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Abstract:

In the Kohn-Sham density-functional theory, one has to approximate (“model”)
either the exchange-correlation density functional or .the,corresponding exéhange-
correlation potential. If one chooses to approximate the potential, then one needs
to use the van Leeuwen-Baerends line integral to assign an energy to the density
coming from a given approximate potential. The problem with this approach is that
when a.model potential does not have a parent functional, the line integral is path-
dependent and so the energy is ambiguously defined. For such potentials, existing
paths are far from optimal. In this work, we introduce two new density parametriza-
tions for the Iine-integral formula and obtain the corresponding energy expressions.
We then use these expressions to explore several existing model exchange potentials.
The first energy expression corresponds to a path in which the electron density is
constructed by gradually filling frozen Kohn-Sham orbitals in accordance with the
aufbau principle, either orbital-by-orbital or subshell—by¥subshell. The second en-
ergy expression uses the Janak theorem and requires knowing the dependence of the
highest-occupied molecular orbital (HOMO) energy on the HOMO’s occupation num-
ber. We also propose a new derivation of Janak’s theorem that reveals its connection
to the van Leeuwen—Baerends line integral. In addition, we revisit Slater’s transition-
state method and show that in the intervals between N and N — 1 electrons, the total
energy calculated from a typical density-functional approximation deviates from lin-
earity quadratically. We also find that the HOMO energy calculated for an (N —1/2)-
electron system becomes almost exact, which indicates that the (N — 1/2)-electron
potential is more accurate than the potential of the N-electron system. This sug-
gests that the accuracy of molecular properties calculated with existing approximate
exchange-correlation functionals may be improved if the corresponding Kohn-Sham
potentials are constructed from electron-deficient densities. o

Keywords: quantum chemistry, density-functional theory, density-functional ap-
proximations, exchange-correlation potential, fractionally charged systems.
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1 Introduction.

Nonrelativistic quantum-mechanical treatment of an N-electron system is based on
the electronic Schrodinger equation. This equatidn is a partial differential equafiou
of 3N ‘spatial and N _spiu variables. Solving ‘the Schrodinger equation analytically
even for two-electron systems is an intractable problem, SO one hae to resort either to
numerical grid methods or to apprOXimatien techniques. Numerical grids are compu-
tationally too expensive except for small syétems. There exist many ab initio approxi-
mation methods that allow for.systematic improvement and, in principle, for arbitrary
accuracy, but they also become ‘prohibiti{{ely yexpe‘nsive in applications to large sys-
tems A posmble way to overcome thls problem is to use den51ty—funct1onal theory’
(DFT) DFT is in principle assured to dehver the same electron dens1ty and the Same’
gfound-state energy as fc_he exact ksolu_igl_on of the Seh;od;nger equation. In 5&(1d1t10n,‘
-DFT uaturally allows one te tv:reat’sylsl,tems of t.housands of partieles Which makes it
the most Wldely-used computatlon approach m present day quantum chemlstry and

sohd—state physms

1.1 Hohenberg—Kohn dehSity—funetiopal_ theory
- The Hamiltonian operator H for an interacting system of M nuclei and N electrons,

considered in vacuum, at 0 K, in the absence of any external fields, can be written as

A A~

H=T+VerV, (L1

1 < B N ‘ H
. D § : [ RN [ B

where the first term is the operator for the kinetic energy of the electrons (we use

atomic units throughout the text)

'ﬂ>
|I
L\Dl =

Z e e (1Y)



the second term is the operator which describes the electron-electron repulsion energy

Z;m-m il

and the last term is the operator for »th‘e‘ energy of t'h‘e electron—nu.cle\ar_ attraction

i g ' sl N :

V=S, (9

in which
u(r) = Z Ir— RAl en e b (L)
i the external Coulomb potenéialv due to the nuclel. In thke'ai)zeveeqzuafiens, rl denotes
thel épatiel cbofdinates ef thre i:th éle@iibﬁ;' RA and Z 4 denote the spafial coordinates
and the charge of the A-th nucleus. The above Hamiltonian does not contain the term
describing the kinetic energy of éhe nuclei :Since the Bofn—Oppenheimer approximetion
has ali‘eady,been applied. Also, for ﬁxed nuclei, the Hami_ltonia,n dqes not includ,e the
term descrlblng the nuclear repulsmn energy as 1t 1s Just a constant vertlcal shlft of
the total energy, spemﬁc to the system under study. In addltlon, fche Hamlltoman
does not contam electron spins, Wthh effectlvely makes 1t nonrelat1v1stxc
Let us analyze the Hamlltonlan of Eq (1 1) The operators for the kinetic energy
_T and the eIectron-electron repulsmn energy Vee are the same for every system. This
1mp11es that all system—spec1ﬁc mformatlon, apart from the number of electrons is
encoded 1n the external potential v(r). ThlS suggests that the total energy of the.

system can be ;thought of as a functional of the external potential
E=(UAW=Ep. (1)

In 1964, Hohenberg and Kohn proved an important theorem [1] stating that the

electron density p uniquely determines the external potential v. For instance, in the



case of non-degenerate ground states, there is a one-to-one correspondence between p
and v: p & v. In the case of degenerate ground states, the relationship is many-to-
one: p — v. Since the density uniquely‘determ,ines the external potential, p — v, and |
since the external potential unlquely determines the ground-state energy, v — E[v]
one can thlnk of the total energy as a functlonal of the electron den51ty, E [p]
Accordmg to Hohenberg and Kohn the total—energy den51ty functlonal E[p] is

ertten as

Elp] = Flol + / pee@d, @)
where F[p] is the universal density functional. For systems with non-degenerate
ground states, the existence of the universal density functional is best demonstrated

" by the constrained-search argurnent due to Levy [2]:
Flp) =.glin(x1/|f“+ Vel@). 0 (18)
—p

Here the minimization is done over all possible N-particle antisymmetric wavefunc-
tions W that correspond to the given density p. In the case of degenerete systems,
the search domain in Eq. (1.8) is ex’l_cen‘ded‘to ensembles of antisymrnetrjo N-electron
wavefunctions. We will discuss ensembles in greater detail in Sections 3 and 4.

- The density functional Flp| is called universal because it is system-independent
in the sense that it is the same for every system containing some particular number
of electrons. The system-independence of the universal density functionai comes from
the fact that 1t descrlbes only those contrlbutlons to the total energy that come from
system-mdependent operators T and V o 7 | B | |

Hohenberg and Kohn also demonstrated that the total—energy den51ty functlonal

E[p] of Eq (1 7) is varlatlonal that is, for any N -representable trial density p it glves



an energy which is above the exact ground-state electron energy Eo:+ . i
. Elp)=2Ee: .. . (1.9)

This fact allows one to obtain (or to approximate) the exact ground-state electron
density by minimizing the totél—energy fuhctional with respect to the density. The
term N-representable means any density that comes from an ‘N -electron aritisymmeté
ric wavefunction ¥. For a density to be N-representable, it has to (i) be non-negative

everywhere, (ii) integrate to N, and (iii) satisfy the following condition [1,-3]:
Jiverwpa <o, 0

| which Ap(‘)me_s from the restriction that the kinetic energy, (\IIITI\II), has to be finite.
Only» ~de‘nsities fhat satisfy the‘ above requirements may bé used in the definition of
the universal density functional F [] and, t}ﬁerefore, only these densities may be used
in the variational minimization of the totaf;energy density functional. In practice, the
N-representability condition is satisfied for any reasonable density.: The density func-
tional E[p], however, is unknown, which poses an interesting challenge of constructing
practical approximations to it. -‘The Kol;n;Sham method is a possible v;zay to proceed

with this.

1.2 Kohn—Sham method

Although the.‘Hohenberg—Kohn theorem eﬁéﬁres the existence of the universal dénsity
functional, it does not suggest a way of constructing it. In 1965, a year after Hohenberg
and Kohn had published their work, Kohn and Sham found a way:to, “carry this
approach further” [4].

. To introduce the Kohn-Sham method, let us consider a fictitious system of non-

interacting electrons moving in some external potential vs. For this system, the exact

4



analytic solution of the Schrodinger equation is known—it is a single-determinantal
wavefunction built from one-electron wavefunctions (orbitals). Orbitals ¢; are solu-

tions of the following one-particle Schrodinger-like equation:

1
V(—§V2’+ Us) Pi = Eipi- (1-11)

Orbitals may or may not include .spiﬁr_l_,cq(‘;)}‘(;linates. In principle, the LHxa’milt’o‘nia_n fI
of Eq. (1.1) does not depend on. spipj,\ so spin coordinates are not necessary. However,
it is mﬁch gasiér to enforce t‘he,Pap»li antisymmetry constraint on the wavefunction
by using spin§. Eor this reason, it ;is Eusto;ﬁa;y ito inclﬁde spin in the form of “spin-
Q_r‘bitals”, which are products of spatial orbitals ¢;(r) and one-electron spin functions
a or .

The total energy of non-interacting electrons, thérefore, can be written as
Bl =T+ [ewu@dr, @

where T;[p] is the total kinetic energy of N .non-intefacting electrons::: .

fo RCEA N < . e, et Shehoa. E [P R :
1 \
i=1
The electron density in this case is simply
N

A= el (114)

Ct=1

The expression in Eq. (1.12) is exact for non-interacting electrons. By comparing
it with Eq. (1.7), we see that the universal density functional F|p] in the case of non-
interacting electrons is equal to T}[p]. This result suggests using Ty[p] as a part of the

true universal density functional F [p] for interacting electrons. That is what Kohn'



and Sham proposed. Specifically, they split the true universal density functional in

the following way:

.F[f’,].fTs[f’H%’[P]'?? e SO @15

where -

Jlp] = // d’p(r”(") (116)

e —r'|
is the energy of the Coulomb self—repulsmn of the electron den51ty Ps and EXc [p] is the
exchange correlatzon functwnal ThlS functlonal 1s deﬁned by Eq (1 15) as that part
of F[p] which must be added to T, [p] +J o] to yield Flg]. . |
In view of Eq. (1.15), the total—energy kdensity\ funetional for interacting electrens
becomes ‘ B o | | |

Blpl = Tlal + Tl + Bulgl + [ pputdr. (a0

Kohn and Sham assumed that the density minimizing the above functional can be
simultaneously the density of non-interacting electrons moving in'some external ‘po-
tential. So the idea is to find such an external pcjteﬁfial v, that would describe the real
interacting system. Then this potential is used in ”eduatiozis for non-interacting elec-
trons [Eq%' (1.11)] to obtain the Kohn-Sham orbitals and, Cohsequehtly, the density of
| the interacting system By comparing Euler—Lagrange equations for the total-energy
functional of non-interacting electrons [Eq. (1.12)] ahd for the total-energy functional

of interacting electrons [Eq. (1.‘17)],' Kohn'and Sham concluded that

us(r) = vg(r) Fu(r) 4 vke(r), o o 0 (1.18)
where . I e el T e ‘:~ e e G
i) = gpj(f] ;/dr,:h}'offl)-q L e (L19)

_ is the electrostatic potential due to the electron aén"‘si't‘y,“ v(r) is the Zpeﬁeﬁ?tiél\'dﬁe to



the nuclei [Eq.'(1.5)],vand coenn
() = Bl
<=0y

is the ezchange correlatzon potentzal The electrostatlc potentlal of the dens1ty v J(r)

(1.20)

and the exchange—correlatlon potentlal vxc (r) are formally deﬁned as functlonal derlva-
tlves of the correspondmg funct1onals (see Section 1. 3)

After subst1tut1ng the external potentlal Vs correspondmg to the real physical
system [Eq. (1 18)] into the equat1on for non—mteractmg electrons [Eq. (1.11)], one

obtams the Kohn-Sham equat1ons that describe the phys1cal (mteractmg) system

' (—%V2 +vy+v +vx¢) oi(r) = gpi(r). o 0 (1.21)
The density constructed by Eq. ( 1.14) from the orbitals obtained by solving Eq. (1.21)
is the density that minimizes the total-energy density functional of interacting elec-
trons [Eq. (1.17)]. The potentials v; and vy, depend on the density, so the Kohn—-Sham
equations must be solved self-consistently. The self-consistent procedure consists of
the following steps: one starts from an initial guess for the density, then calculates v;
: and Uxes ﬁnds the Kohn—Sham orb1tals cp,, ‘and ﬁnally obtams a new dens1ty p, these
steps are repeated until the dens1ty stops changmg o |
In the or1g1nal Hohenberg—Kohn formulatlon the electron dens1ty is requlred to
be N-representable In the Kohn—Sham scheme the set of densities is restricted to
those that can be constructed only from orbltals that are the solutions of the Kohn—
Sham equations [Eq. (1.11)]. Such dens1t1es are called v—representable The class of
N -representable dens1t1es is W1der than the class of v—representable dens1t1es which
means that the m1n1mlzat10n process in the Kohn-Sham scheme cannot access all
poss1b1e den51t1es that occur in the Levy constralned search ThlS is a hm1tat10n of
the Kohn—Sham scheme Other than that the Kohn~Sham method is in prmmple

exact



- As good as it is, the Kohn—-Sham scheme requires approximations for the exchange-
correlation functional Ey.[p]. - Unfortunately, there is no rigorous way: of improving
existing ‘approximations . and:introducing new ones. As a result, the Kohn-Sham
density-functional theory remains in practice a semi-empirical method, although jus-

tified by strong physical arguments.

