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Abstract 
Mine waste rock piles (WRPs) are anthropogenically created landforms at active and former 

mining sites that can generate and release highly toxic acid mine drainage (AMD) to the 

environment. A common solution to control AMD generation is the use of cover systems over 

WRPs to isolate the reactive waste from water and oxygen in the atmosphere. Geomembranes 

exhibit the characteristics needed to be highly effective barriers to atmospheric fluxes; however, 

knowledge of their performance with in-service WRPs is limited. The objective of this thesis is 

to comprehensively assess the field performance of geomembrane-lined cover systems for 

limiting meteoric water to the waste rock. Four coal mine WRPs located in the Sydney Coalfield 

in Nova Scotia, Canada, were reclaimed with different cover systems and then extensively 

monitored for seven years. Defect leakage and water balance methods were employed to 

determine the daily water flux through the cover systems at each WRP over seven years. Results 

demonstrated that the inclusion of geomembrane liners in cover systems reduced the water influx 

from 28% of precipitation to as low as 0.05%. Furthermore, the composition of the drainage 

layer overlying the geomembrane influences the water influx, with native soil, granular material 

and geocomposite nets providing influx rates of 3%, 0.5% and 0.05%, respectively. This thesis 

highlights the role of geomembrane liners and drainage layers in engineered cover systems for 

significantly limiting the influx of meteoric water into mine waste rock. 

Keywords: water balance, geomembranes, waste rock piles, defect leakage, water ingress 
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Summary for Lay Audience 
Mining produces a large amount of waste, which can come in many different forms, from liquid 

slurry to solid rock. Waste rock is commonly placed into large stockpiles on the ground, and can 

still contain small amounts of minerals that do not have much value. However, these little 

minerals can harm the environment. When these minerals interact with oxygen and water, they 

can cause a chemical reaction to take place and create a toxic fluid, called acid mine drainage 

(AMD). This can then be carried with water flow to the outside environment, and pollute the 

surrounding streams, rivers, groundwater and fields. The creation of AMD can be stopped by 

putting a cover around the waste rock, similar to putting saran wrap over a plate of food to avoid 

anything from getting in. A lot of different covers exist and can be made from sands, clays, 

gravels and plastics. The plastic option is very expensive but can be the best option; however, it 

is unknown if they work effectively over time. What if the plastic has holes in it? What will 

make the water flow faster or slower through these holes? This thesis looked at four different 

covers that were put over waste rock located in Nova Scotia, Canada. Seven years of data had 

been collected and needed careful compilation, analyses and interpretation. Results found that 

that the plastic was very successful in stopping water infiltrating (rain/snow) to the waste rock. It 

reduced the yearly amount of water getting inside from 28% to only 0.05%. The results also 

showed that another layer for draining the water away from the plastic is very helpful, especially 

if the plastic has holes in it. This study shows that plastic covers, while more expensive, are a 

great solution to stop water infiltration and also prevent AMD pollution. 
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1 Introduction 

1.1 Research Background 
The mining sector in Canada accounts for approximately 5% of its GDP, contributing over 

719,000 jobs in 2019 (Marshall, 2019). Throughout mining operations, waste is generated in both 

liquid (e.g., fine tailings) and solid (e.g., waste rock) states. In Canada, mining annually produces 

over 30 times the amount of solid waste that is generated by the entire population and industries 

combined (Marshall, 2019). This solid waste, also referred to as waste rock, is typically stored in 

large stockpiles on the ground surface. These waste rock piles (WRPs) typically contain 

sufficient amounts of reactive minerals that can interact with atmospheric oxygen and meteoric 

water, and cause a complex sequence of oxidation-reduction reactions that produces toxic acid 

mine drainage (AMD). AMD-impacted water is characterized by high acidity, low pH and high 

concentrations of sulfate, iron, aluminum, manganese, and other toxic metals. Once released, 

AMD can adversely impact the receiving environment, including pollution of adjacent surface 

water and groundwater resources and destroying aquatic life (John & Goyal, 2017; Acharya & 

Kharel, 2020).  

 

AMD is one of the most serious pollutants in watercourses in Canada. The annual cost of AMD 

remediation in Canada is between two and five billion dollars, making it one of the largest 

environmental liabilities in the country (EMCBC, 2000). The prevention and/or control of AMD 

is a highly complex and challenging problem. One of the most commonly proposed solutions is 

the installation of an engineered cover system over the waste rock pile to isolate the reactive 

minerals from the atmosphere, including precipitation, thereby stopping the chemical reactions 

necessary to produce AMD (Figure 1-1). A diverse range of cover system configurations exist, 

ranging from a single layer of natural soil to multi-layer systems containing natural soils, 

geosynthetic-reinforced soils, geofabrics and geomembranes. Geomembrane liners are being 

increasingly used in WRP cover systems due to their effectiveness as a barrier to oxygen and 

water. However, their performance has typically been evaluated at the laboratory and pilot scale 

therefore the geomembrane is in pristine condition with no defects (e.g., Yanful et al., 2003; Adu-

Wusu and Yanful, 2006). In actuality, the geomembrane liners are subject to holes or defects due 

to improper installation, heavy machinercy traffic and aging among some of the many factors that 
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impact their integrirty. Other studies have predicted water influx through assumed defects in 

geomembrane liners (e.g., Walton et al., 1997; Rowe, 2012; Touze-Foltz et al., 2000), but they 

were based on limited datasets and smaller laboratory scales over shorter study periods (e.g., 

Foose, 2001). While previous studies have demonstrated the benefits of geomembrane-lined 

cover systems, their performance for large, complex WRPs over a long time period has yet to be 

robustly evaluated. Therefore, despite their potential, knowledge is limited on the long-term 

behavior and performance of geomembrane-lined cover systems for mine WRPs.  

 

       

Figure 1-1: Engineered cover system being installed over a waste rock pile (WRP).  

 

This thesis focuses on the performance of geomembrane-lined cover systems following their 

installation at large, complex WRPs. As part of a large mine site reclamation program in the 

Sydney Coalfield in Nova Scotia, Canada, four WRPs were overlain with engineered cover 

systems, with three of these cover systems containing geomembrane liners with differing 

configurations and the other comprising a single soil layer. A comprehensive field monitoring 

program was subsequently performed at each WRP over a seven-year period. The performance of 

geomembrane-lined cover systems was first assessed through analysis of water influx by defect 
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leakage through the three geomembrane liners, which are overlain with differing drainage layers. 

The cover systems were then assessed for water and oxygen ingress through water balances and 

oxygen flux calculations. This research is expected to have significant industrial impact with 

conclusive findings on the benefits and limitations of geomembrane-lined cover systems for 

reducing atmospheric ingress to WRPs to prevent/control toxic AMD generation and release to 

the environment. 

1.2 Research Objectives 
The goal of this thesis is to provide new research to the mining industry on the performance of 

geomembrane-lined cover systems to reduce water influx to mine WRPs. This goal will be 

achieved through the following sub-objectives: 

1) Assess the influence of drainage layer material on the water flux through defects in the 

geomembrane-lined cover systems 

2) Perform extensive comparative analyses of four in-service cover systems, each with 

differing compositions and structures, to reduce water and oxygen influx to mine waste 

rock 

1.3 Thesis Outline 
This thesis is written in an “Integrated Article” format. A brief description of each subsequent 

chapter presented in this thesis is as follows: 

• Chapter 2: summarizes the current scientific literature relevant to mine waste rock piles 

(WRPs), acid mine drainage (AMD), and engineered cover systems. The prevalence of 

mining in Canada as well as the generation, release, and impact of AMD due to mine 

WRPs is discussed. Previous performance studies of single and multi-layer cover systems 

and their material components are presented. A detailed description of the study sites in 

the Sydney Coalfield is also provided.   

• Chapter 3: details various methods for determining water content above geomembrane 

liners within cover systems; the influence of drainage layer material on defect leakage 

through the geomembrane liner; and the fluid mechanics of leakage through defects in 

geomembrane liners. Presents final results on the impact of drainage layer systems in 

determining defect leakage at HDPE-inclusive cover systems. This research is intended to 

be published in Geotextiles and Geomembranes Journal. 
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• Chapter 4: presents an extensive comparative performance of in-service, geomembrane-

lined cover systems to limit water and oxygen ingress. The water balance method was 

used to determine water influx, while oxygen concentrations and transport mechanisms 

were used to determine oxygen influx. This research is intended to be published in the 

Journal of Hydrology. 

• Chapter 5: summarizes the findings of this research and outlines where these findings 

could be beneficial to the mining industry, while also providing recommendations for 

future work.  
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2  Literature Review 

2.1 Mining 

2.1.1 Mining in Canada 
Mining in Canada began 40,000 years ago when the first Aboriginal peoples of the Western 

Hemisphere arrived. Utilizing various materials such as pebbles, chert, gold, silver and turquoise, 

they produced tools, weapons and decorative ornaments. In the following years, Vikings, British 

and French peoples arrived in the area now known as Newfoundland, and mined materials such 

as stone, sand, lime and gravel to construct local buildings (Cranstone, 2002).  

 

Some of the first metals and minerals to be discovered in Canada were coal and iron. Later 

additional materials such as nickel and copper were revealed in a massive deposit in Sudbury, 

Ontario. This substantial deposit was a major contributing factor to Canada’s success in 

becoming one of the world leaders in mining nickel. Canada also experienced a boom in gold 

with the largest rush in the country’s history taking place in Yukon. However, during this period, 

the discovery of most mine deposits was still largely made by accident. It was not until after the 

1880s and further into the mid 1900’s that prospecting future mine sites became intentional with 

advancements in technology like the gamma ray spectrometer and airborne magnetometer.  

 

Commercialization of the mining industry flourished with larger companies prospecting new 

areas to excavate resulting in the industry maturing from the 1950’s onward (Cranstone, 2002). 

Today, mining in Canada is still an extremely significant part of our economy and ranks within 

the top 5 global leaders for producing 15 important metals and minerals (Figure 2-1) (Marshall, 

2019). Additionally, Canada is also the leading global center for mining finance with the TSX 

Venture Exchange listing almost 50% of the world’s publicly traded mining companies 

(Government of Canada, 2020).  



 

7 

 

 

Figure 2-1: Geographic description of the variety of metals and minerals that Canada produces (source: Marshall, 

2019) 

2.1.2 Coal Mining 
Coal was first prospected by Indigenous Peoples of Canada in Alberta as far back as 10,000 years 

ago. The mineral was commercially exploited later on in 1672 by Europeans on Cape Breton 

Island, Nova Scotia, shown in Figure 2-2 (Marshall, 2019). Here, expansive outcrops of coal 

seams along the coastline lead to the production of vast quantities of coal (Shea, 2009). Coal 

mining stretched out to other provinces in Canada such as British Columbia, Alberta and 

Saskatchewan towards the end of the 19th century. With the capability to transport the material by 

train, and the demand for coal to power their engines, the coal industry in Canada spiked in the 

20th century. Canada’s overall consumption of coal increased from 3.5 million tons in 1886 to 

peak in 1913 with 31.5 million tons per year. This trend was short lived however, and both output 

and consumption decreased until exportation to other developing countries at the time ensued 

(Muise & McIntosh, 1996). Canada has now become the 4th largest exporter of metallurgical 

coal, coal of substantial quality to produce coke, an essential product for steelmaking, in the 

world with 37 million tons exported in 2019 (Government of Canada, 2019a). An additional 20 
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million tons of coal is produced and consumed locally, however drawbacks in this amount of 

expected to be seen as in 2018 the Government of Canada announced regulations to phase out 

traditional coal-fired electricity by 2030 (Government of Canada, 2019a).  

 

Figure 2-2: One of the many surface workings coal mines in Sydney, Nova Scotia (source: Muise & McIntosh, 

1996) 

 

Currently there are 24 permitted coal mines across Canada in only four provinces (New 

Brunswick, Alberta, Saskatchewan and Nova Scotia), 19 of which are active (Figure 2-3). The 

majority of these mines are located in western provinces since more than 90% of coal deposits 

are located here (CAC, 2017). Most coal in Canada is mined using a process called strip or 

surface mining which removes overlying material temporarily to access the deposit. After 

collecting the coal, the overburden is then used to fill back in the space left (CAC, 2017; 

Hustrulid, 2011). This current method has higher productivity rates, which caused an increase in 

the price of coal when strip mining was first implemented (Cranstone, 2002).  
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Figure 2-3: Illustration of all coal mines in Canada (source: Government of Canada, 2019b) 

2.1.3 Waste Products 
All mining practices produce some sort of waste product. The waste from mining operations is 

characterized as high-volume material that is created through processes such as excavation and 

in-situ leaching (Szczepanska, & Twardowska, 2004). Waste is produced at multiple stages 

during the mining process and depending on the stage and practice utilized, waste can either be in 

a liquid or solid state. Liquid waste is a result of the use of water and chemical solutions to mine 

minerals contained within permeable ore. Mine water and sludge products are potential liquid 

waste pollutants due to their acidic chemical nature and possible inclusion of solid particles. 

Solid waste, such as solid waste rock, is produced after the initial excavation stage at a mine site 

to obtain access to the deposit. This material also presents similar environmental hazards due to 

the trace amounts of metals and minerals left behind in the waste product. Other forms of solid 

waste include gangue, which is formed during the mineral processing stage of ore. Gangue is 

reprocessed multiple times to further extract valuable minerals. Mine tailings are another form of 

solid waste that can be produced from mining practices. This form of waste is defined as the 
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finely ground rock that is leftover from mineral processing mixed with chemicals added during 

the extraction phase. (rest of this paragraph from (Lawson, 2020). 

 

The type of metal or mineral that is mined produces different amounts of mine waste. For 

example, for every ton of iron mined, over three tonnes of solid waste is produced (Mining 

Watch Canada, 2020). In 2013, the metal mining industry in Canada alone produced over 750 

000 tonnes of tailings and mine waste rock (Statista Research Department, 2006). Overall, 

mining in Canada produces over 30 times of the amount of solid waste that is generated by the 

entire population and industries combined that the country produces on a yearly basis (Mining 

Watch Canada, 2020). With the vast quantities of mine waste being produced not only in Canada 

but globally, it is extremely important to monitor and dispose of it correctly to minimize 

environmental impact.  
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2.2 Acid Mine Drainage 
Acid mine drainage (AMD) is the environmentally damaging toxic water that is released from 

active, inactive, or abandoned mine waste sites apart from liquid waste by-products from other 

chemical mining processes (Figure 2-4). The water contains toxic chemical leaching products 

that are stripped from waste rock through an oxidation-reduction reaction with the trace minerals 

left in the solid waste (Acharya & Kharel, 2020). In this section the process of generation, and 

factors affecting AMD as well as sources, release mechanisms and impacts that AMD cause will 

be discussed.  

