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Abstract
M-ary chirp modulations, both discontinuous- and continuous-phase, for M-ary data 
transmission are proposed and examined for their error rate performances in additive, 
white, Gaussian noise (AWGN) channel. These chirp modulated signals are described 
and illustrated as a function of time and modulation parameters. M-ary chirp modula­
tion with discontinuous phase is first proposed and then the M-ary Continuous Phase 
Chirp Modulation (MCPCM) is considered. General descriptions of these modula­
tion systems are given and properties of signals representing these modulations are 
given and illustrated. Optimum algorithms for detection of these signals in AWGN 
are derived and structures of optimum receivers are identified. Using the minimum 
Euclidean distance criterion in signal-space; upper bounds on Signal-to-Noise Ratio 
(SNR) gain relative to Multiple Phase Shift Keying (MPSK) are established for 2-. 

*4-, and 8-ary MCPCM systems. It is observed that the maximum likelihood coherent 
and non-coherent receivers for MCPCM are non-linear and require multiple-symbol 
observations. Since symbol error probability performance analyses of these receivers 
are too complex to perform, union upper bounds on their performances are derived 
and illustrated as a function of SNR, number of observation symbols, and modulation 
parameters for MCPCM. Optimum 2-, 4-, and 8-ary modulation schemes that mini­
mize union upper bound on symbol error rates have been determined and illustrated. 
Our results show that 2-, 4-, and 8-ary optimum coherent MCPCM systems, with 
5-symbol observation length, offer 1.6 dB, 3.6 dB, and 8 dB improvements relative 
to 2-ary, 4-ary, and 8-ary PSK systems, respectively. Also, it is shown that opti­
mum 2-ary and 4-ary non-coherent MCPCM systems can outperform 2-ary and 4-ary 
coherent PSK systems, respectively.

m
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Chapter 1 
Intro duet ion

1.1 Introduction

Wireless communications has become one of the most rapidly growing industries in 

the world, and its products are now exerting an impact in our daily lives. Wireless 

communications today covers a very wide array of applications. The telecommunica­

tions industry is one of the largest industries worldwide with more than $ 1 trillion 

in annual revenues for service and equipment. The largest and most noticeable part 

of telecommunications business is telephony. The principal wireless component of 

telephony is mobile telephony. The worldwide growth rate in cellular telephony is 

very aggressive, and reports suggest that the number of cellular telephony subscrip­

tions worldwide has now surpassed the number of wired telephony subscriptions. 

However, cellular telephony is only one of a very wide array of wireless technologies 

that are being developed very rapidly at the present time. Among other technolo­

gies are wireless Internet and other Personal Area Network (PAN) systems, Wireless 

Local Area Network (WLAN) systems, wireless Metropolitan Area Network (MAN) 

systems, and a variety of satellite systems. These technologies are supported by a 

number of transmission and channel assignment technologies, including Time Divi­

sion Multiple Access (TDMA), Code Division Multiple Access (CDMA) and other 

spread-spectrum systems, Orthogonal Frequency Division Multiplexing (OFDM) and 

other multi-carrier systems, and high-rate single-carrier systems. All these modern 

technologies use the basic principles that underlie the design and analysis of Digital 

Communication System (DCS). In such a system, communication involves the trans­

mission of information in digital form from source to destination. If the source output 

happens to be in analogue form, such as an audio or video signal, it is appropriately



converted to digital form. In any DCS, modulation plays a fundamental role and is 

an integral part of the system. This is especially so if it involves a radio system. In a 

DCS, the function of the modulator is to bridge the gap between digital data and the 

electrical signal required at the input to the Radio Frequency (RF) section. We may 

regard the modulator as a signal sub-system that maps data presented to it on to a 

modulated RF carrier for subsequent processing, amplification and transmission by 

the RF section. The modulation process determines the bandwidth occupied by the 

transmitted signal. ■ Furthermore, the modulation determines the robustness of the 

system to channel impairments, due both to the RF sub-systems (such as phase noise 

and non-linearity) and the RF channel (such as multipath dispersion and fading). 

Thus, the appropriate choice of modulation scheme is vital for efficient operation of 

DCS [1],[2], •

1.2 Parameters of Modulation Scheme

A radio system will be strictly limited by the regulating authorities to a certain 

frequency band. Often the available band will be shared among many users of the 

system by means of Frequency Division Multiple Access (FDMA) and; hence, the 

narrower the bandwidth occupied by each user, the more users can be accommodated. 

Bandwidth requirement is determined by the spectral occupancy of the modulated 

signal, usually presented as a plot of Power Spectral Density (PSD) as a function of 

frequency. Ideally, the PSD should be zero outside the band occupied. In practice, 

however, this can never be so, and the spectrum extends to infinity beyond the band. 

This is either because of the inherent characteristics of the modulation ¡scheme or 

because of the practical implementation of filters. Thus, it is important to define 

the bandwidth of the modulated signal such that the signal power falling outside 

the band is below a specified threshold. In practice, this threshold is determined by 

the tolerance of the system to Adjacent Channel Interference (ACI) which is itself a 

feature of the modulation scheme. The bandwidth efficiency of a modulation scheme 

is defined by the channel data rate per unit bandwidth occupied (r/W, bits/sec/Hz)

Chapter 1: Introduction________ ___________________ _ ________________  2



3Chapter 1: Introduction

The next important parameter o f a modulation scheme is its Bit Error Rate 

(BER) performance, which is defined as the ratio of the number erroneous bits re- 

cëived to the total number of bits received. ; BER represents the probability of bit error 

and is often plotted as a logarithm plot against the Signal-to-Noise Ratio (SNR) in 

dB. The ordinate of such a graph is normally the bit-energy to noise density ratio since 

this results in a more system-independent measure. The noise power spectral density 

is usually a fundamental feature of a channel and unlike the noise power it is inde­

pendent of the bandwidth of the system; Since No has the dimension of Watts/Hz,
Ehwhich is same as Joule, — is dimensionless. The modulator/demodulator complex-
Nq

ity is yet another parameter that determines the choice of a modulation in any DCS. 

The complexity is measured in terms o f  the number of correlators required in the 

implementation of the demodulator. In a coherent demodulator, synchronization to 

incoming signals at the receiver is required. This will further increase the complexity 

of the receiver. Since coherent receiver assumes exact knowledge of the carrier wave­

form (phase and frequency), it is generally limited by the complexity of the required 

synchronization scheme.¡ Thus, in many situations non-coherent receivers which are 

better suited for implementation are considered. Modulation techniques can be clas­

sified as: i) linear or non-linear and ii) memoryless or with memory. While linearity 
of a modulation method requires that the principle of superposition applies in the 

mapping of the digital, sequence into successive waveforms, in a non-linear modula­

tion, the superposition principle does not apply to signals transmitted in successive 

time intervals. When the mapping from a digital sequence to waveforms is performed 

under.the constraint that a waveform transmitted in any time interval depends on one 

or more previously transmitted waveforms, the modulator is said to have memory. In 

contrast, when the mapping from the digital sequence to the waveforms is performed 

without any constraint on previously transmitted waveforms, the modulator is called 

memoryless. ; ; ;  ̂ ■ ■

The ultimate choice of a modulation scheme in a DCS depends on spectral effi­

ciency, BER performance and receiver complexity. In general, any DCS can be viewed 

as a point in a three-dimensional space- .power, bandwidth, and system complexity.. 

There always exist trade-offs among these three parameters .in the design of a DCS.
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In practice, we find two types of modulations: one optimized for power and the other 

optimized for bandwidth. The choice o f which one is preferred depends on .whether 

the DCS in question is power-limited or bandwidth-limited. Accordingly, we refer to 

modulation schemes as either power-efficient or bandwidth-efficient. i

1.3 Chirp Spread Spectrum Systems

While the prime issue of concern in the study of DCS is that of providing for effi­

cient use of power and bandwidth, there exist situations where one sacrifices these 

efficiencies in order to meet other design objectives such as to provide secure com­

munication in a hostile environment. A major advantage of such a system is its 

ability to reject interference, be it intentional or unintentional. The class of signals 

that cater to this requirement is referred to as spread-spectrum modulation. In re­

cent years, indoor wireless communication has gained increasing attention and its 

market share is expected to grow rapidly in the coming years due to its advantages 

over cable networks such as mobility o f users, elimination of cabling and flexibility 

etc. Typical applications are cordless phone systems, WLANs for; home and office 

applications and flexible mobile data transmission links between sensors, actuators, 

robots, and controller units in industrial environments; Due to the hostile electro­

magnetic (EM) environment, which includes severe EM emissions from other devices 

as well as distortions due to multipath propagation, the robustness of the commu­

nication link is an extremely important feature in a wireless communication system. 

The spread-spectrum technology is well suited to provide robust data transmission in 

these applications. '
In a spread-spectrum system, the transmitted signal is spread over a wide fre­

quency band, often much wider than the minimum bandwidth required for conveying 

the information. An instance of spectrum spreading may be seen in conventional 

Frequency Modulation (FM), by employing frequency deviations greater than unity. 

The wideband FM thus produced is often classified as a spread-spectrum system 

because the RF spectrum produced is much wider than that of the transmitted infor­

mation. While in FM, the transmitted bandwidth is a function of both information
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bandwidth and the amount of'modulation, there are techniques in which spectrum 

spreading is accomplished using some signal or operation other than the informa­

tion bearing signal that is transmitted. For'example, in Direct Sequence (DS) and 

Frequency Hopping (FH) spread spectrum systems, the spreading and despreading 

functions are used in the transmitter and receiver, respectively [2]. In these spread 

spectrum systems, the synchronization of the despreading code is difficult and needs 

high computational effort. Linear Frequency Modulation (LFM) or chirp modulation 

is another type of spread spectrum signalling technique in which a carrier is swept 

over a wideband during a given data pulse interval. Chirp modulation [3],[4] does 

not necessarily employ coding and produces a transmitted bandwidth much greater 

than the bandwidth of the information being transmitted. The growing interest in 

chirp modulation is mainly due to the advances in Surface Acoustic Wave (SAW) 

technology, which offers a rapid close-to-optimum method for both generation and 

correlation of wideband chirp pulses [5]. Chirp systems have found major applica­

tions in radar systems for reasons such as anti-eavesdropping, anti-interference and 

low-Doppler sensitivity. Among several applications of chirp signals in communica­

tion are radio telephony, cordless systems, air-ground communication via satellite 

repeaters, data communication in the High Frequency (HF) band and WLANs. In 

2007, IEEE introduced Chirp Spread Spectrum (CSS) physical layer in the new wire­

less standard 802.15.4a [6]. Additionally, this standard uses chirp modulation with 

no additional coding, whereas in 802.15.4 standard, direct-sequence binary phase 

shift keying (DS-BPSK) and additional spreading codes are used. This new standard 

targets applications such as industrial and safety control, sensor actuator network­

ing, and medical and private communication devices. By applying CSS techniques 
to multidimensional multiple-access modulation, single-chirp transceivers for wire­

less communication in the industrial, scientific, and medical (ISM) band have been 

developed and are commercially available [7].
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1.4 Literature survey, motivation, and objectives

The linear FM or chirp modulation technique has been extensively used in radar 

systems to solve the conflicting requirements of simultaneous long range and high 

resolution performance [8]. Winkler [9], who was motivated by the anti-interference, 

anti-eavesdropping,. and low-Doppler sensitivity properties of chirp signals, consid­

ered chirp modulation for binary data transmission. In her work, she used two chirp 

signals, up-chirp (sinusoidal signal whose frequency increases linearly with time) and 

down-chirp (sinusoidal signal whose frequency decreases linearly with time), to map 

binary data for transmission of digital teletype, voice and telemetry signals. Berni and 

Gregg [10] investigated the performance of chirp modulation in terms of its probabil­

ity of bit error rate and spectrum usage and compared them with the performances 

of BPSK and binary FSK techniques. They concluded that BPSK is superior in 

performance compared to binary FSK and binary chirp modulation. Gott and New- 

some [11] proposed wideband chirp signals for data transmission in the HF band and 

evaluated the performance of these signals experimentally. They concluded that by 

using orthogonal signals and matched filter detection, both narrowband and wide­

band systems offer equivalent performance for the same bit energy. In [12], Dayton 

extended the concept of chirp modulation for data transmission using satellites in.the 

HF band. Gott and Karia [13] subsequently applied the concept of differential en­

coding technique for binary data transmission using chirp signals. In [14], Kowatsch 

et. al. investigated the anti-jam performance of a combined PSK and chirp signal 

system. They have concluded that such a system can assure Low Probability of In­

tercept (LPI) and hence better anti-jam performance. In [15], Elkhamy and Shaaban 

introduced a new class of chirp modulation referred to as Matched Chirp Modulation 

(MCM), which is an improved version of the conventional chirp modulation. They 

have analysed the performance of MCM using optimum non-coherent and partially 

coherent receivers. It is shown that MCM offers good performance over dispersive 

communication channels. Combining the chirp signalling technique with some kind 

of pseudo-random coding, it is possible to achieve a substantial improvement in anti­

jam performance. Such a system is presented and analysed in [16] by Elhakeem and



Targi. In [17], Kowatsch and Lafferl presented a spread spectrum transmission sys­

tem that uses a combination of chirp modulation and pseudo-random PSK. In [18]. 