1.3 Functionals and functional derivatives

Rigorous mathematical treatment of functional derivatiyes is beyond the scope of this
thesis. However, here we will try to. glvethe rea&ér»é ‘éobd feeling of what functidnaié
and functional derivatives are by co;Inpafing'ﬁthém' to some familiar concepts. from
calculus. |

| A f‘urllc"ti‘o.niis a pfeééri;;tion of hc")’v:/'(to éSs‘ign"a number to anotlherl number A
functidﬁal is a geheralizatibh of tﬁé bonéept of a fﬁhétiori. ”S.I;eciﬁcall’y, a;;functional is
~ arule of assigning a number to a function.. An ex'_c‘lmplle of a functional is the value of
a definite integral, B - o

b |
 FlA 4=/af@d»“f' R =)

Here F[f] is the number that corresponds to the function f. One.of the simplest
functionals which one may encounter. in density-functional theory is the exchange-

energy density functional for a uniform electron gas:
?-E,I;P§[p],=.—0x /.p‘“?(r) dr, (1.23)

where Cy = 1

tion (LDA) to the exact exchange-correlation functional., The integration in Eq. (1.23)

3 1/3 ' ; L
(;) - . This functional_ is also known as the local density approxima-

is over the entire three-dimensional space of the spatial coordinate r.

A very common problem in calculus is to find an extremum of a function. This is



usually done by searching for stationary points, i.e., those points where the derivative
of the function vanishes. An extremum, if any, may be achieved only at the stationary
points or at the boundaries of the functlon s domain.

In the calculus of variations, there ex1sts a 51m11ar problem of finding a function
that delivers an extremum value of a functional. In thls context, the concept of a
functzonal derwatwe arises. For a glven den51ty p(r) and an arbltrary 1ntegrab1e

functlon h(r), con51der the functlonal

Flp +‘Th] — Flp]

DFp, b} = lim - = (1.24)
{[]} I

It the limit in Eq. (1 24) emsts i.e., if the above functional ex1sts and if DF[p, h] is

linear in h, then it is usually possible to brlng it 1nto the followmg form
DF[p,h] = / v(r)h(r) dr, (1.26)

6F[p]
6p(r)

- 'In practice, in order to find a functional derivative,one evaluates. the variation

where v(r) = defines the functional derivative of a given functional F[g]. . '+~

DFp, h] by using Eqgs. (1.24) or (1.25), converts the result into the form of Eq. (1.26),
and then deduces the functional derivative v(r).
As an example, let us evaluate the funhé'ti‘oxiél.’ derivative of the LDA exchangé

functional EXPA[p]. Using Eq. (1.25) we obtain:
LDA ‘ d 4/3
DE™p] = =Cx {7~ [ (p+Th)" dro
e o e drJ o iy

- -af [ S+ e}
3 =0

4 R
’u».:'ucx‘/‘g'pl/‘*hdr,ﬁ A € B 1)



from which we conclude, by comparison with Eq. (1.26), that the functional derivative

of the LDA functional is

) = T = 3 w0t (r). . (1.28)

il

Tak_ing fhe funcﬁonzii ﬁ‘derivqtkivek of ’ankarl‘aiprokairéaﬁej_exchange—correiatiqn ‘f_ﬁnic,tionkal .
r@Sfurlfcs_Ain’ thé corréspondiﬁg ’exchénge-cof—lgelation poﬁential [Eq (1.20)]. So in the
exanil;le above, we have derived the exchange potentiall_‘forv the local-density approxi-
mation, vLPA(r). | | | | | | |
" 'The functional derivative of a"giifén functional is a’ part of the Euler-Lagrange
equation which allows one to find the function that delivers an extremum value to -
the functional under study. In density-functional theory, the Kohn—Sham equations
represent the Euler—Lagraﬁge equation for the total-energy density functional E[p]
of Eq. (1.17) minimized subject to the constraint that the electron density always
integrates to the number of electrons.

As we mentioned before, the locai-density functional ELPA[p] is one of the simplest
possible functionals in density-functional theory. Many other approximate functionals

involve not only the electron density but also its derivatives Vp, V2p, etc. Using the

method described above, one can show [5] that for a density functional of the form

Flp] = / f(p,Vp,V?p)dr o | (1.29)

the functional derivative is given by

0F 0 f of of Of )
1.
vir) = s Op <3VP) v (W?p ’ (1.30)
where —az— is a shorthand for a vector with three components ——, in which p/, = Q/-O—
aVp P a,ya’ P = 3a

and a = z,y,2. We will elaborate on Eq. (1.30) in Section 2.3. For now, let us

10



introduce anot'herluse'ful‘ technique. - .-

Suppose that the argument p of a functional F[p] is itself a function of an additional
varlable, say, the variable ¢. In this case the functlonal parametrically depends on ¢,
which we denote by F(t) = F[p;]. - The question now is how to evaluate the partial
derivative of F[p;] with respect to . It turns out [5] that the common chain rule of
differentiation applies to functionals, so: the expression for the derivative of F[p;] is

given by o .v
o ot Boln) 0t

—dr. Lo (131

We will employ Eq (1.31) eXtehsiVely in the followmg Sections.

11



2 Energies from model potentials: Aufbau path

21 Motivation

As originally proposed by Kohn and.Sham, density-functional theory requires approx-
imations for the exchange—correlation functional; Ey.[p]. Dozens of density-functional
approximations have been: introduced to date, some of them being quite success-
ful [6]. However, if one looks closer at the Kohn—Sham scheme, it becomes evident
that 1t is not the exchange—correlatlon functzonal but 1ts funct1onal derlvatlve the
exchange—correlatlon potentzal Uxes that plays the main role in DFT Only the poten—
tial is present in the Kohn—Sham equatlons and consequently, it alone determlnes
the electron density p(r) through Kohn—Sham orbitals ¢;(r). Moreover, the exchange- |
correlation potential, in contrast to the functional, is deﬁned only. upvto an arbitrary
constant, while the exchange-correlation functional as any functional, is defined up
to an arbitrary functzon that 1ntegrates over all space to zero. These two facts make
the exchange-correlation potentlal an attractlve obJect to model. More than a dozen
model potentials have been introduced to date [7-22].

The benefits of approx1rnat1ng the exchange—correlatlon potentxal come Wlth a
prlce. One part of the trade-off is that the energy funct1onal correspondlng to the
model potential, is unknown It means that one has to ﬁnd a way of ass1gn1ng an
energy to the density coming from a model potentlal Another consideration is that
the parent functional for an_arb’itraryk rnodel exehangefoorrelatlon potentlal may not
it o , RS R BRI

Assurne for a Whlle that for a model potent1al Uye itS parent funetlonal Exc[‘ ] exists
If the expl101t form of Exc [p] were known one Would Just plug a glven den51ty p 1nto

the functronal to calculate the energy correspondmg to that den51ty
Bl = [ 16,90, %, . dr. @

12



‘As the functional is not known, some procedure'is needed to obtain the energy. Here
we mostly follow. the original derivation of van Leeuwen and Baerends [23], who, in
the context of density-functional theory, rediscovered Volterra’s ﬁndings‘ [24] on the
general theory of functional calculus. The idea is to introduce an additional parameter
t into p(r) to create a path of densities p;(r).. In this case the functional E,.[p;] becomes

(
a function of the variable ¢:

1

The der'ivative of this fdneﬁon is given by the chain -rrul‘e of differentiation [Eq (1.31)]:

L OB.(t) _ / Brclpd O 4 / ”xc([pt] )apt dr, @9

ot ope(r) Ot Bt

Integration of the above derivative from t = a to ¢ = b leads to the following energy

difference:

t . SRR P b . ﬁ;.v b ‘"'xb"_v:-’.: i SRR .
OE,(t 180
xc[p,,] Bulp] = / ®) g — / it / vellplin)edr. . (2.4)
. Ot a ot
If the density p is parametrized in suchxa way that p, = O‘ and p, is equal to the

density of 1nterest Ob = P then the energy difference from Eq. (2.4) reduces to

Exclo} = / dt / ve([pe]; T p “dr. (2.5)

The last equation allows one to assjgn an energy to any;mo'del, potential ’chi constructed
fromk;’a‘ given d.evnsivtykp without actually knowing the explicit form of the fu_rletional
. Equation (2.5) is derived under the assumption that the parent functional Ex.[p]
for the petential exc actually exists. For any such potential, the energy obtained from
thls equatlon does not depend on the pa.rtlcular parametrlzatmn of the density used

as long as po = 0 and Pb = p. However it may happen that the model potentlal does
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not-have a parent functional, that is, it is not a functional derivative. In that case, the
energy obtained from Eq. (2.5) rvill generally depend on the particular parametrization
of the density. | | |

Let us 1ntroduce some new termlnology We W111 call a model potentlal mtegmble
if ‘its parent funct1ona1 ex1sts Ifa model potentlal does not have a parent func-
tlonal then we will call it non-mtegmble or stmy We W111 also call some partlcular
parametrlzatlon of the den51ty a denszty zntegratwn path or 81mply a path Using this
termmology we can reformulate the above paragraph: energies obtained using inte-
grable potentials are path—lndependent Whlle energles coming from stray potentials
depend on the integration path o

,’A path pt used jn Eq. (25) must be such that the derivative %/—); eXists almost

everywhere, so that ‘tyhe integral over ¢ has a def_inii_;e value. “Almost everywhere’f is a
mathematieal term, which Vi_n this context mearis_ that the ‘deriyat,ive_b exists either for
all values ‘o‘f t or for all values of ¢ ex.cept for a courrtahle eet of pointe. |

Several den&ty—scahng paths are known in the hterature None of them, however,
was initially mtroduced in the context of line 1ntegrat10n They served for completely

different purposes The path of umformly scaled densities [23 25] which has been
called therath 26, 27], is defined by R NI

Pt =aple), (26)

where 0.< ¢ £ 1. We use a distinct letter subscript for the scaling parameter in some
particular pan‘;h~ and reserve ¢ for the general discussion.of any path. Another path
is the uniform particle-number conserving density scaling, proposed and extensively
studied by Levy [28]: |

pa(r) = X’p(Ar). (27
This path has been termed the A-path (0 < XA < 1). Perdew and co-workers [29]
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proposed a Thomas—Fermi-inspired path of the following form:
Cope(r) =Cp(¢r), (28)

which has been réferred to as the Z-path [26, 27]. The path of Eq. (2.8) is originally |
defined for 0 < ¢ < o0, but the term “Z-path” corresponds to the following range of ¢
values: 0 < ¢ < 1. There are also non-scaling paths. For instance, van Leeuwen and

Baerends [23] used the path /
a0 =+ A-0R), o (29)

Wiiere R\‘ 1s an’ éfbitra;y, vector, to explicitly éhow th‘at: the }‘energy assigAngd’ to_.a{ non—
i'nteg.rza;ble model poténtial is path-debéﬁdent. As diééﬁsééd in Ref." [23], the bfol)l‘owinv.g‘
path ﬁ}as initially ;i‘mpAlic‘itly used by Ziegler and Rauk [30] to calculate molecular
birllding; enérgieé:. o N - | o B

p=ptip" —p%), 0<t<l . (210)

Here pM = p; denotes th'e'eleActro'n' density of a diatomic molecule AB and "

p% = pg = pA+pP , in which p# and pP denote the densities of isolated atoms A and
B. The above path represents how the superimposed density of individual atoms, p~,
transforms into molecular density, pM . of the molecule AB.

“-" An important result for the' A-path can be ‘derived for exchdnge-only potentials.
One of the ‘analy'ticall properties of such potentials is that they are homogeneous of

degree one with respect to uniform density scaling (A-path) [31]: - = =
—on(loalr) = (el A (2.10)

Equation (2.11) allows the integral over A = ¢ in Eq. (2.5) to be taken analytically,
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leading to.the following well-known Levy—-Perdew virial formula [32, 33]:
Bl = [dru(din) o) +1- Vo). (212

Some of the aforementmned paths have been used in the context of 11ne 1ntegralsk
For example, Gaiduk et al. [26] der1ved potent1als from some ex1st1ng approx1mate
dens1ty functionals and then reconstructed these functlonals by integrating the po-
tentials along the Q-, A- and Z—paths Reconstruct1ons obtained by using dlfferent
scallng paths d1ffer in the1r analyt1c representat1on but grve the same numer1cal re-
sults The results also comc1de w1th those obtamed d1rectly from the funct1onals
Galduk and Staroverov [27] employed the Q— A- and Z paths to test whether several
ex1st1ng model potentrals were 1ntegrable or not Surpnsmgly, only a few of ex1st1ng
potentlals are 1ntegrable y ” “ ; ‘ |

If a potent1al is 1ntegrable then 1ts reconstructlons us1ng dlfferent scahng paths are
Just gauge transformatlons of the 1ntegrand express1on for the parent funct1onal [26]
In the case of non—mtegrable potent1als the reconstructlon is generally path dependent
but a partlcular combmatlon of the potent1al and a path can be thought of as a def—
1n1t10n of a new den81ty funct1onal In th1s regard a questlon arlses For a‘ glven |
potentral whlch dens1ty parametr1zat1on deﬁnes a better model to approx1mate the
exact E'xc [p]'7 ThlS problem was partrally addressed m Ref [27] Where the authors
calculated total energles for a set of atoms and molecules for non—mtegrable potentrals
usmg the Q A- and Z- paths | o | | .

