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Accumulation of Non-Numerical Evidence During
Nonsymbolic Number Processing in the Brain: An

fMRI Study

Tali Leibovich and Daniel Ansari *

The University of Western Ontario, London, Ontario, N6A 3K7, Canada

r r

Abstract: Behavioral evidence has shown that when performing a nonsymbolic number comparison
task (e.g., deciding which of two dot arrays contains more dots), participants’ responses are sensitive
to affected by both numerical (e.g., number of items) and non-numerical magnitudes (i.e., area, density,
etc.). Thus far it is unclear what brain circuits support this process of accumulating non-numerical var-
iables during nonsymbolic number processing. To investigate this, 21 adult participants were asked to
engage in a dot comparison task. To measure the neural correlates of accumulating numerical and
non-numerical variables, we manipulated the number of the non-numerical magnitudes that were con-
gruent (correlated with number) or incongruent (anticorrelated with number). In a control task, partici-
pants were asked to choose the darker of two gray rectangles (brightness task). The tasks were
matched in terms of their difficulty. The results of a whole brain analysis for regions sensitive to the
congruity of numerical and non-numerical magnitudes revealed a region in the right inferior frontal
gyrus (rIFG). Activation in this region was found to be correlated with the relative congruency of
numerical and non-numerical magnitudes. In contrast, this region was not modulated by difficulty of
the brightness control task. Accordingly in view of these findings, we suggest that the rIFG supports
the accumulation of non-numerical magnitudes that are positively correlated with number. Therefore
taken together, this study reveals a brain region whose pattern of activity is influenced by the congru-
ency between numerical and non-numerical variables during nonsymbolic number judgments. Hum
Brain Mapp 38:4908–4921, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Comparing the quantity of items is something we do
every day. For example, at the grocery store, we might
decide which shopping carts in line contain the fewest
items, so that the time we wait in line for the cashier is as
short as possible. Which factors guides our decision in
such cases? Is it the number of items, their individual
sizes, their density, or a combination of all these cues to
magnitude? One of the most common tools used to answer
this question is the nonsymbolic number comparison task
(from hereon, numerosity comparison task). In this task,
participants are asked to indicate which of two groups
contains a larger number of items. The most common
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view in the field of numerical cognition suggests that in
numerosity comparison tasks, participants are influenced
only by the number of the items and not the groups’ non-
numerical magnitudes, such as the total area of the items, or
their density [Burr and Ross, 2008; Dehaene and
Changeux, 1993]. A more recent line of evidence, however,
suggests that when making such a comparison, evidence
from both number and non-numerical magnitudes are
accumulated to make a decision [Gevers et al., 2016; Henik
et al., 2016; Leibovich et al., 2016a,b; Leibovich and Ansari,
2016; Leibovich and Henik, 2013; Mix et al., 2016].

A number of behavioral studies have directly demon-
strated the influence of non-numerical magnitudes on per-
formance in a numerosity comparison task. For example,
Leibovich and Henik [2014] asked adult participants to
compare the number of dots in two groups. The ratio
between the number of dots in these groups was manipu-
lated. Numerical ratio was calculated as the smaller
divided by the larger number of dots. For example, the
numerical ratio between a group of 5 dots and a group of
10 dots is 5/10 5 0.5, and the ratio between 9 and 10 dots
is 0.9. The closer a ratio is to 1, the more similar the to-be-
compared magnitudes are. In addition, these authors also
calculated the ratio between 5 non-numerical magnitudes
of the compared groups of dots. The numerical and non-
numerical ratios were then used as predictors in a multi-
ple regression analysis. The results demonstrated that both
the ratio between the numerosities and the ratio between
non-numerical magnitudes predicted performance (i.e.,
response times (RT) and accuracy). This is in spite the fact
that non-numerical magnitudes were task-irrelevant, and
that in their set of stimuli, none of the non-numerical mag-
nitudes could have been used as a consistent cue to pre-
dict numerosity. These findings therefore suggest that
non-numerical magnitudes influence nonsymbolic numer-
osity judgements. In this study, we present more direct
evidence for the influence of non-numerical magnitudes
on numerosity judgments; here too non-numerical magni-
tudes were not relevant to the task, and minimally corre-
lated with number. Hence non-numerical magnitudes
were not able to be used as a predictive cue of numerosity.
And still, the effect of congruity level suggests that non-
numerical magnitudes influenced performance.

Is it possible that participants used only non-numerical
magnitudes in their response? While it is possible that in
some situations in everyday lives people will use only
non-numerical magnitudes to make magnitude judgments,
in the current experimental design this option is less
likely. Participants were explicitly asked to choose the
group containing more dots. In every trial, some non-
numerical magnitudes positively correlated with number,
and some negatively correlated with number. If a partici-
pant use only these non-numerical magnitudes, we would
expect accuracy to be influenced by this strategy. Namely,
we would expect very low accuracy (below chance level)
when 4 out of 5 non-numerical magnitudes are negatively

correlated with number. However, the high accuracy rates
even in this condition suggest that participants were rely-
ing both on number and non-numerical magnitudes, as
demanded by the task’s instructions.

Another line of evidence for the involvement of non-
numerical magnitudes in numerosity comparison comes
from nonsymbolic Stroop-like tasks. In such tasks, non-
numerical magnitudes are either positively correlated (i.e.,
congruent) or negatively correlated (i.e., incongruent) with
numerosity. For example, in congruent trials, the group
with the physically larger dots contains more dots; in
incongruent trials the group with the physically smaller
dots contains more dots. Hurewitz et al. [2006] demon-
strated that when asked to choose the group containing
more dots, participants were slower in incongruent trials
than in congruent trials. This pattern of results was inter-
preted as an indication for the automatic processing of
non-numerical magnitudes. Namely, the response in
incongruent trials is slower because of the need to inhibit
processing the irrelevant non-numerical magnitudes. More
recently, Leibovich et al. [2015a, 2015b] have also demon-
strated this congruity effect with small (2–4) and large
(20–40) numerosities.