Wang, Fei, and Li have proposed a structure for the chirp Binary Orthogonal Keying 

(BOK) system and have obtained an expression for the probability of bit error. It is 

shown that chirp BOK performs better than traditional BOK modulation in Additive 

White Gaussian Noise (AWGN) channel. In all the above chirp systems, binary data 

transmission and receivers that are required to make independent bit-by-bit decisions 

are considered. In [19], Hirt and Pasupathy considered binary chirp signals by intro­

ducing phase continuity at bit transitions. They demonstrated that coherent binary 

phase continuous chirp (CPC) modulation can offer, at most, 1.66 dB improvement 

over BPSK. They have extended this work to non-coherent situation in [20]. In [21], 

Raveendra considered binary phase continuous chirp modulation with time-varying 

modulation parameters referred to as dual-mode binary , chirp modulation and has 

shown that it can outperform binary CPC modulation. More recently, in [22] , Bhumi 

and Raveendra have considered digital asymmetric phase continuous chirp signals for 

data transmission and have shown that it can outperform dual-mode chirp modula­

tion considered in [21] . In recent years, there have been a number of publications 

[21], [23, 24, 25, 26, 27, 28] that clearly .exhibit the choice of chirp modulation in 
a variety of digital communication systems. It is well known that M-ary signalling 

schemes can be used for reducing the bandwidth requirements of baseband Pulse Am­

plitude Modulation (PAM) data transmission systems [2]. M-ary digital modulation 

schemes are preferred over binary digital modulation schemes for transmitting digi­

tal information over bandpass channels when one wishes to conserve bandwidth (at 

the expense of increasing power requirements), or to conserve power (at the expense 

of increasing bandwidth requirements). In practice, we seldom find a channel that 

has the exact bandwidth required for transmitting the output of source using binary 

signalling schemes. M-ary.schemes may be used to utilize the additional bandwidth 

to provide increased immunity to channel noise. Thus, in this thesis, we examine the 

more general case of M-ary data transmission using chirp modulation. Firstly, we 

consider memoryless chirp modulation for M-ary! data transmission. Both coherent 

and non-coherent detection situations in AWGN channel are considered. Structures

Chapter 1: Introduction___________ ____________________ ______________________7
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of optimum coherent and non-coherent receivers are derived and closed-form expres­

sions for their BER performances are obtained. The optimum M-ary chirp systems 

have been determined through minimization of bit error rates. Next, we consider the 

case of M-ary data, transmission using chirp modulation with memory. The class of 

signals will be referred to as M-ary Continuous Phase Chirp Modulation (MCPCM). 

The ability of these signals to operate over AWGN channel is estimated using the 

criteria of minimum Euclidean distance. The problem of coherent and non-coherent 

detection of MCPCM signals in AWGN channel is then addressed and structures 

of optimum receivers are derived using composite hypothesis detection theory. The 

error rate upper bounds on these receivers are then derived using the union bound. 

Using numerical minimization of error rate bound, optimum 2-, 4, and 8-ary MCPCM 

systems have been determined. Finally, A comparison'of the performance of M-ary 

chirp modulation relative to other conventional M-ary modulations is also provided.

1.5 Thesis organization

In Chapter 2, the signals that describe M-ary chirp modulation are described and 

illustrated. Firstly, memoryless M-ary chirp modulation is described and signals that 

describe the modulation are given and illustrated. Secondly, M-ary chirp modulation 

with memory, referred to as MCPCM, are described and illustrated. The parame­

ters that affect the modulation process are described and illustrated. Finally, some 

properties of chirp modulated signals are sketched.
The problem of detection of memoryless M-ary Chirp modulated signals in addi­

tive, white, Gaussian noise is addressed in Chapter 3 and the structures of optimum 

coherent and non-coherent receivers are derived. Closed-form expressions for sym­

bol error rates of these optimum receivers are derived and illustrated as a function 

o f modulation parameters. A comparison of error rate performance of M-ary chirp 

modulations with other conventional M-ary modulations is also provided.

In Chapter 4, we examine the continuous phase chirp signals for M-ary data 

transmission. Using the notion of minimum Euclidean distance in signal-space, the 

achievable SNR gains relative to PSK systems are established. The optimum and



sub-optimum receiver structures for coherent detection, and arbitrary number of ob­

servation intervals, are derived and their performances in terms of symbol error rates 

are given. It is shown that the symbol error rate upper bound on the performance 

of the optimum coherent receiver is a function of the signal modulation parameters, 

the receiver decision observation length, number of levels of data, and the received 

signal-to-noise ratio. It is shown that 2-ary MGPCM system over 5T observation 

offers nearly 1.6 dB improvement relative to coherent PSK, 4-ary MCPCM system 

has nearly 3.6 dB gain over QPSK, and 8-ary MCPCM system over 5T observation 

length offers approximately 8 dB improvement relative to 8-ary PSK system.

In Chapter 5, optimum non-coherent MCPCM receiver is derived and the sym­

bol error rate of this receiver is determined using the high-SNR union upper bound. 

Explicit expressions for determining this upper bound have been obtained. Parame­

ters that influence the performance of the optimum non-coherent receiver have been 

identified. It is shown that 2-ary and 4-ary non-coherent MCPCM systems can out­

perform coherent PSK and coherent QPSK. Also, it is shown that non-coherent octal 

MCPCM modulation has up to 1.3 dB gain over coherent octal PSK.

In Chapter 6, the contributions of this thesis and the conclusions from the 

results obtained are summarized. Also, we outline areas for further research in the 

light of the needs of modern reliable communication systems.

Chapter 1: Introduction . ___________________________________ 9
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Chapter 2

M -ary Chirp Signalling Technique

2.1 Introduction

In this Chapter, we describe two types of M-ary chirp modulations, i) M-ary chirp 

modulation without memory, and ii) M-ary chirp modulation with memory. While 

the former technique is commonly referred to as M-ary chirp modulation with discon­

tinuous phase the latter is referred to as M-ary continuous phase chirp modulation 

(MCPCM). The chirp modulated signal is sketched as a function of time and the mod­

ulation parameters are illustrated . Finally, the phase property of MCPCM signals 

are illustrated.

2.2 M-ary Data Transmission System

The partial block diagram, that consists of information Source and digital modulators, 

of a typical digital communication system is shown in Fig. 2.1. Blocks such as source 

encoder and channel encoder are omitted and are not part of the research presented 

in this thesis. The source output may be either an analog signal, such as an audio 

or video signal, or digital signal such as the output of a computer. In a DCS, the 

message produced by the source are assumed to be sequence of binary digits. This 

binary sequence is passed to an accumulator which accumulates K  binary digits (and 

assigns unique amplitude level) before presenting it to the digital modulator. When 

K  =  1, the digital modulator simply maps binary digits 0 to a waveform S\(t) and the 

binary digit 1 to a waveform ¿>2(i), both over, the bit interval of T5 sec. We call this 

binary modulation. Alternatively, the modulator may transmit K  information bits at 

a time by using M  =  2  ̂ distinct waveforms Si(t),i =  1, 2 , . . .  , M , one waveform for



I
I

each of the 2  ̂possible K  — bit sequence. We call this M-ary modulation (M  > 2). If 

R is the bit rate of the input source, then a new K —bit sequence enters the modulator 

every K/R seconds. Thus, when the channel bit rate R is fixed, the amount of time 

available to transmit one of the M  waveforms corresponding to a K  — bit sequence is 

K  times the time period in a system that uses binary modulation.

Chapter 2: M-ary Chirp Signalling Technique____________________ ___________  11

Figure 2.1: Partial Block Diagram of DCS

The communication channel is the medium that is used to send the signal from 

the transmitter to the receiver. Whatever the physical medium used for transmission 

of information, the essential feature is that the transmitted signal is corrupted in 

random manners by a variety of possible mechanisms. The simplest mathematical 

model for a communication channel is the additive noise channel. In this thesis, 

we model the additive noise channel to be white and Gaussian, with one-sided power 

spectral density of Nq watts/Hz. Because this channel model applies to a broad class 

of physical communication channel arid because of its mathematical tractability, this 

is the predominant channel model used in our communication system design and 

analysis.

At the receiver end of a digital communication system, the digital demodulator 

processes the channel-corrupted transmitted waveform and reduces the waveforms 

to a sequence of numbers that represent the estimates of the data symbols which is



subsequently converted into a sequence of binary digits that represent the estimate 

of the source output at the transmitter. . ,

2.3 Memoryless M-ary Chirp Modulation

The general expression for M-ary chirp modulated signal is given by:

S(t) =  cos(wct +  +  6), 0 < t < T  (2.1)

where Es is the energy of S(t) in the symbol duration T, wc is the carrier frequency, 

<j)(t) is the information carrying phase, 9 is the starting phase at the beginning (t =  0) 

of the observation interval. The information carrying phase (f>(t) for chirp modulation 

is given by:

. o(t) =  aig(L), 0 < t  < T  ....... (2.2)

where a\ is the M-ary data taking one of the values ±1, ± 3 , . . . ,  ± ( M — 1) The phase 

function g{t) is given by: ........... .

Chapter 2: M-ary Chirp Signalling Technique_______________________  12

{ 0, , t <  0, t>T

fo fd(T)dr> 0 '< t <  T 
nq, : t =  T

and fd(t) is the instantaneous frequency deviation. For chirp signalling

fd(t) =  *
0, t< () , t>T

¿¡p — 1, 0 <  t <  T

Using (2.4) in (2.3), (2.2) can be written as

4>{t)
’ 0, i < 0 ,  t>T

nai | h (^ )  — w ( ^ ) 2| j 0 <  t < T  

I iraiq = irai(h — w), t = T

(2.3)

(2.4)

(2.5)
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where h and w are dimensionless parameters: h represents the initial peak-to-peak 

frequency deviation divided by the bit rate 1/T, and w represents the frequency sweep 

width divided by the bit rate 1/T. Since h =  (q +  w), we may choose (w,q) to be 

independent signal modulation parameters. -

2.3.1 Binary Chirp Modulation

In binary chirp modulation, data ai takes values ±1. Fig. 2.2 shows the block dia-

Figure 2.2: Block Diagram of Binary chirp Modulation

T — ► +1 — ► Si(t) =  

‘0‘ S2(t) =

Wct +  7T

2Eb
n

COS wct 7T

h { n ) ~ w ( A ) -

h { A ) ~ w { A )

o <  t < Tb 

0 < t < T b

(2.6).

