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ABSTRACT

Campylobacter jejuni is the leading cause of gastroenteritis.Infections are 

endemic in developing countries and the emergence of antibiotic resistant isolates in 

developed countries underline the requirement for new therapeutic targets.

C. jejuni possesses a capsule, which is important in conferring virulence. The 

capsule o f some C. jejuni species contains unusual modified heptoses. The genes 

cjl427c, cj1428c and cj1430c putatively encode enzymes involved in modifying 

heptose. We hypothesize that modified heptoses play a role in virulence in host- 

pathogen interactions, and have constructed and phenotypically characterized a
. X ■'

cjl427::CAT disruption mutant to complete our panel o f mutants. Complementation of 

the mutants was conducted to ensure that the observed phenotypes are gene specific.

The capsular composition of our mutants has been elucidated via NMR, allowing 

us to correlate capsular structure and the observed phenotypes.

This work will lead to a better understanding of the role of modified heptoses in 

host-pathogen interactions. v

Keywords: C. jejuni, enteritis, Capsular polysaccharide (CPS), modified heptoses

m
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CHAPTER 1 -  INTRODUCTION



2

1.1 Historical perspective

Food is a necessity of life. In the past, mankind secured food through hunting and 

gathering and agriculture. Today, most of the food consumed by the world is supplied by 

the food industry; the use of intensive farming and industrial agriculture techniques 

allows food to be produced on a large scale to meet the increasing needs and demands of 

mankind.

Due to the large amounts of food being produced in today’s society, there is a 

need for food preservation; a process of treating and handling food in a manner that stops 

or slows down the spoilage of food to allow for longer storage. Preservation can take a 

number of different forms including sugaring and canning (i.e. jams), boiling, 

dehydration, etc. These methods all accomplish the same goal: to prevent the growth of 

bacteria, yeasts, fungi and other microorganisms.

1.2 Foodborne and waterborne diseases

Foodbome disease is the result of ingesting food that has been contaminated by 

pathogenic bacteria, viruses, or parasites, in addition, foodbome disease can be caused by 

ingesting foods contaminated by poisonous chemicals and/or other harmful substances 

(2). The global burden of foodbome illness is currently unknown, but the World Flealth 

Organization (WHO) has estimated that in 2005, 1.8 million people died from diarrheal 

diseases, largely attributable to contaminated food and drinking water (121). This 

problem is not restricted to developing countries; foodbome illnesses also occur in 

developed countries. The Centers for Disease Control and Prevention (CDC) estimates 

that in the United States alone, 76 million foodborne illnesses occurs each year, resulting 

in 325,000 hospitalizations and over 5000 deaths (125).
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More than 200 microbial, chemical or physical agents can cause illness when 

ingested (6). Within the last 20 years, foodborne diseases caused by bacteria, parasites, 

viruses and prions have gained significant public attention (121). Before 1960, the major 

causes of foodborne illnesses included Salmonella spp., Shigella spp., Clostridium 

botulinum and Staphylococcus aureus. During the 1960s, Clostridium perfringens and 

Bacillus cereus were added, and in the 1970s, rotavirus and norovirus. In the 1980s and 

1990s, many new pathogens were recognized including Campylobacter, Yersinia, 

Listeria monocytogenes, new strains of Escherichia coli such as 0157:H7, 

Cryptosporidia and Cyclospora. to name a few (121).

Several factors of modern society contribute to the occurrence of foodborne 

illnesses. These include, but are not limited to: large scale production and wide 

distribution of food; globalization of the food supply; eating outside the home; the 

emergence of new pathogens; and a growing population of at risk consumers. 

Improvements in the safety of food have been driven largely by public demand in 

response to disease outbreaks. As a result, international standards and legislation have 

been implemented, decreasing worldwide diarrheal incidences as reported by the WHO 

(5).

Foodstuffs are not the only source for potential illness; pathogens can also 

contaminate large water supplies. As of 2006, the CDC estimated that a staggering 1.1 

billion people lack access to clean water (1). The burden of unpotable water and poor 

sanitation and hygienic conditions is mostly concentrated in developing countries, 

particularly amongst children (4). However, waterborne diseases also occur in developed 

countries. In past cases of waterborne illnesses, often preceding the pandemic is a period
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of heavy rainfall and/or melting snow. The increase in precipitation often leads to run off 

of surface water into the local water supply. Problems arise when surface run off mixes 

with animal feces, particularly from farms, resulting in potential contamination of the 

water supply. Changes in weather climate are thus an important factor to consider when 

attempting to reduce the impact of waterborne diseases. In addition, it must also be taken 

into consideration the method in which pathogens are able to move from source to the 

host. This includes how pathogens may contaminate source water, evade water treatment, 

etc.

It is clear that despite efforts from scientists, governments and the food industry, 

foodbome and waterborne illnesses continue to be a major public health problem 

worldwide, with implications for both the citizens and the economy of nations. Thus, 

further research must be conducted to prevent and control the spread of the causative 

agents of foodbome and waterborne illnesses.

1.3 Campylobacter jejuni

Theodor Escherich first noted in 1886 non-culturable, spiral shaped bacteria in 

stool specimens and the large intestinal mucous associated with diarrhea in neonates and 

kittens. Later, various publications appeared describing the occurrence of “spirilla” 

shaped bacteria in “cholera-like” and “dysenteric-like” disease (91). These descriptions 

were likely the first account of Campylobacter species. Notably, in 1938, a total of 357 

prison inmates were infected by a “spirillum shaped bacteria” (104). It was not until 1963 

that the genus was first described, and Campylobacter was not isolated until 1972 (119, 

145) due to its fastidiousness.
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Campylobacteriae are Gram negative bacteria, approximately 0.5 to 8 pm in 

length, and 0.2 -  0.5 pm wide. They possess a characteristic spiral, or corkscrewed shape 

(148). Their ability to move rapidly in a corkscrew fashion is attributed to their uni- or 

bipolar flagella (34, 92). Campylobacters are catalase and oxidase positive, and urease 

negative. They are microaerophilic, requiring a nitrogen rich atmosphere with low 

oxygen (5%) and high carbon dioxide (10%) (119). A growth temperature of 42°C, 

corresponding to the natural temperature of the avian gut, their natural host, allows for 

optimal growth of Campylobacters, however, growth at 37°C is also tolerated. When 

stressed, Campylobacters can change into a coccoid form; this form is called the “viable, 

but non-culturable” form. This occurs when Campylobacters encounter environmental 

stress such as nutrient starvation, osmotic shock and fluctuations in temperature and pH 

(75). While in this state, the ability to culture Campylobacters is lost, even though the 

microorganism is alive and metabolically active (127). There are many different 

Campylobacter species, including C. jejuni, C. coli, C. upsaliensis, C. lari, C, concisus, 

but approximately 90% of human infection is caused by C. jejuni, with C. coli accounting 

for much of the rest (30, 50).

1.3.1 C. jejuni pathogenesis

C. jejuni is a commensal bacteria in the intestinal tract of birds and mammals, 

including domestic chickens (178). Disease often arises from the consumption of 

contaminated meat, particularly during food processing and preparation. In addition, 

outbreaks of Campylobacter induced gastroenteritis, termed Campylobacteriosis, can be 

contracted from drinking contaminated water. Most notably, in May of 2000, in the town 

of Walkerton, Ontario, Canada, after several days of heavy rainfall, an outbreak of E. coli
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0157:H7 and Campylobacter occurred, resulting in the deaths of seven people and 

approximately 2500 more becoming ill (11). This outbreak was due to a combination of 

contributing factors including heavy rainfall causing cattle manure from a neighbouring 

farm to be washed into the water supply, and insufficient chlorination of the water supply. 

The major role that Campylobacter played in this outbreak of water-borne disease was 

largely ignored by the media and the public.

In developed countries, C. jejuni is a leading cause of acute gastroenteritis. With 

an infectious dose of as low as 500-800 bacteria, C. jejuni can produce inflammatory, 

sometimes bloody, diarrhea or dysentery like syndrome, and often is accompanied by 

cramps, fever and pain. The organism colonizes the small intestine of the human host 

early in infection and later moves to the colon, which is the target organ (17, 164). 

Although C. jejuni is generally considered invasive, the level of invasion of intestinal 

epithelial cells in vitro varies among strains (164). The incubation period that precedes 

acute diarrhea is 2-5 days and although the disease is self-limiting and usually resolved 

within one week, symptoms can persist for up to two weeks (178).

A long term consequence of C. jejuni infection is Guillain-Barre Syndrome (GBS) 

and its variant, Miller Fisher syndrome. GBS is considered an autoimmune reaction, and 

causes acute ascending neuromuscular paralysis, characterized by rapidly evolving 

symmetrical limb weakness, loss of tendon reflexes, the absence of mild sensory signs 

and autonomic dysfunctions (179). It is thought that the antibodies generated against the 

bacterial lipooligosaccharide (LOS) cross react with host gangliosides, resulting in their 

destruction (7, 179). Since the near eradication of poliomyelitis worldwide, GBS ranks as 

the most frequent cause of acute paralysis; the annual incidence being one or two cases
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per 100 000 population (73). In 1982, Rhodes and Tattersfield (140) reported the first 

case of a patient who developed GBS after C. jejuni associated enteritis. Since then, there 

have been many reports of C. jejuni associated GBS cases. In Australia, 21 of 56 patients 

with GBS had evidence of anti-Campylobacter antibodies, while controls had none, 

showing a strong correlation between Campylobacter and subsequent GBS (79). 

However, it remains difficult to absolutely associate C. jejuni with GBS because the 

bacteria are usually eliminated from the body within 16 days of infection and before the 

onset of neurological symptoms, which normally begin 10 days to three weeks after the 

onset of diarrhea (136). As Campylobacter is not routinely diagnosed in rural health 

clinics, many Campylobacter-associated GBS cases may go unrecognized because by the 

time symptoms present themselves, Campylobacter is no longer present (72, 111).

In addition to Campylobacter-associated GBS, acute bacterial enteritis has been 

implicated as one of the factors that may incite or exacerbate patients with inflammatory 

bowel diseases (IBD), such as Crohn’s disease or ulcerative colitis. These diseases are T 

cell-mediated and characterized by chronic, relapsing inflammation of the intestinal tract 

(80). IBD causes lifetime morbidity and in Canada alone, accounts for a financial burden 

exceeding 1.8 billion dollars per year in economic loss (including greater than 700 

million dollars in direct medical costs) (3). The mechanisms by which Campylobacter 

causes inflammatory disorders in the bowel remain obscure. Evidence suggests that 

Campylobacter disrupts intestinal epithelial structure and function and thereby permits 

the translocation of luminal material, including resident intestinal bacteria, into the 

subepithelial compartment (74, 80, 99). The loss of intestinal epithelial barrier function
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and the subsequent failure to downregulate inflammation following intestinal epithelial 

injury may lead to IBD (152).

1.3.1.1 C. jejuni associated invasion

To establish an infection, C. jejuni must bypass the mechanical and 

immunological barriers of the host gastrointestinal tract. The mucus layer of the GI 

epithelium serves as the first layer of defense, but C. jejuni possesses several virulence 

factors to circumvent this barrier (178). In particular, motility, combined with the spiral 

shape, allows the bacteria to effectively “drill” through the mucus lining of the 

gastrointestinal track (40). Genome sequencing analysis has also shown that the C. jejuni 

genome encodes many of the features found within the E. coli chemotaxis system (101, 

131). C. jejuni displays motility towards amino acids that are found in high levels in the 

chick gastrointestinal track and towards components of mucus (71).

The invasion of intestinal epithelial cells has been observed in patients and is 

reproducible in cell lines in vitro (163), albeit at very low levels (39, 47, 100, 157). The 

mechanisms that control invasion are not elucidated, but differences exist between 

individual strains. It has become clear that microtubule polymerization is required for 

maximal invasion; some strains also require microfdament polymerization (16, 70, 126). 

This contrasts the actin-dependent mechanism of entry that is used by many other 

bacteria.

Similar to the type III secretion system that is employed by Salmonella 

typhimurium and Shigella flexneri, whereby effectors are delivered into the host cell, C. 

jejuni also secretes proteins from the flagellar type III secretion system. This is a 

requirement for maximal invasion of host epithelial cells (29). The proteins that are
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synthesized and secreted by C. jejuni upon co-cultivation with epithelial cells are termed 

Campylobacter invasion antigens (Cia) (96). Only a few C. jejuni secreted proteins have 

been identified to date due to low levels of protein secretion under in vivo conditions (29).

1.3.1.2 Ability of C. jejuni to survive within macrophages

C. jejuni survives within murine macrophages (149). The role of monocytes and 

macrophages in C. jejuni infection is unclear because results vary with different cell lines 

or primary cells (178). Inflammatory cytokines such as NF-kB (nuclear factor kappa B) 

and interleukin-ip are produced in the presence of C. jejuni; however, a significant 

proportion of monocytes also undergo apoptosis (168). C. jejuni is killed within 24 -  48 

hours of infection by macrophages. Within 4 - 8  hours, a significant portion of the 

bacteria turn into the non-culturable coccoid form when exposed to macrophages (174). 

However, other groups have found that clinical isolates of C. jejuni survived for several 

days inside the murine J774A.1 macrophage cell line (35, 67). Regardless of the 

contradictory data currently available, the consensus is that the differences observed in C. 

jejuni interactions with macrophages are likely due to strain variation and the use of 

different macrophage and/or macrophage cell lines.

1.3.2 C. jejuni virulence factors

Although C. jejuni is a commensal organism in mammals and birds, it has the 

ability to cause illness in humans. Several virulence factors are expressed by C. jejuni,

which are discussed below.
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1.3.2.1 Glycosylated proteins

C. jejuni expresses two systems of protein glycosylation: O-linked glycosylation, 

which modifies serine or threonine residues on flagellins, and iV-linked glycosylation, 

which modifies asparagine residues on many secreted proteins (178).

0-linked protein glycosylation is involved in the glycosylation of C. jejuni 

flagellins. The flagellins in strain 81-176, a human gastric isolate of C. jejuni, are 

glycosylated with pseudaminic acid at up to 19 sites, accounting for approximately 10% 

of their observed mass (159). Meanwhile, the flagellin of C. coli strain VC 167 is 

modified with legionaminic acid, and the genes that encode the proteins that are involved 

in synthesizing this glycan are shared by many strains of C. jejuni, with the exception of 

the 81-176 strain (112). No consensus sequence has been identified for 0-linked 

glycosylation; however, it is required for the proper assembly of the flagellar filament 

(51). This suggests that O-linked glycosylation is required for the interactions of the 

flagellin subunits with each other, or with another component of the flagellar apparatus. 

Defects in 0-linked glycosylation result in loss of motility, a decrease in adherence and 

invasion of host cells, and decreased virulence in ferrets (57).

Prior to the discovery in C. jejuni, the AM inked glycosylation pathway had only 

been observed in eukaryotes and archaea. In C. jejuni, V-linked glycosylation is encoded 

by the pgl (protein glycosylation) locus. Unlike other surface carbohydrates in C. jejuni, 

such as lipooligosaccharide, capsular polysaccharide, and O-linked glycans, V-linked 

glycans appear to be conserved in all C. jejuni strains that have been examined to date, 

and exhibit very little potential for phase variation (158). This conservation implies that 

V-linked glycosylation may have a fundamental role in C. jejuni physiology. The site for
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yV-linked glycosylation, unlike 0-linked glycosylation, has a consensus sequence: aspartic 

acid/glutamic acid -  X -  asparagine -  X -  serine/threonine, where X can be any amino 

acid except proline (98, 122). While this sequence is vital for glycosylation, there are 

other factors, such as tertiary or quartemary structure that also play a role (122). The role 

of TV-linked glycosylation in C. jejuni is not clear. Mutations in the pgl locus have effects 

on multiple glycosylated proteins; this results in reduced adherence and invasion to 

intestinal cells, loss of mouse and chick colonization, reduced protein activity to antisera, 

and defects in natural competence (65, 78, 83, 88, 101, 123, 156).

1.3,2.2 Flagella

C. jejuni flagella and flagellar motility are vital for host colonization, virulence in 

ferret models, protein secretion and host-cell invasion (178). The motility of C. jejuni 

increases in highly viscous solutions and the speed has been reported to reach 75 pm per 

second under these conditions (102). This motility may facilitate movement of C. jejuni 

in and through the thick mucus lining of the intestinal tract (40, 102). Black et al (17) fed 

human volunteers mixtures of motile and non-motile phase variants and subsequently, 

recovered only motile forms from stool samples. This was the first evidence that motility 

was required for intestinal colonization.

The flagella consists of a major flagellin, FlaA, and a minor flagellin, FlaB, that 

are highly homologous (55). The flaA  gene is regulated by a a  promoter, while flaB  is 

regulated by a a 34 promoter (54). Mutations in flaA  result in a severely truncated flagellar 

filament, with a reduction in motility, while mutants in flaB , in contrast, have no 

significant change in motility and produce a flagellar filament that appears normal (55, 

124). Many strains of C. jejuni undergo phase variation in flagellin expression by slip
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strand mismatch repair (25, 64). The ability of C. jejuni to undergo changes in motility 

and flagellar expression may be beneficial to the organism so that it can adapt to the 

different environments it encounters within the host.

A connection between flagella and colonization has been established (157). While 

motility was found to be important for colonization of epithelial cells, genomic studies 

have also found that C. jejuni strains lack a specialized type III secretion system (46). 

However, there are reports that flagella can function to secrete non-flagellar proteins that 

may modulate virulence. Konkel et al showed that the secretion of at least eight proteins 

into the supernatant occurs when C. jejuni was co-cultured with epithelial cells (96, 97, 

143). The secretion of Cia proteins, but not their synthesis, was dependent on growth of C. 

jejuni in the presence of INT407 intestinal cells (96, 97, 143). Thus far, only one Cia 

protein, CiaB, has been identified. Mutation in ciaB results in full motility, but the 

pathogen is unable to secrete any Cia proteins. Moreover, the mutant was reduced 50-fold 

in invasion into epithelial cells compared with the parent strain (54, 96). This implies that 

while motility is not essential for colonization and invasion of the intestinal epithelium, 

an intact flagellar apparatus is required.

1.3.2.3 Adhesins

C. jejuni produces several adhesins to colonize intestinal epithelial cells. Many 

microorganisms typically have surface appendages such as pili that facilitate adherence. 

However, genome annotations of several C. jejuni strains do not show obvious pilus or 

pilus-like open reading frames (43, 131). Despite the lack of pili, several proteins 

contribute to C. jejuni adherence. CadF {Campylobacter adherence factor) binds 

specifically to fibronectin, which is located basolaterally on epithelial cells (95, 116).
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CadF is required for maximal binding and invasion by C. jejuni in vitro, and cadF 

mutants are greatly reduced in chick colonization compared with wild type (117). While 

CadF is similar to the OmpA protein in E. coli in that it forms membrane channels, its 

precise function has not been established (109). Another characterized adhesin is JlpA, a 

surface exposed lipoprotein that is required for binding to Hep-2 epithelial cells (76). 

Another lipoprotein, CapA, has also been implicated as important for C. jejuni adhesion 

to Caco-2 cells, as CapA deficient mutants show decreased adherence, colonization and 

persistence within them (8). Some putative C. jejuni adhesins are in the periplasm. Pebl 

is an adhesin that is required to bind to HeLa cells (90, 133). However, the majority of 

this adhesin is periplasmic and shares homology to periplasmic binding proteins of amino 

acid transporters, binding to both aspartate and glutamate with high affinity (103, 132). In 

addition, while Pebl does not localize to the inner or outer membrane, some must be 

surface exposed in order for this protein to act as an adhesin. While it was suggested that 

Pebl is anchored to the outer membrane, no evidence has been found, and instead, Pebl 

was observed in culture supernatants, suggesting that the protein can be exported across 

the outer membrane (103).

1.3.2.4 Lipooligosaccharide (LOS)

C. jejuni expresses low molecular weight outer membrane antigens known as 

lipooligosaccharide (LOS). In many Gram negative bacteria, a set of repeating sugar 

subunits, the O-chain, is attached to the core polysaccharide, and the entire structure is 

termed lipopolysaccharide (LPS). However, much like in Neisseria and Haemophilus sp., 

the LOS of C. jejuni does not possess the long repeating O-antigen polysaccharide chains 

characteristic of LPS. The pioneering structural work of LOS was done by Aspinall et al
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(118), and further refined by Szymanski et al (158). The LOS is anchored to the 

membrane via lipid A; attached to the lipid A anchor is the core region of the LOS. The 

core can be subdivided into the outer core region, proximal to the O-specific chain, and 

the lipid A proximal inner core region (141, 142). This subdivision exists because of the 

different sugar composition of the two regions. The outer core consists of hexoses and 

hexosamines, specifically, galactose and N-acetyl galactosamine, while the inner core 

consists of sugars such as two molecules of heptose and 3-deoxy-D-maw70-2-octulosonic 

acid (Kdo) (118). The Kdo sugar serves as a link between the core oligosaccharide and 

the lipid A component. Interestingly, C. jejuni is one of the few bacteria capable of 

endogenous synthesis of sialic acid for incorporation into the galactose molecules present 

in the outer core. The resulting sialylation gives rise to molecular mimicry of host 

gangliosides, which can result in the development of autoimmune neuropathies such as 

GBS and Miller Fisher syndrome (58).

1.3.2.5 Capsular polysaccharide (CPS)

Capsules are found on the surface of many Gram positive and Gram negative 

bacteria. Capsules are considered a virulence factor and can be potentially antigenic. 

They can either be tightly associated or form a loose, gel-like matrix, and impart a great 

deal of protection to the bacteria. These include protection from desiccation, 

bacteriophages, and most hydrophobic toxic materials such as detergents. In addition, 

capsules provide protection against the complement system by preventing C3 deposition 

on the surface of the bacteria (166). Capsules also aid in bacteria adherence to surfaces.

Until recently, it was thought that C. jejuni strains produced both LOS and a high 

molecular weight lipopolysaccharide (LPS) (86). C. jejuni CPS remained largely
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unnoticed until the sequencing of the ATCC 700819 genome where a large cluster of 

genes with similarities to type II/I1I CPS transport genes from Enterobacteriaceae were 

found (131). Mutations in these transport genes resulted in a loss of the high molecular 

weight polysaccharide, as well as the loss of the ability to be typed in the Penner 

serotyping scheme. A characteristic feature of group II capsular polysaccharides is the 

presence of a phospholipid anchor. Karlyshev et al showed that the high molecular 

weight polysaccharide was susceptible to phospholipase treatment, thus confirming that 

what originally was thought to be a high molecular weight LPS was actually a highly 

variable capsular polysaccharide (CPS) (86).

