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A bstract
In the Kohn-Sham density-functional theory, one has to approximate (“model”) 

either the exchange-correlation density functional or the , corresponding exchange- 
correlation potential. If one chooses to approximate the potential, then one needs 
to use the van Leeuwen-Baerends line integral to assign an energy to the density 
coming from a given approximate potential. The problem with this approach is that 
when a model potential does not have a parent functional, the line integral is path- 
dependent and so the energy is ambiguously defined. For such potentials, existing 
paths are far from optimal. In this work, we introduce two new density parametriza- 
tions for the line-integral formula and obtain the corresponding energy expressions. 
We then use these expressions to explore several existing model exchange potentials. 
The first energy expression corresponds to a path in which the electron density is 
constructed by gradually filling frozen Kohn-Sham orbitals in accordance with the 
aufbau principle, either orbital-by-orbital or subshell-by-subshell. The second en
ergy expression uses the Janak theorem and requires knowing the dependence of the 
highest-occupied molecular orbital (HOMO) energy on the HOMO’s occupation num
ber. We also propose a new derivation of Janak’s theorem that reveals its connection 
to the van Leeuwen-Baerends line integral. In addition, we revisit Slater’s transition- 
state method and show that in the intervals between N  and N  — 1 electrons, the total 
energy calculated from a typical density-functional approximation deviates from lin
earity quadratically. We also find that the HOMO energy calculated for an (TV —1/2)- 
electron system becomes almost exact, which indicates that the (N — l/2)-electron 
potential is more accurate than the potential of the iV-electron system. This sug
gests that the accuracy of molecular properties calculated with existing approximate 
exchange-correlation functionals may be improved if the corresponding Kohn-Sham 
potentials are constructed from electron-deficient densities.

Keywords: quantum chemistry, density-functional theory, density-functional ap
proximations, exchange-correlation potential, fractionally charged systems.
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1 Introduction

Nonrelativistic quantum-mechanical treatment of an iV-electron system is based on 

the electronic Schrodinger equation. This equation is a partial differential equation 

of 3N  spatial and N  spin variables. Solving the Schrodinger equation analytically 

even for two-electron systems is an intractable problem, so one has to resort either to 

numerical grid methods or to approximation techniques. Numerical grids are compu

tationally too expensive except for small systems. There exist many ab initio approxi

mation methods that allow for systematic improvement and, in principle, for arbitrary 

accuracy, but they also become prohibitively expensive in applications to large sys

tems. A possible way to overcome this problem is to use density-functional theory 

(DFT). DFT is in principle assured to deliver the same electron density and the same 

ground-state energy as the exact solution of the Schrodinger equation. In addition, 

DFT naturally allows one to treat systems of thousands of particles, which makes it 

the most widely-used computation approach in present-day quantum chemistry and 

solid-state physics. , .

1 .1  H o h e n b e r g —K o h n  d e n s ity - fu n c t io n a l th e o r y

The Hamiltonian operator H  for an interacting system of M  nuclei and N  electrons, 

considered in vacuum, at 0 K, in the absence of any external fields, can be written as

A A A  A

. H  = T  + Vee+ y ,  : , (1.1)

where the first term is the operator for the kinetic energy of the electrons (we use 

atomic units throughout the text)

f (1.2)
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the second term  is the operator which describes the electron-electron repulsion energy

„ -  N  i

^ee=è  ü t
i<j r  i ~  vj

, (1.3)

and the last term is the operator for the energy of the electron-nuclear attraction

N

V' =  ^ « ( r , ) , (1.4)
i—1

in which
M

u(r) =
A = l R

(1.5)

is the external Coulomb potential due to the nuclei. In the above equations, r, denotes 

the spatial coordinates of the ¿-th electron; R a and Za denote the spatial coordinates 

and the charge of the A-th nucleus. The above Hamiltonian does not contain the term 

describing the kinetic energy of the nuclei since the Born-Oppenheimer approximation

has already been applied. Also, for fixed nuclei, the Hamiltonian does not include the 

term describing the nuclear repulsion energy as it is just a constant vertical shift of 

the total energy, specific to the system under study. In addition, the. Hamiltonian 

does not contain electron spins, which effectively makes it nonrelativistic. ,

Let us analyze the Hamiltonian of Eq. (1.1). The operators for the kinetic energy
A A

T  and the electron-electron repulsion energy are the same for every system. This 

implies that all system-specific information, apart from the number of electrons, is 

encoded in the external potential u(r). This suggests that .the total energy of the 

system can be thought of as a functional of the external potential

E = (^IH-)^) =  E[v). (1.6)

In 1964, Hohenberg and Kohn proved an important theorem [1] stating that the 

electron density p uniquely determines the external potential v. For instance, in the
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case of non-degenerate ground states, there is a one-to-one correspondence between p 

and v: p v. In the case of degenerate ground states, the relationship is many-to- 

one: p —* v. Since the density uniquely determines the external potential, p —* v, and 

since the external potential uniquely determines the ground-state energy, v —> E[v\, 

one can think of the total energy as a functional of the electron density, E[p).

According to Hohenberg and Kohn, the total-energy density functional E\p] is 

written as

E[p] = F[p] + J  p(r)v(r)dr, (1.7)

where F\p] is the universal density functional. For systems with non-degenerate 

ground states, the existence of the universal density functional is best demonstrated 

by the constrained-search argument due to Levy [2]:

■ F[p] =  m in<tf|:f+K ,|'F ). , (1.8)

Here the minimization is done over all possible A-particle antisymmetric wavefunc- 

tions 4/ that correspond to the given density p. In the case of degenerate systems, 

the search domain in Eq. (1.8) is extended to ensembles of antisymmetric iV-electron 

wavefunctions. We will discuss ensembles in greater detail in Sections 3 and 4.

The density functional F\p] is called universal because it is system-independent 

in the sense that it is the same for every system containing some particular number 

of electrons. The system-independence of the universal density functional comes from 

the fact that it describes only those contributions to the total energy that come from
A A

system-independent operators T  and V^.

Hohenberg and Kohn also demonstrated that the total-energy density functional 

E[p] of Eq. (1.7) is variational, that is, for any IV-representable trial density p it gives
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an energy which is above the exact ground-state electron energy E0:

E[p] > E0. (1.9)

This fact allows one to obtain (or to approximate) the exact ground-state electron 

density by minimizing the total-energy functional with respect to the density. The 

term IV-representable means any density that comes from an iV-electron antisymmet

ric wavefunction T. For a density to be IV-representable, it has to (i) be non-negative 

everywhere, (ii) integrate to N,  and (hi) satisfy the following condition [1, 3]:

J |Vp1/2(r)|2 dr < oo, (1.10)

which comes from the restriction that the kinetic energy, (1J/|T’|\fr), has to be finite. 

Only densities that satisfy the above requirements may be used in the definition of 

the universal density functional F[p] and, therefore, only these densities may be used 

in the variational minimization of the total-energy density functional. In practice, the 

7V-representability condition is satisfied for any reasonable density. The density func

tional E[p], however, is unknown, which poses an interesting challenge of constructing 

practical approximations to it. The Kohn-Sham method is a possible way to proceed 

with this.

1 .2  K o h n —S h a m  m e th o d

Although the Hohenberg-Kohn theorem ensures the existence of the universal density 

functional, it does not suggest a way of constructing it. In 1965, a year after Hohenberg 

and Kohn had published their work, Kohn and Sham found a way to “carry this 

approach further” .[4]. ;

. To introduce the Kohn-Sham method, let us consider a fictitious system of non

interacting electrons moving in some external potential vs. For this system, the exact
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analytic solution of the Schrodinger equation is known—-it is a single-determinantal 

wavefunction built from one-electron wavefunctions (orbitals). Orbitals are solu

tions of the following one-particle Schrddinger-like equation:

Orbitals may or may not include spin coordinates. In principle, the Hamiltonian H  

of Eq. (1.1) does not depend on spin, so spin coordinates are not necessary. However, 

it is much easier to enforce the Pauli antisymmetry constraint on the wavefunction 

by using spins. For this reason, it is customary to include spin in the form of “spin- 

orbitals”, which are products of spatial orbitals <pi (r) and one-electron spin functions 

o: or p. ■ , . : r '• ;

The total energy of non-interacting electrons, therefore, can be written as

E  ifii =  T, \p] + J  p(r) v, (r) dr, (1.12)

where Ts[p\ is the total kinetic energy of iV non-interacting electrons:

r.W  =  - 5 - E < ^  lv 2 lw>-
t=l

(1.13)

The electron density in this case is simply

N

p{t ) = i > * ( r )i: (1.14)
¿=1

The expression in Eq. (1.12) is exact for non-interacting electrons. By comparing 

it with Eq. (1.7), we see that the universal density functional F[p] in the case of non

interacting electrons is equal to Ts[p]. This result suggests using Ts[p] as a part of the 

true universal density functional F[p] for interacting electrons’. That is what Kohn
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and Sham proposed. Specifically, they split the true universal density functional in 

the following way:

= t m + j [p] + (i -i5)

where

' ' n  u i dr dr/ P(r)p(r')
r  — r (1.16)

is the energy of the Coulomb self-repulsion of the electron density p, and Exc[p] is the

exchange-correlation functional. This functional is defined by Eq. (1.15) as that part 

of F[p] which must be added to Ts[p\ +  J[p\ to yield F[p].

In view of Eq. (1.15), the total-energy density functional for interacting electrons 

becomes

E[p\= r,[/>] +  J\p] +  K.-rl  -  /  />(r M r ) * (1.17)

Kohn and Sham assumed that the density minimizing the above functional can be 

simultaneously the density of non-interacting electrons moving in some external po

tential. So the idea is to find such an external potential vs that would describe the real 

interacting system. Then this potential is used in equations for non-interacting elec

trons [Eq. (1.11)] to obtain the Kohn-Sham orbitals and, consequently, the density of 

the interacting system. By comparing Euler-Lagrange equations for the total-energy 

functional of non-interacting electrons [Eq. (1.12)] and for the total-energy functional 

of interacting electrons [Eq. (1.17)], Kohn and Sham concluded that

vs(r) =  vj(r) + v (r )+  vxc(r), ' (1.18)

where

(1.19)

is the electrostatic potential due to the electron density, w(r) is the potential due to
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the nuclei [Eq. (1.5)], and

r wxc(r) =
SExc[p\
Sp(r)

(1.20)

is the exchange-correlation potential. The electrostatic potential of the density v j(r)  

and the exchange-correlation potential uxc(r) are formally defined as functional deriva

tives of the corresponding functionals (see Section 1.3).