T he pr1nc1pal obJectlve of th1s work is to 1ntroduce new density parametrizations
and to assess their performance in compar1son W1th other existing paths. The new

paths can be combined with hterally any model potentlal so, in effect, we are 1ntro-

ducing a variety of new approximations to the exact exchange-correlation functional.
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2.2  Aufbau paths -

Let us now introduce two new density parametrizations to be used in the line integral
formula, Eq. (2.5). The first pafarﬁetrization which we call the orbital-aufbau path, |
is such that the dens1ty is filled orbltal-by-orbltal from the lower—energy Kohn—Sham

orbltals The formal expressmn for the orb1ta1-aufbau path may be ertten as:

U | TR -
ZI‘P: |2+{t}|S0Lt+1J( )| . | (213)

Here the scaling parameter ¢ varies from 0 to the total humber of electrons, N. Sym-
bols |¢] and {t} denote the integér ‘and fractional parts of ¢ correspondingly. The
superrs'(:r‘ipt ° indicates that Kohn-Sham orbitals are frozen, that is-, calculated once
for the N-electron system and then kept ﬁxed. Note that for one-slectron sysésms,
the orbital-aufbau path coincides with the Q-path of Eq.. (26) 1

If a system has degenerate Qrbitals_, thessiorbitals,can be filled in any order. ' This
leads to non-uniqueness of the orbital-aufbau path for systems with degeneracy. To
avoid this ambiguity, we introduce a more general parametrization, which we call
the subshell-aufbau path. Here the orbitals:are filled from the lowest to the highest
not one-by-one but subshell—by-subshell. By a subshell we mean ahy set of degenerate
orbitals. In other words, all degenerate orbitals which have the same orbital energy are
filled simultaneously. The subshell-aufbau path is unique for systems with degeneracy
and it reduces to the orbltal-aufbau path for systems with no degeneracy The formal

“expression for the subshell-aufbau path is as follows:

t)
Pt(r) : ZSz(r) + {?}Slt+1j_(?), e (214)
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_where S;(r) is a sum of squares of degenerate orbitals which form the i-th subshell:

# degen. orb.

Simy= Y el (2.15)
j=1
The parameter ¢ now varies from 0 to the numbers of subshells N; in the syétem.
As discussed above, for a density?paraméti;ization to be‘use'd"‘i)n‘ the 'line-integral
formula, the following two equalities must ‘hold: “bt(r)|t=a = 0 and pi(r)|e=p = p(r).
In addition, the deﬁsity p¢(r) must be continuous in ¢. ' While the first two conditions
' are clearly satisfied by the orbital- and subshell-aufbau paths, the continuity of p;(r)
needs to be p"r‘ovexylf. To do "‘th\at‘, it is sufficient to show that the following edﬁalities
hold for every a:

Jim o= lim o = pa. LR (2.16)

For non-integer values of a, these equalities certainly hold. Before looking at integer
values of a, let us collect some useful properties of the integer-part and fractional-part

‘functions. For an integer number a, the following equalities hold:

t—a—

lim ]_tJ =a-— 1 lj}ﬁl_ﬂ = a; ”tl_1’ran_{t} =1; tl_l}(ﬂ{ﬂ =0. - (217)

Keeping these propertiesi iIi mind, one can easily evaluate the limits of Eq. (2.16): ’

LtJ
- Jim py(r) = lim Zl%(r I+ lim {t}ko[tj+1 (r)[? f—ZI% o (218)
and. .
o Lt
Jim p,(r) = Jim Zm O + Ji el —Zm(r (219)
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_as well as the value of p, itself, by definition:
=3l (2.20)
i=1

As shown above, equalities of Eq. (2.16) hold for all values of a, so the orbital-aufbau
path is continuous in ¢. The proof is identical for the subshell-aufbau path—one just
needs to replace @;(r) with S;(r) in Egs. (2.18)—(2.20).

Since we have proved that aufbau paths are continuous, we 'can use them in the
line integral fbrmula. To exploit these new paiths, it is also necessary to evaluate the

partial derivative %, which we do.by definition. For the orbital-aufbau path:

TN

Oy C - Dy ) %, if t is not an integer - AEEETREIE
ﬁ — lim ___p“AAt t pe = Tl (2.21)
At=0 , r=const limit does not exist, if ¢ is an integer.
Similarly, for the subshell-aufbau path:,
~ Opy s DAt —pe| '_” -S|t}+1, if t is not an integer . .~ (222) |

Ot . At—o. . At lr=const . limit ‘does not exist, if £ is an integer.

The set of points where % \fioes"not exiét is countable (i.e., of zero measure), so the
value of the integral over ¢ in the line integral formula is not affected. In other words,
pt(r) isa cdﬁtinubus function of ¢ with a diébdﬁtinuous first derivative, which causes
no dlfﬁculty in practlcal apphcatlons of the aufbau paths

The ﬁnal expression for the exchange—correlatlon energy in the case of orbital-

aufbau path is as follows:

Eylp] = / dt / dro(pdin) Iy P (223)
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_ For the subshell-aufbau path, we have .

N |
Bulpl= [t [ deuseodin) Sp(e). (2.24)

~Aufbau paths are not based on density scaling, so they cannot be represented
as the density multiplied by some scaling factor. Instead, aufbau paths deal with
Kohn—Sham orbitals as building blécks for the electron deﬁsity. Since aufbau paths
operate with orbitals (or subshells) and iha’v.e'dijscon’cinuous derivatives, we expected
that these paﬁhs, when used in conjuﬁction With model potentials, would mimic the
behavior of the exact exchange-correlation pétential, which itself has discontinuities
at integer electron numbers. | |
Before we proceed to assess the aufbau paths, let us deScrjbe the density functionals

and model potentials which we study in this work.

2.3 Functionals and poténtials, of int_é‘reSt

We start by elaborating on the functional differentiation technique introduced in Sec-

tion 1.3. Many practical density-functional approximations have the form
Pl = [ fog)dn (2.25)

where g is the norm of the gradient of the density,
‘ 1/2
8p\ 2 8p\ 2 80\ 2
= = || 5z - = . 2.2
== () (3) + (% 229
For the functional derlvatlve of a functlonal ertten 1n the form of Eq (2. 25) the

general express1on for the functional derlvatlve [Eq. (1. 30)] can be cast as

_of_oF _Ofw of (Vip w (2.27)
~8p  Bpdg” &g4>  0g )" '
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“Here w is the second-order:quantity defined as = -
w = g"Hg, (2.28)

where g and H given, respectively, by

and -

' ( a2p "'azp : .82,0
L 0x? . 0zdy 0zx0z
&p 0% %
Oyor Oy* = Oydz .
% %
\ 920z 820y 022 /

tions is R , |
P [ S e

where s is the reduced (dimensionless) deﬁsity gradient defined as’ .

|Vpl L
S e S (2.32)

S

For such functionals, Eq. (1.30) becomes -

QPRS0 TON TR B TP R

T 8p  Bs\s® s)p 0Opds | 8s2\3 82
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_ where the second-order dimensionless quantities ¢ and h are defined in the following

way: _
'q'=Z5—2/§" (2.34)

and . . e T I TN
L h= 5%3 o (239

Initially, we wanted to test our imﬂlemént:amtion of the ’aﬁfbau'p’athsbri pOtentials
which are aséured to be integrable.” We derived two such potentials from the ex-
E:he(iryigéy functional propoSéa by Gill [34] and ffdm‘ the exchangeipért of the exchange-
 correlation functional of Perdew, Burke and Ernzerhof [35], EFBE[p]. The Gill func-
tional Ef% [p] has a very simple form. It consists of the local density functional

ELPA[p] and the gradient-correction term:
ES%[p] = E’I;DA[ o] —b / p‘—2/3 93/2 dr, ' (2.36)

where b = (2!/%)/137 is an empirical parameter fitted in a way that E7%[p] reproduces
the exact exchange energy of llthe Ar atom. We derived the potential corresponding
to the Gill functional by using Eq. (2.27):

vSés LDA bp—z/s / 1p‘1’g22—|j-§§_2w; §V2p . (2.37)

3 4 (‘ 2

The Gill exchange potential lécks somé alﬁéalyticvprc’)péftiés‘ of the exact 'exchangé po-
tential.. For example, v$%(r) — oo as the distance from the atomic nucleus increases,
Whilc the exact potential vanishes in.that limit. Nevertheless, the Gill functional per-
forms reasoﬁably well compared to many other gradientfdependent density-functional

approximations.
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- 'The exchange functional of Perdew, Burke and Ernzerhof has the following form:

 EPBE[g] = ELPA[] — O, / 43 255 gy, 2.3

- B lel =B - P o (2.38)
The constants o and k are nqn—empirieal and are fixed by the requirements that
Eq. (2.38) satisfies some exact constraints. For example, EPBE[p] correctly reduces
to the uniform electron gas limit, EXPA[p], in the case of a-homogeneous density.
Numerical values of the constants are as follows k = 0.804; o = mu, where m =

(1/37%)%3 /4 and © = 0.21951. The express1on for the corresponding potential can be

written as
20k Tl ‘ :
PBE LDA olPA .
= —_— Co : 2.39

4kst k3 — 2ak?s? — 3aks?
Fras T (rap 8- 3")] '

X [234 +3h — 3¢gs® —

We obtained it us1ng Eq. (2. 33)

 Next we hst model potentlals ‘Whlch were 1htr0duced dlrectly, ie., they are not
derlved from densn:y functionals. As concluded in Ref [27] all these potentlals are
actually non-mtegrable L e T R o

The van Leeuwen—Baerends exchange potentlal [7] has the form

LB94 P‘ 2
yLB% _  LDA P

1/3 T
x % _ﬁ (2) - 14 B sarcsinh(z)’

(2.40)
where ,8 = 0.05 is an emplrlcal parameter and z = 21/ 33 ThlS potent1al is de51gned

to m1m1c the (exact) exchange-correlatlon potentlals obtalned from hlghly-accurate

electron densities of Be and Ne atoms. The Slater potential [36]

vS()=—ﬁ7/d%:Lll_ e
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“was introduced in 1951, before the advent of DF'T, in the context of a simplification
of the Hartree-Fock method. The symbol p(r,r’) denotes the first-order spin-density

matrix of the Kohn-Sham non-interacting system:

. OCC.

E:wz )i (x ()
The potential of Becke and Johnson [19] is an improvement on the Slater potential: -

BI _ S (2
; 2.43
Whered
57\ 2
o (37)" _ 2.44
‘ BJi-(3p>-.'» | o

in which
o OCC.

le),r)l2 L )

is the so-called kinetic-energy density.’ Along With-’qua’ntities g(r) and s(r), the kinetic-

energy density is-a common ingredient of grzadient—dependent"density-flinctional ap-

proximations. The Becke-Johnson potentlal is designed to be exact for any hydrogen- -

like atom and it mimics well the shell structure of the exact exchange potential 1n'

many-electron atoms. The Umezawaﬁpotentlal [18]

,UUOG (r) vLDA + G(r)’UfA . (2 46)

x

is an 1nterpolat10n between the LDA exchange potentlal LDA, and the Ferm1—Amald1

Potentml | g ‘

The latter being just a per-particle Coulomb jpdten’cial;'of the electron density. ‘The
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', switching functions SR
1

| F(r);=’ln(i+75s5).+ - - (248)
and | I | .
B e I

are such that the Umezawa potential benefits from the reasonably good short-range
behavior of the LDA potential, vXP4, and from the correct asymptotic decay (—1/r)
of the FermieAmaldi potential, v, . The empirical parameter .y is chosen to be
0.125. The functions F(r) and G(r) are defined in terms of the spin-density, and

the potentials vYP* and vi* are calculated from the total electron density.

2.4, Implementation of aufbau paths

Energy expressions for the ‘a'gufbau‘ paths [Egs. (2.23) and (2.24)] involve one-dimensional
integration over the parameter ¢ and three-dimensional integration over the spatial
coordinate r. By considering the former as the outer integration, we can'rewrite the

energy expression for the orbital-aufbau path [Eq. (2.23)] in the following form:
Eeelp] = / fod, o (250)
where f(t) is the result of the inner mtegretlon«

50 = [ el D28 s

The energy e}ipfeseioh for the e‘ubsileil-;ﬁfbau path [Eq | (224)] can be also rewritten
in the same Way, except that N W111 be replaced by N in Eq. (2.50).

In pr1n01ple any of various one- d1mens1ona1 quadratures can be used to evaluate
the outer 1ntegral. "All of them requlre knowledge of the 1ntegrand f(t ) at some

intermediate values of the parameter t. In the case of the aufbau path, the calculation
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. of f(t) at each point ¢ is itself an integration over r.