1.3.2.6 Role of CPS in C. jejuni virulence

The CPS of C. jejuni is a virulence factor that is important for adherence to and 

invasion of epithelial cells, chick colonization and virulence in a ferret model (13, 77). A 

capsuleless KpsE mutant in strain ATCC 81116, isolated from a waterborne outbreak in 

1982, showed decreased adherence and invasion in intestinal epithelial cells (12) while 

similarly, a capsuleless KpsM  mutant in strain ATCC 81-176 shows decreased invasion 

of intestinal epithelial cells and decreased invasion in a ferret model (13). The same 

mutant exhibits a decreased ability to colonize the chicken intestine (77). In addition, Keo 

et al created capsuleless mutants in the invasive clinical isolates 84-25 and 84-19 strains 

of C. jejuni and found that they showed a significant increase in serum-dependent killing 

compared to the wild type (89). These capsuleless mutants showed that CPS was critical 

for serum resistance and was also responsible for subtle changes in surface charge. 

However, it is not known whether differences in sugar composition of the capsule among 

different strains will affect virulence or whether phase variable modifications play a role.
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1.3.2.7 Group II and group III capsular groups

Much of the work related to CPS has been performed in E. coli, which has over 

80 different capsular serotypes. These were originally divided into groups based on their 

serological properties while later revisions incorporated genetic and biochemical criteria 

(172). Since this original classification, there now exist four distinct groups (173). E. coli 

group I and IV capsules share a common assembly system, and are fundamentally 

different than the assembly system used for group II and III (172). While four main 

capsular groups exist, the C. jejuni CPS shows high similarity to the E. coli group II and 

III capsular groups (58, 131) and only these will be described below.

1.3.2.8 Capsular organization

The structural features of the repeating units of E. coli group II and III capsules 

vary extensively; while some contain phosphate residues in their backbone, much like 

Gram positive teichoic acids, some group II CPS resemble vertebrate glycoconjugates 

(172).

The chromosomal locus for group II capsule has a generally conserved structure, 

consisting of three regions (172). This organization is observed not only in E. coli but 

also in other encapsulated bacteria such as Campylobacter, Haemophilus, Neisseria, 

Pasteurella and Actinobacillus spp. (150). This conservation suggests a common origin 

for the biosynthetic gene cluster in these species. In fact, Silver et al (150) showed that 

homologues of the E. coli transporter from Actinobacillus pleuropneumoniae, 

Haemophilus influenzae and Neisseria meningitidis complemented an export defective E.

coli mutant.
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Region 2 is known as the serotype specific central region, and encodes 

glycosyltransferases as well as many unique sugar nucleotide synthetases required for the 

production of capsule. As this region is serotype specific, the size and genetic content 

will vary. In general, the size of region 2 corresponds to the complexity and the number 

of repeat units of the capsular polysaccharide that is formed (172). Region 2 is flanked by 

regions 1 and 3, which are generally conserved. Genes in these areas are involved in a 

range of activities including assembly and subsequent export of the polysaccharide via an 

ATP-binding cassette (ABC) transporter, consisting of KpsM and KpsT.

1.3.2.9 Capsular biosynthesis

Biosynthesis and assembly of capsular polysaccharides is a complex process. 

Monosaccharides are the basic building blocks of CPS; once the sugar molecules have 

been synthesized by the bacterium or obtained from the environment, activation to the 

sugar nucleotide form occurs. This activation step, whereby the sugars are activated to 

XTP, XDP or XMP (where X indicates a nucleotide, adenosine, cytosine, thymine or 

uridine, and TP, DP and MP indicate the triphosphate, diphosphate and 

monophosphonucleotides, respectively), is required for the final polymerization step 

catalyzed by glycosyltransferases that transfer the sugars to the correct acceptors (165). 

Any modifications that occur to the sugar nucleotide precede the final polymerization. 

After polymerization, the final polysaccharide can be exported to the cell surface where it 

can be expressed. Each step of this biosynthetic pathway will be introduced below.

Initiation of group II capsular synthesis requires a membrane bound initiator 

upon which the polysaccharide chain is elongated. The endogenous acceptor has been 

described as phospholipid, phospholipid-linked 3-deoxy-D-mauuo-octulosonate (Kdo),
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“endogenous acceptor” protein, and undecaprenyl phosphate (23, 41, 160, 170). However, 

to date, the exact nature of the endogenous acceptor remains unknown.

Chain elongation is performed by glycosyltransferases that add additional sugar 

units to the nascent capsular polysaccharide. This process occurs on the cytoplasmic side 

of the membrane. A series of acetyl transferases and O-acetyl esterases have been 

discovered that modify the nascent capsule polysaccharide or its precursors before or 

during export (154). These modifications suggest that the synthetic components of group 

II capsule biosynthesis may themselves be associated with the inner membrane, 

interacting in a super-complex that Steenbergen et al have designated the sialisome (155).

The penultimate step to capsular biosynthesis is chain termination, but group II 

CPS termination of chain polymerization is unsolved. In E. coli K l, the majority of the 

capsular chains terminate with a maximum chain length of 160 -  230 residues, suggesting 

an active process in size determination (134). A terminal residue on group II capsules 

could potentially be overlooked in structural analyses (172). The other possibilities for 

chain termination include the loss of affinity by the glycosyltransferases for the polymer 

beyond a certain chain length, an abortive chain translocation process within the catalytic 

site, or an allosteric effect that is mediated by other components of the capsular assembly 

system (172).

The final step to express the complete capsular polysaccharide on the cell surface 

is export. This process is driven by ABC transporters at the expense of ATP hydrolysis. 

KpsM and KpsT were initially identified as the components of an ABC transporter on the 

basis of their sequences, and their identities were then confirmed by biochemical 

approaches (150). KpsM is the integral inner-membrane transmembrane domain
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component, with six transmembrane helices, and KpsT is the cytoplasmic nucleotide 

binding domain (172).

Two models of capsular export exist: post-synthetic or direct coupling (165). In 

the former, as all group II and probably group III capsules bear a terminal reducing 

phosphatidic acid moiety that anchors them to the outer membrane, this feature could 

function as a recognition tag for export due to its commonality. In the latter model of 

capsular export, the glycosyltransferases for polymerization are directed to the exporter 

by affinity for accessory proteins, essentially coupling synthesis of the capsule to 

polysaccharide export (165). There is growing evidence that the direct coupling model is 

the correct model as Steenbergen et al showed that in the presence of a depolymerase 

(capable of cleaving capsular chains greater than or equal to 7 monomers in length), 

cytoplasmic biosynthesis of the polysaccharide (both synthesis and subsequent export) 

was protected from degradation. The depolymerase clips nascent chains prior to export; 

in a post-synthetic transport model, the completed capsular chains would be eliminated 

before their export, reducing or eliminating surface capsule expression. However, if 

synthesis and export of the polysaccharide were intimate (as in a directed coupling export 

model), the polysaccharide would be protected and the capsule expressed regardless of 

the depolymerase. Results indicated that capsular synthesis was protected during 

polymerization and export, supporting the directed coupling model (155).

1.3.2.10 The C. jejuni capsule and heptose biosynthesis genes

The CPS of C. jejuni strain ATCC 700819 is anchored to the outer membrane via 

a dipalmitoyl-glycerophosphate phospholipid anchor (31). The C. jejuni ATCC 700819 

capsular backbone contains a (3-D-ribose, p-D-Gal/NAc (N-acetylgalactosamine in a
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furanose conformation), a  - D - G1 c/? A 6 (A'g ro) (a glucuronic acid with 2-amino-2- 

deoxyglycerol on carbon 6), and a 3,6-0-meXhy\-D-glycero-a-L-gluco heptose as a side- 

branch (153). When high-resolution magic-angle spinning nuclear magnetic resonance 

(HR-MAS NMR) was used to examine intact C. jejuni cells, a large variation in capsular 

structure was found (158). This included a 6-O-methyl group on the heptose, an N- 

ethanolamine modification on glucuronic acid instead of the 2-amino-2-deoxyglycerol, 

and a unique O-methyl phosphoramidate molecule on Gal/Nac that had not been 

previously seen in any other bacteria (158). It is not known whether changes in sugar 

composition of CPS plays a role in virulence or in interactions with bacteriophages. Other 

strains of C. jejuni are known to possess modifications to heptose. For example, in the 

81-176 strain, not only is the heptose in an altro conformation, but a dehydration also 

occurs on carbon 6 (85).

Due to the side-branching nature of the modified heptose as well as the 

phosphoramidate molecule in C. jejuni ATCC 700819, these molecules protrude into the 

external environment, and become the outermost portion of the CPS that is exposed. 

These moieties are likely important for bacterial/host interactions as well as pathogenicity 

of the organism. The enzymes that are involved in the synthesis of these modified 

heptoses are potential targets for therapeutic agents.

Most Gram negative bacteria contain a single heptose biosynthesis pathway in 

their TOS or TPS biosynthesis loci, producing ADP-L-g/ycero-P-D-mrwno-heptose, a 

precursor o f the core oligosaccharide (162). Interestingly, C. jejuni is an exception to this, 

as some strains possess additional heptose biosynthesis genes involved in synthesizing 

GDP-D-g/ycero-a-D-manno-heptose which are located within the capsular cluster of
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genes (82). The first step of the pathway to create the manno-heptose involves converting 

D-sedoheptulose-7-phosphate to D-g/ycero-a-p-D-marmo-heptose-7-phosphate via the 

isomerases GmhA and GmhA2 (Cj 1149c and Cj 1424c, respectively; Figure 1). The D- 

g/ycero-a-D-ma«no-heptose-l,7-bisphosphate is then formed via the kinase HddA 

(Cj 1425c). GmhB (Cj 1152c), encoded from the LOS synthetic pathway, acts next to 

remove a phosphate, yielding D-g/ycero-a-D-manno-heptose-l-phosphate. HddC 

(Cj 1423c) then acts to transfer a guanosine triphosphate (GTP) molecule, yielding GDP- 

D-glycero-a-D-manno-hcplose (82). In some strains of C. jejuni, this manno-heptose is 

further modified before incorporation into the capsule via the heptosyltransferase HddD 

(Cj 1431c). For instance, in ATCC 81-176, the conversion of heptose to deoxyheptose is 

thought to occur, as a new gene, wcaG, was found within the genome (82). The WcaG 

protein is a homologue of DmhA, known to be involved in conversion of heptose to 

deoxyheptose in Yersinia pseudotuberculosis (24, 69, 130). Karlyshev et al report that 

cjl427c, c/J428c and cj!430c are potential candidates for carbon 3,5 epimerase/carbon 4 

reductases. These gene candidates are postulated to be involved in converting the D- 

glycero-a-D-manno-hcptose to GDP-6-OMe-D-g/yceroa-L-g/wco-heptose. The 

verification of the heptose biosynthetic pathway in C. jejuni ATCC 700819 via 

mutagenesis studies is the main focus o f this thesis.
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Figure 1. Synthesis of D-g/ycero-a-L-g/wco-heptose and its subsequent incorporation 

into the CPS.

The biosynthesis of GDP-6-OMe-D-g/ycero-a-L-g/wco-heptose in ATCC 700819 from 

D-sedoheptulose-7-phosphate is shown. The genes gmhA, gmhA2, hddA, gmhB, and 

hddC have known functions. The genes cj1426c, cj1427c, cj1428c, and cj1430c are 

putatively thought to modify the heptose while cj 1431c is putatively thought to be a 

heptosyltransferase.



23

HO-

-OH

:0

-OH

-O H

-O H

D-sedoheptulose-7-phosphate

-2
------- CH2OPO3

GmhA {CJ1149c) 
GmhA2 (cj1424c)

HO OPO-

HO
HO

OH D-g/ycero-D-manno-heptose-7-phosphate
OH

HddA (cj1425c)

HO OPO,

HO
HO

OH
D-g/ycero-D-manno-heptose-1,7-bisphosphate

OPO-

GmhB (cj1152c)

HO \  OH
HO

OH

O O-glycero-D-manno-hepiose-1 -phosphate
0 P O 1

HddC (cj 1423c)

HO

HO OH

OH

0 GDP-D-glycero-o-manno-hepiose
OGDP

I cj1426c 
f  cj1427c 
Î  cj1428c

cj1430c
OH

R OH OGDP GDP-6-OMe-D-g/ycero-a-L-g/uco-heptose
OH

R=
H3COCH

h o c h 2

I  HddD (CJ1431C)

CPS



24

1.4 Rationale and hypothesis

Modified heptoses are relatively unique in bacteria. They have been found in the 

CPS of several strains of C. jejuni and C. coli, as well as the LPS of Yersinia 

pseudotuberculosis (28, 49, 69, 81, 82, 162). The CPS plays an important role in 

pathogenesis, as a capsuleless mutant in C. jejuni ATCC 81-176 has reduced adherence 

and invasion of intestinal epithelial cells as well as reduced virulence in a ferret diarrheal 

model (13). It is not known whether specific components of the capsule, such as the 

modified heptose and/or phosphoramidate molecule, play a role in pathogenesis. As these 

molecules form side-branches away from the main capsular backbone, they are the 

outermost exposed component of the capsule to the external environment, and may thus 

play a role in pathogenesis. The capsular structure of C. jejuni ATCC 700819 was 

elucidated and contains 6-0-methyl-D-g/ycero-a-L-g7wco-heptose (153). To achieve this 

final conformation from the starting D-glycero-a-D-manno-hepXose, three epimerization 

steps at carbons 3, 4 and 5 must occur in order to switch from the manno to the gluco 

conformation, as well as to switch from the D to the L configuration. These epimerases 

have not been identified. However, region 2 of the capsular cluster in C. jejuni ATCC 

700819 contains three genes, cj1427c, cj1428c and cj1430c that are thought to putatively 

perform these epimerizations on D-glycero-a-D-manno-heptose. The precise biochemical 

functions of these enzymes are under investigation in our laboratory.

We believe that the enzymes encoded by cjl427c, cjl428c and cjl430c play 

important roles in the synthesis of modified heptoses in the capsule of C. jejuni, and 

that specific capsular components, such as modified heptoses, are important for 

CPS function and the overall virulence of C. jejuni.
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1.5 Objectives

1) To determine the role of cjl427c , cjl428c and cjl430c in modified heptose 

biosynthesis.

We have constructed cj!428::CAT and cjl430\:CAT insertional mutants, but 

lacked a cj1427::CAT mutant. To complete our panel of mutants, and to determine the 

function of these genes of interest, a cj1427::CAT mutant was created. The effects on 

CPS production and composition of these insertional mutants were also investigated.

2) To determine the effect on virulence due to subtle changes in the CPS of C. jejuni

Previous laboratory members have characterized phenotypes related with the 

virulence of C. jejuni (i.e. bile salt resistance, serum resistance, survival in macrophages, 

etc) for the cj!428::CAT, c jl430::CAT and KpsM  mutants. However, due to variability 

observed in the data, particularly for the macrophage assays, these phenotypes were 

repeated for all our mutants. In addition, with the construction of a new cj!427:\C AT  

mutant, characterization of each phenotype must also be investigated to gain a complete 

understanding of the role of modified heptoses on the virulence of C. jejuni.
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CHAPTER 2 -  MATERIALS AND METHODS
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2.1 Bacterial strains and culture conditions

C. jejuni ATCC 700819 (NCTC 11168) as well as E. coli DH5a were routinely 

cultured from -80°C freezer stocks using conditions suitable for each bacterium. C. jejuni 

was grown overnight on Trypticase Soy Agar (TSA; BD, Canada) supplemented with 10 

pg/mL vancomycin (Biobasic, Markham, Canada), 5 pg/mL trimethoprim (Sigma- 

Aldrich, Canada), and 5% sheep blood (Cedarlane, Burlington, Canada). For 

transformation purposes, C. jejuni was grown on either TSA plates supplemented with 

sheep blood as above or on Mueller Hinton Agar (BD, Canada) plates, containing 10 

pg/mL vancomycin, 5 pg/mL trimethoprim, 0.05% pyruvate (Alfa Aesar, USA), and 5% 

horse serum (Invitrogen, Canada). Routinely, C. jejuni was grown for up to 48 hours in a 

microaerophilic incubator (Nuaire) at 37°C in 5% oxygen, 10% carbon dioxide, 85% 

nitrogen, and 90% humidity. For experiments, wild type and mutant strains (plates 

supplemented with appropriate antibiotic(s)) were grown from freezer stocks overnight 

and then transferred to TSA plates and incubated for a further 20-24 hours (unless 

otherwise stated) before being used. This ensured that C. jejuni was actively growing. 

Additional antibiotic(s) were added where appropriate at the following concentrations: 

kanamycin (Biobasic, Markham, Canada) 90pg/mL, chloramphenicol (Fisher Scientific, 

Canada) 15 pg/mL.

E. coli was routinely grown on lysogeny broth (LB) Agar (Bioshop, Canada) in a 

37°C incubator. Alternatively, E. coli was grown in LB broth (Bioshop, Canada) in a 

shaking incubator (200 rpm) at 37°C. Antibiotics were supplemented where appropriate 

at the following concentrations: 100 pg/mL ampicillin (Biobasic, Markham, Canada), 30 

pg/mL kanamycin, and 34 pg/mL chloramphenicol. Where indicated, 5-bromo-4-chloro-
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3-indolyl-P-D-galactopyranoside (X-gal; Biobasic, Markham, Canada) was used at 4 

pg/mL.

2.2 Preparation of calcium chloride competent E. coli DH5a

A 3 mL overnight culture of E. coli DH5a grown in LB broth was used to 

inoculate 100 mL LB. The bacteria were incubated for 1-2 hours until an ODôooof 0.6 

was reached. The bacteria were pelleted at 5000 x g  (Eppendorf 5415D, Eppendorf) for 

10 minutes at 4°C, re-suspended in 20 mL of cold 50 mM calcium chloride solution and 

incubated on ice for 30 minutes. Following this, the bacteria were pelleted as described 

above and re-suspended in 5 mL of 50 mM calcium chloride solution and incubated on 

ice for 5 hours. After this final incubation period, 5 mL of 50% cold glycerol was added, 

and cells aliquoted before storing at -80°C.

2.3 PCR to verify the inactivation of cjl427c in C. jejuni ATCC 700819

For the generation of the cj1427c mutant, a chloramphenicol resistance gene was 

inserted into the cjl427c gene. This construct was previously constructed in our 

laboratory (100) and used in this thesis. The construct was amplified in E. coli DFI5a and 

was verified using cj!427 P2 and P3 primers (see appendix for full list of primers). The 

PCR program used was as follows: Initial dénaturation at 94°C for 5 minutes, 25 cycles 

of: Dénaturation at 94°C for 45 seconds, Annealing at 49°C for 45 seconds, Elongation at 

68°C for 2 minutes, and Final elongation at 68°C for 7 minutes. DNA was amplified 

using Expand Long Template (Roche) and was used as per manufacturer’s instruction in 

a total reaction volume of 12.5 pL. Once the construct was verified, it was transformed



29

into C. jejuni (see below for procedure). The inactivation of the cjl427c gene was 

verified using the cj!427  P2 and P3 primers and the same PCR program as above.

2.4 Creation of C. jejuni complementation mutants

The method of Karlyshev et al was adapted for the creation of the complementation 

mutants (87). The 16S -  23S rRNA region was chosen for insertion of the 

complementation constructs as three copies of these genes exist within the C. jejuni 

genome, and complementation into one of these regions via homologous recombination 

will not affect the viability of the bacteria. First, the 16S -  23S rRNA region of C. jejuni 

was amplified from wild type genomic DNA using primers 16S rRNA Top -  Kpnl and 

23S rRNA Bottom -  Not I, respectively. The 16S -  23S rRNA fragment (2024 Kb) was 

then inserted into the Kpnl/Notl sites of the pBluescript KS (+) cloning vector. This 

vector contains an ampicillin resistance gene, as well as a lacZ gene for blue and white 

screening. Positive transformants grew as white colonies on LB agar supplemented with 

X-gal (4 pg/mL) and ampicillin (100 pg/ mL), indicating that the DNA fragment had 

been inserted into the vector. The insertion of the fragment was confirmed by PCR using 

fragment specific primers and DNA sequencing (Robarts Sequencing Facility, University 

of Western Ontario, London, Ontario).

The complementation constructs were generated using the primer overlap 

extension method, also known as gene SOE-ing (63). In this method, primers used in 

PCR contain overlapping sequences of the adjacent DNA fragment to be joined at their 5’ 

end. Overlapping regions were designed to be at least 21 bases in length. Each DNA 

fragment was first amplified individually using Expand Long Template DNA polymerase 

(Roche, Canada) and the following PCR program: Initial denaturation at 95°C for 5
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minutes, followed by 30 cycles of denaturation at 95°C for 45 seconds, annealing of the 

primers at the appropriate temperature for 45 seconds, elongation at 68°C for the 

appropriate duration (1.5 Kb/minute), and a final elongation at 68°C for 7 minutes. The 

porA promoter was amplified using primers ompE For -  Xbal combined with ompE Rev 

1427, ompE Rev 1428, or ompE Rev 1430. The genes to be complemented were 

amplified using primers 1427 For ompE, 1428 For ompE, or 1430 For ompE, and their 

corresponding reverse primers 1427 Rev Kan, 1428 Rev Kan, or 1430 Rev Kan. The 

kanamycin resistance gene was amplified using Kan For 1427, Kan For 1428, or Kan For 

1430, combined with the reverse primer AphP3, which contains an Xbal restriction 

enzyme site. For the second and third PCR reactions, 9.6 pL (approximately 200 ng) of 

each of the fragments to be joined were added to 2.5 pL dNTP (2.5mM), 2.5 pL 10X 

Expand Buffer 3, 0.5 pL of forward and reverse primers (20 pmol/pL each) and 0.25 pL 

Expand Long Template DNA polymerase. Between each PCR reaction, the products 

were run on an agarose gel, and the fragments that corresponded to the correct size were 

purified using a gel purification kit (Biobasic, Markham, Canada), according to the 

manufacturer’s instructions.

The complementation constructs were then inserted into the multiple cloning site 

within the pBluescript vector containing the 16S- 23 S rRNA fragment to generate the 

final constructs. Specifically, the restriction endonuclease Xbal was used to cut within the 

inserted 16S -  23S rRNA and also to create sticky ends on the complementation 

constructs. The vector and the insert was then ligated together using T4 DNA ligase 

(New England Biolabs). These ligated complementation constructs were then 

transformed into E. coll DH5a and selected on LB agar supplemented with 100 pg/mL
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ampicillin and 30 pg/mL kanamycin. These above steps were done by another student in 

our laboratory, Xuan Than Bui. Positive transformants were confirmed via PCR using 

OmpE For -  Xba\ and AphP3. The correct order of DNA fragments was confirmed by 

PCR using primers internal to the constructs. Sequencing of the constructs was performed 

at the Robarts Sequencing Facility, University of Western Ontario, London, Ontario.
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Figure 2. Schematic of the complementation constructs used in this study.