The Correlation Between Numerosity and Non-

Numerical Magnitudes

Why do non-numerical magnitudes influence numeros-
ity comparisons? One explanation might be that there is a
natural correlation between numerosity and non-numerical
magnitudes. Namely, in the environment, we usually wit-
ness a positive correlation between numerosity and non-
numerical magnitudes (e.g., more items will take more
space, will be denser, etc., compared with fewer items).
Given the high occurrence of this positive correlation, it
can be considered to be adaptive to process non-numerical
magnitudes when making numerical judgments [Cantrell
and Smith, 2013; Gebuis and Reynvoet, 2013; Leibovich
et al., 2016a; Leibovich and Ansari, 2016; Leibovich and
Henik, 2013]. Gebuis and Reynvoet [2012] took the first
step to empirically assess the degree to which non-
numerical magnitude influences numerosity discrimina-
tion. In their study, participants were asked to compare
two groups of dots. The number of non-numerical magni-
tudes that are congruent with numerosity was manipu-
lated. For example, in some trials, only one non-numerical
magnitude (e.g., density) was positively correlated with
numerosity, and in other trials, three non-numerical mag-
nitudes (e.g., density, area and total circumference) were
positively correlated with numerosity. Critically, the
authors found that participants’ accuracy increased with
the number of non-numerical magnitudes that were posi-
tively correlated (i.e., congruent) with numerosity.

One way to interpret the results of Gebuis and Reynvoet
[2012] is by assuming an evidence accumulation mecha-
nism. This mechanism is able to integrate all the available
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informative visual properties (both numerical and non-
numerical magnitudes), and to use these to make a numer-
ical judgment decision [Gevers et al., 2016].

What might be the neural mechanism that supports this
process of accumulation of non-numerical evidence during
numerosity judgments? Here it is helpful to look beyond
the numerical domain. In a functional magnetic resonance
imaging (fMRI) study, Heekeren et al. [2004] had partici-
pants looking at a picture and deciding if the picture con-
tain a house or a face. The pictures were degraded to
different degrees. They found that activity in the fusiform
face area (FFA) correlated with the clarity of the face
image: the area was more active when the picture was
clear and hence there was more evidence to accumulate.
This pattern of response was selective to pictures of faces,
and not pictures of houses. Accordingly, the authors sug-
gested that areas involved in accumulation of evidence
should fulfill two criteria: first, the activity in such an area
should increase with an increase in the amount of avail-
able evidence; second, this response should be selective to
the task.

Similar patterns of activation, namely, activity that
increases with the amount of available evidence, have also
been reported during tactile, auditory and in cross-modal
tasks. In a review article, Heekeren et al. [2008] suggested
that perceptual decision making involves a network of
complimentary and partially overlapping areas. This net-
work includes (1) sensory areas that are task-specific (like
the FFA) that integrate relevant sensory information, (2)
monitoring areas, such as the anterior insula and the infe-
rior frontal gyri (IFG) that detect uncertainty and difficulty
level and adjust the activity of attentional networks
accordingly, and (3) areas that accumulate and compare
sensory evidence to make a decision (dorsolateral prefron-
tal cortex, DLPFC), along with premotor and motor areas
that execute the response, but also take part in the deci-
sion process. Importantly, the flow of information between
these areas is not linear. Instead, information goes back
and forward in this network until a decision is executed
(see fig. 2 in Heekeren et al. [2008]).

According to Heekeren et al.’s model, cognitive-control
related areas monitor evidence accumulation. Such moni-
toring is important for the accumulation to be task or
context-specific to ensure that only relevant information is
accumulated and influences decision making. For example,
imagine that you walk to the bus station and notice the
bus approaching. You have to decide if running would get
you to the bus station on time or if you should wait for
the next bus to arrive. In making such a decision, it is
adaptive to factor in task-relevant information, such as
your running speed, the bus’s speed, and the distance
between you, the bus, and the bus stop. Other factors,
such as the speed of other cars on the road, for example,
should be inhibited because they are irrelevant to the task
at hand. Consistent with this, inhibition of irrelevant prop-
erties was demonstrated by Noppeney, Ostwald and Wer-
ner [2010]. The authors asked participants to decide

whether an object depicted in a short video a tool (e.g., a
hammer), or a musical instrument (e.g., a violin), or
whether the soundtrack of the video contained audio of a
tool or a musical instrument. The auditory and visual
information were either congruent (seeing and hearing
violin) or incongruent (seeing violin but hearing a ham-
mering sound). The visual and auditory information was
degraded to different degrees in different trials. The
authors reported that accumulation and inhibition of
audiovisual information were found to be associated with
different prefrontal areas and that these areas are causally
related. Namely, separate areas were found to be related
to inhibition and accumulation. Moreover, the activity of
areas associated with accumulation of evidence increased
with an increase in congruent information.