Fig. 2.3 shows waveforms in (2.6) as a function of time. In Fig. 2.4, the phase and 

frequency functions are shown for binary chirp signals for q > 0,q =  0, and q < 0.
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Figure 2.3: Up-Chirp and Down-Chirp Signals

Because the phase is quadratic, the frequency function varies linearly as a function 

of time.
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---------- q>0
-6 ■ ------- cpo

---------q<0

.01--------1---------1---------1---------1---------1----------1
0 1 2 3 4 5 6

Time

Figure 2.4: Instantaneous Phase and Frequency of Binary Chirp Signal

Spectrum of Binary Chirp Signals

The binary chirp signal spectrum can can be found by:

: 1 \ ( 2^
0 ( / )  =  J  cos(27Tf ct +  di-K < h -  w ^ ^ 0  1 e~^27T̂ctdt (2.7)

and after solving the integral in (2.7) , the spectrum is given by:

0 ( / )  =  exp(-j(f>) {[C(®+) -  C (x-)] + j[S (x+) -  S(® _)]}

where

(2.8)

<t> =  n[Ts(fc -  / )  +  dih/2]2/diW

x+  =  [2di -  dih -  2Ts(fc -  f)]/VMi w
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and

X -  =  —[2Ts(fc -  / )  +  dill]/y/2diUi

For different values of ra,the normalized amplitude of the low pass binary chirp signal

Normalized frequency, ftb Normalized frequency, fTfa

Figure 2.5: Spectrum of Binary Chirp Signal [29]
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2.3.2 4-ary Chirp Modulation

In 4-ary chirp modulation, the data ai takes values ±1 , ±3. Using (2.1), the four 

possible modulated signals can be written as:

cos ^2nfct -  3tt ( y )  -  w (^ )2 j] 

cos ĵ 27r/ci — 17T jh  {if) — w ( y ) 2} ]

(2.9)

10 + 1 — j y  cos 27r/ci +  l7r|/i ( y ) - u ; ( ^ ) 2|J

11  -—K+3 — > cos [^ /c *  +  3?r |h (^ ) -  w ( t ) 2} ]

Where E =  2£ ) and T =  27), denote symbol energy and symbol duration, respec­

tively.
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2.3.3 8-ary Chirp Modulation

In 8-ary chirp modulation, the data symbol a\ takes values ±1, ±3, ±5 , ±7. 

there are 8 possible modulator outputs. They are: , ; , . : '

18

Hence

(2.10)
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2.4 M-ary Chirp Modulation with Memory

This class of signals will be referred to as M-ary Continuous Phase Chirp Modulation 

(MCPCM). The MCPCM waveform during the first symbol interval can be expressed

as: ' /  ; ■ -V '

S(t) =  \/2S co s(27tf ct +  a\g{t) +  0), 0 <  t <  T (2-11)

where g(t) is the phase function as given in (2.3), a\ is the M-sxj data symbol 

(taking one of the values ±1 , ±3 , ± 5 , . . . ,  ± ( M  — 1)), 0 is the phase of the RF carrier 

at the beginning of the observation interval, h and w are the modulation parameters 

(q =  h — w). The accumulated phase at the end of the first symbol interval is given by 

aiirq =  a i7r(h — w). In MCPCM, this ending phase during the first symbol interval 

will be constrained equal to the starting phase during the second symbol interval. 

Thus, the signal during second symbol interval can be written as:

S(t) =  V2S cos(27Tf ct +  a2g(t — T) +  ainq +  0), T < t  < 2 T  (2.12)

where G2 is the data symbol during the second symbol interval. Using the same logic, 

the waveform during the ith symbol interval can be written as:

S(t) =  V2S cos I 2-nfct +  a\g{t — (i — 1)T) +  nq aj +  6 1 (i — 1)T <t<^iT

\ ;  ■ - (2.i3)
It is noted that the MCPCM signal during the fth symbol interval is not only a 

function of the data during that symbol interval, aj, but also is a function of the past 

data symbols,ai, a2, . . . ,  « ¿ - l ,  that entered the modulator. Thus, by constructing the 

phase to be continuous at symbol transitions, we introduce memory into the MCPCM 

signal. This memory can be exploited to reduce the symbol error rate at the receiver 

by observing the received waveform over more than one symbol interval. As described



above, MCPCM is a non-linear modulation technique with memory. The information 

carrying phase in (2.13) can be written as (assuming 0 =  0):

<f>{t,a) =  Oj7r|h - w  | +  nq^2aj ,  { i ~ l ) T < t < i T  (2.14)

It is instructive to sketch the set of phase trajectories generated by (2.14) by 

all possible values of the transmission sequence a =  oq, <22, • • •, o,n. For example, in 

the case of 2-ary (binary) MCPCM with binary symbols aj =  ± l , i  =  1,2, the set of 

trajectories beginning at time i =  0 is shown in Fig. 2.6 for arbitrary set of modulation 

parameters (w,q). For comparison, the phase trajectories for 4-ary (quaternary) is 

shown in Figs. 2.7. These phase diagrams are called phase trees. It is noted that the 

phase tree for MCPCM are piecewise continuous and do not contain discontinuities.

Chapter 2: M-ary Chirp Signalling Technique_________________________________ 20
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• The phase tree shown in these figures grows with time. However, the phase 

of the carrier is unique only in the range 0 to 7r or equivalently in the range — tt 
to + 7 T . Simpler representations for phase trajectories can be obtained by displaying 

only the nominal values of the signal phase at time instants t =  ¿T.If we restrict the 

value of q =  — to be rational, the MCPCM signal at time instants t =  iT will have 

terminal states:

0 . =  | o , 7xm 2ixm {p — l)irm
P P ,P :

when m is even and

0 = H o,
7rm 2mm (2p — l ) 7rm
P P P }

when m is odd. Hence, there are p terminal phase states when m is even and 2 p 
states when m is odd. For example, 2-ary MCPCM signal with q =  -  has 4 terminal 

phase states.

The MCPCM signals over n symbol observation intervals can be modelled as 

S(t, ai,Ak) , where ^  represents one of the Mn~l possible data sequences. For 

example, in a 2-ary MCPCM system, the number of possible waveforms the mod­

ulator can generate over n observation intervals will be equal to m =  2n .Of these
- Til TTl

m waveforms, — are waveforms with the first data symbol equal to +1, and — are 
2* A

waveforms with the first data symbol equal to. —1. Similarly, in a 4-ary MCPCM sys­

tem, number of possible waveforms generated by the modulator is given by m =  4n .
TTl TTl

Of these,— are waveforms with the first data symbol equal to +1, — are waveforms
' TTl

with the first data symbol equal to —1, — are waveforms with the first , data symbol
TTlequal to +3 and — are waveforms with the first data symbol equal to —3. It is noted 

that the number of waveforms generated increases exponentially with n . This is due 

to the memory inherent in the MCPCM signals. In contrast, in the case of memory­

less M -ary chirp modulation, the number of possible waveforms in any observation 

interval remains equal to the value of M .



2.5 Summary

In this Chapter, we have described the signalling technique for two types of M- 
ary chirp modulations. Firstly, M-ary chirp modulation without memory has been 

explained with modulation parameters that affect the modulation process. Three 

different examples of M -ary chirp modulation are provided with their signals. Sec­

ondly, M-ary continuous phase chirp modulation (MCPCM) which is also referred to 

as M -ary chirp modulation with memory is described. Phase trees for binary and 

quaternary continuous chirp signals are sketched and the phase continuity property 

is illustrated in these examples.
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Chapter 3

Detection and Performance of M-ary  

Chirp Modulation

3.1 Introduction

In this Chapter, the problem of coherent and non-coherent, detection of M-ary chirp 

signals in AWGN is addressed. Structures of optimum receiver are derived and closed- 

form expression for their symbol error rate performance are given. Optimum M - 

ary chirp system have been arrived at by minimizing these symbol error rate. A 

comparison of the performance of these optimum M-ary chirp systems relative to 

conventional M-ary systems such as MFSK and MPSK is also provided.

3.2 Coherent Detection of M-ary Chirp Signals

The detection problem can be stated as an M -ary Hypothesis testing problem given 

by:

Hi :r(t) =  S1{t) +  n(t) 
#2  : r(t) =  S2 (t) +n(t)

0 < t < T (3.1)

HM -.r (t )= S „ ( t )  +  n(t) _

where S 'i(i) . . :  Sm (t) are the M  chirp modulated signals and n(t) is the additive 

white Gaussian noise with one-sided spectral density of Nq watts/Hz. The detection 

problem is to observe the ¿¿(i) in noise and to produce an optimum decision as to 

which of the M  chirp signals, =  1 ,2 , . . .  , M } ,  was transmitted. The solution



to this problem is the likelihood ratio test and for M-ary chirp signals, the test will 

determine M  likelihood functions given by: ;
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pi =  exp. ̂  ¡Q;r{t)Si (t)dt

p2 =  exp (J ^  Jo r(t)S2(t)dt
(3.2)

PM =  exp ( j j -  Jo r(t)SM(t)dt]

N0
Taking logarithms on both sides and then multiplying both sides by —r , we obtain:

Al =  f'o r(t)Si(t)dt _

A2 =  Jo r(t)S2(t)dt
(3.3)

j K\I = ¡0 r(t)SM(t)dt ; ■

The optimum receiver will compute the M  log likelihood functions Ai, A2, •.., Am  
and arrive at the optimum decision based on the largest of these M  values. Thus, 

the decision rule is:

'A *  =  m a x{A i ,A 2, . . . , A M }  

The M  chirp modulated signals can be written as:

(3.4)

C0S (™ct +  *7T { h $ )  ~  W ( y )2} )  j i odd

Si(t) =  < (3.5)

cos (u>ct — (i — l)7r j / i  (y )  — w ( y ) 2j )  , i even
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where ¿takes values 1,2, . . . , M .  Thus, the decision rule of (3.4) will produce the 

output to be either A: or — (k—1) to be the most likely symbol transmitted, accordingly 

as A; is odd or even. For example, if k =  5, the receiver decides symbol +5 was 

transmitted. On the other hand, if k =  4, the receiver would decide —(k — 1) =  —3 

was transmitted. The structure of the receiver dictated by (3.4) is shown in Fig. 3.1.
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Figure 3.1: Coherent Optimum Correlator Receiver

3.3 Error Rate Performance (Coherent Case)

With reference to Fig. (3.1), we note that the decision variable Aj, ¿ =  1 , 2, . . . ,  M are 

Gaussian random variables. Let hypothesis Hj be true. Then, the received signal is
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given by:

r{t) =  Sj(t) +  n(t),: 0 < i  < T  (3.6)

Then the M  decision variables Aj, i =  1 ,2 , . . . ,  M  conditioned on H\ are given by:

(3.7)K/Hj =  /  r (i ) Si(t)dt, i =  l ,2 , . . . ,M

Substituting (3.6) in (3.7) we get

Ai/Hj = p(hj)Es +  nij, i =  2,3,... M

where

T

p(i,j) =  Jjr'J'Si(t)Sj(t)dt, i =  2 ,. . . , M

and

(3.8)

(3.9)

nij =  J  Si(t)n(t)dt, i =  l ,2 ,M (3.10)

Given Hj is true, the probability of the receiver making a symbol error is given by:

P  (e  /Hj) =  Pr [Ai >  Aj  or A2 >  Aj . .. or AM > Kj/Hj] (3.11) 

Using the identity

; P ( x i ~ X ‘2 + . . . -r  xn) <
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we can fit a union bound in (3.11), and it is given by ::

M

P (€  lHj ) < Y , Pr [k i > K 3lH3\
Ì—1
¥ j

Averaging over all j,  we get:

(3.13)

M M
m  =  E E W  > Ai/ Hi 1

7 =  1 7=1
¥-3

(3.14)

Assuming all hypothesis are equally likely, the average probability of symbol error 

can be written as:

1 M  M  1

J5(£ ) =  m 7 =  1 Ì=  1

Ef
2N0 (1 (3.15)

where p(i,j) is as given in (3.9) and

X \

erffx ) =  - 7= [  e- i  di (3.16)
V "  J 0

The quantity p{i, j ) which is required in the evaluation of symbol error rate is the 

normalized correlation given in (3.9) and a close-form expression for this correlation 

derived in Appendix A.
Fig. 3.2, shows error rate performances of: i) optimum binary q =  0.28 and 

w =  1.85 chirp modulation; ii) BPSK and iii) binary orthogonal FSK. It is noted that 

optimum binary chirp modulation is superior to binary orthogonal FSK by nearly 2 

dB and is poorer to BPSK by 0.8 dB, for error rate <  1Q~6. In order to examine 

the behaviour of binary chirp modulation as a function of modulation parameteres w 
and q, in Fig. 3.3 we have plotted performance as a function of w =  (1,1.85,2,5) for 

a fixed value of q =  0.28. It is observed that as w deviates from the optimum value of 

1.85, the error rate performance degrades. The parameter w dictates the bandwidth 

of the modulated signal. Thus, it is possible to strike trade off between bandwidth



and error rate performance. In Fig. 3.4, we have fixed the value of w and error rate 

have been plotted for different values of q =  (0.1,0.28,0.4,0.8). It is observed that 

error rate performance is sensitive to variations in q for a fixed value of w.
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Figure 3.3: Error Probability Performance of Binary Chirp Modulation
(w =  1,1.85,2,5,9 =  0.28)

Figure 3.4: Error Probability Performance of Binary Chirp Modulation
(w =  1.85, q =  0.1,0.28,0.4,0.8)
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In Fig. 3.5 to 3.7 error rate performances of 4-ary (w, q) chirp modulation have 

been plotted. From Fig. 3.5, we note that the optimum 4-ary (w =  2.4, q =  0.4) chirp 

modulation is marginally superior to 4-ary orthogonal FSK and is inferior to 4-ary 

PSK by nearly 2 dB. From Fig. 3.6 and 3.7, we note that error rate performance of 

4-ary chirp modulation is sensitive to variation of parameter q, for a fixed value of w 
and vice versa.