After substituting the external potential vs corresponding to the real physical 

system [Eq. (1.18)] into the equation for non-interacting electrons [Eq. (1.11)], one 

obtains the Kohn-Sham equations that describè the physical (interacting) system:

^ V 2 +  v j +  v +  vxc ( f i ( r )  =  €iipi( r). ( 1.21)

The density constructed by Eq. (1.14) from the orbitals obtained by solving Eq. (1.21) 

is the , density that minimizes the total-energy density functional of; interacting elec

trons [Eq. (1.17)]. The potentials Vj and vxc depend on the density, so the Kohn-Sham

equations must be solved self-consistently. The self-consistent procedure consists of 

the following steps: one starts from an initial guess for the density, then calculates vj  

and vxc, finds the Kohn-Sham orbitals </?*, and finally obtains a new density p; these 

steps are repeated until the density stops changing.

In the original Hohenberg-Kohn formulation, the electron density is required to 

be iV-representable. In the Kohn-Sham scheme, the set of densities is restricted to 

those that can be constructed only from orbitals that are the solutions of the Kohn- 

Sham equations [Eq. (1.11)]. Such densities are called ^-representable. The class of 

A-representable densities is wider than the class of u-representable densities, which 

means that the minimization process in the Kohn-Sham scheme cannot access all 

possible densities that occur in the Levy constrained search. This is a limitation of 

the Kohn-Sham scheme. Other than that, the Kohn-Sham method is in principle 

exact.
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: As good as it is, the Kohn-Sham scheme requires approximations for the exchange- 

correlation functional Exc[p]. Unfortunately, there is no rigorous way of improving 

existing approximations and introducing new ones. As a result, the Kohn-Sham 

density-functional theory remains in practice a semi-empirical method, although jus

tified by strong physical arguments.

1 .3  F u n c t io n a ls  a n d  fu n c t io n a l d e r iv a t iv e s

Rigorous mathematical treatment of functional derivatives is beyond the scope of this 

thesis. However, here we will try to give the reader a good feeling of what functionals 

and functional derivatives are by comparing them to some familiar concepts from 

calculus.

A function is a prescription of how to assign a number to another number. A 

functional is a generalization of the concept of a function. Specifically, a functional is 

a rule of assigning a number to a function. . An example of a functional is the value of 

a definite integral,

F{f} = i  f(x)dx.  (1.22)
. 1, . - ■ . r ■; . . J a . _ 1 '< ■ ■ ■

Here F[f] is the number that corresponds to the function / .  One of the simplest 

functionals which one may encounter, in density-functional theory is the exchange- 

energy density functional for a uniform electron gas:

r) dr, (1.23)

3 /  3 1/3

x — . , . This functional is also known as the local density approxima-
4 \ 7r 7where Cx = — —4 \7T

tion (LDA) to the exact exchange-correlation functional. The integration in Eq. (1.23) 

is over the entire three-dimensional space of the spatial coordinate r.

A very common problem in calculus is to find an extremum of a function. This is
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usually done by searching for stationary points, i.e., those points where the derivative 

of the function vanishes. An extremum, if any, may be achieved only at the stationary 

points or at the boundaries of the function’s domain.

In the calculus of variations, there exists a similar problem of finding a function 

that delivers an extremum value of a functional. In this context, the concept of a 

functional derivative arises. For a given density p(r) and an arbitrary integrable 

function 7i(r), consider the functional

./,] =  m Fll,+Th]- Flp]= (i.24)
t—>0 7"

• { ¿ / ‘ >  -  • / ' ] } .  /  ( 1 ; 2 5 )

If the limit in Eq. (1.24) exists, i.e., if the above functional exists, and if DF[p, h] is 

linear in h, then it is usually possible to bring it into the following form:

DF[p,h] = J  v(r)h(r) dr, (1.26)

where u(r) =  defines the functional derivative of a given functional F[p].

In practice, in order to find a functional derivative, one evaluates the variation

DF[p, h) by using Eqs. (1.24) or (1.25), converts the result into the form of Eq. (1.26), 

and then deduces the functional derivative u(r).

As an example, let us evaluate the functional derivative of the LDA exchange 

functional E^DA [p]. Using Eq. (1.25) we obtain:

DE\r'h\i>: — • Cx ( 4 -  f  :,. ■ ’./r )

- r ,  [ i . r  - ' h n r .  : • (1 .27)

cx { / ^(p + Th)1/3hdr

9



from which we conclude, by comparison with Eq. (1.26), that the functional derivative 

of the LDA functional is "

°*DA(r) s  =  - ^ 1/3(r)- • t1-28)

Taking the functional derivative of an approximate exchange-correlation functional 

results in the corresponding exchange-correlation potential [Eq. (1.20)]. So in the 

example above, we have derived the exchange potential for the local-density approxi

mation, UxDA(r).

The functional derivative of a given functional is a part of the Euler-Lagrange

equation which allows one to find the function that delivers an extremum value to 

the functional under study. In density-functional theory, the Kohn-Sham equations 

represent the Euler-Lagrange equation for the total-energy density functional E[p] 

of Eq. (1.17) minimized subject to the constraint that the electron density always 

integrates to the number of electrons.

As we mentioned before, the local-density functional E^DA\p] is one of the simplest 

possible functionals in density-functional theory. Many other approximate functionals 

involve not only the electron density but also its derivatives Vp, V2p, etc. Using the 

method described above, one can show [5] that for a density functional of the form

F{p] = J f ( p ,V p ,V 2p)di  (1.29)

the functional derivative is given by

(1.30)

Q J~ Q /* d
where — — is a shorthand for a vector with three components — in which p ' =  —

8Vp dpfa da
and a  =  x,y ,z .  We will elaborate on Eq. (1.30) in Section 2.3. For now, let us

10



introduce another useful technique. ;

Suppose that the argument p of a functional F[p] is itself a function of an additional 

variable^ say, the variable t. In this case the functional parametrically depends on t, 

which we denote by F(t) =  F[pt\. The question now is how to evaluate the, partial 

derivative of F[pt] with respect to t. It turns out [5] that the common chain rule of 

differentiation applies to functionals, so the expression for the derivative of F[pt\ is 

given by ,
9F(t) dF\pt] f  5F[pt] dpt(r)

dt dt J 8pt{r) dt d • { ' }

We will employ Eq. (1.31) extensively in the following Sections.
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2 Energies from m odel potentials: Aufbau path

2 .1  M o t iv a t io n

As originally proposed by Kohn and Sham, density-functional theory requires approx

imations for the exchange-correlation functional, Exc[p]. Dozens of density-functional 

approximations have been introduced to date, some of them being quite success

ful [6]. However, if one looks closer at the Kohn-Sham scheme, it becomes evident 

that it is not the exchange-correlation functional but its functional derivative, the 

exchange-correlation potential, vxc, that plays the main role in DFT. Only the poten

tial is present in the Kohn-Sham equations, and, consequently, it alone determines 

the electron density p{r) through Kohn-Sham orbitals <pi(r). Moreover, the exchange- 

correlation potential, in contrast to the functional, is defined only up to an arbitrary 

constant, while the exchange-correlation functional, as any functional, is defined up 

to an arbitrary function that integrates over all space to zero. These two facts make 

the exchange-correlation potential an attractive object to model. More than a dozen 

model potentials have been introduced to date [7-22].

The benefits of approximating the exchange-correlation potential come with a 

price. One part of the trade-off is that the energy functional, corresponding to the 

model potential, is unknown. It means that one has to find a way of assigning an 

energy to the density coming from a model potential. Another consideration is that 

the parent functional for an arbitrary model exchange-correlation potential may not 

exist.

Assume for a while that for a model potential vxc its parent functional Exc[p] exists. 

If the explicit form of Exc[p] were known, one would just plug a given density p into 

the functional to calculate the energy corresponding to that density:

£ U p] =  f f ( p , V p , V 2p , . . . ) d r .  ' (2.1)

12



As the functional is not known, some procedure is needed to obtain the energy. Here

we mostly follow the original derivation of van Leeuwen and Baerends [23], who, in

the context of density-functional theory, rediscovered Volterra’s findings [24] on the 

general theory of functional calculus. The idea is to introduce an additional parameter 

t into p(r) to create a path of densities pt(r). Tn this case the functional Exc[pt\ becomes

a function of the variable t

Exc(t) = Exc[pt]. " (2.2)

The derivative of this function is given by the chain rule of differentiation [Eq. (1.31)]

dExc{t)
dt

f  SExc[pt] dpt , J 5pt(r) dt
(2.3)

Integration of the above derivative from t = a to t =  b leads to the following energy 

difference: '

Exc[pb] -  Exc[pa] = . J  . dt = . J  dt J  vxc([pt\]T)~dr.,.  . (2.4)

If the density p is parametrized in such, a way that pa ■— 0 and pb is equal to the 

density of interest, pb =  p, then the energy difference from Eq. (2.4) reduces to

Exc[p] =  J d t / u x c(N ; r ) f  dr. (2.5)

The last equation allows one to assign an energy to any model potential vxc constructed 

from a given density p without actually knowing the explicit form of the functional 

Exc{p\. , , ;

Equation (2.5) is derived under the assumption that the parent functional Exc[p] 

for the potential vxc actually exists. For any such potential, the energy obtained from 

this equation does not depend on the particular parametrization of the density used, 

as long as pa = 0 and pb =  p. However, it may happen that the model potential does

13



not have a parent functional, that is, it is not a functional derivative. In that case, the 

energy obtained from Eq. (2.5) will generally depend on the particular.parametrization 

of the density.

Let us introduce some new terminology. We will call a model potential integrable 

if its parent functional exists. If a model potential does not have a parent func

tional, then we will call it non-integrable or stray. We will also call some particular

parametrization of the density a density integration path or simply a path. Using this 

terminology we can reformulate the above paragraph: energies obtained using inte

grable potentials are path-independent, while energies coming from stray potentials 

depend on the integration path.
A

A path pt used in Eq. (2.5) must be such that the derivative ^ exists almost(Jb
everywhere, so that the integral over t has a definite value. “Almost everywhere” is a 

mathematical term, which in this context means that the derivative exists either for 

all values of t or for all values of t except for a countable set of points.

Several density-scaling paths are known in the literature. None of them, however, 

was initially introduced in the context of line integration. They served for completely 

different purposes. The path of uniformly scaled densities [23, 25], which has been 

called the Q-path [26, 27], is defined by ,

r) =  qp( r), (2 .6)

where 0 < q < 1. We use a distinct letter subscript for the scaling parameter in some 

particular path and reserve t for the general discussion of any path. Another path 

is the uniform particle-number conserving density scaling, proposed and extensively 

studied by Levy [28]:

pA(r) =  A3p(Ar). (2.7)

This path has been termed the A-path (0 < A < 1). Perdew and co-workers [29]
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proposed a Thomas-Fermi-inspired path of the following form:

: Pc(T) =  CV(C1/3r), ' ■ (2.8)

which has been referred to as the Z-path [26, 27]. The path of Eq. (2.8) is originally 

defined for 0 < £ <  oo, but the term “Z-path” corresponds to the following range of £ 

values: 0 <  £ < 1. There are also non-scaling paths. For instance, van Leeuwen and 

Baerends [23] used the path ' . < ;

;; pt(r) =  t3p ( t r + ( l - t ) K ) ,  (2.9)

where R  is an arbitrary, vector, to explicitly show that the energy assigned to a non- 

integrable model potential is path-dependent. As discussed in Ref. [23], the following 

path was initially implicitly used by Ziegler and Rauk [30] to calculate molecular 

binding energies:

pt =  ps -t-i(pM - p s ), 0 <  £ < 1 . (2.10)

Here pM = p\ denotes the electron density of a diatomic molecule AB and 

pE =  p0 =  pA + pB, in which pA and pB denote the densities of isolated atoms A and 

B. The above path represents how the superimposed density of individual atoms, ps , 

transforms into molecular density, pM, of the molecule AB.