Aims and Predictions

The aim of this study was to investigate, for the first
time, the neuronal correlates of the accumulation of
numerical and non-numerical magnitudes in a numerosity
comparison task. Therefore, we measured the brain activ-
ity during a numerosity comparison task. Critically, we
experimentally manipulated the levels of congruity
between numerosity and 5 non-numerical magnitudes:
convex hull (the area occupied by the dots and the space
between them), density, the total surface area of all the
dots, the dots’ average diameter, and the total circumfer-
ence of all the dots. Specifically, the number of non-
numerical magnitudes congruent with numerosity ranged
between 1 (only 1 non-numerical magnitude positively
correlated with number, and 4 non-numerical magnitudes
were negatively correlated with number, making this the
most difficult and most incongruent condition) and 4 (4
non-numerical magnitudes positively correlated with num-
ber and only 1 non-numerical magnitude negatively corre-
lated with number, making this the easiest, most
congruent, condition).

We hypothesized that if such a magnitude accumulation
mechanism exists, we should find evidence for brain areas
whose activity is modulated by the amount of congruent
non-numerical magnitudes that could be accumulated, as
suggested by Heekeren et al. [2004]. In view of the criteria
for accumulation outlined by Heekeren et al., we expect
the activity of brain area(s) that are involved in magnitude
accumulation to be selectively modulated by the congruity
level (i.e., by the number of non-numerical magnitudes
that are positively correlated with numerosity). More specifi-
cally, we expect the activity of such area(s) to increase
with an increase in congruity level.

Importantly, we predicted that activity of a magnitude
accumulation mechanism will be positively correlated with
congruity level (Fig. 1b). That is, brain activity in a
magnitude-accumulation area(s) is expected to increase
with an increase in congruity level. However, task diffi-
culty should decreases with an increase in congruity level
[Fig. 1a; Gebuis and Reynvoet, 2012]. Thus, brain areas
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that are involved in magnitude accumulation should be
distinguishable from brain areas whose activity is influ-
enced by task difficulty. Nevertheless, there are brain areas
that are more active when the task is easier and might not

be related to evidence accumulation. Hence, to verify that
the predicted pattern of activity is not related to task diffi-
culty, but specific to accumulation, we implemented a con-
trol task that is not numerical in nature and matches in
difficulty to the numerosity comparison task.

The control task also enabled us to rule out other
explanations for the existence of the pattern of activation
mentioned above, such as a comparison process, decision
making process, or differences in relative difficulty. In the
control task participants were asked to indicate the darker
of two gray rectangles (from hereon, the brightness task).
This brightness task was selected because it involves com-
paring magnitudes (i.e., brightness intensity), but not a
spatial magnitude. Therefore, accumulation of magnitudes
is irrelevant when comparing brightness. Other compo-
nents, however, such as a comparison process and differ-
ent difficulty levels, do exist in the brightness task. We
also matched performance in the two tasks in behavioral
pilot studies to ensure that there would be no interaction
of task and congruity for RT, so differences in difficulty
levels between the tasks would not be able to confound
the results.

At the brain level, we were interested in brain areas
revealed by the interaction of task and difficulty. Specifi-
cally, we predicted that we would find brain area(s) in
which the activity is parametrically modulated by the con-
gruity level. In such regions(s), activity is expected to
increase with an increase in congruity level (Fig. 1). In other
words, in the numerosity comparison task, activity was
hypothesized to decrease with an increase in difficulty.

Figure 1.

Illustration of predicted results. (A) Task difficulty. We predict

that task difficulty will decrease with the number of non-

numerical magnitudes that are congruent with numerosity. (B)

Brain activity related to accumulation. We predict that activity in

brain regions that are associated with magnitude accumulation

will be modulated by the congruity level. Note the opposite

expected pattern related to difficulty and to magnitude

accumulation.

Figure 2.

Examples of stimuli in the numerical task. C 5 congruity level.

There were 4 possible levels of congruity. In C 4, only one of

the 5 recorded non-numerical magnitudes was incongruent with

number, and 4 non-numerical magnitudes were congruent with

number, providing the possibility to integrate number with 4

non-numerical magnitudes. In contrast, in C 1, 4 non-numerical

magnitudes are incongruent with number, leaving only one con-

tinuous magnitude to integrate with number. [Color figure can

be viewed at wileyonlinelibrary.com]
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In contrast, in response to the brightness task, activity was
expected to either increase with task difficulty or to not be
affected by task difficulty at all.

METHODS

Participants

Twenty-three graduate and undergraduate students
from The University of Western Ontario, Canada were
recruited to participate in the experiment. The experimen-
tal procedures were approved by Western University’s
Medical Research Ethics Board. All participants were
right-handed, with intact or corrected vision, and no
reported learning disabilities or attention deficits. Partici-
pants were compensated for their participation in the
experiment with a monetary reimbursement ($25). Two
participants were excluded from the analysis due to exces-
sive motion during scanning (more than 3mm deviation
from the first image collected and/or more than 1 mm
deviation between one functional image and the next func-
tional image). For the remaining 21 participants, 11 (8
females) started with the brightness task, and 10 (5
females) started with the numerosity task. The average age
of the participants was 21 years (SD 5 1 year and 9
months).

Stimuli

Numerosity comparison task

Pairs of dot arrays (green dots on black background,
separated by a vertical gray line, presented in the middle
of an 800 3 600 pixel screen in an area of 501 3 501 pix-
els) were generated using the Matlab code provided by
Gebuis and Reynvoet, [2012]. This code records the five
different non-numerical magnitudes mentioned above.
Each array contained between 5 and 35 dots. It is known
that comparing two groups of dots when the numerical
ratio is closer to zero (e.g., 15 and 50) is easier than to
compare two groups of dots when the numerical ratio is
closer to one (e.g., 15 and 20). This phenomenon is known
as the ratio effect [e.g., Cantlon et al., 2009; Leibovich