Chapter 3: Detection and Performance of M-ary Chirp Modulation

Figure 3.5: Error Probability Performance of 4-Chirp Modulation (w =  2.4, q =  0.4)
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Figure 3.7: Error Probability Performance of 4-Chirp Modulation
(w — 2.4, q =  0.1,0.3,0.4,0.6)
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In Fig. 3.8 to 3.10, performance of 8-ary chirp modulations are shown. In these 

graphs, performances of 8-ary PSK and 8-ary orthogonal FSK are also shown. For 

SNRs greater than 11 dB, optimum 8-ary (w =  0.25, g =  0.95) chirp modulation 

offer the same performance as that of 8-ary PSK and is marginally better than 8-ary 

orthogonal FSK. Fig. 3.11 shows the error probability performance of 2,4,8-ary Chirp 

and 2,4,8-ary PSK modulation.
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Figure 3.8: Error Probability Performance of 8-Chirp Modulation
(w =  0.25, q =  0.95)
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(w =  0.1,0.25,0.3,0.5, <7 =  0.95)

Figure 3.10: Error Probability Performance of 8-Chirp Modulation
(w =  0.25, q =  0.5,0.95,1,3)
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Figure 3.11; Error Probability Performance of 2,4,8-ary Chirp and 2,4,8-ary PSK
Modulation

3.4 Non-coherent Detection of M-ary Chirp 

Signals

The detection problem can be stated as:;

H\ : r(t) =  5 i(i, 0) +  n(t) 
#2 : r(t) - S2(t,d) +  n(f)

0 < t < T (3.17)

Hm  ’.r(t) =  SM(t,e) +n(t) t

This problem is similar to the problem discussed in Section 3.2 for coherent M -ary 

chirp signals except that 0 is a random variable with probability density function
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(pdf) given by:

(  1
, 0 < 0 < 2w

W = ' <
2 7T

0, elsewhere

(3.18)

In the case of coherent detection, one assumes exact knowledge of 6 in the receiver 

and hence the practical significance of such a receiver is limited by the complexity of 

the implied synchronization circuitry. Following arguments similar to those used in 

Section 3.2, the likelihood ratio test is the solution to the detection problem stated 

in (3.17). This test will determine the M  likelihood function given by:

Pi

1

= J  e x p ( ^ - J  r(t) Si(t,0) dt)Pe(0)d0, i =  l ,2 , . . . ,M  (3.19)

where Pq(0) is as given in (3.18). Performing integration in (3.19), the M  likelihood 

functions can be written as:

where

(3.20)

and I0(.) is the modified Bessel function of zero order [20].Since the modified Bessel 

function is a monotonically increasing function of its argument, the hypothesis test 

in (3.20) can be carried out using Z{. Thus, a test equivalent to (3.20) computes the



following M  values given by: ' ......
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• -  3 (3.22)

The receiver dictated by (3.22) is shown in Fig. 3.12. Such a receiver is commonly

referred as the non-coherent or envelope detector. With reference to Fig. 3.12, the 

receiver arrives at the optimum decision based on the largest of the M  values. Thus, 

the decision rule is:

Ak =  m a x {A i ,A 2, . . . , A  m ) (3.23)

7r.
In (3.22), the signals ¿¿(i, 0) and —) for % =  1 ,2 , . . . ,  M , are given by:

—  cos yvct +  in ( j )  -  w (y ) IJ , ‘ i odd

S&) = (3.24)
2 E

cos (wct — (i — 1)7T |h (y ) — w (y’)2|j , i even
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Sx{i,7il2)

m  ■------>

SM(t,x/2 )

r Am
V  :

Figure 3.12: Optimum and High-SNR Sub-Optimum Non-Coherent Receiver .

and

Si(t, | )

i odd

i even

(3.25)
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It is noted that in the non-coherent receiver, the knowledge of 9 is ignored and hence 

its performance will be poorer than that of the corresponding coherent receiver. In 

the next section, we perform the error rate analysis of the non-coherent receiver shown 

in Fig. 3.12. ■

3.5 Error Rate Performance (Non-Coherent 

Case)

To evaluate the performance of the receiver shown in Fig. 3.12, we start by assuming

hypothesis Hj is true. Then, the received signal is given by:
*

r(t) =  Sj(t, 0) +  n(i), 0 <  i <  T . (3.26)

The M  conditional decision variables can be written as:

K /h j  =  Zi/Hj J r(t) Si(t, 0) dtj 4-

n 2

, i =  1 , 2, , m

(3.27)

Given Hj is true, the probability that the receiver makes an error is given by:

P  ( e /Hj)}=  Pr \Z\> Zj or Z% > Zj . . . or Z\y[ >  Zj/Hj] (3.28)

Using (3.12), we get

M
p (e/ H j ) < ' £ P r [ z i > Zj/Hj] 

i=1

Averaging over all possible symbols, the symbol error rate is given by:

M  M

j = 1 i— 1

(3.29)

(3.30)
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In (3.30), we note that Zfs are Rician random variables. Thus, one Rician random 

variable exceeding another is given by:

1 r
Pr [Zi > Zj/Hj] =  -  [ l  -  <?(Va, Vb) + Q(y/Rt Vb))

where

(3.31)

a
E,

2 N0 l ^ V 1 -  \pc(i,j)\2

and Q(x,y) is the Marcum Q function defined as:

(3.32)

oo

Q(x,y) - J exp
X2 +  u2 N 1 Iq(xu) u du (3.33)

and the complex correlation pc(i,j ) is given by:

. TPS,]) =  ¿ / «.■(*) ST (*)dt
O'.

(3.34)

2E 
T
2Ë

—  exp

t y  f t '  2
wct+m{ h[ — J — —

J
exp l

wct-(¿-l)7r|/l(|;)-w(|;)2|

i odd

i even

(3.35)

and * denotes complex conjugation. A close form expression for pc{hj)  is given in 

Appendix B. .. .' .. ;
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S N R ,  d B

Figure 3.13: Error Probability Performance of optimum (w =  3.45, q =  0.1) 2-ary. 
Chirp, DPSK, and Binary Orthogonal Non-coherent FSK

In Fig. 3.13, the optimum (to =  3.45, q =  0.05) error rate performance for the 

non-coherent 2-ary chirp has been plotted for different values of SNR. It is noted that 

the performance of the 2-ary chirp matches the performance of binary orthogonal non­

coherent FSK. This is because the optimum error rate performance which occur at 

w =  3.45, q =  0.05) makes the normalized complex correlation= 0, and thus, performs 

like orthogonal signals. Also, it can be seen that that the non-coherent 2-ary chirp 

perform poorer than the conventional Differential Phase Shift, Keying (DPSK) by 

approximately 3.5 dB. In Fig. 3.14, the performance of the 4-ary non-coherent FSK 

almost identical to the performance of the 4-ary chirp with the same values of w and



S N R ,  d B

Figure 3.14: Error Probability Performance of (w =  3.45, q =  0.1) 4-ary Chirp, and
4-ary Orthogonal Non-coherent FSK

3.6 Summary

In this Chapter, the detection problem for M -ary chirp signals have been addressed 

for two cases: Coherent and Non-coherent. In the coherent case, the structure of the 

optimum correlator receiver has been explained and used to evaluate the error rate 

performance of M-ary chirp modulation. A comparison between the probability of 

error of Chirp modulation and other conventional M-ary modulation schemes such 

as MPSK and MFSK has been provided for (M  =  2,4,8). It is noted that optimum 

binary chirp modulation performs better than binary orthogonal FSK by approxi­

mately 2 dB and is poorer than BPSK by nearly 0.8 dB. For M  =  4, the optimum 

4-ary (w =  2.4, q =  0.4) chirp modulation performs better than 4-ary orthogonal 

FSK and when M  =  8, chirp modulation has performance same as 8-ary FSK. In the 

non-coherent case, optimum 2-ary (w =  3.45, q =  0.05) offer the same performance
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as 2-ary orthogonal non-coherent FSK. For the same value of w and q, the 4-ary FSK 

is marginally superior to the 4-ary chirp.



Chapter 4

Coherent Detection of M C P C M  Signals in

Gaussian Noise

4.1 MCPCM Signalling

In an MCPCM system, the general expression for the transmitted signal is given by

S(t, à) = V 2 5  eos(27r/ci +  cf>(t, a) + 4>q), —o o < t < + o o  

where the information bearing phase is given by

(4.1)

/
oo

aig(x — i'T) dx; — oo <  t < +00 (4.2)
-00 *=-°°

and

« =  . . . ,  a_2, a~\, (iq, oj_2, . . .  (4.3)

is an infinitely long sequence of un-correlated M-ary data symbols, each assuming 

one of the values

Qj =  ±1 , ±3 , ± 5 , . . . ,  dz(M — 1); i =  0, ±1, ±2, (4.4)

with probability

fli) =  J j i  i  =  0,±1,±2,... ; (4.5)
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In (4.1), S =  symbol power, /¿  is the carrier frequency, T  is the symbol

duration, and is the arbitrary phase shift, which without loss of generality can be 

set to zero for a coherent system. In (4.2), the baseband phase function is defined by:

t
q(t).= J g(x)dx .....  . (4.6)

. ... .. . . . . . . .  . . :i- —oo ... ;■ /‘V ;■ • ■

the information carrying the phase can be written as: -

oo
a) =  ^ 2  a i q ~ i T) ’ (4-7)

i=—00

For the full-response system, data symbol affects the instantaneous frequency only 

over one data symbol. Thus, for chirp signals, the phase function q(t) is given by

{ 0, t <  0, t>T
2n fg g(x)dx, 0 < t < T  .... ... (4.8)

nq =  Tx(h — w), t =  T

where the instantaneous frequency deviation for the MCPCM signal is given by:

9{t) =  .■<
0,
h w +

5T f%

i < 0 ,  t>T  
0 < t <  T

Thereby, the phase function is given by

(4.9)

q(t) =  <
0,

77 ( t ) — w ( t ) 2}  ,
7rq =  7r (h — w),

t <  0, t>T  
0 <  t < T 

t =  T

(4.10)

Where h, w, and g are dimensionless modulation parameters. Of these, h represents

the initial peak-to-peak frequency deviation divided by the symbol rate 1/T , w de­

notes the frequency sweep width divided by the symbol rate. Since h =  q +  w, we 

choose q and w to be the independent signal parameters to describe a given MCPCM 

system. The accumulated excess phase due to the kth. data symbol at the end of



the kth data symbol interval is equal to pnq, p =  ± 1 ,± 3 ,. . . ,± M  depending upon 

' o j t = ± l ,± 3 , . . .,±M . It is noted that CPFSK is a subclass of MCPCM with w =  0.
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Figure 4.1: Schematic Modulator for CPC System

TfAO

Figure 4.2: Instantaneous Frequency Deviation in CPC Signalling

In Fig. 4.1 a schematic modulator for generality CPC signals is shown. In 

Fig. 4.2, the parameters h and w are illustrated. The possible phase trajectories, 

using the phase term of (4.2), for binary and quaternary modulations are shown in 

Fig. 2.6 and Fig. 2.7 , respectively.