The schematic depicts the complementation constructs that were created for the 

cjl427::CAT, cjl428::CAT and cjJ420::CAT mutants. The 16S rRNA and 23S rRNA 

areas are present to facilitate homologous recombination of the complementation 

construct into the C. jejuni genome. An outer membrane protein promoter, porA, drives 

the overall expression of the complementation construct. Due to prior nomenclature, 

primers for the porA region have OmpE within their name. Following the promoter is the 

gene of interest to be complemented. A kanamycin resistance cassette allows for the 

selection of potential complemented clones. The sizes of each fragment are indicated 

under their respective regions. Total sizes of the complementation constructs are 

indicated on the right hand side of the figure.
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16S rRN A PorA G ene K A N 23S rRN A

cj1427 construct 800 bp 123 bp 942 bp 1400 bp 1224 bp

cjU28 construct 1041 bp

Total size 
4489 bp 
4588 bp

CJ1430 construct 546 bp 4093 bp
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2.5 Selective methylation of plasmid DNA before transformation of C. jejuni

The method outlined by Donahue et al was adapted for transforming C. jejuni 

(36). This method protects foreign DNA from restriction modification enzymes by in 

vitro site-specific and strain-specific methylation. To have enough DNA for 

transformation, E. coli harbouring the vector of interest was grown and the plasmid 

harvested using either a DNA Mini Kit (Qiagen) or an Illustra DNA Midi Kit (GE 

Healthcare), depending on whether the vector was a high copy or a low copy plasmid, 

respectively. For each kit, the protocol as recommended by the manufacturer was 

followed. At least 10 pg of plasmid DNA was treated with a cell-free extract of C. jejuni 

(containing 300-400 pg of protein) in the presence of a methyl donor (200 nM S- 

adenosyl methionine; Sigma Aldrich) before transformation. Methylation was carried out 

at 37°C for 1 hour in methylation buffer (20 mM Tris-acetate (pH 7.9), 50 mM potassium 

acetate, 5 mM NaiEDTA, 1 mM dithiothreitol (DTT)) in a total volume of 200 pL. To 

obtain a cell-free extract, wild type C. jejuni was harvested from five TSA plates and 

resuspended in 4 mL of extraction buffer (20 mM Tris-acetate (pH 7.9), 50 mM 

potassium acetate, 5 mM Na2EDTA, 1 mM DTT, protease inhibitor cocktail (Roche, 

following manufacturer’s instructions)). This was passed through a French pressure cell 

press (Thermo Scientific) at least five times, until the lysate was visibly clearer. The 

amount of protein in the cell-free extract was quantitated using a Bradford Assay (21) 

following instructions from the manufacturer (Biorad). Following methylation, 

phenol:chloroform:isoamyl alcohol (in a 25:24:1 ratio) was used to purify the DNA. 

Briefly, one volume of phenol:chloroform:isoamyl alcohol was added to the sample and 

agitated to ensure that the aqueous and organic phases mixed. This was then centrifuged
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at maximum speed (16110 x g, Eppendorf 5415D, Eppendorf) for one minute to separate 

the layers. The aqueous phase (top phase) was collected, and the organic phase discarded. 

An equal volume of phenol:chloroform:isoamyl alcohol was added to the aqueous layer 

and the above steps repeated until no visible protein layer was observed between the 

aqueous/organic phase interface. The aqueous phase was collected, and to this, an equal 

volume of chloroform was added and mixed. This was centrifuged at maximum speed for 

1 minute, and the aqueous phase collected. Plasmid DNA was recovered using a sodium 

acetate/ethanol precipitation method (see below).

2.6 Sodium acetate/ethanol precipitation of DNA

To recover DNA, a sodium acetate/ethanol precipitation method was used. Briefly, 

1/10 volume of 3 M sodium acetate (pH 7.0) was added to the DNA sample. To this, 2.5 

volumes of ice cold 100% absolute ethanol was added. The sample was spun at 

maximum speed (16110 x g, Eppendorf 5415D, Eppendorf) for 30 seconds to collect all 

the liquid at the bottom of the tube before being placed into the -20°C freezer for a 

minimum of 2 hours. The sample was then spun at maximum speed for 30 minutes at 4°C 

to pellet the DNA. This was followed by a 750 pL 70% ice cold ethanol wash to remove 

excess salts from the DNA pellet. The sample was spun again at 4°C at maximum speed 

for 15 minutes. The ethanol was removed, and the DNA pellet allowed to air dry before 

being resuspended in 50 pT sterile water. Plasmid DNA purified in this manner was

stored at -20°C until required.
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2.7 Agarose gel electrophoresis

Agarose gel electrophoresis was used to separate DNA fragments. For most DNA 

fragments, a 0.7% agarose gel was prepared in TAE buffer (40 mM Tris-acetate pH 8.0, 1 

mM EDTA), and ethidium bromide was added to a final concentration of 0.01%. For 

smaller fragments (~200 bp), a 1.4% agarose gel was prepared in a similar manner as 

above. Samples were mixed with DNA loading buffer (4x TAE buffer, 50% glycerol, 

0.01% bromophenol blue) before loading and sizes were compared to a 1 kilobase pair 

(Kb) DNA ladder standard (Invitrogen, Frogga). Electrophoresis was carried out at 80 

volts until proper separation was achieved. DNA bands were visualized using UV light.

2.8 Preparation of C. jejuni and electroporation procedure

C. jejuni was grown on TSA supplemented with 5% sheep blood for 24 hours in 

microaerophilic conditions. On the day of transformation, 4-5 plates of the bacteria were 

suspended in 1 mL of 15% glycerol/272 mM sucrose and spun down for 2 minutes at 

3300 x g. The cells were washed three times with 1 mL of cold 15% glycerol/272 mM 

sucrose before being resuspended in 150 pL ice cold 15% glycerol/272 mM sucrose. The 

OD600 was taken and samples diluted or concentrated to obtain approximately 109 

cells/mL. An OD6ooof 1.0 corresponds to approximately 109 cells/mL, as determined by a 

standard curve of colony forming units (CFU) versus OD60o- Transformation was done 

with 70 pL of cells and 2 pg of plasmid DNA in a total volume of 80 pL. A negative 

transformation control consisted of 70 pL of cells and 10 pL of water. Prior to 

electroporation, cells were plated on TSA plates to ensure their viability. Cells were then 

transferred to an ice cold 0.2 cm electroporation cuvette (Gene Pulser) and electroporated 

at 2.5 kvolts, 600 D, 25 pF. Cells were placed back on ice, and 300 pL of Mueller Hinton
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(MH) or TSA broth added to the cells. Four spots of 75 pL each were placed onto MH 

plates or TSA plates supplemented with 5% sheep blood and cells allowed to recover for 

a minimum of 5 hours under microaerophilic conditions at 37°C. Alternative recovery 

times of 8 hours and 10 hours were also attempted. After each recovery time period, spots 

were resuspended in 300 pL of MH broth or TSA broth and 75 pL plated onto MH or 

TSA agar plates containing selective antibiotics, respectively, using glass beads. Plating 

onto MH or TSA plates, to ensure viability after electroporation, was also done in parallel. 

These plates were grown for 2-3 days under microaerophilic conditions at 37°C until 

colonies were observed.

2.9 Preparation of C. jejuni and natural transformation procedure

C. jejuni was grown on TSA supplemented with 5% sheep blood for 24 hours in 

microaerophilic conditions. On the day of transformation, 2 plates of the bacteria were 

suspended in 1 mL of TSA broth. The ODeoo was taken and samples diluted or 

concentrated to obtain approximately 109 cells/mL. Transformation was done with 70 pL 

of cells and 2 pg of plasmid DNA in a total volume of 80 pL. A negative transformation 

control consisted of 70 pL of cells and 10 pL of water. The plasmid was mixed with the 

bacteria, and to this, 300 pL of TSA broth was added to the cells. Four spots of 75 pL 

each were placed onto TSA plates supplemented with 5% sheep blood and cells allowed 

to recover for a minimum of 5 hours under microaerophilic conditions at 37°C. 

Alternative recovery times of 8 hours and 10 hours were also attempted. After each 

recovery time period, spots were resuspended in 300 pL of TSA broth and 75 pL plated 

onto TSA agar plates containing selective antibiotics using glass beads. Plating onto TSA
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plates, with no antibiotics, to ensure viability after transformation, was also done in 

parallel. These plates were grown for 2-3 days under microaerophilic conditions at 37°C 

until colonies were observed.

2.10 Colony PCR

Colony PCR was used to verify potential transformants. Colonies were picked 

from an agar plate and resuspended in 15 pL of water. 5 pL was added to a PCR reaction 

with 12.5 pL as the final volume. The PCR reaction mix contained IX Expand PCR 

Buffer 2, 0.25 mM dNTP, 20 pmol of each primer, and 1U Expand Long Template. The 

PCR conditions used for the reaction were as follows: 94°C (initial denaturation) for 10 

min, 94°C (denaturation) for 45 seconds, annealing temperature at the appropriate 

temperature for 45 seconds, 68°C (elongation) for X min, where X is the appropriate 

duration dependent on the length of the fragment to be amplified) cycled 25 times, 

followed by 68°C (final elongation) for 7 min. Products were run on a 0.7% DNA 

agarose gel as described above.

2.11 Preparation of genomic DNA from bacterial pellets

C. jejuni was grown on 1 TSA agar plate for 24 hours under microaerophilic 

conditions at 37°C and then resuspended in 1 mL of TSA broth. Samples were 

centrifuged for 5 minutes at 16100 x g  (Eppendorf 5415D, Eppendorf). The supernatant 

was removed, and 1 mL of DNAZol (Invitrogen) reagent was added and the sample 

mixed well. The samples were incubated at room temperature for 60 minutes to allow the 

cells to lyse. After incubation, samples were spun for 10 minutes at 9300 x g  to remove 

any debris. The supernatant was collected to a new 1.5 mL centrifuge tube. Five hundred
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fj.L of ice cold 100% ethanol was added and the tube inverted 5-10 times. Samples were 

then placed at -20°C for 45 minutes to allow the DNA to precipitate. Following this, the 

DNA was pelleted via centrifugation for 10 minutes at 16100 x g  and the DNAzol 

supernatant removed. Pellets were washed twice with 500 pL 95% ethanol, and spun at 

16100 x g  for two minutes. Following the last wash, the ethanol was removed, and the 

pellets air dried at room temperature for 30 minutes. The DNA was dissolved in 30-50 

pL of water, and left overnight at 4°C. The following day, samples were placed at 37°C 

for 30 minutes to allow DNA to dissolve further. DNA prepared in this manner was 

stored at 4°C until further required.

2.12 Preparation of C. jejuni RNA and cDNA

C. jejuni was grown for 20-24 hours under microaerophilic conditions at 37°C on 

one TSA plate. For RNA isolation, no more than 5.0 x 109 cells were resuspended in 200 

pL TE buffer, as recommended by the manufacturer, prior to lysis. RNA was isolated 

using the RNA midi spin kit (GE Health Sciences) as per the manufacturer’s instructions. 

The final elution step was done in 500 pL of RNAse free water, following the 

manufacturer’s instructions. In addition to the on column DNAse I treatment as suggested 

by the manufacturer, the samples were treated using 60 units of DNAse I (Roche, 

Canada) for 40 minutes at 37°C. Following the reaction, the DNAse was inactivated via 

the addition of 8.4 pL 100 mM ethylenediaminetetraacetic acid (EDTA) and heating at 

70°C for 10 minutes. The remaining EDTA was titrated via the addition of excess M gCf 

in diethylpyrocarbonate (DEPC)-treated water to a final concentration of 11 mM. The 

amount of RNA was quantified using a ND-1000 Nanodrop spectrophotometer
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(Nanodrop, USA). RNA samples were diluted in DEPC-treated water to a final 

concentration of 10.5 ng/pL. cDNA was generated using ¿Script reverse transcriptase 

(BioRad, Canada). Each reaction contained 30 pL of DNAse-treated RNA, 8 pL 5x 

iScript reaction mix, and 2 pL of iScript reverse transcriptase. Negative control samples 

contained 10 pL of the iScript reaction mix and 30 pL of RNA. The reverse transcription 

reaction was carried out using a BioRad thermocycler (BioRad, Canada) and the program 

used was as follows: 5 minutes at 25°C for annealing of the random primers, 30 minutes 

at 42°C for extension, 5 minutes at 85°C for inactivation of reverse transcriptase, and a 

final 4°C hold. Following the generation of cDNA, the samples were stored at -20°C until 

use.

2.13 Real-time PCR analysis

Real-time PCR analysis was carried out using the Rotor-Gene 6000 (Corbett 

Life Science, Canada) to measure the transcription levels of the cj1425c, cj1426c, 

cjl427c, cjl428c , cj!429c, cjl430c, cjl444c, cjl445c, cjl447c and kpsM  genes in the 

wild type and mutant strains. The gene cj1537c encoding an acetyl CoA synthetase (a 

housekeeping gene) was used as a reference for normalization within each strain 

(intrastrain). C. jejuni chromosomal DNA was used as a positive control for the 

amplification of each fragment. When determining the expression level of each gene of 

interest, samples were set up in triplicate. For determination of gene expression, 3.75 pL 

of cDNA were added to 1.34 pL of the appropriate primer mix (0.67 pL of each primer, 

at 7 pmol/pL (see Appendix for primer sequences)), 7.5 pL SYBR green mix, containing 

all necessary components for RT-PCR, (BioRad, Canada), and 2.4 pL of water. Negative

controls for the RT-PCR contained cDNA but did not contain the SYBR Green mix. An
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additional negative control consisted of the SYBR Green mix and RNA which did not 

undergo reverse transcription. This control was used to ensure there was no chromosomal 

DNA contamination.

Reactions were carried out as follows: 95°C (initial dénaturation) for 5 minutes, 

95°C (dénaturation) for 45 seconds, 59.5°C (annealing) for 30 seconds, and 72°C 

(elongation) for 20 seconds. Steps 2-4 were repeated for 40 cycles.

For each primer pair, efficiencies were determined using the dynamic range of 

chromosomal DNA and amplifying the desired fragments. Following amplification, the 

data were plotted and a standard curve was generated based on the CT (the cycle number 

at which enough amplified product accumulates to yield a detectable fluorescence signal 

above a set threshold) values for the amplification from the different chromosomal DNA 

concentrations covering the dynamic range. The primer amplification efficiency was 

determined from the slope of the standard curve by performing the following calculation: 

E (efficiency) = |Q-i/siopê  was converted into a percentage using the

following: %Efficiency = (E-l) x 100.

The dynamic range of cDNA for downstream real-time PCR analysis was 

determined using varying concentrations of cDNA. For this, DNA fragments were 

amplified from serial dilutions of cDNA. The Ct value for each reaction was determined 

and a standard curve was generated by plotting CT against the cDNA concentration. The 

cDNA concentrations yielding the best standard curve (i.e. the C j values were evenly 

spaced and a linear standard curve results in a slope indicative of the maximum 

amplification efficiency (i.e. a doubling of DNA per cycle)) were used in each 

experiment to determine gene expression.
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Two methods of comparison were used to determine differences in gene 

expression: intrastrain and interstrain comparisons. In intrastrain comparisons, the fold 

difference of expression of each gene was normalized to an internal housekeeping gene, 

cj1537c (a gene which encodes acetyl CoA synthetase). For interstrain comparisons, the 

fold expression of each gene was first normalized to the housekeeping gene in each strain 

as above, and then taken as ratio over the respective genes in the wild type. This was 

calculated using the Pfaffl equation, which is as follows: Ratio = (£'target)ACTtar8et(cal'brator" 

test)/ ( £ 'ref)ACTref(callbrator' ,est) (135). The target gene refers to the gene being studied, the 

reference is cj1537c, the calibrator refers to the wild type strain, while the test refers to 

the knockout mutant of interest. Note that for intrastrain comparisons, a modified Pfaffl 

equation can thus be used, whereby the equation is simplified to the following: Ratio =

(Z? , y-CTtargetcalibrator) j  y-CTrefcalibrator)

2.14 Growth curves of ATCC 700819 wild type and mutant strains

C. jejuni was grown as described above and re-suspended in MH broth to an 

OD600 of 1.0. A sidearm flask containing 20 mL MH broth and background antibiotics 

was first saturated with nitrogen by allowing the gas to bubble into the media for 

approximately 5 minutes through a sterile Pasteur pipette which was inserted into the 

flask, and partially sealed with a rubber stopper. The MH broth was then inoculated with

1.5 mL of the bacterial suspension to achieve a starting O D 6oo of 0.075. Nitrogen gas was 

bubbled into the sidearm flask for a further 10 minutes, to allow gas to fill the remaining 

volume of the flask, creating a microaerophilic environment. The flasks were then sealed 

and incubated under agitation (120 rpm) at 37°C for up to 24 hours. Growth was 

monitored using a Klett colony meter (600 nm filter) over 24 hours.
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2.15 Motility assay

C. jejuni cells were harvested in MH broth and adjusted to an OD600 of 1.0. 

Motility plates (0.3 % Bacto agar (Difco) in MH broth supplemented with 5% horse 

serum) were inoculated (via stabbing from equal volumes) in multiple replicates with 

wild type or mutant strains and incubated for 48 hours under microaerophilic conditions 

at 37°C. The diameter of the motility halo was measured after 48 hours.

2.16 SDS-polyacrylamide gel electrophoresis

SDS-PAGE was performed using either polyacrylamide gels consisting of a 10% 

separating gel and a 4.8% acrylamide stacking gel or tricine gradient gels (10-20%, 

Biorad, Canada). For the polyacrylamide gels, the separating and stacking gels were 

made using 0.8% bis-acrylamide. Gels were run in Tris-glycine running buffer (25 mM 

Tris pH 8.3, 192 mM glycine, 1% w/v sodium dodecyl sulfate (SDS)) at 12 mA through 

the stacking gel and at 15 mA through the separating gel. Tricine gradient gels were run 

in cathode buffer (0.1 M Tris (the pH is not adjusted, but should be approximately 8.25), 

0.1 M tricine, and 0.1% SDS) and anode buffer (0.2 M Tris, pH 8.9) at 12 mA through 

the stacking gel and at 15 mA through the separating gel.

2.17 Western blotting

Crude CPS and LOS samples were prepared by SDS-solubilization as previously 

described by Hitchcock and Brown (68). Briefly, C. jejuni from one TSA plate was 

resuspended into 1 mL of PBS and pelleted at 16100 x g  (Eppendorf 5415D, Eppendorf). 

The resuspended bacteria were diluted to an OD600 of 0.375 and 1 mL aliquoted. This 

aliquot was respun at 16100 x g  to pellet the bacteria. The bacterial pellet was
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resuspended in 200 pL of SDS solubilization buffer (2% SDS, 4% 2-mercaptoethanol, 

10% glycerol, 1 M Tris pH 6.8, bromophenol blue) and boiled for 10 minutes. To each 

sample, 5 pL of 20 mg/mL Proteinase K was added and incubated for one hour at 60 °C. 

Samples were run on a SDS-PAGE gel as described above.

After SDS-PAGE separation, the gel was placed into a BioRad transfer apparatus 

and transfer occurred for one hour at 180 mA. A PVDF membrane (Biorad) pre-wetted in 

methanol was used for transfer. Transfer buffer consisted of 192 mM glycine, 25 mM 

Tris, 20% methanol, and 0.01% SDS. Membranes were blocked overnight with 2.5% 

skim milk at 4°C. Membranes were incubated with the primary antibody (IgG anti- 

Campylobacter, Santa Cruz, California) (1:100 and 1:200 in TBS; 1:1000 anti-lipid A 

antibody -  kindly provided by Dr. J. S. Lam, University of Guelph) for one hour at room 

temperature. Membranes were then washed two times for 10 minutes in Tris buffered 

saline (TBS) plus 0.05% (v/v) Tween 20 and 0.2% (v/v) Triton X-100 and then once in 

TBS for 10 minutes. The secondary antibody for the anti-Campylobacter antibody and 

for the anti-lipid A antibody was the goat anti-mouse 800 nm (full) antibody (Licor). The 

membranes were incubated for 30 minutes with the secondary antibody (1:2500 in TBS), 

followed by three washes with TBS plus 0.05% (v/v) Tween 20 and 0.2% (v/v) Triton X- 

100. Carbohydrates were visualized using the Licor scanning system.

2.18 Silver staining

The silver staining protocol of Fomsgaard et al was followed (42). Briefly, 

carbohydrates were first separated on a 10% SDS-PAGE and then oxidized in a solution 

of 0.7% periodic acid, 40% ethanol and 5% acetic acid in reverse osmosis water with 

shaking for 20 minutes. The oxidation was followed by five washes over 15 minutes in



45

reverse osmosis water. The gel was then stained with silver nitrate in a staining solution 

with the following final concentrations: 0.19% (v/v) 10 N NaOH, 1.3% (v/v) ammonium 

hydroxide, 0.7% (w/v) silver nitrate. Gels were stained for 10 minutes, followed by five 

washes over 15 minutes in reverse osmosis water. Following the washes, the gels were 

developed using 0.005% (w/v) citric acid and 0.05% (v/v) formaldehyde (37%) in reverse 

osmosis water until bands became visible. The gels were then washed several times with 

reverse osmosis water and scanned.

2.19 Purification of C. jejuni CPS

For the purification of CPS from C. jejuni ATCC 700819 wild type and 

cjl427::CAT , cj1428v.C AT, cj!430::CAT, KpsM  and cj!427::CATA mutants, strains 

were grown on TSA plates as aforementioned for 24 hours and harvested in saline. To 

obtain sufficient capsular material for downstream processing, approximately 100 TSA 

plates were first grown, and then inoculated into 10 L of Brucella broth (BBL Sciences, 

Canada), containing 7.5% horse serum and 25 mM sodium pyruvate to an OD600 of 

approximately 0.05. After 24 hours of growth ( O D 6oo approximately 0.3), the bacteria 

were spun down at 4200 x g  (Avanti J-25I, Beckman-Coulter) for 30 minutes. The pellets 

from 10 L of growth were combined, and then lyophilized to obtain a dry sample. 

Purification of CPS was performed using the hot water/phenol extraction method (171). 

Briefly, a dry cell pellet of approximately two grams was re-suspended in 20 mL of 

MilliQ water pre-heated to 68°C. An equal amount of liquified phenol (Fisher) preheated 

to 68°C was added to the pellet and sealed in a 50 mL Falcon tube. The samples were 

incubated in a 68°C water bath for 10 minutes with rapid stirring. The sample was 

allowed to cool to 10°C on ice and centrifuged for 30 minutes at 6300 x g  (Eppendorf
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581 OR, Eppendorf), and 10°C. The aqueous (top) phase was collected, and an equal 

amount of water was added to the remaining organic phase. The procedure was repeated 

a total of three times and the aqueous phases were pooled. The aqueous phases were 

dialyzed (molecular weight cut off 12-14000 Da, Spectra/Por, Spectrum Labs) against 

running water for 2-3 days until no phenol remained. The sample was lyophilized and re

suspended in double distilled water. Ultracentrifugation of the sample for 30 hours at 

4°C and 110000 x g  (Optima Max-XP Ultracentrifuge, Beckman-Coulter) pelleted most 

of the LOS, while CPS remained in the supernatant. The sample was lyophilized and re

suspended in 500 pL double distilled water. Treatment with 200 mg of Proteinase K 

(Biobasic, Markham, Canada) was carried out for two hours at 60°C to degrade any 

remaining proteins that may not have been removed during the hot water/phenol 

procedure. CPS samples were stored at -20°C until further required.

