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ABSTRACT

The performance of a medical diagnostic test yielding quantitative or ordinal measure­

ments is often assessed in terms of its AUC, area under the receiver operating characteristic 

curve. As new tests constantly being developed, an essential task is to compare multiple 

AUCs, commonly derived from the same group of subjects. For this purpose, previous 

research usually uses an omnibus chi-square test that is non-informative and lacks power. 

In this study, wc propose new methods of constructing simultaneous confidence intervals 

based on theory of nonparametric [/-statistics. To improve the small sample properties, we 

adapt the method of variance estimates recovery by obtaining confidence limits for each 

AUC based on logit and inverse sinh transformation. A large simulation study demon­

strates the good performance of our new method.

Key Words: Diagnostic Test, [/-statistic, Coverage Probability, Hypothesis Testing, All 

Pairwise Comparisons, Comparisons with a Control
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Chapter 1

INTRODUCTION

1.1 Receiver Operating Characteristic curve

Accurate diagnosis of disease is the first step for appropriate treatment. The performance 

of a diagnostic test depends on its ability to distinguish individuals with a disease condition 

from those absent of the condition. A variety of approaches can be used to quantify the 

accuracy of a binary diagnostic test, including sensitivity/specificity, likelihood ratios, etc. 

When test outcomes are ordinal or continuous, the receiver operating characteristic (ROC) 

curve has been the most popular tool, especially after Hanly and McNeil (1982) introduced 

the method to the medical field.

Assume two groups of subjects, one with disease and the other without disease. For 

a diagnostic test measurement T, suppose that a subject with T  >  co be classified as test 

positive, otherwise as test negative. For a given cutpoint, sensitivity is defined as the prob­

ability that a subject with condition is correctly diagnosed as positive (i.e. true positive rate 

(TPR)), and specificity is the probability that a subject absent of disease condition is classi­

fied as negative (i.e. true negative rate (TNR)). A ROC curve can be constructed by varying 

values of the cutpoint and then plotting the sensitivitiesagainst one minus specificities, or 

false positive rates (FPR).

A test with perfect discrimination would have a ROC curve that passes through the 

point (0,1) on the unit grid, while a test without discrimination would have a 45° diagonal 

line from the lower left corner to the upper right corner. Usually, a ROC curve is between 

these two extreme plots; the closer the plot is to the point (0,1), the higher the diagnostic
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accuracy of the test. Three cases of diagnostic accuracy are depicted in Figure 1.1.

Figure 1.1: Three cases of diagnosis measurement distribution and ROCs. ‘TN’ = true 

negative rate, ‘FN’ = false negative rate, ‘TP’ = true positive rate and ‘FP’ = false positive

rate.

1.2 The Area Under the ROC Curve

Test performance is usually summarized by the area under the ROC curve (AUC), which 

is closely related to Mann-Whiteney U statistic (Bamber, 1975). To see this, let X be the 

diagnostic test measurement on a randomly selected individual with disease and Y be the 

value of the same test result on a randomly selected individual without disease. Following
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convention, we assume lower values of measurement are associated with normal subjects. 

As shown by Bamber (1975), the area under the ROC curve is given by:

For continuous test results, Pr(X =  Y) =  0. Thus, AUC can be explained as a probability 

that a random individual from normal group will have a lower test value than that of a 

random individual from disease group.

Under the normality assumption for measurements, AUC can be defined as (Li et a l , 

2010):

where fix and l^r are population means, <7̂  and Oy are variances, and <i> is the standard 

normal cumulative distribution function. In this case, the estimated AUC can be easily 

obtained by substituting the sample means and variances for their unknown population 

parameters.

By convention, the area under the ROC curve is always > 0.5 (if it is less than 0.5, 

we can reverse the decision role for Tested positivity’ from ‘greater than’ to ‘less than’ 

or visa versa), values of AUC range between 0.5, for no apparent difference between the 

test outcomes among two groups, resulting in a diagonal line in the ROC curve, and 1 for 

perfect separation of the test values of the two groups, resulting in a ROC curve that rises 

steeply along the left axis to the point (FPR=0, TPR-1).

AUC -  Pr(F < X)  +  -P r(X  =  Y). ( 1. 1)

AUC =  Pr(F < X)

1.3 Confidence intervals for the AUC

In present context, statistical inference for AUC usually focuses on confidence interval 

estimation which in turn reduces to the problem of variance estimation. Under the normal­
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ity assumption for measurement of two groups, parametric maximum likelihood methods 

and delta method can provide direct estimates of the variance of AUC (Dorfman and Alf, 

1969; Wieand et al., 1989). Bamber (1975) derived the variance estimate of AUC by using 

theory of U-statistic. Hanley and McNeil (1982) provided an alternative approach for esti­

mating the variance of AUC based on the traditional form of the nonnull variance for the 

Wilcoxon statistic. A more general approach was provided by DeLong et al. (1988). In 

addition, semi-parametric methods for variance estimate of AUC provide an intermediate 

strategy between the parametric and non-parametric approaches (Metz et al., 1998; Wan 

and Zhang, 2007).

1.4 Multiple comparisons of AUCs

It is often of interest to compare two (or more) tests in terms of AUCs. An efficient de­

sign for this purpose is to apply each test to the same group of subjects. One strategy 

for comparing multiple diagnostic tests is by the use of simultaneous confidence intervals 

for multiple AUCs. Several approaches have been proposed for the construction of simul­

taneous confidence intervals for contrasts of AUCs in the literature (Hanley and McNeil, 

1983; DeLong et a l , 1988; Hsu et a/., 2004). Among these approaches, the nonparametric 

method proposed by DeLong et a l  (1988) is the most popular one. The method has now 

been implemented in SAS 9.2 PROC LOGISTIC. However, the DeLong’s method relies on 

the large sample theory for all linear contrasts of AUCs and generates symmetric simulta­

neous confidence intervals that may not reflect sampling distribution of AUC estimates in 

finite sample sizes. Its performance is questionable for small to medium sample size (Hsu 

et al., 2004).
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1.5 Objective of the thesis

The objective of this thesis is to construct and evaluate the simultaneous confidence inter­

vals for multiple comparisons of AUCs using the method of variance estimates recovery 

(MOVER) proposed by Zou and Donner (2008) and Donner and Zou (2010). The strength 

of this method is that it can reflect the asymmetry of simultaneous confidence intervals , 

and thus may improve the performance of simultaneous confidence intervals for multiple 

AUCs.

1.6 Organization of the thesis

Chapter 2 presents the literature review regarding the development of ROC curve and mul­

tiple comparisons of AUCs. Chapter 3 details the deviation of DeLong’s method (DeLong 

et ah, 1988) and our method based on MOVER for constructing simultaneous CIs for mul­

tiple AUCs using these two approaches. Chapter 4 reports on a simulation study comparing 

the performances of DeLong’s and our approach. The thesis concludes in Chapter 5 with 

general discussions and possible future works. The related SAS Macro is presented in the 

appendix.
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Chapter 2

LITERATURE REVIEW

2.1 A brief history of the ROC curve

The ROC curve was first developed in 1950s in engineering for detecting radar signals 

(Peterson et al., 1954). In the 1960s, ROC curve has found applications in psychology 

and psychophysics to assess weak signals in humans and occasionally non-human animals 

(Green and Swets, 1966). With the development of science and technology, ROC curve has 

now been applied to a variety of fields including engineering, quality control (e.g., materials 

testing), and weather forecasting. Swets and Pickett (1982) marked the beginning of the 

widespread use of this technique outside of psychophysics, where ROC analysis is often 

called the ROC Accuracy Ratio as a common technique forjudging the accuracy of default 

probability models. ROC curve analysis has also been proven useful for the evaluation of 

machine learning techniques, as the first application by Spackman (1989) in comparing and 

evaluating different classification algorithms.

Application of ROC analysis in medicine to assess diagnostic test performance was 

first described by Lusted (1971) in the context of evaluating the performance of criteria 

for radiologists’ assistants and radiologic systems. Erdreich and Lee (1981) also applied 

the method of ROC analysis to epidemiologic problems. Hanley and McNeil (1982, 1983, 

1984) contributed greatly to the methodology improvement on the evaluation and com­

parisons of ROC curves with a series of related articles. DeLong et al. (1988) presented 

variance formulae that have become popular.

Methodological reviews on ROC curves can now be found in a variety of sources, e.g.
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Zweig and Campbell (1993) and Pepe (2003).

2.2 Summary measures for ROC curve

A ROC curve depicts a graphical summary of discriminatory accuracy, but often a one- 

number summary index of discriminatory accuracy for ROC curve is desired. Several in­

dices are present in literature and have been used in various applications (Shapiro, 1999; 

Greiner et al., 2000). Here we provide a brief summary of the most widely used indices.

2.2.1 Youden index

Youden index is frequently used in practice to summarize diagnostic accuracy in terms of 

both sensitivity and specificity (Aoki et al., 1997; Grmec and Gasparovic, 2001). It is de­

fined as J — maxr {Se(c) +  Sp(c) — 1} and ranges between 0 and 1. Complete separation of 

the distributions of the diagnostic test outcomes for the non-diseased and diseased groups 

results in J  =  1 whereas complete overlap gives J  =  0. Youden Index provides a crite­

rion for choosing the optimal threshold value which maximizes the difference between the 

TPR and FPR (Greiner et al., 2000). Graphically, Youden index is the maximum vertical 

distance between the ROC curve and the diagonal line.

2.2.2 Likelihood ratios

Similar to Youden index, likelihood ratios (LR) also summarize information about a diag­

nostic test by combining sensitivity and specificity.

Positive likelihood ratio (LR+) has the expression that

True Positive Rate Sensitivity 
1 False Postive Rate 1 — Specificity ’

and negative likelihood ratio (L R - ) is

LR_ =
Fai se Negative Rate 
True Negative Rate

1 — Sensitivity 
Specificity
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As compared to these two types of likelihood ratios, positive likelihood ratio is much 

more useful and is often called Likelihood ratio for short (Deeks and Altman, 2004). In 

clinical practice, LR+ indicates how likely a positive result will be found in a person with 

the disease compared to a person without the disease. Graphically, it represents the slope 

of a ROC curve at a fixed cutoff point.

2.2.3 The area under the ROC curve

The area under the ROC curve (AUC) is the most commonly used summary measure of 

diagnostic accuracy. It represents the average sensitivity over all values of FPR and can 

be expressed as AUC =  Pr(T <  X) +  JjPr(X =  Y) (Bamber, 1975; Hanley and McNeil, 

1982), where X  and Y denote test responses from the diseased and non-diseased populations 

respectively. For continuous test results where P(X =  T) =  0, Bamber (1975) pointed out 

that AUC means the probability that a random subject from normal group will have a lower 

test value than that of a random subject in diseased group. He also made the connection to 

the Mann-Whitney (/-statistic for comparing two independent groups.

2.2.4 The partial area under the ROC curve

The partial area under a ROC curve (PAUC) represents the area under the ROC curve over 

a range of FPR that is relevant to a particular setting. This index is useful when only rela­

tively small false-positive rates (FPRs) are of interest. For example, The ROC50 index— the 

area under the lower portion of the ROC curve up to 0.5 FPR— has been applied to genomic 

research and clinical context (Gribskov and Robinson, 1996; Saigo et al., 2004). Shapiro 

(1999) pointed out that if only a particular range of specificity or sensitivity values is rel­

evant in study, PAUC may provide more detailed information and more appropriate accu­

racy than AUC. Few statistical analysis for PAUC are introduced in the literature (McClish, 

1989; He and Escobar, 2008).

Other indices such as the projected length of the ROC curve (PLC) and the area swept
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out by the ROC curve (ASC) have been introduced as alternatives to the AUC for contin­

uous diagnostic tests (Lee and Hsiao, 1996). In this thesis, we will focus on the statistical 

inference for AUC because of its most popularity and attractive properties.

Diagnostic outcomes can be obtained in dichotomous, e.g. positive or negative, ordinal, 

as in the case of confidence rating for presence of disease - definitely, probably, possibly, 

probably not, definitely not, and continuous, e.g. density serum cholesterol. Depending on 

assumptions made about the different outcome distributions, at least three approaches can 

be taken to perform statistical inference for AUC.

2.3.1 Parametric approach for normal data

One can assume a parametric distribution for the test outcomes of the diseased and non- 

diseased individuals such as normal, lognormal, negative exponential, beta distribution 

(Hanley, 1996; Goddard and Hinberg, 1990). Among these distributions, bivariate nor­

mal model is the most widely used one which assumes that the continuous test results from 

diseased and non-diseased individuals are independently normal distributed. Let /lx and 

represent the mean and variance of the diagnostic result X  for the diseased population 

while fly and Gy denote these for the non-diseased population Y. Then

and the estimator AUC can be obtained by substituting the sample mean and variance for 

the unknown parameters. The variance estimate of AUC can be derived using delta method 

(Wieand et al., 1989).

For ordinal rating data, Tsimikas et al. (2002) suggested a profile-likelihood inference. 

This method is particularly useful for high values of AUC. Simulation results showed that

2.3 Statistical inference for a single AUC
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the coverage rates of CIs derived from this method are close to the nominal level, even 

for extremely small or unbalanced sample sizes. However, this approach is not applicable 

to continuous measurements because the likelihood functions are constructed based on 

multinomial distribution.

A major advantage of parametric method is that it yields a smooth ROC curve for 

continuous test outcomes, and it can simplify the statistical inference for the summary 

indices such as AUC (Shapiro, 1999). However, substantial lack-of-fit may occur if the 

distributional assumptions are violated. Goddard and Hinberg (1990) pointed out that if 

the distribution of raw data from a quantitative test is far from normal distribution, the 

estimated AUC and corresponding standard error derived from a directly fitted binormal 

model can be seriously distorted. One way to avoid the possible distortion is to use semi- 

parametric approach.