et al., 2013; Leibovich and Henik, 2014; Moyer and Lan-
dauer, 1967] and is well documented in the literature.
Hence, to keep difficulty level similar, the numerical ratio
was kept constant between 0.4 and 0.42. The difference
between 0.4 and 0.42 is too subtle to affect performance
[Leibovich and Henik, 2014]. The number of non-
numerical magnitudes that are congruent with number
(i.e., congruity level) was manipulated and ranged from 1
to 4 (Table I). We ensured that the average ratio between
the congruent non-numerical magnitudes did not differ
from the average ratio between the incongruent non-
numerical magnitudes at every congruity level (Table II).
This was necessary because the ratio between the irrele-
vant non-numerical magnitudes might also affect perfor-
mance [e.g., Leibovich and Henik, 2014]. Note that the
average ratio of the congruent non-numerical magnitudes
was almost identical to the average ratio of the incongru-
ent non-numerical magnitudes. The only exception is con-
gruity level 3 where the average ratio of the congruent
magnitude was 0.65 and the incongruent magnitude was
0.51. Examples of the stimuli can be seen in Figure 2

Brightness task

The stimuli were composed of two rectangles (128 3

192 pixels each), presented to the left and to the right of
the middle of an 800 3 600 pixels white screen. The shade
of gray was manipulated by changing the luminosity value
(in “paint” software). Luminosity values range from 0 (the

TABLE I. Different congruity levels

Congruity level Convex hull Density Total surface Average diameter Total circumference

4 C IC C C C
4 C C C IC C
3 IC IC C C C
3 C IC C IC C
3 C C IC IC C
2 IC IC C IC C
1 IC IC IC IC C

C, congruent with number; IC, incongruent with number.

TABLE II. Average ratio of non-numerical magnitudes

by congruity

congruity
level

Congruent
magnitudes

Incongruent
magnitudes

4 0.45 0.45
3 0.65 0.51
2 0.71 0.73
1 0.74 0.74

The values in the cells are the average non-numerical ratio magni-
tude (smaller/larger magnitude) for all the congruent or for all
the incongruent magnitudes.

r Leibovich and Ansari r

r 4912 r



darkest) to 240 (the lightest). We used values from 24 to
188, yielding 4 different ratios of brightness (smaller
divided by larger luminosity value): 0.4, 0.5, 0.8 and 0.85
(Fig. 3). These specific ratios were selected in a behavioral
pilot study to match as closely as possible to the perfor-
mance measures (RT and accuracy) of the 4 levels of diffi-
culty of the numerosity task.

Tasks

Participants performed two tasks in four separate runs.
In the numerosity task, participants were asked to choose
the group containing more dots. The numerosity task
included two runs. Each run included 20 trials for each
congruity level. The side of the larger dot array was coun-
terbalanced for each IC level. In total a run included 80 tri-
als: 4 congruity levels 3 10 trials per level 3 2
counterbalance response (larger number to the right or to
the left), and lasted about 12 minutes. The order of the tri-
als was random. In the brightness task, participants were
asked to choose the darker rectangle. The brightness task
included two runs. Each run contained 72 stimuli: 4
(ratios) 3 9 (different variations for each pair) 3 2 coun-
terbalance response (darker rectangle on the right or on
the left) and lasted about 10 min. The order of the trials
was random.

Procedure

Before starting the scan, participants signed a consent
form and were given general instructions about the tasks.
An event-related fMRI design was used to acquire func-
tional imaging data. The experiment was run using Open-
Sesame [Mathôt et al., 2012] version 2.97 on a Windows
8 operating system.

Each session included an anatomical scan, practice run,
and two functional runs per task. Before the first func-
tional run of each task, participants read instructions spe-
cific to the task. Then, a 4-trial practice run started, to
verify that the task was clear. If accuracy was higher than
75%, participants continued to the functional runs. If not,
the practice was repeated. The feedback for the practice
was general for all 4 trials (not per trial). Each functional
run started with 10 s of a baseline screen (a black screen
in the numerical task and a white screen in the brightness
task) and ended with 6 s of a baseline screen, to provide a
stable baseline of brain activity.

In the functional runs of the numerosity task, each trial
started with a black screen with a vertical gray line in its
center. In the middle of the gray line, a red fixation-dot
appeared. The duration of the red fixation-dot was jittered,
namely, displayed for a duration of 4,000–6,000 milliseconds
(ms) with an average of 5,000 ms and a uniform distribution

Figure 3.

Examples for stimuli in the brightness task. R 5 ratio between the luminance levels of the two

rectangles. Ratio 0.4 is the easiest to discriminate (difficulty level 1) and ratio 0.85 is the most

difficulty to discriminate (difficulty level 4).
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(using “advanced delay” plugin of OpenSesame). Follow-
ing the elimination of the red fixation-dot, a green
fixation-dot was presented for 250 ms to alert the partici-
pants that a target stimulus was soon to appear, allowing
them to prepare to respond. After the green fixation-dot
disappeared, a blank screen (black screen with a vertical
gray line in the middle) was presented for 700 ms. There-
after, the target stimulus—two groups of green dots—were

presented for 700 ms and finally replaced by a blank
screen for 700 ms. Participants were able to respond from
the onset of the target stimulus’ presentation until a new
trial started (i.e., when a red fixation-dot appeared). The
participants were instructed to respond with a button
press with the hand corresponding to the side of the pre-
sentation of the group containing the larger numerosity.
The procedure of the paradigm is depicted in Figure 4a.

Figure 4.