 
Figure 2-4:AMD contaminated water resource (source: Akcil & Koldas, 2006) 

 

2.2.1 Generation and Factors Affecting AMD 
AMD requires the necessary reactants of water, oxygen and sulfide minerals. Water and oxygen 

are both readily available in the atmosphere, and in the ground to some extent, whereas sulfide 

minerals can be present in mine waste rock as trace minerals. The amount of trace minerals left 

behind in waste rock depend on the type of material being mined and the economic viability of 

their extraction to the industry. Table 2-1 lists a number of different sulfide minerals that can 

exist.  
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Table 2-1: Other sulfide minerals (Archarya & Kharel, 2020) 

Sulfide Minerals 

Pyrite 

Pyrrhotite 

Marcasite 

Chalcopyrite 

Galena 

Millerite 

 

Using pyritic sulfur as an example, the mineral oxidizes in the presence of oxygen and water to 

form dissolved iron, hydrogen and sulfate seen in the reaction Equation (1-1). 

 

2𝐹𝑒𝑆! + 2𝐻!𝑂 + 70! = 2𝐹𝑒!! + 4𝑆𝑂!!! + 4𝐻(!")!    (1-1)  

 

The dissolved iron reacts further, provided there is sufficient oxygen available, with hydrogen 

and oxygen to produce ferric iron (Fe3+) (Equation (1-2)). 

 4𝐹𝑒!! + 4𝐻(!")! + 𝑂! = 4𝐹𝑒!! + 2𝐻!𝑂    (1-2) 

 

Next, the ferric iron hydrolyzes to produce ferric hydroxide which will precipitate out of the 

solution as a solid (Equation (1-3)). The precipitate is often seen on shorelines and the surface of 

rocks as a white to yellow crust.  

 

 𝐹𝑒!! + 3𝐻!𝑂 = 4𝐹𝑒(𝑂𝐻)!(!"#$%) + 3𝐻(!")
!    (1-3) 

 

Another option for pyritic sulfur is to react with some of the ferric iron produced and water to 

create ferrous iron and sulfate (Equation (1-4)).  

 

4𝐹𝑒𝑆! + 14𝐻!𝑂 + 15𝑂! = 4𝐹𝑒(𝑂𝐻)! + 8𝑆𝑂!!! + 16𝐻!(𝑎𝑞)  (1-4) 

 

For many sulfides the production of hydrogen ions will decrease the pH of the solution and 

increase the acidity (Acharya & Kharel, 2020). Zinc sulfide is the one exception since the indirect 
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release of protons during oxidation of this mineral doesn’t cause a large increase in acidity 

(Banks et al., 1997). Overall, however, there are various influences that can affect the production 

of AMD, including generation, physical and chemical factors (Acharya & Kharel, 2020). 

 

2.2.2 AMD Influencing Factors 
Factors affecting the generation of AMD include impacts on the reactants, physical factors and 

chemical factors (Acharya & Kharel, 2020; Akcil & Koldas, 2006; John, et al., 2017; Pat-

Espadas et al., 2018). The reactants can be impacted by the presence of bacteria which cause an 

increase in the rate of sulfide oxidation. However, environmental conditions for these bacteria to 

survive are very specific, which can allow for AMD generation to be slowed down by forming an 

unfavourable habitat (Akcil & Koldas, 2006).  

 

Physical factors such as the geographic location of the waste rock are particularly important since 

the climatic conditions, for example the amount of water available for the reaction, can affect the 

presence and pH of AMD (INAP, 2014). Therefore, the treatment of AMD must be site specific. 

Additionally, the physical characteristics of the sulfide minerals can affect the rate of production 

of AMD (Acharya & Kharel, 2020). Caruccio et al., 1997, found that coarse-grained pyrite 

particles with a non-framboidal crystalline structure decompose more slowly than fine-grained 

framboidal structures because of their limited surface area compared to the latter. The physical 

size of the waste rock itself can also affect AMD generation in terms of both the amount of 

surface area available for the reaction to occur as well as pemerability. This waste rock dump pile 

permeability can also affect the reaction rate of AMD. The more permeable a waste rock pile is, 

the more space it has between the rock pieces and therefore has a larger allowance for oxygen 

flow. A positive feedback loop is created where more oxygen is able to enter the pile thereby 

increasing the reaction rates thus increasing the temperature within the pile creating convection 

within the structure and sucking more oxygen in. This effect can be minimized by crushing the 

rocks into smaller pieces thus decreasing the space between the rock therefore decreasing the 

amount of oxygen ingress to the pile (Ackil & Koldas, 2006). 

 

Lastly, chemical factors such as the pH level, have the greatest impact on AMD (Acharya & 

Kharel, 2020). Equeenuddin et al., 2010, saw that the pH of AMD is negatively correlated with 
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the amount of dissolved sulfide present as well with additional dissolved metals such as iron and 

manganese. The high metal content that low pH AMD has can increase the electrical conductivity 

of the solution (Equeenuddin et al., 2010).  

 

2.2.3 Sources and Release Mechanisms 
Water and oxygen required for the AMD reaction to take place are readily available in the 

atmosphere. However, the reaction is not possible without the presence of sulfide minerals. This 

reactant is present in various mine waste products such as coal waste rock and emanates from 

both primary and secondary sources. Primary sources include tailings ponds, mine waste rock 

dumps and underground and open pit mine workings. Secondary sources are concentrated spills 

along roadways, treatment sludge ponds, rock cuts and emergency ponds (Figure 2-5)  (Acharya 

& Kharel, 2020; Akcil & Koldas, 2006; John et al., 2017). 

 

Figure 2-5: Primary and secondary sources of acid mine drainage (AMD) (source: Akcil & Koldas, 2006) 
 

From these sources, the AMD product that is generated is released through the movement of 

water. After formation the AMD leachate that is contained within the waste rock will percolate 

through the depth of the WRP and seep out both at the base and on the sides, respectively 

denoted basal and toe seepage. Basal seepage will further percolate into the ground and 

contaminate groundwater resources such as aquifers. Toe seepage will flow off the pile onto the 
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ground surface and may contaminate surface water resources and soils (Acharya & Kharel, 

2020).  

2.2.4 Impact of AMD 
Effects due to acidic drainage vary from location, climate, land-use history, scale of mining, 

geochemistry of overburden material, and composition of mine water (Ayres & O’Kane, 2013; 

Acharya & Kharel, 2020). The impact of AMD is 4-fold, of which there are negative chemical, 

physical, biological, and ecological effects (John et al., 2017). Chemical impacts such as a 

reduction in pH to as small as a pH of 2, an increase in acidity and soluble metal concentration to 

the receiving aqueous environment relays a negative effect to the biology of life in the area 

through increased cell damage and death (Dutta et al., 2019, John et al., 2017). The resulting 

impact on ecological communities is detrimental with increased mortality in the animals that 

depend on these water resources. Thus, as a result water bodies contaminated are completely 

inhospitable to aquatic life except for extremophile species (John et al., 2017). Intake of heavy 

metals from AMD contaminated sources and bioaccumulation within the food chain has been 

seen as a result (Acharya & Kharel, 2020). Degradation of drinking water is also an issue as 

aquifers can be recharged with the contaminated water (Equeenuddin et al., 2010). However, 

humans are not impacted to the same degree as wildlife populations since the water can be treated 

before human use (Acharya & Kharel, 2020).  

 

The difficulty in characterization, prediction, prevention, treatment and extent makes AMD one 

of the most serious pollutants in watercourses, and the impact is so severe that the U.S 

Environmental Protection Agency (EPA) stated the environmental risks are “second only to 

global warming and ozone depletion” (Acharya & Kharel, 2020; Pat-Espadas et al., 2018). 

Canada spends approximately 100 million dollars to collect and treat mine waste leachate and 

cost to remediate AMD in the mining industry is between two and five billion dollars annually, 

making it the largest environmental liability in Canada (EMCBC, 2000).  
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2.3 Cover Systems 

2.3.1 Waste Rock Pile 
Waste rock is disposed of in large, porous, partially saturated piles on the ground surface. The 

WRP is constructed by hauling the solid waste into piles nearby the mine site. However, 

depending on when the WRP is established, cover systems can be constructed beneath, on top of 

WRP’s or utilize both options. Some WRPs have been further reprocessed to extract additional 

materials, and as a result have increased the footprint of the final pile. The geometry of the pile 

can change depending on how the waste rock is deposited. WRPs can have various formations 

such as having a sloped perimeter with a plateaued top (Figure 2-6), a cone shape or also be 

relatively flat. The geometry of the WRP can highly influence the performance of the cover 

system installed on top. 

      

Figure 2-6: Distinct slope and plateau area of a waste rock pile in Sydney, Nova Scotia.  
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2.3.2 Cover System Types 
Protective coverings, referred to as engineered cover systems or cover systems, have been 

implemented in various studies to limit interaction between reactive elements. Cover systems 

have been previously used at landfill sites, tailing ponds, nuclear waste facilities, etc (i.e. Ahn et 

al., 2011; Ashford et al., 2000).  

 

Design of cover systems depend on multiple factors including the site conditions, topography, 

climate of the area, financial limitations, installation difficulty, and required performance criteria 

(Power et al., 2018). Due to the wide range of requirements necessary to consider in cover system 

design, a variety of systems exist to meet the requirements of engineered cover systems 

constructed globally (Kim & Benson 2004; MEND 2004). Cover systems are commonly 

distinguished by the number or types of layers they consist of, i.e. single layer, multi-layer and 

synthetic cover systems 

 

Single cover systems are the most straightforward design and are aimed to function as a store-

and-release mechanism for atmospheric ingress. Multi-layer cover systems are conversely more 

complex than single layer systems since, as their name suggests, consist of several layers which 

operate in unison to fufill the performance objectives. Synthetic covers are unique from other 

designs because they are completely anthropogenically constructed. With this design, engineers 

are able to more accurately achieve cover performance goals than they would be with natural 

materials. Further insight into each of these cover system designs, where they are best 

implemented, their advantages and disadvantages are discussed in the following sections. 

 

2.3.3 Single Layer Cover Systems 
Single layer cover systems, as the name suggests, consist of only one layer. These covers are best 

implemented when the site objective needs are to store and release moisture from the atmosphere, 

without providing any function to limiting oxygen ingress (Scanlon et al., 2005). They can either 

be designed as a single liner or as a composite liner. Composite liners are cover systems which 

are comprised of two or more unique low-permeability materials that are in contact with one 

another (Giroud & Bonaparte, 1989). Most commonly, a composite liner uses a geomembrane, 

i.e. a fluid barrier that is thin and flexible, with a soil. Each material has individual hydraulic, 
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endurance and physical properties and both are combined to take advantage of each. Single layer 

cover systems objective is to delay the hydrologic cycle; therefore this design operates well in 

semi-arid or arid regions where precipitation is low and the cover is able to manage the influx of 

water through evapotranspiration before receiving more water (O’Kane and Ayres 2012; Scanlon 

et al., 2005; Bonstrom et al., 2012, Ayres et al., 2003). Single layer cover systems are easier to 

install and more cost effective than other designs making this an attractive option for a waste rock 

barrier (Power et al., 2017). The most common material to use for a single layer cover system is 

earthen till or soil, but other materials such as asphalt, cement and wax barriers have also been 

used in cover system designs (MEND, 2001).  

 

Soil cover system can also be enhanced with other materials to aid in their retention and 

evaporative properties. Bentonite, a naturally occurring clay mineral, is a common additive that 

can display a wide range of properties depending on the circumstances with its formation but is 

used with soil to decrease the hydraulic conductivity (MEND 2002). Soil-bentonite mixtures are 

also attractive for use at water and waste containment facilities due to the unique crystalline 

structure of bentonite. When water is absorbed in this material the lattice swells, decreasing the 

void ratio thus decreasing the availability for water flow through the material. Studies by Claire 

et al., 1993 and Kraus et al., 1997 have shown that bentonite enhanced soils also have a 

considerable resistance to freeze-thaw cycles and only experience a slight increase in hydraulic 

conductivity during this period.  

Similar properties are seen in other enhanced soil cover systems such as polymer modified soils. 

The same polymers that are used in the drilling industry to enhance the characteristics of drilling 

muds are also applied to enhanced soil mixtures to lower the hydraulic conductivity. Polymers 

are known to absorb 680 times their weight in water while bentonite only absorbs approximately 

10 times (Zhou et al., 1993). For this reason, the use of polymer-soil mixtures in a simple soil 

cover design would be ideal to reduce infiltration of water and oxygen diffusion (MEND 2002). 

Asphalt covers have been used for mine tailings and waste disposal sites and are composed of 

mixtures of asphalt and mineral fillers. Hydraulic asphalt concrete (HAC) used for this purpose 

has a higher content of mineral fillers and asphalt cement but a lower air void content. HAC has 

the advantage of an extremely low hydraulic conductivity in perfect condition but degradation 
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through oxidation, microbial attack, freeze-thaw cycling, and aqueous leaching need to be 

considered when used for cover system design (MEND, 2002).  

 

Similarly, cement covers like polypropylene fibre reinforced shotcrete, cefill, fly ash and 

geopolymers have been used on mine tailings sites, general acid generating waste, and waste rock 

to deliver the same low hydraulic conductivity traits (MEND, 2002).  

 

2.3.4 Multi-Layer Cover systems 
Multi-layer cover systems implement several different layers to take advantage of the benefits of 

each material while also counteracting their disadvantages by using multiple mediums. These 

cover systems are extremely beneficial for use in various climates and are designed to minimize 

oxygen and water influx. Water is impeded by either the use of resistive “barriers” that are 

designed to repel water and transport it through interflow, runoff and evapotranspiration within 

the cover system or using moisture retention seen in the capillary barrier concept (Power et al., 

2017). Oxygen is additionally repelled through the moisture retention because of low diffusivity 

of oxygen in water (Yanful, 1993). Multi-layer cover systems utilize a variety of materials such 

as soils and the modified mixtures mentioned in the previous section, gravel, and man-made 

materials like geofabrics, and plastics in a combination that is designed to achieve the long-term 

stability and performance goals of each specific WRP site.  

 

Man-made materials will be discussed in the following section, however their use in combination 

with gravel drainage layers is an example of a multi-layered cover system which conveys the 

flow of water through the cover. The increased pore space in the gravel material allows for water 

to percolate through more easily than with a finer substrate such as sand or soil. The enhanced 

movement of water prevents build up on plastic “barrier” layers and decreases the likelihood of 

water influx while increasing interflow. Gravel has also been used on the surface of cover 

systems to decrease erosion of more finely grained upper layer materials (Woyshner and Yanful, 

1995). Other organic and biologic materials have been used in addition such as compost and 

sewage sludge to create a biocover which have previously been employed at landfill sites to limit 

the amount of methane release and increase the oxidation rates within the pile (Sadasivam & 

Reddy, 2014). A double liner is a multi-layer cover system design which uses a drainage layer 
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sandwiched by two liners. A more complex double liner utilizes the single layer composite liner 

design as both the upper and lower layers in the double liner design. The drainage layer can 

consist of high-permeability soils, sands, gravels, or synthetic materials like geotextiles, 

geofabrics or needle punched woven sheets (Giroud & Bonaparte, 1989). 