An important result for the A-path can be derived for exchange-only potentials. 

One of the analytical properties of such potentials is that they are homogeneous of 

degree one with respect to uniform density scaling (A-path) [31]:

’̂x([PA];r) =  A?;x([p];Ar). • (2.11)

Equation (2.11) allows the integral over A =  t in Eq. (2.5) to be taken analytically,
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leading to.the following well-known Levy-Perdew virial formula [32, 33]:

, EM  = j  drvx([p]-,r)[Sp(r)+r- Vp(r)]. ............ (2.12)

Some of the aforementioned paths have been used in the context of line integrals. 

For example, Gaiduk et al. [26] derived potentials from some existing approximate 

density functionals and then reconstructed these functionals by integrating the po

tentials along the Q-, A- and Z-paths. Reconstructions obtained by using different 

scaling paths differ in their analytic representation but give the same numerical re

sults. The results also coincide with those obtained directly from the functionals. 

Gaiduk and Staroverov [27] employed the Q-, A- and Z-paths to test whether several 

existing model potentials were integrable or not. Surprisingly, only a few of existing 

potentials are integrable.

If a potential is integrable, then its reconstructions using different scaling paths are 

just gauge transformations of the integrand expression for the parent functional [26]. 

In the case of non-integrable potentials, the reconstruction is generally path-dependent, 

but a particular combination of the potential and a path can be thought of as a def

inition of a new density functional. In this regard, a question arises: For a given 

potential, which density parametrization defines a better model to approximate the 

exact Ekc[pY! This problem was partially addressed in Ref. [27], where the authors 

calculated total energies for a set of atoms and molecules for non-integrable potentials 

using the Q-, A- and Z-paths.

The principal objective of this work is to introduce new density parametrizations 

and to assess their performance in comparison with other existing paths. The new 

paths can be combined with literally any model potential, so, in effect, we are intro

ducing a variety of new approximations to the exact exchange-correlation functional.
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2 .2  A u fb a u  p a th s

Let us now introduce two new density parametrizations to be used in the line integral 

formula, Eq. (2.5). The first parametrization, which we call the orbital-aufbau path, 

is such that the density is filled orbital-by-orbital from the lower-energy Kohn-Sham 

orbitals. The formal expression for the orbital-aufbau path may be written as:

Pt(r ) =  l<P°(r )|2 +  {O K t+ijW I2; (2-13)

Here the scaling parameter t varies from 0 to the total number of electrons, N. Sym

bols |ij and {t} denote the integer and fractional parts of ¿ correspondingly. The 

superscript 0 indicates that Kohn-Sham orbitals are frozen, that is, calculated once 

for the iV-electron system and then kept fixed. Note that for one-electron systems, 

the orbital-aufbau path coincides with the Q-path of Eq. (2.6).

If a system has degenerate orbitals, these orbitals can be filled in any order. This 

leads to non-uniqueness of the orbital-aufbau path for systems with degeneracy. To 

avoid this ambiguity, we introduce a more general parametrization, which we call 

the subshell-aufbau path. Here the orbitals: are filled from the lowest to the highest 

not one-by-one but subshell-by-subshell. By a subshell we mean any set of degenerate 

orbitals. In other words, all degenerate orbitals which have the same orbital energy are 

filled simultaneously. The subshell-aufbau path is unique for systems with degeneracy 

and it reduces to the orbital-aufbau path for systems with no degeneracy. The formal 

expression for the subshell-aufbau path is as follows:

L*J
ft(r) =  ^ S i(r) +  {i}Stl+1J(r), (2.14)
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where 5* (r) is a sum of squares of degenerate orbitals which form the z-th subshell:

#  degen. orb.

Si(r)=  £  - W l 2- (2-15)
i-1

The parameter t now varies from 0 to the numbers of subshells Ns in the system.

As discussed above, for a density parametrization to be used in the line-integral 

formula, the following two equalities must hold: pt(r)|t=a =  0 and pt(r)|i==6 =  p(r). 

In addition, the density pt(r) must be continuous in t. While the first two conditions 

are clearly satisfied by the orbital- and subshell-aufbau paths, the continuity of pt(r) 

needs to  be proven. To do that, it is sufficient to show that the following equalities 

hold for every a:

lim pt =  lim pt = pa- (2.16)
t—*a+ t—>a—

For non-integer values of a, these equalities certainly hold. Before looking at integer 

values of a, let us collect some useful properties of the integer-part and fractional-part 

functions. For an integer number a, the following equalities hold:

lim [¿J =  a — 1; lim [¿J =  a; lim {¿} =  1; ' lim {¿} =  0. (2-17)
t~+Cl— t—*CL— t~+CLmt*

Keeping these properties in mind, one can easily evaluate the limits of Eq. (2.16):

UJ ’ a
lim pt(r) =  lim ^  |<p°(r)|2 +  lim {i}|cp t̂j+1(r)|2 — ^ |< p ° (r ) |2 (2.18)

t 1 * fl“  CL"— I1 * a¿=1 . ¿=1

and ' , , : v ; :

1 ■' UJ
tlim pt(r) =  H m £ | ^ ( r ) f  +  {¿}|^tJ+1(r)|2 =  ^  |^°(r)|2 (2.19)
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1— 1

as well as the value of pa itself, by definition:

' (2-20)

As shown above, equalities of Eq. (2.16) hold for all values of a, so the orbital-aufbau 

path is continuous in t. The proof is identical for the subshell-aufbau path—one just 

needs to replace 9?i(r) with ¿'¿(r) in Eqs. (2.18)-(2.20).

Since we have proved that aufbau paths are continuous, we can use them in the

line integral formula. To exploit these new paths, it is also necessary to evaluate the
r\

partial derivative which we do by definition. For the orbital-aufbau path:
C/C

s

dpt
dt

limAt—o
Pt+At ~  Pt

At r=const

^[tj+i, if  ̂1S not an integer

limit does not exist, if t is an integer.
( 2 .2 1 )

Similarly, for the subshell-aufbau path :,

?£i = Um Pji±LZ£L
dt At-+o A t r=const

if t is not an integer , 

limit does not exist, if t is an integer.
(2.22)

The set of points where does not exist is countable (i.e., of zero measure), so the
at

value of the integral over t in the line integral formula is not affected. In other words, 

pt(r) is a continuous function of ¿ with a discontinuous first derivative, which causes 

no difficulty in practical applications of the aufbau paths.

The final expression for the exchange-correlation energy in the case of orbital- 

aufbau path is as follows:

EXC[p] =  ' j  dt j druxc([pt];r) | ^ f+lj(r)|2. (2.23)
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For the subshell-aufbau path, we have

RXC drvxc([pt]]r) S it+ij (r) (2.24)

Aufbau paths are not based on density scaling, so they cannot be represented 

as the density multiplied by some scaling factor. Instead, aufbau paths deal with 

Kohn-Sham orbitals as building blocks for the electron density. Since aufbau paths 

operate with orbitals (or subshells) and have discontinuous derivatives, we expected 

that these paths, when used in conjunction with model potentials, would mimic the 

behavior of the exact exchange-correlation potential, which itself has discontinuities 

at integer electron numbers.

Before we proceed to assess the aufbau paths, let us describe the density functionals 

and model potentials which we study in this work.

2 .3  F u n c t io n a ls  a n d  p o te n t ia ls  o f  in te r e s t

We start by elaborating on the functional differentiation technique introduced in Sec

tion 1.3. Many practical density-functional approximations have the form

F\p] = /  f{p,9)dr, (2.25)

where g is the norm of the gradient of the density,

9 = |Vp| = (2.26)

For the functional derivative of a functional written in the form of Eq. (2.25), the 

general expression for the functional derivative [Eq. (1.30)] can be cast as

d2f  w d f  /V 2p w
dp dpdg9 d2gg2 dg \  g g3

(2.27)
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w = gTHg,

Here a; is the second-order quantity defined as

(2.28)

where g and H  given, respectively, by

and

/  dP \

g =

dx
dp
dy
dp

\  dz )

(  d2p d2p a y  \
: 5x2 dxdy dxdz

d2p d2p d2p
dydx dy2 dydz
d2p d2p d2p

V dzdx dzdy dz2 /

(2.29)

(2.30)

Another common way of writing gradient-dependent density-functional approxima

tions is

f \p\ =  J f(P,s)d  r, x (2-31)

where s is the reduced (dimensionless) density gradient defined as :

s |W[
p 4/ 3

(2.32)

For such functionals, Eq. (1.30) becomes

- H J i L  ( I1.. _"V  -  lPf » , ,;/J/ i v  . ± U
dp ds \ s 3 s )  p dpds ds2 \3  s2 )  p

(2.33)
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where the second-order dimensionless quantities q and h are defined in the following

way:

(2.34)

and > ( .

: ,  (2-35)

Initially, we wanted to test our implementation of the aufbau paths on potentials 

which are assured to be integrable. We derived two such potentials from the ex

change functional proposed by Gill [34] and from the exchange part of the exchange- 

correlation functional of Perdew, Burke and Ernzerhof [35], E^BE[p]. The Gill func

tional E ^ 96[p] has a very simple form. It consists of the local density functional 

Ex DA [p\ and the gradient-correction term:

E f 6[p] = E™A[p\ - b j  p -2/3g3/2 dr, (2.36)

where b = (21/6)/137 is an empirical parameter fitted in a way that Ex 96[p] reproduces 

the exact exchange energy of the Ar atom. We derived the potential corresponding 

to the Gill functional by using Eq. (2.27):

t í 98 =  uxLDA b p -^g - l /2 1 "o' 3 _2 3 _ 2 '
3 P 9 + ^ 9  w -  - V p (2.37)

The Gill exchange potential lacks some analytic properties of the exact exchange po

tential. For example, ux96(r) —> oo as the distance from the atomic nucleus increases, 

while the exact potential vanishes in,that limit. Nevertheless, the Gill functional per

forms reasonably well compared to many other gradient-dependent density-functional 

approximations.
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The exchange functional of Perdew, Burke and Ernzerhof has the following form:

E ^ \ p \  = E ^ \ p ] - C ^ f  (2.38)

The constants a  and k are non-empirical and are fixed by the requirements that 

Eq. (2.38) satisfies some exact constraints. For example, E BBE[p] correctly reduces 

to the uniform electron gas limit, 2s£DA[p]i in the case of a homogeneous density. 