2.19.1 Via size exclusion chromatography

Size exclusion chromatography was used in an attempt to separate the smaller 

LOS molecules away from larger CPS molecules. Hot water/phenol purified samples 

were run with water as the eluent through a size exclusion column measuring 87.2 cm by

1.6 cm (length x diameter) containing Bio-Gel P6 resin (BioRad -  1000 - 6000 Da 

fractionation range). Other resins used included the G25 (Sigma Aldrich -  5500 Da 

exclusion) and the G50 (Sigma Aldrich -  10000 Da exclusion) matrices. Dextran Blue 

was run to determine the void volume. Fractions were collected for one full column 

volume, in 1 mL increments. Silver staining was used to verify the presence or absence 

of LOS in the samples.
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2.19.2 Via acetic acid treatment

The method used by Aspinall et al (10) was used in an attempt to partially 

hydrolyze the linkage between Kdo and the lipid A core. Briefly, to a sample of CPS, 

acetic acid was added to a final concentration of 1 % and heated at 100°C for one hour. 

Any remaining acid was neutralized with 2 M ammonium bicarbonate. Ammonium 

bicarbonate was added until the solution reached a neutral pH of 7.0. Precipitated lipid A 

was removed via centrifugation at 5000 x g  for 5 minutes (Eppendorf 5415D, Eppendorf) 

and the supernatant lyophilized and resuspended into 500 pL double distilled water. 

Samples were stored at -20°C until further required.

2.19.3 Via ammonium acetate treatment

Similar to the method used by Aspinall et al (10), ammonium acetate is a method 

that will partially hydrolyze the linkage between Kdo and the lipid A core. However, this 

method is less harsh than acetic acid, and is less likely to degrade CPS. CPS was treated 

with 50 mM ammonium acetate at pH 4.5 for 90 minutes at 100°C. Samples were then 

neutralized with 2 M ammonium bicarbonate. Ammonium bicarbonate was added until 

the solution reached a neutral pH of 7.0. Precipitated lipid A was removed via 

centrifugation at 5000 x g  for 5 minutes (Eppendorf 5415D, Eppendorf) and the 

supernatant lyophilized and resuspended into 500 pL double distilled water. Samples 

were stored at -20°C until further required.

2.19.4 Via sodium deoxycholate

The method outlined by Gu and Tsai (1990) was adapted to attempt to purify EOS 

away from CPS (53). Briefly, raw CPS was processed as above, and the ultracentrifuged
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pure samples were resuspended into 500 pL of water. To this, sodium EDTA was added 

to a concentration of 2 mM, and the pH adjusted to 8.5 with 1 M NaOH. Sodium 

deoxycholate was added to the mixture to a final concentration of 2% (w/v) and 

incubated at 37°C for 10 minutes. This was then run on a column containing Sephadex 

G50 beads using 20 mM Tris, 2 mM EDTA, and 1% sodium deoxycholate (w/v), pH 8.5 

as the eluent.

2.20 Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance was conducted as previously mentioned (69, 94).

2.21 Assessing the susceptibility of C. jejuni wild type and mutants to various 

compounds

2.21.1 Bile salts

C. jejuni cells were washed once in saline and re-suspended to an OD600 of 0.1. 

Bile salts (50%/50% w/v cholate and deoxycholate -  Sigma-Aldrich) were diluted to the 

appropriate concentrations (0, 0.25, 0.5, 0.75. 1.0, and 2.0 g/L) and 90 pL aliquoted into 

the wells of a 96 well plate. 10 pL of bacteria was added to each well and incubated in 

microaerophilic conditions at 37°C for 15 minutes. Samples were washed once in TSB 

media and serially diluted for colony forming unit (CFU) counts. For this, 10 pL of each 

dilution, over a range of dilutions was taken and spotted onto a square culture plate 

containing TSA and background antibiotics. Each spot was done in duplicate. The plates 

were incubated in microaerophilic conditions at 37°C for 36 hours and the CFU counts 

enumerated. Experimental results were normalized to the CFU counts of bacterial 

samples that did not receive any bile salt treatment.
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2.21.2 SDS

Different concentrations (0.002%, 0.003%, 0.004%, 0.005%, 0.0075%, 0.01%, 

0.015%, 0.02% and 0.03%) of SDS were prepared in TSB (+ vancomycin and 

trimethoprim), using 1% (w/v) SDS as a stock solution. 170 pL of each concentration of 

SDS was added to an appropriate number of wells of a 96 well plate. C. jejuni wild type 

and mutants were grown as previously described and re-suspended in TSB to an OD600 

1.0. To each well, 30 pL of bacterial suspension was added, and controls wells were set 

up which contained 200 pL TSB. The plates were incubated at 37°C with shaking at 180 

rpm in microaerophilic conditions for 15 hours, at which point the O D 6oo was read. 

Experimental results were normalized to bacteria which did not receive any SDS 

treatment.

2.21.3 Serum

Fresh rabbit blood (from two rabbits; 6 mL each) was obtained the morning of the 

experiment from Animal Care and Veterinary Services at the University of Western 

Ontario. The blood was incubated at room temperature for 1-2 hours, until the blood had 

visibly clotted. The serum was separated from the clot and centrifuged for 15 minutes at 

9300 x g  at 4°C (Eppendorf 5870R, Eppendorf) to remove remaining blood cells. Half of 

the serum was inactivated by incubation at 60°C for one hour. Bacteria grown for 24 

hours on TSA were washed in saline and re-suspended to an OD6oo of 0.1. Serum 

(inactivated or not) was diluted in saline to the appropriate concentrations (0% - 100%) 

and 90 pL was aliquoted into the wells of a 96 well plate. To the wells, 10 pL of bacteria 

was added. The plates were then incubated with agitation (100 rpm) for 1.5 hours in 

microaerophilic conditions at 37°C. Following incubation, 100 pT TSB was added to the
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wells and samples were serially diluted and plated for CFU counts. Enumeration of the 

CFU was done after incubation for 36 hours in microaerophilic conditions.

For time course experiments, bacterial samples were tested at 20% pooled rabbit 

serum for 1.5 hours.

2.22 Assessing the adhesion and invasion of C. jejuni in Caco-2 cells

Caco-2 colorectal epithelial cells (kindly given by D. McKay, University of 

Calgary) were routinely grown on 75 cm2 tissue culture flasks in DMEM medium 

containing high glucose (25 mM) and supplemented with 10% fetal bovine serum (FBS, 

Gibco), 1.5 g/L sodium bicarbonate, 0.1 mM non-essential amino acids, 1 mM sodium 

pyruvate, 100 U/mL penicillin, and 100 pg/mL streptomycin. Caco-2 cells were grown 

in a CO2 incubator containing 5% CO2 and 37°C until confluent, and passaged every 4-5 

days. Passage of Caco-2 cells was carried out by releasing the cells from the flask surface 

via the addition of 0.25% Trypsin/EDTA (Gibco), followed by incubation in the CO2 

incubator at 37°C for 2-3 minutes. Once released, the trypsin/EDTA was neutralized via 

the addition of fresh DMEM. Cells were then centrifuged at 200 x g  (Eppendorf 5702, 

Eppendorf) for 5 minutes to remove any excess trypsin.

Caco-2 cells were grown for three days until they formed a confluent monolayer 

(approximately 6.5 x 103 cells per well in 24-well plates). The cells were infected for 5 

hours with wild type or mutant C. jejuni. Approximately 6.5 x 10 CFU of C. jejuni were 

added, resulting in a multiplicity of infection of 100. The plates were spun briefly (300 x 

g  (Eppendorf 5870R, Eppendorf) for 5 minutes at room temperature) to maximize contact 

between the bacteria and the cell monolayer. To determine total bacterial cell association 

(adherent and internalized bacteria), Caco-2 cell monolayers were washed three times,
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lysed with 0.1 % Triton X-100 for 10 minutes and viable bacterial counts were 

determined by plating the serial dilutions.

To determine the number of internalized bacteria, the Caco-2 cell monolayers 

were treated with 200 pg/mL gentamicin for two hours to kill extracellular bacteria. The 

cells were then washed and treated as above to determine bacterial viable counts.

2.23 Assessing the interaction of C. jejuni with RAW 264.7 macrophages

RAW 264.7 macrophages (ATCC) were grown in 75 cm2 tissue culture flasks 

(BD Falcon) in DMEM (Invitrogen) containing high glucose (25 mM), 10% FBS, 0.1 

mM non-essential amino acids, 100 U/mL penicillin, and 100 pg/mL streptomycin in a 

CO2 incubator containing 5% CO2 and at 37°C. They were grown from freezer stocks 

until 80% confluent and then passaged every 3-4 days to a maximum of 5 passages. 

Passaging involved washing the macrophages in lx PBS (Wisent) and detaching them by 

the addition o f 5 mL 0.25% Trypsin/EDTA (Gibco) and incubation in a CO2 incubator 

for 2-3 minutes. The cells were detached by allowing 15 mL of fresh DMEM to run over 

them. Cells were then centrifuged at 200 x g  (Eppendorf 5702, Eppendorf) for 5 minutes 

to remove any excess trypsin. To seed new cells, 1 mL of cells was taken and added to 19 

mL of fresh DMEM medium in a 75 cm2 flask and incubated in a CO2 incubator until 

needed.

Freezer stocks of the macrophages were made with 45% cells, 45% FBS and 10% 

dimethyl sulfoxide (DMSO, Sigma-Aldrich). Cells were aliquoted into 2 mL cryotubes 

and stored at -80°C until required.
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For experiments, cells were first counted using a hemocytometer. For this, 10 pL 

of the cell suspension was loaded onto a hemocytometer and the number of cells was 

counted in five independent squares. The average number of cells was used.

Cells were then seeded at approximately 2.1 x 105 cells per well of a 24 well plate 

and incubated overnight in DMEM without antibiotics. C. jejuni wild type or mutants 

were added at a multiplicity of infection (MOI) of 100. The plates were centrifuged for 

two minutes at 300 x g  (Eppendorf 5870R, Eppendorf) to synchronize bacteria- 

macrophage interaction.

For adhesion experiments, the plates were incubated with bacteria at 4°C for 30 

minutes, washed with cold PBS five times and the cells were lysed in sterile double 

distilled water. The bacteria were then serially diluted and plated for CFU counts.

For intracellular survival experiments, cells were seeded as above and infected 

with bacteria at an MOI of 100 for two hours in a 5% CO2 incubator. The cells were 

washed three times using PBS and incubated with fresh DMEM containing 225pg/mL 

gentamicin for one hour to kill extracellular bacteria. Macrophages were then washed 

and incubated in fresh DMEM for the times indicated. At each time point, the 

macrophages were washed three times with PBS and lysed using sterile double distilled 

water. Samples were serially diluted and plated for CFU counts.

For infection time course experiments, macrophages were seeded as above and 

infected with bacteria at an MOI of 100 for the times indicated. The macrophages were 

washed three times in PBS and incubated in fresh DMEM containing 225 pg/mL 

gentamicin for one hour, followed by lysis as described above and surviving bacteria 

were enumerated by CFU counts.
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2.24 Autoagglutination assay

The agglutination assay was performed as previously described (115). Briefly, 2 

mL of sterile PBS was inoculated with C. jejuni wild type or mutants at ODôoo 1.0. At 

time points 0 hour, 1 hour, and 2 hours, the top 1 mL from each tube was carefully 

removed and the ObLoo was read. The value obtained represents bacteria that have not 

agglutinated, as agglutination leads to the settling of bacterial clumps to the bottom of the 

tube.

2.25 Statistical analysis

Statistical analysis was carried out using the one-way ANOVA statistical test 

followed by a Dunnett’s multiple comparison test. Results were considered significant if 

the p  value was less than 0.05.
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CHAPTER 3 -  RESULTS
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3.1 THE GENERATION AND GENETIC CHARACTERIZATION OF CPS 

MUTANTS

At the start of this project, the availability of structural data for C. jejuni capsular 

polysaccharide (CPS) was scarce. It was known that some C. jejuni strains possessed 

modified heptoses, and that these modified heptoses formed a major structural component 

of the CPS (9, 10). Generation of a random C. jejuni ATCC 700819 DNA library and 

subsequent sequencing revealed protein encoding genes similar to the CPS biosynthetic 

genes of other bacteria (84). These findings were confirmed when the C. jejuni ATCC 

700819 complete genome was sequenced, revealing a gene cluster that was similar to the 

group II and group III CPS biosynthesis genes found in E. coli. Inactivation of these 

genes did not result in the loss of low-molecular weight lipooligosaccharide (LOS) 

molecules, but instead, the loss of a then unknown high-molecular weight species (86). 

The combination of these findings led to the realization that these high-molecular weight 

molecules were indeed CPS, and not LPS, as was originally thought. However, the exact 

genes that were involved in modifying heptoses remain unknown, even to the present.

3.1.1 The principle of C. jejuni mutant generation

Previous work in the Creuzenet laboratory (100) provided C. jejuni mutants 

containing disruptions in cjl427c , cj1428c, cjl430c and KpsM. These genes were chosen 

to be disrupted as they are hypothesized to be involved with either modified heptose 

synthesis {cj1427c, cj 1428c, and cj1430c) or the export of the final capsular 

polysaccharide (KpsM). Briefly, these genes were first inserted into a pET23::MTF 

vector, while the KpsM  gene was inserted into a pBluescript KS (+) vector. Subsequent 

inverse PCR using primers that were internal and divergent to the genes of interest
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yielded open pET23::c/1427, pET23::cjl428, pET23::cj1430 and pBhieKSxAi/wM. Into 

these, either the C. coli chloramphenicol resistance gene derived from pRYl l l  (177) or 

the kanamycin resistance gene aph3 from H. pylori shuttle vector pHel3 (66) was inserted 

to generate the disruption construct.

3.1.2 Further analysis of the cjl427::CAT  mutant reveals multiple deletions

At the outset of this project, real-time PCR data suggested that the previously 

generated cj!427::CAT (hereafter referred to as cj 1427::CA'YA) mutant possessed 

additional gene deletions. It was found that the expression levels of the cjl426c and 

cj1425c genes in this mutant were zero, which hinted at their potential deletion. To 

investigate this, conventional PCR was done to determine the presence or absence of 

genes downstream of the inserted antibiotic resistance cassette. Using primers that 

annealed to cj1427c and cj 1418c, a large size discrepancy was observed between the wild 

type and the cj!427::CATA mutant, indicating that a deletion was present (Figure 3A). 

Following this, primers annealing to cj1426c and cjl425c were used and it was observed 

that the cjl427::CATA  mutant did not yield a band of the expected size, indicating that 

one of these two genes was deleted (Figure 3B). Further PCR using primers that 

annealed to cjl426c and cjl427c as well as cjl427c and cj!425c also failed to generate 

bands of the expected size, confirming that both cjl426c and cjl425c are deleted in the 

cjl427::CATA  mutant (Figure 3C). A final PCR using primers annealing to cjl421c and 

cjl418c also failed to generate a band of the expected size for the cjl427::CATA mutant, 

indicating that the genes from cjl426c to cjl421c are deleted (Figure 3D). In all 

reactions, a kpsM  gene control was also conducted in parallel to rule out problems with
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the chromosomal DNA preparation (i.e. conditions that may lead to inhibitions in the 

PCR reaction).

To determine the precise location of this deletion, and also to map the junction at 

which the C. jejuni genome was disrupted, PCR samples of the cjl427\:CATA  mutant 

were sequenced (Robarts Research Institute, London, Ontario). It was found that the area 

between cjl421c and cjl427c was deleted; specifically, the first 998 bp of the cjl421c gene 

were deleted, leaving only the last 840 bp. The sequence then proceeds directly into the 

cj1427c gene. This deletion of approximately 6.1 Kb agrees with the results of 

conventional PCR.

The deletion of these genes will have several profound effects on C. jejuni. Firstly, 

cj1426c is a putative methyltransferase involved in the methylation of carbon six on the 

heptose; its deletion would result in the lack of this modification. However, more 

importantly is the fact that cj1425c -  cj1423c are involved in the synthesis of the heptose 

precursor (GDP-g/ycero-miwno-heptose). The deletion of these genes means that the 

mutant will lack a heptose of any kind, and thus, the deletion of cj1426c is redundant, as 

there is no heptose for the methyltransferase on which to act. Past the genes involved in 

the synthesis of the heptose precursor are genes cjl422c and cjl421c. Deletions in these 

genes will have additional effects on the capsule. Based on results found by McNally et 

al (114), cj1422c and cj 1421c are responsible for transferring the phosphoramidate group 

to C-4 of D-g/ycero-a-L-g/wco-heptopyranose and C-3 of the p-D-Gal/Nac residue, 

respectively. In C. jejuni strain ATCC 700819, the phosphoramidate group was found 

only to be attached to the p-D-Gal/Nac residue and not the heptose. Since the gene 

responsible for the transfer of the phosphoramidate moiety is non-functional, not only is
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this mutant heptoseless, but it also lacks the capsular attached phosphoramidate. The 

downstream phosphoramidate synthesis genes (cjl415c - cjl4l8c) are not disrupted, and 

synthesis of phosphoramidate still occurs. The final result of these deletions is a mutant 

with a straight-chain capsule; one that is free of both heptose and phosphoramidate side- 

branches. While this mutant was not the one that was initially desired, it is still of use in 

our laboratory as it can be used to study if the absence of side-branches in the capsular 

structure result in changes in C. jejuni virulence. This mutant was thus assigned the name 

cjI427::CATA, with the A to indicate that a large portion of the genes in the capsular 

cluster had been deleted.
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Figure 3. Characterization of the cjl427::C A T A  mutant.

In all panels, a schematic shows the region of the C. jejuni genome that was amplified; small 

arrows above and below the genome represent the primers that were used. The box within the 

cj1427c gene represents the chloramphenicol resistance cassette that was inserted. An inset 

table shows the sizes of the expected PCR products for both the wild type and the 

cjl427::CATA mutant strain. Samples were loaded in multiple replicates with each 

representing a dilution of template DNA used for PCR. The kpsM gene was amplified as a 

positive control for the chromosomal DNA preparation. The expected size of this band is 835 

bp in both wild type and the cj]427::CATA mutant. A) A deletion is present in the 

cj!427::CATA mutant. A significant size difference is observed between the cj1427::CAT A 

strain and the wild type strain in the capsular cluster of genes between cj1427c and cj 1418c. 

Parts of the C. jejuni genome are not shown, and are represented by a double slash (//). B) 

One of cjl425c or cjl426c is not present in the cjl427::CAYA mutant. No fragment of the 

expected size is observed for the cjl427\:C AT A mutant. However, a fragment of the 

expected size is observed in the wild type strain. C) The genes cjl426c and cjl425c are not 

present in the cjl427::C AT A mutant. No fragments of the expected sizes are observed in 

the cjl427::CATA mutant, while bands of the expected size are observed in the wild type 

strain indicating that cjl426c and cjl425c are deleted in the cj!427::CATA mutant. D) The 

gene cjl421c is not present in the cjl427::C AT A mutant. A fragment of the expected size 

was not observed for the cjl427:\CATA mutant, while the same band was observed in the 

wild type strain, indicating that a large fragment of the C. jejuni genome, up to and including 

cj 1421c, is not present.
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To complete our panel of C. jejuni mutants exclusively deficient in the heptose 

modification pathway, a new cjl427::CAT mutant needed to be constructed. The 

cjl427::CAT construct was previously made in our laboratory and was already on a pET 

plasmid (100). To mobilize this plasmid into wild type C. jejuni, barriers had to be 

overcome. Due to the large number of restriction endonucleases within C. jejuni, it is 

often quite difficult to transform foreign DNA unless the proper restriction modification 

pattern (i.e. methylation pattern of DNA) is present (19, 36, 169). Not only is this 

methylation pattern species specific, but it is also strain specific (169). A method outlined 

by Donahue et al (36) was adapted for use in C. jejuni to methylate the plasmid 

containing the disrupted cj1427c gene so that the restriction modification signature 

unique to C. jejuni ATCC 700819 would be present. Following this, transformation was 

easily achievable using both natural transformation, in which the plasmid was simply 

mixed with bacteria, or electroporation.

To verify the correct insertion of the disruption construct in potential 

transformants, colony PCR was conducted. Using primers specific for cj1427c, a shift in 

the size of the gene fragment was observed, indicating that the wild type cj1427c gene 

had been replaced with the chloramphenicol disrupted gene via homologous 

recombination (Figure 4A). Further confirmatory PCR was done to verify the 

recombination. Amplifying the region between the cjl427c and cjl426c genes (primers 

1427 RT Top, annealing upstream of the chloramphenicol resistance cassette and 1426 

RT Btm; see appendix for primer sequences), a shift compared to wild type was observed, 

corresponding to the presence of the chloramphenicol resistance cassette (Figure 4B).
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3.1.3 Creation and verification of a new C. je ju n i c j l4 2 7::CAT mutant



Similarly, amplifying the area between cjl427c and cjl425c (1427 RT Top and 1425 RT 

Btm, respectively) yielded a shift in size corresponding to the presence o f the 

chloramphenicol resistance cassette in the potential transformants. Finally, when the 

region between cj1426c and cj1425c (1426 RT Top and 1425 RT Btm, respectively) was 

amplified, no difference was observed for the fragment when comparing the potential 

cjl427::CAT transformant to wild type, as the amplified region does not contain the 

chloramphenicol resistance cassette.

In order to ensure that a double homologous recombination event occurred while 

constructing the new cjl427::CAT mutant, a fragment from cjl428c to cjl426c (primers 

1428 RT Top and 1426 RT Btm, respectively) was amplified (Figure 4C). An increase in 

size of the amplified fragment from the cjl427:: CAT mutant corresponds to the insertion 

of the chloramphenicol resistance cassette.