 

2.3.5 Geomembrane & Synthetic Cover Systems 
In both single and multi-layer cover systems synthetic materials, called geosynthetics, can be 

used. Some common geosynthetics are geomembranes, geotextiles, geosynthetic clay liners, 

erosion control blankets and geonets (Giroud & Bonaparte, 1989; Ogundare et al., 2019). 

Geomembranes are low-permeability plastic liners which are flexible and thin allowing them to 

be stored on large rolls for easy transport (Giroud et al., 2000). High-density polyethylene 

(HDPE), low-density polyethylene (LDPE) and polyvinyl chloride (PVC) are common 

geomembranes (Giroud & Bonaparte, 1989). Geomembranes have been highly successful at 

mining sites and landfill sites for liquid leachate containment (Lupo & Morrison, 2007). Under 

ideal performance, geomembranes have contributed to stopping volatile fatty acids, chloride, 

ammonia, lead, mercury, and many other contaminants from polluting the environment (Rowe et 

al., 2004; Rowe, 2005). However, their water flux performance can be impacted by holes created 

in the material through poor installation, heat damage, wrinkling and aging (Rowe, 2012).  

 

Geotextiles are grouped into two categories; woven and non-woven but both are implemented in 

cover system design to increase stability and shear strength of overlying layers through resistive 

forces provided by the rough texture of the geotextile. These materials function to provide 

reinforcement, drainage, filtration, and separation to the cover system. Woven materials have a 

basket-weave pattern structure with a relatively smooth surface while non-woven geotextiles are 

made of random interlocking fibers that give a distinct “fuzzy” appearance (Figure 2-7). 

Additionally, geotextiles are important for use in cover systems that have layers intended for 

moisture storage since many natural soils decrease in strength with an increase in moisture 

content (Ogundare et al., 2019). The strength, i.e. the soil stability, is important in a cover system 

to maintain its structural integrity.  
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Figure 2-7: (a) woven, and (b) non-woven geotextile fabrics (source: Ogundare et al., 2019) 
 

Geosynthetic clay liners (GCLs) can be used as the soil part in composite liners. It is made up of 

a thin layer of bentonite clay that could be adhered to a plastic layer that is sandwiched between 

two geotextiles. GCLs can be reinforced by needle-punching the clay and geotextile layers 

together which enhances its moisture retention and shear strength properties, making it the most 

common GCL (Rowe, 2012). Rowe, 2012 showed that GCL are more successful at limiting water 

influx compared to a traditional clay liner, and their performance continued in field settings for 

decades. GCLs are also popular for their faster installation time, ability to use lightweight 

construction equipment and the minimal volume they occupy (Renken et al., 2007). 

 

A geonet is a plastic grid network sheet that is formed of a repetitive diamond pattern used to 

increase drainage (Figure 2-8) (Fannin et al., 1998). Since it is a man-made product, the sheet can 

be constructed with an exact transmissivity value known, unlike natural materials that are used 

for the same function. It is common for a geonet to be accompanied by a geotextile to prevent 

infiltration of smaller particles within the cover system that would clog the grid pattern. Geonets 

have also been used in other applications in multi-layer cover systems such as directly below 

geomembranes for use in leakage detection systems (Eith & Koerner, 1992).  

 

Figure 2-8: Geometric repetitive pattern of geonet material (source: Eith & Koerner, 1992)  

a) b)
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2.4 Cover System Performance 

2.4.1 Key Performance Indicators 
When a cover system is installed, different means of monitoring can be conducted to measure the 

performance of a cover at limiting AMD contamination over time. With knowledge of water and 

oxygen being the reactants to propel the production of AMD, the concentration or content of both 

these parameters are most commonly seen in cover system performance analysis and 

experimentation (e.g. Ayres et al., 2012). The long term performance of a cover system is 

dependent on the physical, chemical and biological processes detailed in Figure 2-9 that occur at 

the WRP site (Ayres & O’Kane, 2013).  

 
Figure 2-9: Processes that influence the performance of an engineered cover system (source: Ayres & O’Kane, 

2013) 

 

2.4.2 Measuring Water Influx 
To measure water influx, or the net percolation, all water in the hydrologic cycle must be 

accounted for. With this system a water balance is commonly used to assess the amount of water 

that has accumulated from precipitation to other locations. A water balance for the site is often 

conducted for this method and can utilize systems such as a meteorological station, weirs, 

groundwater wells, automated net percolation measuring stations as well as stations for 
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determining the amount of soil moisture and pore-gas concentrations within the cover and WRP 

(Figure 2-10).  

Meteorological stations have been used to measure all climatic conditions, including but not 

limited to air temperature and humidity, wind speed and direction, net radiation, and pressure 

(MEND, 2002; Tallon et al., 2013). A meteorological station is important to have at a WRP study 

since they are a simple yet effective tool to measure precipitation, which is the maximum influx 

that can occur for net percolation. Soil data including temperature, moisture content, has been 

analyzed using semivariograms (Tallon et al., 2013). A system to collect runoff like a v-notch 

weir is most common and can have the addition of collection ponds for further analysis of water 

contamination (Meiers et al., 2012; Power et al., 2018; MEND, 2015). Another vital instrument 

for determining water influx through a cover profile is the installation of moisture sensors, as 

seen in studies by Martin et al., 2019 and Power et al., 2018. Additional instrumentation like 

interflow devices constructed of geosynthetic sheets, and PVC piping are used to measure the 

water flow in cover systems that use geomembranes (Meiers et al., 2006). 

 

Figure 2-10: Monitoring equipment that can be used for cover performance evaluation (source: Ayres & O’Kane, 

2013) 
 

A water balance has been used at sites like Whistle Mine near Sudbury, Ontario, to measure net 

percolation of a multi-layer cover system on the WRP over seven years (Ayres et al., 2012). 

Performance of various cover system designs using the Peak Gold Mines (PGM) field site have 

been analyzed using soil-atmosphere numerical modelling, experimental cover systems and 
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initial field testing. The PGM study by Ayres et al., 2003 showed that from a detailed water 

balance method analysis the soil-only cover was able to achieve successful evaporative results 

using the store-and-release principles. Experiments and testing using water balance are widely 

conducted on both field and in lab studies (Aubertin et al., 1997; O’Kane et al., 1998a; Meiers et 

al., 2009).  

 

When studying performance of cover systems that include geomembranes, net percolation 

through the cover system can also be determined by the defect leakage experienced through the 

holes that are created in the plastic through the improper installation and aging of the product. 

Defect leakage is defined as the amount of liquid that flows through an opening in a cover 

system. These defects can occur in a variety of sizes ranging from pinholes to large tears and can 

result in a range of influx measurements (Giroud & Bonaparte, 1989). When considering defect 

leakage as a measurement of water influx, instrumentation that measures the water head above 

the geomembrane, like an OTT-pressure level sensor (PLS) or a HOBO logger, is necessary to 

include in the monitoring program. However, since the number and size of defects are not 

definitive and only highly estimated, the amount of defect leakage that could be calculated could 

vary from the actual measurement of net percolation (Giroud et al., 1992, Rowe 2012). The 

assumption is that as many as 15-20 defects of 2.5 – 15 mm in diameter are in every hectare of 

geomembrane (Rowe, 2012; Meiers & Bradley, 2017).  

 

Considering all field studies and instruments utilized to measure water influx performance at 

WRPs, numerical modelling and simulations of cover performance have also been highly studied 

since it requires a fraction of the cost and time to analyze the results of various scenarios. 

However, like with most laboratory studies the results are not completely transferable to field 

sites due to the heterogeneity and complexity of in-situ cover performance (Meiers et al., 2009).  

2.4.3 Measuring Oxygen Influx 
Oxygen can be received to the waste rock through diffusion, advection, or dispersion. In the 

absence of defects, advective and dissolved transport mechanisms will not occur through 

geomembrane liner inclusive cover systems, the dominant mechanism being diffusion. An ideal 

cover system will combine the qualities to limit water ingress but share a balance with the traits 
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that limit oxygen ingress as well. This environment would display a cover system that is able to 

contain a layer near saturation to prevent diffusive oxygen flux, Ayres et al. (2003) found that 

oxygen flux is decreased substantially if at least 85% of the layer is saturated. A cover limiting 

oxygen ingress will also have a small amount of pore space to decrease the oxygen influx by 

using materials with the smallest surface area (Ayres et al., 2012). To measure the oxygen 

concentration within the cover system and waste rock, a NOVA Gas Analyzer, or similar device 

could be used (MEND, 2012).  
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2.5 The Sydney Coalfield 

2.5.1 Background 
The Sydney Coalfield is located in Nova Scotia, Canada on Cape Breton Island (Figure 2-11). 

The coal rich environment was formed approximately 300 million years ago in the Late 

Carboniferous period (Hacquebard, 1993). The first commercial mining of this area did not begin 

until 1672 later evolving into commercial mining in 1700’s. The presence of war in the following 

years increased the production of coal and the Sydney Coalfield proved to be a successful 

venture. After the Seven Years War concluded, Cape Breton and coal production here was taken 

over by British who leased the mineral rights to the General Mining Association (GMA). GMA, 

in turn, relinquished the rights of the land back to the provincial government of Nova Scotia from 

1826-1850. Until 1967 coal was still heavily mined alongside the demand from the growing 

economy. However, in 1967 the newly formed Crown corporation called the Cape Breton 

Development Corporation (CBDC) was formed to manage the coal industry in Sydney (Meiers, 

et al., 2012). With a decline in the demand for coal their objective was to develop new economic 

opportunities while phasing out coal mining (Parsons et al., 2012). However, the Oil Embargo of 

the mid 1970’s resulted in continued coal mining at the Sydney Coalfield by CBDC until 2001 

when the mine sites ceased operation (Campbell & Gauthier, 2010).  

 

Figure 2-11: Sydney Coalfield, Nova Scotia, Canada (source: Google Earth, 2021) 
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2.5.2 Mine Site Reclamation Project 
After almost 300 years of continuous mining, producing over 2.4 billion tonnes of coal, the 

CBDC inherited the Sydney Coalfield properties and retired the mine sites in 2001 (Forgeron, 

2010). Working with Public Works and Government Services Canada (PWGSC), CBDC 

developed a program for remediating and closing former mine sites throughout the coalfield. The 

project spanned over 700 properties among 35 communities with multiple project managers 

(Parsons et al., 2012). PWGSC provided the engineering expertise including impacts associated 

with waste rock, GIS, and coal and industrial activity while CBDC were responsible for health 

and safety issues including human health, ecological risk assessments and mine workings hazards 

(Campbell & Gauthier, 2010). In 2009, CBDC dissolved, and the responsibility of the Sydney 

Coalfield Mine Site Reclamation Project was transferred to Enterprise Cape Breton Corporation 

(ECBC) (Ayers, 2010). Over the 10 years since this projects conception over 140 million dollars 

has been spent on planning, assessment, design, project management, demolition, construction, 

and environmental effects monitoring. The main objective was to return the land to its former or 

equal use through remediation practices that are economically viable while being the most 

passive method (Parsons et al., 2012). 

 

2.5.3 Waste Rock Piles 
To ensure the project site objectives for the Sydney Coalfield were being met, numerous waste 

rock piles sites were remediated through the installation of cover systems. Furthermore, at four 

WRP sites, state-of-the-art field monitoring instrumentation was installed alongside the cover 

system to allow for comprehensive performance monitoring and assess whether the site closure 

objectives were being achieved. Thsee four WRPs are Lingan, Victoria Junction, Scotchtown 

Summit and Franklin.  

 

The first WRP is Lingan which is in New Waterford, Nova Scotia, centered nearby the Lingan 

and Phalen colliery sites. The clean up of the site resulted in 3 WRPs that have been covered with 

a soil cover and topped with sod grass. One of these piles was utilized in the mine site 

reclamation project and the improvements to the site are intended to restore the land to use as a 

recreational horse track for the surrounding communities (ECBC, 2014).  

 



 

28 

 

The Victoria Junction group of WRPs consists of 11 sites which includes both the tailings basin 

and the coal preparation plant. The Victoria Junction WRP site that was used in the project had 

the cover system constructed between May and December 2006 (MEND, 2012). 

 

The Summit WRP group consists of 15 sites across New Waterford, Nova Scotia. Remediation 

was completed here in 2011 and 2012 with the creation of the main WRP and its accompanied 

cover system as well as a recreational trail network to restore the land to a new use (ECBC, 

2014). 

The Franklin WRP group consists of 6 sites spread across Florence and Bras d’Or, Nova Scotia. 

The main Franklin WRP that was included in the project is the largest of the 6 and was under 

operation from 1885 to 1957 where it produced approximately 1.4 million tonnes of coal (ECBC, 

2014).  
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2.6 Summary & Data Gaps 
Mining in Canada is still extremely prevalent with large amounts of waste rock being 

continuously produced through the mining of various metals and minerals. Furthermore, 

decommissioned mine sites, specifically coalfields, pose an environmental threat to nearby water 

resources and wildlife. The application of engineered cover systems has been focused mainly on 

test plot sites in laboratory settings which have resulted in increased knowledge of various 

materials performance in limiting atmospheric ingress. However, the ideal setting of lab studies 

doesn’t show the reality of engineered cover system performance. Additionally, performance has 

generally only been studied for a handful of years, (e.g. Yanful & Adu-Wusu, 2006) and could be 

subject to skewed results due to the piles previous saturation prior to cover installation. Overall, 

few studies have been conducted at large-scale in field waste rock covers over an extended period 

of time to analyze how various systems perform through climatic variability and aging.  

 

Therefore, there is a need to compare various types of engineered cover systems including 

several different materials to determine the best systems at limiting AMD. Additionally, the 

defects that can occur in HDPE-inclusive cover systems need to be evaluated as to determine the 

amount of water influx and thus the consequential potential AMD contamination. Chapters 3 and 

4 of this thesis present a study focused on four WRPs at Sydney Coalfield in Nova, Scotia, 

Canada. Chapter 3 concentrates on the impacts of defect leakage on environmental receptors in 

HDPE cover systems. Chapter 4 focuses on an overall comparison of the four different 

engineered cover systems and their ability to limit both water and oxygen influx.   
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3 Importance of Drainage Layers in Multi-Layer 
Geomembrane-Lined Cover Systems 

3.1 Introduction 
Mining operations produce massive quantities of waste rock that were not economically viable. 

The waste rock, which is typically deposited in large piles on the ground surface, can contain 

significant amounts of reactive sulfidic minerals such as pyrite and pyrrhotite. Exposure of these 

minerals to atmospheric water and meteoric oxygen can start a complex sequence of oxidation-

reduction reactions that generates acid mine drainage (AMD) (Nordstorm et al., 2015). AMD 

leachate is characterized by low pH, high acidity and high concentrations of sulfate, iron, 

manganese and other heavy metals. As a result, these waste rock piles (WRPs) can be a long-term 

source of environmental pollution, particularly on water resources, soil and aquatic communities 

(INAP, 2014). A number of studies provide detailed reviews of ARD components, including 

geochemistry (e.g., Nordstrom et al. 2015), impacts (e.g., Simate and Ndlovu 2014) and 

remediation options (e.g., Johnson and Hallberg 2005). 