4.2 Optimum Coherent Maximum Likelihood 

MCPCM Receiver

The detection problem addressed here consists of observing n symbol intervals of 

MCPCM waveform corrupted by AWGN n(t), with one-sided power spectral density 

No, and producing an optimum decision on one symbol. Denoting the decesion symbol 

by as, S e { 1 ,2, . .. , n }, the received signal can be written as :
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r(t) =  S(t,a5,Ak) +  n(t) (4.11)

Where A is (n — 1)-Tuple (01,02,- • • ,oj_ i ,oj+ i ,. . . ,an) and S(t,aj,A*.) is the signal 

waveform over n symbol interval. The detection problem in (4.11) is the M-ary 

composite hypothesis testing problem [30] and the solution is given by the likelihood 

ratio test and for MCPCM waveform is given by:

* “ /"? k f
A

nT

r(t)S(t, as,A)dt

0

p(A) dA (4.12)

Where

J  dA =  f ... f . . .  dai. . .  das-idas+i. ■. 
A al aTl

(4.13)

The density of A is given by

p{A)=p(a1)p{a2 ) . ,..p(as-i)p{as+i)...p(an) ' (4.14)

and .

• +  +  (n — 1))] (4.15)
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Substituting (4.13)-(4.15) in (4.12), we obtain the Mlikelihood functions given by:

Al =  — E exPm

a M =  ¿ E e x pfib

~  SST  r(t) S(t, as = +l,-4j:) it

LJ|  S f r ( t )  S(t, as = -(M  -  1), Ak) dt

(4.16)

Where m =  Mn 1. The maximum likelihood receiver produce an estimate a§ of a§ 
using .......  + ■ ......;

aS —
p, p odd

— (jp— 1), p even 

Where 1 < p < M  and correspond to Xp such that

(4.17)

Xp =  max{Xi\i =  1,2 , . . . ,  M }  (4-18)

for some p. The structure of the optimum coherent receiver is shown in Fig. 4.3. 

This receiver essentially correlates the received waveform with each of the m possible 

transmitted signals with the data in the decision interval a§ =  + 1 , then forms the sum 

of exp(Cj), where Cj is the correlation of the received waveform with the jth  signal 

waveform with a data +1 in the decision interval. Similar operation of correlating 

and summing for each set of the m possible waveforms with decision interval data 

± 1 ,± 3 ,. . .,± (m  — 1) are performed and the decision is based on the largest of M  sums 

obtained. Since the evaluation of exact error rate of . this receiver is too complex, 

bounds on its error rate performance that are tight at high SNR can be determined. 

This is carried out in the next section.
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Figure 4.3: Optimum and High-SNR Sub-optimum MCPCM Receiver



4.3 Performance of The Optimum MCPCM  

Receiver
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Denoting the integral in Eq (4.16), by:

{JqT S(t, a§ — A, Ak) dt, A odd

; ‘ ...  ' ‘

JqT S(t, a§ =  —(A — 1), Ak) dt, A even

The M  likelihood parameters can be expressed as:

n m

•'* : X
u . k= 1

For large SNR, making use of the following approximation:

exp \Nq XXkj
A =  1,2

m
E ex p
k=l ~ k xxk

where

(4.19)

(4.20)

(4.21)

i  =  , (4.22)
‘ ' • 'AjAy. 5 1 ■ • ;

and noting that exp(C') is a monotonic function, a sub-optimum receiver can be 

obtained. This receiver chooses the largest of The error rate of this receiver

can be upper bounded using the union bound [30]; The upper bound is constructed 

by noting that x\k s are Gaussian random variables.

Let us suppose that the decision is made on the first symbol, i.e. A =  1. For 

a given transmitted data symbol a\ =  u and A^, the receiver would be in error 

whenever it decides ai ,== v, v ^  u and v =  1 ,2 , . . . ,  M. Thus, the probability of error 

is given by:

M  in '
■ : , Pr[ar^.u/ai =  u,Ak] < ^ ' ^ P r [ x vj > xuk], . (4.23)

V=l 7 =  1
Vĵ U



51

Averaging over all possible equally likely ak, the expression for error probability in 

(4.23) can be written as:

¿1/ m m '
Pr [a i^ u / a i= u ,A k] <  EEE Pr \%vj > xuk\ (4.24)

v=lj=lk=l‘ v^u

The overall probability of an error may then be obtained by averaging (4.24) over all 

possible input data symbols, i.e. * ‘ /

^ M M m m
^e,M ^  ~“ T7 ^2  l i l  ^2  1?2 ^r. [Xyj  >  Xuk  ̂ (4.25)

U= 1  V = 1  j= lk = l
V^U , ,

Where the probability for one Gaussian random variable exceeding another is given 

by:
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Pr \$vj %uk\ — Q
nEs
N0

(1 -pivj.uk))

and

(4.26)

nT

p{vj,uk) =  J S(t;ai=^viAj)S(tia i = u ,A k)dt (4.27)
5 0

is the normalized correlation between the signals S(t, a\ =  v, Aj) and S(t, a\ =  u, Ak). 
To facilitate error probability comparisons with other modulation, we normalize the 

symbol energy to bit energy using , j

Es =  El log2 M  (4.28)

Although, an explicit expression given; by (4.25) was obtained for upper bound on 

the performance of the optimum receiver, the computation required for evaluating 

this expression is too large. However, the number of computations can be reduced b y . 

averaging (4.25)-(4.27), i.e. by recognizing and identifying the Gaussian pairs which



have the same correlation. Thus, an expression equivalent to (4.25) is given by:

' J

where
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Pe,M  < { M -  1 )M n~ Q
nEs
N 0 (i -  m p{ì )  dì (4.29)

I  dì ~  j  • • /  dl\dl2 ; : .d jn 1 (4.30)

7
and

pin) =  P{ll)---P{ln) (4.31)

with

-t M - 1
p(7l) =  i  0 (7 1 1 2im -  j))  +  ^ (7 1 -  2im -  i))]  (4-32)

and

pirn) =  j j l i  +  ¿ 2  [5(71 +  2(m -  j)) +  <)(71 -  2(m -  j))} (4.33)
i =1

In (4.29), £(7 ) is related to the correlation function via

p(vj, ukJ =  £(7 ) (4.34)

where 7  =  (71 , 72» >7n) is the difference sequence between data symbols of the
sequence (v,A j) and data symbols of sequence (u, A^). For M-ary data 71 takes 

values from the set {± 2 , ± 4 , . . . ,  ±2 (m  — 1)} and 7 i =  1 ,2 ,3 , . . . ,  n from the set 

{0, ±2 , ± 4 , . . . ,  ±2 (m  — 1)}. Using the expression for the sequence correlation given
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by (4.34) in (4.24) for the error probability, one would require less computation than 

by using (4.26) and (4.27).
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4.4 Distance Properties of MCPCM Signals

The distance between waveforms is a key concept [30] in understanding the ultimate 

utility of any arbitrary signaling scheme in digital communications. With reference 

to the set of MCPCM waveforms of duration n symbol intervals available to the 

transmitter, the Euclidean squared distance between signals S(t,a\ =  v,Aj) and 

S(t, a\ =  u, Afr) is given by: . . . .

nT

Dn(vj,uk) =  J  \S(t,ai =  v,Aj) — S(t,ai — u,Af,)\  ̂dt (4.35)

It can be shown that (4.35) reduces to:

D%(vj, uk) =  2Es n
T . ■ ■ - '

n 1 f
-  E  t  /  cos^ i f o  uk)) dt

i=l 1 l
(4.36)

where

A(j)i(t,vj,uk) =  (a3- Qi)q(t “  (* -  !)T ) +  ei- 1 (4.37)

with

.¿ — 1 : t V, ;
0j_i =irq J ^ ( a f - a f )  (4.38)

r= 1

In (4.37), q(t) is the phase function for MCPCM signals. The quantity A(j>i(t,vj,uk) 
represents the phase difference between the signals S(t, a\ =  v, Aj) and S(t,a\ =  

u,Afc) during the ith symbol interval. For sufficiently large SNR, the performance of
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the optimum receiver is nominated by a parameter know as the Minimum Euclidean 

Distance [2]. Defined as:

Dmin,n= ™.m{D2n{vj,uk)}
v}u,j,k
v^u

and the performance then is approximately given by:

(4.39)

Pe ^  Q
D2 ■rmn,n

2Î%~
(4.40)

using energy normalization, the normalized squared Euclidean distance is expressed

as:

d2 =  ^  
2 Eb

(4.41)

By using this normalization, we can compare different M-ary schemes on an equal

^  basis. As a reference point, we note that d2 -„ =  2, for BPSK, QPSK, and MSK.
No ■ ' ■ luca
An estimate of the SNR gain relative to BPSK is then obtained using:

G n =  10 log10 4 (4.42)

For MCPCM, (4.36) can be shown to be given by:

Dl ( î )  =  Dl(vj, uk) ... ;1 :

, =  2E,{n  -  E t i  [costiiiJtCfifa) +  C(HU)) + sm (n i )(S(JJ2i) + S ( » « ) ) ] }
V 2ni\w

■ ' ; •..... . (4.43)
where ■' '..A . A ! ' r

w +  q)21 . , .
2w hi\ +  ^qs9n(,yi) ¿ 2

r=l
(4.44)

(4.45)

D,: =
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Hii M
2 w

(w +'q) (4.46)

sgn(x) --
-h i,. x >  0 

—1 , x <  0

(4.47)

X

C(x) =  /  cos(7ry2/2 ) dy (4.48)
J

:  0 ■■
Xr

S(x) =  /  sin(7ry2/2 ) dy (4.49)
J
°

i =  0] ~a%,i =  1 ,2 ,. . . , n  -. (4.50)

For the MCPCM signals, to determine lin n, we just need to consider 

€ ( 0, ±1 , ± 2 ,. . . ,  ±2(M  -  1)} and 71 e  { 2,4 ,6, . . . ,  2(m -  1)} ' (

An important tool in the analysis of the distance properties associated with 

the MCPCM signals is its phase tree. To calculate the maximum squared Euclidean 

distance associated with MCPCM signalling set; with signals in that set defined over 

n symbol intervals, all pairs of phase trajectories in the phase tree over n symbol 

intervals must be considered. The phase trajectories over the first symbol interval, 

however, must not coincide. The squared Euclidean distance is then determined using 

(4.36) for all these pairs, and the maximum is the derived result of (4.39). Using the 

fact, that the Euclidean distance is a non-decreasing function of observation length 

n, an upper bound for all n, may be obtained by considering just a few representative 

pairs of infinitely long sequences. Good candidates for all these sequences are pairs 

that merge as soon as possible. It is seen that such infinitely long sequence is:

7  =  +.xi, —x i, 0 ,0 ,. . .  ' (4.51)



with £1 =  2 ,4 ,6 ,. . .  ,2(m  — 1). Using (4.51), an upper bound on the maximum 

Euclidean squared distance for MCPCM is given by: : '
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logoM  min { 2 — 
l< p < M - l

cos(pirq). ,7rp(to2 +  q2) ,
y/pw

[cos(
2w )(C{x) + C(y))+.

sin(
7Tp(w2 4- q2) 

2«; ) (S (x) +  S(y) ) ] }

where x q) and y w +  q). It is noted that

(4.52)

=  4 , m (w> -? ) =  4 ,m K M )  (4-53)

Since the upper bound of (4.52) is a function of the set of signal modulation param­

eters (w,q), to find a tighter bound on Gn inherent in MCPCM signals, d?B M was 

computed in the signal space by 0 <  q < 2 and 0 <  w < 10. The results of the 

computation are shown in Table 4.1, where (w, q) that maximized Mare shown

for M = 2,4,8, and 16 . The global maxima give an idea of the limiting gains available 

with MCPCM. For example, 4-ary MCPCM will offer an advantage of 4.67 dB, at 

best, relative to PSK. However, it should be noted that the actual value of d2 will 

always be smaller than the global maximum of its bound. That is to say for q 7̂  0 , 

a value of D\ close to maximum may be found out.