2.3.2 Semi-parametric approach

Semi-parametric approach is an intermediate strategy between parametric and non-parametric 

methods. As Zou et a l  (1997) pointed out, the transformation in semi-parametric method is 

non-parametric, but after transformation the model is parametric. Metz et a l  (1998) intro­

duced a semi-parametric method, with the assumptions that the underlying distributions of 

the test results for non-diseased and diseased groups can be transformed to approximately 

normal distributions by an unspecified monotone transformation, maximum likelihood al­

gorithm can be used for the transformed data to estimate the unknown parameters (Dorfman 

andAlf, 1969). Bi-gamma (Dorfman e t a l , 1997) and bi-beta (Zou et a l ,  2004) models are 

also introduced when bi-normality is not satisfied after transformation.

Recently, several new methods have been proposed to produce semi-parametric ROC 

curves. Pepe and Cai (2004) regard the ROC curve as the distribution of placement values 

and then estimate AUC using pseudo-likelihood function. Erkanli et a l  (2006) proposed 

a semi-parametric Bayesian approach for AUC estimate and concluded that their Bayesian 

estimation was very close to kernel density estimation (Green and Swets, 1988).
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Semi-parametric approach can create a smooth ROC curve with an available program 

named LABROC4 (Metz et al., 1998). However, its complicated way to group the data and 

the possible lack-of-fit are the main disadvantages.

2.3.3 Non-parametric approach

Non-parametric approach does not make distributional assumptions for diagnostic test re­

sults. It depends only on the ranks of the observations in the combined sample. The re­

sulted empirical ROC curve is a series of horizontal and vertical steps, which can be jagged 

(Zweig and Campbell, 1993).

The commonly used non-parametric estimate for AUC is Mann-Whitney-Wilcoxon 17- 

statistic with the expression given by:

AUC
1

mn

n m

L E m . i ' j
y - i i - i

5

where
1 Y < X
1
2 Y = X  ,

0 Y > X

X,-, i ~  1, * • •, m and Yj, j  =  1, - ■ - , n, are the test outcomes measured from diseased and non- 

diseased groups, respectively (Bamber, 1975). The advantages of this statistic are that not 

only its computation is simple and straightforward, but also it provides an unbiased estimate 

for the AUC generated from discrete test outcomes (Zweig and Campbell, 1993; Hsu et a l ,  

2004). However, if the outcomes are continuous data, since the empirical cumulative curve 

is jagged and under the theoretical smooth ROC curve, the non-parametric area estimates 

may tend to underestimate the AUC in particular when the number of distinct values is 

small (DeLong et al., 1988; Hajian-Tilaki et a l , 1997).

At least four approaches can be adopted in estimating the variance of AUC. The first ap­

proach was proposed by Bamber (1975) using the trapezoidal rule and the Mann-Whitney
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/7-statistic theory. For any two Y values Yj, Y^ and any X  value let

byyx = Pr (Yj, Yk < Xi) + Pr(X/ < Yh Yk) -  2Pr (Yj < X, < Yk),

and for any two X  values X,-, X;, and any Y value Yj,

bxxy -  Pr (Xh Xt < Yj) + Pr (Yj < M )  -  2Pr(X, < Yj < Xt).

The variance estimate for AUC is given by

var(AUC) =  ^ ( m  -  l)(n -  l)){Pr(X ^  Y) +  (m - \)bxxy 

+ ( n — \ )byyx — 4(m + n — 1)(AUC — 0.5)2}.

The second approach was suggested by Hanley and McNeil (1982) who derived the 

results by assuming negative exponential distribution for measurements.

Let <2i =  Pr(T/ < X(-,X;), Q2 = Pr(Yj,Yk < X,-), where X,-,X/; Yj,Yk are randomly chosen 

subjects from diseased and non-diseased groups respectively. The variance for the AUC 

can then be estimated by

var(AUC) AUC(1 -A U C ) +  ( m -  1)(<2! -A U C 2) +  ( n -  lj iQ a -A U C 2' 1 mn.

However, because the underlying negative exponential distribution assumptions are 

made for this approach, it tends to underestimate the variance when the AUC is close to 0.5 

and overestimate it when the AUC is near 1 (Hanley and Hajian-Tilaki, 1997).

Based on theory of U-statistic, DeLong et al. (1988) derived the variance estimates 

under two or more related ROC curves derived from same individuals. For what to follow, 

we refer to this method as DeLong’s method. For each diseased subject i,i =  1, • ■ • ,m, we 

have
1 ^

V,io(X,) =  - ^ vP(X,',Py) and 5 10

n = 1

1
m — 1

£ ( V 10(X ,)-A U C ):

Similarly, for each non-diseased subject j , j  =  1, we define

Voi (Yj) =  -  £  Vi*!, Yj) and 50, = ----- - £  (V0i (Yj) ~  AUC)
1 n ~ \  p \
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Then, DeLong’s variance of the estimated AUC is given by

var(AUC) = - 5 i 0 + -5oi. (2.1)m n

Using the idea of jackknife, Hanley and McNeil (1984) proposed the fourth approach. 

Hanley and McNeil (1984) first introduced the AUC pseudo value (pAUC) corresponding 

to observation i as

pAUC, — (m + n)AUC -  {m + n -  1)AUC(_,-),

where AUC is the area calculated with all m + n observations and AUC_/ the area obtained 

from the {m + n — 1) observations, with observation i deleted. And the variance of the AUC 

is given by

var(AUC) — variance of mean of all m + n pAUCs
variance of all pAUCs (r) ^

m + n : number of pAUCs

Hanley and Hajian-Tilaki (1997) compared the above four methods and concluded that 

DeLong’s method is the most accurate. Cleves (1999, 2002) numerically compared the first 

three approaches and came to a similar conclusion. However, DeLong’s method may break 

down when sample sizes are small or the underlying AUC is high (Tsimikas et al., 2002; 

Vergara et a l , 2008).

An alternative nonparametric approach for estimating AUC is kernel density estimation 

based on kernal smoothing techniques. Zou et al. (1997) pointed out that Kernel method 

can create a smooth ROC curve, and it also follows closely the details of the original data. 

However, this method may generate wide CIs that are too conservative for small sample 

size (Zou et al., 1997).

Standard softwares can be used to perform the statistical inference on one or more 

AUCs based on DeLong’s method, such as the program package in SAS, Stata and a free 

software called StAR in R (Vergara et al., 2008). In this thesis, we attempt to improve 

DeLong’s method by applying logit and inverse sinh transformation to AUC. Comparisons
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between AUCs are then conducted using the MOVER approach (Zou and Donner, 2008), 

in conjunction with multiple comparisons theory (Nelson, 1989; Donner and Zou, 2010). 

A SAS macro implementing our method is also provided in the thesis.

2.4 Confidence interval construction for a single AUC

Confidence interval (Cl) estimates are usually regarded as more informative than signif­

icance tests because they provide a range of parameter values that reflect the degree of 

uncertainty in the estimation procedure. Moreover, confidence interval estimation encom­

passes hypothesis testing (Altman, 2005). In fact, a Cl may be regarded as performing 

significance tests for all values of a parameter, not just the single value corresponding to 

the null hypothesis (Cox and Hinkley, 1974, Section 7.2). Therefore, in this thesis, we 

focus mainly on the confidence interval construction for AUC rather than the hypothesis 

test.

Variance estimation in section 2.3 can be used for constructing Cl for a single AUC. 

Most parametric and non-parametric methods result in a symmetrically Wald-type confi­

dence interval using A U C ± za /2\/vaf(AUC). Asymmetric Cl may be provided by semi- 

parametric approach since it needs a monotone transformation from a Wald-type CL As 

pointed out by Efron and Tibshirani (1993) that when the sample distribution is skewed, 

symmetric Cl does not perform well. Moreover, in diagnostic research, the AUC is usually 

close to 1, a symmetric Cl may produce upper limit that is greater than 1 and may lead to a 

confused interpretation.

In the case of proportions, Newcombe (2001) proposed two methods based on logit or 

inverse sinh transformation to improve the performance of the Wald method. Since the 

AUC by definition is a probability, we can apply the same transformations to improve the 

performance.
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2.5 Multiple comparisons of multiple AUCs

It is often of interest to compare several diagnostic measures simultaneously. In order 

to compare k (k > 2) diagnostic tools, two or more biomarkers can be simultaneously 

measured on paired data, where all tests are applied to the same subjects; or unpaired data, 

where different tests are performed on the different groups. Of these two designs, Zweig 

and Campbell (1993) pointed that the paired study using the same individuals has more 

efficiency because it can better control the patient-to-patient variation.

A conventional approach for comparing several diagnostic tests is to compare the entire 

ROC curves by using a global measure such as AUC. Parametric procedures have been sug­

gested to compare two or more AUCs from independent binormal ROC curves (Dorfman 

and Alt', 1969; Metz and Kronman, 1980). Metz et al. (1984) extended ‘binormal’ model 

to ‘bivariate’ model for comparing areas under two correlated ROCs, one approach used 

studentized range (SR) test and another method was based on jackknife theory. Simulation 

results (Metz et al., 1984) showed that the two methods are comparable when the num­

ber of subjects in both non-diseased and diseased groups are the same, but the jackknife 

methodology performs better than SR test for unequal subjects in two groups. Note that 

only the hypothesis test: Hq : AUQ =  • • • =  A U Q  was provided in McClish (1987) using 

these two methods, but simultaneous confidence intervals were not available.

DeLong et al. ( 1988) proposed a non-parametric approach for comparing several cor­

related ROC curves based on Scheffe’s method and provided asymptotically simultaneous 

confidence intervals for several correlated AUCs. This method is intended for any set of lin­

ear contrasts of areas under correlated ROC curves. Hsu et al. (2004) derived an asymptotic 

method for identifying the best among several groups. This method is commonly known as 

multiple comparison with the best, which depends on ‘many-to-one’ comparsion treating 

each test in turn as a control to compare diagnostic tools using AUCs. In this method, the 

point estimation of AUC and its variance estimate are based on DeLong’s method, with crit­

ical value obtained using Dunnett’s many-to-one comparisons (Hsu, 1996). Furthermore, 

approximately normal assumptions of the statistics for constructing simultaneous confi­
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dence intervals are needed. Simulation results suggested that the simultaneous coverage 

probabilities are lower than the nominal level, due partly to the enforced symmetry.

Donner andZou (2010) has proposed an approach to construct simultaneous confidence 

intervals for proportions. The key advantage of this method is that it can avoid the enforced 

symmetry of simultaneous confidence intervals . In this thesis, we adopt this approach in 

the construction of simultaneous confidence intervals for comparing AUCs.
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Chapter 3

DEVELOPMENT OF THE METHOD

This chapter first reviews methods for constructing simultaneous confidence intervals using 

variance estimator proposed by DeLong et a l  (1988). To improve the performance of these 

intervals, we apply the method of varance estimates recovery (Zou and Donner, 2008; Zou, 

2008) to the context of simultaneous confidence intervals for AUC.

3.1 Multiple comparisons of AUCs based on ¿/-statistic

3.1.1 Point estimation of a single AUC

Let Y denote test scores from a non-diseased subjects and X  as scores from diseased popula­

tion. Following the convention in the literature, assume that smaller scores are more likely 

related to non-diseased subjects. The area under the ROC curve (AUC) can be defined as:

AUC =  Pr(F < X)  +  Ip r (F =  X).

For continuous test scores, Pr(Y =  X) =  0.

Suppose Xi, i  =  1 , 2 , - - , m; Y j , j  = 1 ,•••,«, are scores from the diseased and non- 

diseased groups respectively. The AUC can be estimated with Mann-Whitney U-statistics

AUC
1

mn

n m

.

as:
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where
1 Y j< X i

nXi,Yj) = <  ̂ Yj=Xl

0 Yj > X,

3.1.2 Estimation of variance covariance matrix for multiple AUCs

Assume k (k > 2 )  diagnostic tests are performed on the same subjects with {X[} ,{Yj}  

i = 1, • ■ • ,m; 7 =  1, • • • ,n\ 1 < r < k, representing the measured scores for diseased and 

non-diseased groups from the rth test. DeLong et al. (1988) adapted a method for non- 

parametric statistic (Sen, 1960) to estimate the variance-covariance matrix for the vector of 

parameter estimates AUC =  (AUCi, • • •, AUC*) as follows:

S = - S i o  + - S 0i, (3.1)
m n

where the (r, .v)th element of k x k matrix S\o is

i m

sTo = — r D W ) - er][vf0(̂ ) - H

in which V[0(Xj) = i Z nj=i xV(X[,YJr), i =  1,2, • • • ,m.

Similarly, Soi has the (r,s)th element:

«  = - 4 t t «>, (Vy) -  en [% (10)-¥]n i j=|

and V0' , {Yj) = £ U = , W . K / ) , ;  =

Hanley and Hajian-Tilaki (1997) provided an intuitive approach to obtain the point 

estimates of AUCs and the associated variance estimates. The key idea is to first transfer 

measurements X,, F,- into placement value according to T'pf,-, F,), and then conduct analysis 

on the placement values. To illustrate Hanley and Hajian-Tilaki’s method, here we use a 

subset of the data from DeLong et al. (1988) as an example.
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3.1.3 Hanley and Hajian-Tilaki’s simplification on the covariance ma­

trix estimate for multiple AUCs 

3.1.3.1 Data used for illustration

The full data set arose from the study that evaluates the discriminating abilities of 3 pre­

operative scoring measurements on the prognosis of surgical correction for patients with 

ovarian cancer who also get intestinal obstruction (Krebs and Goplerud, 1983). Patients 

who survived longer than 2 months after operation are considered surgical successes, oth­

erwise, they are regarded as failed operation cases. In this study, 49 patients were observed 

at Duke University Medical Center after their surgery, among those patients, 12 survived 

more than 2 months postoperatively and were marked as ‘successful cases1; the remain­

ing 37 survived no more than 2 months and were labeled as ‘failure cases’. Based on the 

49 observations, 3 tests including Krebs-Goplerud (K-G) score and two measures of nutri­

tional status: total protein (TP) and albumin (ALB) were evaluated and compared on their 

discriminant accuracy. The full data set has been used by SAS version 9 as an example in 

PROC LOGISTIC.

It has been shown that the increasing levels of both ALB and TP are related to better 

prognosis. In contrast, the higher the level of K-G, the poorer the prognosis. Thus, each 

value of K-G is subtracting from 12, the maximum possible value, so that all three indices 

can be discriminated in the same direction.