 

A common approach to prevent and/or control AMD contamination is the placement of an 

engineered cover over the waste rock to isolate the reactive waste from the atmosphere. In 

addition to minimizing degradation of the surrounding environment, cover systems are also used 

to restore the WRP surface to a stable natural condition. A variety of cover system compositions 

and structures exist, ranging from a single layer of native soil to multiple layers of differing 

materials such as natural soil, geosynthetic-reinforced soil and geomembranes (e.g., MEND, 

2014). A ‘store-and-release’ cover includes a growth medium layer that stores infiltrated water 

until atmospheric and biotic demands are able to remove the water through evaporation and 

transpiration (e.g., O’Kane & Ayres, 2012), while a ‘water-shedding’ system also contains an 

additional impermeable or low permeability layer to promote water-shedding when storage is 

overwhelmed in the growth medium. 

 

Numerous studies have been performed to assess the effectiveness of various cover systems for 

limiting atmospheric influx based on numerical values of water and oxygen ingress. Furthermore, 

very few studies have monitored cover systems containing geomembranes. Geomembranes such 
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as high-density polyethylene (HDPE) can be a highly effective barrier to water and oxygen 

transport. While it has traditionally been used in lining systems at municipal waste landfills, it is 

now becoming a popular option within multi-layer cover systems being placed over WRPs. A 

recent monitoring project at a HDPE-lined cover system in Nova Scotia, Canada, confirmed the 

potential of HDPE-lined cover systems for reducing water and oxygen influx (Power et al., 

2017a; Ramasamy et al., 2018); however, a detailed investigation of various HDPE-lined cover 

systems with differing compositions is necessary to better understand the robustness of HDPE 

and the optimal configuration.  

 

While HDPE-lined covers are essentially impervious when devoid of defects, this is rarely the 

case at real field sites. Despite being pristine on arrival to the WRP, improper handling and 

installation commonly results in the creation of defects, whether it is a small hole or a long tear 

(Power et al., 2017). It is accepted in the literature that on average, 15 to 20 defects exist per 

hectare of the liner (Giroud et al., 1992; Forget et al., 2005). While it may not be possible to 

prevent the creation of defects and/or know the size/number of defects, it is possible to control 

the drainage layer on top of the HDPE liner. The absence or presence of a drainage layer above 

the HDPE liner, and the type of drainage material used can influence the movement and head of 

water above the HDPE liner, and therefore impact the amount of defect leakage in the cover 

system. While research has been performed on defect leakage rates through various defect sizes 

and shapes, no research has been performed on the influence of drainage material type on the 

water flux through HDPE-lined cover systems at WRPs. 

 

The objective of this study was to assess the influence of the drainage layer and material type on 

the water flux through exisiting defects in HDPE liners within cover systems at WRPs by 

applying the defect leakage model. Three WRPs located in the Sydney Coalfield in Nova Scotia, 

Canada, were overlain with HDPE-lined cover systems with differing drainage layers. A 

comprehensive, seven-year field performance monitoring program was performed at each WRP 

to monitor the evolution of key parameters within the atmosphere, cover system and shallow 

waste rock. This extensive dataset was applied to determine the moisture dynamics within the 

cover system and the water influx into the underlying waste rock. A single layer soil cover was 
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also monitored to provide a reference to assess the general performance of HDPE-lined cover 

systems. 
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3.2 Site Description 

3.2.1 The Sydney Coalfield 
The Sydney Coalfield is located on Cape Breton Island in Nova Scotia, Canada, as shown in 

Figure 3-1. It is the oldest mined coalfield in North America, with underground mining occurring 

from the early 1700s to the early 2000s (Shea, 2009). These historic mining activities produced 

approximately 500 million tonnes of coal, but also left behind a legacy of contaminated sites 

containing mine WRPs (Meiers et al., 2014). Upon cessation of mining operations in 2001, a 

mine site closure and reclamation program was implemented by Enterprise Cape Breton 

Corporation (ECBC), and later Public Works and Government Services Canada (PWGSC). 

 

Figure 3-1: Site map of the Sydney Coalfield in Nova Scotia, Canada, indicating the location of the WRPs at 

Summit, Victoria Junction and Franklin 

 

As part of this program, several WRPs were reclaimed with differing engineered cover systems, 

including single layer and multi-layer covers containing native soil, geosynthetics and 

geomembranes (e.g., Meiers et al., 2012). The three WRPs located at Summit, Victoria Junction 

and Franklin were each overlain with cover systems containing the same HDPE liner but 

differing layer compositions. Each site has a humid continental climate with an annual total 

precipitation of approximately 1500 mm and an annual potential evaporation of approximately 

450 mm. 
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3.2.2 Summit WRP 
The Summit WRP is located on the outskirts of Scotchtown, Nova Scotia, approximately 15 km 

north of Sydney. This WRP was created from the mine waste rock fill produced by the Dominion 

Coal Company from 1911 to 1973 and spread over an area of 44 hectares. In 2009, as part of the 

reclamation program, the WRP was re-shaped and consolidated, with the footprint reduced to 

approximately 37 hectares that was generally flat. The total volume of waste rock within the 

WRP is approximately 1.5 million m3, and ranges in thickness from 0.5 m to 10 m with the 

thickest deposits near the center. The plateau slopes range between 1% and 10%, and the side 

slopes range between 4% and 20%.  

 

Between 2010 and 2011, an engineered cover system was installed. A 0.15 m thick layer of 

uniform bedding sand was first placed over the waste rock. A 60 mil (1.5 mm thick) HDPE liner 

was placed on top of the bedding sand, and then overlain with a protective layer geotextile fabric. 

The fabric increases shear strength and soil stability so cover system structure integrity is 

maintained on the sloped faces. The rough texture of this material resists horizontal movement of 

overlying material through friction (Bacas et al., 2015).The cover system was completed with a 

0.5 m thick layer of imported till, which was then hydroseeded to establish a sustainable 

vegetative canopy and a geomorphically stable landform. Figure 3-2a presents an aerial 

photograph of the reclaimed WRP, while Figure 3-2b presents a cross-sectional profile of the 

cover system.	

 

Figure 3-2: (a) aerial photograph of the reclaimed Summit WRP, and (b) 2D cross-section profile of the Summit 

cover system composition 

0.5 m Till

Waste Rock
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HDPE
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3.2.3 Victoria Junction WRP 
The Victoria Junction WRP is located approximately 3 km east of Sydney at the site of a closed 

coal preparation plant. The processed waste rock from the nearby Phalen Colliery resulted in the 

WRP containing 5.88 million m3 of waste rock stretching over 28 hectares. The WRP has a well-

defined plateau and slope of 33% and a maximum thickness of 40 m. 

 

The cover system was installed between 2007 and 2008. A 0.15 m layer of uniform bedding sand 

was first placed over the waste rock, and then overlain with a 60 mil (thousands of an inch) 

HDPE liner. A 0.6 m thick layer of granular drainage material was then installed to promote 

lateral water flow and decrease the head of water on top of the impermeable HDPE liner. The 

resulting interflow was then directed towards a runoff collection system conjunctively. A final 

0.6 m thick layer of natural till was placed over the granular drainage material to promote 

vegetative growth. Figure 3-3 presents an aerial photograph of the reclaimed WRP and a cross-

sectional profile of its cover system. 

 
Figure 3-3: (a) aerial photograph of the reclaimed Victoria Junction WRP, and (b) 2D cross-section profile of the 

Victoria Junction cover system composition 

 

3.2.4 Franklin WRP 
The Franklin WRP is located in Bras d’Or, approximately 25 km north of Sydney. Over 187000 

m3 of waste rock from five nearby coal mines, including the Franklin mine, was deposited into 

the WRP. This WRP has the smallest footprint of the three WRPs in this study, spanning an area 

of 2.5 hectares. It has a small plateau on top with a maximum thickness of 13 m, and 25% side 

slopes. 

0.15 m Bedding Sand

0.4 m Till

Waste Rock

0.4 m GDL
HDPE
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The cover system was installed in 2011 and implements a geotextile fabric on top of the waste 

rock, that is then overlain with a 60 mil (i.e. thousands of an inch) HDPE liner. A geocomposite 

drainage system, referred to as a ‘geonet’ was placed on top of the HDPE liner. The geonet 

consists of two sets of HDPE strands intersecting at different angles and spacing that are heat-

bonded with a nonwoven needle-punched geotextile to keep silt and soil particles from clogging 

the flow and increase the friction characteristics. A 0.6 m thick layer of imported till was placed 

on top and hydroseeded to provide a sustainable vegetative layer. Figure 3-4 presents an aerial 

photograph of the Franklin WRP and a cross-sectional profile of its cover system. 

 

Figure 3-4: (a) aerial photograph of the reclaimed Franklin WRP, and (b) 2D cross-section profile of the Franklin 

cover system composition 
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3.3 Methodology 

3.3.1 Defect Leakage 
The primary mechanism for generating water flux through a cover system containing a HDPE 

liner is leakage through defects. Defects, also referred to as holes, tears or rips depending on the 

size and shape of the opening, are commonly present in cover systems (Giroud & Bonaparte, 

1989). Defects can be formed in many ways at a WRP, including (i) handling, installation and 

seaming, (ii) subsequent placement of overlying cover material, (iii) heavy machinery traffic, and 

(iv) aging (Rowe, 2012). Giroud & Bonaparte (1989) were the first to outline concisely the 

presence of defects and the issues they cause in HDPE liner performance. Since their discovery, a 

number of studies like the ones by Rowe et al. (2012), Rowe (2012) and Touze-Foltz et al. (2021) 

have supported defect existence in HDPE and researched their impact on wrinkled and landfill 

liners and associated leakage rates. It is undisputed that defects occur within plastic liners and the 

number can range anywhere from 2 to 30 holes/ha upon initial HDPE placement. This value is 

applied to design calculations when constructing HDPE-inclusive cover systems however, it must 

be noted that further defects can arise over time through the aforementioned mechanisms (Giroud 

& Bonaparte 2001; Meiers et al., 2015).  

 

Assessing the amount of leakage that can occur through geomembranes is a long-established and 

active area of research (Giroud & Touze-Foltz, 2005; Rowe, 2012; Foose et al., 2001; Touze-

Foltz & Giroud, 2003). The leakage through defects is influenced by a number of different 

factors, including: (i) head of water above HDPE liner, (ii) slope angle of the HDPE liner size, 

(iii) size and number of defects within the liner, (iii) saturated hydraulic conductivity of the 

underlying medium, (iv) wrinkle dimensions (i.e. width and length) and connectivity, (iiv) 

transmissivity of the interface and (iiiv) contact quality between HDPE and underlying medium 

(Meiers & Bradley, 2017; Power et al., 2017). 

 

A conceptual model of a single HDPE liner defect is shown in Figure 3-5 to illustrate how fluids 

travel through defects. The head of water that builds on top of the HDPE liner provides the 

gradient for flow through the defect. The slope of the cover system and the hydraulic 

conductivity of the underlying material also influences the flow rate through the defect. The 

quality of contact between the HDPE liner and the underlying material strongly influences the 
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total influx to the waste rock. Poor contact quality can be caused by wrinkles, uncompacted 

material and/or uneven surfaces and results in a gap between the interface of the HDPE and 

underlying material. In contrast, good contact quality occurs when strong adherence exists 

between both layers (Touze-Foltz & Giroud, 2003). The interface gap between the two layers 

influences the rate of lateral flow and spreading before percolating into the underlying medium. 

Area of the defect will also determine the rate of leakage through the HDPE liner. The area of a 

defect is directly related to the interface flow experienced. Therefore, large areas yield a greater 

surface area for interface flow and thus greater leakage rates. The converse occurs when the area 

of a defect is smaller. The head of water above HDPE liners is another key parameter in 

measuring defect leakage. A large hydraulic head experiences greater pressures and forces water 

through the defect more efficiently than with a small hydraulic head experiencing lower 

pressures. Finally, the saturated hydraulic conductivity (Ksat) of the medium below the HDPE 

will dictate how fast the resulting leakage will be able to flow through towards the underlying 

waste rock. A material with a high Ksat is more permeable than a material with a low Ksat. 

Consequently, water travels more slowly through the latter as a result of the tightly packed 

saturated pore space. Opposingly, there is greater ease for water movement when the material has 

a high Ksat.  

 

Figure 3-5: Conceptual model of fluid mechanics surrounding a defect in a HDPE liner (modified from Touze-Foltz 

& Giroud, 2003). 

h HDPE Defect

Interface

Bedding 
Sand

Wetted area

HDPE Plastic

Interface Flow
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Several equations have been developed to measure the leakage flux through geomembrane 

defects installed at landfill and WRPs (e.g., Rowe, 2012; Foose et al., 2001 ). Some of the most 

well accepted and widely used equations for estimating leakage through a defect were developed 

by Giroud et al. (1992), McEnroe et al. (1981), Foose et al. (2001), Touze-Foltz et al. (2001) and 

Rowe (2012). Touze-Foltz et al. (2001) and Rowe (2012) specificially examined holes within 

wrinkles on a geomembrane surface. Wrinkling occurs during thermal heating and aging of the 

material causing a decrease in the contact quality. Analytical solutions of several scenarios were 

modelled that varied in the shape of the defect, size and connectivity of wrinkles as well as the 

flow boundary (Touze-Foltz et al., 2001; Rowe, 2012). Equations from Foose et al. (2001) were 

comparatively more general, allowing the use of the equation to be more adaptive to various 

geomembrane conditions (i.e. wrinkled and non-wrinkled). McEnroe et al., 1981 developed an 

equation for defect leakage on  areas where the slope is less than 10%. Compiling the information 

of defect leakage equations available, the equation that was most suitable to this study was 

developed by Giroud et al. (1992). The analytical solution for the leakage rate 𝑄 (m3/sec) is as 

follows: 

 

    𝑄 =  𝐶!" ∙  𝐴!.! ∙  ℎ!.! ∙  𝐾!"#!.!" ,   (3.1) 
 

where 𝐶!" is the contact quality factor (ranging from 0.21 for good contact to 1.15 for poor 

contact) [-]; 𝐴 for area of the defect [m2]; ℎ is the head of water above the defect [m]; and 𝐾!"# is 

the saturated hydraulic conductivity of the underlying material [m/s]. This equation has been 

widely used in previous studies (e.g., Power et al., 2017, Qian et al., 2004) since it is general 

enough to capture a number of leakage scenarios with different geomembrane conditions, and 

topographies while being liberal with the amount of flow experienced to most accurately 

calculate water influx. The sensitivity of the various parameters involved in this equation are 

further discussed in section 3.4.5. Applications have involved determining defect leakage for 

wrinkled HDPE liners as well as on constructed landfill liners testing varying degrees of contact 

with a 3D model.  
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For the base case, a moderate contact quality of 0.68 was assumed, while the frequency of defects 

was assumed to be 20 per hectare (± 5) with a diameter of 10 mm (± 7.5). These assumptions are 

similar to those in previous studies (e.g., Giroud et al., 1992; Meiers and Bradley, 2017; Power et 

al., 2017). Following field placement, the 𝐾!"# of the bedding sand was measured to be 1 x 10-7 

m/sec from calculations performed by O’Kane Consultants Inc. To monitor the moisture 

dynamics within the cover system, including the head of water, an extensive field monitoring 

program was conducted between January 2012 and December 2018 at all three WRPs.  