Procedure. A, numerical task. B, brightness task. The durations for each stimulus indicated on

the right side were the same for both tasks. In both tasks, participants were able to respond

from the onset of the target until the jitter slide appeared. [Color figure can be viewed at

wileyonlinelibrary.com]

r Leibovich and Ansari r

r 4914 r

http://wileyonlinelibrary.com


In the functional runs of the brightness task, each trial
started with a white screen with a red fixation-dot in the
middle. The red fixation-dot presentation’s duration was
jittered as described for the numerosity task (see above),
and followed by a green fixation-dot that was presented
for 250 ms. After the green fixation-dot disappeared, a
white screen was presented for 700 ms. Thereafter the tar-
get stimulus—two rectangles in different shades of gray—
was presented for 700 ms and finally replaced by a white
screen for 700 ms. Participants were able to respond from
the onset of target stimulus’s appearance until a new trial
started (i.e., when a red fixation-dot appeared). The partic-
ipants were instructed to respond with a button press
with the hand corresponding to the side of the presenta-
tion of the darker rectangle. The procedure of the para-
digm is depicted in Figure 4b.

fMRI data acquisition

A 3 T Siemens PRISMA whole-body MRI scanner was
used to collect the functional and structural data of this
study. The brain anatomy of each participant was collected
with high-resolution T1-weighted images (matrix dimen-
sions: 240 3 256 mm) using an MPRAGE sequence (1 3 1
3 1 mm, TR: 2,300 ms, TE: 4.25 ms, flip angle: 98). An
echo planar (EPI SE) sequence was used to measure BOLD
brain signal of the functional run with a 32-channel Sie-
mens head coil. The order of imaging acquisition was
ascending—interleaved, covering the whole brain of par-
ticipants. The acquisition resulted in 276 whole-brain
images per functional run in the brightness task and 308
per functional run in the numerical task, with a total
length of about 10–12 min per run. For each functional
volume, 38 slices were collected resulting in a 3 mm iso-
voxel resolution over a 64 3 64 voxel matrix. The repeti-
tion time (TR) was 2,000 ms, the echo time (TE) was 30
ms, and the flip angle was 788.

Imaging analysis

Brain Voyager QX 2.8 (Brain Innovation, Maastricht, The
Netherlands) was used to analyze the functional and struc-
tural data sets. Each individual data set was preprocessed
according to the following steps: functional imaging data
were first corrected for slice scan time acquisition (ascend-
ing—interleaved; using a cubic-spline interpolation algo-
rithm); a high-pass (GLM—Fourier) frequency filter with a
cut-off value of 2 sines/cosines cycles was applied to
remove low-frequency signals; finally, a Trilinear/sinc
interpolation approach was used to remove and to adjust
head motion. To be included in the study, participants’
movement parameters had to stay within 3 mm of overall
movement (maximum deviation from the first volume)
and within 1 mm volume-to-volume movement (maxi-
mum deviation from one collected functional image to the
next collected functional image). Five runs (2 of the bright-
ness task and 3 of the number task) were excluded from

the analysis due to over 1 mm volume-to-volume
movement.

An automatic alignment procedure (as implemented in
Brain Voyager) was used to spatially align the functional
runs of each participant onto the corresponding anatomi-
cal scan. The quality of the alignment was checked visu-
ally and corrected manually if the automatic procedure
did not reveal a sufficient alignment. Subsequently, the co-
aligned images were transformed into Talairach space
[Talairach and Tournoux, 1988]. This was achieved in two
consecutive steps: first, using the landmarks of the Ante-
rior Commissure (AC) and the Posterior Commissure
(PC), the anatomical image of each participant was trans-
formed into ACPC-plane position; second, the boundaries
of the brain tissue were manually selected and trans-
formed into the Talairach grid using a trilinear interpola-
tion algorithm [Talairach and Tournoux, 1988] and
smoothed using Gaussian Smoothing Kernel at FWHM of
6 mm.

Individual data sets were entered into a general linear
model (GLM) for group-based analysis. All functional
events of the two tasks (i.e., numerosity and brightness)
were convolved with a two-gamma hemodynamic
response function (HRF) to assess the fit to the blood oxy-
gen level dependent (BOLD) function [Friston et al., 1998].
Different congruity level trials across the functional runs
(for the numerosity task) and different ratios of brightness
(for the brightness task) were modeled separately to inves-
tigate brain activation differences related to difficulty/con-
gruity level in the two tasks. Incorrect responses were not
included in the analysis. The statistical maps derived from
brain activation contrasts were thresholded with an uncor-
rected P value of 0.001 and subsequently cluster corrected
to correct for multiple comparisons and to adjust Type I
error to a level of P< 0.05. This was achieved by an itera-
tive “Monte Carlo Simulation” (1,000 iterations), which
estimates the minimum size of a functional cluster to be
significant on the basis of functional data from this study
[Forman et al., 1995]. Specifically, an initial uncorrected
voxel-level threshold is estimated. The statistical whole-
brain maps are then submitted to different correction crite-
ria, based on estimates of the map’s spatial preprocessing
smoothness and on an iterative correction procedure
(Monte Carlo simulation) that estimates cluster-level false-
positive rates across the entire brain. After 1,000 iterations
the minimum cluster-size yielding a cluster-level false-pos-
itive rate of (a) 0.05 was used to cluster correct the statisti-
cal whole-brain maps.

RESULTS

Behavioral Results

To test the effect of task and difficulty level on perfor-
mance, a two-way analysis of variance (ANOVA) was per-
formed with task (numerosity or brightness) and difficulty

r Magnitude Accumulation in the Brain r

r 4915 r



level (4 different levels) as within-subject variable. The
ANOVA was conducted once for RTs and once for accu-
racy rates.