For illustration, we only use data on ALB and TP from the first 20 subjects (Table 3.1).
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Table 3.1: Two measures of nutritional status-Albumin (ALB), Total Protein (TP) and post­
operative result on 20 patients with ovarian cancer and intestinal obstruction

ALB TP Postoperative result

3.0 5.8 success

3.2 6.3 failure

3.9 6.8 failure

2.8 4.8 success

3.2 5.8 failure

0.9 4.0 success

2.5 5.7 success

1.6 5.6 failure

3.8 5.7 failure

3.7 6.7 failure

3.2 5.4 failure

3.8 6.6 failure

4.1 6.6 failure

3.6 5.7 failure

4.3 7.0 failure

3.6 6.7 success

2.3 4.4 failure

4.2 7.6 success

4.0 6.6 success

3.5 5.8 failure
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3.1.3.2 Illustration of obtaining AUC point estimates and variance-covariance esti­

mates using placement value

We start with estimates for a single diagnostic outcome. Table 3.1 shows the ALB scores 

of 7 success subjects X \ , • • * ,^7, and those of 13 failure individuals Y\ , ■ • •, K13. Thus, we 

form a 13 x 7 matrix with X values in the top row margin and Y values in the left column 

margin as displayed in Table 3.2. In each cell of the matrix, we assign value 1 if *  <

0.5 if Y[ =  Xj, and 0 if F, > Xj, i =  1, • • •, 7, j  =  1, • • •, 13. Then, the placement value V* of 

a particular value X  is defined as the average of the column entries corresponding to that 

X.  For example, for X\ in Table 3.2, its corresponding Vxx is equal to the average of 13 

entries in column 1, that is Vx, =  2/13 =  0.15. Similarly, the replacement value Vy for Y is 

the average of the row of the entries to that related Y. Calculation details are shown in the 

Table 3.2.

Once we get the replacement values Vx and Vy, the variance of the AUC estimate is 

given by:

Var(AUC) — Variance of mean for Vx +  Variance of mean for Vy (3.2)

The variance has two components because it is affected by the variability of both X  and

Y .
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Table 3.2: Variance estimate for AUC of Albumin (ALB) from rating data for 7 success and 

13 failure subjects*____________________________________________________
Subjects X, =3 X2 = 2.8 & ii o SO X4 = 2.5 X5 = 3.6 X6 = 4.2

ot}-II VY

Y\ =3.2 0 0 0 0 1 1 1 3/1

V2 =3.9 0 0 0 0 0 1 2/7

Y3 =3.2 0 0 0 0 1 1 1 3/7

Y4 =  1.6 1 1 0 1 1 1 1 6/7

Y5 =3.8 0 0 0 0 0 1 1 2/7

Yb =37 0 0 0 0 0 1 1 2/7

Y7 =3.2 0 0 0 0 1 I 1 3/7

hi =3.8 0 0 0 0 0 1 1 2/7

Y9 =  4.1 0 0 0 0 0 1 0 1/7

Kio =3.6 0 0 0 0 0.5 1 1 2.5/7

Yu =4.3 0 0 0 0 0 0 0 0

Yn =2.3 1 1 0 1 1 1 1 6/7

U3 =3.5 0 0 0 0 1 1 1 3/7

Vx 2/13 2/13 0 2/13 6.5/13 12/13 11/13 0.39

*The entries in the table are the placement values of X  with respect to Y, defined as 1 if 

Y < X,  0 if Y > X  and 0.5 if Y =  X.  The data in the margins of the Table are calculated with 

the averages of the related rows/columns and are defined as the placements corresponding 

to each X  and each Y. Thus, AUC = average of V%s= average of VyS = 35.5y^(13 x 7) =  

0.39. Var(Vx) =  E L  (Vx, - V x )2/ ( l - \ )  = 0.137, Var(Vr ) =  i j l ,  (VYj -  Vy)2/ ( 1 3 -  1) =  

0.058. ^ t(A U C ^b) = 0.137/7 + 0.058/13 = 0.024.
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The covariance for the related AUCj and AUC2 is then obtained as:

& v (AÛC|,À0c 2) =  Cov(V* l’Vh) +  (3.3)
nx ny

where Vx-t and Vyi are replacements values for AUC,, / =  1,2. For data in Table 3.1, the 

covariance of AUCUls and AUC^p , using replacement V*, Vy for two nutritious scores 

ALB and TP is given in Table 3.3.
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Table 3.3: Calculation of covariance of two AUCs using the covariance of Placement Values

S ub j G ro u p P la c e m e n ts

an d  N o. Va l b V t p

S u c c e ss  S u b je c ts

1 2 /1 3 6 /13

4 2 /1 3 1/13

6 0 0

7 2 /1 3 4 /1 3

16 6 .5 /1 3 10 .5 /13

18 12/13 13/13

19 11/13 9 /13

C o v a ria n c e 0 .1 2 3

F a ilu re  S u b je c ts VALB V Tp

2 3/7 3/7

3 2/7 M l

5 3/7 3 .5 /7

8 6 /7 5 /7

9 111 4 .5 /7

10 2/7 1.5/7

11 3/7 5 /7

12 2/7 2 .5 /7

13 M l 2 .5 /7

14 2 .5 /7 4 .5 /7

15 0 M l

17 6/7 611

2 0 3/7 3 .5 /7

C o v a ria n c e 0 .0 4 2

C o v (A U C A /fl, A U C r /4  =  0 .1 2 3 /7  +  0 .0 4 2 /1 3  =  0 .0 2 1 .
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3.1.4 A Chi-square test for multiple contrasts of AUCs

Having obtained the variance-covariance matrix for the vector of parameter estimates AUC =  

(AUC), • • •, AUQ.)', we can construct, for any linear comparison L' AUC,

L'ÀÛC -  L'AUC
[L'SL]1 / 2

~yv(o,i),

where L is a column vector of coefficients, S is the variance-covariance matrix of AUC. 

Then a Wald-type confidence interval for the linear comparison is easily obtained. De- 

Long et al. (1988) gave an example to compare the diagnostic accuracy of K-G  to the 

average of ALB and TP based on the same data we described in former section. In this 

case, L=  (1, —0.5, —0.5)', and the two-sided confidence interval for this contrast is given 

by (—0.223, 0.231). Since the Cl covers 0, indicating that the test accuracy of K-G  is not 

significantly improved as compared with the average of ALB and TP.

DeLong et al. (1988) also concluded that their results can be generalized to any set of 

linear comparisons L(AUC) which is similar to Scheffe’s method (Nelson, 1989), here L is 

a comparison matrix. Similarly, we have

(AUC -  AUC )fLf [LSL1] ~ 1L (AUC -  AUC)

is X2 distributed with degrees of freedom equal to the rank of LSL! . For example, DeLong 

et a l  (1988) compared the K-G versus ALB and K-G versus TP simultaneously to test 

whether the K-G score is better than at least one of the other indices, ALB and TP, then the 

contrast matrix is defined as
/  1 -1  0

V1 0 /
The relevant p-value is computed as 0.47 showing that the 2 degrees of freedom test that 

the K-G score is different from at least one other test is not significant at the 0.05 level.

This omnibus %2 test above has been implemented in PROC LOGISTIC in SAS V9.2. 

However, it does not indicate which tests are significantly different even if the overall test 

is significant. One alternative is to construct simultaneous confidence intervals for multiple
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contrasts of AUCs. In addition, we improve the small sample properties by applying the 

method of variance estimates recovery (MOVER) as shown in Donner and Zou (2010) with 

the transformed CIs by logit and inverse sinh transformation for each AUC (Newcombe, 

2001).

3.2 Our Approach

When setting simultaneous confidence intervals for multiple contrasts of AUCs, the first 

step should be constructing a valid Cl for each AUC. DeLong et a l  (1988) provided a 

Wald type Cl based on U statistic. However, a Wald type symmetric Cl only performs 

well when sampling distributions of parameter estimates are at least approximately normal 

distributed. Since AUC values between 0.5 to 1, and the point estimate of AUC is related 

to its variance, the sample distribution for AUC is hardly symmetric especially when the 

underlying value is large. For large values of AUC, Wald-type Cl can lead to an upper limit 

of greater than 1.

3.2.1 Improving Cl for a single AUC with transformations

Newcombe (2001) introduced logit and inverse sinh transformations for binomial propor­

tion (p ) to improve the performance of confidence interval procedure when sample size is 

not large. It is shown that the former interval always contains the latter, which is the Wilson 

interval (Wilson, 1927). Specifically, he showed that the Wilson interval is symmetric on 

the logit scale, given by

Since by definition AUC is a probability, here we apply the same transformations to get 

the improved Cl for a single AUC by replacing p  for AUC. For logit transformation, we
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first take a logit transformation for AUC:

logit(AUC) =  ln[AUC/(l -  AUC)],

and then apply the delta method to obtain the standard error, which is given by

--------  - £e~.(AUC).
AUC(1 -  AUC)

Thus the 100(l-a)%  Cl for logit(AUC) is given by

yielding the Cl for AUC as
/ e e \
V 1 +  el ' \ + e u )

For method based on inverse sinh transformation, we take inverse sinh transformation 

of the margin of error for logit(AUC), resulting in the modified Cl for AUC as

Both transformations generate asymmetric CIs around AUC.

3.2.2 Confidence interval estimation for a linear combination of pa­

rameters

Once we get the Cl for each AUC, the next step is to generate simultaneous confidence in­

tervals for multiple contrasts of AUCs. The key point for simultaneous confidence intervals 

construction is to set the Cl for a linear combination of parameters of interest when the CIs 

for each parameter components are available.

Zou and Donner (2008) proposed a method to construct confidence interval for a dif­

ference between two measures using confidence limits for each parameter. This method is

1 + e ln ’ 1 -
e'

where (/„,«„) =  logit(AUC) ±  2arcsinh
/ Za/2 £e.(AUC)
 ̂ 2 AUC(1 -A U C )
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further generalized to estimate the Cl for a linear combination of parameters (Zou, 2008; 

Zou et al., 2009) and a ratio of two parameters (Li et al, 2010; Donner and Zou, 2010). The 

approach is termed as MOVER meaning a method of variance estimates recovery because 

the key idea is to recover variance estimates from confidence limits for single parameters. 

The MOVER only requires the efficient confidence limits for each parameter components 

and does not enforce symmetry around the final CL Furthermore, the confident limit for 

function of parameters using MOVER can be easily calculated in a closed form, no inter­

active or re-sampling procedures are needed. Here we provide a summary of the MOVER 

approach.

We start with an approximate 100(1 — a)%  two-sided confidence interval construction 

(L ,t/) for 0i +  02, where 0\ and 02 are parameters of interest. Denote 0i and 02 are their 

point estimates separately and assumed to be independent. Using the central limit theorem, 

the lower limit L is given by

L = 9 \  + 0 2 - z a/2 \/var(0 i) +  var(02), (3-4)

where za /2 is the upper a / 2  quantile of the standard normal distribution, and var(0,),/ =  

1,2, are unknown, so they need to be estimated.

Now suppose that a 100(1 -  a)%  confidence interval for 0, is (/¿,w,-), i = 1,2. Simple 

derivation can show that l\ + 12 is closer to L than 0i +  6 2 , thus we can estimate var(0,) at 

0, = i = 1,2. Again, by the central limit theorem, we have

li = d i - Z a / 2 y ^ ( d i ) i  i ’2 ’

then the variance estimate for var(0,) at 0, =  /, is given by

^r(0,) = (0; - / , ) 2/4/2-

Substituting these variance estimates into equation (3.4), it gives the lower limit L for 

0| +  02 as

L  =  01 +  02 — za/2 \ /  var(0i) +  var(02) (3.5)
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=  d \ + 6 2 - Z a/2 ^ { Ô l - h ) 2 / z 2a/2 + (ê2 ~ l2)2/ z 2a/2

= 0i +  02 — \ j (A -  h ) 2 +  ($2 — h ) 2-

Similarly, we estimate var(0,) for upper limit U at 0, =  w,-, i = 1 ,2 , since u\ + u 2 is close to 

U, then we obtain the upper limit U for 0| +  02 as

U =  0i +  02 +  \ J («i — 0 i)2 4- («2 — &2)2- (3-6)

Noticing that the conhdence interval for —0, is —/,•), we rewrite 0] — d2 as 0i +  (—02), 

then the confidence limits for 0i — 02 are:

L — 0i -  02 — t/ ($ i  -  h ) 2 +  («2 — Qi)2 (3-7)

i/  =  0i — 02 +  \ j  (u\ — 0i )2 +  (02 — h ) 2- (3-8)

A A
The MOVER approach can also be extended to the cases where 0i and 02 are correlated 

with the correlation coefficient p > 0, in this condition, the confidence limits for 0| -  02 

are given by adding covariance terms in equations (3.7-3.8), yielding expressions as

L =  0[ — 02 -  \ j  (01 — h )2 +  (w2 Ô2 )2 2p(0i — I\){u2 — 02 ) (3.9)

U =  0J — 02 -f (mi — 0l)2 +  (02 — ¿2)2 “  2p(wi — 01 ) (02 — h),  (3.10)

where p  is the estimated correlation coefficient between 0i and 02.

The above steps can be generalized to obtain Cl for a linear combination of K parame­

ters c7 0 =  ci 0/ as

K  K

L = \ lllc&  -min(c///,ciwi)]2 (3.H)
1= 1 V ¿=1
K  K

U =  J ^ C iê i+ \ Y , i ci 0 i - max(c///,c/M/)]2, (3.12)
1= 1 V ( = i

where w,) is the CI for 0,, i =  1, • ■ •, A2
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3.2.3 Confidence interval for a difference of two correlated AUCs

For two correlated AUCs derived from the same cases, once we get the confidence limits 

for each AUC, it is easy to get the Cl for their difference using MOVER. Let (//, w/) be the 

confidence limits for AUC/, i =  1,2, and AUC/, i =  1,2 are the related estimates. Applying 

equations (3.9-3.10), the confidence limits for AUCj — AUC2 are:

L  =  A U C , -  A U C 2 -  \ / ( A U C | -  /] ) 2 +  («2 -  A U C 2)2 — 2 p (A U C , — / , ) (m2 — A U C 2) (3 .1 3 ) 

U  = A U C , -  m c 2 + \j{u\ -  A U C i )2 + (A U C  2 —12)2 — 2 /3(mi -  A U C , ) (A U C 2 -  h), (3 .1 4 )

where p denotes the estimated correlation coefficient between the estimated AUCi and 

AUC2.