Numerical values of the constants are as follows: k = 0.804; a = m/i, where m = 

(1/37t2)2/3/4  and /i =  0.21951. The expression for the corresponding potential can be 

written as

VP B E  =

X

nYLDA + 2 ak
3s2(k +  as2)

LDA (2.39)

2s4 + 3h — 3 qs2 — 4ks‘
k +  as2

k3 — 2ak2s2 — 3aksA , t 4 
+  — - 3ft)

We obtained it using Eq. (2.33).

Next we list model potentials which were introduced directly, i.e., they are not 

derived from density functionals. As concluded in Ref. [27], all these potentials are 

actually non-integrable. \

The van Leeuwen-Baerends exchange potential [7] has the form

^B94 =  VLDA 1/3 X‘
1 +  ß s arcsinh(a;) ’ (2.40)

where P = 0.05 is an empirical parameter and x  =  21//3s. This potential is designed 

to mimic the (exact) exchange-correlation potentials obtained from highly-accurate 

electron densities of Be and Ne atoms. The Slater potential [36]

1
W )

dr' |p(r,r')|2 (2.41)
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was introduced in 1951, before the advent of DFT, in the context of a simplification 

of the Hartree-Fock method. The symbol p(r, r') denotes the first-order spin-density 

matrix of the Kohn-Sham non-interacting system:

occ.

p(r >O =  <Pi(r)<Pi (r ')- (2-42)
¿=1

The potential of Becke and Johnson [19] is an improvement on the Slater potential:

, xbj = , xs + ~BJk Bj(r)
27r (2.43)

where

*bJ = ( Q 1/2, (2.44)

in which .
- occ. - 4 :'■■■' i. ■ ■ ■ •

T(r ) =  o E l V^ ( r )|2 (2-45)
' ' "  t= 1

is the so-called kinetic-energy density. Along with quantities g(r) and s(r), the kinetic- 

energy density is a common ingredient of gradient-dependent density-functional ap

proximations. The Becke-Johnson potential is designed to be exact for any hydrogen

like atom and it mimics well the shell structure of the exact exchange potential in 

many-electron atoms. The Umezawa potential [18]

yuo6 =  wlda +  G(r )yHA

is an interpolation between the LDA exchange potential, v^UA, and the Fermi-Amaldi 

potential

The latter being just a per-particle Coulomb potential of the electron density. The

FAvi =  —
V
N

dr' P(r')
r  -  r' (2.47)

(2.46)
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switching functions

F(r)
1

ln (l +  7  5s5) +  1
(2.48)

and

G(r) =  1 — exp (—72s2) (2.49)

are such that the Umezawa potential benefits from the reasonably good short-range 

behavior of the LDA potential, t£DA, and from the correct asymptotic decay (—1/r) 

of the Fermi-Amaldi potential, v^A. The empirical parameter .7 is chosen to be 

0.125. The functions F(r) and G(r) are defined in terms of the spin-density, and 

the potentials u£DA and are calculated from the total electron density.

2 .4  I m p le m e n ta t io n  o f  a u fb a u  p a th s

Energy expressions for the aufbau paths [Eqs. (2.23) and (2.24)] involve one-dimensional 

integration over the parameter t and three-dimensional integration over the spatial 

coordinate r. By considering the former as the outer integration, we can rewrite the 

energy expression for the orbital-aufbau path [Eq. (2.23)] in the following form:

E-
p N

[P\ =
Jo

f(t)  dt,

where f ( t)  is the result of the inner integration

(2.50)

/(<) =  J  vXc(\pti; * • (2.51)

The energy expression for the subshell-aufbau path [Eq. (2.24)] can be also rewritten 

in the same way, except that N  will be replaced by Ns in Eq. (2.50).

In principle, any of various one-dimensional quadratures can be used to evaluate 

the outer integral. All of them require knowledge of the integrand f (t)  at some 

intermediate values of the parameter t. In the case of the aufbau path, the calculation
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of f( t)  at each point t is itself an integration over r.

The components needed to perform the inner integration are accessible from the 

development version of the GAUSSIAN quantum-chemistry program [37]. These com

ponents include a three-dimensional real-space grid and the corresponding weights as 

well as the values of Kohn-Sham orbitals and their first and second derivatives evalu

ated on that grid. We store all these components on disk together with some additional 

parameters, and then re-use them in our own newly written program, which we call 

auprog. Auprog calculates the value of the inner integral f( t)  for any intermediate 

value of t, which is needed to perform the outer integration.

We employ the Gauss-Legendre quadrature [38, 39] for the outer integration. We 

usually utilize grids containing 256 x N  points for the orbital-aufbau path and use 

(256 x N s)~point grids for the subshell-aufbau path. In the inner integration, we use 

the grid containing 300 radial and 974 spherical points per atom. This grid is requested 

in GAUSSIAN by the keyword Int(Grid=299974). The grids for the outer integration 

give an accuracy of at least 4 decimal places. The inner (real-space) integration is 

more accurate, so the overall accuracy of exchange-correlation energies calculated in 

this Section is at least 4 decimal places.

In addition to the aufbau-path calculations, auprog is also capable of doing Q-path 

calculations. This is possible since the Q-path can be thought of as a subshell-aufbau 

path in which all the orbitals are considered as one subshell. We also implemented 

the A-path calculations in auprog. In addition, it is possible in auprog to use the 

parent functionals of those potentials that have them.

We put the detailed description of auprog in Appendix A.

2 .5  A p p lic a t io n  o f  a u fb a u  p a th s

To test our implementation of aufbau paths, we first applied it to two integrable 

potentials, v^96 and rTBE. The results are shown in Table 1. As one should expect,
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Table 1: Total energies (in hartrees) calculated from various exchange potentials using the A-path, Q-path and the aufbau paths. 
All calculations are spin-unrestricted. The basis set used is cc-pVQZ.

PBEx G96 LB94
Functional Any path Functional Any path A-path Q-path Orbital aufbau Subshell aufbau Exact®

Atoms
H -0.4942 -0.4942 -0.4991 -0.4991 -0.4720 -0.6274 -0.6274 -0.6274 -0.5000
He -2.8517 -2.8517 -2.8660 -2.8660 -2.8310 -3.3123 -3.3123 -3.3123 -2.9037
Li -7.4100 -7.4100 -7.4308 -7.4308 ; -7.3744 -8.1939 -8.2115  ̂ -8.2115 -7.4781
Be -14.5437 -14.5437 -14.5650 -14.5650 -14.5716 -15.7080 -15.7652 -15.7652 -14.6674
N . -54.3551 -54.3551 -54.3996 -54.3996 -54.7136 -56.9808 -57.2967 -57.2735 -54.5892
Ne -128.5131 -128.5131 -128.5881 -128.5881 -129.6193 -133.0825 -133.8465 -133.7791 -128.9376
Na -161.7988 -161.7988 -161.8827 -161.8827 -162.9406 -166.9881 -167.9010 -167.8164 -162.2546
P -340.5860 -340.5860 -340.7198 -340.7198 -342.5895 -348.6035 -350.3189 -350.1666 -341.259
Ar -526.6367 -526.6367 -526.8251 -526.8251 -529.4139 -537.0413 , -539.4881 -539.2793 -527.540
Molecules 
H20  (C2„) -76.0589 -76.0589 -76.1134 -76.1134 -76.6606 -79.5131 -80.0772 -80.0772 -76.4087
CH4 (Td) -40.1682 -40.1682 -40.2118 -40.21 -40.0108 -42.7203 -43.0166 -42.9926 -40.4921
NH3 (C3„) -56.2001 -56.20 -56.2473 . -56.25 -56.4378 -59.1669 -59.6188 -59.6112 -56.5381

“For atoms the energies are taken from Refs. [40, 41]; for molecules, the exact energies are approximated by the CCSD(T,Full)/aug-cc-pV5Z values.
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Fig. 1: Schematic structure of occupied energy levels in the water, ammonia and 
methane molecules.

the energies assigned via A-, Q- and aufbau paths are the same and equal to the 

energies obtained directly from the corresponding functionals E ^ 9G[p] and E^BE[p].

We also applied the aufbau paths to calculate the energies of the densities com

ing from the non-integrable model potentials of van Leeuwen-Baerends, wBB94, and 

Umezawa, uB06. The energy in both cases is path-dependent. The results for the van 

Leeuwen-Baerends potential are shown in Table 1, where we compare them to the 

results obtained from the A- and Q-paths. Generally, the energies calculated from 

the orbital- and subshell-aufbau paths are lower than those obtained from the A- and 

Q-paths. In addition, the aufbau-path energies tend to be lower than the exact ones.

As seen from Table 1, energies calculated from the orbital- and subshell-aufbau 

paths differ from each other for systems with degenerate orbitals (see the molecular 

orbital diagrams in Fig. 1). The difference is not as large as when aufbau paths are 

compared to other paths, but it is still noticeable. The orbital- and subshell-aufbau 

paths are in some sense close to each other and differ considerably from other paths, 

so the above result is reasonable. ! '

In Fig. 2,' we compare the dependence of the exchange energy on the number 

of electrons for integrable and non-integrable potentials. Both integrable potentials 

(v®96 and uBBE) give plots that are almost identical to each other, so we show only 

the results for the Perdew-Burke-Ernzerhof potential, uBBE. Observe that the energy 

difference between integrable and non-integrable potentials increases with the number 

of electrons. Note also that the energies from the orbital- and subshell-aufbau paths
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and nitrogen atoms for; orbital- and subshell-aufbau paths. Arrows indicate exact 
exchange energies of the neutral atoms [42].
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differ significantly from each other only in the range 0 < t < 2.

As we discussed above, a combination of a density parametrization and a non- 

integrable model Kohn-Sham potential defines a new density-functional approxima

tion. Our results indicate that, at least for the model potentials studied, the A-path 

performs better than all other paths, including the new aufbau paths. A possible 

explanation may be given if one observes the following special feature of the A-path. 

This path preserves the normalization of the density, that is, for any given value of the 

parameter A, the density scaled with the A-path integrates to the number of electrons 

in the initial reference system:

AT for any A,

which can be easily verified by the following set of equalities

(2.52)

/  Px(r) dr = J A3p(Ar) dr = J  A3-^  p(Ar) d(Ar) =  J p(r') dr' =  N, (2.53)

where d(Ar) =  d(Xx) d(\y) d(Xz). This constancy makes the A-path perform better 

than the other paths.
\

Another possible reason of the good performance of the A-path is that it is the only 

path that does not change the shape of the potential. As evident from Eq. (2.11), the 

potential is just multiplied by a constant under the A-scaling. The coordinate scaling 

transformation r  —> Ar only shrinks or stretches the potential but does not affect its 

shape.

In the future, it would be interesting to address the following challenge. For a given 

model potential, construct a path such that the density-functional approximation 

defined by the combination of potential and path, is as physical as possible. It appears 

that if a general way of doing this could be found, then it would be a fundamentally 

new approach for introducing approximations in density-functional theory.