The components needed :to perfotrn the"_inner ‘ilntegratioln. are:, accessible from the
development version of the éAUSSIAN quanturn—chemistry program [37]. These com-
ponents include a three~d1mensronal real—space grld and the correspondmg weights as
well as the values of Kohn—Sham orbltals and the1r first and second derivatives evalu-
ated on that grid. We store all these components on disk together with some additional
| bparameters and then re-use them in our own newly ertten program which we call
auprog. Auprog calculates the value of the inner. 1ntegral f ( ) for any intermediate
value of ¢, which is needed to perform the outer integration.

We employ the Gauss—Legendre quadrature [38 39] for the outer integration. We
usually utilize grids containing 256 X N pomts for the orbltal-aufbau path and use
(256 x Nj)-point grids for the subshell—aufbau path In the 1nner 1ntegrat1on, we use
the grid containing 300 rad1al and 974 spher1cal points per atom Th1s grid is requested
in GAUSSIAN by the keyword Int(Gr1d—299974) ‘The grlds for the outer integration
give an accuracy of at least 4 decimal places The inner (real-space) integration is
more accurate, so the overall accuracy of exchange—correlatmn energles calculated in
this Section is at least 4 dec1mal places | U

In addition to the aufbau—path calculatlons auprog is also capable of doing Q-path
calculations. Th1s 1s poss1ble since the Q- path can be thought of as a subshell-aufbau
path in which all the orbltals are cons1dered as one subshell. We also implemented
the A-path calculations in auprog In add1t10n 1t is poss1ble in auprog to use the
parent funct1onals of those potentlals that have them R

We put the detailed descnpthn of auprog in Appendix A. |

2.5 Applicatpionl, of aufbau paths
To test our implementation of aufbau paths, we ﬁrst\applied it to two integrable

G

potentials, v8% and vy PE, The results are shown in Table '1."1 As one should expect,
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Table 1: Total energles (1n hartrees) calculated from various exchange potentlals usmg the A—path Q—path and the aufbau paths
All calculations are spm—unrestrlcted The basis set used is cc-pVQZ.

x4

PBEx ~ G96 LB9 T

‘Functional =~ Any path Functional Any path - - A-path Q-path  Orbital aufbau  Subshell aufbau Exact®
Atoms . ‘ : A ' ‘ , '
H - —04942  —0.4942 ~0.4991 ~ —0.4991 - —0.4720 = —0.6274 —0.6274 —-0.6274  —0.5000
He - —28517 . —2.8517 —2.8660 - —2.8660 . - —2.8310 . —3.3123 —-3.3123 - —3.3123  —2.9037
Li ~ .. —74100  —7.4100 -~  —7.4308 = -7.4308 - - -7.3744  —8.1939 —8.2115 . —8.2115  -7.4781
Be  —14.5437 —14.5437 = —14.5650 ~ —14.5650 —~14.5716 -~ —15.7080 ~15.7652 —15.7652  —14.6674
N. =~ —b543551 —54.3551 —54.3996  —54.3996 —54.7136 -~ —56.9808 —57.2967 —57.2735.  —54.5892
Ne . -~ —128.5131° —128.5131 —128.5881 —128.5881 = —129.6193 —133.0825 —133.8465 —~133.7791 —128.9376
Na =~ —161.7988 —161.7988 - —161.8827 =—161.8827  —162.9406 - —166.9881 ~ —167.9010 —167.8164 —162.2546
P- . —340.5860 —340.5860 = —340.7198 —340.7198  —342.5895 ~—348.6035 . —350.3189 —350.1666 ~ —341.259
Ar .—526 6367 —526.6367  —526.8251 —526.8251 . —529.4139 . —537.0413 —539.4881 —539.2793  —527.540
Molecules . G e DR o ‘ y
Hy0 (Cov) —176. 0589  —76.0589 —76.1134  —76.1134. . -76.6606 = —79.5131 —80.0772 —80.0772  —76.4087
CHy4 (T;)  —40.1682  —40.1682 —-40.2118 ~ —40.21  —40.0108  —42.7203 —43.0166 —42.9926  —40.4921
NH; (03,,) - —56.20 —56.2473 . —56.25. —59.1669 —59.6188 - —59.6112  —56.5381

" —56.2001"

—56.4378 .-

“For atoms the energ1es are taken from Refs. [40 41]; for molecules, the exact energles are approxxmated by the CCSD(T Full) / aug—cc-pVSZ values
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Fig. 1: Schematic structure of occupied energy levels in the Water, ammonia and
methane molecules.

the energles a351gned via A-, Q— and aufbau paths are the same and equal to the
energ1es obtamed dlrectly from the correspondmg functlonals EG96 [p] and EPBE[p]
We also applied the aufbau paths to calculate the energles of the densities com—

mg from the non-mtegrable model potentlals of van Leeuwen—Baerends vLBY,

and
Umezawa vI%, The energy in both cases is path—dependent The results for the \tan
Leeuwen—Baerends potent1al are ‘shown in Table. 1, where we compare them to the
results obtained from the A— and Q-paths. Generally, the energies calculated from
the orbltal— and subshell-aufbau paths are lower than those obtained from the A- and
Q paths ‘In add1t1on the aufbau—path energles tend to be lower than the exact ones

As seen from Table 1, energ1es calculated from the orbital- and subshell—aufbau )
paths dlffer from each other for systems with degenerate orbitals (see the molecular
orbital d1agrams in Flg. 1).- The d1fference is not as large as when aufbau paths are
compared to other paths but it is still notlceable The orb1tal- and subshell-aufbau
paths are in some sense close to each other and dlffer conSIderably from other paths,
so the above result is reasonable. SR

In Fig. 2, we compare the dependence of the exchange energy on the number
of electrons for integrable and non-integrable potentials. Both integrable potentials
(v€% and vEBE) give plots that are almost identical to each other, so we show only
the results for the Perdew—Burke-Ernzerhof potential, vEBE. Observe that the energy

difference between integrable and non-integrable potentials increases with the number

of electrons. Note also that the energies from the orbital- and subshell-aufbau paths
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Flg 2 Dependence of the exchange energy on the number of electrons in the hthlum‘
and nitrogen atoms for orbital- and subshell-aufbau paths. Arrows indicate exact
exchange energies of the neutral atoms [42].
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differ significantly from each other _only.in.the range 0 <t<20 0
As we d1scussed above, a combxnatmn of a dens1ty parametr1zat10n and a non-
1ntegrable model Kohn—Sham potent1al deﬁnes a new den51ty—funct10nal approrﬂma-l ,
t1on Our results 1ndlcate that at least for the model potentrals stud1ed the A-path‘
erforms better than all other paths, 1ncludmg the new aufbau paths A poss1ble
explanat1on may be g1ven if one observes the followmg spec1al feature of the A-path.
ThlS path preserves the normahzatmn of the den31ty, that is, for any given value of the
parameter A, the den51ty scaled W1th the A-path mtegrates to the number of electrons

in the initial reference system.

/p,\‘(r) dr = N for any ), (2.52)
Wh1chcan beeasi‘ly‘ veriﬁed by the'.followingl set:of :equalities |
s / pa(r) dr = / Np(Ar) dr = / A3-A15‘p('xr) d()\r)=/p(r’) @ =N, - | (2’553)

where d(Ar) = d(Az)d(\y) ()\z) .This constancy makes the A-path performbetter
than the other paths. | , : |

- Another possible reason of the good performance of the 'A-path-'is that it is the only
path that does not change the shape of the potential. As evident from Eq. (2.11), the
potential is just multiplied by a constant under the A-scaling. The coordinate scaling
transformation r — Ar only shrinks or stretches the potential but does not affect its

shape.

In the future, 1t would be 1nterest1ng to address the followmg challenge For a grven
Inodel potentlal construct a path such that the density-functional approximation
defined by the comb1nat1on of potentlal and path is as phys1cal as possible. It appears
that if a general way of do1ng this could be found then it Would be a fundamentally

new approach for introducing approximations in density-functional theory.
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3  Energies from model potentials: Janak path

In this Section we describe another possible way of assigning an energy value to
a model potential. We obtain the corresponding energy expression and provide its
alternative derivation from the line integral formula. We show the explicit form of

the density parametrization that leads to this new energy expression. .

3.1 DFT for non—integer ve‘le_ctrop__nu»mbe_ljs o |

We mentioned in the Introductioxi"_that the definition of the universal density func-
tional'[Eq.- (1.8)],
F[p] mm (‘IJIT + Vo |\IJ)

has to be extended fof systems Wlth degenerate ground states [3] The extensmn
is such that the mmlmlzatlon is done not only over all p0551ble antl-symmetrlc N-
electron Wavefunctlons ¥ but alsoover all possible statistical miztures (ensembles)
of such wavefunctions. In quantum mechamcs -a statistical mixture is descrlbed by
its own operator I', I = Z Di| W) (T5]. In thls work we will not go into thorough
discussion of this operator.zHowever, we will use the symbol:I' to denote properties

that correspond to an ensemble. This said, the universal density functional extended

to ensembles is defined as

" Flp) = mm(\IIIT+V;e]‘If) B (301)
F=r o

Here the expectation value (¥|T" + Vio|¥)s of the statistical mixture of pure-state

wavefunctions ¥; is given by

(\II|T+V |\11 Zp,(q: |T+V |\If) (3.2)
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‘where p; is the contribution of the wavefunction U; to the ensemble f‘, and

S pi=1 with 0<p <1, (3.3)
The extension shown in Eq. '(3:.1) allows the density-functional theory to treat the so-
called mixed states, i.e., the states that cannot be described by a single wavefunction.
Examples of mixed states inclucle‘systemsf wi‘th: degeneracies end systems with ﬁu'Ctu-k
atmg number of electrons The latter may arlse When Wavefunctmns correspondmg to
dlfferent numbers of electrons are 1ncluded in the stat1st1cal mlxture F The systems
W1th non—-1nteger electron numbers may be thought of as statistical averages of the
systems which are free to exchange electrons W1th the surroundmg (open systems)
"The Kohn—-Sham method can be extended to handle non—mteger electron numbers

This is done by introducing fractionel_ occupation lnumbers 0.<n <1 into. the

expression for the electron density,
N .
o= mlal, . (3.4)
. et T

and into the expression for the kinetic energy of non-interacting electrons
) \

N
, 1
s = 5 Z Qozlv2|901> (35)

For systems extended in such a way, Janak showed [43] that the response of the total
energy to a change in the occupation number of the i-th orbital is equal to the energy
of that orbital: | |

This result is known as the Janak theorem.
The Janak theorem plays an 1mportant role in the later derivations, so for. ‘the

sake of completeness, we give its proof here To begin with, consider the following
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derivative : SRR THE
O0E 0
an, ani y

d o (4 Bl + Buld), (@)

where T is in its extended form [Eq. (3.5)], J[p] and Ey.[p] are the same as defined

by Egs. (1.16) and (1.15), and E[p] is the electron-nuclear attraction:term
Epelp] = / v(r)p(r)dr (3.8)

with the external potential v(r) given by Eq. (1.5). Let us start by working out the
first term of Eq. (3.7): . |

P RIS 1 P L
G le= ————ZM%IV?I%) —k— <soz-|v2|soz-_) —§an%<goj|v2|¢j). (3.9)
. I IR AN . Cle e j=1 T .

The above result can be written in a more compact way if we introduce the following

notation for the orbital kinetic-energy integrals:
1 : R 4' N N "1 . . 2 . A : B
ty = =5 (sl V7les)- (3.10)
With this notation Eq. (39) becomes
— T, =1 i—t;. 11

Now: let us work out the second part of Eq (3 7). Functlonals J [p] E‘Xc [p] and Epe[p]
are 51multaneously functlons of all occupa’clon numbers n, So the cham rule needs to

be applied in order to calculate necessary derlvatlves. e

a% (T16] + Bl + Euelg) = / ;—p (J16] + Brclel + Euls) 5_72 dr

, : . N . o SO »
- [u) (I¢i|2+§ :nj—an_nojﬁ) r (8.2
v S oo g=1o TR e ) e Do e
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_where v, = (v + v + vx) is the Kohn-Sham potential as introduced in Eq. (1.18).
Combining the results of Egs. (3.11) and.(3.12), and rearranging the terms, we cast
Eq. (3.7) in the following form:

Gt +/vs|go,|2dr+zn]( —t; + vsa |¢J|2dr> L (3.13)
Let us now consider the Kohn—Sham equations [Eq (1.21)]
' 1 2?': R RN TR § LA
5V FU vt i =€6pi

If we multlply them by ©of and 1ntegra.te over the spatlal coordmates—a common tI'le

used in quantum mechamcs—we w111 ﬁnd the rela.tlon
t + /vsblcpi|2 dr=¢. = (314)

The ebove equation brings Eq. (313) in‘go a simp\lver. form _

L%

ez—l-Zn]( t + Us@ |¢J|2dr> ;, (315)

\

By spelhng out the symbol t; and by takmg the partlal derlvatlves w1th respect to n,,

we see that the sum in parenthe31s is equal to zero:

R A 0 o . h .
o ti + vsa—nilgoj|2 dr = / (8ni goj> (—1V2 + v,) ; dr + complex conjugate

a . .
o= 45—,-90]- €j(p; dr + complex conjugate

0
- —636 /|‘PJ|2dr_€Ja =0, . (316)

(
Where we explmted the fact that Kohn—Sham orb1tals are normahzed The result of

Eq (3 16) makes the summatlon over j in Eq (3 15) vamsh The last step brmgs
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Eq. (3.15) to the expression obtained by Janak [Eq. (3.6)], and completes the proof.