3.2.4 Critical values for multiple comparisons

When we construct a confidence interval for a difference between two AUCs, we simply 

apply the MOVER to the limits for single AUCs obtained with critical values from the 

standard normal distribution. However, when we construct simultaneous confidence inter­

vals for multiple comparisons of more than 2 AUCs, the confidence level for each contrast 

should be higher than 100(1-«)%, which suggests that the critical value for simultaneous 

confidence intervals must be higher than that from the standard normal distribution to main­

tain the overall coverage. Donner and Zou (2010) gave the details of obtaining appropriate 

critical value for multiple comparisons. Here we present a summary.

Denote 0 =  (0), 02, ..., 9 k )T  as the parameters of interest from K  comparable groups, 

with 0 =  ( 0 |, 02, 9k ) and variance-covariance matrix given by V. For any I  sets of linear 

functions c,T9, i =  1 ,2 ,...,/, using the multivariate central limit theorem, asymptotically, 

we have c,r 0 ~  N (c J 9, var(cf 0)). By definition of simultaneous confidence intervals, we 

need to select critical value ca which satisfies

Pr c j  9 — ca \J  var(cjr  0) c j  9 < c j  6 +  ca var( c j 0), for all i =  1 -  a.
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The above equation is

Pr( —ca < ——  < ca for all i j =  1 — a  (3.15)
V y j n r t f » )  ’

Denote T  =  (7), 72, 7 ) ) ,  with element

1 z £ l£  , =  l ,-----------------  , t 1 , . . . , l .

var (c f6)

In order to obtain the critical value ca , we first need to get the dispersion matrix for T. Let 

D be a diagonal matrix with var(cf  9) as the /th element, i.e.

D = diag(var(c[ 0), var(c2 0), • • • , var (cf  0)),

then we have

V7>/

 ̂ c[{9 -  0 )var(c[0) ' / 2  ̂

Cj (0 -  0)var(c2 0 ) -1/2
=  Z7-'/2

f  c \ { e - Q )

4 ( 0 - 0 )

\

y c f  (9 — 0)var(cf 9) ' / 2 y V c ] { B - 9 )  )

=  D ~ ^ 2CT (9 — 0),

where C =  (ci ,C2, Then the dispersion matrix of vector T is

=  Z r ‘/ 2Cr V ar(0 )C £ r1/2,

which can be estimated by substituting estimates for unknown parameters.

Since T  is asymptotically multivariate normal, we can get the critical value ca by calcu­

lating the 1 -  a  quantile of the distribution of max, |7}| with simulation approach (Westfall 

et al., 1999) or the inversion algorithm of the multivariate normal distribution (Genz, 1992).

Alternatively, the the SAS IML function PROBMC can provide critical value ca for the 

Tukey-Kramer all pairwise comparisons and the Dunnett’s comparisons with a standard. 

In this SAS function, the estimated covariances in the variance-covariance matrix Var(0)
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are substituted as 0. It has been shown that this substitution turns out a conservative criti­

cal value especially when the estimated covariance between parameter estimates are not 0 

(Nelson, 1989; Hayter, 1984).

For other cases that the critical value ca is not available in PRO BMC, Donner and 

Zou (2010) provided a SAS IML function to calculate ca based on data generated from 

/-dimensional normal distribution with mean vector 0 and estimated variance matrix R.

3.2.5 Simultaneous confidence intervals for comparing multiple AUCs 

using MOVER

In general, 5 types of multiple comparisons are frequently discussed for different problems 

of interest in application (Hsu, 1996).

1. Scheffe’s all contrast comparisons are used to test all possible linear contrasts of 

groups, and the number of comparison groups can be infinite.

2. Tukey’s all pairwise comparisons are applied to compare all possible pair-wise groups.

3. Bonferroni’s subgroup selection comparisons are to compare some pre-selected groups, 

the number of these groups can exceed the set of pairwise comparisons specified in 

the Tukey procedure.

4. Dunnett’s multiple comparisons with a standard are designed for situations where all 

groups are to be compared with one reference group.

5. Multiple comparisons with the best are useful to identify the best among groups.

Among these 5 comparisons, all pairwise comparisons and multiple comparisons with a 

standard are most common, and thus will be our focus.

Similar to the simultaneous confidence intervals for proportions (Donner and Zou, 

2010), we can get the simultaneous confidence intervals for AUCs with 4 steps:

1. Obtain critical value ca using SAS IML function PROBMC;



33

2. Calculate the variance-covariance matrix for AUC — (AUCi, ■ • ■, A U Q ) using the 

formulae provided in DeLong et a l  (1988);

3. Construct modified CIs by logit or inverse sinh transformations based on the critical 

value obtained in step 1 and variance covariance estimates in step 2;

4. Obtain simultaneous confidence intervals for multiple comparisons with the MOVER.

Here we use the same data in DeLong et a l  (1988) to show how to get the two-sided 

simultaneous confidence intervals with our approach. First, we compare both TP and ALB 

to K-G using Dunett’s comparisons with a standard, and the logit transformation is chosen 

in calculating the improved Cl for AUC.

1. We first get the appropriate critical value ca for two-sided Dunnett’s comparisons 

with a standard with 3 measurement groups using

c a  —  probmc(“Dunnett2”,.,confidence level,number of groups — 1)

= probmc(“Dunnett2”, 0.95,2)

resulting in ca — 2.2121.

2. Estimates of 3 AUCs

AUC — (AUCrp, A U Q ^æ, AUC^_g) j

are given by (0.6478, 0.7366, 0.7258), with the estimated variance-covariance ma­

trix:

Var(ÂUC) -

( O.l2

0.0076 

v 0.0028

0.09272

0.0033

\

0.10282 y
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3. Using the critical value in step 1 and the estimates in step 2, we get the confidence 

limits for logit(AUCAr_G) as

(/, u) logit(AUC^_G)
± c  s7.( A U C k - q )

6“ a u c ^ g ( i - a u c ^ g )

logit(0.7258) ±2.2121 

0.9734 ±  1.1427 

(-0 .1693, 2.1162).

0.1028
0.7258(1 -0 .7258)

(3.16)

So the logit Wald-type Cl for AUCa:_g is

{L, U ) k - g

/ e1 eil \
V 1 + e r  1 + e u)

g - 0 . 1693 ^2.1162

1,1 _|_ g - 0 . 1693 ’ ] _|_ ^2.1162

(0.5422, 0.8925). (3.17)

Similarly, the CIs for AUC^ls and AUC^p are given by

(L, U)ALB =  (0.5071, 0.8895), 

(L, U)Tp = (0.4132, 0.8277).

4. Applying equations (3.9-3.10) to the former 3 CIs gives the simultaneous confidence 

intervals of Dunett’s multiple comparisons with a standard for the 3 diagnostic tests 

treating K-G score as a control as follows

ALB vs K - G  = (-0 .2192, 0.206),

TP vs K  — G — (—0.3264, 0.127).

For example, the lower limit for the difference of ALB and K-G is given by

L a  L B  vsK G

= 0.7366 -  0.7258 -  y /0.22952 +  0.16672 -  2 x 0.34 x 0.2295 x 0.1667

-0.2192. (3.18)
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Based on the simultaneous confidence intervals, we conclude that K-G score is not signifi­

cantly different from either ALB score or TP test at the 5% overall significant level.

Similarly, we compare each two of the 3 diagnostic measurements using two sided 

Tukey’s all pairwise comparison, and the inverse sinh transformation is used to calculate 

the improved Cl for a single AUC.

1. We first get the appropriate critical value ca for two-sided Dunnett’s comparisons 

with a standard with 3 measurement groups using

C a  —  probmc(“range”,.confidence level,number of groups)/\/2 

=  probmc(“range”, 0.95,3)/\/2

resulting in ca — 2.3437.

2. Estimates of 3 AUCs are

3. Using the critical value in step 1 and the estimates in step 2, we get the confidence 

limits for logit(AUC^_G) based on the inverse sinh transformation as:

AUC -  (AUCtt>, A U Q L5, AUCK_G) = (0.6478, 0.7366, 0.7258)

with the estimated variance-covariance matrix:

\

Var(AUC) =  0.0076 0.092

v 0.0028 0.0033 0.10282 y

0.9734 ±2arcsinh(0.6053) 

(-0 .1733, 2.1201). (3.19)
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So the Cl for AUC^_g based on inverse sinh transformation is

{L, U)k - g
/ e n e n \
V 1 +  eln ’ 1 +  eUn / 

g - 0 . 1733 g2 .1201

( l + g - 0 . 1 7 3 3 ’ l + e 2.1201

(0.4568, 0.8928). (3.20)

Using the same procedure, the modified CIs for A U C ^ b and AUC7B with inverse 

sinh transforamtion are given by

(L, U)alb =  (0.4900, 0.8906),

(L, U)tp =  (0.4068, 0.8315).

4. Applying equations (3.9-3.10) to the former 3 CIs gives the simultaneous confidence 

intervals of Tukey’s all pairwise comparisons for the 3 diagnostic tests as follows

ALB vs K -  G =  (-0 .2356, 0.2714),

TP vs K -  G = (-0 .3314, 0.2038),

ALB vs TP = (-0 .0536, 0.2335).

For example, the lower limit for the difference of ALB and K-G is given by

La LB vs K-G

= 0.7366 -  0.7258 -  y/0.24662 +  0 .1672 -  2 x 0.34 x 0.2466 x 0.167 

=  -0.2356. (3.21)

Based on the simultaneous confidence intervals, we can conclude that there is no ev­

idence to suggest that these three diagnostic tests are different from each other at the 5% 

overall significant level. However, judging from the interval width, it is clear that the study 

had little power to detect meaningful difference.
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Chapter 4

SIMULATION STUDY

The methodology presented in the previous chapter was developed using large sample the­

ory. Therefore, its performance in finite samples must be evaluated before applying to 

practice. To investigate and compare the performance of these three Cl methods for both 

single and multiple AUCs, we carried out a series of simulation studies. Our evaluation 

focused on the extent to which the empirical coverage of the confidence interval matched 

with the nominal level, while tail errors and confidence interval width were regarded as 

secondary criteria.

4.1 Study design

4.1.1 Selection of parameter values

The parameters examined were the number of diagnostic tests (/:), sample size rix for dis­

eased group X  and ny for non-diseased group Y, the correlation coefficient p  between tests, 

the mean test outcomes for diseased subjects X, the variances of test outcomes for the dis­

eased and non-diseased subjects (cr^, ay), and the area under the ith ROC curve (AUQ, 

i =  1,■••,*)•

In these examined parameters, the values of k were selected as 1,2, 4 and 7. For k =  1, 

we assessed the performance of 3 Cl procedures for a single AUC. For k = 2, we compare 

the corresponding methods using the MOVER for a difference between two AUCs. And 

for k= 4 and 7, we compare 3 simultaneous confidence intervals approaches for 4 and 7 

AUCs, respectively. The sample size combinations (ny,rix) were chosen as small balanced
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(25, 25), moderate balanced (50, 50), large balanced (100, 100), and unbalanced (25, 50), 

(25, 75), (50, 100). The strength of the correlation p between the test groups were set as 

weak (0.2), medium (0.5) and strong (0.8). The mean and variance of test values for the 

‘non-diseased’ subjects were chosen as jiy — 0 and <7^— 1. While the mean of test values 

for the ‘diseased’ subjects jix was given by [ix =  [O“ 1 (AUC) y  +  Oy] +/i>s where <i>- i  

is the inverse cumulative density function of standard normal distribution. The variance for 

the ‘diseased’ subjects <t|  was chosen as 1, 2 and 3 so that it was equal, moderately close 

and the least close to <7y.

When k =  1, since values of AUC can range between 0.5 to 1, we chose true AUC value 

from 0.6 to 0.9 in step of 0.1 to imitate a wide range of test accuracy in practice from low 

to high.

For multiple comparisons k = 2, 4 and 7, a specified group of values for AUC may 

not represent the whole possible situation, we randomly generated values of AUC from 

uniform distribution U (0.5,1). To have a panoptic assessment of the performance, we 

considered 1000 sets of random values for AUCs and interpret their results with basic 

statistics (quartiles, mean, extrema).

Tukey’s all pair-wise and Dunett’s comparisons with a standard were considered to 

construct the related simultaneous confidence intervals for k >  2. For Dunett’s compar­

isons, both one sided and two sided simultaneous confidence intervals were discussed. The 

nominal levels were set at a  = 0.10 and 0.05.

4.1.2 Methods compared

The methods considered include the Wald method, and two methods based on logit and 

inverse sinh transformation of AUCs. Variance estimate for the Wald method was obtained 

using results of DeLong et al. (1988), and that for the transformed AUC were obtained 

using the delta method. The performances of the three procedures were evaluated in terms 

of coverage probability, the symmetry of tail errors (i.e. non-coverage probabilities), and 

average interval width.
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For confidence intervals for a difference between two AUCs, we applied the MOVER 

to each of the three methods for a single AUC.

Three simultaneous confidence intervals approaches for multiple AUCs were constructed 

using the MOVER in combination of appropriate critical values for multiple comparisons.

The coverage probability for a single AUC and a difference of two AUCs is defined as 

the percentage of Cl that covers the true AUC value, the coverage probability for a differ­

ence of two AUCs represents the percentage of Cl that covers the difference of two true 

AUC values, and the coverage probability for multiple AUCs means the percentage of si­

multaneous confidence intervals that cover the true values of linear comparisons of AUCs 

simultaneously. Recognizing that no hard rules exist, we used empirical coverage probabil­

ity to be in the range of 94.57-95.43%, which is 0.95 ±  1.96a/ (0.95 x 0.05)/10000 in the 

evaluation when the number of simulation runs are 10000 and for the 95% Cl with 1000 

runs, we used the target range of 93.65-96.35%.