30



3 Energies from m odel potentials: Janak path

In this Section we describe another possible way of assigning an energy value to 

a model potential. We obtain the corresponding energy expression and provide its 

alternative derivation from the line integral formula. We show the explicit form of 

the density parametrization that leads to this new energy expression. ,

3 .1  D F T  fo r  n o n - in te g e r  e le c tr o n  n u m b e r s

We mentioned in the Introduction that the definition of the universal density func- 

tional [Eq. (1.8)], • ' ■

F [ p ] = m m m f  + Veem ,
W—►p

has to be extended for systems with degenerate ground states [3]. The extension 

is such that the minimization is done not only over all possible anti-symmetric N- 

electron wavefunctions T but also over all possible statistical mixtures (ensembles) 

of such wavefunctions. In quantum mechanics, a statistical mixture is described by 

its own operator f , f  =  In this work we will not go into thorough
i

discussion of this operator. However, we will use the symbol.T to denote properties
\

that correspond to an ensemble. This said, the universal density functional extended 

to ensembles is defined as

' F[p] = min +  - (3.1)
f - p

Here the expectation value (T|T -f- I4e|^r)f °f the statistical mixture of pure-state 

wavefunctions dq is given by

<’*'|T’-+-VeelWXr =  +  '4il*i)i (3.2)
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where p* is the contribution of the wavefunction 'F, to the ensemble f , and

E ^ i =  1 with 0 < Pi < 1. (3.3)

The extension shown in Eq. (3.1) allows the density-functional theory to treat the so- 

called mixed states, i.e., the states that cannot be described by a single wavefunction. 

Examples of mixed states include systems with degeneracies and systems with fluctu

ating number of electrons. The latter may arise when wavefunctions corresponding to 

different numbers of electrons are included in the statistical mixture Ê. The systems 

with non-integer electron numbers may be thought of as statistical averages of the 

systems which are free to exchange electrons with the surrounding (open systems).t 

The Kohn-Sham method can be extended to handle non-integer electron numbers.

This is done by introducing fractional occupation numbers 0 . < rii < 1  into, the 

expression for the electron density,

N

p =  E ^ î i2, (3-4)
i=  1

and into the expression for the kinetic energy of non-interacting electrons

i= 1
(3.5)

For systems extended in such a way, Janak showed [43] that the response of the total 

energy to a change in the occupation number of the z-th orbital is equal to the energy 

of that orbital:
ÔE _
dm

(3.6)

This result is known as the Janak theorem.

The Janak theorem plays an important role in the later derivations, so for the 

sake of completeness, we give its proof here. To begin with, consider the following
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derivative
f)W f) f)
g Z  = g Z T‘ *  g Z ^  +  Bxc[pl +  £n,!/,1) ’ (3.7)

where Ts is in its extended form [Eq. (3.5)], J[p] and Exc[p\ are the same as defined 

by Eqs. (1.16) and (1.15), and Ene[p] is the electron-nuclear attraction term

K M  =  J  ®(r)p( r) d r (3.8)

with the external potential u(r) given by Eq. (1.5). Let us start by working out the 

first term of Eq. (3.7):

N 1 A  d
a T . - - 1 ^ : ¿ " i t o |V2te) =  - i f e |V 2|Vi) -  f i)-  (3-9)dn j=i

2 ¿—j -■> Qn .
J = 1

The above result can be written in a more compact way if we introduce the following 

notation for the orbital kinetic-energy integrals:

(3.10)

With this notation Eq. (3.9) becomes

N

-Ts = ti +  y
dn

■3=1
3 dui 3

(3.11)

Now let us work out the second part of Eq. (3.7). Functionals J[p], Exc[p], and Ene[p\ 

are simultaneously functions of all occupation numbers rij. So the chain rule needs to 

be applied in order to calculate necessary derivatives:

(J{p\ +  Exc[p\ + Ene\p\) =  J  —  (J[p] + Exc[p\ +  Ene[p]) dr

N d
=  j  v s ( r )  ( \<Pi\2 +  '5 2 n j — \<pj \2 ) d r ,

i=i
(3.12)
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where vs = (vj +  v + uxc) is the Kohn-Sham potential as introduced in Eq. (1.18). 

Combining the results of Eqs. (3.11) and.(3.12), and rearranging the terms, we cast 

Eq. (3.7) in the following form:

| |  =  t i +  / » . l w P *  +  g n i ( A (i +  y ' ^ te  I’ * ) .  (3.13)

Let us now consider the Kohn-Sham equations [Eq. (1.21)]

^” V2 + V j  +  V +  Vxc j  &  =  6i(pi.

If we multiply them by p* and integrate over the spatial coordinates—a common trick 

used in quantum mechanics—we will find the relation

ti + C* (3.14)

The above equation brings Eq. (3.13) into a simpler form

dE
drii

d_
drii

tj + dv .
dm

(3.15)

By spelling out the symbol tj and by taking the partial derivatives with respect to n,, 

we see that the sum in parenthesis is equal to zero:

—|V 2 +  vs) (fij dr +  complex conjugate

p* ] 6jPj dr +  complex conjugate

f ^ l 2*  = ^ !  = 0, (3.16)

where we exploited the fact that Kohn-Sham orbitals are normalized. The result of 

Eq. (3.16) makes the summation over j  in Eq. (3.15) vanish. The last step brings
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.Eq. (3.15) to the expression obtained by Janak [Eq. (3.6)], and completes the proof.

Janak’s work dates back to the time when researchers in density-functional theory 

were trying to minimize the total-energy density functional E[p] not only with respect 

to the density but also with respect to the occupation numbers. Now we know that 

there is not as much freedom in values of the occupation numbers as was assumed in 

the earlier days. For instance, Valiev and Fernando showed [44] that only the highest- 

occupied orbital or orbitals, if they are degenerate, are allowed to have fractional 

occupations. All the lower-energy orbitals must be fully occupied. The reason being 

is that Ts[p] and Exc[p\ are differentiable only when the above constraint is satisfied.

Janak suggested using Eq. (3.6) as a way of calculating the energy of the first 

excited state of a system [43]. Integration of Eq. (3.6) over the occupation number 

nAr+1 gives ■ : : ..

Ej\~i = E x  +  / e(riN+i) driN+i. (3.17)
Jo

If En  is known, then EN+i can be obtained by integration of the energy of the 

(N  +  l)-th orbital with respect to its occupation number njv+i- In the late 1970s, 

it was a computationally involved procedure to obtain a lot of intermediate points 

to calculate the integral of Eq. (3.17). So Janak, following Slater [45], considered 

an approximation of the integral by a single point n^+i =  1/2. This approximation 

turns out to be quite reasonable. We will discuss it in greater detail in Section 4. For 

now, let us show how the Janak theorem can be used to assign an energy to a model 

potential.

3 .2  E n e r g y  e x p r e s s io n  b a s e d  o n  t h e  J a n a k  th e o r e m

Suppose we are given a model exchange-correlation potential for an iV-electron system 

and we want to find the associated energy. First, let us rewrite Eq. (3il7) in a slightly 

different form that shows explicitly how one can use the Janak theorem to calculate
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energy differences:

Now, if we apply Eq. (3.18) to the N-th  orbital while keeping all lower-lying or

bitals fully occupied and all higher-lying orbitals empty, we will get the energy dif

ference (En  — En - i). Doing the same procedure for the 1-st, 2-nd, 3-rd, . . . ,  iV-th 

orbitals, we will obtain, respectively, the energy differences (E\ — Eq), (E2 — Ei), 

(Eq — E2), . . . ,  (En  — .Eat- i ). Adding them up results in a telescopic cancellation of 

all the intermediate absolute-energy values Ei except for E0 and E^:

(Ei — Eq) +  (E2 — Ei) +  • • • +  (En  — En- i ) — Epj — Eq. (3.19)

The term Eq corresponds to the system with no electrons. Such system has zero en

ergy, Eq = 0, so only the term EN survives. In other words, by following the procedure 

outlined above, it is possible to assign an energy En , to a model exchange-correlation 

potential without actually knowing the explicit expression of the functional. The 

method requires only knowledge of the energy of the highest-occupied molecular or

bital (HOMO) as a function of its occupation number for all intermediate systems 

that arise when the number of electrons changes form 0 to N.,, This result can be 

thought of as the generalization of the Janak theorem. To the best of our knowledge, 

there is no discussion in the literature of this way of extracting the energy from model 

Kohn-Sham potentials.

The formal expression for the procedure outlined above can be written as

En  — y™' / duj 6HOMo(b w), (3.20)

where 6homo(*>^) denotes the energy of the highest-occupied molecular orbital of the 

system in which the lower (i — 1) orbitals are fully occupied and the z-th orbital, the

E n  — E n - i  =  /  e(njv) d n 'N- (3.18)
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HOMO, has an occupation number equal to to. ■

Let us also provide an alternative argument leading to the same result as Eq. (3.20). 

For a system in which only the HOMO is allowed to have fractional occupations and 

in which all the lower-energy orbitals are fully occupied, a change in the occupation 

number of that orbital, chj-HOMOi is equivalent to the change of the total number of 

electrons, dN. In this case, the Janak theorem reads

dE
eHOMO (fi — Qtf-- •: (3.21)

Here by eHOMo(i) we mean a collective representation of the energy of the highest- 

occupied molecular orbitals. That is, 6homo(£) always represents the HOMO energy 

regardless of the ordinal (serial) number of that orbital. With this definition, one just 

needs to integrate equation (3.21) in order to get the expression for the total energy:

n  - ■ •'

Thomo (t)dt. (3.22)

Now, if we take into account the fact that there are N  orbitals in an iV-electron system, 

and that each of them becomes the HOMO at some stage in the electron addition 

process, it is evident that Eq. (3.22) is just another way of writing Eq. (3.20).

The way of extracting the energies from model potentials described above and 

Eq. (3.22) in particular, resembles the line integration technique which we have de

scribed in Section 2. This analogy motivated us to investigate the density parametriza- 

tion that lies behind the energy expression of Eq. (3.22), or, rather, identify the 

parametrization that is implicitly present in Janak’s original paper [43].

The manner in which the orbital energy enoMo(t) is calculated suggests that there 

is always a unique combination of i and to from Eq. (3.20) that corresponds to some 

particular value of t. Specifically, the value is t =  i + u. Since to is always within the 

range from 0 to 1, and since i is an integer number, we can think of i as the integer
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part of the parameter t, i = |_£j, and a; as the fractional part, u  =  {t}. Then it 

immediately becomes clear what density parametrization corresponds to Eqs. (3.22) 

and (3.20). The parametrization, which we call the Janak path, can be written as

L*J
Pt(r) =  lv?i(r )|2 +  {OI^Li+ijWI2- (3.23)

i= 1 .