M (w,q) max {dB,M} Gfii dB
2 (2.4,0.0) 2.93 1.66

4 (0.8,0.0) 5.86 4.67 :

8 (0.6,0.0) ; 8.79 6.43

16 (0.6,0.0) 11.72 7.68

Table 4.1: (w, q) maximizing d?B M



Tables 4.2 to 4.4 show sets of (w, q) that maximize , computed using (4.41), 

in the modulation parameter space 0 <  q <  2 and 0 <  w <  10 for M  =  2,4,8 and 

observation intervals of 2,3,4, and 5. It is observed that the 2-ary (w =  2.36, q =  0.12) 

MCPCM system provides a gain that is only 8% less than the best 2-ary MCPCM 

system which has a limiting advantage of 1.66 dB. On the other hand, 4-ary and 8-ary 

MCPCM systems with 5 symbol observations provide gains that are nearly 75% and 

70% of their respective best systems. This shows that an observation interval longer 

than 5 symbols may be used to obtain further advantage in SNR gains. However, it 

is noted that this may not be true when one chooses a different parameter space.
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n (w ,q) max {d^} Gn,dB

2 (1.55,0.25) 2.571 1.09

3 (2.36,0.192) 2.744 1.42

4 (2.40,0.156) 2.827 1.50

5 (2.40,0.140) 2.847 1.53

6 (2.36,0.120) 2.868 1.57

Table 4.2: Optimum (w, q) maximizing d̂  for 2-ary MCPCM

n ;(w >q) max { d Gn,dB

2 (2.94,0.20) 3.689 2.66

3 (2.55,0.41) 4.416 3.44

4 (2.54,0.39) 4.41.7 3.44

5 (2.54,0.39) 4.417 3.44

Table 4.3: Optimum (w,q) maximizing d̂  for 4-ary MCPCM
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n (w, q) max {dn} Gn,dB

2 (4.67,0.88) 4.712 3.72

3 (4.50,0.90) 5.084 4.05

4 (4.89,0.90) 5.476 4.37

5 (4.93,0.90) 5.653 4.51

Table 4.4: Optimum (w, q) maximizing for 8-ary MCPCM

4.5 Numerical Results on Error Probability 

Bounds

In the previous section we obtained some insight into the distance properties asso­

ciated with MCPCM systems using the minimum distance criterion, wherein a set 

(q,w), for a given M  and observation interval n, was chosen that maximized the 

minimum distance between pairs of signals in the signalling set. Alternatively, in 

this section, we examine the MCPCM systems using minimum probability of error 

criterion. That is, we examine MCPCM systems that minimize the error probability 

upper bound on the performance of the optimum receiver. N

The error probability upper bound of (4.25): is a function of: i) Signal-to-Noise 

Ratio, Ei/Nq ; ii) number of observation intervals,« ; iii) the signal modulation 

parameters, (w, q) ; and iv) the number of levels of the input alphabet, M. For a 

given M, n and a suitably high SNR, the modulation parameter set (w, q) that should 

be chosen is the one that minimizes the error probability upper bound of (4.25). The 

optimum (w, q)s have been determined at SNRs of 6, 8, and 10 (ID, for 2 < n <  5 and 

M  =  4 and 8. The signal parameter space is bounded by 0 ,< q <  2 and 0 <  w <  10. 

The probability of error curve of the optimum (w, q) for observation interval of n =  5 

is illustrated in Fig. 4.4 to Fig. 4.6 for M  - 2,4, and 8. The optimum sets thus 

obtained are tabulated in Tables 4.5 to 4.7, for 2-, 4-, and 8-ary MCPCM.
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Figure 4.4: Optimum Error Probability Performance of 2-ary Chirp 
(w =  2.37, q - 0.19) and n =  5 with BPSK Modulation

n

S N R ^ \
2 3 4

\. ' 
5

6
(1.85,0.28) 

1.23 x lO“ 3

(2.06,0.24) 

6.46 x 10“ 4

(2.22,0.23) 
4.24 x 10-4

(2.33,0.22) 

3.55 x 10~4

. 8
(1.88,0.27) 

4.92 x 10“ 5

(2.16,0.23) 

1.70 x 10“ 5

(2.33,0.21) 

1.00 x 10“ 5

(2.37,0.19) 

8.53 x 10~6

10
(1.93,0.26) 

3.35 x 10“ 7

(2.24,0.22) 

6.86 x 10-8

(2.33,0.19) 

3.91 x 10"8

(2.39,0.18) 

3.36 x 10~8

Table 4.5: Optimum 2-ary (w, q) MCPCM Signalling Scheme with Error Probability
Upper Bounds
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The optimum 2-ary MCPCM system, optimum for 5T observation, with signal 

parameters (w =  2.37 and q =  0.19), outperforms PSK by nearly 1.6 dB. In the 

previous section, we have seen that the limiting SNR gain for 2-ary MCPCM system 

is 1.66 dB. Prom these two observations, it is apparent that nearly all the potential 

of 2-ary MCPCM can used by employing the optimum 5-bit MCPCM receiver. How­

ever, the complexity of this receiver is quite high. Furthermore, it is noted that an 

improvement of about 0.75 dB is possible in going from 3T \to 5T observation and 

about 0.25 dB in going from 3T to 5T observation. These observations may be used to 

strike a compromise between the complexity and energy performances of the receiver. 

Comparing the performance of 2-ary MCPCM system with that of the well-known 

2-ary CPFSK system, we observe that the former has nearly 0.5 dB advantage over 

the latter.

Chapter 4- Coherent Detection of MCPCM Signals in Gaussian Noise

Figure 4.5: Optimum Error Probability Performance of 4-ary Chirp 
. [w =  2.5,q =  0.38) and n =  5 with QPSK Modulation
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n
2 3 4 5

6
(2.73,0.25) 

2.69 x l0 ~ 4

(2.43,0.40) 

6.78 x 10“ 5

(2.48,0.39) 

3.27 x 10"5

(2.49,0.38) 

2.38 x 10“ 5

. 8
(2.75,0.25) 

2.26 x 10-6

(2.48,0.40) 

2.00 x 10“ 7

(2.51,0.39) 

1.00 x 10-7

(2.50,0.38) 

7.15 x 10“ 8 '

10
(2.76,0.25) 

1.69 x 10“ 9

(2.51,0.40) 

3.06 x 10“ 11

(2.52,0.38) 

1.68 x 10“ 11

(2.51,0.38) ; 

3.36 x 10“ 11

Table 4.6: Optimum 4-ary (w,q) MCPCM Signalling Scheme with Error Probability
Upper Bounds

For 4-ary MCPCM, the optimum (w =  2.5, q =  0.38) (optimum for n =  5) 

system with 5T observation gives an improvement of nearly 3.6 dB relative to coherent 

QPSK. While 4-ary (w =  2.75, q =  0.25) MCPCM system (optimum for n =  2) with 

2T observation provides nearly 2.6 dB gain relative to coherent QPSK, only 1 dB 
further gain is possible in going from 2T to 5T observation. It is noted that in the 

parameter space considered (i.e. by 0 <  q <  2 and 0 <  w <  10) the 4-ary MCPMC 

system exhibits only an improvement of up to 3.44 dB Table 4.3 relative to coherent 

PSK system, using the minimum distance criterion.
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Figure 4.6: Optimum Error Probability Performance of 8-ary Chirp 
(w =  4.69, q =  0.88) and n =  4 with 8-PSK Modulation___

n

S N R ^ \ ^
2 ^ 3 4 -

6
(4.10,1.12) ' 

6.23 x 10~5

(4.71,0.88) 

9.39 x 10“ 6

(4.71,0.88) 

4.37 x 10“ 6

" 8 !;i
(4.10,1.12) 

1.22 x 1 0 -7

(4.69,0.88) 

7.99 x 10“ 9 .

(4.69,0.88) 

3.36 x 10~9

10
(4.10,1.12) , 

9.04 x 1 0 '11

(4.68,0.88) 

1.88 x 10“ 13

(4.68,0.88) 

6.83 x 10“ 14

Table 4.7: Optimum 8-ary (w , q) MCPCM Signalling Scheme with Error Probability
Upper Bounds
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With reference to table 4.8. The 8-ary (w =  4.69, q =  0.88) MCPCM system 

(optimum for n =  4) with 4T observation offers nearly 7.8 dB improvement relative 

to coherent octal PSK system. That is the optimum 8-ary MCPCM system for n =  4 

has an advantage of nearly 2.9 dB relative to coherent orthogonal signalling scheme. 

The 8-ary (w =  4.10,q =  1.12) MCPCM system (optimum for n =  2) offers 1.8 

dB advantage over coherent octal PSK. With 8-ary MCPCM system, there is only 

about 1.4 dB gain in performance in going from 2T to 5T observation. Beyond 

5Tobservation the gain is small and also the optimum receiver complexity increases 

tremendously. As a comparison with 8-ary single-h CPFSK systems, we observe that 

the optimum 8-ary MCPCM systems perform better for all observation intervals.

'' SNR
Pc . . . '

BPSK/QPSK 8-PSK

0 ■ , 7.87 x 10“ 2. 3.48 x 10_1

' ; 1, 5 .63x io~ 2 2.93 x.10-1

2 ■■ 3.75 x 10"2 2.38 x 10"1

/ ' A .  3 ■ 2.29 x 10-2 1.85 x 10“ 1

: 4 " - 1.25 x lO “ 2 1.37 x lO“ 1

5 5.95 x 10“ 3 9.55 x 10"2

; 6 ■' ' 2.39 x 10-3 6.14 x 10-2

7 ; ■' : 7.73 x 10~4 3.59 x 10-2

' ‘ 8 ' 1.91 x lO“ 4 1.85 x 10“ 2

9 3.36 x 10“ 5 8.24 x 10-3

10 3,87 x lO “ 6 3.03 x 10-3

Table 4.8: Probability of Error for 2,4 and 8-PSK



4.6 Summary

In this Chapter we have examined MCPCM signals for M -ary data transmission. 

A general description of an MCPCM system is given and the independent modula­

tion parameters that characterize such a system are identified and described. The 

optimum and suboptimum receiver structures for coherent detection for arbitrary ob­

servation intervals are derived and their performances in terms of symbol error rates 

are estimated. Also, using the notion of minimum Euclidean distance in signal-space, 

the achievable SNR gain possible with MCPCM system relative to PSK systems are 

established. The results reveal that the concept of continuous phase can be success­

fully applied to digital transmission using chirp signals.

The symbol error probability upper bound on the performance of the opti­

mum coherent MCPCM receiver is a function of signal modulation parameters,(w, q), 
the receiver decision observation length, number of levels of data, and the received 
signal-to-noise ratio. Minimization of symbol error probability for MCPCM systems 

can only be solved numerically. Employing this approach, optimum 2-, 4-, and 8-ary 

MCPCM systems have been determined as a function of decision observation length 

and received SNR. It is borne by our results that the optimum MCPCM modula­

tion parameters is a mild function of the received SNR and as well as a function of 

observation interval.
It is shown that the 2-ary MCPCM system, for 5T observation, offers nearly

1.6 dB improvement in performance relative to coherent PSK, 4-ary MCPCM system 

has nearly 3.6 dB gain over QPSK, and 8-ary MCPCM system over 5T observation 

length offers nearly 8 dB improvement relative to octal PSK. Also, it is shown that 

the 2-, 4-, and 8-ary MCPCM systems have limiting SNR gains relative to coherent 

PSK systems of 1.66, 4.67, and 6.43 dB, respectively.