The average interval width for a single AUC or a difference between two AUCs is 

the average width of CIs based on the simulation runs, and the average interval width 

for multiple AUCs is defined as the average interval width for each contrast in multiple 

comparisons. For a certain coverage probability, we prefer confidence interval with the 

least average width as it represents higher precision.

The left and right tail errors were used to measure the symmetry of tail errors. The 

left tail error was defined as the proportion that the true value is less than the lower limit, 

and the right tail error was the proportion that the true value of the parameter is greater 

than the upper limit. For a 100(1 — a)%  confidence interval (/, u) of a parameter 0, it 

should have Pr{l >  0) =  Pr{u <  0) =  a / 2  ensuring that only extreme values are excluded 

from the interval. As a result, the symmetry of tail errors are desirable for confidence 

interval construction. We did not compute tail errors for simultaneous confidence intervals 

because both left and right tail errors may occur simultaneously in one set of simultaneous 

confidence intervals.
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4.2 Data generation

4.2.1 Data generation for a single AUC

Without loss of generality, the data for non-diseased subjects were generated from stan­

dard normal distribution, and the outcomes for diseased subjects were generated from 

N(iix,Gx),  where was chosen as 1, 2 and 3 which are equal, closely equal and far 

close to the related variance in non-diseased group. For a given value of AUC, the value for 

Hx was given by fix = <t>-1 (A U C )^ c ^  + cfy, where <t>-1 is the inverse standard normal 

cumulative distribution function.

For each parameter combination, a total of 10,000 replicates were conducted. Both 

90% and 95% confidence intervals were constructed, using three approaches discussed in 

Chapter 3.

4.2.2 Data generation for multiple AUCs

For comparing k diagnostic tests derived from the same subjects, the data of all subjects 

from non-diseased and diseased groups were both generated from multiple normal distri­

bution. The k test results for ‘non-diseased’ subjects Y were obtained from k dimensional 

normal distribution with mean vector fly =  (0, ■••,0) i x* and variance-covariance matrix 

Vy =  (1 — p)Ik +  pJk, where /* and 7* are ^-dimensional identity matrix and k x k unity 

matrix. The k test results for ‘diseased’ subjects X  were generated from k dimensional nor­

mal distribution with dispersion matrix Vy = (i — p)l^  +  pJ^, where p  was chosen as 0.2, 

0.5 and 0.8 showing weak, moderate and strong correlations between tests and i was taken 

as 1, 2 and 3 indicating the different values of variance of Y for each diagnostic test. The 

mean vector for diseased subjects can be calculated by the given values of AUCs for k tests 

and the known information for test outcomes of X  and Y . For example, the y-th mean of test 

outcomes for diseased subjects was calculated as: =  & ~l {A\JCj)^/Vx{j , j )  +  V y ( j , j ),

where Vx{j , j )  and Vy(j , j )  are the y'-th element of the diagonal of the related dispersion
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matrix.

To have a broad view of the performance, we randomly sampled 1000 sets of true 

values for AUCs. For each set of the true values for AUCs, 1000 datasets were generated 

and simultaneous confidence intervals were constructed to determine coverage rate and 

average interval width. We interpreted the results for the 1000 sets of true values for AUCs 

using coverage probability and average width with summary statistics such as quartiles, 

mean, minimum and maximum values.

4.3 Results for a single AUC

Simulation results for comparing the three confidence interval procedures for a single AUC 

is shown in Table 4.1, in which only results for a  =  0.05 and =  2 are presented. The 

results for «  =  0.1 are similar to those for a  — 0.05, and that for =  2 and 3 are similar 

to those for =  1.

Results show that the Wald-type procedure tends to be anti-conservative. The deficiency 

is more profound for higher values of AUC. For example, when sample sizes for diseased 

subjects X  and non-diseased subjects Y are small nx =  ny =  25, the coverage probability 

can be as low as 90.35% when the true AUC value is 0.9. Even when sample sizes are quite 

large ny =  nx =  100, the coverage rate of Wald-type Cl is lower than the target range of 

94.57% to 95.43%.

Procedures based on logit and inverse sinh transformations perform better than Wald 

approach in terms of coverage probability. For large or balanced sample sizes, the cover­

age rates generated from these two approaches are both very close to the nominal level, 

and compared to these two modified CIs, inverse sinh transformed Cl performs better with 

coverage rate closer to the nominal level and slightly shorter interval width as well. How­

ever, when sample sizes are small and the numbers of subjects in non-diseased group and 

diseased group are unequal, the inverse sinh method turns to be liberal. For example, when 

ny =  25, nx =  75 and AUC = 0.9, the inverse sinh method gives the coverage probability
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as 93.7%, below the target range of 94.57% to 95.43%.

The Wald procedure is noticeably unbalanced in tail errors, and the difference of tail 

errors increase as the true AUC value increases for all sample sizes, the two transformed 

CIs improve the symmetry of tail errors and inverse sinh type Cl is seen to be slightly 

more balanced. For instance, when ny =  25, nx  =  25 and AUC =  0.8, the asymmetry of 

tail errors is serious with 6.04% left tail error rate and 0.94% right rate, after inverse sinh 

transformation, the tail errors are fairly balanced with 2.97% left error rate and 2.72% right 

error rate.

The three methods provide similar interval width for the same parameter combination, 

and all three methods give shorter interval width when the sample sizes are larger or the 

AUC value is bigger. Although the width of inverse sinh type Cl is shorter than the logit 

type Cl in many cases, the difference is small.

4.4 Results for a difference of two AUCs

We only report the results for a  =  0.05, =  1 and sample sizes nx = ny =  25,50,100,

and nx = 50 ,ny ~  25. Only the left tail error rates are shown in the figures for brevity. 

Since the results for a  =  0.1 are similar to those for a  — 0.05, the results for =  2, 3 are 

similar to those for <7̂  =  I, and the results for nx =  75,ny — 25, and nx =  100, ny =  50 are 

similar to the results for nx =  50, ny — 25. The results for right tail error rates are similar 

to the results for left tail error rates.

4.4.1 For n x  =  n y  =  25

Figure 4.1 shows the box plots of coverage probability and left tail error rate as well as 

average interval width using the three Cl methods and the MOVER for Cl of a difference 

of two AUCs when sample sizes are nx =  ny = 25. Figures 4.1 (a)-(c) suggest that for the 

three correlation coefficients considered among measurements by two diagnostic tests, the 

Wald method generates Cl with at least 25% of coverage probabilities outside the target
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range, especially when p  =  0.8, some coverage probabilities are even below 92%. For 

the two methods based on transformation, when p = 0.2 and 0.5, the coverage rates are 

close to the target range. The inverse sinh approach performs better in terms of coverage 

probability, in that most of the coverage probabilities fall inside the range, and those fell 

outside the range are still close to the target range. Furthermore, the median coverage rate 

obtained from inverse sinh transformation is virtually identical to the nominal level. When 

p =  0.8, two modified methods produce the most of coverage rates that are above the lower 

bound of the target level of 93.65%. The procedure based on the transformation provides 

conservative coverage percentages.

Figures 4.1 (d)-(f) indicate that Wald method provides unbalanced tail errors, especially 

when p — 0.8, some left error rates are even higher than 6%. Two transformed methods 

give similar range of tail rates, and the inverse sinh transformation gives the left tail error 

rates more symmetric around 2.5% than logit method.

Figures 4.1 (g)-(i) show that all three methods provide shorter interval width as p in­

creases. For example, the maximum interval width for logit method decreases from more 

than 0.4 when p =  0.2 to 0.3 when p =  0.8. For a fixed p, the method based on inverse 

sinh transformation has slightly shorter interval width than logit method.

4.4.2 For nx =  50, ny —  25

Figure 4.2 presents the boxplots of coverage probability, left tail error rate and average 

interval width for Cl construction of a difference of two AUCs when the sample size are 

unbalanced nx  =  50, hy =  25. Figures 4.2 (a)-(c) suggest that, similar to the results for 

nx  =  ny =  25, when p = 0.2 and 0.5, the inverse sinh method has the best performance 

among these three methods in terms of coverage rate, when p = 0 .8 , two methods based on 

transformation have all the coverage rates above the lower bound of target range, but the 

two methods are conservative especially for logit method.

The left tail errors are shown in Figures 4.2 (d)-(f), Wald method has the largest range 

of tail errors for all three correlation coefficients. When p =  0.8, the left tail error rate for
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Wald method can be as high as 6%. Two transformed methods give similar range of error 

rates.

Figures 4.2 (g)-(i) display that Wald method has the slightly wider range of interval 

width compared to the two modified methods, and two transformed methods give similar 

interval width.

4.4.3 For nx = n y  =  50

Figure 4.3 gives the boxplots of coverage probability, left tail error rate and average interval 

width for Cl construction of a difference of two AUCs when the sample sizes are moderate 

and balanced n x — ny — 50. Figures 4.3 (a)-(c) show that when p = 0.2 and 0.5, the inverse 

sinh method has the best performance with the most of the coverage rates inside the target 

region and those fell outside the range are still close to the target range. When p  =  0.8, the 

Wald method provides coverage close to the nominal level, and two transformed methods 

tend to be conservative especially for logit method.

Figures 4.3 (d)-(f) show that similar to the results for small sample size combination, 

Wald method has the widest range of left tail error rate and two transformed methods have 

the similar performance.

Figures 4.3 (g)-(i) indicate that three methods have similar interval width, and the width 

decreases as p increases.

4.4.4 For nx =  ny  =  100

Figure 4.4 shows the boxplots of coverage probability, left tail error rate and average inter­

val width for Cl construction of a difference of two AUCs when the sample sizes are large 

and balanced nx =  ny =  100. Figures 4.4 (a)-(c) show that when p = 0.2 and 0.5, the three 

methods have similar performance that the coverage rates are in the target range in most 

cases and those fell outside the range are still close to the target range, furthermore, the 

median coverage probabilities are all close to 95%. When p  = 0.8, the coverage rates from
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Wald method is closest to the nominal level, and the two methods based on transformation 

are slightly conservative.

Figures 4.4 (e)-(f) show that the Wald method has the widest range of left tail error rate 

especially for large p, two transformed methods have similar performance for tail error 

rates.

Figures 4.4 (g)-(i) indicate that three methods have similar interval width, and the width 

decreases as p increases.

4.5 Results for multiple comparisons of AUCs

For brevity, we only present the results for two sided simultaneous confidence intervals of 

Tukey’s all pairwise comparisons (Figures 4.5, 4.7, 4.9 and 4.11) and Dunett’s multiple 

comparisons with a standard (Figures 4.6, 4.8, 4.10 and 4.12) when a  = 0.05, ax  =  1, k =  

4, and sample sizes nx  =  ny =  25,50,100, and nx  =  50,nY = 25. Since the results for 

a  =  0.1 are similar to those for a  = 0.05, the results for ox  =  2, 3 are similar to those for 

ax  =  1, the results for k = 7 are similar to those for k =  4, and the results for nx = 75, ny = 

25, and nx  =  100, ny = 50 are similar to the results for nx  =  50, ny =  25, and the results for 

one sided simultaneous confidence intervals are similar to those for two sided simultaneous 

confidence intervals .

4.5.1 For nx — ny =  25

Figure 4.5 shows the box plots of coverage probability and average interval width using the 

three SCI approaches for all pairwise comparisons when sample sizes are nx = ny = 25. 

Figures 4.5 (a)-(c) indicate that for all three correlation coefficients among measurements 

by two diagnostic tests, the Wald method results in half of coverage probabilities below 

the target level, especially when p =  0.8, some coverage rates for Wald simultaneous con­

fidence intervals are even below 88%. For the two methods based on transformation of 

AUCs, when p =  0.2 and 0.5, their coverage rates are closer to the target region than those
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from Wald method, and the inverse sinh transformation performs better in terms of cov­

erage rate, in that most of the coverage probabilities fall inside the range, and those fell 

outside the range are still close to the target range. Furthermore, the median coverage rate 

obtained from inverse sinh transformation is virtually identical to the nominal level. When 

p =  0.8, two transformed methods provide coverage rates that are above the lower bound 

of the target region (93.65%), but the simultaneous confidence intervals are conservative 

especially for logit method.

Figures 4.5 (d)-(f) suggest that all three methods provide shorter average interval width 

as p increases. For example, the maximum interval width for Wald method keeps decreas­

ing from larger than 0.55 when p =  0.2 to less than 0.45 when p =  0.5 and it decreases 

below 0.35 when p is 0.8. For a given correlation, two transformed methods can provide 

tighter intervals than those from the Wald method, and compared with the two transformed 

simultaneous confidence intervals , the estimated interval width from inverse sinh transfor­

mation is slightly shorter than that from logit transformation.

Figure 4.6 illustrates the box plots of coverage probability and average interval width 

derived from the three SCI approaches for multiple comparisons with a standard when 

sample sizes are nx = ny — 25. The plots suggest that logit transformation has the best 

performance in terms of coverage probabilities and interval width when p = 0.2 and 0.5. 

When p = 0 .8 , two transformed methods partly improve the Wald method with the mini­

mum coverage rates closer to the nominal level, but two modified simultaneous confidence 

intervals are quite conservative in many cases. Figures 4.6 (d)-(f) indicate that the interval 

width also decreases as p increases.

4.5.2 For n x  =  50 , ny  =  25

Figures 4.7 (a)-(b) show that the box plots of coverage probabilities for the three SCI ap­

proaches for all pairwise comparisons when sample sizes are nx — 50, ny =  25 and p  =

0.2, 0.5 and 0.8. The plots show that the Wald method tends to provide confidence in­

tervals having coverage probabilities lower than the nominal level in at least half of the
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cases, especially, when p =  0.5, where some coverage rates are even lower than 90%. For 

the two methods based on transformation, when p = 0.2 and 0.5, the simultaneous con­

fidence intervals result in coverage rates closer to the nominal level than Wald method, 

where two modified methods give the simultaneous confidence intervals with most of the 

coverage probabilities falling inside the range, and those fell outside the range are close to 

the target range. When p =  0.8, two methods based on transformation produce simultane­

ous confidence intervals with most of the coverage rates above the lower bound of target 

region (93.6), but the simultaneous confidence intervals are conservative particularly for 

logit method.