The Janak path is formally similar to the orbital-aufbau path discussed in Section 2, 

except that Kohn-Sham orbitals are no longer fixed here. They depend on t, i.e., 

they are re-calculated self-consistently for each value of t. Because of that, the Janak 

path is more complex than the orbital-aufbau path. For this reason, it is impossible 

to prove the continuity of pt as we did for the aufbau paths. It is also impossible to 

evaluate explicitly the derivative But this is not needed since we already know 

the energy expression that corresponds to the Janak path.

Let us now show that Eq. (3.22) can be also viewed as a special case of the 

van Leeuwen-Baerends line integration formula [Eq. (2.5)]. We begin by rewriting 

Eq. (2.5) as
5E[pt] dpt(r)EN = r i t ( i M

Jo J opt
(3.24)

(r) dt 1

Here we have already identified the integration domain, 0 < t < N, because we know 

that it is the same as in the Janak path. The generalization of the line integral 

formula for calculations of the total energy is a valid procedure since the total energy 

is a functional of the electron density. ;

; The first factor of the integrand in Eq. (3.24) is the chemical potential p, defined 

in density-functional theory by [46]:

p(t) =
SE[pt}
Spt{r)

(3.25)
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.An alternative expression for chemical potential is

dE
dN-

(3.26)

which becomes the energy of the highest-occupied molecular [chomoOO] when only the 

HOMO’s occupation number (u h o m o ) is allowed to be fractional. With this in mind, 

we can write the following sequence of equalities: ;

SE[pt]
$Pt{ r)

dE _  dE  
dN  chiHOMO eHOMo(i) (3.27)

Thorough discussion of the chemical potential p is beyond the scope of this work, so 

we just quoted the above results from the literature. See, for example, Ref. [5].

To proceed with our investigation of Eq. (3.22), observe the following two impor

tant consequences of Eq. (3.27). The first is that .

^ T  =  eH0M0(() (3.28)

and the second is that enoMo(i) is a function of t only, even though it is a functional 

derivative. These two facts allow us to factor chomoW out of the spatial integral 

in Eq. (3.24):

En
p N
/  dt

Jo
ĥomo(î ) 7 dr dpt{ r) 

dt
(3.29)

Note that Eq. (3.29) differs from the energy expression of Eq. (3.22) only by the 

presence of the spatial integral of in the latter. As discussed above, this derivative
, ' ' : ■" (JT> i : ■. ■ , .■ f ' ; !. ; 1 ; 1;

alone cannot be evaluated due to implicit dependence of Kohn-Sham orbitals on the
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parameter t. However, the spatial integral of this derivative can be easily evaluated:

/ dr̂ Ét̂  = J drWt + j : ■ (3-3°)

Wd_ 
= dt

_d_
dt

Y  j  b i W N r  +  W ^ b L tJ+ iír)!2* '
1=
W d d

(l) +  {¿} I -  (lAl + { ¿}) -  7üt ~  !>
1=1 dt

where we exploited the fact that each Kohn-Sham orbital is normalized,

J dr\(pi(r)\2 = 1. (3-31)

The result of Eq. (3.30) shows how Eq. (3.29) and, consequently, Eq. (3.24) reduces 

to Eq. (3.22). In other words, we have just demonstrated that the energy expression 

derived from the Janak theorem is indeed the result of application of the van Leeuwen- 

Baerends line integration taken along the Janak path. We will call the energy assigned 

to a potential via Eq. (3.20) or, equivalently, via Eq. (3.22) the Janak-path energy.

3 .3  P e r fo r m a n c e  o f  t h e  J a n a k  p a th

To test Eq. (3.20) numerically, we ran a number of calculations with the Gill exchange 

potential (v®96) and the exchange potential of Perdew, Burke, and Ernzerhof (u£BE). 

As discussed in Section 2, these two potentials are integrable as they are both derived 

from the corresponding functionals 96 [p] and E^BE[p], For integrable potentials 

one can expect that the energies obtained from Eq. (3.20) and from the corresponding 

functional would coincide, apart from numerical integration errors. That is precisely 

what we observed in our calculations (see Table 2). This means that Eq. (3.20) is 

indeed another possible way of assigning an energy to a potential. .
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Table 2: Total energies (in hartrees) calculated via the Janak path from 
integrable model potentials. The basis set used is cc-pVQZ.

G96 PBEx
Janak-path Functional Janak-path Functional

H -0.499 051 -0.499 052 -0.494 165 -0.494 165
He -2.865 954 -2.865 956 -2.851 694 -2.851 694
Ne -128.588 115 -128.588 126 -128.513 092 - 128.513 090

We applied Eq. (3.20) to the non-integrable potentials of Umezawa (u^06), van 

Leeuwen and Baerends (uBB94), Slater (v^), and Becke and Johnson (uBJ)—see the 

results in Table 3. We compare the Janak-path energies calculated from these poten

tials to the A-path energies computed via the Levy-Perdew virial formula [Eq. (2.12)]. 

In some cases, the Janak-path energies are better than the ones obtained from the 

virial formula, as in the case of the hydrogen atom and the Umezawa potential. For 

the Slater potential, the Janak-path and A-path energies almost coincide. Generally, 

however, the Levy-Perdew (A-path) energies are still closer to the exact values.

Compared to the aufbau path, calculation of Janak-path energies is computation

ally more involved. To calculate an energy by Eq. (3.20), we generally use a (256 x Ap

point Gauss-Legendre quadrature. Specifically, for each integer i, we calculate the 

HOMO energy, eHOMo(b^)) at 256 intermediate points of u  and then integrate it. 

Since i varies from 0 to N , the total number of quadrature points adds up to 256 x N. 

Each such point requires a separate self-consistent solution of the Kohn-Sham equa

tions. In many cases, we experienced problems with convergence, which is why the 

amount of data for Janak-path calculations (Table 2 and Table 3) is less than that 

for the aufbau paths (Table 1).

On Fig. 3 we show how the energy of the highest-occupied molecular orbital de

pends on the number of electrons in the helium atom. The area above each line is 

the Janak-path energy. The exact potential would be a set of horizontal segments 

with jumps at integer points (see the solid bold line). Among potentials tested, only 

the Slater (u®) and Becke-Johnson (uBJ) potentials, and only in the region 0 < t < 1
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Table 3: Total energies (in hartrees) calculated from various exchange potentials via the Janak and A- paths.

Exact0
Umezawa LB94 Slater Becke-Johnson

Janak path A-path Janak path A-path Janak path A-path Janak path A-path
H -0.5000 -0.5072 -0.3913 -0.6405 -0.4720 -0.4999 -0.4999 -0.2945 -0.5001
He -2.9037 -3.2236 -2.7256 -3.3767 -2.8310 -2.8615 -2.8614 -2.1239 -2.7795
Li -7.4781 -8.0868 -7.1758 -8.2953 -7.3744 n/c n/c
Be -14.6674 -15.6608 -14.2451 -15.8837 -14.5716 n/c > n/c,

aExact nonrelativistic energies are taken from Refs. [40, 41].
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Fig. 3: Energy of the HOMO as a function of the number of electrons in the He atom. 
The HOMO energy is calculated at 256 x 2: intermediate values of t. The basis set 
used is cc-pVQZ.

mimic this behavior. Everywhere else the tested potentials fail to mimic even qual

itatively the behavior of the exact potential. Note also an interesting feature of the 

Gill and Perdew-Burke-Ernzerhof potentials. The orbital energy for these potentials 

becomes almost exact when it is calculated at half-integer values of t.

To conclude the computational part of this Section, the Janak-path calculations 

are numerically more expensive as they require a separate self-consistent solution of 

the Kohn-Sham equations for each value of the parameter t. For this reason the 

Janak path is not very practical for routine calculations. The Janak path, however, 

enabled us to observe an interesting feature of some density-functional approxima

tions, namely, the tendency of the HOMO energy to cross the exact value near the 

point t  = N  — 1/2, i.e., at approximately half an electron less than the actual system 

of interest. We will return to this issue in the next Section.
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4 Significance of electron-deficient system s

In the previous Section we observed an interesting feature of some density-functional 

approximations. The energy of the highest-occupied molecular orbital, if plotted as a 

function of the fractional number of electrons in the system, becomes exact when the 

system contains roughly half an electron less than the physical value. An example from 

the literature in which such half-filled orbitals are employed is the Slater’s transition- 

state method [45]. Slater approximated the excitation energy of an IV-electron system 

by a single calculation on a system containing (N  +  1/2) electrons. Also, Dabo and 

co-workers [47] recently proposed an approximate density functional that involves half

electron deficient densities. All these examples suggest that an auxiliary system that 

differs from the system of interest by half an electron possesses important information 

about the corresponding system with the integer electron number. The purpose of this 

Section is to investigate what is special about such fractionally charged systems and 

to see how one can exploit these systems. In particular, we will address the problem 

of predicting the ionization energies in density-functional theory.

4 .1  I o n iz a t io n  e n e r g y  in  d e n s ity - fu n c t io n a l th e o r y

In 1982, Perdew, Parr, Levy and Balduz [48] showed that in the exact density func

tional theory, the total energy is a continuous piecewise-linear function of the number 

of electrons. This linearity follows from the analysis of statistical mixtures (ensembles) 

of pure-state wavefunctions corresponding to different electron numbers [5, 46, 48]. 

Suppose for a moment that the mixture contains only the (J  — 1)- and J-electron 

states (where J  is an integer). Then the electron density of this mixture; pj-u, is 

given by '

pj-u = (1 - u ) p j ' + u p j - i t - (4.1)
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where (1 — uj) and u  are weights of,the J- and (J  — l)-electron states, respectively, 

and pj and p j- i  are the electron densities of these states. The parameter u  is in the 

range between 0 and 1. If =  0, then the ensemble reduces to the pure J-electron 

state, and if u = 1, to the (J  — l)-electron state. Careful analysis shows that the 

energy E j - U of the above ensemble is [48] : > '

E j- U =  (1 — u) E j  +  ' (4.2)

where,E j and E j- i  are the energies of the corresponding pure states. Equation (4.2) 

can be rearranged to reveal the linearity of the energy of the ensemble:

Ej-u, =  — (Ej — E j - i ) U + Ej. (4.3)

Equation (4.2) is a general result in density-functional theory [48]. It holds for any 

types of mixtures, even those that include other states that are different from the 

J- and (J  — l)-electron states. This result remains general in DFT as long as the 

condition

2E j < E j -1 +  Ej+i (4.4)

is satisfied. This inequality is an assumption that has never been shown to be violated 

(theoretically and experimentally), at least for electrons. We will see soon that the 

linearity of the total energy leads to an important expression for the ionization energy 

in the exact density functional theory.

The first ionization energy is defined as the lowest energy required to remove an 

electron from the system. In other words, the ionization energy I j  of a J-electron 

system is the energy difference between the ground-state energy of that system, E j , 

and the ground-state energy of the corresponding system with one electron removed, 

E j-  i :

I j  = E j -1 — Ej. (4.5)
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Ionization energy as defined in Eq. (4.5) is a positive number, provided that E j < E j-b  

which is always the case for a neutral J-electron system. It is evident from Eq. (4.3) 

that the slope of the total energy E j ^  is the negative of the ionization energy:

dEj-u  
dui (4 .6)

The slope can be calculated at any a; in the range from 0 to 1.