As shown previously, the cjl427::CATA mutant possesses a large deletion, up to 

and including cjl421c. To verify that the same error did not occur in the new 

cjl427\:CAT transformants, a fragment from cj1425c to cjl418c (primers 1425 RT Top 

and Cj 1418P1, respectively) was amplified. No difference was observed between wild 

type and cj1427wC AT, indicating that no gene deletion event occurred in the 

cjl427::CAT mutant (Figure 4D). DNA sequencing was also conducted to verify the 

correct construction of the new cjl427::CAT mutant. Sequencing at the junction where a 

large deletion of the C. jejuni genome occurred in the cjl427::C AT A mutant revealed that 

there was no such deletion in the newly constructed cjl427v.CAT mutant.
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In all panels, a schematic shows the region of the C. jejuni genome that was amplified; small arrows above 

and below the genome represent the primers that were used. The box within the cj1427c gene represents 

the chloramphenicol resistance cassette that was inserted. An inset table shows the sizes of the expected 

PCR products for both the wild type and the cjl427::CAT mutant strain. In panels B, C and D, a 

representative colony of the cjl427::CAT transformants is shown. Similar results were observed for other 

potential transformants that were screened via PCR. A) Colony PCR screen of the potential 

cjl427::CAT mutants. Colony PCR of the clones reveals that they all possess a larger cj1427c gene, 

corresponding to the insertion of the chloramphenicol resistance cassette. Numbers at the top indicate the 

various transformants screened. P = pET1427 CAT::Coli plasmid was run to ensure no potential 

degradation of the plasmid occurred. The three bands represent the supercoiled, coiled and linear forms of 

the plasmid. B) The cjl427::CAT mutant possesses the disrupted cjl427c gene and does not have any 

further deletions. PCR of the regions between cj1427c and cj1426c and cj1425c and cj1427c show a size 

increase in the cjl427v.CAT mutant, corresponding to the expected size increase due to the insertion of a 

chloramphenicol resistance cassette. The region between cj1425c and cj1426c does not show a size 

difference for the cjl427v.CAl mutant compared to wild type, as expected. C) The region upstream of 

cjl427c is not deleted in the cjl427::CAT mutant PCR of the region between cj1428c and cj1426c 

shows a size increase in the cjl427::CAT mutant corresponding to the expected size increase due to the 

insertion of a chloramphenicol resistance cassette. Black triangles indicate the relative amounts of DNA 

template used for PCR reactions D) The region between cj1425c and cj 1418c is not deleted in the 

cjl427:iCAT mutant PCR of the region between cj1425c and cj 1418c shows no difference in size 

compared to wild type. This indicates that no gene deletion is present in the new cjl427::CAT mutant. 

Parts of the C. jejuni genome are not shown, and are represented by a double slash (//). Black triangles 

indicate the relative amounts of DNA template used for PCR reactions.

Figure 4. Characterization of the new cjl427::CAT mutant via PCR.
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3.1.4 Determination of gene transcription in the wild type and mutant strains 

via reverse transcription and quantification via real-time PCR

Real-time PGR was used to investigate the expression levels of the genes involved 

in capsule synthesis and modification. Previous work has shown that the C. jejuni 

capsular cluster possesses significant sequence similarity to CPS biosynthesis genes for 

group II and group III CPS of E. coli, whereby the capsular region is flanked by 

conserved genes encoding proteins involved in the transport of the CPS (84,173). It is 

thought that a single promoter controls the genes within the capsular cluster, and as a 

result, expression of these genes would be at similar levels, or perhaps with decreasing 

levels proportional to the distance from the capsular promoter (175). In addition, RT-PCR 

was used to test whether the inactivation of the heptose modification pathway via the 

insertion of an antibiotic resistance cassette would have any feedback regulatory effects 

on the production or export of other CPS components.

To reach meaningful comparisons between gene expression levels, each gene 

must first be normalized to an internal housekeeping gene. For intrastrain comparisons, 

differences in gene expression levels were considered significant if  they were greater than 

5 times or less than 1/5 the level, respectively, when compared to the housekeeping gene 

(cj1537c). For interstrain comparisons, differences in gene expression levels were 

considered significant if  they were greater than 5 times or less than 1/5 the level found in 

the wild type strain, respectively.

Throughout the calculation of differences in gene expression, primer efficiencies 

must also be taken into consideration. Primer efficiency is defined as the ability of a 

primer pair to amplify a given template under specific conditions. Primer pairs may differ
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in their ability to amplify their respective products. As a consequence, if  primer 

efficiency was not taken into account, then apparent alterations in gene expression could 

have been due to differences in cDNA amplification and not to differences in the cDNA 

levels themselves. When calculating the relative gene expression for each gene, the 

primer efficiencies for each primer set were taken into account using the Pfaffl method. 

This method determines the expression ratio between two genes (i.e. gene of interest and 

the reference (housekeeping) gene) in which the efficiencies of the two primer pairs are
i
different.

Several large differences were observed when comparing the expression o f each 

gene relative to the housekeeping gene within each strain (Figure 5A). Low levels of 

transcripts were detected for kpsM and the gene immediately downstream, cj1447c. 

Throughout our studies, the expression levels o f kpsM were extremely low, making it 

difficult to quantitate. The downstream gene cjl445c had a level of transcription 

comparable to other genes within the capsular cluster. Similarly, cj1430c and cj1429c had 

very low levels of detected transcript, while cj1428c and downstream genes showed 

levels of transcription comparable to the other genes within the capsular cluster. This 

pattern holds true for all the strains for which RT-PCR data were gathered.

Another objective o f the RT-PCR study was to ensure that the genes that were 

downstream of the inserted antibiotic resistance cassettes were non-polar. To do this, the 

data from Figure 5A (levels of gene expression relative to an internal housekeeping 

gene) in each strain were taken as a ratio over the respective genes in the wild type strain 

(Figure 5B, interstrain comparison).

j



The genes that were directly downstream of the chloramphenicol resistance 

cassette in cj!427\:CAT and cj!428::CAT showed similar levels of transcription 

compared to wild type, indicating that the insertion of the antibiotic resistance cassette 

was non-polar (Figure 5B). In the cj!430::CAT mutant, cj1429c is directly downstream 

of the chloramphenicol resistance cassette. This gene showed significant upregulation, 

but this upregulation is not due to polarity effects of the chloramphenicol resistance 

cassette, as previously demonstrated in the cjl427v.CAT and cjl428::CAT strains. More 

likely, the upregulation in cj1429c is due to a feedback regulatory effect of inactivating 

cjl430c. This upregulation in cjl429c was also observed in the cjl428\\CAT mutant, 

indicating that the loss of either cj1430c or cjl428c likely generates feedback where, as a 

result, cj1429c expression is significantly upregulated. This same mechanism may also 

explain why in cjl428::CAT and cjl430::CAT, expression of the cjl426c gene was 

slightly upregulated. In KpsM, similar to the other mutants in our collection, the gene 

directly downstream of the kanamycin resistance cassette had levels of transcription 

comparable to the wild type, also indicating that the insertion of this cassette was non

polar.
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Figure 5. Real-time PCR data in wild type and mutant strains of C jejuni for genes 

within the capsular cluster.

Due to the naming nomenclature o f the genes in the capsular cluster, a cj!446c gene is 

not present. Large Xs in cjl427::CATA indicate deletions in the particular genes. 

Additional genes that are also deleted as previously elucidated are not shown. Diagonal 

lines (//) indicate genes between cj1430c and cj1444c, exclusive, were not analyzed. 

Bolded arrows indicate potential cryptic promoter sites. G = Chloramphenicol resistance 

cassette. K = Kanamycin resistance cassette. N/A = not applicable A) Intrastrain RT- 

PGR data for wild type and mutant strains. Expression levels for the genes tested are 

shown, relative to the internal housekeeping gene {cj1537c). Due to very low levels of 

transcript for the kpsM gene, absolute numbers cannot be presented. As a result, ND 

indicates none detected. B) Interstrain RT-PCR data for mutant strains. The relative 

gene expression levels for the genes tested are shown, taken as a ratio to the respective 

genes in the wild type strain. As the absolute transcript abundance for kpsM was not 

determined in A), absolute numbers cannot be presented. Instead, a ++ indicates a much 

higher level of expression relative to wild type, a -  indicates a lower level of expression 

relative to wild type, while a 1.0 represents a level o f transcription similar to wild type
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3.2 THE EXAMINATION OF CPS CHARACTERISTICS

3.2.1 Involvement of cjl427c, cj!428c, cj!430c, and kpsM in capsular synthesis

To determine the role of the genes of interest in CPS biosynthesis, CPS of the

wild type, cjl427::CAT, cjl428::C AT, cj1430::C AT, KpsM and cj142 7::C AT A mutants 

were extracted using an adapted hot water/phenol method (171). This method offers 

significant advantages over a crude SDS solubilization (68) as near complete removal of 

proteins and most LOS from aqueous solutions can be achieved. Several rounds of 

extraction are conducted to obtain the maximal yield o f CPS material. In addition, an 

ultracentrifugation step is important in pelleting the majority of the LOS contamination.

McNally et al have shown that a disruption of the cjl428c gene led to a loss of the 

modified heptose side-branch, leaving a mutant whose CPS was unbranched (153). It was 

o f interest to determine whether inactivation o f other heptose modification genes, namely 

cj1427c and cj143 Oc, also led to the lack o f a modified heptose side-branch.

Samples were analyzed by SDS-PAGE on 7 cm gels and subsequent silver 

staining (Figure 6A). High molecular weight species were observed in the wild type 

lanes, indicative o f CPS. Similarly, high molecular weight species were observed for the 

cj!427::CAT, cjl428::CAT and cjl427wCATA mutants. This indicates that despite the 

loss of a heptose modification gene, these mutants are still able to produce CPS. The 

cjl427::CATA mutant is still able to produce a CPS, despite the fact that it has a large 

portion o f CPS related genes deleted. The bands observed in these mutants ran slower 

than those of the wild type, indicating that the CPS composition or structure is altered by 

the gene disruption. Interestingly, the cjl430::CAT mutant showed a strikingly different
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CPS profile than the other mutants, with less CPS produced overall. In addition, the 

banding pattern of the CPS is significantly different, suggesting that the structure of the 

CPS is altered. The KpsM  mutant, in contrast to expectations, showed some degree of 

staining near the top of the gel; this was thought to be either background staining or high 

molecular weight material corresponding to the presence of CPS.

To gain more resolution into the CPS of the wild type and mutants and to resolve 

the potential high molecular weight material observed in the KpsM  strain, a larger, 13 cm 

SDS-PAGE gel was used for analysis (Figure 6B). This larger format gel offers excellent 

resolution o f the capsule and is desirable for enhancing the banding pattern characteristic 

of the repeating sugar units that comprise the CPS. With this increase in, resolution, the 

banding pattern of the CPS for the wild type, c jl427:‘.CAT, c jl428::CAT and 

cjl427 ::CATA mutants became evident. It is clear that CPS synthesis is tightly regulated 

in the wild type and the mutant strains, as silver staining shows very regular spacing of 

the bands. Interestingly, the cjl427::CAT and cj!428::CAT mutants displayed a wider 

variety of CPS species; CPS molecules of higher and lower molecular weight molecules 

are present compared to wild type CPS. In contrast, thé cjl427::C AT A mutant showed 

fewer bands than the wild type, indicating that regulation of capsular chain elongation 

may be disrupted, resulting in fewer species of CPS with multiple sugar units. The 

cjl430::C AT  mutant again shows a significantly different CPS staining pattern than the 

other mutants. With the increase in resolution using a 13 cm gel, the KpsM  mutant shows 

the presence of high molecular weight material, apparent as a smeary pattern, suggesting 

the presence o f CPS.
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Figure 6. Silver staining of wild type and various C. jejuni mutants

Bracketed areas indicate the high molecular weight species thought to be CPS, and the 

lower molecular weight species thought to be LOS. The relative volumes of each sample 

loaded are indicated by the triangles. Three dilutions were used so that comparisons 

between each strain could be made. MW = molecular weight marker. The sizes o f the 

proteins standard in kilodaltons are indicated to the left of the gel. A) Silver stain of the 

CPS in wild type and mutant strains on 7 cm SDS-PAGE gels. Due to the small size 

of the gel, CPS bands appear as a smear of high molecular weight molecules. Noticeable 

differences were observed for the mutants’ CPS, especially for the cjl430 \\CAT mutant. 

B) Silver stain of the CPS in wild type and mutant strains on 13 cm SDS-PAGE gel. 

To gain more resolution, a 13 cm SDS-PAGE gel was used. This gel offers more 

resolution than the 7 cm gels, and the banding nature of CPS is well resolved in all strains. 

Similar observations as in A) were made regarding the capsular staining patterns.
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3.2.2 Purification of C. jejuni CPS from wild type and mutants

The structure of C. jejuni ATCC 700819 LOS has been elucidated (158), and it is 

known that it contains a heptose. Purified CPS samples with no LOS are desirable, as the 

heptose that may be liberated from LOS could contaminate downstream nuclear magnetic 

resonance (NMR) analysis. As the purpose of our research is to investigate modified 

heptoses that are part of the CPS, the presence of heptoses from other sources could 

confound NMR analysis, resulting in erroneous conclusions. To remove as much LOS as 

possible, the aqueous phase was ultracentrifuged to pellet LOS, while the CPS of interest 

remained in the supernatant. Any contaminating proteins left from the hot water/phenol 

purification were removed with Proteinase K. The amount of Proteinase K was optimized 

to ensure that a minimal amount remained after this treatment. The absence o f a 30 kDa 

band, corresponding to Proteinase K, was verified via silver staining (Figure 6A, B). The 

final result o f this adapted hot water/phenol method are samples that are highly enriched 

in CPS, free o f proteins, and relatively free of LOS.

However, despite the hot water/phenol purification method, LOS was still found 

in the samples (Figure 6A, B). Size exclusion chromatography was used in an attempt to 

remove the LOS, using a gel matrix with a fractionation range of 1000 -  6000 Da. 

Smaller molecules such as LOS would be retained within the matrix, while larger CPS 

molecules would not, and should be found in the void volume. Fractions were collected, 

and then run on SDS-PAGE gels and silver stained; however, it was found that the gel 

matrix failed to separate the LOS from the CPS as fractions containing the CPS of 

interest also showed traces of LOS (Figure 7A).
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In addition to size exclusion chromatography, another method of removing LOS 

from mixed LOS and CPS samples was attempted using the method outlined by Aspinall 

et al (10). In this method, LOS molecules were chemically cleaved at the linkage between 

the lipid A anchor and the Kdo sugar using acetic acid. It was thought that this procedure 

would reduce the size of the LOS molecules due to the loss of the lipid A anchor, 

allowing the remaining fragment to be retained by the column matrix. However, it was 

observed that while acid treatment reduced the amount of LOS present in the samples 

(compare Figure 7B, lane 1 and lane 2, before and after acetic acid treatment, 

respectively), it did not separate the LOS away from CPS (see fractions 51 and 54).

An ammonium acetate treatment was also conducted to compare, the effect of a 

milder acid treatment on LOS (Figure 7C). This treatment potentially had an effect on 

separating LOS from CPS based on the fact that early fractions showed high molecular 

weight species, indicative of CPS, while later fractions showed low molecular weight 

species, indicative of LOS (Figure 7C). However, a tricine gradient gel showed that there 

was no LOS degradation after this treatment (Figure 7D, compare lanes 1 and 4, before 

and after ammonium acetate treatment, respectively). '

Gu andTsai (53) reported that lipopolysaccharide in Neisserial species were able 

to be purified away from outer membrane vesicles using sodium deoxycholate. As a
■ o

similar effect is desired for C. jejuni, where LOS separation from CPS is desired, the 

methodology was adapted and used. While this method failed at achieving the initial goal 

o f separating LOS from CPS, there was an unexpected effect of sharpening the resolution 

o f the CPS bands (Figure 7E). The reason for this enhancement o f the banding pattern of 

the CPS is unknown at this time.
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Figure 7. Various methods of purification were attempted to purify LOS away from 

CPS.

In panels B through E, - and + symbols represent samples that were mock treated or 

chemically treated, respectively. In all panels, samples were fractionated using size 

exclusion chromatography, using various gel matrices (panels A -  D, Biorad Biogel P-6: 

fractionation range 1000 -  6000 Da; panel E, Sigma-Aldrich Sephadex G50: fractionation 

range: 500 -  10000 Da). Numbers above each lane represent the fraction number, 

corresponding to the nth milliliter of the flow through. LOS and CPS regions of interest 

are bracketed. A) Silver stain of samples separated by size exclusion chromatography. 

Co-elution of both CPS and LOS occurred, resulting in a failure to separate the LOS from 

CPS. B) Acetic acid treatment of CPS samples degrades LOS. The acetic acid 

treatment degraded LOS, to some degree, without degrading CPS. However, this 

treatment failed to separate the LOS and CPS molecules. Due to the large concentration 

of LOS in the.non-treated samples, the LOS stains negatively. C) A mild ammonium 

acetate treatment appears to separate CPS from LOS. Fractions 19 -  28 contained 

CPS while fractions 46 -  52 contained LOS, indicating that the ammonium acetate 

treatment may have worked to separate the two molecules. D) Tricine gradient gel 

analysis of ammonium acetate treated samples. Analysis by tricine gradient gel 

analysis shows that ammonium acetate treatment in D) had no effect on LOS as initially 

hypothesized, as there was no difference in mock treated and ammonium acetate treated 

samples. A <j) indicates an empty lane. E) Sodium deoxycholate fails to separate LOS 

from CPS. Sodium deoxycholate did not allow for the separation o f LOS from CPS, but 

had the unexpected effect of sharpening the resolution o f CPS banding.
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3.2.3 CPS elucidation of the wild type and mutant strains

Despite efforts to purify contaminating LOS away from CPS, success was not met, 

and ultracentrifuged purified samples (without any further treatment) were sent for 

compositional characterization. Approximately 10 L o f each strain of C. jejuni were 

grown up in liquid media and subjected to hot water/phenol purification as summarized 

in section 2.19.

Several interesting observations were made from the results (Table 1). First, it 

was observed that the wild type possessed heptose in the CPS, as expected. Similar to the 

findings o f St. Michael (153), disruptions in cj1427c, cj1428c and cj1430c led to a lack of 

a heptose in the capsule. While this precludes us from assigning a precise biochemical 

function to each of the mutated genes, it confirms that the disrupted genes are indeed 

involved in heptose modification.

Second, the wild type strain contains no phosphoramidate molecule. This is 

intriguing, as it is thought that the phosphoramidate moiety is a side-branch of the ATCC 

700819 capsule (113). The c jl427::CATA mutant does not possess a phosphoramidate

side-branch; this is expected, as the genes that are responsible for transferring the 

phosphoramidate molecule to the main capsular backbone (cj1422c and cjl 421c) have 

been deleted, as previously confirmed in section 3.1.2. For the other mutants, either a 

trace, or the positive presence of phosphoramidate was confirmed.

It is also worth noting that while the wild type strain possesses an ethanolamine 

on glucuronic acid, the mutants possessed either ethanolamine or 2-amino-2- 

deoxyglycerol (GroN). It has been previously shown for C. jejuni ATCC 700819 that 

phenotypic variants are present in a population, despite being grown under the same
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substituents on the glucuronic acid moiety.

Sugar analysis data were also obtained via acid hydrolysis; all results were 

normalized to galactosamine (GalN), a break down product of N-acetyl galactosamine 

(GalNAc), which is one o f the three sugars that make up the repeating trio o f sugars in 

the main capsular backbone of C. jejuni ATCC 700819 (114). It was observed that there 

were varying levels o f ribose in each mutant, as well as trace amounts o f galactose.
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Table 1. Summary of NMR results for wild type and mutant C. jejuni strains.

Sugar analysis data was conducted using anion-exchange chromatography after full acid 

hydrolysis. Numbers in the columns under “Sugar analysis data” represent the amounts of 

various sugars present, after normalization to GalN. A plus (+) or minus (-) in the NMR 

spectroscopy data columns represent either the presence or the absence of the specified 

molecule, respectively. GalN = galactosamine. Rib = ribose. Gal = galactose. Hep = 

heptose. Me = methyl. MeOPN = phosphoramidate. GalNAc = N-acetyl galactosamine. 

GlcA = glucuronic acid. EtN = ethanolamine. GroN = 2-amino-2-deoxyglycerol.



Sugar analysis 
data

NMR spectroscopy data

GalN Rib Gal Hep 8,9-Me2 MeOPN on Substituent on
on Hep GalNAc GlcA

WT 1 2.6 0.1 + + - EtN
cj1427v.CAT 1 1.2 trace -  : ■ - ■ . ■ "+. EtN, GroN
cjl428:: CAT 1 3.6 0.15 - trace EtN, GroN
cjl430::CAT 1 1.4 0.18 - + EtN, GroN
cjl427::CATA 1 0.9 trace - -  - EtN, GroN
KpsM 1 2.7 trace Not analyzed
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Figure 8. The growth rate of the cjl427::CAT  mutant is greater than the wild type.

Growth rate experiments were conducted over a period of 24 hours. Density was 

measured in Klett units. Results shown are the mean and standard errors from three 

independent experiments. Between 3 and 8 hours, the c jl427:: CAT mutant was found to 

grow significantly faster than the wild type indicating it had less of an initial lag phase.
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3.3.2 Effect of gene disruption on bile salt resistance

C. jejuni has been shown to be resistant to bile salts in the intestine (105, 106). In 

addition, CPS has also been shown to be involved in resistance to bile salts in other Gram 

negative bacteria (14,129). Our laboratory previously found that at low concentrations of 

bile salts, all mutants behaved similarly to the wild type in that little effect was observed 

(100). At higher concentrations of bile salts, the cji427::CATA and KpsM mutants were 

no more susceptible than wild type. However, the cjl428\\CAT and cjl430::CAT mutant 

were more resistant to bile salts than the wild type. As it has been determined that the

cjl427:\CAT, cjl428\\CAT and cjl430::CAT mutants lack a heptose in the CPS, it was
\

thought that the previously uncharacterized cjl427::CAT mutant would behave similarly 

to the other mutants in terms of bile salt sensitivity. The cjl427:\CAT mutant was 

exposed to increasing concentrations o f a mixture o f cholate and deoxycholate salts, two 

components o f bile. At concentrations up to 0.25 g/L, the bile salts had little effect on the 

wild type and the cjl427::CAT mutant. However, at higher concentrations, both the wild 

type and the cj!427::CAT mutant showed very similar susceptibility to bile salts (Figure 

9), contrasting the findings that were previously found for the cjl428::CAT and 

cj!430::CAT mutants.
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Figure 9. Susceptibility of wild type and the cjl427::CAT mutant to bile salts.

Both the wild type and the cjl427::CAT mutant were exposed to varying concentrations 

of bile salts for 15 minutes at 37°C before being serially diluted and plated for CFU 

counts. Results shown are the mean and standard errors from 3 independent experiments. 