For the analysis of accuracy, Greenhouse–Geisser correc-
tion was applied as Mauchly’s test of sphericity indicated
that the assumption of sphericity has been violated
(P< 0.05). The analysis revealed that accuracy was gener-
ally higher for the numerosity task F (1, 20) 5 54.79,
P< 0.001, h2

p 5 0.73. Main effect for difficulty suggested
that the different conditions differ in their accuracy F (2.3,
46.9) 5 16.13, P< 0.001, g2

p 5 0.45. A series of t tests for
paired samples was performed to explore the main effect
of difficulty level in both tasks. This analysis resulted in 4
paired sample t tests (D1 vs D2; D2 vs D3; D3 vs D4 and
mean (D1 1 2) vs mean (D3 1 4)). To correct for multiple
comparisons, we divided the alpha by 4, and accepted a P
value of below 0.05/4 5 0.0125, to be significant. The
results for the numerosity task were as follow: for D1 ver-
sus D2: t(20) 5 0.087, P 5 0.93; D2 versus D3: t(20) 5 1.91,
P 5 0.071; D3 versus D4: t(20) 5 0.43, P 5 0.67; mean
(D1 1 2) versus mean (D3 1 4): t(20) 5 3.05, P 5 0.006. The
results for the brightness task were as follow: for D1 ver-
sus D2: t(20) 5 1.41, P 5 0.17; D2 vs D3: t(20) 5 3.39,
P 5 0.003; D3 vs D4: t(20) 5 0.28, P 5 0.78; mean (D1 1 2)
versus mean (D3 1 4): t(20) 5 7, P< 0.0001. Finally, an
interaction of task and difficulty was significant F(2.4,
49.6) 5 9.16, P< 0.001, g2

p 5 0.31, demonstrating that in the
brightness task, the decrease in accuracy with increase in
difficulty level was more pronounced than in the numeros-
ity task (Fig. 5a).

For the analysis of RT, only the main effect of difficulty
was significant F(3, 60) 5 17.67, P< 0.001, g2

p 5 0.47. Simi-
lar to the accuracy analysis, a series of t tests for paired
samples was performed to explore the main effect of diffi-
culty level in both tasks. The results for the numerosity
task were as follow: for D1 vs D2: t(20) 5 0.12, P 5 0.91; D2
versus D3: t(20) 5 3.37, p 5 0.003; D3 versus D4:
t(20) 5 1.68, P 5 0.109; mean (D1 1 2) versus mean (D3 1 4):
t(20) 5 3.32, P 5 0.003. The results for the brightness task
were as follow: for D1 versus D2: t(20) 5 2.72, P 5 0.013;
D2 versus D3: t(20) 5 3.89, P 5 0.001; D3 versus D4:
t(20) 5 0.972, P 5 0.373; mean (D1 1 2) vs mean (D3 1 4):
t(20) 5 3.32, P< 0.0001. There was no significant main
effect for task (F(1,20) 5 0.68, P 5 0.42, g2

p 5 0.033) or an
interaction between task and congruity (F(3, 60) 5 0.84,
P 5 0.48, g2

p 5 0.04) (Fig. 5b).

fMRI Analysis

We looked for an area where activity increased with an
increase in congruity level selectively for the numerosity
task. Such a pattern (i.e., activity that is specific to, and
positively correlated with, the amount of the to-be-
accumulated evidence) will suggest an area which is
involved in magnitude accumulation [Heekeren et al.,
2004, 2008]. To address this, we performed a voxelwise

whole-brain ANOVA with task (numerosity or brightness)
and difficulty level (4 levels) as within-subject variables.
The analysis revealed a significant main effect for task, no
main effect of difficulty, and a significant interaction
between task and difficulty (P< 0.001 cluster corrected for
multiple comparisons, P 5 0.05).

The main effect of task revealed a bilateral occipital and
parietal network of areas that were more active during the
numerosity task compared with the brightness task
(Table III and Fig. 6). The result of the interaction of task
and difficulty level revealed one brain area, the right infe-
rior frontal gyrus (rIFG). rIFG activity was found to be
modulated by difficulty/congruity level only during the
numerosity comparison task (Fig. 7 and Table III). More
specifically, during the numerosity task, activity in the rIFG

Figure 5.

Behavioral results. A, accuracy results. B, response time results.

D1 5 congruity level 4 (in the numerosity task) and ratio 0.4 (in

the brightness task); D2 5 congruity level 3 and ratio 0.5;

D3 5 congruity level 2 and ratio 0.8; D4 5 congruity level 1 or

ratio 0.85. Note that accuracy was generally high, but higher in

the numerosity task.
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was positively correlated with the amount of non-numerical
magnitudes that can be accumulated (Fig. 1). In contrast,
during the brightness task, activity level was not modulated
by difficulty level.

To verify this pattern, we extracted the beta values of
the rIFG for each task and difficulty level and used them
as the dependent measure in two separate one-way
ANOVAs with difficulty level as the independent mea-
sure, once for the numerosity comparison task and once
for the brightness task. These analyses revealed that the
influence of difficulty/congruity level on activation was
significant during the numerosity comparison task
F(3,60) 5 4.5, P< 0.01, g2

p 5 0.19, but not during the
brightness task F(3,60) 5 2.02, P 5 0.12.

Post-Hoc Analysis: Parametric Analysis

Following the request of the reviewers, we used para-
metric analysis to demonstrate that in the number task,
activation level parametrically increased with congruity
level. To achieve this, we assigned the following weights
before entering the data into a GLM: congruity level 1: 10;
congruity level 2: 20; congruity level 3: 30; congruity level
4: 40; brightness ratio 0.4: 40; brightness ratio 0.5: 50;
brightness ratio 0.8: 80; brightness ratio 0.85: 85. The resul-
tant GLM included main effect and a parametric effect for
each task. These events were processed as described in the
“imaging analysis” section.