Janak’s work dates back to the time when researchers in density-functional theory
were trylng to minimize the total—energy den81ty funct10nal E|p] not only w1th respect
.to the densrty but also w1th respect to the occupatlon numbers Now we know that
there is not as much freedom in values of the occupatlon numbers as was assumed in
the earher days For 1nstance, Vahev and Fernando showed [44] that only the hrghest~
'occupled orbltal or orbrtals if they are degenerate, are allowed to have fractlonal
occupat1ons All the lower—energy orbltals must be fully occup1ed The reason bemg

is that Ts[po] and Exc[p] are d1fferent1able only when the above constraint is satisfied.

Janak suggested using Eq (36) as a Way“lof calculatjing the energy of the vﬁrs_t
excited state of a system [43]. Integration of Eq (3.6) over the occupation number
ny4+1 gives L

.EN+1 = EN +/ ‘e(nN.H) an’.,.l.‘ DL B T ,,‘(3.'17)
0 ,

If EN is known, then EN+1 can be obtained by 1ntegrat10n of the energy of the
(N + 1) th orb1tal with respect to 1ts occupatlon number TLN+1 In the late 197OS
1t was a computatlonally 1nvolved procedure to obtaln a lot of 1ntermed1ate pomts
to calculate the 1ntegral of Eq. (3 17) So Janak followmg Slater [45] con51dered
an approxrmatlon of the 1ntegral by a smgle pomt nN.H =1/2. ThlS approx1mat1on
turns out to be qu1te reasonable We w1ll dlscuss it in greater detall in Sectlon 4. For
now, let us show how the Janak theorem can be used to asmgn an energy to a model

potentlal

3.2 Energy expression based on the J anak theorem

Suppose we are given a model exchange-correlation potential for an N-electron system
and we want to find the associated energy. First, let us rewrite Eq. (3:17) in a slightly

different form that shows explicitly how one can use the Janak theorem to calculate
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energy differences: -

1
Exy—=En-1 =/a’e(nN)an.w ETUUTRE U EE R (318)
0

Now 1f we apply Eq. (3 18) to the N-th orbltal Wh1le keepmg all lower-lymg or-
b1tals fully occup1ed and all h1gher—ly1ng orbltals empty, we lel get the energy dlf-‘
ference (EN EN_l) Domg the same procedure for the 1 st 2 nd 3-rd N-th
orbltals, we w1ll obtain, respect1vely, the energy d1fferences (Ey — Ep), (B2 — En),
(B3 — Ey), ..., (En — En-1). Adding them up results in a telescopic cancellation of

all the intermediate absolute-energy-,values E; e)rCept for Ey and Ey:
(El Eo) + (E2 El) + '+' (EN - EN__ ) EN - Eo.‘ S (319)

The term Eo corresponds to the system W1th no electrons Such system has ZEro en—
' ergy, Eo = 0 S0 only the term Ey survives. In other words by followmg the procedure
outlined above, it is possible to ass1gn an energy EN to a model exchange—correlatmn
potential without actually knowing the exphmt expression of the functional. The
method requires only knowledge of the ene_rgy of the highest-occupied molecular or-
bital (HOMO) as a function of its occupation number for all intermediate sys_tems
that arise When the number of electrons cha_nges form 0 to N Thls\result_ can be
thought of as the generalization of the Janak theorem. ’I“o,thé best _of‘_our: knowledge,
there is no discussion in the literature of this way of extracting the energy from model
Kohn—Sham potent_ials. ‘

. The formal expression for the procedure outlined above can be written as -

ENfZ/ dwEHOMo z w) | ,‘ o (320)

Where €HOMo(i w) denotes the energy of the h1ghest occupled molecular orbltal of the

system in wh1ch the lower (z - 1) orb1tals are fully occupled and the z-th orbltal the
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_HOMO, has an occupation number equal to w. - -

- Let us also provide an alternative argument leading to the same result as Eq. (3.20).
For a system in which only the HOMO is allowed to have fractional occupations and
in which all the lower-energy orbitals are fully occupied, a change in the occupation
number of that orbital, Onnomo, is equivalent to the change of the total number of
electrons, ON. In this case, the J anak theorem reads

cono(®) = g_ff._ e
Here by enomo(t) we mean a collective representation of the energy of the highest-
occupied molecular orbitals. That is, ieHOMo(t) always represents the HOMO energy
regardless of the ordinal (serial) number of that orbital. With this definition, one just

needs to integrate equation (3.21) in order to get the expression for the total energy:
Ey = / emomo(t)dt. . . . (3.22)
o 0 T '«"‘}_é syt K : ‘ e

Now 1f we take into account the fact that there are N orbltals inan NV -electron system
and that each of them becomes the HOMO at some stage in the electron addition
process, it is evident that Eq. (3.22) is just another way ‘of Writin‘g-Eq;‘ (3.20).

-~ The way of extracting the energies from model potentials described above and
Eq. (3.22) in particular, resembles the line integration technique which we have de-
scribed in Section 2. This analogy motivated us to investigate the density parametriza-
tion ‘that lies behind the energy expression of Eq. (3.22), or, rather, identify the
parametrization that is implicitly present in Janak’s original paper [43].

The manner in which the orbital energy enomo (t) is calculated suggests that there
is always a unique combination of i and ffbﬁn ‘:Eq. (3.20) that corresponds t0'some
particular value of £. Specifically, the value is t =7 + w. VSince w is always within the

range from 0 to 1, and since ¢ is an integer number, we can think of ¢ as the integer
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_part of the parameter ¢, ¢ = |t], and w as the fractional part, w = {¢t}. Then it
immediately becomes clear what density parametrization corresponds to Egs. (3.22)
and (3.20). The parametrization, which we call the Janak path, can be written as

lt) T
)=l l2+{t}l<ﬁu+u(r)| e

The Janak path is formally similar t6'the orbital-aufbau path discussed in Section 2,
except that Kohn-Sham orbitals are no longer fixed here. They depend on ¢, ie.,
they are re-calculated self-consistentlsf',for each value of t. Because of that, the J anali
path is more complex than the orb1tal—aufbau path For th1s reason, it is 1mposs1ble
to prove the cont1nu1ty of pt as we d1d for the aufbau paths It is also 1mposs1ble to
evaluate exp11c1tly the der1vat1ve 88% But th1s is not needed s1nce We already know
the energy expressmn that corresponds to the Janak path | | | |

Let us now show that Eq. (3 22) can be also viewed as a special case of the

van Leeuwen—Baerends line 1ntegration formula [Eq. (2.5)]. We begin by rewriting

Eq (2.5) as
e [a [aEABO

Here'we have already identified the :intevgration'vdomain; 0<t <V’N 1 jbe\caneelvs\ré knov&;
that it is the same as in the Janak path The generahzatmn of the line integral
formula for calculations of the total energy is a valid procedure since the total energy
is a functional of the electron density. T I T IS TR

_ The first factor of the integrand in Eq. (3.24) is-the chemical potential y, defined

in density-functional theory by [46]: . -

uit) = S22 | (3.25)
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An alternative expression for chemical potential is:

BE

=5 (3.26)

which becomes the energy of the highest- occupled molecular [eHOMo( )] when only the
HOMO’s occupatlon number (nHOMo) is allowed to be fractlonal With this in mind,
we can write the followrng sequence of ,equall‘ues’. L

SEp] OF OE
= ult) = = = t). 3.27
- dpy(r) “() ON  Onuomo - EH;OM,O( ) SRR (3.27)

Thorough discussion of the chemical potential p is beyond the scope of this work, so
we just quoted the above results from the literature. See, for example, Ref. [5]
Tc proceed with our investigation of Eq. (3‘.‘22)_?:observe the following two impor-

tant consequences of Eq. (3.27). The first is that

5E lPtl
Spi(r )

HOMO(t) : (328)

and the second is that egono (t) is a function of t»o\r'ily, eVen:thoulgh it is a fuhctioual
derivative These two facts allow us to factor eHOMo(t) out of the spatial integral
in Eq. (3. 24) |

EN= /Oth leHQMO(;) drapéi )] | (3.29)

Note that Eq (3 29) d1ffers from the energy expressmn of Eq (3 22) only by the
, Ops
presence of the spatlal mtegral of — in the latter As d1scussed above, thlS der1vat1ve

ot

alone cannot be evaluated due to 1mphclt dependence of Kohn—Sham orbltals on the
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parameter t. However, -the spatial integral%of this derivative can be easily evaluated:

/ 6pt(r) /d e Zgl‘ﬁz |2+{t} |S0|.t_|+1( )l 1 :; - (3.30)

, {tJ i
| =§5 / o) e+ {2} / oo () |
- g;(l) b)) = L= de=1,

where we exploited the fact that each .Kohn—Sham orbital is normalized, -
| '/drlgp,-(r)|?=1. - (331

) The result of Eq (3 30) shows how Eq (3 29) and consequently, Eq (3 24) reduces
to Eq (3 22) In other Words, we have JllSt demonstrated that the energy expressmn
derlved from the Janak theorem is 1ndeed the result of apphcatlon of the van Leeuwen—
Baerends lme 1ntegrat10n taken along the J anak path We w1ll call the energy as31gned

to a potent1al via Eq (3. 20) or, equlvalently, via Eq (3 22) the Janak—path energy

‘3 3 Performance of the J anak path

To test Eq (3 20) numerrcally; we ran a number of calculatlons W1th the Glll exchange
potential (v7*°) and the exchange potential of Perdew, Burke, and Ernzerhof (vf BE),
As dfrscus‘se‘dlin Secti‘on} 2, these two potentials are integrable as they are both derived
from the corresponding functionals ExG%[p] and E,I: ?E[p].ﬂ For integrabl‘,erp_otentia\ls_
one can expect that the energies obtained frorn Eq (3.20). and from the oor’res‘po’ndijng
tunctional Would coincide, apart from nurn_erical integration errors. That is precisely
what we observed in our calculations (Vsee Table 2). This rneans that Eq. (320) is

indeed another possible way of assigning an energy to a potential. =~ .
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Table 2: Total energies (in hartrees) calculated via the Janak path from
integrable model potentials. The basis set used is cc-pVQZ.

G - PBEx
Janak-path - Functional Janak-path Functional
H —0.499 051 - —0.499 052 —0.494 165 —0.494 165
He '—2.865 954 :—2 865 956.  —2.851 694 —2.851 694

Ne —128.588 115 —128.588.126 ° —128.513 092 —128.513 090

We applied Eq. (3.20) to 'th'e Wnon-integrable potentials of Umezawa (vV%), van

Leeuwen and Baerends (vLB%), Slater (vS ), and Becke and Johnson (vB)—see the
results in Table 3. We compare the Janak-path energies calculated from these poten-
tials to the A-path energies computed via the Levy—Perderv virial formula [Eq. (2.12)].
In some cases, the Janak-path energies are better than the ones obtained from the
virial formula, as in the case of the hydrogen atom and the Umezawa potential. For
the Slater potential, the Janak-path and A-path energies almost coincide. Generally,
however, the Levy—Perdew (A-path) energies are still closer to the exact values.
Compared to the aufbau path, calculati’on{f of Janak-path energies is computation-
ally more involved. To calculate an energy by Eq. (3.20), we generally use a (256 x N )-
point Gauss—Legendre quadrature Spemﬁcally, for each integer 7, we calculate the
HOMO energy, ezomo (%, w), at 256 1ntermed1ate pomts of w and then integrate it.
Since ¢ varies from 0 to N, the total number of quadrature points adds up to 256 X N.
Each such point requires a separate self—con51stent solutlon of the Kohn—-Sham equa-
tions. In many cases, we experlenced problems w1th convergence, which is why the
amount of data for Janak-path calculations ‘(Table 2 and Table 3) is less than that
for the aufbau paths (Table 1). “ o .
 On Fig. 3 we show how the energy of the h1ghest-occup1ed molecular orbital de-
pends on the number of electrons in the helium atom. The area above each line is
the Janak-path energy. The exact potent1a1 Would be a set of horizontal segments

Wlth jumps at integer points (see the solid bold hne) Among potentials tested, only

the Slater (v3) and Becke-Johnson (vB?) potentials, and only in the region 0 <t <1
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Table 3: Total energies (in hartrees) calculated from various exchange potentials via the Janak and A- paths.

. Becke-Johnson : -

Janak path: @ A-path -

Umezawa . - LB9Y4 . = _ Slater
Exact® Janak path . A-path Janak path A-path Janak path - A-path
H —0.5000 —0.5072 -~ —0.3913 - —0.6405 —0.4720 - —0.4999 —0.4999
He -—-2.9037 —3.2236 - —2.7256 - =3.3767 .‘-2.8310 : +—2.8615 —2.8614
Li —7.4781  —8.0868 ' —7.1758 —8.2953 -7.3744-  n/c |

Be -14.6674 —15.6608 —14.2451  —15.8837

~145716 =~ njc

T —0.2945 - —0.5001 -

—2.1239 f_2'7795
- nfc
. n/c.