Both strains showed extremely similar patterns of susceptibility to bile salts. At low

concentrations of bile salts, both strains show little susceptibility. At higher

concentrations, both strains are susceptible.
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3.3.3 Effect of gene disruption on SDS resistance

To determine whether C. jejuni susceptibility to bile salts was detergent specific, 

sodium dodecyl sulfate (SDS) susceptibility was also investigated. No significant 

difference was found between the wild type and the cjl427:\CKY mutant in terms of 

susceptibility to SDS (Figure 10). This result is similar to what has been previously 

observed by our laboratory for the other compositional mutants (100).

p
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Figure 10. Susceptibility of wild type and c/7427::CAT mutant to SDS.

The wild type and c jl427::CAT mutant were exposed to varying concentrations o f SDS 

for 15 hours at 37°C under microaerophilic conditions with shaking to determine their 

susceptibility. Results shown are the mean and standard errors from two independent 

experiments. No significant difference was observed between the wild type and the 

c jl427::CAT mutant. With increasing SDS concentrations, more bacteria were killed.
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3.3.4 Effect of gene disruption on serum resistance

It has been previously shown that CPS plays a role in serum resistance in other 

Gram negative bacteria (13, 32, 62, 139, 144). In addition, our laboratory has 

demonstrated that a capsuleless KpsM mutant is killed extremely effectively by serum, 

even at low percentages (5%) (100). This shows that the capsule o f strain ATCC 700819 

is essential in conveying serum resistance. We have also shown that the cjl427::CATA 

mutant behaved very similarly to the KpsM mutant, in that it was killed very quickly 

indicating that the phosphoramidate and the heptose side-branches may have some role in 

conferring serum resistance. In contrast, the cjl428::CAT and cjl430::C AT mutants 

showed slightly more resistance than the KpsM and cj!427::CATA mutants, but were 

overall, more susceptible to serum than wild type. To determine the susceptibility of the 

cjl427::CAT mutant to serum, it was exposed to varying concentrations. At 20% serum, 

the wild type strain exhibited resistance and was only partially killed when exposed 

(Figure 11 A), agreeing with our previous findings. This value represents the point where 

more than 50% of the bacteria have been killed (LD50). In contrast, the cjl42 7:: CAT 

mutant, despite having the same capsular composition as the cjl428::CAT and 

cjl430::CAT mutants, showed extremely high susceptibility to serum, even at 

concentrations as low as 10%. To determine whether changes in serum resistance were 

due to differences in the rate of killing, the wild type and cjl427::CAT mutant were 

exposed to 20% serum over a period o f 90 minutes. At this percentage, a significant 

difference in terms o f viability was observed for the wild type and the cjl427::C AT 

mutant even after only 15 minutes (Figure 11B). By the end of the timecourse



experiment, the c jl427:\CAT mutant showed almost complete death, corresponding to 

the results found in Figure 11 A.
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Figure 11. Assessing the susceptibility of wild type C. jejuni and the cjl427::CAT  

mutant to serum.

A) The cjl427::CAT  mutant shows extremely high susceptibility to serum. After 

incubation with varying serum concentrations for 1.5 hours, the cjl427\:CAT mutant 

showed extreme susceptibility to serum; even at low serum percentages (10%), the 

mutant showed significant loss of viability. At serum concentrations o f 20% and above, 

no growth was observed based on CFU counts. B) The cjl427::CAT mutant dies faster 

than wild type. A timecourse experiment using 20% serum shows that the cjl427::CAT 

mutant shows much faster killing kinetics than the wild type strain; more than half the 

bacteria are killed within the first 15 minutes. Results shown are the mean and standard
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3.3.5 Effect of gene disruption on autoagglutination

Previous work in our laboratory (100) showed that a capsuleless KpsM  mutant 

readily agglutinated over time, whereas the wild type bacteria did not. This was thought 

to be due to the lack o f the capsule, exposing underlying adhesins. In contrast, the 

cjl428:\CAT, cjl430::CAT, and cj!427::CATA mutant did not autoagglutinate, 

indicating that a capsule likely is responsible for the lack o f autoagglutination. As the 

cjl427 ::CAT capsule is structurally similar to that of the other mutants, it was not 

expected there would be any differences in agglutination compared to the wild type. As 

expected, no significant difference was observed between the wild type and the 

cjJ427::CAT over a three hour period (Figure 12).
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Figure 12. Autoagglutination assay comparing wild type and cjl427::CAT.

Both the wild type and the cjl427::CAT mutant were inoculated into sterile PBS in a 

falcon tube and allowed to sit. Over the course o f three hours, the top portion of the PBS 

was carefully removed and the optical density measured to determine whether 

autoagglutination was occurring. An unchanged optical density would indicate a lack of 

autoagglutination. Results shown are the mean and standard errors from three 

independent experiments. No significant differences were observed for all timepoints 

between the wild type and the cjl427::CAT mutant. The slight decrease in optical density 

over the course of three hours is due to the natural sedimentation of the bacteria.
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3.3.6 Effect of gene disruption on motility

(52, 120, 176). As flagella and CPS are both anchored to the outer membrane of the 

bacteria, we sought to determine whether changes in the CPS due to disruption of the 

putative heptose biosynthetic genes would affect motility. Motility assays were 

conducted for the wild type and c jl427::CAT mutant. It was found that the c jl427v.CAX 

mutant was less motile than the wild type strain when compared visually (Figure 13).

Previous work in our laboratory has also shown qualitatively that the cjl428::CAT, 

cjl430::CAT, KpsM, and cjl427::CATA mutants had a decrease in motility, with the 

KpsM  mutant being completely non-motile. These data were verified quantitatively in 

this thesis; the decrease in motility for all mutants was significant compared to the wild 

type strain, with p  values less than 0.05 (Table 2).
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Figure 13. Motility assay for wild type and the cjl427:iCAT mutant.

The cjl427::CAT mutant shows significantly less motility than wild type. Both wild type 

and c/7427::CAT were stabbed onto a motility plate consisting o f 0.3% agar. Plates were 

incubated for 48 hours before halos were measured. Shown in this figure is a 

representative motility plate.
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Table 2. A quantitative comparison of motility for wild type and all mutant strains.

The motility o f the wild type and mutant strains were measured and compared 

quantitatively after stabbing into 0.3% agar and incubation for 48 hours under 

microaerophilic conditions. The values shown are for the diameters o f the motility halos, 

measured in centimetres. The mean and standard errors (SE) o f three independent 

experiments are shown for each strain. In addition, the p  value, as determined by one-way 

ANOVA, is shown. Compared to the wild type, all mutant strains were significantly 

reduced in motility.



C. jejuni strain Diameter of halo (cm) ± SE p value
WT 3.09 ±0.09 N/A
cjl427v. CAT 2.35 ±0.08 <0.01
cj!428::C AT 2.77 ±0.06 <0.01
cjl430:: CAT 2.73 ±0.06 <0.01
cjl427::CATA 2.38 ±0.10 <0.01
KpsM 0.00 ±0.00 <0.01



3.4 THE ROLE OF C. JEJUNI CPS ON THE INTERACTION WITH 

VARIOUS CELL TYPES

3.4.1 Effect of gene disruption on adhesion and invasion of intestinal Caco-2 

cells

It is known that the adhesion and invasion of intestinal cells is important to the 

virulence of C. jejuni (17). It has been shown that the CPS of C. jejuni strain 81-176 is 

involved in this process (13). In addition, our laboratory has shown that in ATCC 700819, 

a capsule is important in modulating the adhesion and invasion of intestinal epithelial 

cells (100). Our results showed that the capsuleless KpsM mutant had a very large 

increase in adhesion and invasion; this was thought to be due to the exposure of 

underlying surface adhesins, allowing the bacteria to invade more readily. Interestingly, 

the cj!427::CATA mutant was also found to adhere to and invade Caco-2 cells slightly 

more than the wild type, but not as much as the KpsM mutant, indicating that the lack of 

the heptose and phosphoramidate molecules may facilitate adherence and subsequent 

invasion (i.e. due to a lack of steric hindrance of underlying adhesins). In contrast, the 

cjl428:\CAT and cj1420\\C AT mutants adhered to Caco-2 cells to the same level as the 

wild type strain, but failed to invade.

Not surprisingly, the cjl427::CAT mutant behaved similarly to the wild type 

strain in terms of adhesion to epithelial cells (Figure 14A). However, contrasting the 

cj!428::CAT and cjl430::CAT mutants, there was no significant difference between the 

cjl427::CAT mutant and wild type in terms of invasion of Caco-2 cells, as invasion, 

albeit at low levels, was observed (Figure 14B). The very low levels of adhesion to and
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invasion of Caco-2 cells is consistent with what has been previously observed for the 

wild type strain in the literature (39, 47, 157), as well as in our laboratory (100). Despite 

these low levels of adhesion and invasion to epithelial cells, C. jejuni is still able to cause

disease.



Figure 14. Adhesion and invasion of wild type and cjl427::CArT C. jejuni to Caco-2 

intestinal epithelial cells.

A schematic at the top of the panels indicate the experimental layout. Gm = gentamicin. 

Results shown are the mean and standard deviation from two independent experiments. 

A) Adhesion of wild type and cjl427::CAT to Caco-2 cells. The cjl427::CAT mutant 

behaved, very similarly to the wild type strain. Low levels of adhesion were observed for 

both strains. No statistical significance was found. B) Invasion of Caco-2 cells by wild 

type and the cjl427::CAT mutant. Both the wild type and the cjl427\\CAT were able 

to invade Caco-2 cell, but at very low levels. No statistical significance was found.
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Recently, it has been shown that C. jejuni is able to survive within murine 

macrophages (149). The precise mechanism for this ability is currently unknown, and as 

such we wanted to investigate the effect that changes in the C. jejuni CPS would have on 

survival within murine RAW 264.7 macrophages. Previous work in our laboratory was 

conducted to investigate this phenomenon (100); however, due to the large variability 

observed, it was necessary to carefully dissect C. jejuni-macrophage interactions.

To do this, macrophages were infected with either wild type or the mutant strains 

of C. jejuni for two hours followed by a one hour gentamicin treatment to kill any 

extracellular bacteria. The macrophages and bacteria were then incubated for various 

timepoints before being lysed for CFU counts. As expected, the survival rate of the wild 

type and mutant strains decreased with prolonged duration within the macrophages 

(Figure 15A). The cjl427::CAT and cjJ428::CAT mutants appeared to have a lower 

number of recovered bacteria, even at the initial timepoint of the survival assay. To 

investigate the killing kinetics of the bacteria by macrophages, it was necessary to 

normalize the data in Figure 15A so that at the initial timepoint, the number of bacteria 

that were alive within the macrophages (and thus able to contribute towards colony 

forming units) were deemed to be 100 percent (Figure 15B). Interestingly, over the 

timeline, the cjl427::CAT and cj!428::CAT mutants showed slower killing by 

macrophages; however, this difference was deemed non-significant compared to the wild 

type when a one-way ANOVA test was conducted. Results for the other mutants showed 

similar killing kinetics to the wild type.

3.4.2 Effect of gene disruption on survival within macrophages



Figure 15. Percent survival of the wild type strain and mutant strains within 

macrophages.

The survival rate of wild type and the mutant strains was investigated over a time period 

of three hours. Percent survival was calculated as the number of bacteria recovered from 

macrophages divided by the number of bacteria recovered under the same growth 

conditions, in the absence of macrophages. As the length of time post infection increases, 

the number of bacteria able to survive decreases. Results shown are the mean and 

standard errors from three independent experiments. The schematic at the top indicates 

the experimental layout, where X represents the number of hours post infection. Gm = 

gentamicin. A) Compared to wild type, the mutant strains have a lower survival rate 

within macrophages. With the exception of the KpsM mutant, the other mutants 

appeared to have a slightly lower rate of survival within macrophages. However, there 

was no statistical difference between the survival rates of the wild type and the mutants 

when a one-way ANOVA test was conducted with a p  value cut off of 0.05. B) Some 

mutants appear to have an increased ability to survive within macrophages 

compared to WT. The data for each strain at timepoint zero in panel A) were normalized 

to 100 percent survival. The cj!427::CAT and cjl428::CAT mutants appeared to be 

killed less slowly than the other mutant strains, when compared to the wild type. 

However, there was no statistical difference between the killing kinetics of the wild type 

and the mutants when a one-way ANOVA was conducted.
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Upon analyzing data from survival within macrophages, subtle differences prior 

to the survival testing were observed at timepoint zero between the wild type and mutant 

strains of C. jejuni. While this discrepancy was found to have a p  value > 0.05, we 

hypothesized phagocytosis or adhesion were responsible for these subtle differences. A 

higher adhesion rate of the wild type bacteria could explain why there was a higher initial 

bacterial load within macrophages. Vice versa, a lower adhesion rate of the mutants 

would explain the lower initial amount of bacteria within macrophages.

For the adhesion assay, both the wild type and mutant C. jejuni were incubated 

with macrophages for 30 minutes at 4°C, a temperature known to inhibit phagocytosis 

(180). This low temperature allows for any bacteria that interact with the macrophages to 

be a result of bacterial adhesion, and not as a result of phagocytosis. Results indicate that 

none of the mutants adhered significantly more or less to macrophages than the wild type

strain (Figure 16). The slightly higher adhesion rate of the KpsM mutant may be
. . .  / .

attributable to the loss of its capsule, exposing underlying adhesins, as previously 

hypothesized by our laboratory (100).

3.4.3 Effect of gene disruption on adhesion to macrophages v



The adhesion rate of wild type and mutant strains of C. jejuni to macrophages was 

investigated. Percent adhesion was calculated as the number of bacteria recovered from 

macrophages divided by the number of bacteria recovered under thè same growth 

conditions, in the absence of macrophages. A schematic at the top of the figure represents 

the experimental layout. Macrophages were exposed to bacteria for 30 minutes at 4°C to 

allow for bacterial-macrophage interactions to occur before being lysed and plated for 

CFU counts. Results shown are the mean and standard errors from three independent 

experiments. No significant differences were found between the wild type and the 

mutants when a one-way ANO VA test was conducted.

Figure 16. Adhesion of the wild type and mutant strains to macrophages.
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A crucial aspect of C. jejuni interactions with macrophages is phagocytosis. To 

study phagocytosis of C. jejuni, macrophages were incubated with wild type and mutant 

C. jejuni for various durations prior to the gentamicin treatment and subsequent lysis and 

enumeration of the bacteria via CFU counts. The increase in uptake of the wild type 

strain over time is intuitive; with a longer infection time, more bacteria are phiagocytosed 

by macrophages (Figure 17). The mutant strains, with the exception of the KpsM mutant, 

showed similar degrees of phagocytosis by the macrophages over the same time period. 

The higher phagocytic rate o f the KpsM mutant is likely due to the fact that this strain 

autoagglutinates readily as previously demonstrated by our laboratory (100). This 

detailed dissection of the various steps involved in the infection pathway allowed us to 

pinpoint the kinetics of C. jejuni interactions with host macrophages.

3.4.4 Effect of gene disruption on phagocytosis by macrophages.



Figure 17. The uptake rate for the wild type but not the mutant strains increases 

with time.

The phagocytosis of wild type and mutant C. jejuni strains into macrophages was 

investigated over a period of four hours. Percent uptake was calculated as the number of 

bacteria recovered from macrophages divided by the number of bacteria recovered under 

the same growth conditions, in the absence of macrophages. The schematic at the top of 

this figure indicates the experimental layout, where X represents the infection time. Gm =

gentamicin. Results shown are the mean and standard errors from at least three
\ • 

independent experiments. An increase in percent internalization for the wild type strain

was observed with longer infection times. The KpsM mutant was found to be

significantly different (p < 0.05) compared to the wild type at the same time point, as per

a one-way ANOVA, and is indicated by the asterisks (*).
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THE GENERATION AND GENETIC CHARACTERIZATION OF

COMPLEMENTED CPS MUTANTS

3.5.1 Complementation of disrupted genes via insertion into the 16S rRNA- 

23S rRNA intergenic space region

To determine whether the observed phenotypes in the cjl427::CAT, cjl428::CAT 

and cjl430::CAT mutants are gene specific, complementation must be carried out. The 

intragenic spacer region between the 16S rRNA and 23 S rRNA genes of C. jejuni was 

chosen to facilitate integration into the genome. Three copies of these genes exist within 

the C. jejuni genome, and complementation into one o f these regions will not affect 

viability (87).

To construct the complementation constructs, gene splicing by overlap" extension 

(gene SOE-ing) was employed. The complementation construct consists o f a por A 

promoter, the gene o f interest to be complemented, followed by an antibiotic resistance 

cassette. The promoter was chosen as it is a highly active promoter for a porin 

protein and will drive expression of the complementation construct. The antibiotic 

resistance cassette will allow selection of C. jejuni mutants that contain the 

complementation construct, once transformants are obtained.

Gene SOE-ing of each construct to complement our mutants (cj!427::CAT, 

cj!428::CAT, cj 143O:\CAY mà KpsM) was done. As previously elucidated, the 

cjl427:\C AT A mutant contains a large area of the genome deleted, and complementation 

for this mutant was not attempted. Gene SOE-ing of each complementation construct was 

successful; this was verified via PCR (Figure 18).
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The complementation constructs were inserted into a pBluescript vector 

containing the 16S and 23 S rRNA regions of C. jejuni, constructed by Xuan Thanh Bui, a 

PhD student in our laboratory. This plasmid was then mobilized into E. coli, and 

transformants selected for and screened. The cjl427\:CAT, cjl428::CAT and 

cjl430::CAT complementation constructs were successfully mobilized into E. coli, and 

sequenced to ensure the constructs did not have any point mutations that could affect the 

subsequent function of the protein. Results showed that the cjl427::CAT and 

cj!428::CAT mutants had single nucleotide polymorphisms (SNPs), while the 

cjl430::CAT mutant did not. The SNPs in the cjl427::CAT mutant were found to be 

deleterious and were fixed via QuikChange site directed mutagenesis. The SNPs in the 

cjl428::QAT mutant resulted in amino acid changes that were determined to not affect 

protein function.

At the time of submission for examination, only the cj!428::CAT 

complementation construct was selectively methylated before mobilization into C. jejuni. 

Screening of the potential cjl428::CAT transformants was carried out using PCR; results 

showed that the complementation construct was within C. jejuni (Figure 19A); however, 

the complementation construct did not recombine into the 16S -  23 S rRNA area of 

interest (Figure 19B). Further PCR screening also revealed that the complementation 

construct did not integrate into either the cjl428c gene area or the porA promoter region 

(Figure 19C and D, respectively). Despite this setback, this complemented mutant was 

used in the phenotypic studies that were conducted to determine whether the previously 

investigated phenotypes were gene specific.



PCR products showing the successful construction of each complementation mutant is 

pictured. Each complementation construct was loaded in duplicate. A DNA ladder with 

the corresponding sizes in kilobase pairs is shown on the left. A schematic shows the 

primers and the area that was amplified via PCR. The inset table shows the expected sizes 

for the complementation constructs.

Figure 18. Construction of the complementation constructs via gene SOE-ing.
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Figure 19. PCR screening of potential cjl428::CAT complement transformants in C. 

jejuni.

In all panels, a schematic shows the area of interest that was amplified via PCR. An inset 

table shows the expected sizes of the fragments. Numbers at the top of each gel indicate 

the various colonies screened. A) The cjl428::CAT complementation construct was 

successfully transformed into C. jejuni. A PCR showing the complementation construct 

was successfully introduced into C. jejuni. KAN = kanamycin. Comp. plas. = 

complementation plasmid B) The cjl428\:CAT complementation construct did not 

integrate into the desired area. PCR using primers between the porA and 23 s rRNA 

areas was carried out. The lack of a band indicates that the complementation construct 

did not integrate into the desired area. KAN = kanamycin. Comp = complementation C) 

The cjl428::CAT complementation construct did not integrate into the cjl428c gene 

area. PCR showed that the complementation construct did not integrate into the cj1428c 

gene within the capsular cluster, as a band corresponding to the chloramphenicol 

disrupted cj1428c gene only was observed in all potential transformants. The box within 

the cjl428c gene represents the chloramphenicol antibiotic resistance cassette. Chr = 

chromosomal. D) The cjl428::CAT complementation construct did not integrate into 

the porA promoter region. PCR shows that the complementation construct did not 

integrate into the porA gene within the C. jejuni genome, as bands of the size 

corresponding to the wild type porA gene size were observed in all potential 

transformants.
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3.5.2 Evidence that the complemented cjl428::CArY mutant produces the 

cjl428c gene product

Surprisingly, the c jl428::CAT complementation construct did not integrate into 

the 16S -  23S rRNA region as desired, and to investigate whether the cjl428c gene 

product was being produced, total cell lysate was run on an SDS-PAGE gel. Compared to 

the wild type, the cjl428::CAT mutant did not have a band of the expected size, while the 

complemented cj!428::C AT mutant had a band of the expected size, indicating that 

Cj 1428c was being produced. The higher level that was observed in the complemented 

c jl428:: CAT mutant is likely due to the highly active porA promoter that is part of the 

complementation construct.



Figure 20. Coomassie staining of total proteins shows that the cjl428c gene product 

is being produced in the complemented cj!428::CAT mutant.

Total proteins of the WT, cj'1428::CAT and complemented cjl428::CAT strains were run 

on an SDS-PAGE gel. The relative amounts loaded are indicated by the black triangles. 

The calculated size of the cj1428c gene product was 39.4 kDa. Bands of the expected size 

were observed in the WT and the complemented cjl428::CAT mutant (boxed), and was 

absent in the cjl428::C AT mutant. The higher levels o f expression o f the cj1428c gene 

product in the complemented cjl428::CAT mutant is likely due to the higher activity of 

the porA promoter.
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Despite the cjl428::CAT complementation construct not recombining into the 

16S -  23 S rRNA region that was desired, studies were carried out to determine whether 

the phenotypes which previously showed significant differences compared to wild type 

could be complemented. Restoration of the phenotypes in the complemented 

cjl428::CAT mutant would indicate gene specificity.

Motility assays were conducted for the cjl428:\CAT and complemented 

cjl428::CAT strains. Interestingly, the complemented cjl428::CAT mutant showed less 

motility than the cjl428::CAT mutant and the wild type (Figure 21); these data were also 

verified quantitatively (Table 3). The complemented cj'1428::CAT mutant was found to 

be significantly reduced in motility compared to the wild type and the cjl428::CAT 

mutant strain when a one-way ANOVA was conducted (p < 0.05).

In addition to motility, survival within macrophages (Figure 22) and the 

phagocytic uptake by macrophages (Figure 23) for the complemented cjl428::CAT 

strain were investigated. The cjl428::CAT mutant was conducted in parallel to serve as 

an internal control. In terms of survival, all strains showed a decrease in survival with 

increasing time. The cjl428::CAT showed a lower survival rate within macrophages, but 

similar, or slightly slower killing kinetics compared to the wild type strain. The 

complemented cjl428::CAT mutant showed a significant increase in survival compared 

to the cj!428::CAT mutant and at levels similar to wild type at three timepoints, 

indicating that partial complementation occurred. A significantly slower killing of the 

complemented cj1428::CAT mutant was observed at one timepoint. This result cannot be 

rationalized at this time, and will require re-visiting in the future.