Figures 4.7 (d)-(f) show consistently that the interval widths from all three methods 

decrease as p increases. As shown in the graphs, when p =  0.2, the maximum interval 

width for Logit method is around 0.48, and it reduces to 0.37 when p =  0.5, and when 

p =  0.8, the maximum interval width is only 0.27. For a fixed p, two methods based on 

transformation provide tighter interval width than that of Wald method, and compared to 

the two transformed simultaneous confidence intervals , the estimated interval width from 

inverse sinh transformation is slightly shorter than that from logit transformation.

Figure 4.8 displays box plots for coverage probabilities and average interval width ob­

tained from the three SCI approaches for multiple comparisons with a standard when sam­

ple sizes are n \  =  50, ny =  25. The results are similar to those of all pairwise comparisons. 

The figure indicates that two transformations perform better than Wald method, but when 

p =  0.8, two modified simultaneous confidence intervals give conservative overall cover­

age, especially for Logit method. Figures 4.8 (d)-(f) suggest very similar tendency of the 

interval width to those for the all pairwise comparisons at the same sample size as shown 

in Figure 4.7.

4.5.3 For nx  =  ny  =  50

Figure 4.9 gives box plots of coverage probabilities and average interval width for the three 

SCI approaches for all pairwise comparisons at balanced medium sample sizes n \ = ny =
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50. Figures 4.9 (a)-(b) show that when p = 0.1 and 0.5, the proportion of coverage proba­

bility that is outside the target range of coverage probability, (93.6%, 96.4%), is higher for 

the Wald method than for the other two transformed approaches. The inverse sinh method 

performs best among these three methods in which most coverage rates are included in the 

target range and those outside the range are still close to the target range. When p =  0.8, 

Figure 4.9 (c) indicates that more than half of the coverage rates of Wald method are below 

the nominal level and some coverage rates are even less than 91%, two transformed meth­

ods give the simultaneous confidence intervals with the most of the coverage probabilities 

larger than the lower bound of the target range, but some are too conservative especially 

for logit transformation.

Regarding the average interval width, Figures 4.9 (d)-(f) show the similar results to 

those from other parameter combinations. All three methods give narrower average interval 

width when p is larger. For instance, when p =  0.2, the maximum interval width for Wald 

method is around 0.4 and it keeps decreasing to around 0.22 when p reaches 0.8. For a 

given correlation p , two transformed methods provide more intent interval width than that 

of Wald method, and compared with the two transformed simultaneous confidence intervals 

, the estimated interval width from inverse sinh transformation is slightly shorter than that 

from logit transformation.

Figure 4.10 presents the box plots of coverage probability and average interval width 

derived from the three SCI approaches for multiple comparisons with a standard when 

sample sizes are nx =  ny =  50. The graphs give the similar results to the all pairwise com­

parisons for the same sample sizes. Figures 4.10 (a)-(b) suggest that logit transformation 

has the best performance in terms of coverage probabilities when p = 0.2 and 0.5. Fig­

ure 4.10 (c) shows that When p =  0.8, two transformed methods partly improve the Wald 

method with the minimum coverage rates closer to the nominal level, but two modified 

simultaneous confidence intervals are too conservative in some cases especially for logit 

method. Figures 4.10 (d)-(f) indicate the very similar tendency of the interval width to 

those for the all pairwise comparisons at the same sample size as shown in Figure 4.9.
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4.5.4 For nx  =  ny  =  100

Figure 4.11 gives the box plots of coverage probability and average interval width derived 

from the three SCI approaches for all pairwise comparisons when sample sizes are nx =  

ny =  25. Figures 4.11 (a)-(c) show that when p =  0.2 and 0.5, the inverse sinh method 

has the best performance among the three method with most of the coverage rates are 

inside the target range, and those outside the range are still close to the target range. When 

p =  0.8, the Wald method has the closest coverage rates to the target range, and both two 

transformed methods give conservative results.

For the average interval width, Figures 4.11 (d)-(f) suggest that all three methods give 

shorter average interval width when p is larger. For example, the maximum interval width 

for Wald method is around 0.3 when p  =  0.2 and it keeps decreasing to lower than 0.2 

when p =  0.8. For a fixed p, all three approaches give very similar interval width.

Figure 4.12 illustrates the box plots of coverage probability and average interval width 

derived from the three SCI approaches for comparisons with a standard when sample sizes 

nx = ny = 100. As shown in the graph, it gives the similar results to the all pairwise 

comparisons for the same sample size. The figure suggests that logit transformation has the 

best performance in terms of coverage probabilities and interval width when p — 0.2,0.5. 

When p =  0.8, the Wald method performs best among the three method and both two 

transformed methods give conservative simultaneous confidence intervals . Figures 4.12 

(d)-(f) indicate the very similar tendency of the interval width to those for the all pairwise 

comparisons at the same sample size as shown in Figure 4.11.

4.6 Summary

We compared the Wald, logit and inverse sinh approaches for constructing confidence inter­

val of a single AUC and a difference of two AUCs. We also compared the three approaches 

for simultaneous confidence intervals of multiple comparisons of correlated AUCs. Con­

fidence coverage probabilities, interval width and symmetry of tail errors were used as
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criteria.

For a single AUC procedure, when the number of subjects are equal in both diseased and 

normal groups, the method based on inverse sinh transformation performs best amongst the 

three methods concerning the coverage rate and tail errors for all AUC values. Specifically, 

even with group size of 25, the inverse sinh transformation still gives Cl having estimated 

coverage rate very close to the nominal level and balanced tail errors. When group sizes are 

unequal, inverse sinh approach performs well in most cases except when AUC is as large 

as 0.9 and sample sizes are small. The interval width decreases as the sample sizes or the 

true AUC value increase.

For a difference of two AUCs, the simulation results show that when p is small to mod­

erate, the method based on inverse sinh transformation has the best performance among 

the three methods in terms of coverage probability and tail errors for all sample sizes com­

bination. When p  is as large as 0.8, the Wald method provides coverage rates that are 

close to the nominal level, and the two methods based on transformation are conservative 

particularly for small sample size study. The Wald method generates the widest interval 

width compared to the other two methods based on transformation, and the interval width 

decreases as correlation or sample sizes increase.

For multiple comparisons of correlated AUCs, the results for all pairwise comparisons 

and comparisons with a standard are very similar for a same parameter combination. When 

sample sizes are small to medium and the correlation coefficient between test groups is 

small to moderate, the proportion of coverage probabilities that is beyond the target range 

of coverage probability, (93.65%, 96.35%), is higher for the Wald method than that for the 

two transformed approaches. Most of the coverage probabilities of the two transformed 

methods fall in the target interval, and those not included in the target range are close to 

the range. Compared to the two transformations, the inverse sinh transformation performs 

better in most cases of parameter combinations in terms of coverage probability. When 

correlation coefficient p is as large as 0.8, both two transformed methods generate simulta­

neous confidence intervals with most of coverage probabilities above the target range, but
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two methods are conservative in some cases.

For large sample sizes with small to moderate correlation among measurements, all 

three methods give similar coverage rates which are close to the nominal level. When 

correlation is as high as 0.8, both logit and inverse sinh methods provide conservative 

simultaneous confidence intervals and the latter method is less conservative than the former 

one with closer median coverage rate to the nominal level and less proportion of coverage 

rates above the target range.

The average width of the simultaneous confidence intervals tend to decrease as cor­

relation increases for a given sample size. When sample sizes are small to medium, two 

approaches based on transformation give intervals with less variation, and the inverse sinh 

approach provides a slightly shorter interval width compared to logit method. When sample 

sizes are getting larger, the interval widths in three approaches are nearly equal.

In summary, in terms of coverage rates, tail error rates and average interval width, the 

performance of inverse sinh transformation method is preferable among the three methods 

for both confidence interval and simultaneous confidence intervals construction, especially 

with small to moderate correlation coefficient among test outcomes.
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Table 4.1: Comparative performance of the Wald method, logit method and inverse sinh 
method in construction of a two-sided 95% confidence interval for the area under ROC
curve based on 10,000 runs

(ny, n x ) A U C

W ald

C V  (M L , M R )%  W D

L o g it

C V  (M L , M R )%  W D

In v e rse  S in h  

C V  (M L , M R )%  W D

(2 5 , 2 5 ) 0 .6 9 4 .1 6 (3 .8 8 , 1 .96) 0 .3 2 9 6 .0 3 (2 .0 6 , 1 .91) 0.31 95.71 (2 .2 8 , 2 .0 1 ) 0 .3 0

0 .7 9 3 .9 3 (4 .5 6 , 1.51) 0 .2 9 9 5 .9 3 (1 .9 6 , 2 .1 1 ) 0 .2 9 9 5 .3 3 (2 .3 6 , 2 .3 1 ) 0 .2 8

0 .8 9 3 .0 2 (6 .0 4 , 0 .9 4 ) 0 .2 4 9 6 .0 7 (1 .8 3 , 2 .1 0 ) 0 .2 5 95.41 (2 .2 3 , 2 .3 6 ) 0 .2 4

0 .9 9 0 .3 5 (9 .2 1 , 0 .4 4 ) 0 .1 6 9 5 .3 6 (2 .2 0 , 2 .4 4 ) 0 .1 8 94 .31 (2 .9 7 , 2 .7 2 ) 0 .1 7

(2 5 , 5 0 ) 0 .6 9 3 .9 5 (3 .6 8 , 2 .3 7 ) 0 .2 7 9 5 .2 3 (2 .3 5 , 2 .4 2 ) 0 .2 7 9 4 .9 4 (2 .5 4 , 2 .5 2 ) 0 .2 6

0 .7 9 3 .3 2 (4 .7 6 , 1 .92) 0 .2 5 95.11 (2 .4 3 , 2 .4 6 ) 0 .2 5 9 4 .7 3 (2 .6 6 , 2 .6 1 ) 0 .2 4

0 .8 9 2 .5 0 (6 .1 0 , 1.40) 0 .21 9 5 .1 4 (2 .5 1 , 2 .3 5 ) 0.21 9 4 .7 3 (2 .7 5 , 2 .5 2 ) 0.21

0 .9 9 0 .2 2 (9 .1 2 , 0 .6 6 ) 0 .1 4 9 4 .6 3 (2 .7 7 , 2 .6 0 ) 0 .1 5 9 3 .7 0 (3 .4 8 , 2 .8 2 ) 0 .15

( 2 5 ,7 5 ) 0 .6 9 4 .2 7 (3 .4 8 , 2 .2 5 ) 0 .2 6 9 5 .2 4 (2 .4 4 , 2 .3 2 ) 0 .2 5 9 5 .0 3 (2 .5 6 , 2 .4 1 ) 0 .25

0 .7 9 3 .9 3 (4 .2 2 , 1.85) 0 .2 4 9 5 .0 5 (2 .4 6 , 2 .4 9 ) 0 .2 3 9 4 .8 6 (2 .5 8 , 2 .5 6 ) 0 .23

0 .8 9 2 .9 8 (5 .7 5 , 1.27) 0 .2 0 9 5 .1 6 (2 .4 0 , 2 .4 4 ) 0 .2 0 9 4 .7 6 (2 .6 7 , 2 .5 7 ) 0 .1 9

0 .9 90 .71 (8 .6 0 , 0 .6 9 ) 0 .1 3 9 4 .4 2 (3 .1 3 , 2 .4 5 ) 0 .1 4 9 3 .8 7 (3 .5 4 , 2 .5 9 ) 0 .1 4

(5 0 , 5 0 ) 0 .6 9 4 .4 6 (3 .4 4 , 2 .1 0 ) 0 .2 2 9 5 .2 0 (2 .5 8 , 2 .2 2 ) 0 .2 2 9 5 .0 6 (2 .6 3 , 2 .3 1 ) 0 .2 2

0 .7 9 4 .2 9 (4 .0 2 , 1 .69) 0 .2 0 9 5 .3 5 (2 .3 5 , 2 .3 0 ) 0 .2 0 9 5 .0 7 (2 .4 8 , 2 .4 5 ) 0 .2 0

0 .8 9 3 .5 7 (5 .1 2 , 1.31) 0 .1 7 9 5 .2 8 (2 .2 0 , 2 .5 2 ) 0 .1 7 95.01 (2 .3 9 , 2 .6 0 ) 0 .1 7

0 .9 9 2 .0 3 (7 .1 2 , 0 .8 5 ) 0 .1 2 9 4 .9 8 (2 .4 6 , 2 .5 6 ) 0 .1 2 9 4 .5 5 (2 .7 6 , 2 .6 9 ) 0 .1 2

(5 0 , 100) 0 .6 9 5 .0 0 (3 .0 1 , 1 .99) 0 .1 9 9 5 .5 3 (2 .3 1 , 2 .1 6 ) 0 .1 9 9 5 .3 5 (2 .4 0 , 2 .2 5 ) 0 .1 9

0 .7 9 4 .8 8 (3 .5 6 , 1.56) 0 .1 8 9 5 .4 9 (2 .3 1 , 2 .2 0 ) 0 .1 8 9 5 .3 2 (2 .4 3 , 2 .2 5 ) 0 .1 7

0 .8 9 4 .3 7 (4 .4 2 , 1.21) 0 .1 5 95 .61 (2 .3 0 , 2 .0 9 ) 0 .1 5 9 5 .4 0 (2 .4 6 , 2 .1 4 ) 0 .15

0 .9 9 3 .2 0 (6 .0 7 , 0 .7 3 ) 0 .1 0 9 5 .4 6 (2 .3 8 , 2 .1 6 ) 0 .1 0 9 5 .2 0 (2 .5 5 , 2 .2 5 ) 0 .1 0

(1 0 0 , 100) 0 .6 94.61 (3 .0 4 , 2 .3 5 ) 0 .1 6 95.11 (2 .3 1 , 2 .5 8 ) 0 .1 6 9 5 .0 2 (2 .3 7 , 2 .6 1 ) 0 .1 5

0 .7 9 4 .3 4 (3 .4 7 , 2 .1 9 ) 0 .1 4 9 5 .0 2 (2 .3 8 , 2 .6 0 ) 0 .1 4 . 9 4 .9 3 (2 .4 0 , 2 .6 7 ) 0 .1 4