To look for parametric effects, a whole-brain contrast
between the parametric effect of the numerosity task and
the parametric effect of the brightness task was computed.
Unlike the results from the ANOVA, the parametric effect
in the number task was not found to be significantly
greater than the parametric effect of brightness at voxel-
wise threshold of P< 0.001 corrected for multiple compari-
sons at the cluster level (P< 0.05). However, this contrast
revealed a similar area to the one found by the interaction
of task and difficulty (1,168 voxels; peak coordinates: (45,
2, 19)) at a voxel-wise threshold of P< 0.005, corrected for
multiple comparisons at the cluster level (P< 0.05).

TABLE III. Brain regions found in a voxelwise whole-brain ANOVA

Brain region Brodmann area (BA) Coordinates: x, y, z F Cluster size (voxels)

Task: numerosity>brightness
(Cl 1) Right inferior temporal gyrus 37 39 264 28 30 3,667
(Cl 2) Right superior temporal lobule/occipital gyrus 7 18 270 43 45 5,364
(Cl 3) Right lingual gyrus 18 9 273 22 29 1,003
(Cl 4) Left lingual gyrus 19 224 261 28 49 1,853
(Cl 5) Left occipital gyrus 39 224 270 28 36 8,589
Difficulty
NA
Task 3 difficulty
Right inferior frontal gyrus 44 45 5 19 11 274

CI, cluster.

Figure 6.

Brain activity related to task. A network of bilateral occipito-

parietal areas found to be more active during numerosity com-

parisons than during brightness comparisons in a voxelwise

whole-brain ANOVA. Cl 1 5 right Inferior temporal gyrus; Cl

2 5 right superior parietal lobule/occipital gyrus; Cl 3 5 right lin-

gual gyrus; Cl 4 5 left lingual gyrus; Cl 5 5 left occipital gyrus.

Talairach coordinates 5 221, 263, 26. [Color figure can be

viewed at wileyonlinelibrary.com]
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DISCUSSION

In behavioral research, it is well established that non-
numerical magnitudes affect performance in numerosity
comparison tasks [Gebuis and Reynvoet, 2012; Leibovich
et al., 2015a,b; Leibovich and Henik, 2014]. However, the
neural mechanism behind this influence is yet to be inves-
tigated. In the current work we found, using a whole-
brain analysis, that the activity of the rIFG is modulated
by the amount of non-numerical magnitudes that posi-
tively correlated with number. Specifically, the activity in
the rIFG increased with the number of non-numerical

magnitudes that were congruent with numerosity. The
brightness and the numerosity tasks were carefully
matched in RT and accuracy to exclude differences in task
difficulties as an alternative explanation to the results.
More specifically, as activity in the rIFG was not affected
by difficulty in the brightness task, it is less likely that a
general “difficulty effect” can explain the activity pattern
in this area. Importantly, the rIFG activation observed
complies with the two demands set forth by Heekeren
et al. [2008] to define an area as an accumulator: (1) selec-
tivity of activation to the task and (2) an activation pattern
that is positively correlated with the amount of the to-be-

Figure 7.

Interaction of task and difficulty in the right inferior frontal gyrus

(rIFG). The pattern of results suggests that the activity in the

rIFG (label for region determined by using the Mai Atlas [Mai

et al., 2008]) decreased with difficulty level only in the numeros-

ity task, but was not significantly influenced by size in the bright-

ness task. The error bars represent standard error (SD/square

root of N). Talairach coordinates are mentioned in every section

in the figure. In the sagittal sections, the x coordinates; in the

coronal sections, the y coordinates; and in the transversal sec-

tions, the z coordinates. [Color figure can be viewed at wileyon-

linelibrary.com]
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accumulated evidence (e.g., the amount of congruent non-
numerical variables). Accordingly, we suggest that the
rIFG supports the accumulation of non-numerical magni-
tudes that are positively correlated with number during
numerosity comparison.

Accumulation of evidence is well established in the field
of perceptual decision-making. Some of the areas that are
reported in the context of evidence accumulation are spe-
cific to task demands or the modality that is being used,
while other areas are more general and could be found
across tasks and modalities. The most commonly reported
area in perceptual decision-making across different tasks
and modalities is the dorsolateral prefrontal cortex
(DLPFC), which includes the inferior frontal gyrus [but see
Brass et al., 2005]. For example, Noppeney et al. [2010]
suggested that during audio–visual accumulation of evi-
dence, the left inferior frontal sulcus (IFS) presented a pat-
tern of activation that is consistent with an “accumulator”
of evidence. In other words, the activity of this region
increased with the increase in the amount of the to-be-
accumulated evidence. Similarly, Heekeren et al. [2008]
reviewed a variety of neurophysiological studies with non-
human primates that revealed that the firing rate of sen-
sory neurons in the DLPFC increased with an increase in
the amount of the to-be accumulated evidence.

In addition to such areas involved in accumulation of
evidence across domains, there are also areas whose activ-
ity is specific to task and/or modality. For example, as
mentioned in the introduction, the FFA, an area that
has been associated with face perception, presents an
“accumulator” pattern in a task that requires participants
to decide if a stimulus is a house or a face.

The rIFG has been found in the context of both percep-
tual decision-making and magnitude processing. In the
context of perceptual decision-making, Ploran et al. [2007]
gradually presented participants with a picture of an
object and asked them to indicate when they recognize the
object. BOLD response in the rIFG increased during the
presentation of the picture and peaked when the object in
the picture was recognized. Similarly, rIFG activity was
found to correlate with the rate of evidence accumulation
in a stop-signal task [White et al., 2014]. Recently, Sherman
and colleagues [2016] demonstrated, using a visual search
task, the involvement of the rIFG in integrating not only
visual evidence, but prior beliefs (such as the likelihood of
a target to appear) into the decision-making process.