3.5.3 Analysis of the complemented c jl4 2 8 ::CAT mutant phenotypes
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For phagocytic uptake by macrophages, as observed previously, an increase in 

uptake occurred with an increase in infection time for the wild type strain. The 

cjl428::CAT strain was phagocytosed poorly by macrophages, and an increase in uptake 

was not observed until longer durations of infection were used. The phagocytosis rate of 

the complemented cjl428::C AT mutant appeared to be similar to that of the wild type. 

When comparisons between the cjl428::CAT mutant and the complemented 

cjl428:\CAT mutant were made as per a one-way ANOVA, there was no significant 

difference found between the two, except at the first timepoint. This suggests that only 

partial complementation of the cjl428\: CAT mutant occurred.



Figure 21. Motility assay for wild type, cjl428::CAT and complemented 

cjl428::CAT mutant.

The motility of the wild type, cjl428::CAT and complemented cjl428::CAT strains were 

measured and compared after stabbing into 0.3% agar and incubation for 48 hours under 

microaerophilic conditions. Plates were incubated for 48 hours before halos were 

measured. Shown in this figure is a representative motility plate.
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Table 3. Quantitative assessment of the motility of the complemented cjl428::CAT 

mutant.

The motility of the wild type, cj!428::CAT and complemented cjl428 \:CAT strains were 

measured and compared quantitatively after stabbing into 0.3% agar and incubation for 

48 hours under microaerophilic conditions. The values shown are for the diameters of the 

motility halos, measured in centimetres. The mean and standard errors (SE) of three 

independent experiments are shown for each strain. Compared to the wild type, the 

cjl428::CAT and complemented cjl428::CAT mutants were significantly less motile.



C. jejuni strain Diameter of halo 
(cm) ± SE

p  value
(compared to WT)

p  value
(compared to cjl428::CAT)

WT 3.10 ±0.10 N/A N/A
cjl428::CAT 1.90 ±0.06 <0.001 N/A
cj!428::C AT 
complement

1.20 ±0.05 <0.001 <0.001



Figure 22. The ability of C. jejuni to survive in macrophages is partially restored in 

the complemented cjl428::CAT strain.

The survival rate of wild type, cjl428::CAT and complemented c jl428::CAT strain was 

investigated over a time period of three hours. The schematic at the top of this figure 

indicates the experimental layout, where X represents the number o f hours post infection. 

Gm = gentamicin. Results shown are the mean and standard errors from three 

independent experiments. As the length of time post infection increases, the number of 

bacteria able to survive decreases. The complemented cjl428::C AT mutant’s ability to 

survive within macrophages was restored to wild type levels, indicating complementation 

occurred. A) Results are expressed as percent survival; CFUs o f bacteria exposed to 

macrophages were taken as a ratio to the CFUs of bacteria that were incubated under the 

same conditions, with the exception of not being exposed to macrophages. A one-way 

ANOVA test showed that there was a significant difference between the survival rate of 

the c jl428::C AT mutant and the complemented cjl428::CAT mutant, as indicated by the 

asterisks (*). B) The data for each strain at timepoint zero in panel A) were normalized to 

100 percent survival. Both the cj!428::CAT mutant and the complemented c jl428::CAT 

strain were killed slower than the WT strain. At 1 hour post infection, a significantly 

slower killing rate was observed between the wild type and the complemented 

c jl428::CAT mutant, as indicated by the asterisk (*).
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Figure 23. The internalization rate for the complemented cjl428::CAT mutant is 

partially restored to wild type susceptible levels.

The internalization rate of wild type, cjl428::CAT and complemented c jl428::CAT 

strains in macrophages was investigated over a period of four hours. Results are 

expressed as percent internalization; CFUs of bacteria exposed to macrophages were 

taken as a ratio to the CFUs of bacteria that were incubated under the same conditions, 

with the exception of not being exposed to macrophages. The schematic at the top of this 

figure indicates the experimental layout, where X represents the infection time. Gm = 

gentamicin. Results shown are the mean and standard errors from three independent 

experiments. For the wild type strain, with an increase in time the bacteria were allowed 

to infect macrophages, an increase in percent internalization was observed. The 

internalization rate of the complemented cjl428::CKl mutant was restored to wild type 

levels, particularly when a 1 hour infection was conducted. At this timepoint, a 

significant difference was observed between the c jl428::CAT mutant and the 

cjl428::CAT complemented mutant, as indicated by the asterisk (*) (p < 0.05).
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CHAPTER 4 -  DISCUSSION



4.1 Creation of a new cj!427::CAT mutant

It has been shown that the CPS present on the surface of C. jejuni is involved in 

the virulence of strain ATCC 81-176 (13). Using structural data that was available for C. 

jejuni ATC 700819, our laboratory has previously identified three gene targets in the CPS 

biosynthesis cluster, cjl427c, cjl428c and cj!430c, that are putatively known to function 

in the synthesis o f a modified heptose. To prove this, we have also previously constructed 

cj1428c, cj1430c and KpsM  antibiotic insertional knockout mutants. Unfortunately, a 

cj1427c insertional mutant was not achieved, and to complete our panel of mutants, a 

cjl427c mutant was made as part of the work in this thesis.

Prior attempts to create a cjl427c insertional mutant in our laboratory were 

unsuccessful. RT-PCR data revealed that the genes cjl426c and cjl425c did not have any 

level o f expression in the clones obtained indicating that a gene deletion event likely 

occurred. Based on these data, PCR was carried out on areas flanking these two genes to 

confirm that a gene deletion event occurred. It was shown that not only were cj1426c and 

cjl425c deleted, but the area extending to, and including a portion of cj1421c, was 

deleted. This deletion was verified via DNA sequencing.

C. jejuni is known to have a genome sequence that possesses very few repeat 

sequences (131). However, due to the initial method of transforming C. jejuni via natural 

transformation (19, 60, 167, 169), whereby the cjl427::CKY disruption construct was 

ligated to genomic DNA, it is possible that introduction of additional copies of 

chromosomal DNA lead to homologous recombination in areas that were not of interest. 

It is likely that an unwanted homologous recombination event occurred during the initial 

construction o f the cjl427::CATA mutant, resulting in the large deletion o f genes in the



capsular cluster. As mentioned previously, the deletion of these genes results in a C. 

jejuni CPS that is significantly altered in structure; not only is the capsule heptoseless, 

but it is also free of the side-branching phosphoramidate molecule. It has been previously 

shown that the lack of phosphoramidate on the CPS of C.jejuni causes attenuation in 

virulence (27), and may explain the phenotypic differences that were previously 

investigated for this mutant (100).

Due to the inability to control for unwanted homologous recombination events, a 

method outlined by Donahue et al (36) was adapted and used for the creation of a new 

c jl427::CAT mutant. As the method involves site-specific and species-specific 

methylation of foreign plasmid DNA, the advantages are two-fold: 1) there will be no 

unwanted homologous recombination as additional copies of chromosomal DNA are not 

being introduced into C. jejuni and 2) methylation of the plasmid DNA will result in a 

methylation signature that is unique to C. jejuni ATCC 700819, allowing for extremely 

efficient transformation.

Following transformation of wild type C. jejuni with the disruption construct, all
\

potential transformants were verified using conventional PCR and also DNA sequencing. 

The resulting cjl427::CAT mutant is the one that has been used for all genetic and 

phenotypic studies conducted in this thesis.

4.2 The expression levels of CPS related genes changes in response to gene

disruption

To investigate the transcription levels of genes located downstream of the 

disrupted genes, RT-PCR was carried out. As expression levels of genes can change 

drastically depending on the life cycle of the bacteria, a specific time point must be

-J
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chosen to harvest the bacteria for RNA isolation. For this, we chose a timepoint 20 -  24 

hours post inoculation as C. jejuni would be actively growing in the exponential phase, 

and, based on previous experiments, expressing CPS (Figure 6A, B). This timepoint was 

kept consistent for the harvesting of RNA from all strains. In addition, this timepoint was 

chosen as phenotypic studies conducted in this thesis were also conducted within the 

same timeframe.

To gain a better understanding of the expression levels of the capsular cluster of 

genes, RT-PCR was conducted for each strain in our possession. As mentioned 

previously, the C. jejuni capsular cluster of genes shows similarity to the one observed in 

E. coli, and it was thought that a single promoter would control the. genes. It was 

expected that the genes within the cluster would show similar levels of expression, or 

perhaps genes with greater distance from the promoter would show lower levels of 

expression (175). However, against expectations, these data revealed that the level of 

gene expression across the capsular cluster varied significantly. While most genes are 

expressed at levels similar to the housekeeping gene, some genes (kpsM, cjl447c, 

cjl430c, cj1429c) appeared to be expressed at lower levels, while cjl426c appeared to be 

expressed at higher levels. KpsM is an autotransporter for capsule and Cj 1447c is a 

probable capsule polysaccharide export ATP-binding molecule, so their low levels of 

expression may simply be due to a lack of requirement for these catalytic enzymes to be 

present in high quantities. As the downstream genes cj1445c and cjl444c are expressed at 

levels comparable with other genes within the capsular cluster; this may be indicative of 

promoters that are present either in the intergenic areas between cjl447c and cjl445c or 

possibly as part o f the end o f cjl447c. Similarly, cj1430c and cjl429c show very low

143
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levels o f expression, while downstream cjl428c shows levels comparable to the other 

genes within the capsular cluster, again indicating the possibility o f promoter sequences 

within the C. jejuni capsular cluster. To investigate this possibility, promoter prediction 

software was used in an attempt to predict the location o f potential cryptic promoter sites. 

However, currently available software was insufficient for our needs as the foundation of 

such prediction software is based on E. coli. This poses a problem as the C. jejuni -35  

region was found to be different from the E. coli -35 region (175), and thus, software 

prediction was not suitable. Future potential work may include the investigation of these 

cryptic promoters using a reporter gene system (i.e. lac system (177)) for analysis.

Alternative to the hypothesis of cryptic promoters within the capsular cluster is 

the possibility that the measured low levels o f expression could reflect the inherent 

instability of the RNA for these genes. It is known that differential mRNA degradation is 

an important step in the regulation of prokaryotic gene expression (93). KpsM and 

Cj 1447c play a role in transporting CPS and acting as an ATPase, respectively. As these 

enzymes would be catalytic in nature, it is possible that high levels of these niRNA are 

not required by C. jejuni, and as a result, additional mRNA is quickly degraded by the 

cell.

Following the investigation o f the intrastrain gene expression, an interstrain 

comparison was performed, whereby the expression levels of the genes in each mutant 

strain were taken as a ratio over the respective genes in the wild type strain. This was 

done to determine whether the insertion of the antibiotic resistance cassette had polarity 

effects on downstream genes. In general, it was found that genes immediately 

downstream of the resistance cassette in the mutant strains did not significantly differ
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from the expression levels of the respective genes in the wild type strain. This is 

consistent with the fact that the antibiotic resistance cassettes, by design, were non-polar. 

Interestingly, in the cjl430::CAT mutant strain, the downstream cj1429c gene showed 

highly significant upregulation compared to the same gene in the wild type strain. From

the other mutant strains in our collection, genes downstream of the resistance cassette do 

not show significant changes in expression levels and we can conclude the upregulation 

of cj1429c in cjl430::C AT is not due to polarity effects o f the chloramphenicol resistance 

cassette. While cj1429c is part of the C. jejuni capsular cluster (131), its function is

currently unknown. The phenotypes attributable to this gene will be further pursued by 

our laboratory in the future using the same mutagenesis method that was used in this 

thesis to study the effect o f the heptose modification genes.

Another observation from the RT-PCR data was that cj1426c was upregulated in

the mutant strains. The gene cj1426c is a putative methyltransferase and is hypothesized 

to facilitate the transfer of a methyl group to carbon 6 of D-g/ycero-L-g/wco-heptose (61, 

131). The capsular structure of the wild type and mutant strains has been elucidated via 

NMR, and based on the data, it was found that none of the mutants produce a heptose. It 

is puzzling that cjl426c is upregulated, as the molecule that requires méthylation is no 

longer present in the capsule o f the mutants. It is possible that as a compensatory 

mechanism, upregulation of cj1426c occurs which results in an increase in the measured 

levels o f expression. Precisely why this gene is upregulated is yet unknown, and may be 

studied in the future.

The cjl427::CATA mutant was found to lack modified heptose and also the 

phosphoramidate molecule. In this mutant, genes between cj1426c and cjl421c, inclusive,



have been deleted. Genes cjl423c -c jl4 2 6 c  have been identified as being involved with 

the synthesis o f the modified heptose precursor GUP-glycero-manno-heptosQ, while 

genes cjl415c -  cj1422c play a role in the production and transfer of the 0-methyl 

phosphoramidate group to the N-acetyl galactosamine of the capsular backbone (112). As 

the genes for the synthesis of GDP-glycero-manno-heptose have been abolished, the 

cjl427::CATA mutant will not only lack a modified heptose, but will also lack a normal, 

non-modified heptose. In addition, cj 1421c function has been abolished in the 

cjl427::CATA mutant, resulting in a linear capsule, free of any side-branching molecules. 

It is interesting to note that while synthesis of GDF-glycero-manno-heptose has been 

abolished, expression levels of genes responsible for modifying heptose (cj1428c, 

cj1430c) remain unchanged compared to levels in the wild type strain, indicating that 

there is no feedback to repress the expression o f these genes. It is thus puzzling why the 

disruption o f a single gene involved in heptose modification results in feedback within 

the capsular cluster while deletion of many genes does not.

As previously mentioned, with the exception of the cjl42 7: :CATA mutant, which 

possesses a capsule free of any side-branching molecules, all other mutants show either a 

trace or the positive confirmation of phosphoramidate in the capsule, while the wild type 

strain does not. In the future, it will be interesting to investigate phosphoramidate related 

genes to determine possible upregulation of these genes in response to a lack of modified 

heptose as a compensatory mechanism to decorate the capsule.

4.3 Disruption of cjl427c, cjl428c, and cjl430c affects CPS composition

The CPS present on the surface of C. jejuni ATCC 81-176 and ATCC 81116 has 

been shown to be involved in virulence (12, 13). To determine whether the modified



heptose in the GPS of ATCC 700819 plays a role in virulence as well, we identified three 

genes, cj1427c, cjl428c and cj1430c that are putatively involved in modified heptose 

biosynthesis, and have shown their involvement in CPS synthesis via an antibiotic 

insertion knockout strategy. Using purified capsular samples and analysis via SDS-PAGE, 

it was revealed that all the mutants showed a differential mobility of the capsular bands 

when compared to wild type, suggesting that the enzyme products o f the targeted genes 

affected capsular composition.

The cjl427::C AT, cj!428::CAT and cjl427::CATA mutants displayed similar 

capsular staining patterns when compared to each other (Figure 6A, B). Interestingly, the 

cj!427::CAT and cjl428::CAT mutants showed a different modality of CPS compared to 

the wild type strain. A wide range of both lower and high molecular weight species were 

observed in these two mutants, indicating that the disruption of these genes results in 

changes in chain elongation o f the CPS.

In the cjl430::CAT mutant, the pattern obtained was significantly different from 

that o f the other mutants, suggesting that the composition of this mutant’s CPS was 

different from the other mutants. This is puzzling, as both Cj 1428c and Cj 1430c are 

thought to be putative epimerases. These two enzymes epimerize different carbons of the 

heptose, so it may be possible that the different actions of these enzymes would be 

reflected in the capsular staining pattern. However, the differences in staining pattern 

cannot be due to differences in capsular structure, as NMR has shown that both the 

cj!428::CAT and cj!430:\CAT mutants lack a heptose in their capsules. In addition to the 

differential staining pattern o f the c jl430::CAT mutant, the amount of CPS that is 

produced by this mutant is significantly less than the other mutants that were investigated.
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It is possible that disruption of this gene, and subsequently the enzyme that it encodes, 

affects 'the transport of CPS across the periplasmic space. This would cause an 

accumulation of CPS within the bacterium. As a result, this mutant behaves much like a 

KpsM  mutant, in that both are unable to transport CPS. Initial work in our laboratory has 

shown that Cj 1430c is one of the first enzymes to act in the heptose modification 

pathway; its disruption could potentially have significant downstream effects leading to a 

down regulation in the amount of CPS that is produced.

Interestingly, the KpsM  mutant also showed potential high molecular weight

species, suggestive of CPS, despite the fact that this mutant lacks the KpsM I
. ■ 1 1

transmembrane protein responsible for transport of the CPS (20). It is known that the 

KpsM  mutant is acapsular (89), however, while transport o f the CPS across the 

periplasmic space of the bacterium is disrupted, CPS initiation and subsequent elongation 

still occurs. These molecules of assembled CPS, while not apparent on the cell surface of 

C. jejuni, would be visualized during silver staining.

4.4 CPS purification for downstream analysis

Purification o f CPS is important, as one goal o f this purification is to perform 

nuclear magnetic resonance (NMR) analysis so that its composition can be determined.

This analysis was able to give a glimpse of the precise composition of the capsule of the 

wild type and mutant strains. More importantly, we can also determine the effects, if any, 

of disrupting the cj1427c, cj1428c and cj1430c genes on modified heptose synthesis.

However, a barrier to downstream analysis is that two molecules of heptose also exist in 

the LOS core o f C. jejuni (158). Thus, to remove LOS, purification of CPS from wild 

type, cjl427::CAT, cjl428::CAT, cjl430::CAT, KpsM and cjl427::CATA was attempted.
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Previous attempts in our laboratory (100) showed that the SDS solubilization 

method was not effective at removing LOS from capsular preparations. As a result, the 

hot water/phenol method outlined by Westphal and Jaan was used (171). Part of this 

method involves dialyzing phenol away from the aqueous phase after the hot 

water/phenol purification. As the principle o f dialysis relies on simple diffusion, it was 

thought that this extra step may have the added benefit o f allowing LOS to diffuse out of 

the sample. It was previously shown that LOS was significantly smaller than CPS (38), 

and an appropriately sized dialysis tubing with a molecular weight cut off of 12-14000 

Daltons was chosen. With this cut off, molecules that are larger than 14000 Da, such as 

CPS were retained within the tubing, while smaller molecules, such as LOS, would 

diffuse out. To further remove LOS, the aqueous phase was then ultracentrifuged to pellet 

LOS. It was determined that ultracentrifugation was important for the removal of LOS; 

without this step, LOS contamination remained very high. Various durations were 

attempted (12, 24, 30, 48 and 72 hours), with increasing amounts of LOS being removed 

with longer ultracentrifugation spins. However, after 30 hours, any additional LOS that 

was removed was negligible. While this adapted hot water/phenol method worked well at 

purifying CPS, a significant amount of LOS still remained within the samples of interest, 

and additional purification was required.

The first purification method that was attempted after hot water/phenol 

purification was size exclusion chromatography. In this method, components within a 

given sample are separated based on their size, and hence the rate at which they move 

through the gel matrix. The size of LOS is significantly smaller than CPS (38), and 

appropriate gel matrices capable of resolving such small molecules were chosen. As CPS



molecules are large, they w ill not be retained by the gel matrix, and will simply flow 

through the column. However, based on results from silver staining, matrices that were 

attempted failed to separate the LOS from the CPS. It was hypothesized that the LOS and 

CPS were forming mixed micelles, resulting in the failure of the gel matrix to separate 

the LOS from the CPS. Micelles formed in this manner would have a gradient of sizes 

and separation via size exclusion chromatography would be impossible without their 

disruption.

The first attempt to disrupt the mixed micelles was based on a method by Aspinall 

et al (10), where LOS molecules are cleaved via an acetic acid treatment with heat. 

Ideally, this method will cleave the linkage between the lipid A anchor and Kdo sugar, 

resulting in smaller molecules that can then be retained by the gel matrix, while CPS 

molecules will not be degraded, as they are heat stable (44,128). However, after samples 

were separated via size exclusion chromatography, it was found that while the acetic acid 

treatment was able to decrease the amount o f LOS to some extent, it had no effect on 

separating LOS from CPS as fractions from size exclusion chromatography showed the
v

presence of both CPS and LOS. It is possible that the LOS/CPS mixed micelles were
/

particularly resistant to acidic treatment, and were not easily separated. In addition, upon 

removal o f the acid via ammonium bicarbonate neutralization, it is possible that the 

micelles, initially disrupted by the acid treatment, reformed in a random manner.

As acetic acid treatment is quite harsh, and is conducted for a relatively long 

duration o f time, it is conceivable that the CPS molecules may also be degraded. As a 

result, in parallel, an ammonium acetate treatment was also attempted. Ammonium 

acetate is also acidic, but much milder than acetic acid, and in principle, its action on
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LOS should be the same, while CPS should not be hydrolytically cleaved by this 

treatment. The ammonium acetate treatment was thought to be successful at first, as LOS 

molecules and CPS molecules appeared in different fractions. CPS molecules were not 

retained by the gel matrix, and accordingly, appeared in early fractions. Contrasting this, 

LOS molecules were well retained by the gel matrix, appearing in later fractions (Figure 

7C). It was thought that this separation was due to the ammonium acetate treatment, and 

to determine whether this was indeed the case, a tricine gradient gel was run (Figure 7D). 

Due to the increasing percentage of acrylamide at the bottom of the gel, a gradient gel 

will be able to resolve the differences in small molecules such as LOS. However, after 

silver staining of pooled fractions that contained LOS, it was observed that there was no 

difference between the mock-treated and the ammonium acetate treated samples. 

Therefore, it was concluded that this treatment had no effect on LOS molecules.

A final method of purification that was attempted was based on the method 

outlined by Gu and Tsai (53), where Nesseirial lipopolysaccharide was separated from 

outer membrane vesicles via a sodium deoxycholate treatment. This method was adapted 

for use in C. jejuni in an attempt to separate the LOS from the CPS molecules of interest. 

Sodium deoxycholate is a detergent, and should help to disrupt CPS/LOS mixed micelles. 

However, upon size exclusion chromatography separation, it was found again that the 

LOS co-eluted with the CPS, indicating that the sodium deoxycholate treatment failed to 

disrupt the mixed micelles o f LOS and CPS. This may be due to the fact that the critical 

micelle concentration for the mixed LOS/CPS species is quite low, resulting in micelles 

that form easily while being difficult to disrupt with sodium deoxycholate. In the future, 

it may be worth attempting a higher sodium deoxycholate concentration to disrupt the



micellar species. One unexpected effect of the sodium deoxycholate treatment was that 

the banding pattern of GPS were much more readily observable via silver staining. The 

reason for this increased resolution of the banding pattern is unknown.

