BytesAvailableFcn property every time the number 

of bytes specified by BytesAvailableFcnCount is stored in the input buffer. This event 

can be generated only during an asynchronous read operation. Figure B.4 displays 

how to create a serial port event type and configure its associated callback properties.

B.3.2 Creating and Executing Callback Functions

After creating the event and setting up its configurations, we need to specify the 

callback function which should be executed when a specific event type occurs. We 

can specify the callback function as a function handle [89] or as a string cell array 

element by including the name of the file as the value for the associated callback 

property. Figure B.5 shows how we can specify the callback function as a cell array.
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%Creating Callback function
set(s, 'BytesAvailableFcn’, {'ReadECGcallbackFcn'});

% Connecting a serial port object to the device with the fopen
function.
fopen(s);

Figure B.5: Creating Callback function.

% ReadECGcallbackFcn callback function 
function ReadECGcallbackFcn(s,event) 
fread(s,B_per__packet);

end

Figure B.6: The ReadECGcallbackFcn callback function.

The ReadECGcallbackFcn callback function will be executed every time 37 bytes are 

available in the input buffer.

Callback functions (Figure B.6) must have at least two input arguments. The
, v ,

first argument is the serial port object. The second argument is a variable that 

captures the event information such as Break interrupt, Bytes available, Error, and 

Timer. This event information relates only to the event that caused the callback 

function to execute. We can also pass additional parameters to the callback function 

by including both the callback function and the parameters as elements of a cell array.

In this application, the ReadECGcallbackFcn callback function does multiple 

taxes such as recovering the payload data from the IEEE.802.15.4 message frame, and 

extracting the ECG readings, RSSI, LQI, and packet bursts. Moreover, it displays 

the ECG signals for three cycles, plots the RSSI value, and calculate the heartbeat. 

At the end it will transfer the ECG data and Heartbeat to the internet using TCP/IR
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