0 .8 9 3 .9 3 (4 .1 8 , 1 .89) 0 .1 2 9 4 .9 9 (2 .3 2 , 2 .6 9 ) 0 .1 2 9 4 .8 9 (2 .3 8 , 2 .7 3 ) 0 .1 2

0 .9 9 3 .1 9 (5 .5 2 , 1.29) 0 .0 8 9 4 .6 7 (2 .3 9 , 2 .9 4 ) 0 .0 8 9 4 .5 4 (2 .4 8 , 2 .9 8 ) 0 .0 8

N o te : C V  m e a n s  c o v e ra g e  p ro b ab ility . M L  an d  M R  d e n o te  th e  in te rv a l m isse s  th e  tru e  A U C  fro m  

th e  le f t a n d  th e  r ig h t, re sp e c tiv e ly . W D  d e n o te s  a v e ra g e  in te rv a l w id th .
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Figure 4.1: Box plots of 95% confidence interval for a difference of areas under 2 ROC 
curves using three methods for sample sizes nx =  ny =  25.(a)-(c) are box plots of cover­
age probability, (d)-(f) are box plots of left tail error rates, (g)-(i) are box plots of interval 
width. Each box plot was based on 1000 sets of true AUC values, p represents the correla­
tion coefficient between different tests. Methods ‘W ’, ‘12 and T  represent ‘Wald method’, 
‘Logit method’ and ‘Inverse Sinh’ method, respectively.
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Figure 4.2: Box plots of 95% confidence interval for a difference of areas under 2 ROC 
curves using three methods, (a)-(c) are box plots of coverage probability, (d)-(f) are box 
plots of left tail error rates, (g)-(i) are box plots of interval width. Each box plot was based 
on 1000 sets of true AUC values, and sample sizes nx  =  50, ny “ 25. p represents the 
correlation coefficient between different tests. Methods ‘W ’, ‘L’ and T  represent ‘Wald 
method’, ‘Logit method’ and ‘Inverse Sinh’ method, respectively.
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Figure 4.3: Box plots of 95% confidence interval for a difference of areas under 2 ROC 
curves using three methods, (a)-(c) are box plots of coverage probability, (d)-(f) are box 
plots of left tail error rates, (g)-(i) are box plots of interval width. Each box plot was 
based on 1000 sets of true AUC values, and sample sizes nx =  ny =  50. p represents the 
correlation coefficient between different tests. Methods ‘W ’, ‘L’ and T  represent ‘Wald 
method’, ‘Logit method’ and ‘Inverse Sinh’ method, respectively.



56

( a )  p - O  2 ( t> ) p  — 0 .5

lOO - 1 oo —

B  B  B
96 -

H  S  BB
96 —i

B  B  ^
1 -  L ** 04 -

S'
35
3
£  9 2  -

04 -
•s-
s
3
£  92 -

,--------------,---------------

1-
â  9 0  -

ftfi ** 

«6 - 

fcj 4 —
-  - , -----------r--------------,--------

3*
M 90 -

----------------  r -

(O) p-O

B ~

*»■ «

2È
s6

(a) p-O £>

i  B "
È
35

(f) p-O 8

2 —i 0  0  B 2  - B e e

- o - O -
-  ' "

<0> I'-O?

OB - 

Oft 

0 4 —

f

0 6 -  

0 5 -  

O 4 -

1
1 ° a " p 0 3 -

B  B  B
O 2 -

^  S
O 2 -

0 1 —

0 O •

O 1 -

0 0 -

Figure 4.4: Box plots of 95% confidence interval for a difference of areas under 2 ROC 
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based on 1000 sets of true AUC values, and sample sizes n x — ny — 100. p represents the 
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method’, ‘Logit method’ and ‘Inverse Sinh’ method, respectively.
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Figure 4.5: Box plots of 95% simultaneous confidence intervals for all pairwise compar- 
isonsof areas under 4 ROC curves using three methods, (a)-(c) are box plots of coverage 
probability, (d)-(f) are box plots of interval width. Each box plot was based on 1000 runs, 
and sample sizes nx = ny =  25. p  represents the correlation coefficient between different 
tests. Methods ‘W ’, ‘L’ and T  represent ‘Wald method’, ‘Logit method’ and ‘Inverse Sinh’ 
method, respectively.
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Figure 4.6: Box plots of 95% simultaneous confidence intervals for multiple comparisons 
with a standard of areas under 4 ROC curves using three methods, (a)-(c) are box plots of 
coverage probability, (d)-(f) are box plots of interval width. Each box plot was based on 
1000 runs, and sample sizes n \  =  ny =  25. p  represents the correlation coef ficient between 
different tests. Methods ‘W ’, ‘L’ and T  represent 'Wald method’, 'Logit method’ and 
‘Inverse Sinh’ method, respectively.
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Figure 4.7: Box plots of 95% simultaneous confidence intervals for all pairwise compar­
isons of areas under 4 ROC curves using three methods, (a)-(c) are box plots of coverage 
probability, (d)-(f) are box plots of interval width. Each box plot was based on 1000 runs, 
and sample sizes n \  ~  50, ny =  25. p  represents the correlation coefficient between differ­
ent tests. Methods 4W ’, 4L’ and T  represent 4Wald method’, 4Logit method’ and ‘Inverse 
Sinh’ method, respectively.
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Figure 4.8: Box plots of 95% simultaneous confidence intervals for multiple comparisons 
with a standard of areas under 4 ROC curves using three methods, (a)-(c) are box plots 
of coverage probability, (d)-(f) are box plots of interval width. Each box plot was based 
on 1000 runs, and sample sizes nx — 50, ny =  25. r represents the correlation coefficient 
between different tests. Methods ‘W ’, ‘L’ and T  represent ‘Wald method’, ‘Logit method’ 
and ‘Inverse Sinh’ method, respectively.



61
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Figure 4.9: Box plots of 95% simultaneous confidence intervals for all pairwise compar­
isons of areas under 4 ROC curves using three methods, (a)-(c) are box plots of coverage 
probability, (d)-(f) are box plots of interval width. Each box plot was based on 1000 runs, 
and sample sizes nx =  ny = 50. p  represents the correlation coefficient between different 
tests. Methods ‘W ’, ‘L’ and T  represent ‘Wald method’, ‘Logit method’ and ‘Inverse Sinh’ 
method, respectively.
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Figure 4.10: Box plots of 95% simultaneous confidence intervals for multiple comparisons 
with a standard of areas under 4 ROC curves using three methods, (a)-(c) are box plots of 
coverage probability, (d)-(f) are box plots of interval width. Each box plot was based on 
1000 runs, and sample sizes nx = ny = 50. p  represents the correlation coefficient between 
different tests. Methods ‘W \ ‘L’ and T  represent ‘Wald method’, ‘Logit method’ and 
‘Inverse Sinh’ method, respectively.
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Figure 4.11 : Box plots of 95% simultaneous confidence intervals for all pairwise compar­
isons of areas under 4 ROC curves using three methods, (a)-(c) are box plots of coverage 
probability, (d)-(f) are box plots of interval width. Each box plot was based on 1000 runs, 
and sample sizes n x — n y =  100. p  represents the correlation coefficient between different 
tests. Methods ‘W \ ‘L’ and T  represent ‘Wald method’, ‘Logit method’ and ‘Inverse Sinh’ 
method, respectively.
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with a standard of areas under 4 ROC curves using three methods, (a)-(c) are box plots 
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on 1000 runs, and sample sizes nx =  ny =  100. p represents the correlation coefficient 
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Chapter 5

DISCUSSION

This thesis first presented three procedures for constructing confidence interval for a single 

AUC, and then presented three approaches for confidence interval of a difference between 

two correlated AUCs, and finally developed simultaneous confidence intervals for multi­

ple comparisons of correlated AUCs derived from the same cases. The simulation results 

show that for small to moderate correlation coefficients among the test measurements, the 

method based on the inverse sinh transformation outperforms the other two approaches for 

the construction of confidence interval for a single AUC in terms of coverage percentage 

and the balance of tail errors. The advantage of this method carried over to the case of con­

fidence interval for a difference between two AUCs and simultaneous confidence intervals 

for multiple comparisons of AUCs.

The different performance of the three approaches for a single AUC can be explained by 

the normality assumption. Since the point estimate and its variance estimate for AUC are 

related, the sampling distribution for the estimate of AUC is unlikely to be normal for small 

to medium sample size. As a result, the simple symmetric Wald-type Cl for AUC cannot 

be a good approach. The method based on logit transformation improved the performance 

resulting in coverage rate close to the nominal level with balanced tail errors. In addition, 

inverse sinh transformation of AUC estimates can make the coverage rate even closer to the 

nominal level with reduced interval width.

For the construction of confidence interval for a difference between two AUCs and 

also the simultaneous confidence intervals of multiple AUCs, two key steps are needed as 

follows:
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1. Valid confidence interval procedures for a single AUC;

2. A method that can provide confidence interval for a contrast, based on confidence 

limits for separate AUCs in component.

For the first step, the simulation results in the thesis have shown that the inverse sinh 

method can provide the most efficient Cl for a single AUC among the three approaches 

especially when sample size for diseased and non-diseased subjects are balanced. Hence, 

when other conditions are unchanged, this method should also perform best for simultane­

ous confidence intervals constructions. Our simulation results indicate that the inverse sinh 

method does have best performance for simultaneous confidence intervals in most cases.

For the second step, before the introduction of MOVER, there was no simple and effec­

tive method to construct Cl for a linear combination of parameters of interest based only on 

the confidence limits for each parameter components, (schenker, 2001; Cumming, 2009). 

As shown in this thesis, the MOVER only requires accurate CIs for each parameter and 

then we can easily derive a Cl for a linear combination of parameters using closed forms. 

Moreover, MOVER reflects the sampling distributions of the components. In cases when 

sampling distributions for the parameter estimates are normal, confidence intervals by the 

MOVER approach are identical to those by the Wald method. The is because the variance 

estimates recovered using the lower limit and the upper limit are the same if the underlying 

sampling distribution is normal. Thus, for the simultaneous confidence intervals of mul­

tiple comparisons of AUCs based on Wald-type Cl of single AUC, MOVER provides the 

same symmetric simultaneous confidence intervals as calculated by Wald procedure.

We considered three representative correlations p = 0.2, 0.5 and 0.8. However, in prac­

tice, a summary from a large number of studies shows that the average correlation between 

the observations for two diagnostic tests ranges from 0.35 to 0.59 (Rockette et al., 1999). 

Hence, the simulation results for correlation coefficient p  =  0.5 is most applicable in prac­

tice. Our results show the predominant performance for the method based on inverse sinh 

transformation when correlation is small to moderate. But we need to notice that, for the 

rare case that p  is large, the inverse sinh method may give conservative confidence interval
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estimates.

The SAS macro implementing our improved method with available simultaneous con­

fidence intervals of multiple comparisons of AUCs is shown in the appendix.

We have only considered the case where each subject was tested only once by each 

instrument. Obuchowski (1997) extended the method of DeLong et al. (1988) for clustered 

data for two group comparison. Future work should evaluate the MOVER approach for 

multiple comparisons for clustered data arising from studies in which multiple observations 

are obtained by each instrument.
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Appendix

°/0macro roc (data=, var=, response=, con tra s t= , de ta i l s= no , 
alpha=.05);

°/0l e t  opts = °/0sysfunc (getoption (no tes ) )
_last_=°/0sy s func(ge top t ion (_ las t_ ) ); 

options nonotes;
°/0l e t  error=0;

/* Verify th a t  DATA= option i s  spec i f ied  */
%if &data= 70then 7>do;

%put ERROR: Specify DATA= containing the 0UT= data  se ts  of models 
to  be compared;

7ogoto ex i t ;
7*end;

/* V e r i f y  t h a t  V A R =  o p t i o n  is s p e c i f i e d  */ 

y.if & v a r =  70t h e n  70do;

70put ERROR: Specify p red ic to r  or XBETA var iab les  in the VAR= argument; 
7ogoto ex i t ;

70end;

/* Verify th a t  RESP0NSE= option i s  spec i f ied  */
7oif &response= 70then % do;

70put E R R O R :  Specify response var iab le  in the  R E S P O N S E ^  argument; 
7ogoto e x i t ;

70end;

7olet i=l;

7odo 7oWhile (70scan(&data,&i) ne 7«str() );
7«let data&i=7oScan(&data,&i);
7olet i=70eval(&i+l) ;

7*end;
7olet ndata=70eval (&i—1) ;

data  _comp(keep = &var &response);
7oif &data=7*str() or &ndata=l °/0then se t ;
70e l s e  m e r g e ;

&data;
i f  ^response not in (0,1) then c a l l  symput( Je r r o r J ,1);
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run;
°/0i f  &error=l °/0then °/0do;

°/0put  ERROR: Response must have values 0 or 1 only.;  
°/ogoto ex i t ;

%end;

/* Original SAS/IML code from author follows */ 
proc iml;

s t a r t  mwcompCpsi,z);
*;
* program to compute the  mann-whitney components ;
* z i s  (nn by 2);
* z [ , l ]  i s  the column of data  values;
* z [ ,2 ]  i s  the column of in d ica to r  va r iab les ;
* z [ i , 2 ] = l  i f  the observat ion i s  from the x population;
* z [ i ,2 ]=0  i f  the observat ion i s  from the y population;
*
* ps i  i s  the re turned  vector  of u - s t a t i s t i c  components;

rz  = r an k t ie (  z [ , l ]  );  
nx = sum( z[ ,2]  ) ; 
ny = nrow(z)-nx; 
loc = l o c ( z [,2]=1 ) ; 
p s i  = j (n ro w (z ) ,1 ,0 ) ;  
ps i  [loc] = ( rz[ loc]  -  rank t ie  
loc = loc(  z[,2]=0 ) ; 
p s i [ lo c ]  = ( nx+ranktie(z[loc  
f ree  rz  loc nx ny; 

f in i s h ;

* average ranks;
* num. of Xs ;
* num of Ys ;
* x indexes ;

z [ l o c , 1 ] ) ) / n y ; * x components ;
* y indexes ;

1]) - r z [ lo c ] ) /n x ;  * y components ;
* f ree  space ;

s t a r t  mwvar( t ,v ,nx ,ny ,z ) ;
*;
* compute mann-whitney s t a t i s t i c s  and variance;
* input z, n by (k+1);
* z [ , l : k ]  are the d i f f e r e n t  va r iab les ;
* z [ ,k+ l]  are ind ica to r  values,
* 1 i f  the observat ion i s  from population x and ;
* 0 i f  the observat ion i s  from populat ion y;
* t  i s  the  k by k vector  of est imated s t a t i s t i c s ;
* the ( i , j )  entry i s  the  MannWhitney s t a t i s t i c  fo r  the
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* i - t h  c o l u m n  w h e n  u s e d  w i t h  t h e  j - t h  c o l u m n .  T h e  o n l y

* o b s e r v a t i o n s  w i t h  n o n m i s s i n g  v a l u e s  in e a c h  c o l u m n  a r e

* u s e d .  T h e  d i a g o n a l  e l e m e n t s  are, h e n c e ,  b a s e d  o n l y  o n  t h e

* s i n g l e  c o l u m n  of v a l u e s .