3.3.2 Field Monitoring 
During installation of the cover system at each WRP, state-of-the-art monitoring instrumentation 

was installed alongside the cover systems to permit cover performance monitoring and confirm 

that site closure objectives were being met. For this study, key parameters in the atmosphere, 

cover system, and shallow waste rock were monitored and analyzed. The dataset of performance 

information spans from January 2012 to December 2018. 

 

Figure 3-6 presents a schematic of the cover system and photographs to summarize the 

monitoring instrumentation installed by O’Kane Consultants Inc. A meteorological station was 

installed at each WRP to continuously measure numerous meteorological parameters. Rainfall 

and snow depth were of most interest in this study, with both parameters being measured every 

three hours. Rainfall was measured with a Hydrological Services Model CS700 tipping bucket 

gauge (Campbell Scientific, Canada), with a resolution of 0.2 mm. Snow depth was measured 

with a SR50A sonic ranging sensor. Total precipitation (PPT) was then calculated using a 

combination of both rainfall and snow depth equivalent data. 
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Figure 3-6: Cross-section of the WRP showing the profile of the cover system and the weather station, Soil 

Monitoring Station (SMS) and water level loggers, along with their associated photographs. 

 

At each WRP, four soil monitoring stations (SMSs) were installed to continuously measure 

volumetric moisture content, matric suction, soil temperature and pore-gas at multiple depths 

within the cover system and shallow waste rock. Table 3-1 lists the specific depths of the 

moisture sensors at each WRP. Volumetric moisture content was measured every 3 hours using 

time domain reflectometry (TDR) sensors and was used to monitor the evolution of moisture 

dynamics within the cover system over time. Figure 3-6 shows the casing for the data acquisition 

system (DAS) for SMS. 

 

OTT pressure level sensors (OTT-PLSs) and HOBO water level loggers were placed above the 

HDPE liner to measure the hydrostatic pressure and barometric pressure to determine the head of 

water on top of the HDPE liner. The OTT-PLS, as shown in Figure 3-6, is buried within the 

cover system and is connected to the nearest SMS where data is automatically recorded every 3 

hours. This device has an operating range of 0 to 4.0 m and and accuracy of 0.05%. The HOBO 

loggers are placed inside a piezometer (Figure 3-6) that is fully screened across the entire depth 

of the cover system (i.e., from the HDPE liner to the surface), and also automatically record data 

every 3 hours with an accuracy of 0.1%. One OTT-PLS and five HOBO loggers were installed at 

Suction/Temp 
Sensors

Soil Station

Pore-Gas

OTT-PLS/HOBO 
Logger

Weather 
Station

Waste Rock

Till

Moisture Content 
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the Summit WRP, while one OTT-PLS and seven HOBO loggers were installed at the Victoria 

Junction WRP. 

As no water level loggers were installed at the Franklin WRP, an alternative approach was 

needed to estimate the head of water on top of the HDPE liner. The drainage layer at Franklin is 

comprised of a geonet with a specific transmissivity, and the equation by Giroud et al. (2000) can 

be used to calculate the maximum head of water (ℎ!"#) on a sloped surface as follows: 

 

ℎ!"# =  !!!
!!"#!"#$

      (3.3) 

 

where 𝑞! is the infiltration rate [mm/hr], 𝐿 is the length of the slope [mm], 𝐾!"# is the saturated 

hydraulic conductivity of the geonet [mm/hr], and 𝛽 is the slope angle [°]. This equation is highly 

suitable for the Franklin WRP as almost all its surface area is sloped. The infiltration rate was 

estimated from a water balance that was developed for the cover system, with the infiltration rate 

equal to PPT minus surface runoff, evapotranspiration and water storage (e.g., Power et al., 

2018). The manufactured geonet transmissivity (1 x 10-5 m/sec) and thickness (0.005 m) were 

used to determine the hydraulic conductivity of the geonet (1 x 10-4 m/sec) The length and angle 

of the side slopes at Franklin is approximately 70 m and 60°, respectively. 

 
Table 3-1: Depths of the moisture content sensors, OTT-PLS and HOBO loggers within each cover system for each 

SMS (m) 

Summit Victoria Junction Franklin 

Growth Medium 

0.05 0.05 0.05 

0.10 0.10 0.10 

0.20 0.20 0.20 

0.30 0.30 0.30 

0.40 0.40 0.40 

0.49 a 0.59 0.50 

Drainage Layer 
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- 

0.65 

0.60 

0.94 

1.07 

1.29 

1.30 a 

HDPE (60 mil, 1.5 mm) 

Bedding Sand 

0.55 
1.35 

0.70 
1.40 

Waste Rock 

0.75 1.45 1.80 

2.02 2.40 2.60 

a OTT-PLS and HOBO 
 

  
The head of water estimates determined from Equation 3.3 can also be compared to the moisture 

contents that were monitored at Franklin. The moisture content and head of water that were both 

collected at Summit and Victoria Junction can be compared to develop a general understanding 

and correlation between moisture content and head of water above the HDPE liner, and this 

correlation can then be used to confirm that the estimated head of water at Franklin is supported 

by the corresponding moisture content. 
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3.4 Results and Discussion 

3.4.1 Precipitation 
The monthly cumulative precipitation (PPT) occurring at each WRP between January 2012 and 

December 2018 is presented in Figure 3-7. It is evident that the WRPs experienced a range of 

conditions throughout the monitoring period, with consistent seasonal fluctuations. As expected, 

the highest PPT occurs during the wet months in fall and spring (September to April) with the 

lowest PPT occurs during the summer months (May to August). 

 

 
Figure 3-7: Monthly PPT occurring at Summit, Victoria Junction and Franklin 

 

3.4.2 Volumetric Moisture Content 
The volumetric moisture content measured at each sensor depth at the four SMSs were averaged 

to generate a depth profile of moisture content at each WRP that evolves through the monitoring 

period. Figure 3-8 presents a two-dimensional (2D) contour profile of average moisture content at 

each WRP site between January 2012 and December 2018. Red and blue regions indicate regions 

of low and high moisture content, respectively, white regions indicate when soil was frozen, and 

the moisture measurements were unreliable. While moisture content mainly varies due to water 

infiltration from both rainfall and snow water equivalents, it should be noted that since it is a 

function of porosity, moisture content can also vary due to material heterogeneity. 
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Figure 3-8: 2D contour plots of moisture content within the cover system and shallow waste rock at (a) Summit, (b) 

Victoria Junction, and (c) Franklin. White areas indicate moisture content data not recorded where soil was frozen. 

 

At the Summit WRP (Figure 3-8a), the moisture content within the soil material overlying the 

HDPE liner (0 m to 0.55 m depth) follows the expected seasonal fluctuations: the moisture 

content is highest (blue regions) during highest PPT in fall and spring, while lowest moisture 

contents (yellow regions) occur during dry summer months. These moisture contents are 

relatively high as there is no distinct drainage layer and the downward percolating water builds 

on top of the HDPE liner. The repetition in the moisture content trends indicates that the cover 

material is consolidating and maturing over time. The bedding sand below the HDPE liner shows 

lower moisture content (orange) which indicates that the HDPE liner prevents water percolation 

(aside from defects). 
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Figure 3-8b demonstrates that the cover material above the drainage layer (0 m to 0.55 m depth) 

at Victoria Junction exhibits a lower moisture content than the Summit WRP but does follow the 

same seasonal fluctuations. The granular drainage layer between 0.55 m and 1.1 m depth 

indicates that the moisture content is very low over time (red) with little variability, though the 

moisture content is slightly higher near the HDPE liner, indicating a slight build-up on the liner. 

This demonstrates the effectiveness of the granular drainage layer to provide lateral water and 

limit the build-up of water on top of the HDPE. Below the HDPE, the moisture in the bedding 

sand was relatively low over time, similar to Summit. 

 

At the Franklin WRP cover in Figure 3-8c, it is evident that the geonet drainage layer is also 

effective at maintaining lower moisture contents above the HDPE liner compared to Summit. 

Despite its small thickness, it is evident that the geonet can effectively drain the infiltrating water 

directly above the liner. During dry summer months, the moisture content in the top layer of soil 

is lower (green) and the geonet can rapidly reduce this moisture directly above the liner, while 

during the wetter months, the higher moisture contents in the soil layer are still rapidly reduced, 

though not to such a low level.   

 

Individual moisture sensors can be further analyzed to focus on the evolution of moisture directly 

above and below the HDPE liner. Figure 3-9a indicates that the moisture content immediately 

above all liners fluctuates in response to seasonal trends. Due to the lack of lateral drainage and 

build-up of water above the liner, the moisture content at Summit is significantly higher than 

Victoria Junction and Franklin throughout the monitoring period, fluctuating between a low of 

0.15 and a high of 0.35. Victoria Junction and Franklin exhibit lower moisture contents over 

time, fluctuating between 0.05 and 0.15, and 0.02 and 0.2, respectively. At all WRPs, the overall 

moisture content is slightly increasing over time, especially at Victoria Junction and Franklin. 

This is likely due to gradual clogging of the pore spaces within the granular and geonet drainage 

layers, thereby reducing its transmissivity. This result could also be due to compaction of the 

material, leading to smaller pore spaces and therefore enhanced capilliarity, the materials ability 

to hold water at a greater moisture content.  
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Figure 3-9b plots the temporal evolution of moisture content directly below the HDPE at each 

WRP. At Summit and Victoria Junction, the moisture content lies within the bedding sand and it 

is evident that the moisture levels remain low over time. The bedding sand is uniform, and the 

measured moisture is likely the residual saturation retained around the sand grains. At Franklin, a 

protective geofabric was used which likely retains higher moisture content over time, though it is 

gradually decreasing over time, as shown in Figure 3-9b. At all WRPs, the moisture content 

remained relatively constant, which confirms that it is disconnected from the seasonal weather 

fluctuations. 

 

Figure 3-9c presents the moisture content measured just below the surface of the waste rock to 

further analyze the efficacy of the cover systems for preventing water entering the waste rock. 

Prior to cover installation, the waste rock was exposed to the environment and direct water 

infiltration. As a result, the moisture content within the waste rock can be relatively high, 

especially in the immediate years after cover installation, which is confirmed in Figure 3-9c. The 

Summit and Franklin are slowly getting drier over time, which is expected. However, Victoria 

Junction is getting wetter over time, and demonstrates slight seasonal variation, which may be 

indicative of more substantial defects and associated leakage through its HDPE liner.   
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Figure 3-9: Evolution of averaged moisture content at each WRP across respective SMSs (a) directly above the 

HDPE liner, (b) directly below the HDPE liner, and (c) within the shallow waste rock 
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3.4.3 Head of Water above HDPE Liner 
The head of water measured at multiple locations across the Summit and Victoria Junction WRPs 

by the OTT-PLSs and HOBO water level loggers were averaged to obtain a representative water 

height above the HDPE liner at both WRPs. The head of water at Franklin was estimated by 

Equation 3.3. Figure 3-10 plots the head of water over time at each WRP, and also shows the 

total volume of water in the cover material based on the moisture contents. It is evident that the 

head of water at each WRP varies over time in response to seasonal changes and is strongly 

correlated to fluctuations in PPT and moisture content, as shown in Figures 3-7 and 3-8. During 

wet periods, high PPT events leads to increases in moisture content and head of water events 

above the HDPE liner. Similarly, drier periods with low PPT results in decreases in moisture 

content and head of water. It should be noted that frozen ground conditions during winter can 

lead to a low head of water due to the lack of flowing water during this time period. 

 

The head of water at the Summit WRP is significantly larger than Victoria Junction and Franklin, 

due to the lack of a drainage layer. At some periods, the head of water exceeded the height of the 

cover material above the HDPE liner, which was confirmed by the continual waterlogging 

observed at the field site. The lower head of water at Victoria Junction again confirms the 

effectiveness of the granular drainage layer to promote lateral flow of water. Similarly, despite 

the small thickness of the geonet, it was highly effective at promoting drainage and reducing head 

of water. This may be attributed to the uniformity and geometry that can be manufactured in 

geonets, which helps to maintain drainage performance, even under high compressive loads like 

heavy machinery traffic strengths (Yarahmadi et al., 2018; Jeon, 2019). Additionally, the small 

water head experienced at Franklin WRP is further supported by the low moisture content results 

from Figure 3-8c.  
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Figure 3-10: (a) Head of water above the HDPE liner and (b) total volume of water within the cover material 

measured at all 3 WRPs between January 2012 and December 2018. 
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3.4.4 Water Flux by Defect Leakage 
The estimated defect leakage through each HDPE-lined cover system is plotted in Figure 3-11. 

The main variable in the fluid mechanics surrounding a HDPE defect (Figure 3-5) is the head of 

water; therefore, water flux through HDPE defects varies in direct response to changes in head. 

Defect leakage is significantly larger at Summit due to the larger head of water caused by the 

lack of an effective drainage layer. During dry periods, the head of water is negligible, no leakage 

occurs even when defects exist. Victoria Junction and Franklin have drastically lower leakage 

fluxes due to the lower head of water provided by their respective drainage layer. The variation in 

the material utilized below the geotextile at Franklin could also be contributing to the enhanced 

performance at this WRP. Further insight into the sensitivity and significance of the saturated 

hydraulic conductivity of the underlying medium beneath the HDPE is discussed in section 3.4.5. 