In the context of magnitude processing, the rIFG has
been reported in numerous studies. To mention a few,
Kaufmann et al. [2005] reported rIFG activity in a symbolic
number comparison task; Chochon et al. [1999] revealed
that the rIFG is more active during digit naming, number
comparison, multiplication, and subtraction tasks com-
pared to a control task, and Yao et al. [2015] found clusters
in the rIFG area that were related to cognitive processing
during a symbolic numerical congruity task.

Activation of the rIFG has also been reported in magni-
tude comparison studies that use nonsymbolic stimuli.

Given the evidence reported above, it is possible that the
activity of the rIFG in these prior studies is related to accu-
mulation, and not necessarily (or not only) to magnitude
processing. For example, Hayashi et al. [2013] employed a
time-numerosity congruity task, where participants
sequentially saw two groups of dots for different dura-
tions of time and were asked to decide which group of
dots appeared for a longer time, or contained more dots.
The duration and the number of dots were either congru-
ent (more dots presented for longer time than fewer dots)
or incongruent (more dots presented for shorter time). The
authors reported that the rIFG was more active during the
duration task compared with the number task, consistent
with the involvement of the rIFG in time processing (for a
review, see Wiener et al. [2010]). Interestingly, the rIFG
was also more active during congruent compared with
incongruent trials across tasks. Hence, the activity of the
rIFG in the experiment by Hayashi et al. could also be
interpreted in light of its capacity as an accumulator of
evidence; in congruent trials, both number and time could
have been used to make a decision (as suggested by the
ATOM theory, see Walsh [2003]). Consistent with this
interpretation, rIFG activity was greater in congruent com-
pared with incongruent trials (in which time and number
are anticorrelated).

The rIFG was also found to play a role in different
aspects of cognitive control. Brass et al. [2005], for exam-
ple, suggested that the rIFG is involved in keeping task-
relevant representations active. Accordingly, in the current
task, we should have seen more activation when the
incongruity level (i.e., difficulty level) increased, and
attending to numerosity becomes more difficult. Similarly,
Heekeren et al. [2008] suggested that the IFG detects some
perceptual uncertainty or difficulty and signals when more
attentional resources are needed. If this is the case, we
would have expected activity in the rIFG to increase with
difficulty. However, we obtained the opposite pattern (Fig.
7). Accordingly, while it is possible that the rIFG activity
is related to a general mechanism of cognitive control, the
mechanism itself is less likely to be responding to level of
conflict under the specific conditions of our study. Impor-
tant in this context is that the rIFG itself can be separated
into different domains that are involved in different cogni-
tive processes [Liakakis et al., 2011]. Thus, the involvement
of rIFG in conflict monitoring might be independent of its
role in evidence accumulation.

From the studies above, it seems that there are three
possible accounts for the role of the rIFG in magnitude
comparison tasks. The first is a domain-general account,
whereby the activity of the rIFG reflects a general accumu-
lation mechanism, such as the one revealed in tasks that
do not involve magnitudes. The second is a domain spe-
cific account where the role of the rIFG in accumulation is
specific to magnitudes, similar to the accumulation-related
activity of the FFA that is specific to face stimuli. The third
account is that the rIFG activity is context-dependent in
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that the rIFG could be active during magnitude process-
ing, regardless of accumulation, but also active during
general accumulation. We argue that this study, together
with the literature of perceptual decision-making cited
here, supports the third account. Namely, that the rIFG
has a role in both accumulation and processing of magni-
tudes. Furthermore, the interaction of task and difficulty
see Figure 7 suggests that the rIFG was active during the
brightness task, but the pattern of activity was not as
strongly related to task difficulty.

Importantly, although we found a vast occipito-parietal
network that was more active during the numerosity com-
parison task than during the brightness task, none of these
parietal areas presented an “accumulator pattern.” This
implies that while parietal areas are involved in represent-
ing and processing numerosities and magnitudes [e.g.,
Cohen-Kadosh and Walsh, 2009; Dehaene et al., 2003;
Piazza and Eger, 2016; Walsh, 2003], they are not involved
in the process of accumulating evidence from non-
numerical magnitudes. This suggestion needs to be taken
with a grain of salt, because this is a null effect, and we
cannot exclude the possibility of an accumulation-related
activity in parietal areas against the background of the
findings reported here. Further studies that will continue
this line of research may shed more light on the distinction
between magnitude representation and the decision pro-
cess in magnitude comparison tasks.

In summary, this study tested the hypothesis that when
comparing nonsymbolic numerosities (e.g., groups of
dots), numerosity and non-numerical magnitudes are accu-
mulated to make a decision. This hypothesis is at the heart
of a recently suggested alternative to the approximate
number system (ANS) theory [Gevers et al., 2016; Leibo-
vich et al., 2016b]. The current work is the first to test this
hypothesis at the brain level. We found that activity in the
rIFG increased with the amount of the to-be-accumulated
non-numerical magnitudes, and that this pattern is not
likely to be related to task difficulty. With that being said,
the interpretation our result should be constrained in view
of the general limitations inherent in fMRI studies: due to
the low temporal resolution of fMRI, it is impossible to
know if activation of the rIFG correlated with difficult lev-
els reflects the actual process of accumulation of evidence.
What we can conclude is that activation in this region is
correlated with the total congruency of non-numerical evi-
dence. More research is necessary to determine whether
this accumulation is specific to magnitude or whether it
reflects a more general accumulation mechanism.
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