* v  is t h e  k  b y  k  e s t i m a t e d  v a r i a n c e  m a t r i x ;

* n x  is t h e  m a t r i x  of x p o p u l a t i o n  c o u n t s  o n  a  p a i r w i s e  b a s i s ;

* n y  is t h e  m a t r i x  of y p o p u l a t i o n  c o u n t s  o n  a p a i r w i s e  b a s i s ;

k  =  n c o l ( z ) - l ; 

i n d  = z [,k+l] ;

v  = j ( k , k , 0 ) ;  t=v; n x = v ;  ny= v ;

* T h e  f o l l o w i n g  c o m p u t e s  c o m p o n e n t s  a f t e r  p a i r w i s e  d e l e t i o n  of

* o b s e r v a t i o n s  w i t h  m i s s i n g  v a l u e s .  If e i t h e r  t h e r e  a r e  n o  m i s s i n g

* v a l u e s  or it is d e s i r e d  t o  u s e  t h e  c o m p o n e n t s  w i t h o u t  d o i n g

* p a i r w i s e  d e l e t i o n  f i r s t ,  t h e  n e s t e d  do l o o p s  c o u l d  be e v a d e d .

/*

d o  i=l t o  k; 

do j = l  t o  i;

w h o  = l o c ( ( z [ , i ] ~ = . ) # ( z [ ,  j ] ~ = . )  );

r u n  m w c o m p C p s i i , ( z [ , i ]  I I i n d ) [ w h o , ] );

r u n  m w c o m p C p s i j  , (z[, j] | | ind) [who,]) ;

i n o w  = i n d  [ w h o , ] ;

m  = i n o w [ + ]  ;

n  = n r o w ( p s i i ) - m ;

n x [ i ,j] = m; n y [ i , j ]  = n;

m i  = ( p s i i # i n o w ) [+] / m;

mj = ( p s i j # i n o w ) [+] / m;

t [ i , j ]  = mi; t [ j , i ]  = mj;

* n o n m i s s i n g  p a i r s ;

* c o m p o n e n t s ;

* X s  a n d  Ys;

* c u r r e n t  Xs;

* c u r r e n t  Ys;

* m e a n s  ;

p s n  = p s n - m i ;  p s i j  = p s i j - m j ;  

v [ i , j ]  = ( p s i i # p s i j # i n o w )  [+]

+ ( p s i i # p s i j # ( l - i n o w ) ) [+] 

v[j ,i] = v [ i  , j] ;

* c e n t e r ;  

/ ( m # ( m - l ) )

/ ( n # ( n - l ) ) ;

end;

end;

f r e e  p s i i  p s i j  i n o w  i n d  who; 

f i n i s h ;

s t a r t  of e x e c u t i o n  of t h e  I M L  p r o g r a m  */ 

u s e  _ c o m p  v a r  { & v a r  & r e s p o n s e } ;  

r e a d  a l l  i n t o  d a t a  [ c o l n a m e = n a m e s ] ;

run m wvar( t ,v ,nx ,ny ,da ta ) ; * est imates and variances
vname = names[1 : (ncol(names)-1 ) ] ;



manwhit = v e c d ia g ( t ) ;

%if &contrast= 70then Y0do;
Y0put ROC; No con tras t  spec i f ied .  Pairwise con tra s ts  of a l l ;  
Yput %str( ) curves w i l l  be g en e ra te d . ;

c a l l  symput( ' c o l J , char (nco l(da ta ) -1 ) ) ;
% i f  & c o l = l  Yothen Y0s t r ( l = l ; ) ;  Y0e l s e  Y0do;

1=( j (& col- l , 1 ) I I- i ( & c o l - l ) )
Yodo i = & c o l - 2  Yflto 1 Y«by -1;

/ / ( j ( & i , & c o l - & i - l , 0 ) I I j ( & i ,1)11 — i ( & i ) )

Y0end;
j

Yend;
c a l l  symput('maxrow', char(comb(max(nrow(l),2 ) , 2 ) ) ) ;

Y«end;
Y0else  Yodo;

1 = { ¿¡contrast >;
c a l l  symput( JmaxrowJ , char(nrow(l)) ) ;

Y0end;

lt=l*manwhit;
lv= l*v* l ‘ ;
c = g i n v ( lv ) ;
chisq = I t ‘* c * l t ;
df = t r ac e (c * lv ) ;
p = 1 - probchi(  chisq,  df );

/* Original  SAS/IML code by author ends */

/* Individual  area s td e r r s  and CIs */ 
s td e r r= sq r t (v ecd iag (v ) );
area lc l=manwhit-probi t ( l -&alpha/2)*s tderr ; 
areaucl=manwhit+probit( l -& alpha /2 )*s tder r ; 
a re a s tab = p u tn (m an w h i t I I s td e r r l la rea lc l l Ia reau c l , J7 . 4 J);

/* Pairwise d i f ference  s td e r r s  and CIs */
s e d i f f= sq r t (v e c d ia g ( lv ) );
d i f f l c l= l t - p r o b i t ( l - & a l p h a / 2 ) * s e d i f f ;
d i f f u c l= l t+ p r o b i t ( l -& alpha /2 )*sed if f ;
d i f f c h i= ( l t# # 2 ) /v e c d ia g ( lv ) ;
d i f f p = l -p r o b c h i ( d i f f c h i ,1);



83

■/•if 0/oupcase(0/ o S u b s t r ( & d e t a i l s , l , l ) )  n e  N  °/0t h e n  °/0do; 

p r i n t  t [ l a b e l = ' P a i r w i s e  D e l e t i o n  M a n n - W h i t n e y  S t a t i s t i c s '  

c o l n a m e = v n a m e  r o w n a m e = v n a m e ]  ;

°/0e n d ;

p r i n t  a r e a s t a b  [ l a b e l =

" R O C  C u r v e  A r e a s  a n d

°/0s y s e v a l f ( 1 0 0 * (l-&alpha))°/0 C o n f i d e n c e  I n t e r v a l s "  

r o w n a m e = v n a m e  c o l n a m e = { ' R 0 C  Area' ' S t d  E r r o r '

' C o n f i d e n c e '  ' L i m i t s ' } ] ;

r n a m e = ' R o w l ' : " R o w & m a x r o w " ;

°/0if 0/oUpcase(0/0s u b s t r ( & d e t a i l s ,  1 3 1)) n e  N °/0t h e n  °/0do; 

p r i n t  v  [ l a b e l = ' E s t i m a t e d  V a r i a n c e  M a t r i x '  

c o l n a m e = v n a m e  r o w n a m e = v n a m e ] ; 

p r i n t  n x  [ l a b e l = ' X  p o p u l a t i o n s  s a m p l e  s izes' 

c o l n a m e = v n a m e  r o w n a m e = v n a m e ] ; 

p r i n t  n y  [ l a b e l = ' Y  p o p u l a t i o n s  s a m p l e  sizes' 

c o l n a m e = v n a m e  r o w n a m e = v n a m e ] ; 

p r i n t  l v  [ l a b e l = ' V a r i a n c e  E s t i m a t e s  of C o n t r a s t '  

r o w n a m e = r n a m e  c o l n a m e = r n a m e ] ;

°/0e n d ;

p r i n t  1 [ l a b e l = ' C o n t r a s t  C o e f f i c i e n t s '  

r o w n a m e = r n a m e  c o l n a m e = v n a m e ] ;

f d i f f c h i = p u t n ( d i f f c h i ,'9. 4 ' ) ;

f d i f f p = p u t n ( d i f f p , ' p v a l u e . ');

d i f f s = p u t n ( l t I  IsediffI I d i f f l c l I | d i f f u e l ,'7.4');

diffstab=diffsI Ifdiffchi I|fdiffp;
p r i n t  d i f f s t a b  [ l a b e l =

" T e s t s  a n d  °/0s y s e v a l f  (100* ( l - & a l p h a ) )

°/0 C o n f i d e n c e  I n t e r v a l s  f o r  C o n t r a s t  R o w s "  

r o w n a m e = r n a m e  c o l n a m e = { ' E s t i m a t e '

' Std E r ro r ' ' Confidence' ' L im i ts '
' C h i - s q u a r e '  'Pr > C h i S q ' } ] ;

c2=putn(ch isq ,' 9 . 4 ' ) ; 
df2=putn(df , ' 3 . ' ) ;  
p2=putn(p, ' pva lue . ' ) ;  
c t e s t = c 2 | | d f 2 I Ip2;
p r i n t  c t e s t  [ l a b e l = 'C o n t r a s t  T e s t  R e s u l t s '
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c o l n a m e ^ ’C h i - S q u a r e '  * D F } JP r  > C h i S q ’}];

/* M a k e  o v e r a l l  p - v a l u e  a v a i l a b l e  */

°/0g l o b a l  p v a l u e ;

c a l l  s y m p u t ( Jp v a l u e J ,p 2 ) ;

q u i t ;

°/0e x i t :

o p t i o n s  & o p t s ;  

t i t l e ;  t i t l e 2 ;

% m e n d ;

d a t a  roc;

i n p u t  a l b  t p  t o t s c o r e  p o p i n d ;  

t o t s c o r e  = 10 - t o t s c o r e ;  

d a t a l i n e s ;

o00 5 .8 10 0
3 .2 6 .3 5 1
3 .9 6 .8 3 1

00CN 4 .8 6 0
3 .2 5 .8 3 1
0 .9 4 .0 5 0
2 .5 5 .7 8 0
1 .6 5 .6 5 1

CO 00 5 .7 5 1
3 .7 6 .7 6 1

. 6 1
3 .2 5 .4 4 1
3 .8 6 .6 6 1
4 .1 6 .6 5 1
3 .6 5 .7 5 1
4 .3 7 .0 4 1
3 .6 6 .7 4 0

00CN 4 .4 6 1
4 .2 7 .6 4 0
4 .0 6 .6 6 0
3 .5 5 .8 6 1

00CO 6 .8 7 1
3 .0 4 .7 8 0

cn 7 .4 5 1

00 -N
l 7 .4 5 1
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3 . 1 6 . 6 6 1

4 . 1

CN00 6 1

CO 7 . 0 5 1

co 6 . 5 4 1

00 to 5.1 5 1

2 . 6 4 . 7 6 1

3 . 3

00 6 0

1.7 4 . 0 7 0

. 6 1

co 6 . 1 5 1

coco co<£> 7 1

4 . 2 7 . 7 6 1

3 . 5 6 . 2 5 1

2 . 9 5 . 7 9 0

2 . 1

00 7 1

8 1

COCM 6 . 2 8 0

7 1

7 1

4 . 0 7 . 0 7 1

00 co 5 . 7 6 1

3 . 7 6 . 9 5 1

2 . 0 7 1

3 . 6 6 . 6 5 1

f

d a t a  roc;

i n p u t  a l b  t p  t o t s c o r e  p o p i n d  

t o t s c o r e  = 10 - t o t s c o r e ;  

d a t a i i n e s ;

3 . 0 5 . 8 10 0 3 . 2 6 . 3 5 1 3 . 9 6 . 8 3 1 2 . 8 4 . 8 6

3 . 2 5 . 8 3 1 0 . 9 4 . 0 5 0 2. 5 5 . 7 8 0 1.6 5 . 6 5

3 . 8 5 . 7 5 1 3 . 7 6 . 7 6 1 3 . 2 5 . 4 4 1 3 . 8 6 . 6 6

4 . 1 6 . 6 5 1 3 . 6 5. 7 5 1 4 . 3 7 . 0 4 1 3 . 6 6 . 7 4

2 . 3 4 . 4 6 1 4 . 2 7 . 6 4 0 4 . 0 6 . 6 6 0

LOCO 5 . 8 6

3 . 8 6 . 8 7 1 3 . 0 4 . 7 8 0 4 . 5 7 . 4 5 1 3 . 7 7 . 4 5

3.1 6 . 6 6 1 4.1 8 . 2 6 1 4 . 3 7 . 0 5 1 4 . 3 6 . 5 4

3 . 2 5.1 5 1 2. 6 4 . 7 6 1 3. 3 6 . 8 6 0 1.7 4 . 0 7

3 . 7 6 . 1 5 1 3 . 3 6 . 3 7 1 4 . 2 7 . 7 6 1 3 . 5 6 . 2 5

2 . 9 5 . 7 9 0 2.1 4 . 8 7 1 2 . 8 6. 2 8 0 4 . 0 7 . 0 7

3 . 3 5 . 7 6 1 3 . 7 6 . 9 5 1 3 . 6 6 . 6 5 1

0
1
1
0
1
1
1
0
1
1
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d a t a  a l b ( k e e p = a l b  p o p i n d )  

p t p ( k e e p = t p  p o p i n d )  

p t o t s ( k e e p = t o t s c o r e  p o p i n d ) ;  

s e t  roc;

run;

°/0r o c  ( d a t a = a l b  p t p  p t o t s ,  

v a r = a l b  t p  t o t s c o r e ,  

r e s p o n s e = p o p i n d )
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