 

Table 3-2 presents the cumulative PPT (mm), water influx due to defect leakage (mm), and water 

flux as a percentage of PPT (% PPT) at the end of each year between 2012 and 2018. As shown, 

the average water influx (% PPT) to the waste rock at Summit, Victoria Junction and Franklin is 

2.01, 0.35, 0.08, respectively.  
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Figure 3-11: Water influx cumulative over each calendar year due to defect leakage through HDPE liner at Summit, 

Victoria Junction and Franklin WRPs. 
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Table 3-2: Water influx due to defect leakage 

Year 

Summit Victoria Junction Franklin 

PPT 

(mm) 

 F44.1.1

l

u

x

 

(

m

m

) 

% PPT 
PPT 

(mm) 

 F44.1.1

l

u

x

 

(

m

m

) 

% 

PPT 

PPT 

(mm) 

 F44.1.1

l

u

x

 

(

m

m

) 

% 

PPT 

2012 1319 24.45 1.85 1367 3.78 0.28 1355 0.48 0.04 

2013 1384 22.79 1.65 1130 4.71 0.42 1395 0.49 0.04 

2014 1751 27.93 1.60 1659 4.72 0.28 1684 0.59 0.04 

2015 1531 24.61 1.61 1293 5.18 0.40 1649 0.57 0.03 

2016 1675 36.30 2.17 1640 5.99 0.37 1749 0.61 0.03 

2017 1276 32.50 2.55 1161 4.39 0.38 1467 0.51 0.03 

2018 1206 32.36 2.68 1521 5.00 0.33 1364 0.33 0.02 

 

3.4.5 Sensitivity Analysis of Defect Leakage 
A sensitivity analysis was performed on the defect leakage flux equation in Equation (3.1) to 

assess how sensitive each parameter is on flux calculations. The baseline values for each 

parameter (contact quality, defect size, head of water, and Ksat of the bedding sand) were 

systematically modified one by one to realistic minimum and maximum values, as shown in 

Table 3-3. The baseline contact quality value was 0.68 (moderate contact), and was decreased to 

0.21 (poor contact) and then increased to 1.15 (good contact). The baseline defect diameter was 

0.01 m and was decreased and increased by 50% to 0.05 m and 0.02 m, respectively. A baseline 

head of water was 0.1 m (average head of water at Victoria Junction), which was then decreased 

and increased to 0.01 m (Franklin) and 0.5 (Summit), respectively. The Ksat of sand of 1 x10-7 

was decreased and increased by one order of magnitude. 
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Each scenario was evaluated as a percent change on the leakage flux compared to the baseline 

flux. The parameter that was most influential to defect leakage was a change in water head and 

saturated hydraulic conducitivity of the bedding sand. Both parameters experienced a large % 

change in leakage with a larger % change in parameter. However, larger changes in these 

alternative scenarios could be seen with a greater % change in the parameter. The sensitivity of 

Giroud’s 1992 equation shows that the height of water above the HDPE plastic and the hydraulic 

conductivity of the underlying medium are most influential in determining the amount of defect 

leakage, therefore should be the parameters of most concern when constructing an HDPE-

inclusive cover system. 

Table 3-3: Summary from sensitivity analysis of key parameters in the defect leakage equation. Baseline scenario: 

Cqo = 0.68; d = 0.01 (m); hw = 0.1 (m); Ksat = 1.0 x 10-7 (m/s)  

Scenario New Value % change in 

parameter 

% change on 

leakage 

Increase Cqo 0.21 69.12 -69.12 

Decrease Cqo 1.15 -69.12 69.12 

Increase d 0.005 m 50 -12.94 

Decrease d 0.02 m -100 14.87 

Increase hw 0.5 -400 105.73 

Decrease hw 0.01 90 -93.92 

Increase Ksat of sand 1.0 x 10-8 m/s 90 -81.90 

Decrease Ksat of sand 1.0 x 10-6 m/s -900 449.54 
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3.5 Conclusions 
Cover systems that contain HDPE geomembrane liners are expected to provide a highly effective 

barrier to prevent meteoric water and atmospheric oxygen influx to mine waste rock, thereby 

halting the generation of environmentally toxic acid mine drainage (AMD). However, this is only 

achieved when the liner is in pristine condition, which is extremely difficult to maintain during 

handling, installation and placement of overlying cover material. As a result, HDPE liners are 

subject to defects in the form of holes or tears which can result in the flow of percolating water 

through these openings. One of the key parameters that controls the amount of leakage through 

defects is the head of water sitting on top of the liner. Furthermore, this is one of the only 

parameters that can be controlled prior to cover installation by designing and implementing a 

suitable drainage layer that promotes lateral drainage above the liner and limits the head of water. 

 

This study assessed the performance of different drainage layer compositions within HDPE-lined 

cover systems at three reclaimed WRPs in the Sydney Coalfield in Nova Scotia, Canada. The 

cover system at each WRP implemented different drainage layer compositions: (i) Summit did 

not implement a specific drainage layer, instead relying on drainage through the overlying natural 

till material, (ii) Victoria Junction implemented a 0.6 m thick layer of natural granular material, 

and (iii) Franklin implemented a 5 mm thick layer of geocomposite drainage material (i.e., 

geonet). A comprehensive field monitoring program was conducted between January 2012 and 

December 2018 to monitor the moisture dynamics within each cover system every day over eight 

years, with the key parameters of interest including precipitation (PPT), moisture content and 

head of water above the liner.  

 

While each WRP was subjected to similar amounts of PPT, the moisture levels and heads of 

water above the HDPE liner within each cover system differed significantly. During wet periods 

of high PPT (fall and spring), the Summit WRP was highly saturated with a large head of water 

and corresponding defect leakage flux (average annual of 10% PPT). Furthermore, the head of 

water frequently exceeded the total cover thickness, resulting in water ponding across the WRP 

and other cover performance issues such as poor vegetation and reduced erosion control. In 

contrast, the Victoria Junction WRP exhibited a low moisture content and head of water 

throughout the monitoring period, irrespective of heavy PPT events, and limited the leakage flux 
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to an average annual of 5% PPT. The geonet layer at the Franklin WRP also dramatically reduced 

the head of water above the HDPE liner and corresponding leakage flux (average annual of 7 

%PPT), despite its small thickness.  

 

Other well-known factors that influence defect leakage include contact quality and defect 

size/number but even with the most stringent quality control measures during installation, these 

factors can be difficult to control and observe during and following the placement of overlying 

cover material. One of the other key factors that can be controlled during design and installation 

is a drainage layer, with this study demonstrating that even if HDPE liners inevitably obtain 

defects, their high performance can still be attained if appropriate lateral drainage is achieved. 

This will limit the head of water above the liner, so even if defects exist, the leakage rate will be 

minimal.   
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4 Comparative Field Performance of Engineered Mine Waste 
Rock Covers 

4.1 Introduction 
The mining industry in Canada is extremely prevalent, providing over 719,000 jobs across the 

country, and producing numerous valuable metals and minerals that count towards 19% of 

Canada’s total domestic exports (Marshall, 2019). These activities produce significant quantities 

of mine waste rock which are deposited into large, partially-saturated, porous stockpiles on the 

ground surface, commonly referred to as waste rock piles (WRPs). These WRPs can pose a 

significant threat to the environment as trace amounts of sulfidic minerals can exist within the 

waste material. Exposure of these reactive minerals to meteroric water and atmospheric oxygen 

can ignite a complex sequence of oxidation-reduction reactions that produce a highly toxic 

leachate referred to as acid mine drainage (AMD) (Akcil & Koldas, 2006). Characterized by a 

low pH, high acidity, and high concentrations of sulfate, iron, manganese and other heavy metals, 

AMD leachate can percolate downwards through the WRP and discharge to the environment and 

contaminate surrounding groundwater and surface water resources (Acharya & Kharel, 2020). 

The characterization and remediation of AMD is highly complex and costly, with annual 

expenses between two and five billion dollars making it one of the largest environmental 

liabilities in Canada (EMCBC, 2000). Prevention techniques are essential to prevent, or at least, 

control AMD generation.  

 

A common solution to limit atmospheric ingress and reduce AMD generation is the installation of 

engineered cover systems over the mine WRPs (Ayres, 2018). Cover systems are designed to 

minimize airflow, water flow and storage, across a wide range of environmental conditions. As a 

result, a large variety of cover system compositions exist to meet specific site closure objectives 

(Meiers et al., 2012). Complexity of cover systems can range from a single layer of earthen 

material to multiple layers of differing materials, including earthen material, geosynthetic-

reinforced material and geomembranes (MEND, 2004). The simplest cover systems with a single 

layer of earthen material, usually native soil, are employed to store and release water; however, 

these covers work best in arid or semi-arid climates with little precipitation so any water influx 

can be effectively stored and then released back to the atmosphere via evapotranspiration (e.g. 
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Scanlon et al. 2005). Furthermore, simple soil covers provide a very weak barrier to oxygen 

influx. 

 

Different compositions of multi-layer cover systems can be used to meet all climatic conditions 

(Giroud & Bonaparte, 1998). Geomembranes, such as high-density polyethylene (HDPE), are 

becoming increasingly used for impermeable barriers for a range of engineering and 

geoenvironmental applications, most notably at municipal waste landfills. Geomembranes 

provide a theoretically impermeable layer and when pristine, they have been proven to be very 

effective at limiting both water and oxygen flux (Rowe, 2012). Despite these properties, 

knowledge on their performance at in-service WRPs is limited. It is known that HDPE liners can 

be subject to imperfections such as wrinkles, holes and tears, because of poor handling and 

installation practices at field sites. Defects in these liners provides a pathway for water and 

oxygen influx to the underlying waste rock and further AMD generation. As seen in Chapter 3, 

the potential of HDPE liners is evident for limiting water ingress. However, while empirical 

defect leakage equations are widely used to represent defect leakage and estimate water flux 

rates, these equations rely on assumptions made on defect sizes and number. Therefore, the 

performance of HDPE-lined cover systems for limiting water influx shown in Chapter 3 can be 

validated through a comprehensive water balance analysis.  

 

The objective of this study was to assess the performance of differing cover systems for limiting 

atmospheric ingress. Four coal mine WRPs located in the Sydney Coalfield in Nova Scotia, 

Canada were reclaimed with differing cover systems: three of the covers were multi-layer and 

each contained HDPE liners, while the other cover comprised a single layer of native soil. Seven 

years of field monitoring data were used to develop a comprehensive water balance, with 

parameters including precipitation, runoff, interflow, evapotranspiration, and changes in water 

and snow storage. The residual of the water balance was then assumed to be the net percolation 

into the underlying waste rock. Furthermore, oxygen concentrations measured within the cover 

material and underlying shallow waste rock were used to assess the effectiveness of each cover 

for limiting oxygen influx to the waste rock.   



 

68 

 

4.2 Site Description 

4.2.1 The Sydney Coalfield 
Four reclaimed mine WRPs were investigated for this study, all of which are located in former 

Sydney Coalfield in Nova Scotia, Canada (Figure 4-1). Significant mining operations were 

performed in the Sydney Coalfield for 300+ years, producing over 500 million tonnes of coal. 

However, these mining operations left behind a legacy of former mining sites containing large 

stockpiles of mine waste rock. Upon cessation of mining activities 2001, a multi-million dollar 

mine site closure and reclamation program was implemented by Cape Breton Development 

Corporation (CBDC), and managed by Public Works and Government Services Canada 

(PWGSC). This program included the placement of engineered cover systems over several mine 

WRPs, along with the installation of state-of-the-art field monitoring instrumentation to assess 

cover performance and confirm site closure objectives were being met. Of the four WRPs used in 

this study, one WRP at Lingan employed a simple cover with a single layer of local till material, 

while the other three WRPs at Summit, Victoria Junction and Franklin employed complex multi-

layer covers that each contained a HDPE liner, but surrounding layers of different materials and 

thicknesses. 

 

 

Figure 4-1: Site map of the Sydney Coalfield in Nova Scotia, Canada showing the four mine waste rock piles 

(WRPs). 
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4.2.2 Lingan WRP 
The Lingan WRP is located in Lingan, Nova Scotia, approximately 16 km northeast of Sydney. 

This WRP is situated at the former Lingan Mine Colliery which was under operation for 25 

years, and produced approximately 28 million tonnes of coal. The Lingan WRP contains 380,000 

m3 of waste rock and a surface footprint of 8.5 hectares. The pile has a well-defined plateau with 

a 3% grade, and 20% grade side slopes. The cover system consists of a 0.5 m thick layer of local 

till material that was graded and hydroseeded to provide a vegetative canopy, as shown in Figure 

4-2. A drainage ditch exists along the perimeter of the pile plateau to capture surface runoff and 

divert it to catchment channels on the side slopes. A larger perimeter ditch around the pile then 

directs all runoff to an adjacent stream. The cover system was designed to control net percolation, 

through moisture store and release, and eliminate AMD-contaminated surface water runoff.   

 

Figure 4-2: (a) Lingan WRP aerial view, and (b) the associated cover system 

4.2.3 Summit WRP 
The Summit WRP is located in the town of Scotchtown, approximately 15 km north of Sydney, 

Nova Scotia. This WRP contains 1.5 million m3 of waste rock and covers an area of 44 hectares. 

The thickness of the pile ranges from 0.5 m to 10 m, with slight side slopes of 14%.  As shown in 

Figure 4-3, the cover system consists of a 0.15 m thick layer of bedding sand placed first over the 

waste rock to prevent sharp edges from puncturing the overlying layer of 60 mil HDPE liner. 

Geotextile fabric was then placed over the HDPE liner to enhance friction and slope stability, and 

to protect the liner during the placement of the overlying till material. This final layer of till 

material is 0.5 m thick, which was graded and hydroseeded to promote vegetation and establish a 

strong root system.  

- 0.5 m Till

- Waste Rock

a) b)
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Figure 4-3: (a) Summit WRP aerial view, and (b) the associated cover system 

4.2.4 Victoria Junction WRP 
The Victoria Junction WRP is located 3 km east of Sydney, Nova Scotia, on the site of a former 

coal preparation plant. The WRP pile contains 5.88 million m3 of waste rock and has a footprint 

of 28 hectares. The pile has a defined plateau with a small slope, and significant side slopes with 

grades of 33%. The WRP has a general thickness of 40 m. As shown in Figure 4-4, the cover 

system comprises the same 0.15 m thick layer of bedding sand that was used at Summit WRP, 

which was again overlain with a 60 mil HDPE liner. The liner was then directly overlain with a 

0.6 m gravel drainage layer to promote lateral water flow (or interflow) and limit excessive build 

up of water on top of the HDPE liner. A geotextile was placed over the gravel layer on the side 

slopes where slope stability could be most problematic. The entire WRP was then overlain with a 

0.6 m thick layer of processed till (Figure 4-4).  

 

Figure 4-4: (a) Victoria Junction WRP aerial view, and (b) the associated cover system 

- 0.5 m Till

- Waste Rock
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- HDPE
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4.2.5 Franklin WRP 
The Franklin WRP is located in Florence, approximately 25 km north of Sydney. The pile was 

used to compile 187 000 m3 of waste rock from five nearby mining sites. The Franklin WRP is 

the smallest pile in this study, with a footprint of 2.5 hectares. The WRP has a cone like shape 

with a very small plateau and 25% graded side slopes. The thickness at the center of the pile is 13 

m. As shown in Figure 4-5, a 60 mil HDPE liner was placed over the bedding sand layer. A 

geocomposite drainage layer, hereafter referred to as a ‘geonet’, was placed over the HDPE liner 

to provide an alternative approach to lateral drainage of water above the liner. A  final 0.6 m 

thick layer of processed till was then placed on top, and hydroseeded. 