*Exact nonrelativistic energies are taken from Refs. [40, 41].
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F1g 3: Energy of the HOMO as a functlon of the number of electrons in the He atom.
The HOMO energy is calculated at 256 X 2.intermediate values of ¢.. The basis set
used is cc-pVQZ.

mimic this behavior. Everywhere else the tested potentials fail to mimic even qual-
itatively the behavior of the exact potential. Note also an interesting feature of the
Gill and Perdew—Burke—Ernzerhof potentials. The orbital energy for these potentials

becomes almost exact when it is calculated at half-integer values of ¢.

. To conclude the computational part of this Section, the -Janak-path calculations

are numerically more expensive as they require a separate self-consistent solution of

the Kohn-Sham equations for each value of the parameter ¢. For this reason the
Janak p'ath‘is not very practical for routine calculations. The Janakpath, however,
enabvledﬁus to observe an interesting fjeaturqof some dgnSity—function:al -approxima-
tions, namely, the tendency of the HOMO ,eﬁergy to cross the exact value near the
point t = N —1 /2, i.e., at approximately half an elecpron lie,SS,tth_l_ the actual system

of inte:est. We will return to this issue in the next Section. = .
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.4 Significance of electron—deﬁcient.systems' «

In the prev1ous Sect1on we observed an mterestmg feature of some dens1ty—functlonal
approx1mat1ons The energy of the h1ghest—occup1ed molecular orb1tal 1f plotted asa
funct1on of the fract1onal number of electrons in the system becomes exact when the
system contams roughly half an electron less than the physical value. An example from
the literature in which such half-filled orbitals are employed is the Slater’s transition-
state method [45]. Slater approximated the excitation energy of an V. ;electron system
by a single calculation on a system containing (N +1/ 2‘)‘electrons. Also, Dabo and
co-workers [47] recently proposed an ,etpproximate density functional that involves half-
electron deficient densities. All these examples suggest that an auxiliary system that
differs from the system of interest by half an electron possesses important information
about the corresponding system with the integer electron number. The purpose of this
Section is to investigate what is special about’ such fractio'nally charged systems and
to see how one can exploit these systems. In particular, we will address the problem

of predictlng the ionization energies in density-funCtional‘ theory. e

4.1 Ionization energy in '.density-functional theory

In 1982, Perdew, Parr, Levy and Balduz [48) showed that in the ezact density func-
tional theory, the total energy:is a continuous piecewise-linear function offthe number
of electrons. This linearity follows from the analysis of statistical mixtures (ensembles)
of pure-state wavefunctions corresponding to different electron numbers [5, 46, 48).
Suppose for & moment that the mixture contains only the (J —:1)- and J-electron
states (where J is an integer).  Then the electron density of this mixture;-ps.,; is
given by

pi-o=(1-w)pstwpsy, o (40)
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_ where (1 — w) and w are weights of the J- and (J — 1)-electron' states, respectively,
and py and py_; are the electron densities of these states. The parameter w is in the
range between 0 and 1. If w = 0, then the ensemble reduces to the pure J-electron
state, and if w = 1, to the (J — 1)-electron state. Careful analysis shows that the

energy Ej_, of the above ensemble is[48) + - L
Eru=(0-w)E;+wEj, (4.2)

where E; and E;_; are the energies of the corresponding pure states. Equation (4.2)

can be rearranged to reveal the linearity of the energy of the ensemble:
E; = —-(EJ—EJ_l) w+ Ej. g (43)

Equation (4.2) is a general result in density-functional theory [48]. It holds for any
types‘ of mixtures, even those that include other states that are different from the
J- and (J — 1)-electron states. This result re_rnains general in DFT as long as the
condition - | o |
- 2B; < Byor+ Byyr (4.4)
is satisfied. This inequality is an assnmptionthat has never been shown to be violated
(theoretlcally and expenmentally), at least for electrons We will see soon that the
l1near1ty of the tota,l energy leads to an 1mportant expressmn for the 1on1zatlon energy

in the exact dens1ty functional theory
The first ionization energy is deﬁned as the lowest energy required to remove an
electron from the system. In other words, the ionization energy I; of a J-electron
system is the energy difference between the ground—state energy of that system, Ej,
‘and the ground—state energy of the correspondmg system W1th one electron removed
I;=E;,~EB. (45
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) Ionization energy as defined in Eq. (4.5) isa positivenumber, provided that By < 'Ej_l,
Wh1ch is always the case for a neutral J-electron system It is ev1dent from Eq (4 3)

that the slope of the total energy EJ_w is the negatlve of the 1omzatlon energy

a-EJ —
0w

==—(Eb_1—-Eb) -I; (4.6)
The slope can be calculated at any w in the range from 0tol. .
A common practice in the Kohn—Sham densityiﬂrictional theory‘ is to estzmate the

ionization energy by the energy of the highest-occupied molecular orbital, §H0MO(J ):

We knoﬁ from the Jehak theorem that if all‘.‘tﬁe lower-energy orbitals are fully oc-
cupied and only .the HOMO has a fractional occupation; the HOMO energy is given
by

OF , .
L GHOMo;-a—N—.?? o e (48)

In view of Eq (4 6) the above equatlon can be rewntten as

BBy
AT

U (4.9)

If one estimates the ionization energy by Eq. (4.7), one in fact estimates it as the

following limit: SERRTEERI
6‘E.I—w :

I, _wlg& o (4.10)
of, eQﬁi\}aiently, ‘ S

If the limits of Eqs. (4.10) or (4.11) were calculated from the exact total-energy func-

tional, then the ionization energy obtained from these equations would: be exact.
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Fig. 4: Dependence of thetotal.energy, E(t), and the energy of the highest-occupied
molecular orbital, egomo(t), on the number of electrons for the Ne atom in the exact
density functional theory and as obtained from the approximate exchange functional of
Perdew, Burke and Ernzerhof. Many other density-functional approximations (DFA)
behave s1m1larly The basis set used is cc-pVQZ. The number of intermediate points
between any two adjacent integer values of ¢ is 256.

Currently available density-functional approximations, however, are not.able to pre- |
dict exact ionization energies. They tend to underestimate them by as much as dozens
of percent. One of the reasons is that density-functional approximations are not linear
functions of the number of electrons. Most often they exhibit convex plots for the
total energy E (t) as a function of the }electron _nurnber t. For example, see Fig. 4 where
we show the results of actual calculatrons (solrd l1ne) Because of the non—hnearlty
of E(t) the most accurate est1mate of the 1onlzatlon potentlal IJ is not necessarlly
calculated from the J—electron system As F1g 4 suggests the best est1mate should
be expected from the system with an electron number that is close to (J —1/2). The
plot of the orb1tal energy versus the number of electrons on the rlght hand srde panel
of Flg 4 also suggests that the orb1tal energy calculated from a densrty—functmnal
approx1mat1on is close to a l1near functlon Thls 1mp11es that the total energy E(t) is
a quadratlc functlon of the number of electrons

Another poss1ble way of calculatmg the energy, dlﬁ?erence between the J— and

(J - 1) electron states of a system i is the Slater tran51tlon state method [45 49 50]
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“which dates back to the early 1970s. Slater thought of the total energy as a continuous
analytic function of occupation numbers of all available molecular. orbitals, which we
denote by the symbol n = {nj,ns,...}. If the total energy E(n) is assumed to
be an analytic function, then it can be expanded:in Taylor ‘series about virtually
any point ny. Slater exploited this fact to calculate the energy differences Ey— Ej_;.
Specifically, he expanded E; and E;_1 in two separate Taylor series and then analyzed
the expression fqr Ey — E;-, written in terms of ‘t\h,esve two series. He found that if
botth,EJk and F;_; are expanded about_thé ‘s’ame Spgcial :pqint, nrs, then the expression |
fory the energy difference is greatly _Simpliﬁed: |

8E(n)
671,_] :

E;—Ej;= + {3rd- and highér odd—order t’efms}. - (4.12)

Ings-
’fhe ﬁrst term in Eq.  (4 12) dominates by at leééﬁ 6ne ofdei‘ of ‘ma‘gYnit'li(tie‘ a:s:SIat.ef
and Wood showed [49] in calculatlons for the chromlum atom. The spemal pomt nTg
is such that all (J-1) lower—energy orbltals are fully occupled and the J-th orbital
has only half an electron in it. The system that corresponds to the point nryg is
called a transition state since it is in the middle of thé “transition” of the systefn '
from the J-to (J = 1)-electron states, i.e., it. Th’as a half-filled HOMO In otl}er words,
the trlansitipkn state is an auxiliary system confcaiping he}mlf an glect;gn less than the
original j—ele.c\tr‘ongystem. If the transition from. the J- to (J :—ll-yl)-e’le(.:tr)on state
were considered, then the transition state would correspond to the, (J +1/2)-electron
system | _ n , ‘ : , _

The ~partial derlvatlve in Eq (4 12) is premsely the orbital energy of the (J —
1/2)-electron system. So, accordmg to the transition-state method, the ionization
energy of a J-electron system is equ'a,lt (up to a sign) to the energy of the highest-
occupied molecular orbital calculated from the (J — 1/2)-electron system. Slater’s

result is simiiar to what we observed by analyzing how the HOMO energy’depends

on the electron number. This fact, in general, brings new:insights to the Slater
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_transition state method. In what follows we will investigate numer1cally the behavior
of the total energy as a functlon of the electron number for some dens1ty—funct1onal
approximations. We will demonstrate how the Slater’s result naturally arises from

the analysis of the dev1at10n of approximate functionals from the l1near1ty

4.2 Single—point approximations to ionization energies

As seen from Fig. 4, ‘thetotal energy EDFA (t) calculated from some density-functional

actual
approximation (EPBE[p] in this case) deviates from linearity. More prec1sely, the
energy is convex between any two adJacent 1nteger values of t So the problem we
are gomg to address ﬁrst is to determme the magmtude of these dev1at1ons and their
shape In part1cular, we would like to know how close the dev1at1ons are to a quadratic

function. To that purpose, we introduce a functlon EDFA ( ), which we define as a

linear
piecewise-linear function connecting the total energies calculated at integer values of
t (see Fig. 4). We then study the deviation D(t) defined as

D(t) = B2, (1) - El?:;fzx . (1)
We used 64 pomts between every two consecut1ve 1nteger values of t to calculate D( )
As shown 1n F1g 5, the dev1at1on from llnearlty in the 1nterval between any pair of
J and J - 1 appears to be very close to a parabola To test this observat1on more
rigorously, we fitted the data between each pair of J —1 and J to a set of second—
order polynom1als Having obtained the analyt1cal express1ons for these polynomlals,
Dg(t), we then solved the equation

ODg(t)

Where k is the slope of the funct10n EDFA (t) calculated between the same two 1nte—

linear

ger values of t as those between wh1ch Eq (4 14) is bemg solved The solut1ons of
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Fig. 5: Dev1at10n from the linearity, D(t), of the total energy as a function: of the
electron number calculated from an approximate density-functional approximation
(exchange part of the PBE exchange-correlation functional).

P

Eq.'(4.14) are such values of ¢, denoted by ty;,, where EDFA (t) would have the same

EDFA

iimear(£) if the deviation between these functions, D(t), were exactly

slope ‘as the
quadratic. In Table 4, we show the values tj;, calculated for the water molecule from
various density—functional approximations. For the functionals studied, the fractional
part of the values of ¢y, is always very close to 1/2. This result suppo\rts our obser-
vation that' EDTA (1) is a piecewise-quadratic function. As an additional measure of

actual

the quadraticity, we also include in Table 4 the quantity o defined by

a={Z[D(ti)—Dﬁt(ti)]2,‘} yooo o (415)

Where the summation is over all intermédiate values from the range J -1 <t < J
at which thé functi’or’l‘vD(t) was computed. On average, values of o are of the order
of ten millihartr_ees with higher values for the 1-_,»2—, 8-, and Qfelectrbn systems, and
lower values for the 5-electron system. The lowest values of o for the neutral 10-

electron systerh indicate that the total energy is quite close to the quadratic function
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Table 4: Electron numbers t;;, where the slope of the fitted quadratic function Dgq(?)
becomes equal to the slope of the line connecting two integer values Eprs (t), and the
quantity o, which is equal to square root of the sum of squares of the deviations of the
actual observed curve D(t) from its quadratic fit Dg.(t), in hartrees. System is HoO

molecule of the Cy, symmetry. Basis set is cc-pVQZ.