Although, the results of this Chapter provide performance estimates that are 

inherent in MCPCM systems, for successful application further examination of band­

width occupancy, receiver complexity, synchronization techniques etc. associated with 

MCPCM systems are required. :
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Chapter 5

Non-Coherent Detection of M C P C M  

Signals in Gaussian Noise

5.1 Introduction

In this chapter, we extend the results of the previous chapter to cover the case of 

non-coherent reception of MCPCM signals. An apparent advantage of non-coherent 

system is that they do not require carrier tracking, which in fact is mandatory in 

coherent systems. The primary objective of this chapter is to assess the perfor­

mance ability of non-coherent MCPCM signals in AWGN channel. The optimum 

non-coherent MCPCM receiver is derived and by minimization of upper bound on its 

performance, optimum non-coherent MCPCM signalling schemes are determined.

5.2 Structure of Optimal MCPCM Non-Coherent 

Receiver

The received MCPCM signal buried in AWGN with one-sided power spectral density 

of Nq watts/Hz can be written as:

r(t) =  S(t, a,), A*., 0), 0 <  £ <  nT (5.1)

where nT is the observation length, 9 is the random phase uniformly distributed in 

(0, 2tt). The detection strategy is to observe r(t) and produce an estimate a of the 

symbol a§ transmitted during the decision symbol interval. The detection problem



clearly is a composite hypothesis testing problem [2]. for which the solution is like­

lihood ratio test. The likelihood parameters computed by the optimal receiver are 

given by:
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Ai =  / i > £ ”= i exP j r £ Tr(t)s(,t,a6 = + i ,Ak,e)dt iv o y ie

(5.2)

X/ ,

J r  JoT r{t)S(t, a5 =  - ( m - l ) , A k, 0)dtAm  =  Je E™=i exP

upon performing integrations over 9 in (5.2), the likelihood parameters become:

m /  2 Y
Aj  — ^ 2  h  ( TT^jfc J > j  =  1 ,2 ,... ,M  

k=1 V U 7
(5.3)

where

; , V " ,  ; . . . .  (5-4)

with ’

and

JqT r(t)S(t, as =  +j, Ak, 0 )dt, j  odd
< ;

: f 0nT r(t)S(t, as =  - ( j  -  1), Ak, 0)dt, j  even

(5-5)

/

Qjk — i

JqT r(t)S{t, as = +j, Ak, | ) dt, j  odd

¡ 0 T r(t)S(t,as =  - ( j - l ) , A k,'~)dt, j  even

(5.6)

The structure of the optimum receiver implied by (5.3) is shown in Fig. 5.1. This 

receiver essentially computes M  likelihood parameters and produce a decision by
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choosing the largest of these M  parameters.

Figure 5.1: Optimum Non-Coherent Receiver Structure

<x(t),?/(i))2 4  J0ni x(t)y(t)dt'nT 12

Ai

W
W



If jth  of the M  parameters is the largest, the receiver decides =  + j  or a§ =  
—(j — 1) accordingly as whether j is odd or even. It is noted that the optimum receiver 

structure is canonical and identical for arbitrary phase modulated signals. Although, 

the precise structure of the receiver is known, its exact performance evaluation is too 

complex. Hence, we derive bounds on the performance of the optimum receiver. This 

is carried out in the next section.
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5.3 Error Rate Analysis

When a high-SNR approximation is made in (5.3), it is noted that for a large argu­

ments:

- (5.7)
fc--1

where

Xj =  infix {x ^ .}  , j  =  1 ,2 ,.... Ai (5.8)
fC

Further using the fact that Iq(.) is a monotonie function, the high-SNR sub-optimum 

non-coherent receiver may be viewed as a receiver that computes all Xjk,j =  1 ,2 , . . . ,  M  
and k =  1 , 2 m =  M n_1, and makes a decision depending upon the largest of 

these. The sub-optimum receiver is also shown in Fig. 5.1

The performance of high-SNR sub-optimum receiver may, be computed using 

the union bounding technique used in the previous chapter.; By noting that xj^s are 

Rician and letting aj =  u, the probability of error is bounded by: ■ -.

M m
P ( e  /a5 =  ui-^k) — ^ y ^  y A (x vj x uk) (5-9).

V—l  7 =  1
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Averaging over all possible data symbols in the decision symbol interval and over all 

possible data sequences Ak, the probability of an error is given by:

1 1
M  M  m m

-  m  m  ^ 2 53 53 53 Pr (Xyj  >  Xuk) (5.10)
u= 1 v= l j =1 k=1

The problem now is to obtain an expression for the probability of Rician variable 

exceeding another, which is given by:

where

Pr (xvj > x uk) =  -  ( i  -  Q(Vb, V a)+Q (V a, y/b (5.11)

a
nE 

= 2A q
l T \/l; \pc{vj l  Ufc)|2 (5.12)

and pc(vj,uk) is the normalized complex correlation between the complex envelopes 

Sc(t, a$ =  v, A j) and Sc(t, a§ =  u, Ak), and these are given by:

2E
Sc(t, a5 =  v, Ak) =  \l —  exp [j<j)(t, a5 =  v, Ak)] (5.13)

Using (5.13) and noting that the data sequences (aj =  v, A j) and (a$ =  u,Ak) are

a aJ2 , . . .  , a§ =  v, . .. ,aJn and af, a^,. . . ,  ag =  u ,. . . ,  a closed form expression 

for pc(vj, uk) can be obtained. The number of computations in the evaluation of 

(5.10) can be significantly reduced by recognizing and identifying redundant different 

sequences. It can be shown that an expression equivalent to (5.10) can be shown to 

be given by:

,k Jt

P (e )  <  (M  -  1) M n~l / i [ l -  Q(Vb, y/a) +  Q(VH, Vb)] p(j) dj (5.14)

7



where J-cTy and p(q) are as given in (4.30) and (4.31), respectively. In the next 

section, we present the error probability performance of MCPCM systems.

5.4 Numerical Results and Discussion

The symbol error probability upper bound on the performance of the optimum non­

coherent MCPCM receiver can be computed using (5.14). As in the coherent case, 

the error probability is a function of : i) n , observation length; ii) E^/Nq , Signal-to- 

Noise Ratio; iii) M  , size of input data alphabet; and iv) (w, q) , set of modulation 

parameters. Further, in the case of non-coherent case, the error probability is a 

function of the location of the decision data symbol, S . The set of signal modulation 

parameters (w, q) that should be chosen is obviously the one that minimizes the 

symbol error probability upper bound of (5.14). The minimization problem cannot 

be tackled analytically and, therefore, numerical technique is in order. Using this 

technique, at SNRs of 6, 8, and 10 dB, sets (w,q) that minimize (5.14) have been 

determined for 2 <  n <  5 ,M  =  2,4,8 and 1 <  5 < n. The results are tabulated in 

Tables 5.1 to 5.8. ' ■
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Figure 5.2: Error Probability Performance of 2-ary non-coherent MCPCM 
(w =  3.45, q =  0.53), S =  2 and n =  2 with BPSK Modulation

As an example, the performance of non-coherent MCPCM is plotted with an 

observation length of n =  2 and n =  4 in Fig. 5.2 and Fig.5.3, respectively. When the 

performance of non-coherent MCPCM is compared with coherent MPSK systems, 

it becomes apparent that, non-coherent 2-ary MCPCM system can outperform co­

herent BPSK. For example, the optimum non-coherent 2-ary MCPCM receiver with 

an observation length of 4 bit intervals and the decision on the second bit data can 

outperform BPSK. This superiority is achieved for E^/Nq >  7 (IB (i.e. for error rates 

less than 10-3 ). An overall gain of about 1 dB is inherent in non-coherent binary 

MCPCM system relative to BPSK. The optimum non-coherent (w =  2.60, q =  0.26) 

MCPCM system with 5 symbol observation length and decision on the middle bit 

yields 4.3 dB SNR gain over non-coherent orthogonal system.
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Figure 5.3: Error Probability Performance of non-coherent MCPCM with 
(w =  1.85, q =  0.27), 5 =  2 and n — 4

It is noted that the upper bound error rate performance of the optimum non­

coherent MCPCM receiver is a function of d , the location of the decision data symbol. 

From Tables 5.1 to 5.8, it is observed that optimum decision symbol location is given 

by 5 =  int +  1 for n odd and 5 =  or ^  +  1̂  for n even. Also, we note 

that this behaviour of the optimum decision symbol location,6 , is independent of the

received SNR.
The 4-ary non-coherent (w =  0.55, q =  0.84) MCPCM modulation (optimum for 

n =  2 and 6 =  2) with 5T observation performs nearly as well as coherent QPSK for 

error rates less than 10~4 and outperforms QPSK marginally for error rates less than 

10-5  (i.e. for Eft/No >10 dB). The optimum 4-ary non-coherent (w =  4.65, q =  0.76) 

MCPCM system, for 4T observation length with decision on the second symbol, is 

inferior to the corresponding optimum 4-ary coherent MCPCM system by nearly 1.6

dB.



The symbol error rates for non-coherent 8-ary MCPCM system have been com­

pared with symbol error rates for coherent 8-ary PSK. The optimum non-coherent 

(w =  4.70, q =  0.88) 8-ary MCPCM system has up to 6.2 dB advantage relative to 

coherent 8-ary PSK. However, in the former case 3T observation length and decision 

on the second symbol are required. The optimum non-coherent (w =  4.70, q =  0.88) 

8-ary MCPCM system is worse in terms of SNR when compared to corresponding 

optimum coherent (w =  4.69, q =  0.88) 8-ary MCPCM system by nearly 1.4 dB.
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\ ^ N R ,  dB 

S
6 8 10

1
(3.45,0.53) 
2.468 x 10~2

(3.45,0.53) 

3.333 x 10~3

(3.45,0.53) 

1.705 x 10~4

2
(1.25,0.48) 

2.106 x 10“ 2

(1.25,0.48) 

2.370 x 10~3

(1.25,0.47) 

8.233 x 10~5

Table 5.1: Optimum (w,q) 2-ary MCPCM Systems with Error Probability Upper
Bounds (n=2)

\ ^ N R , 'd B
5

6 8 10

1
(3.85,0.78) 

1.810 x 10~2

(3.85,0.76) 

2.194 x 10~3
(3.75,0.71) 

1.151 x 10“ 4

2
(3.45,0.50) 

1.033 x 10"?

(3.50,0.50) 

6.797 x 10~4

(3.45,0.50) 

1.196 x 10 -5

3
(1.70,0.31) 

1.539 x 10“ 2

(1.65,0.33) 

1.418 x 10~3

(1160,0.35) 

4.379 x IQ“ 5

Table 5.2: Optimum (w,q) 2-ary MCPCM Systems with Error Probability Upper
Bounds (n=3)
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dB

5
6 8 10

4
(2.00,0.21) 

1.144 x 10-2

(1.85,0.27) 

1.036 x 10“ 3

(1.75,0.31) 

3.552 x 10“ 5

2
(3.914,0.72) 

6.914 x 10~3

(3.85,0.69) 

3.180 x 10~4

(3.90,0.71) 

3.343 x 10"6

3
(0.5,0.69) 

6.914 x lO“ 3

(0.5,0.69) 

3.183 x 10"4

(0.50,0.70) 

3.386 x 10“ 6

1
(4.00,0.85) 

1.487 x 10“ 2

(3.90,0.79) 

1.883 x 10~3

(3.75,0.71) 

1.052 x 10“ 5

Table 5.3: Optimum (w, q) 2-ary MCPCM Systems with Error Probability Upper
Bounds (n=4)

\ ^ N R ,  dB 

S
6 8

1 • ' ' 

1 0

3
(2.70,0.28) 

4.110 x 10“ 3

(2.60,0.26) 

1.286 x 10"4

(2.65,0.26) 

8.010 x 10“ 7

Table 5.4: Optimum (w, q) 2-ary MCPCM Systems with Error Probability Upper
Bounds (n=5)

^ ^ N R ,  dB 

5
6 8 i o  .