 

Figure 4-5: (a) Franklin WRP aerial view, and (b) the associated cover system\ 

4.3 Methodology 

4.3.1 Field Monitoring Program 
Various field monitoring instrumentation were installed at each WRP to continuously monitor a 

large range of parameters within the atmosphere, cover system and shallow waste rock, 

throughout the seven-year monitoring period. Site photographs of key field instruments are 

shown in Figure 4-6, while Figure 4-7 presents a cross-sectional profile of the cover system and 

shallow waste and the respective measurement locations of each instrument. All instruments used 

in this study were provided by Campbell Scientific Canada. 

 

- 0.6 m Till

- Waste Rock

- Geonet
- HDPE
- Geotextile

a) b)
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Figure 4-6: (a) meteorological station, (b) soil monitoring station (SMS), (c) weir, and (d) interflow collection 

system 

 

A meteorological station, as shown in Figure 4-6, was installed at each WRP to continuously 

monitor rainfall, air temperature, relative humidity, wind speed and direction, barometric 

pressure, net radiation, and snowpack depth at each WRP. All parameters were measured hourly 

and daily from January 2012 to December 2018. In addition, weather stations used at the nearby 

airport by Environment Canada, were used to obtain any data that was missing from the site 

weather stations.  

Four soil monitoring stations (SMSs) were installed at each WRP to continuously monitor 

volumetric moisture content, soil temperature, matric suction (negative pore-water pressure), and 

pore-gas concentrations within the various layers of the cover system and shallow waste rock 

(Figure 4-7). Table 4-1 presents the average depth of each sensor within the cover systems at 

each WRP. As shown, volumetric moisture content, soil temperature and matric suction were 

measured at every depth, while pore-gas concentrations were only measured at three sensor depth 

at each site. All parameters were recorded every 3 hours, except for pore-gas concentrations, 

which were measured manually with a NOVA gas analyzer each month. 

a) b)

c) d)
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Figure 4-7: Cross section of WRP site with all monitoring devices installed.  

 

Four continuous multi-channel tubing (CMT) wells were installed alongside the four SMSs at 

each site. As shown in Figure 4-7, these CMT wells are used to monitor parameters within the 

deeper waste rock, measuring soil temperature, differential pressure, groundwater levels, 

groundwater chemistry, and pore-gas concentrations. However, as this study focused on the water 

and oxygen fluxes within the cover system and shallow waste rock, parameters from the deeper 

CMT wells were only used to validate some of the observations in the shallow waste rock. 

A weir was installed at all sites to measure the surface runoff from each cover system. A 60° 

notch weir was used at Summit and Franklin, with a catchment area of 25 000 m2 and 15 850 m2, 

respectively. A 90° notch weir was used at Lingan and Victoria Junction, with catchments areas 

of 26 000 m2 and 98 000 m2, respectively. A sonic ranger was installed at the top of each weir 

box to continuously monitor the stage height behind the weir, both hourly and daily, which would 

then be used to determine flow rates over the weir. 

 

Moisture Content 
Sensors

Suction/Temp 
Sensors

Soil Station

Pore-Gas

Suction/Temp 
Sensors and Pore-
Gas

CMT Well

Waste 
Rock

Till

Meteorological 
Station
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One interflow system was installed at the Summit WRP, while two interflow systems were 

installed at the Victoria Junction WRP (one for the plateau and one for the side slopes). An 

interflow system was not needed at Lingan as there would be limited lateral percolation, while at 

Franklin, the HDPE liner was keyed into the perimeter drainage ditch and diverted to the weir, 

meaning interflow would be measured as part of runoff. The interflow collection systems at 

Summit and Victoria Junction, as shown in Figure 4-6d, consisted of a HDPE-lined bank that was 

used to divert interlow water to a monitoring chamber with tipping buckets. The tipping bucket at 

Summit was calibrated to 0.65 L/tip, while the tipping buckets for the plateau and slopes at 

Victoria Junction were calibrated to 0.78L/tip and 1.18L/tip, respectively. When the tipping 

buckets reached full capacity, they would tip over to empty, and the number of tips were recorded 

by an adjacent sensor (both hourly and daily).  

Table 4-1: Sensor depth locations at each WRP (m) 

Lingan Summit Victoria Junction Franklin 

 Growth Medium 

0.05 0.05 0.05 0.05 

0.10 0.10 0.10 0.10 

0.20 0.20 0.20 0.20 

0.30 0.30 0.30 0.30 

0.40 0.40 a 0.40 a 0.40 a 

0.48 a 0.49 0.59  0.50 

- Drainage Layer 

0.52 a 

- 

0.65 

0.60 

 0.94 

 1.07 a 

1.25 a 1.29 

 1.30 a 
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- HDPE (60 mil, 1.5 mm) 

- Bedding Sand 

 
0.55 a 

1.35 
0.70 a 

 1.40 a 

 Waste Rock 

 0.75 a 1.45 a 1.80 

2.00 2.02 2.40 2.60 a 

a Pore-gas measurement depth 

 
A complete summary of all instruments and parameters measured is presented in Table 4-2. 

Table 4-2: Summary of the site monitoring elements and parameters at each WRP site 

Monitoring Element Number Parameters recorded Location 

Meteorological 

Station 

1 

Rainfall, air temperature, relative 

humidity, wind speed and 

direction, barometric pressure, 

net radiation, and snowpack 

depth 

Atmosphere 

Soil Monitoring 

Station (SMS) 4 

Water content, temperature, 

matric suction, and pore-gas 

concentrations 

Cover system and 

waste rock 

Continuous Multi 

Channel Tubing 

(CMT) Well 
4 

Temperature, differential 

pressure, pore-gas 

concentrations, water level and 

chemistry 

Cover system, 

waste rock and 

shallow bedrock 

Weir 1 Runoff Cover system 

Interflow System 1,2* Interflow Cover system 

* Only at Summit and Victoria Junction WRP sites, respectively 
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4.3.2 Water Influx 
The water balance method is a widely used and well accepted approach for examining the 

hydrological cycle and associated water budgets. In this study, it can be used to measure the net 

percolation into the waste rock, as long as all other parameters in the water balance are measured. 

The water balance for the WRP cover systems is shown in Equation (4-1) as follows:   

 

𝑃𝑃𝑇 = 𝑅 + 𝐴𝐸𝑇 +  ∆𝑊𝑆 +  ∆𝑆𝑆 + 𝐼𝐹 + 𝑁𝑃     (4-1) 

 

where, PPT is precipitation [mm], R is runoff [mm], AET is actual evapotranspiration [mm], 

ΔWS is change in water storage [mm], ΔSS is change in snow storage [mm], IF is interflow 

[mm], and NP is net percolation [mm]. PPT is the source for all water flux, while the other 

parameters are the sinks. If PPT is known, along with R, AET, ΔWS, ΔSS and IF, then we can 

measure NP as the residual of the water balance.  

	

Precipitation 

This parameter was measured at each site meteorological station, monitoring rainfall with a 

CS700 tipping bucket rain gauge (± 0.2 mm), and snow depth with a sonic ranger, which was 

then converted to snow water equivalent (SWE).  

 

Runoff 

The stage measurements continuously monitored behind the weirs at each site were combined 

with the geometry of the weir to calculate the flow rate from the weir discharge equation, as 

shown in Equation (4-2):  

 

𝑊𝑒𝑖𝑟 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐶𝑑( !
!"
)tan (!

!
)(𝑠𝑡𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡)!/! 19.62  (4-2) 

 

where 𝐶𝑑 is the discharge coefficient [-], and 𝑥 is the notch angle of the weir [°].  A 60° V-notch 

angle has a corresponding discharge coefficient of 0.654, while a 60° V-notch angle has a 

discharge coefficient of 0.694. It should be noted that accurate stage measurements were highly 

challenging in the winter months as existing water in the weir can freeze, and subsequent water 
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may flow over this frozen layer and provide non-representative measurements of stage height. As 

a result, careful consideration of water and air temperatures was needed, along with the use of 

periodic manual stage measurements. The calculated weir discharge measurements were then 

divided by the corresponding catchment area to obtain a flux measurement per meter. 

 

Actual Evapotranspiration 

AET was directly measured with an Eddy Covariance system installed at the sites during the 

summer months. However, since the AET was not measured at various periods of the year, it was 

estimated from empirical calculations of potential evapotranspiration (PET) determined from the 

widely used Penman (1948) equation: 

 

𝑃𝐸 =  (!∙ !!! !!∙!)
(!! !)

   (4-3) 

 

where, m is the slope of the saturation vapour pressure curve (𝛿𝑒°/𝛿𝑇, where 𝑒° is the saturated 

vapour pressure [Pa] and 𝑇 is the air temperature [K]), 𝑅! is the net radiation [MJ/m2/day], 𝐸! is 

the vapour transport flux [mm/day], and 𝛾 is the psychrometric constant [Pa/K]. Each of these 

parameters were measured at the site meteorological stations.  

	

Changes in Water Storage 

The changes in water storage were calculated from the evolving moisture contents and water 

volumes within the cover system over time.  

 

Changes in Snow Storage 

 The snowpack depth and snow density were used to calculate the SWE. Similar to changes in 

water storage, the change in the snow storage at each cover system was calculated. 

 

Interflow 

The total tips measured within the interflow were integrated with the contributing area to 

calculate the interflow per meter at each WRP.  
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4.3.3 Oxygen Influx 
The pore-gas concentrations measured within the cover system and within the shallow waste rock 

can be used to indicate the effectiveness of the cover systems for limiting oxygen influx. While 

actual flux measurements were desirable, the pore-gas measurement tubes provided significant 

challenges with many of the tubes becoming blocked and providing unreasonable pore-gas 

concentrations. However, a simple analysis of any available and reliable pore-gas concentrations 

can still provide a general indication of the effectiveness of each cover system to act as a barrier 

to oxygen.  
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4.4 Results and Discussion 

4.4.1 Water Flux 

4.4.1.1    Precipitation 

Figure 4-8 presents the cumulative monthly PPT measured at each WRP between January 2012 

and December 2018. Seasonal trends were consistent over time between all WRPs, which was 

expected due to their close proximity. It also confirms that the source of water to each cover 

system was similar, which was beneficial for this comparative study.  

 

Figure 4-8: Cumulative monthly precipitation (PPT) at each WRP site 

 

Figures 4-9 and 4-10 present the daily cumulative flux for each parameter in the water balance 

equation. These figures again confirm that similar variations in PPT (blue line) occurred at all 

WRPs. 

 

4.4.1.2    Runoff 

As shown in Figures 4-9 and 4-10, runoff (orange line) follows the same trend as PPT. For 

example, runoff increased the most during spring and fall, which corresponds to periods of 

2012 2013 2014 2015 2016 2017 2018

0

50

100

150

200

250

300

01
Ja
n1

2

01
Ap

r1
2

01
Ju
l1
2

01
O
ct
12

01
Ja
n1

3

01
Ap

r1
3

01
Ju
l1
3

01
O
ct
13

01
Ja
n1

4

01
Ap

r1
4

01
Ju
l1
4

01
O
ct
14

01
Ja
n1

5

01
Ap

r1
5

01
Ju
l1
5

01
O
ct
15

01
Ja
n1

6

01
Ap

r1
6

01
Ju
l1
6

01
O
ct
16

01
Ja
n1

7

01
Ap

r1
7

01
Ju
l1
7

01
O
ct
17

01
Ja
n1

8

01
Ap

r1
8

01
Ju
l1
8

01
O
ct
18

PP
T	
(m

m
)

Date

Lingan

Summit

Victoria	Junction

Franklin



 

80 

 

highest PPT, while periods of low PPT resulted in little to no runoff, as shown by the plateau in 

runoff. The lowest runoff occurred at the Lingan WRP, with an annual maximum of 617 mm 

occurring in 2015 where the annual PPT was 1402 mm. The other WRPs sites had their highest 

annual runoff in 2014; however, Franklin was the only one to continually perform at this level for 

subsequent years. Victoria Junction and Summit had similar trends of decreasing runoff 

performance after 2014.  

 

 

Figure 4-9: Final water balance at (a) Lingan, and (b) Summit 
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Figure 4-10: Final water balance at (c) Victoria Junction, and (d) Franklin 
 

4.4.1.3    Evapotranspiration 

As shown in Figures 4-9 and 4-10, AET (green line) was relatively similar across all four WRP 

sites. During the colder periods at the beginning and end of each year, AET was very low, with 

the most significant periods of AET occurring between April and October. Lingan had the least 

amount of AET, despite its cover system design relying on moisture store-and-release behaviour. 

The AET at Summit gradually decreases over time, while Victoria Junction had consistency in 
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high AET levels throughout the seven year period. Franklin exhibits slight increases in AET 

levels over time, which can be related to the maturity and stabilization of the cover material and 

vegetation over time. 

 

4.4.1.4    Changes in Water Storage 

Changes in water storage are related to evolving moisture contents in the cover material over 

time. Figure 4-11 illustrates the moisture content along the profile of the cover system and 

shallow waste rock at each site. As mentioned previously, the locations of each moisture content 

sensor and measurement were determined by the depth and thickness of different cover system 

layers, meaning each 2D contour plot in Figure 4-11 is unique. This is shown by the different 

depths of the HDPE liner at Summit, Victoria Junction and Franklin. It should be noted that 

moisture content is a function of porosity, and not just water saturation.  

 

As shown in Figure 4-11, high moisture contents (blue regions) are evident in the top soil layer,  

especially above the HDPE liners at Summit and Franklin, which is due to the lack of, or minimal 

thickness of, a drainage layer. Low moisture contents (red regions) are most evident in the 

drainage layers at Victoria Junction and Franklin. White regions represent periods where the 

cover material was frozen and the corresponding moisture contents were unreliable. Overall, 

Lingan has a relatively consistent moisture content throughout the entire cover, and even the 

shallow waste rock (Figure 4-11a), while Summit WRP is more erratic with high fluctuations 

from dry to wet conditions each year. 

 

Figures 4-9 and 4-10 present the cumulative change in water storage (light blue line) for each 

year. Since this cumulative change in flux is referenced to the water storage on January 1 each 

year, it is expected that little change to that reference value will occur in winter and fall periods, 

while large decreases in water storage will occur between April and October, where the cover 

material is drying out. Figures 4-9 and 4-10 confirm these expected trends with negative water 

storage occurring in the drier months, before water storage changes tend to return to zero as it 

approaches the end of the year. 	
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Figure 4-11: 2D contour plots of moisture content within the cover system and shallow waste rock at (a) Lingan, (b) 

Summit, (c) Victoria Junction, and (d) Franklin. 