B88 [51]  BLYP [51,52]  PBEx[35] ~ PBExc [35]

Range of ¢ tin 0, Ey lin 0, By tin 0, Ey tin 0, By
0-1 0.51 0.0445 051 0.0445 0.51 0.0483  0.51 0.0485
1-2 1.51 10.0425 - 1.51 .0.0327 ~ 1.51 0.0462  1.51 0.0451
2-3 251 0.0065 250 -0.0029 251 0.0044  2.51 0.0048
3-4 351 0.0061 350 0.0020 3.51 0.0038  3.50 0.0035
4-5 450 0.0013 = 450 0.0012° ~ 4.50 0.0010  4.50 0.0008
56 . 550 0.0031  5.50 °0.0010° 5.50 0.0032  5.50 0.0026
6-7  6.50 0.0053 6.50 0.0012 6.50 0.0059  6.50 0.0038
7-8 749 0.0121 ~ 7.49 = 0.0085  7.49 0.0143  7.49 0.0153
8-9 8.49 0.0151 ~ 849 0.0102 848 0.0172  8.48 0.0154

9-10 9.50 0.0005 - 9.50 ~ 0.0001 9.50 0.0004 9.50 0.0003

in the range between 9 and 10 electrons S1nce one often wants tolcalculate the
ionization 'energy of a neutral system, the lowest values of ¢ for the neutral system
will make the estlmated 1on1zat10n energy closer to the energy difference E;_; — Ej.
In Tables 5 and 6 we show the values of tin and o for atoms H through Ar for the
exchange functlonal of Perdew, Burke and Ernzerhof. The main message conveyed in
these tables 1s that the more electrons there are in a system, the more quadratic the
function D(t) 1s | .

As a side rernark, Ano‘te that'-the deviation from linearity is much higher for systems
in the range 0<t¢ S 9 electrons. This may be somehow related to the fact that the
difference betWeen the orb“it’al— and subshell-aufbau paths is more prononnced in the
same region, as dlscussed in Section 2. ‘

As evrdent from Tables 4-6, the total energy calculated from the dens1ty—functronal
approx1matlons studled here is close to p1ecewrse-quadrat1c For these functlonals the
function D(%) has. a curtain-like shape shown in F1g 5. This shape, together with the
quadraticity, imply that the slope of a (J — 1/2)-electron system is equal to the slope

of the straight line connecting the energy values of J and (J — 1)-electron Systems.
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Table 5: Values of tj;, calculated from the exchange part of the exchange-correlation functional of Perdew,
 Burke and Ernzerhof. The number of points between any two adjacent integers is 64. The basis set used ::
. isce-pVQZ. .. . i o ' ‘ : '

Rangeoft @~ H  He Li Be B C N 0 F Ne Na Mg ... Ar

0-1 051 051 051 051 051 0,51 051 051 051 051 051 051 = 051
1-2 .. 151 151 151 151 1.51 1.51 151 1.51 151 151 151" . 151
2-3 250 250 250 250 250 250 250 250 251 251 . 250
3-4 351 350 3.50 3.50 3.50 350 3.50 351 351 - 3.50
4-5 450 4:50 4.50 4.50 4.50 4.50 4.50  4.50 - ' 4.50
5-6 550 5.50 5.50 550 550 550 550 5.50
6-7 6.50 6.50 6.50 6.50 ‘n/c n/c - nfc
7-8 | | 750 7.50 7.50 7.50 750 7.50
8-9 8.50 850 850 850 . 850
9-10 . | 950 9.50 950 njc.
10-11 10.50 10.50 . 10.50
11-12 11.50 11.50
12-13 12.50
15-16 | 15.50
16-17 - 16.50
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Table 6: Values of ¢ (m hartrees) calculated from the exchange part of the exchange-correlation functional of Perdew, Burke and
Ernzerhof. The number of points between any two adjacent integers t is 64. The basis set used is cc-pVQZ. o

Range of t .. H He = Li Be B C . N 0] - F Ne Na Mg ... Ar
0-1 . 0.0051 0.0112 0.0174 0.0236 0.0297 0.0359 0.0421 0.0483 0.0545- 0.0607 0.0660 0.0722 0.1093
1-2 .. 0.0087 0.0150 0.0213  0.0276 0.0338 0.0400 0.0462 0.0524 0.0587 0.0652 0.0714  0.1084

23 7. 00008 0.0014 0.0019 0.0024 0.0029 0.0034 0.0039 0.0043 0.0057 0.0061 - 0.0090
34 S 0.0012 0.0018 0.0024 0.0029 0.0034 0.0039 0.0043 0.0056 0.0060 - 0.0090
4-5 - o . 0.0005 0.0003 0.0006 0.0011 0.0015 0.0019 0.0023 0.0028 0.0055
56 - o R 0.0004  0.0003 0.0007 0.0011 0.0015 0.0020 0.0025 -  0.0049
6-7 o E " 0.0004 0.0002 0.0005 0.0009 n/c n/c " nje
7-8 - ‘ RN : 0.0003 0.0006 0.0011 *0.0021 0.0023 - 0.0047

89 - e - ‘ 0.0003 0.0006 0.0015 0.0016  0.0041

S9-100 T - B = o e 0.0002 0.0004 0.0006 n/c

0 10-110 R - ' P 10.0003 0.0002 - 0.0005

11120 e ~ S e © - 0.0003 - 0.0005

©12-13 i R S R R £ 0.0010

e v B o “ gone

Py TR RN T Tl e T 0.0002




i

Table 7: Ionization enérgies I calculated in three different WaysA as the negative of the energy of the highest-occupied molecular
orbital calculated from the (J — 1/2)-electron system, from the J-electron system, and as the difference in total energies between
the J- and (J — 1)-electron systems ‘The basis set used is cc—pVQZ § ’

~ PBExf[35] ; B8 [51]
Exact“ I(J) —enomo(J — 1/2)  —enomo(J) [E(J -1)- (J)] —egomo(J —1/2)  —enomo(J). [E(J -1)- E(J)]
H 0.5000 - 0.5043 0.2700 -0.4942 ~ 0.5068 - 0.2715 0.4978
He 09037 = . - 0.8828 ? ~0.5516 108642 ©0.8851. 0.5528 - 0.8681 .
Li  0.1981 02003 . - 01090 . 0198 01998 - 01091 - - 0.1969"
Be 03426 -~ . 03021 - . 0.1814 02993 0.3008. ~  0.1811 - 0.2964
B 0.3050 ~ . 0.2967 - 0.1360 0.2981 0.2971 0.1365 =~ - 0.2982
Ne 07945 ~ ~  -0.7501 04452 0.7498 . 0.7492 04456 - 0.7487
Na 0187 - . 01904 - - 01027 .= 01909 = - 01888 0.1026 0.1873
Al 0.2200 C 02021 . 0.0961 S 02022 0.2026  0.0967 - . 0.2026
Ga 02205 - - 01990 ~ ° 00919° - 01999 . . 01994 - 00924 = 0.2001
Ar 05791 - 0.5351 ©0.3406-  ° 0.5348 05345 . S 0.3402 0.5341

Kr 0.5145 - o 04753 . 0.3052 ' 0.4754 . - 0.4752 ©.0.3047 .. 0.4752

%For atoms H through Al we use the dlfference in the non-relat1v1stlc total energles (Refs [40 41]) of the neutral atom and correspondmg catlon For
atoms Ga through Kr we use expenmental estimates of the ionization energles available in Ref. [53]. : -



As discussed -above, the slope of the total energy is equal to the HOMO energy.
Therefore, the energy of the HOMO calculated from the (J -1 /2)—electron system
is the best possible single-point estimate of the energy difference (E; — E 7-1) and,
conseduently,[ is"tﬁhel best pOssible_ ’:sing_lef‘p:oint estimate' of the!ioniz‘at'ion:energy.lj 7s
at least for the functionals studied. ‘T“o support 'this conclusion numerically,b we ran
a set of calculations on atoms. In Table 7 we compare: ‘the exact’ 1on1zatlon energies
to the ones est1mated by the s1ngle—po1nt calculat1ons of the HOMO energy of the J-
and ( [ —1/ 2) electron systems. For the sake of completeness, we also include the
two-point (E 7-1— Ej) estimates of the 1on1zat1on energy. The single-point estimates
obtained from (J —1/2)-electron system, are always better than those computed from
J—éleCtron systems ‘Improyement isin the range from 30 to 50%‘ Generally, the
(, — 1 /2) 1on1zat1on energles are shghtly better (W1th1n the range of a few percent)
than the two—pomt estimates. Nevertheless, there remain cases when s1ngle—p01nt
estimates are slightly worse than the two-point estimates. o

Onr ,'vexperience sholivs that the quali'tyu of orbital energies is related' to the ‘qual‘ity
of the approx1mate exchange-correlatlon potent1al used to generate them We found
that the quality of the HOMO is greatly 1mproved if the orb1tals are calculated from

‘a ( - 1 |/ 2) electron system. In such systems the HOMO energy can even become
exact for some density-functional approximations. Altogether, this strongly suggests

that the exchange correlatzon potentzal calculated from a (J 1/2)- electron system is
of a higher quahty than the one calculated from the correspondmg J —electron system.

The use of half-electron—deﬁment potent1als opens a new avenue.in DFT Therefore,
if someone is to contmue this prOJect explorat1on of various new poss1ble ways of
employmg such potent1als should rece1ve the h1ghest pr1or1ty The ﬁrst th1ng to do

would be to try using electron—deﬁcrentpotent1als in self-consistent calculations of the

corresponding integer-electron systems.

95



References

[1] P. Hohenberg and W Kohn “Inhomogeneous electron gas » Phys Rev 136
B864 (1964) ‘ , :

[2] M. Levy, “Umversal Varlatlonal functlonals of electron denS1t1es ﬁrst-order den—
sity matrices, and natural spin-orbitals and solution of the v—representablhty

problem,” Proc. Nat. Acad. Scz USA 76 6062 (1979)

[3] R. van Leeuwen, “Dens1ty—funct10na1 approach to the many—body problem keyi
concepts and exact functionals,” Adv. Quantum Chem. 43, 25 (2003).

[4] W. Kohn and L. J. Sham, “Self-consistent® equations including exchange and
~ correlation effects,” Phys. Rev. 140, A1133 (1965).

5] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules..
Oxford University Press: New York, 1989.

[6] S. P.-Sousa, P. A. Fernandes, and M. J. Ramaos,. “General performance of density
functionals,” J. Phys. Chem. A 111, 10439 (2007).

[7] R: van Leeuwen and E. J. Baerends, “Exchange-correlation potential with correct
asymptotic behavior,” Phys. Rev. A 49, 2421 (1994).

[8] O. Gritsenko, R. van Leeuwen, E. van. Lenthe, and E. J. Baerends, : “Self-
consistent approximation to the Kohn—Sham exchange potentlal ” Phys. Rev.
A 51, 1944 (1994).

[9] A. Lembarkl, F. Rogemond and H. Chermette, “Gradlent-corrected exchange

potential with the correct asymptotic behavior and the correspondmg exchange-

. energy functional obtamed from the v1r1al theorem » Phys Rev A 52, 3704
(1995). ’ :

[10] O. V. Gritsenko, R. van Leeuwen, and E. J. Baefends, “Structnfe of the optimized
effective Kohn—Sham exchange potential and its gradient approximations,” Int.
. Quantum Chem 57, 17 (1996) ' o o

[11] O. V. Gritsenko, R. van Leeuwen, and- E J. Baerends “Dlrect approximation of |
the long- and short-range components of the exchange- correlation Kohn-Sham
potentlal 7 Int J Quantum Chem 61, 231 (1997)

[12] O. V. Grltsenko, P. R. T. Schipper, and E. J. Baerends, “Approx1mat1on of the
exchange-correlation Kohn-Sham potential with a statistical average of different
orbital model potentlals ? Chem Phys. Lett. 302, 199 (1999).

[13] M. Griining, O. V. Gritsenko, and E. J. Baerends, “Shape’ corrections to
. exchange-correlation potentials by gradient-regulated seamless connection of
“ model potentials for inner and outer region,” J. Chem. Phys. 114, 652 (2001).

56



_[14] V. Karasiev, E. V. Ludeiia, and R. Lépez-Boada, “SCF calculations with density-
dependent local-exchange potential,” Int. J. Quantum Chem. 70, 691-(1998).

[15] V. Karasiev and E. V. Ludefia, “Asymptotically adjusted self-consistent multi-
plicative parameter exchange-energy-functional method: Application to diatomic
molecules " Phys. Rev. A 65, 032515 (2002)

[16] M E. Cas1da and D. R Salahub, “Asymptot1c correct1on approach to 1mprov1ng
approximate exchange-correlation potentials: Time-dependent density-functional
theory calculations of molecular exc1tat10n spectra,” J Chem Phys 113 8918

(2000).

[17] M. K 'Harbola and K. D Sen “Improved Becke88 and PW91 exchange poten—
t1als ” J Phys B 35, 4711 (2002). - '

(18] N Umezawa, “Explicit dens1ty—funct10nal exchange potent1al W1th correct asymp—
 totic behav1or " Phys. Rev. A 74, 032505 (2006). TR

[19] A D. Becke and E. R. Johnson, “A simple effectwe potentlal for exchange J.
Chem Phys. 124, 222101 (2006). - : |

[20] V N. Staroverov, “A fam1ly of model Kohn—Sham potent1als for exact exchange,
J Chem Phys. 129, 134103 (2008) S AT :

[21] E Résénen, S. Pittalis, and C. R. Proetto, “Universal correction for the Becke-
Johnson exchange potential,” J. Chem Phys. 132, 044112 (2010) o :

[22] S. P1tta11s E. Résénen, and C R. Proetto, “Becke—Johnson—type exchange po—
tentlal for two—d1men51onal systems,” Phys Rev B 81 115108 (2010)

[23] R van Leeuwen and E. J. Baerends, “Energy expressmns in dens1ty-funct1onal
theory using line integrals,” Phys. Rev. A 51, 170 (1995). - .