2
(0.55,0.84) 

1.045 x 10“ 2

(0.55,0.84) 

4.974 x 10“ 4

(0.55,0.84) :i 

5.837 x 10“ 6

1
(3.65,0.24) 

1.135 x 10-2

(4.80,0.86) 

5.566 x 10~4

(4.80,0.85) 

6.596 x 10~6

Table 5.5: Optimum (w,q) 4-ary MCPCM Systems with Error Probability Upper
Bounds (n=2)
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dB

6
6 8 10 ' •

3
(4.80,0.76) 

2.770 x 10~3

(4.90,0.76) 

3.525 x 10~5

(4.90,0.76) , 

5.647 x 10“ 8

Table 5.6: Optimum (w, q) 4-ary MCPCM Systems with Error Probability Upper
Bounds (n=3)

^ \ § N R ,  dB
6 8 10

2
(4.65,0.76) 

1.686 x 10~3

(4.65,0.76) 

1.191 x 10"5

(4.65,0.75) 

7.371 x 10“ 9

Table 5.7: Optimum (w,q) 4-ary MCPCM Systems with Error Probability Upper
Bounds (n=4)

n S
SNR, dB

8 dB

2 2 {0.40,0.42}

3 2 {4.70,0.88}

Table 5.8: Optimum (w, q) 8-ary MCPCM Systems with Error Probability Upper
Bounds
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5.5 Summary

In this Chapter the optimum non-coherent MCPCM receiver is derived and the sym­

bol error rate of this receiver is found using high-SNR union upper bound. Explicit 

expressions for determining this upper bound have been obtained. The parameters 

that influence the performance of the non-coherent receiver have been identified and 

optimum MCPCM systems that minimize the symbol error rates have been found as 

a function of observation length, decision symbol location and receiver SNR.

It is shown that 2-, 4-, and 8-ary non-coherent MCPCM systems can outperform 

BPSK, QPSK, and 8-ary PSK systems. However, the receiver complexities associated 

with MCPCM systems are much higher compared to MPSK systems.
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Chapter 6

Concluding Remarks and Suggestions for

Future Work

6.1 Introduction

In this Chapter, we summarise the contributions of this thesis and the conclusions 

from the results obtained. Also, we outline areas for further research in the light of 

the needs of modern wireless communication systems. In particular, we discuss the 

possible future applications for M -ary chirp modulations. In Section 6.2, summary of 

contributions to the thesis is given and in Section 6.3, suggestions for further research 

work are outlined.

6.2 Summary of Contributions

In this thesis we have proposed M -chirp modulations for data transmission. These 

wide-band modulations have inherent interference rejection capability of spread-spectrum 

type of systems. Furthermore, chirp modulations are particularly attractive in appli­

cations where immunity against Doppler shift and fading due to multipath propaga­

tion is important. '

In Chapter 2, a general description of the signalling technique using chirp mod­

ulation for M -ary data transmission is given. The parameters that describe the mod­

ulation parameters explained and illustrated. These parameters are: h, modulation 

index, and w /frequency sweep width. Since these two are related by the relationship 

q =  h — w , we have chosen to represent a specific chirp modulation system using 

the set of modulation parameters (q,w) . Two classes of chirp modulations are con­

sidered: i) M-ary (q, w) chirp modulation without memory (or discontinuous phase



chirp modulation); and ii) M-ary (9, w) chirp modulation with memory referred to 

as (9, w) M-ary Continuous Phase Chirp Modulation (MCPCM).

The problems of coherent and non-coherent detection of M-ary chirp modulated 

signal in AWGN channel are considered in Chapter 3. Using detection theory we have 

derived the structures of optimum coherent and non-coherent receivers. Closed-form 

expressions for estimating the symbol error rate performances of these receivers have 

been derived. Optimum coherent and non-coherent M-ary (q,w) chirp systems have 

been determined, using exhaustive numerical search that minimize the probability 

of symbol error. It is shown that optimum coherent 2-ary (w =  1.85,9 =  0.28) can 

provide an SNR advantage of nearly 2 dB relative to well-known 2-ary Orthogonal 

FSK system. It is observed that optimum coherent 4-ary (w =  2.4,9 =  0.4) chirp 

modulation is marginally superior to 4-ary Orthogonal FSK and is only inferior to 

QPSK by nearly 2 dB . The optimum coherent 8-ary (w =  0.25,9 =  0.95) chirp 

system performs nearly as good as 8-ary PSK system. An investigation of the sensi­

tivity symbol error rates to variation in modulation parameters w and q is also given. 

As regards non-coherent M-ary (w, q) chirp modulation we note that it equivalent to 

M-ary non-coherent Orthogonal FSK. A wide range of can be found that meet this 

criterion. It is noted that using M-ary chirp modulation, in general, one can strike 

trade-offs between symbol error rate and bandwidth of the signal though appropriate 

choice of modulation parameters.

While in Chapter 3 we considered memory-less M-ary, chirp modulated signals, 

in Chapters 4 and 5, by introducing memory into these signals we have examined a 

class of signals referred to as MCPCM. Memory in these signals has been introduced 

by constraining the phase of the signal to be continuous at bit transitions. One of 

the advantages of introducing memory is that symbol error rate performance can be 

improved by observing the received signal over intervals longer than one symbol in­

terval. In Chapter 4 we have considered coherent multiple symbol detection MCPCM 

signals in AWGN; channel and the corresponding non-coherent case is addressed in 

Chapter 5. The structures of optimum coherent and non-coherent receivers have been 

derived using composite hypothesis testing theory. The receiver structures are non­

linear and complex. Since it is too difficult to evaluate precise symbol error rates of
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these receivers, we have established error rate bounds at high values of SNR. Again, a 

thorough investigation has been carried out to arrive at optimum M-ary (w,q) Chirp 

systems, both coherent as well as non-coherent, through numerical minimization of 

symbol error rate bounds. Also, in Chapter 4, we have established upper bounds on 

the minimum distance squared for MCPCM. These bounds can be used to understand 

the ultimate ability of MCPCM to operate over AWGN channel and also provide a 

means of comparison with other modulations of which the distance properties are 

known. Below we list out the chief results from Chapters 4 and 5.

• Coherent 2-ary MCPCM system has up to 1.66 dB (limiting) SNR advantage 

relative to Binary PSK. 2-ary MCPCM systems exist, which in conjunction 

with 5-symbol optimum coherent receiver provides nearly all the performance 

potential inherent in 2-ary MCPCM

• Coherent 4-ary MCPCM has up to 4.7 dB (limiting) SNR gain relative to QPSK. 

However, with an optimum coherent receiver of 5-symbol observation length, 

only about 3.5 dB SNR relative to QPSK can be achieved

• Coherent 8-ary MCPCM system has a limiting advantage of 6.4 dB relative to 

corresponding PSK and has 2.9 dB SNR advantage over corresponding orthog­

onal signalling scheme
\

• Non-coherent 2-ary MCPCM systems exist that in conjunction with the cor­

responding optimum receiver outperforms coherent 2-ary PSK. However, to 

achieve this superiority the observation length of the receiver must be at least 

4 symbol intervals

• Non-coherent 4-ary MCPCM system has up to 1.9 dB advantage over coherent 

QPSK

• Non-coherent 8-ary MCPCM system has the ability to outperform coherent 

8-ary FSK by nearly 1.3 dB . A 4-symbol optimum non-coherent receiver is 

required to achieve this superiority

Chapter 6: Concluding Remarks and Suggestions for Future Work 79



80

• Optimum non-coherent MCPCM receivers provide best performances when per­

form decisions on the middle bit (s) for any arbitrary number of observation 

intervals

Chapter 6: Concluding Remarks and Suggestions for Future Work

6.3 Suggestions for Future Work

In any communication system the transmitted signals are subject to various interfer­

ences besides the usual additive channel considered in this thesis. A direct extension 

of the results of thesis is to assess the ability of M-ary chirp modulated signals in 

additive white Gaussian noise and multi-path fading channels.

A combination of M-ary chirp modulation and pseudorandom coding can be de­

signed for application in a multiple user environment. In a multi-user environment, 

co-channel interference and adjacent channel interferences are major sources of per­

formance degradation. It would be interesting to design and analyse multi-user access 

communication systems using chirp modulation. ! -  n.\ ;
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Appendix A

Normalized Correlation for M -ary Chirp

Signals

The normalized correlation for M-ary chirp signals is derived here. Assume the the 

transmitted signal represents data symbol dj and the received signal represents data 

symbol dj. These signals are given by:

S(t, dj) =  \ —  cos
2 E,

wct +  djir |h ( y )  -  w ( y ) 2} ]

' i  r y 2 N " '
S(t,di) =  J  c o s ^ ci +  d i 7 r | A ( y ) |  

The normalized cross correlation between these signals is defined by:

(A .l)

' 1

=  Y S J  S (t ’ dJ) S (t^di)dt (A.2)

Substitute (A .l) in (A.2)

/. .\ 1 rr  2ES
p u >0 =  ^ J o y - y  cos wct +  dj7T | h (Jp) — w ( y ) 2j

x
2 E,

cos u;ci +  d|7r |/i (|r) — w ( i f ) 2} ]  d^

Using the identity:

(A.3)

cos a cos /3 =  -  [cos (a +  /3) +  cos (a — /?)]
A

(A.4)
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and ignoring the high frequency term. (A.3) can be written as:

T

PO’iO =  f f
0

cos dt (A.5)

if (dj — d() =  0 =*> p =  1

if (dj — dj) +  ve or (dj — d{) — ve

PU, i) = f  J COS \V: (A.6)

Let a =  7t\dj — d{\w , b =  7t\dj — di\ and x =  Jp (A.6) can be written as:

T

(A.7)
o

and by completing the square, (A.7) can be written as:

p(j, 0  =  7p J  cos — bx̂ j dt

(A.8)
0 J

applying the difference formula for the cosine cos(a — ¡3) — cos a cos ¡3 +  sinasm/3, 

(A.8) can be expressed as:

2 1
+

(A.9)dt
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b piv
By changing the variable yfax — ——¡= in (A.9) into \l—u and acoordingly changing

z y a  y 2
the limits, we get:

cos(Q)
uh

cos
ul r

(J^uf'du — f c o s j ^ d u
LO

sin(fi)
y/2yw

uh ul
J  sin (J ~ u )2du — J  sin (J^u )2du

LO 0

(A.10)

, ^  \2
where Cl =  —|dj — dj|--------- — and 7  =  |dj — df\. Solving the integral in (A .10) by

applying Fresnel integral, the normalized cross correlation can be given as:

p(j, i) = ^ ( C W  - CM) + (sk i - s m ) (A .11)

where the function C (.) and S(.) are the Fresnel cosine and sine integral which are 

given by:

C(u)
7TX

"2

2 ;
-)d x

0

S(f) = J
0

)dx
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Appendix B

Complex Correlation for M -ary Chirp

Signals

In this appendix, we derive an expression for the complex cross correlation between 

signals Sj(t) and S^(t). The complex correlation can be defined as:

nT

(B .l)

which is equal to:

Pc(j, i) = 2 E,
nj  ̂ j2EsJ  2 ( W c i + (r) ~w( t ) 2} )

dt

(B.2) can be rewritten as:

0
Applying Euler’s formula to (B.3)

T
pc(j,i) = 7p j [m»(e)+:/sin(e)] /it

(B.2)

(B.3)

(B.4)
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where 0  =  \ d i-d j\ n ^ h (^ j ~ w ( f The integral for the cosine and sine in

(B.4) can be solved following the same procedure in Appendix A. The correlation is 

given by:

p(j, 0 = cos(i2) (C h i -  CM ) + (SMI -  SM)
^/2jw

+ cos(iî) (SKI -  SM) + ^  (SMI -  SM)

7r
where Q =  —\dj — dj

(q +  w)2

1/2710
(B.5)

w
, 7  =  |dj — dj\ and the function C (.) and S(.) are the

Fresnel cosine and sine integral which are given by:
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