 

4.4.1.5    Changes in Snow Storage 

Figures 4-9 and 4-10 present the cumulative change in snow storage (light grey line) for each 

year. As expected, the largest changes occur between December and March each year, with 

changes evident between April and November where no snowfall occurs.  
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4.4.1.6    Interflow 

The cumulative interflow (brown line) is shown in Figures 4-9 and 4-10 at just the Summit and 

Victoria Junction WRPs. It is evident that the interflow at Victoria Junction is significantly larger 

than that at Summit. This is due to the granular drainage layer at Victoria Junction, which 

promotes lateral percolation of water above the HDPE liner, and the lack of a drainage layer at 

Summit, which severely limits the lateral movement of water towards the interflow collection 

system. This lack of lateral interflow at Summit corresponds to the high moisture contents 

observed, and the large head of water measured by the OTT-PLS and HOBO loggers shown in 

Chapter 3.  

 

4.4.1.7    Net Percolation 

NP was calculated as the residual from the water balance equation in Equation (4-1), and is 

plotted in Figures 4-9 and 4-10. The NP (red line) has the largest increases during spring and fall 

at each WRP. Lingan exhibits significant NP each year, while the NP at Summit, Victoria 

Junction and Franklin is barely visible.   

 

To improve interpretation of the NP at each site, Figure 4-12 presents a comparative bar chart of 

annual NP at each site between 2012 and 2018. NP is the lowest at Franklin, closely followed by 

Victoria Junction, which matches the water influx estimates in Chapter 3. This further confirms 

the effectiveness of drainage layers above HDPE liners, which enables a larger amount of water 

to be expelled from the cover through runoff and interflow. In contrast, the lack of drainage layer 

at Summit WRP, resulted in high moisture contents, water build-up on top of the HDPE liner, 

and limited lateral interflow, especially during high periods of PPT. This lack of a drainage layer 

is further compounded by the low pile slopes existing at Summit. in combination with the 

topography of the site resulted in poor performance at limiting water build up.  
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Figure 4-12: Net percolation at each WRP site over the 7 year monitoring period 

 

A summary of the water balance breakdown is presented in Figure 4-13, where the annual PPT at 

each site is broken down into the respective parameters, and displayed in a stacked bar graph to 

visually see the performance of each cover system every year.  
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Figure 4-13: Comparative cumulative flux of each water balance parameter at each WRP, with the total precipitation 

(PPT) value placed on top of each bar 

Table 4-4: Water influx in terms of precipitation (PPT) 

 Lingan Summit Victoria Junction Franklin 

Year 
PPT 

(mm) 

Flux 

(mm) 
% PPT 

PPT 

(mm) 

Flux 

(mm) 
% PPT 

PPT 

(mm) 

Flux 

(mm) 
% PPT 

PPT 

(mm) 

Flux 

(mm) 
% PPT 

2012 1227.96 384.18 31.29 1347.24 59.43 4.41 1420.74 7.60 0.53 1392.68 5.60 0.40 

2013 1207.35 347.14 28.75 1384.16 53.27 3.85 1396.28 7.48 0.54 1394.73 5.61 0.40 

2014 1454.72 436.21 29.99 1751.00 65.03 3.71 1734.78 8.61 0.50 1684.49 6.27 0.37 

2015 1401.61 421.26 30.06 1559.93 62.27 3.99 1572.16 8.43 0.54 1668.64 6.71 0.40 

2016 1442.42 431.93 29.94 1675.27 73.90 4.41 1658.98 8.24 0.50 1773.00 6.60 0.37 

2017 1194.22 336.87 28.21 1446.33 53.72 3.71 1488.78 7.98 0.54 1526.19 6.14 0.40 

2018 1408.38 426.32 30.27 1628.41 65.01 3.99 1521.35 8.22 0.54 1525.70 5.68 0.37 
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4.4.2 Oxygen Flux 
Figure 4-14 presents the average oxygen and carbon dioxide concentrations that were reliably 

measured at each WRP. As shown, the HDPE-lined cover systems were effective at diminishing 

oxygen concentrations (and corresponding increases in carbon dioxide) within the waste rock 

below the cover. In contrast, the soil cover at Lingan was not effective for limiting oxygen influx, 

as noted by the similar oxygen concentrations with the cover material and waste rock. 

 

Figure 4-14: Average oxygen and carbon dioxide concentrations measured within the cover material and shallow 

waste rock at (a) Lingan, (b) Summit, (c) Victoria Junction, and (d) Franklin, where the dashed line defines the soil 

and waste rock interface in (a), and the HDPE liner in (b), (c), and (d). 

 

4.4.3 Costs 
Table 4-4 presents a breakdown of the cost of each material (per m2) that was installed in each 

WRP cover system. While it performs poorly for limiting atmospheric flux, the simple soil cover 
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was the most expensive due to the cost of the granular drainage layer in terms of both material 

and transportation costs. In contrast, the cover installed at Franklin was less expensive than the 

cover implemented at Victoria Junction due to the reduced cost of the geonet drainage layer used.  
 

Table 4-4: Breakdown of the cost of materials for total cover system cost 

WRP Item 
Unit price/m3 *m2 

for HDPE 

Lingan Soil $8 

Summit 

Soil $10 

Geofabric $4 

HDPE $15 

Bedding Sand $15 

Total Cost $44 

Victoria Junction 

Soil $13 

Granular Drainage Layer $20 

HDPE $19 

Bedding Sand $22 

Total Cost $74 

Franklin 

Soil $10 

Geonet $1 

HDPE $15 

Bedding Sand $15 

Total Cost $41 
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4.5 Conclusion 
Engineered cover systems have proven to be an effective solution at limiting atmospheric ingress 

to mine waste rock piles, and thereby prevent and/or control the generation of toxic acid mine 

drainage (AMD) and its contamination of the surrounding environment. This study assessed the 

performance of different cover systems at four reclaimed coal mine WRPs in the Sydney 

Coalfield in Nova Scotia, Canada. All cover systems were unique and can be defined by their 

characteristics as follows: (i) Lingan: simple, single-layer soil-only cover, (ii) Summit: multi-

layer HDPE-lined cover with no specific drainage layer, (iii) Victoria Junction: multi-layer 

HDPE-lined cover with a thick gravel drainage layer, and (iv) Franklin: multi-layer HDPE-lined 

cover with a geocomposite drainage layer. A comprehensive field monitoring program was 

conducted between January 2012 and December 2018 to monitor the daily moisture and oxygen 

dynamics within each cover system over these seven years.  

 

HDPE inclusive covers have proven to be an effective material to utilize in cover systems when 

limiting water and oxygen ingress. However, the frequent occurrence of defects within HDPE 

liners poses a threat to its impermeable functionality. To determine the water flux, and the 

resulting potential AMD generation, defect leakage through the liner imperfections can be 

calculated using analytical equations and empirical models. These calculations include 

assumptions about the size and shape of defect, contact quality, etc. Therefore, further analysis 

through a detailed monitoring program to determine the water flux using the water balance 

method was necessary to confirm the findings of Chapter 3.  

 

A comprehensive water balance was developed to estimate the daily net percolation into the 

underlying waste rock at each site. All parameters within the water balance were calculated, 

including precipitation (PPT), actual evapotranspiration (AET), runoff (R), interflow (IF), 

changes in water storage (WS), and changes in snow storage (SS). The residual from this water 

balance was then inferred to be net percolation (NP). A comparative analysis of each cover 

system confirmed that all three HDPE-lined cover systems dramatically reduce water influx 

compared to the natural soil cover at Lingan. Furthermore, the composition of the drainage layer 
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above the HDPE liner influences the net percolation, as both granular drainage and geocomposite 

drainage exhibiting reduced NP compared to the HDPE-lined cover with no drainage layer at 

Summit. These findings are reinforced with the findings from defect leakage calculations in 

Chapter 3. The HDPE-lined cover systems also dimished oxygen concentrations within the waste 

rock, again demonstrating the effectiveness of HDPE-lined cover systems as barriers to 

atmospheric flux to mine waste rock. 
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5 Summary and Conclusions 

5.1 Summary 
Canada ranks within the world’s top 5 countries for mining 17 of the most important metals and 

minerals (Marshall, 2019). With the wealth of mining occurring in Canada, large amounts of 

waste are produced alongside the extracted resources. The Sydney Coalfield in Nova Scotia, 

Canada, represented one of the largest sources of coal in Canadian history, with over 500 million 

tonnes of coal mined across its ~200 years of operation (Meiers et al., 2014). These mining 

activities left behind a legacy of solid waste rock deposited into large, partially water-saturated 

porous piles on the ground surface. Trace sulphides in the waste rock have the potential to 

become toxic acid mine drainage (AMD) upon reaction with atmospheric components. A 

common solution is the installation of engineered cover systems to isolate the reactive waste rock 

from the atmosphere. A number of cover systems exist, from a single layer of native soil to 

multiple layers of soils, geosynthetics and geomembranes. The inclusion of geomembrane liners, 

such as high density polyethylene (HDPE), within multi-layer covers exhibit significant potential, 

as pristine geomembrane liners are expected to be 100% effective at limiting water and oxygen 

flux. However, it is accepted that these liners become diminished in the presence of deformations 

such as thermal expansion wrinkling, ageing, and defects (Rowe, 2012; Rowe et al., 2012). As 

these deformations occur during and after field installation, their performance needs to be 

evaluated over time at in-service WRPs. However, little research has been done on the in situ 

performance of geomembrane-lined cover systems at reclaimed WRPs (Power et al., 2017). 

 

The goal of this thesis was to assess the long-term performance of different geomembrane-lined 

cover systems following installation at large WRPs. For coal mine WRPs in the Sydney Coalfield 

in Nova Scotia, Canada, were reclaimed with different cover systems, with three covers 

containing HDPE liners (but with different drainage layer compositions) and one cover 

comprising a single layer of native soil. Following installation, all cover systems were monitored 

over seven years with state-of-the-art field instrumentation to evaluate their performance and 

determine whether site closure objectives were being achieved. The thesis goal was then broken 

down into two distinct research objectives. The first was to evaluate the effect of drainage layer 

composition on defect leakage rates within the three HDPE-lined cover systems, while the second 
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was to compare the water influx and oxygen levels of the three HDPE-lined covers to a simple 

soil cover. Both research topics have the same goal which is to determine the cover systems 

performance at limiting AMD contamination of nearby environmental receptors. 

 

The first research objective was to assess the effect that drainage layers have on HDPE-inclusive 

cover systems. Three WRPs at the Sydney Coalfield in Nova Scotia, containing HDPE liners, 

were monitored for seven years, in which the precipitation, moisture content, and head of water 

on top of the HDPE liner were recorded. As HDPE liners can contain a number of defects which 

permit water influx and potential generation of AMD, established defect leakage equations were 

used. The three cover systems had unique drainage layers: (1) no specific drainage layer at 

Summit, (2) granular drainage layer at Victoria Junction, and (3) man-made geonet drainage 

layer at Franklin. The various field parameters were compiled and analyzed to eventually 

estimate the defect leakage rate (or water influx) occurring every day at each WRP over seven 

years. Considering the proximity of the WRPs to each other, each site experienced relatively 

similar precipitation. The measured moisture content indicated that Summit, with no drainage 

layer, exhibited the highest moisture content above the HDPE liner, along with the largest head 

of water. In contrast, Franklin, with a geonet drainage layer, exhibited the lowest levels of 

moisture and head of water directly above the HDPE liner. The calculated defect leakage rate at 

each WRP confirmed that Summit had the highest leakage rates, while Franklin experienced the 

least amount of leakage, closely followed by Victoria Junction. This study demonstrated the 

importance of drainage layer composition on water influx. The drainage layers at Franklin and 

Victoria Junction were so effective at reducing the build-up of water above the HDPE liner, that 

even if defects did exist, the water influx would be limited. 

 

The second research objective was to evaluate the performance of HDPE-lined cover systems for 

limiting water and oxygen influx in comparison to a single layer cover system. The same three 

HDPE-lined cover systems in first objective were studied here, in addition to an adjacent WRP at 

Lingan that was remediated with a single layer of native soil. A seven-year monitoring program 

with state-of-the-art field instrumentation was conducted, with parameters such as rainfall, snow 

water equivalent, air temperature, runoff, interflow, evapotranspiration, moisture content, soil 

temperature, and pore-gas concentrations being measured. A comprehensive water balance was 
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generated for each WRP to determine the respective rates of net percolation to the underlying 

waste rock. Results demonstrated that Franklin permitted the least amount of net percolation 

(<1% of total precipitation), while Lingan produced the largest amount of net percolation (28% 

of precipitation). Oxygen and carbon dioxide concentrations measured both within the cover 

system and below the cover system, confirmed that the HDPE-lined cover systems dramatically 

reduced oxygen levels within the waste rock.  

5.2 Recommendations 
Chapter 3 determined the amount of defect leakage experienced at the HDPE-lined cover 

systems, while also highlighting mechanics of fluid movement surrounding a defect, and the key 

parameters of concern when designing a cover system to limit water influx. The following 

recommendations are suggested when utilizing an impermeable layer within an engineered cover 

system: 

• A drainage system above the impermeable membrane (in this case, HDPE) within the 

cover system is key to limiting the build-up of water above the HDPE liner and divert the 

flow out of the cover. 

• An anthropogenically created drainage layer, such as a geocomposite drainage net (i.e., 

geonet) provides a greater amount of drainage than natural granular material. This is 

possibly due to the repetitive and consistent netted structure of the geonet, which provides 

the most optimal pathway for flow compared to the random assortment of pore space 

within a granular drainage layer. 

• The most important parameter when attempting to limit leakage through defects is the 

height of water above HDPE liner followed by the saturated hydraulic conductivity of the 

underlying layer while the least sensitive is the size of the defect based on the range used 

in this study. 

 

Chapter 4 evaluated the amount of net percolation and oxygen entering the waste rock at the four 

covered WRPs in The Sydney Coalfield over seven years. The following recommendations are 

suggested for future engineered cover system design and application to optimize the limitation of 

AMD generation: 
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• A complex multi-layer cover system is the most effective at limiting atmospheric ingress 

compared to a simple soil cover. Specifically, Franklin, which used a HDPE and geonet 

cover allowed a net percolation of 0.4% of precipitation, compared to Lingan which 

allowed 28% of PPT as NP.  

• The HDPE-lined cover with a geonet drainage layer at Franklin had the lowest net 

percolation amongst all HDPE-lined cover systems, again highlighting the benefit of the 

geonet for effectively draining water above the HDPE liner.  

• All HDPE-lined covers effectively diminished the oxygen concentrations within the waste 

rock compared to the single layer soil cover at Lingan. In this case, the drainage layer 

does not strongly influence oxygen flux, with all three HDPE-lined covers equally 

effective at diminishing oxygen influx to the waste rock.  

5.3 Future Work 

• Supportive work on the groundwater and surface water chemistry could be conducted to 

further ascertain the effaciacy of the cover systems. 

• Further study into possible preferential pathways within the cover material could be 

analyzed. These results could be important to determine water influx. 

• Future work into the aging process could be monitored, including the cover system 

materials performance as well as the WRP settlement, shape and stability. 

• Testing into the use of various underlying bedding materials beneath the HDPE liner and 

how that could impact defect leakage. 
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