[24] V. “Volterra in: Theory of Functionals and of Integral and’ Integro Dzﬁerentzal
Equatzons, L. Fantapple, ed., p. 226 Blackle London Glasgow 1930 C

[25] S. Liu'and R. G. Parr, “Expans1ons of the correlatlon-energy dens1ty funct1onal
‘E.[p] and its kinetic-energy component T'.[p] i in terms of homogeneous funct1on—
als,” Phys Rev A 53, 2211 (1996). ' S ’

[26] A. P Galduk S. K Chulkov, and V N Staroverov,’ “Reconstruct1on of den-
sity. functionals from Kohn-Sham potent1als by integration along density scaling
paths,” J. Chem. Theory Comput. 5, 699 (2009).

[27] A. P. Gaiduk and V. N. Staroverov, “How to tell when a model Kohn-Sham
potential is not a functional derivative,” J. Chem. Phys 131, 044107 (2009).

[28] M. Levy in: Density: Functional Theory, E. K. U. Gross and R. M. Dreizler, eds.,
pp. 11-31. Plenum: New York, 1995.

o7



[29] J. P. Perdew, L. A. Constantin, E. Sagvolden, and K. Burke, “Relevance of slowly
Varying gas to atoms, moleeules’ and solids,” Phys. Rev. Lett. 97, 223002 (2006).

[30] T. Ziegler and A. Rauk, “On the calculation of bonding energles by the Hartree—
Fock—Slater method,” Theor. Chim. Acta 46, 1 (1977) s RPN

[31] H Ou- Yang and M Levy,k “Theorem for exact 1oca1 exchange potent1al ” Physk
Rev. Lett. 65, 1036 (1990). . _

[32] M Levy and J P, Perdew' “Hellmann-Feynman v1r1al and scahng requ1s1tes
for the exact universal density functionals. Shape of the correlatlon potential and
dlamagnetm susceptlblhty for atoms,” Phys. Rev. A 32, 2010 (1985).

[33] S. K. Ghosh and R. G. Parr, “Density-determined orthonormal orbital approach
to atomic energy functionals,” J. Chem. Phys. 82, 3307 (1985) :

[34] P. M. W. Gill, “A new gradient-corrected exchange functional,” Mol. Phys 89,
‘ 433 (1996)

[35] J P PerdeW, K Burke, and M. Ernzerhof “Generahzed gradlent approx1mat10n
made s1mple,” Phys. Rev. Lett 77, 3865 (1996).

[36] J C. Slater “A 81mp11ﬁcat10n of the Hartree—Fock method ” Phys Rev 81 385
(1951). ‘ , B -

[37) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, J. A. Montgomery, Jr., T. Vreven, G. Scalmam, B.: Mennucci,
V. Barone, G. A. Petersson, M. Caricato, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Ki-
tao, ‘H. Nakai, X. Li, H. P. Hratchian, J. E. Peralta, A. F. Izmaylov, K. N.
Kudin, J: J. Heyd, E. Brothers, V. Staroverov, G. Zheng, R. Kobayashi, J. Nor-
mand, J. L. Sonnenberg, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. C.

E Burant J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramlllo R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
- C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador,
“Jo Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Damels M. C. Stram,
O. Farkas, D. K. Mahck 'A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul,'S. Clifford, J. Cioslowski, B. B. Stefanov; G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, W. Chen, M. W.
* Wong, and J. A. Pople, Gausszan Development Verszon Remswn F 02 Gaus—
51an, Inc.: Walhngford CT, 2006. = ‘

[38] H. Engels, Numerical Quadrature and Cubature. Academic Press: London,
- Toronto, 1980 : A IR

[39] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration. ' Academic
Press: Orlando, Toronto, 2nd ed., 1984. ;

58



[40] E. R. ‘Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M. Umar, and C. Froese
Fischer, “Ground-state correlation energies for two- and ten-electron atomc i lons,
- Phys. Rev. A 44, 7071 (1991).

[41] S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. Froese
.- Fischer, “Ground-state correlation energies for atomic ions with 3 to 18 elec-
“trons,” Phys. Rev A 47, 3649 (1993)

[42] E Engel and S H Vosko, “Accurate optlmlzed-potentlal-model solutlons for

" spherical spin-polarized atoms: ‘Evidence for limitations of the exchange-only

~ local sp1n-den51ty and . generalized-gradient approx1mat10ns » Phys. Rev. A 47,
'2800 (1993)

[43] J F Janak “Proof that 8E/(9nZ = ez in den51ty—funct10nal theory,” Phys Rev B
v 18, 7165 (1978). - : '

[44] M. M. Valiev and G. W. Fernando'Phys.‘ Rev. B 52, 10697 (1995).

[45] J. C. Slater, Quantum Theory of Molecules and Solids, vol. 4 McGraw—Hlll.
NeW-York 1974. ,

[46] J. P. Perdew, “What do the Kohn—Sham orbitals mean? How do atoms dissoci-
ate‘?,” in: Density Functional Methods in Physzcs R. M. Dreizler and J. da Prov-
- .. .idencia, eds., pp. 265-308. Plenum Press: New York and London, 1985.

[47] 1. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M. Cococcioni, “Koop-
~mans condition for denmty—functmnal theory,” Phys. Rev. B 82, 115121 (2010).

[48] J P Perdew, R. G. Parr, M. Levy, and J. L. Balduz, “Density-functional theory
for fractional particle number: derivative discontinuities of the energy,” Phys.
- Rev. Lett. 49, 1691 (1982).

\

[49] J. C. Slater .and J. H. Wood, “Statistical exchange and the total energy of a
' crystal " Int. J. Quantum C’hem 48,3 (1971)

[50] J. C. Slater,‘ “Statistical exchange correlatlon in the self—con51stent field,” Adv
Quantum Chem. 6, 1 (1972). - : 5 : o

[51] A. D. Becke, “Den51ty-funct10nal exchange-energy approximation:with correct
‘ asymptotlc behav1or,” Phys Rev. A 38 3098 (1988)

[52] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle—Salvett1 correlatlon-
energy formula into a funct1onal of the electron denS1ty,” Phys ‘Rev B 37, 785
(1988). : . L ;

[53] D. R. Lide, ed., Handook of Chemistry and Physics. CRC Press: Boca Raton
72 ed., 1992

99



A Description of auprog program

Capabilities

Auprog is a program for calculating exchange-correlation energies via the van Leeuwen—
Baerends line ‘integral formula [Eq. (2.5)]. The supported density parametrization
include the-A-path ‘for‘exchange-only potentials with the energy expression from
Eq. (2.12), the Q-path, and the orbital- and subshell-aufbau paths.

The supported' density-funotional apf)roximations include the integrable exchange
potentials of Gill, and of Perdew, Burke and Ernzerhof. ‘For these potentials, auprog can
calculate the energies via the corresponding parent functionals ES% and EFBE. Among
the noneintegrable potentials, the exchange potentials of Umezawa, and of van Leeuwen
and Baerends are available i | -

The supported techmque for the 1ntegrat10n over the den81tyk‘parametnz1ng pa-
rameter (g or t) is the Gauss—Legendre quadrature The number of nodes can be
chosen during runtime, and is within the range of 1 to 1000 per pair of consecutiverv
integer values of the écaling narameter. |

Interface

AN

Auprog is invoked fromthe command line in the Linux environment. It accepts up to
four commandfline_arguments. ‘The first argument_i}s the name of the configuration
file. The second is the file containing the electron density and ,other ingredients that
are obtained from an external program (GAUSSIAN in our case). The third argument
is the name of the file to which the intermediate' data is written. This data is used,

for example, for generatlng ﬁgures hke F1g 2. The fourth argument is the name of a
file containing the Ferm1—-Amald1 potent1al computed on a grld The Ferm1—Ama1d1
potential is an 1ngredlent of the Umezawa potentlal? so the fourth auprog S argument

;-

is meaningful only when calculations with the Umezawa potential are requested, and
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is ignored otherwise. ‘Auprog writes its output to the Linux standard output.

‘The configuration file for auprog consists of lines formatted in the following way
A B CDDDE GG HH IT JJ K

Here all the letters represent integer numbers that are used to set the following con-
figuration parameters:

A — Density-functional approximation to be used:
1 — Gill potential/functional -
. 2 — Leeuwen-Baerends potential
S 3— Perdew—Burke—Ernzerhof exchange potential /functional
4 — Umezawa potential :

. B— Way of computing the exchange energy
1 — functional (if applicable)
- 2 — line integration of a potential: A-path (Levy—Perdew formula)
-8 — line integration of a potential: Q- and aufbau paths

C— Quadrature used for Q- and aufbau paths:
1 — Gauss——Legendre "

Next parameters are meamngful only when calculations with Q- or aufbau paths
are requested i.e., when B 3.

DDD — Number of nodes in a quadrature

E — Density to be used:
-1 — o spin-density = T L S P PP vy
2 — (3 spin-density
3 — total density

GG — Number of fully occupied « spin-orbitals

HH . Number of « spin-orbitals with fractional occupations
IT — Number ofvfully occupied [ spin-orbitals-
JJ — Number of 3 spin-orbitals with fractional occupations

K — Flag to control output of the value of the cumulative integral:
0— requests further accumulation of cumulative mtegral
1 — requests printing of cumulative integral and then zeroes its value. New
accumulation of (partial) aufbau-path energies starts at the ﬁrst hne Wlth
B=3 and is contmued up to a line Wlth K=1. ’
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‘The format of the configuration file is strict in the sense that if, for example, one
wants to set a value of 32 to the parameter DDD, then one has to ty’pe 032.

As an example, consider the following configuration -
4312561 000100000
This requests calculations with the Umezawa potential. The energy will be calculated
using the van Leeuwen-Baerends line integral formula with density parametrized by
the orbital-aufbau path. The integration over the parameter ¢ will be done by a 256-

node Gauss-Legendre quadrature. The value of cumulative integral is accumulated

~ and can be requested by the next line in the configuration file. The above example

generates the following output for the hydrogen atom:

#it######E  iline  1:

Config: 4 312661 0 1 0 00O

Method: Umz06 Way} Aufbau  Density: A
--Quadrature: GaulLeg Nodes: 256

————= FullMOA: O SprMOA: 1 AvailMOA: 1

————— FullMOB: O SprMOB: O AvailMOB: O

E= -0.4853290905058887

I= -0.4853290905058887

Here E is the exchange energy of interest, and I is the value of the cumulative integfal.

In this case they coincide because the hydrogen atom has only one electron.

Structure of auprog

Auprog is written in FORTRAN-95 and consists of more than 1200 lines of code. As
a way to facilitate calculations, it uses the OpenMP multi-threading technique. The
program depends on the GNU extensions of the FORTRAN language available in
the gce collection of cofnpilers, and on the open-source open-access implementation
of the Gauss-Legendre quadrature. The calling graph of auprog is shown on Fig. 6.

The Main program reads the configuration file into memory (RdConf). It also

reads (RdInt g) integer parameters from the input file containing Kohn—-Sham orbitals
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and their derivatives. These parameters are then used in Stage0, where the dynamic
allocation of memory is performed and where the rest of the data is read. Also, in
Stage0 the program sequentially performs calculations specified in every line of the
configuration file. Depending on the calculation type requested, auprog branches to
either DFTs or Auf0. If a calculation is single-point, i.e., if it involves no integration
over the parameter ¢ as it is for the A-path and for calculations via functionals,
then the program executes DFTs. If the calculation requires‘ integration over ¢, i.e.,
if the aufbau- or Q-path calculations are requested, then auprog vex.ecutes the AufO
' subroutine first. Auf0 generates a quadrature grid (GnQuad,'Chintv, GauLeg) and
then, at each gridpoint, also calls DFTs. The role of DFTs is fo calcUiate an energy
from the density built (M02Auf) from partially- or fully— ﬁlled Kohn—Sham orbitals. It
does that via G0O9, PBE96x, Umz06, VLB94 subroutines dependlng on the method and
the way requested.

Subroutines P1tPreamble, PrtRes and PlotPr are respon51ble for auprog’s oﬁt-
put. Subroutines MkRhTot and RdFAPot respectlvely, construct, the total electron
~ density and read the Ferml—Amaldl potent1a1 needed for the calculatlons with the
Umezawa potential. The subroutine Int824 COIlVGI"l?SA a _8-b1t 1nteger to the 4-bit inte-
ger, ArrClr is a subroutine that zeroes a given array, (andﬂASinTI-I‘calculjates the inverse
of the hypérbolic cosine function, which is presént in 'the‘ van Leéuwéh—]B\aerends po-

tential.
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Fig. 6: Calling graph for auprog
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