A common practice in the Kohn-Sham density-functional theory is to estimate the 

ionization energy by the energy of the highest-occupied molecular orbital, chomo(^):

I j  = _ ciiom o(T ). , ,  (4.7)

We know from the Janak theorem that if all the lower-energy orbitals are fully oc

cupied and only the HOMO has a fractional occupation, the HOMO energy is given

by: . : '

^HOMO =
dE
dN (4.8)

In view of Eq. (4.6), the above equation can be rewritten as

d E j ^
1.7  = du (4.9)

If one estimates the ionization energy by Eq. (4.7), one in fact estimates it as the 

following limit: '

or, equivalently,

r v dEj-u.Tj = limw-»o+ ouj ( « 0 )

_ dE ^  " " ] - 
I j  =  Inn . 

n-+j-  dN (4.11)

If the limits of Eqs. (4.10) or (4.11) were calculated from the exact total-energy func

tional, then the ionization energy obtained from these equations would be exact.
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t(number of electrons) t(number of electrons)
Fig. 4: Dependence of the total energy, E(t), and the energy of the highest-occupied 
molecular orbital, chomoCO) on the number of electrons for the Ne atom in the exact 
density functional theory and as obtained from the approximate exchange functional of 
Perdew, Burke and Ernzerhof. Many other density-functional approximations (DFA) 
behave similarly. The basis set used is cc-pVQZ. The number of intermediate points 
between any two adjacent integer values of t is 256.

Currently available density-functional approximations, however, are not. able to pre

dict exact ionization energies. They tend to underestimate them by as much as dozens 

of percent. One of the reasons is that density-functional approximations are not linear 

functions of the number of electrons. Most often they exhibit convex plots for the 

total energy E(t) as a function of the electron number t. For example, see Fig. 4 where 

we show the results of actual calculations (solid line). Because of the non-linearity 

of E(t), the most accurate estimate of the ionization potential I j  is not necessarily 

calculated from the J-electron system. As Fig. 4 suggests, the best estimate should 

be expected from the system with an electron number that is close to (J  — 1/2). The 

plot of the orbital energy versus the number of electrons on the right-hand side panel 

of Fig. 4 also suggests that the orbital energy calculated from a density-functional 

approximation is close to a linear function. This implies that the total energy E(t) is 

a quadratic function of the number of electrons.

Another possible way of calculating the energy difference between the J- and 

(J  — l)-electron states of a system is the Slater transition state method [45, 49, 50],
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which dates back to the early 1970s. Slater thought of the total energy as a continuous 

analytic function of occupation numbers of all available molecular, orbitals, which we 

denote by the symbol n  =  {ni, n2, . . .}.  If the total energy E(n) is assumed to 

be an analytic function, then it can be expanded in Taylor series about virtually 

any point no. Slater exploited this fact to calculate the energy differences E j  — -Ej-i- 

Specifically, he expanded E j  and E j^ i  in two separate Taylor series and then analyzed 

the expression for E j  — E j- \  written in terms of these two series. He found that if 

both E j  and E j- i  are expanded about the same special point nTs, then the expression 

for the energy difference is greatly simplified:

E j  — E j- i  =  -f {3rd- and higher odd-order terms}. (4-12)
J nxs

The first term in Eq. (4.12) dominates by at least one order of magnitude, as Slater 

and Wood showed [49] in calculations for the chromium atom. The special point nxs 

is such that all (J  — 1) lower-energy orbitals are fully occupied and the J-th  orbital 

has only half an electron in it. The system that corresponds to the point nTs is 

called a transition state since it is in the middle of the “transition” of the system 

from the J- to (J  — l)-electron states, i.e., it has a half-filled HOMO. In other words,

the transition state is an auxiliary system containing half an electron less than the
/

original J-electron system. If the transition from the J- to (J  +  l)-electron state 

were considered, then the transition state would correspond to the (J  +  l/2)-electron 

system.

The partial derivative in Eq. (4.12) is precisely the orbital energy of the (J  — 

l/2)-electron system. So, according to the transition-state method, the ionization 

energy of a J-electron system is equal (up to a sign) to the energy of the highest- 

occupied molecular orbital calculated from the (J  — l/2)-electron system. Slater’s 

result is similar to what we observed by analyzing how the HOMO energy depends 

on the electron number. This fact, in general, brings new insights to the Slater
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transition state method. In what follows, we will investigate numerically the behavior 

of the total energy as a function of the electron number for some density-functional 

approximations. We will demonstrate how the Slater’s result naturally arises from 

the analysis of the deviation of approximate functionals from the linearity.

4 .2  S in g le -p o in t  a p p r o x im a t io n s  t o  io n iz a t io n  e n e r g ie s

As seen from Fig. 4, the total energy E ^ ^ ( t )  calculated from some density-functional 

approximation (£^BE[p] in this case) deviates from linearity. More precisely, the 

energy is convex between any two adjacent integer values of t. So the problem we 

are going to address first is to determine the magnitude of these deviations and their 

shape. In particular, we would like to know how close the deviations are to a quadratic 

function. To that purpose, we introduce a function which we define as a

piecewise-linear function connecting the total energies calculated at integer values of 

t (see Fig. 4). We then study the deviation D(t) defined as

(4.13)

We used 64 points between every two consecutive integer values of t to calculate D{t). 

As shown in Fig. 5, the deviation from linearity in the interval between any pair of 

J  and J  — 1 appears to be very close to a parabola. To test this observation more 

rigorously, we fitted the data between each pair of J  — 1 and J  to a set of second- 

order polynomials. Having obtained the analytical expressions for these polynomials, 

Ait(i), we then solved the equation

d D Rt(t) , (4.14)

where k is the slope of the function calculated between the same two inte

ger values of t as those between which Eq. (4.14) is being solved. The solutions of
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Fig. 5: Deviation from the linearity, D(t), of the total energy as a function: of the 
electron number calculated from an approximate density-functional approximation 
(exchange part of the PBE exchange-correlation functional).

Eq. (4.14) are such values of i, denoted by ¿i;n, where E ° ^ al(i) would have the same 

slope as the r(£) if fi16 deviation between these functions, D(t), were exactly 

quadratic. In Table 4, we show the values t\-m calculated for the water molecule from 

various density-functional approximations. For the functionals studied, the fractional

part of the values of tun is always very close to 1/2. This result supports our obser-\
vation that E°^aal(i) is a piecewise-quadratic function. As an additional measure of 

the quadraticity, we also include in Table 4 the quantity <7 defined by

. : (4-15)

where the summation is over all intermediate values from the range J  — 1 < t < J  

at which the function D(t) was computed. On average, values of a are of the order 

often millihartrees with higher values for the 1-, 2-, 8-, and 9-electron systems, and 

lower values for the 5-electron system. The lowest values of a for the neutral 10- 

electron system indicate that the total energy is quite close to the quadratic function



Table 4: Electron numbers tun where the slope of the fitted quadratic function D^t{t) 
becomes equal to the slope of the line connecting two integer values and the
quantity a, which is equal to square root of the sum of squares of the deviations of the 
actual observed curve D{t) from its quadratic fit Dat(t), in hartrees. System is H2O 
molecule of the C2V symmetry. Basis set is cc-pVQZ.

Range of t
B88 [51] BLYP [51, 52 PBEx [35] PBExc [35]

l̂in a, Eh l̂in a, Eh l̂in a, Eh . l̂in (7, Eh
0-1 0.51 0.0445 0.51 0.0445 0.51 0.0483 0.51 0.0485
1-2 1.51 0.0425 1.51 0.0327 1.51 0.0462 1.51 0.0451
2-3 2.51 0.0065 2.50 0.0029 2.51 0.0044 2.51 0.0048
3-4 3.51 0.0061 3.50 0.0020 3.51 0.0038 3.50 0.0035
4-5 4.50 0.0013 4.50 0.0012 4.50 0.0010 4.50 0.0008
5-6 5.50 0.0031 5.50 0.0010 5.50 0.0032 5.50 0.0026
6-7 6.50 0.0053 6.50 0.0012 6.50 0.0059 6.50 0.0038
7-8 7.49 0.0121 7.49 0.0085 7.49 0.0143 7.49 0.0153
8-9 8.49 0.0151 8.49 0.0102 8.48 0.0172 8.48 0.0154
9-10 9.50 0.0005 9.50 0.0001 9.50 0.0004 9.50 0.0003

in the range between 9 and 10 electrons. Since one often wants to calculate the 

ionization energy of a neutral system, the lowest values of a for the neutral system 

will make the estimated ionization energy closer to the energy difference E j- i  — Ej. 

In Tables 5 and 6 we show the values of iun and a for atoms H through Ar for the 

exchange functional of Perdew, Burke and Ernzerhof. The main message conveyed in 

these tables is that the more electrons there are in a system, the more quadratic the 

function D(t) is.

As a side remark, note that the deviation from linearity is much higher for systems 

in the range 0 <  t < 2 electrons. This may be somehow related to the fact that the 

difference between the orbital- and subshell-aufbau paths is more pronounced in the 

same region, as discussed in Section 2.

As evident from Tables 4-6, the total energy calculated from the density-functional 

approximations studied here is close to piecewise-quadratic. For these functionals, the 

function D(t) has a curtain-like shape shown in Fig. 5. This shape, together with the 

quadraticity, imply that the slope of a (J  — l/2)-electron system is equal to the slope 

of the straight line connecting the energy values of J  and (J  — l)-electron systems.
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Table 5: Values of t\in calculated from the exchange part of the exchange-correlation functional of Per dew, 
Burke and Ernzerhof. The number of points between any two adjacent integers is 64. The basis set used 
is cc-pVQZ.

Range of t H He Li Be B C N O F Ne Na Mg .:. Ar
0-1 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
1-2 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51
2-3 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.51 2.51 2.50
3-4 3.51 3.50 3.50 3.50 3.50 3.50 3.50 3.51 3.51 3.50
4-5 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
5-6 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50
6-7 6.50 6.50 6.50 6.50 n/c n/c n/c
7-8 7.50 7.50 7.50 7.50 7.50 7.50
8-9 8.50 8.50 8.50 8.50 8.50

9-10 9.50 9.50 9.50 n/c
10-11 10.50 10.50 . 10.50
11-12 11.50 11.50
12-13 12.50

15-16 15.50
16-17 16.50
17-18 ' 17.50



o\00

Table 6: Values of a (in hartrees) calculated from the exchange part of the exchange-correlation functional of Perdew, Burke and 
Ernzerhof. The number of points between any two adjacent integers t  is 64. The basis set used is cc-pVQZ.

R ange of t H He Li B e B C . N O F Ne N a M g . . . Ar
0-1 0.0051 0.0112 0.0174 0.0236 0.0297 0.0359 0.0421 0.0483 0.0545 0.0607 0.0660 0.0722 0.1093
1-2 0.0087 0.0150 0.0213 0.0276 0.0338 0.0400 0.0462 0.0524 0.0587 0.0652 0.0714 0.1084
2-3 0.0008 0.0014 0.0019 0.0024 0.0029 0.0034 0.0039 0.0043 0.0057 0.0061 0.0090
3-4 0.0012 0.0018 0.0024 0.0029 0.0034 0.0039 0.0043 0.0056 0.0060 0.0090
4-5 0.0005 0.0003 0.0006 0.0011 0.0015 0.0019 0.0023 0.0028 0.0055
5-6 0.0004 0.0003 0.0007 0.0011 0.0015 0.0020 0.0025 0.0049
6-7 0.0004 0.0002 0.0005 0.0009 n/c n/c n/c
7-8 0.0003 0.0006 0.0011 0.0021 0.0023 0.0047
8-9 0.0003 0.0006 0.0015 0.0016 0.0041
9-10 0.0002 0.0004 0.0006 n/c

; 10-11 0.0003 0.0002 0.0005
11-12 0.0003 0.0005
12-13 0.0010

15-16 ..
" _ . ■;

0.0008
16-17 0.0004
17-18 0.0002



cn

Table 7: Ionization energies I j  calculated in three different ways: as the negative of the energy of the highest-occupied molecular 
orbital calculated from the (J  — l/2)-electron system, from the J-electron system, and as the difference in total energies between 
the J - an d  ( J  — l)-electron systems. The basis set used is cc-pVQZ .

E xact0 J (J )
P B E x f [35] B88 [51]

—enOMo(J ~  1 /2 ) —¿HOMO (J) [E(J -  1) -  E(J)] —CHOMOC  ̂— l / 2) —eHOMo(</): [E(J -  1) -  E(J)\
H 0.5000 0.5043 0.2700 0.4942 0.5068 0.2715 0.4978
He 0.9037 0.8828 0.5516 0.8642 0.8851 0.5528 0.8681
Li 0.1981 0.2003 0.1090 0.1986 0.1998 0.1091 0.1969 :
Be 0.3426 0.3021 : 0.1814 0.2993 0.3008 0.1811 0.2964
B 0.3050 0.2967 0.1360 0.2981 0.2971 0.1365 0.2982
Ne 0.7945 0.7501 0.4452 0.7498 0.7492 0.4456 : 0.7487
N a 0.1887 , 0.1904 0.1027 ■ 0.1909 0.1888 0.1026 0.1873
A1 0.2200 0.2021 ' 0.0961 0.2022 0.2026 0.0967 0.2026
Ga 0.2205 0.1990 0.0919 0.1999 0.1994 0.0924 0.2001
Ar 0.5791 0.5351 0.3406 0.5348 0.5345 0.3402 0.5341
Kr 0.5145 0.4753 . 0.3052 0.4754 .. 0.4752 0.3047 ... 0.4752

“For atoms H through A1 we use the difference in the non-relativistic total energies (Refs. [40, 41]) of the neutral atom and corresponding cation. For 
atoms Ga through Kr we use experimental estimates of the ionization energies available in Ref. [53].



As discussed above, the slope of the total energy is equal to the HOMO energy. 

Therefore, the energy of the HOMO calculated from the (J  — l/2)-electron system 

is the best possible single-point estimate of the energy difference (E j  — -Ej-i) and, 

consequently, is the best possible single-point estimate of the ionization energy Ij, 

at least for the functionals studied. To support this conclusion numerically, we ran 

a set of calculations on atoms. In Table 7, we compare the exact ionization energies 

to the ones estimated by the single-point calculations of the HOMO energy of the J- 

and (J  — l/2)-electron systems. For the sake of completeness, we also include the 

two-point (E j- i  — Ej)  estimates of the ionization energy. The single-point estimates 

obtained from (J  — l/2)-electron system, are always better than those computed from 

J-electron systems. Improvement is in the range from 30 to 50%. Generally, the 

(J  — l/2)-ionization energies are slightly better (within the range of a few percent) 

than the two-point estimates. Nevertheless, there remain cases when single-point 

estimates are slightly worse than the two-point estimates. i

Our . experience shows that the quality of orbital energies is related to the quality 

of the approximate exchange-correlation potential used to generate them. We found 

that the quality of the HOMO is greatly improved if the orbitals are calculated from 

a (J  — l/2)-electron system. In such systems, the HOMO energy can even become 

exact for some density-functional approximations. Altogether, this strongly suggests 

that the exchange-correlation potential calculated from a (J  — l/2)-electron system is 

of a higher quality than the one calculated from the corresponding J-electron system. 

The use of half-electron-deficient potentials opens a new avenue in DFT. Therefore, 

if someone is to continue this project, exploration of various new possible ways of 

employing such potentials should receive the highest priority. The first thing to do 

would be to try using electron-deficient potentials in self-consistent calculations of the 

corresponding integer-electron systems.
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A  D escription of auprog program

Capabilities

Auprog is a program for calculating exchange-correlation energies via the van Leeuwen- 

Baerends line integral formula [Eq. (2.5)]. The supported density parametrization 

include the A-path for exchange-only potentials with the energy expression from 

Eq. (2.12), the Q-path, and the orbital- and subshell-aufbau paths.

The supported density-functional approximations include the integrable exchange 

potentials of Gill, and of Perdew, Burke and Ernzerhof. For these potentials, auprog can 

calculate the energies via the corresponding parent functionals E]?96 and E BBE. Among 

the non-integrable potentials, the exchange potentials of Umezawa, and of van Leeuwen 

and Baerends are available.

The supported technique for the integration over the density parametrizing pa

rameter (q or t) is the Gauss-Legendre quadrature. The number of nodes can be 

chosen during runtime, and is within the range of 1 to 1000 per pair of consecutive 

integer values of the scaling parameter.

Interface
\

Auprog is invoked from the command line in the Linux environment. It accepts up to 

four command-line arguments. The first argument is the name of the configuration 

file. The second is the file containing the electron density and other ingredients that 

are obtained from an external program (GAUSSIAN in our case). The third argument 

is the name of the file to which the intermediate data is written. This data is used, 

for example, for generating figures like Fig. 2. The fourth argument is the name of a 

file containing the Fermi-Amaldi potential computed on á grid. The Fermi-Amaldi

potential is an ingredient of the Umezawa potential, so the fourth auprog’s argument
/

is meaningful only when calculations with the Umezawa potential are requested, and
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is ignored otherwise. Auprog writes its output to the Linux standard output.

The configuration file for auprog consists of lines formatted in the following way

A BC  DDD'E 6G HH II JJ K

Here all the letters represent integer numbers that are used to set the following con

figuration parameters:

A — Density-functional approximation to be used:
1 — Gill potential/functional
2 — Leeuwen-Baerends potential
3 — Perdew-Burke-Ernzerhof exchange potential/functional 
4 — Umezawa potential

B — Way of computing the exchange energy 
1 — functional (if applicable)

,: 2 — line integration of a potential: A-path (Levy-PerdeW formula)
3 — line integration of a potential: Q- and aufbau paths

C — Quadrature used for Q-and aufbau paths:
1 — Gauss-Legendre

Next parameters are meaningful only when calculations with Q- or aufbau paths 
are requested, i.e., when B=3.

DDD — Number of nodes in a quadrature

E — Density to be used:
1 — a  spin-density ^
2 — ¡3 spin-density
3 — total density :

GG — Number of fully occupied a  spin-orbitals

HH — Number of a  spin-orbitals with fractional occupations

II  — Number of fully occupied (3 spin-orbitals

JJ — Number of ¡3 spin-orbitals with fractional occupations

K — Flag to control output of the value of the cumulative integral:
0 — requests further accumulation of cumulative integral
1 — requests printing of cumulative integral and then zeroes its value. New 
accumulation of (partial) aufbau-path energies starts at the first line with 
B=3 and is continued up to a line with K=l.
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The format of the configuration file is strict in the sense that if, for example, one 

wants to set a value of 32 to the parameter DDD,then one has to type 032.

As an example, consider the following configuration

4 3  1 256 1 00 01 00 00 0

This requests calculations with the Umezawa potential. The energy will be calculated 

using the van Leeuwen-Baerends line integral formula with density parametrized by 

the orbital-aufbau path. The integration over the parameter t will be done by a 256- 

node Gauss-Legendre quadrature. The value of cumulative integral is accumulated 

and can be requested by the next line in the configuration file. The above example 

generates the following output for the hydrogen atom:

########## iLine 1:
Config: 4 3 1 256 1 0 1 0 0 0
Method: Umz06 Way: Aufbau Density: A
—Quadrature: GauLeg Nodes: 256
-------FullMOA: 0 SprMOA: 1 AvailMOA: 1
-------FullMOB: 0 SprMOB: 0 AvailMOB: 0
E= -0.4853290905058887
1= -0.4853290905058887

Here E is the exchange energy of interest, and I is the value of the cumulative integral. 

In this case they coincide because the hydrogen atom has only one electron.

Structure of auprog

Auprog is written in FORTRAN-95 and consists of more than 1200 lines of code. As 

a way to facilitate calculations, it uses the OpenMP multi-threading technique. The 

program depends on the GNU extensions of the FORTRAN language available in 

the gcc collection of compilers, and on the open-source open-access implementation 

of the Gauss-Legendre quadrature. The calling graph of auprog is shown on Fig. 6.

The Main program reads the configuration file into memory (RdConf). It also 

reads (Rdlntg) integer parameters from the input file containing Kohn-Sham orbitals
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and their derivatives. These parameters are then used in StageO, where the dynamic 

allocation of memory is performed and where the rest of the data is read. Also, in 

StageO the program sequentially performs calculations specified in every line of the 

configuration file. Depending on the calculation type requested, auprog branches to 

either DFTs or Auf 0. If a calculation is single-point, i.e., if it involves no integration 

over the parameter t as it is for the A-path and for calculations via functionals, 

then the program executes DFTs. If the calculation requires integration over t , i.e., 

if the aufbau- or Q-path calculations are requested, then auprog executes the Auf 0 

subroutine first. AufO generates a quadrature grid (GnQuad, Chlntv, GauLeg) and 

then, at each gridpoint, also calls DFTs. The role of DFTs is to calculate an energy 

from the density built (M02Auf) from partially- or fully- filled Kohn-Sham orbitals. It 

does that via G09, PBE96x, Umz06, VLB94 subroutines depending on the method and 

the way requested.

Subroutines PltPreamble, PrtRes and P lotPr are responsible for auprog’s out

put. Subroutines MkRhTot and RdFAPot, respectively, construct the total electron 

density and read the Fermi-Amaldi potential needed for the calculations with the 

Umezawa potential. The subroutine Int824 converts a 8-bit integer to the 4-bit inte

ger, ArrClr is a subroutine that zeroes a given array, and ASinH calculates the inverse 

of the hyperbolic cosine function, which is present in the van Leeuwen-Baerends po

tential.
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Fig. 6: Calling graph for auprog
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