One caveat for all o f the purification methods attempted above is that they rely on 

the assumption that once the LOS/CPS micelles are disrupted, the micelles will remain 

disrupted. This is not necessarily the case, and one can envision that upon removal of the 

disrupting agent, (acetic acid, ammonium acetate, sodium deoxycholate) the CPS and 

LOS molecules will reform into micelles in a random fashion. To prevent the formation 

o f these micelles, it may be necessary to reduce the concentration of CPS and/or LOS to 

levels below that o f the critical micelle concentration, with the caveat that this may make 

downstream analyses very difficult due to the lower concentrations of sample.

Due to the ineffectiveness of multiple treatments that were attempted, CPS 

samples which had only undergone the hot water/phenol extraction as well as 

ultracentrifugation were sent directly for NMR structural analysis.

4.5 CPS composition of the mutants

Nuclear magnetic resonance (NMR) results from Dr. Knirel are summarized in 

Table 1. This table consists of two parts: data that was gathered via acid hydrolysis, and 

information that was collected via NMR. In the main capsular backbone, one of the three 

constituent sugars is ribose; ideally, it should be stoichiometrically proportional to 

galactosamine (GalN). The data in Table 1 showed that this was not the case. The 

increase in ribose for all strains (with the exception o f cjl427::CATA) likely indicates 

that some degree of nucleic acid contamination is present, despite purification. For all 

strains, small traces o f galactose were observed from acid hydrolysis. Acid hydrolysis is
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not able to cleave GalNAc to galactose, and thus, the presence of galactose is likely from 

traces o f contaminating LOS, as galactose is known to be a constituent (158). The amount 

of galactose that is present, however, shows that purification methods were sufficient to 

significantly reduce the amount of LOS present in samples. Unfortunately, other sugars 

that are unique to LOS and not CPS, such as Kdo, could not be observed due to the harsh

nature of the acid hydrolysis treatment. The presence of Kdo should be minute in quantity,

showing that reduction of LOS via purification was successful, resulting in only trace

amounts of LOS present in the CPS enriched samples.

It was expected that the cj!427::CAT, cjl428::CAT and cjl430::CAT mutants

would lack a modified heptose; however, it was found that these mutants lack even an

unmodified heptose in their capsule. Based on silver stains showing the CPS of these 

mutants (Figure 6A, B), the cjl427\\C AT, cj!428::Q, AT and cjl427::CATA mutants

showed similar capsular staining patterns. However, for cj1430::CAT, the pattern 

obtained was significantly different from that of the other mutants, suggesting that the 

composition of this mutant’s CPS was different from the other mutants, contradicting 

what was found via NMR. The differences observed in silver staining may suggest that 

very subtle changes in the cell surface of the mutants may be at play; this is expounded 

by differences in chick colonization between the cjl428:\CAT and c/7730::CAT mutants 

(100). While both were able to colonize chicks, c jl428::CAT had a much lower log 

CFU/g o f cecum compared to the cj!430::CAT mutant (data not shown). The lack of 

heptose also supports the idea that LOS contamination was very low. The fact that no 

heptose was detected indicates that the purification methods employed were successful at



reducing the LOS to a level in which NMR results were not confounded by extraneous 

heptoses from the LOS core.

As the mutants lack even a basic heptose as part of their CPS, this reinforces the 

notion that the glycosyltransferases responsible for transferring the sugar to the capsular 

side-branch may be specific, particularly for a modified heptose. Without modification, 

the transferases are unable to transfer the heptose to the capsule, and thus, will be absent 

during analysis. Promiscuity o f the glycosyltransferases can be eliminated as NMR data 

has shown that cjl428\\CAT and cj1430::CAT, both with disruptions in putative 

epimerases o f heptose, lack heptose in the capsule, indicating that the correct sugar 

epimer is required to facilitate its transfer. Importantly, despite the lack.of a heptose in 

the CPS, a capsule is still produced, as shown in silver stains that have been conducted in 

our lab (Figure 6A, B), which is similar to the findings that St. Michael et al (153) report 

for a cj!428::CAT mutant.

Another observation from NMR results showed that the wild type strain contained 

no phosphoramidate molecule. This is intriguing, as it is thought that the 

phosphoramidate moiety is a normally occurring side-branch of the ATCC 700819 

capsule. However, McNally et al (114) report that it is possible that a hydroxyl group is 

attached to the same location as the phosphoramidate moiety, so this may explain the 

absence o f phosphoramidate in the wild type strain. The presence o f phosphoramidate on 

the cjl427::CAT, cj!428::CAT and cj!430::CAT mutants is hypothesized to be due to a 

compensatory mechanism of the bacteria. As the capsular backbone is missing the 

normally side-branching heptose, to compensate, the mutants attempt to make another 

moiety that side-branches from the main capsular backbone, namely, phosphoramidate.
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To verify this hypothesis, real-time PCR will be done in the future on the cluster of genes 

involved in phosphoramidate synthesis (cj1418c -  cj 1415c) to determine whether 

upregulation o f these genes is occurring.

4.6 The cjl427::CAT mutant grows better than wild type

Disruption of the putative heptose modification genes of interest, specifically 

cj1427c, led to an increase in growth of the mutant compared to the wild type strain. This 

is puzzling, as it is normally thought that the wild type CPS would be conducive for 

optimal growth. The lack of a heptose for the c jl427::C AT mutant, as elucidated by 

NMR, may indicate that there is a certain metabolic cost for maintaining the modified 

heptose as part of the CPS; once this is abolished via gene disruption, an increased 

growth rate is observed. The other mutants also lack a heptose, and show an increase 

growth rate compared to the wild type, lending credibility to this theory (100). 

Interestingly, only a difference in initial growth rate was observed when the mutants were 

grown in liquid media; when grown on plates, the mutants and wild type appear to grow 

to approximately the same final density. The wild type and the mutants also grow to the 

same final density in liquid media. This may indicate that while the cjl427:\CAT, 

cjl428::CAT, c jl430::CAT and c jl427::CATA mutants have a faster initial growth rate, 

they reach final levels o f density comparable to wild type.

Other phenotypic studies conducted for the heptoseless mutants also seem to 

indicate that the role o f a modified heptose in C. jejuni interactions with host cells is 

more complex than initially envisioned.
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4.7 Changes in the cjl427::CAT CPS plays a partial role in sensitivity to 

: insult '

As C. jejuni is known to colonize the small intestine (178), one o f the first host 

defenses encountered is bile. Bile is a digestive secretion that plays a major role in fat 

dispersion and absorption. Bile acids, including cholates and deoxycholates, are 

molecules that act like detergents and act as potent antimicrobials (15, 108); they are 

secreted by the liver, stored and concentrated in the gall bladder and released into the 

intestine. It is known that bile primarily exerts its effects on cell membranes, eventually 

resulting in lysis o f potential pathogens. Enzyme assays have also confirmed leakage of 

intracellular material, implying that bile alters membrane integrity/permeability (45). 

While information about bile tolerance of Gram negative bacteria is relatively scarce, it is 

believed that they are inherently more resistant to bile salts than Gram positive bacteria 

(15, 22); this is why bile salts are often used in the selective enrichment of Gram negative 

bacteria (i.e. MacConkey agar). C. jejuni is considered bile resistant and has been isolated 

from the gall bladder as well as directly from bile (48, 161). We sought to determine the 

contribution of alterations in CPS structure to C. jejuni bile resistance and tested a range 

of concentrations o f bile salts. The tested concentrations fall within physiological levels 

of bile salts that have been documented in the intestinal lumen (0.1 -  21 mM) (26). At 

low bile salt concentrations, the wild type and the cj1427::CAT mutant showed resistance, 

similar to the c jl428::C AT and cj!430::CAT mutants. However, at concentrations higher 

than 0.5 g/L (approximately 1.2 mM), both strains showed the same susceptibility. This 

contrasted the findings for the cjl428::CAT and cj1430::CAT mutants, which were more 

susceptible to bile at these higher concentrations. As all mutants lack a heptose in their
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CPS, another factor, aside from the heptose, is playing a role in bile resistance. It is 

known that bile salt resistance in C. jejuni is attributable to the CmeABC and CmeDEF 

multidrug resistance pump (15, 105, 137). Inactivation of the pump confers exquisite 

sensitivity to bile salts (105). As disruption of cj1427c does not result in a change in these 

efflux pump systems, it is not a surprise that the susceptibility pattern for the 

cjl427::CAT mutant is unaltered compared to wild type. However, the increased 

susceptibility in the cjl428::CAT and c jl430::CAT mutants remains to be elucidated.

In addition to bile salts, we also sought to determine whether the susceptibility of 

C. jejuni was specific to bile salts, or whether changes in CPS composition also conferred 

resistance to other types of detergents. We chose sodium dodecyl sulfate (SDS) as it has 

been shown that C. jejuni possesses resistance to this detergent (137). Exposing the 

mutant to increasing concentrations of SDS showed that there was no discemable effect 

due to the lack o f a heptose in the CPS. This was reflected in the fact that both the wild 

type and all our mutants showed similar levels o f susceptibility to SDS. The CmeDEF 

multidrug efflux pump is responsible for resistance to SDS, and as the disruption of 

cjl427c, cjl428c and cjl430c do not affect CmeDEF, it does not come as a surprise that 

the susceptibility o f both the wild type and the mutants to SDS are similar. It is known 

that the CPS is hydrophilic (13); the fact that our strains of C. jejuni displayed similar 

levels o f susceptibility to SDS likely indicates that the charged surface of the bacteria has 

not changed due to the absence of a heptose in the CPS. To assay this, it would be 

interesting to carry out a salt agglutination test (37,107, 147, 151). This method measures 

cell surface hydrophobicity and net negative charge by agglutination in varying 

concentrations o f ammonium sulfate. Agglutination in salt concentrations less than or
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equal to 1 M indicates a hydrophobic surface, whereas agglutination in high 

concentrations o f salt (greater than or equal to 2 M) indicates a hydrophilic surface.

Once C. jejuni gains entry into the host intestine, it has the opportunity to gain 

access to the vascular space and cause systemic infection (18). Amongst the multiple 

innate immune defense mechanisms that are present in blood, complement is a key 

component that can be found in serum. We thus sought to investigate whether alterations 

in the CPS played a role in serum resistance. In contrast to the findings for detergents, we 

found that, intriguingly, the cjl427::CAT mutant was killed nearly completely in the 

presence of low concentrations of serum (20%), while the wild type strain showed only 

60% death. In addition, timecourse experiments at this concentration of serum showed 

that the cjl427::CAT mutant was killed very quickly, within the first 15 minutes of 

exposure to serum. This would seem to indicate that serum resistance is largely conveyed 

by the presence of heptose in the CPS and is critical for resistance; however, this is not 

the case, as our other heptoseless mutants, cjl428::CAT and cjl430:\CAT do not show 

the same pattern of susceptibility to serum. While they are slightly more sensitive than 

wild type, the same level o f extreme sensitivity as the c jl427::CAT mutant is not 

observed, indicating that there is another factor at play.

It was previously thought that LOS does not play a role in serum resistance (13), 

however, work by Guerry et al (56, 59) showed that a C. jejuni LOS mutant lacking distal 

sialic acid residues is serum-sensitive, despite the presence of CPS. Contrasting this, Keo 

et al (89) found that in a systemic strain of C. jejuni, LOS plays no role in serum 

resistance. This may indicate that the composition and physical presentation of unique 

sugars on the surface of C. jejuni, and perhaps more importantly, strain specificity, may
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play a role in conveying differing resistance against complement mediated killing. Based 

on silver staining o f the capsule (Figure 6A, B), the cjl430::CAT mutant was shown to 

have a different CPS staining pattern than the cjl428::CAT and cjl427::CAT mutants. 

While CPS was being produced, the amount o f material was much less than the mutants, 

indicating a potential defect in export of the complete capsular polysaccharide. In 

addition, there are fewer bands compared to the wild type, indicating that fewer species 

of CPS with multiple sugar repeats are being produced. As changes in capsular 

composition can alter the ability o f sugars to be silver stained (81, 158), it is possible that 

mutations in cj1427c, cj1428c and cj1430c affect the CPS in different ways that results in 

the variation seen for serum resistance. Alternatively, it may be that mutations in cjl427c, 

cj1428c or cj1430c affect expression of phosphoramidate related genes, leading to 

varying levels of phosphoramidate within the CPS of each mutant, as previously 

elucidated via NMR. The phosphoramidate moiety appears to be essential for serum 

resistance, as the cjl427::CATA mutant (lacking both the phosphoramidate and heptose 

moieties) that was previously investigated displayed extreme serum sensitivity. The 

addition of the phosphoramidate side-branch in the CP S'may be essential to prevent C3 

complement deposition, and subsequent complement-mediated killing of the bacteria.

It has been shown that CPS of other bacterial species plays a role in modulating 

the deposition of the C3 complement component (166). It would be interesting to 

determine whether C3 deposition on the surface of our mutants is affected by the lack of 

heptose.

Previous work done in our laboratory has shown that a capsuleless mutant of C. 

jejuni readily autoagglutinates over a period of three hours (100). This was hypothesized
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that a lack o f CPS in C. jejuni exposes underlying adhesins, which are normally hidden 

by the CPS. Our results indicated that the lack o f a heptose in the CPS did not play a role 

in the autoagglutination of bacteria, and that no underlying surface adhesins were 

exposed.

As flagella and CPS are both anchored to the outer membrane of C. jejuni, we 

also sought to investigate whether changes in the CPS. would lead to changes in motility. 

Interestingly, the cjl427::CAT mutant showed a significant decrease in motility 

compared to the wild type, indicating that subtle: changes in the CPS may lead to 

decreased motility. When comparing our other heptoseless mutants, it was found that all 

mutants also showed significantly less motility than the wild type. As it has been shown 

that the mutants all lack heptose in the CPS (see section 3.2.3), this suggests there may be 

a link between the surface composition of C. jejuni and its motility. While there have 

been no studies that link a heptoseless CPS and motility, the results in this thesis may 

show that there are complex interactions between the genes involved in modified heptose 

synthesis and the motility o f the organism.

4.8 The interactions of C. jejuni with Caco-2 intestinal cells and RAW 264.7

macrophages

Once C. jejuni has gained access to the host intestine, adhesion and subsequent 

invasion of intestinal epithelial cells is important for virulence. Based on our results, C. 

jejuni ATCC 700819 was found to adhere to, and invade Caco-2 cells at a very low rate, 

consistent with what has been previously reported in the literature (39, 47, 157). As no 

differences were found between the wild type and the cj!427::CAT, cj!428::CAT and 

cj!430::CAT mutant strains, this suggests that the absence o f a heptose on the CPS is
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unimportant for adhesion to Caco-2 cells. The cjl427::CATA mutant showed an increase 

in adhesion (100); this may be due to the lack of the phosphoramidate moiety. Its absence 

from the CPS of this mutant may allow increased adhesion due to the lack of steric 

hindrance between adhesins and the host cells.

As the CFU counts for C. jejuni in the previous Caco-2 experiments were low, it 

was hypothesized the CFUs were simply cell surface adherent bacteria that were able to 

avoid killing by gentamicin. This could affect interpretation of the results particularly 

when investigating phagocytosis of the bacteria into host cells. Via confocal microscopy, 

verification that the bacteria were present intracellularly was conducted by Xuan Thanh 

Bui. Preliminary results showed that the bacteria were indeed internalized*, validating our 

gentamicin treatment to kill external bacteria in invasion assays.

Results for the adhesion, phagocytosis and survival of C. jejuni within 

macrophages showed that CPS structure, specifically the absence o f a heptose, does not 

play a direct role in anti-phagocytosis, as the wild type and mutant strains were 

phagocytosed by macrophages effectively.

In both infection and survival assays, the mutants showed slightly lower uptake 

by and survival within macrophages, respectively. Our results for each strain are taken as 

a CFU count in the presence of macrophages over the CFU count in the absence of 

macrophages. While the CFU counts for both the wild type and the mutants in the 

presence of macrophages were similar, in the absence of macrophages, the CFU counts 

for the mutants were significantly higher (approximately 10 fold) compared to the wild 

type strain, despite having the same initial multiplicity o f infection. Due to the higher 

CFU counts, this may explain why infection and survival rates appear lower. This
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increase in growth is supported by the data in 3.3.1 and work previously done by our 

laboratory where the mutants were found to grow more rapidly than the wild type (100). 

It is possible that the low apparent rates of the mutants are artifacts due to this increased 

growth rate.

When investigating the phagocytosis of the mutants compared to wild type, it was 

observed that the mutants, showed more or less a steady state within macrophages. For 

infection, it was expected that an increase in phagocytosis would be observed with an 

increase in duration of infection, as observed for wild type. As differences were observed, 

this suggests that there may be either an inability of the macrophages to phagocytose the 

bacteria or a problem of survival of the mutants within macrophages. However, the latter 

hypothesis was refuted when data for the survival within macrophages was analyzed; the 

mutants were killed at approximately the same rate as the wild type, strain, indicating 

there was no significant difference in the ability to survive within macrophages in all 

strains.

As differences in phagocytosis, but not in survival were observed between the 

wild type and mutant strains, we hypothesized that the differences observed were due to 

changes in C. /eywwAnacrophage interactions that occurred at earlier timepoints. 

Consequently, we dissected the adhesion of jC. jejuni to macrophages. The adhesion of 

the mutants to macrophages showed no significant differences compared to wild type. 

The slightly higher adhesion of the KpsM mutant was previously hypothesized by our 

laboratory to be due to the loss of a capsule and the subsequent exposure of underlying 

adhesins (100). The slightly lower adhesion rate o f the cjl427::C AT A is puzzling; as it 

lacks both heptose and phosphoramidate, there should be less steric hindrance for the



underlying adhesins. As there were no defects for survival nor adhesion in the other 

mutants, the reason for the differences observed in phagocytic rates is unclear at this time. 

It is possible that the lack o f a heptose indirectly confers a fitness advantage. One 

possibility for the decreased phagocytosis is due to a failure o f the macrophages to 

activate. Macrophages are known to upregulate the production of inflammatory cytokines 

such as TNFa and IL-8 in the presence of other Campylobacter species (110). However, 

the caveat is that the production of these proinflammatory cytokines is both 

Campylobacter strain and species dependent. It is not unreasonable to consider that 

changes in the surface properties of C. jejuni will cause a defect in macrophage activation, 

and subsequently, lead to less phagocytosis of the bacteria. To test this possibility, 

enzyme-linked immunosorbent assays (ELISA) can be used to determine whether the 

macrophages are failing to activate (i.e. lack of TNFa or IL-8 production) in the presence 

of the heptoseless mutants.

Rather than a failure o f the macrophages to activate, there is also the possibility 

that the decreased phagocytosis o f the mutants is due to a pattern o f bacterial gene 

expression that blocks further uptake of the bacteria. If this is indeed the case, it will be 

necessary to identify the genes that are differentially expressed between the mutants and 

the wild type strains both inside and outside macrophages. To do this, a method known as 

selective capture of transcribed sequences (SCOTS) can be employed (33). In this 

method, bacterial RNA can be isolated from infected macrophages, alleviating problems 

due to abundant eukaryotic RNA in downstream analyses. The pool of amplified 

expressed bacterial genes can then be analyzed using DNA microarrays to determine
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whether differential gene expression plays in a role in conferring resistance against 

uptake by macrophages.

4.9 Complementation of the C. jejuni mutants

Creation of the complementation constructs was accomplished using the gene 

splicing by overlap extension (gene SOE-ing) method. In this method, multiple fragments 

are spliced together to generate the final complementation construct. The porA promoter 

is a constitutively expressed promoter that drives the expression of the complementation 

construct at high levels, as previously shown (100). The kanamycin resistance cassette 

was chosen so that complemented mutants could be selected. Once the complementation 

constructs were successfully constructed and sequenced, they were inserted into a 

pBluescript vector containing the 16S -  23 S rRNA regions, and then transformed into E. 

coli. Great difficulty was encountered during attempts to transform E. coli with the 

constructed vectors containing the gene SOEd products. Controls at each step of the 

process (i.e. restriction digest of plasmid, dephosphorylation of the plasmid, T4 DNA 

ligation, transformation efficiency, etc) were conducted in parallel to verify that each step 

was occurring as envisioned. Upon acquiring data from the transformation efficiency 

control, it was determined that even for the pBluescript plasmid (positive control), the 

efficiency was very low per nanogram of DNA; the repeated inability to acquire 

transformants containing the complementation constructs was likely due to this extremely 

low transformation efficiency. However, despite these difficulties, the cj!427::CAT, 

cjl428::CAT and cj!430\:CAT complementation constructs were transformed into E. coli 

by another student in our laboratory, Xuan Thanh Bui. Once the complementation 

constructs were transformed into E. coli, the plasmid was extracted in large quantities,

164



165

and then verified via DNA sequencing to determine if mistakes in the sequence were 

present.

Due to the nature of gene SOE-ing, multiple PCRs must be conducted to make the 

-final complementation construct. As a consequence of PCR, single nucleotide 

polymorphisms (SNPs) may be inadvertently introduced into the complementation 

construct. This is likely due to the relatively low fidelity o f the DNA polymerase mix that 

was chosen (Expand DNA Polymerase mix; a mix of Taq DNA polymerase and Tgo 

DNA polymerase). The cjl427::CAT complementation construct was found to contain 

three SNPs, resulting in a glycine to aspartic acid change (G9D), a leucine to proline 

change (L42P), and a serine to proline change (S142P). The G9D mutation results in the 

disruption o f a Rossmann fold, a protein structural motif that binds cofactors such as 

nicotinamide adenine dinucleotide (NAD) and is vital for folding and activity of the 

enzyme (138). As this disruption would result in a non-fimctional protein, this SNP was 

fixed via QuikChange mutagenesis PCR. For the L42P mutation, comparisons to ATCC 

81-176 were done and it was found that the leucine was conserved, indicating that it was 

likely important. Similar comparisons for the S142P also showed that it was conserved. 

In addition, proline is known to be a disruptor in the middle of regular secondary 

structural elements, such as alpha helices and beta sheets (146). As of final submission of 

this thesis, all SNPs have been fixed, and the complementation construct has been 

mobilized into the cjl427::CAT mutant. The c jl428::CAT complementation construct 

was found to contain several SNPs. The first was a valine to alanine (V21A) mutation; 

comparison to C. jejuni 81-176 revealed that a leucine was present, and thus, it was 

decided that this amino acid was not very conserved. The second mutation resulted in a



lysine to arginine (K100R) mutation. Comparison to C. jejuni 81-176 revealed that it also 

possessed a leucine in this region; however, further comparisons to protein homologs 

revealed that there was only a requirement for an amino acid with a polar NH2 group for 

protein function. As a result, it was deemed that the SNPs were unlikely to affect the 

function of the Cj 1428 protein. This complementation construct was used as is for our 

phenotypic studies. Finally, the c jl430::CAT complementation construct was found to 

contain no SNPs upon DNA sequencing.

With the successful completion of the QuikChange mutagenesis PCRs required to 

remove the SNPs in the complementation construct, it, along with the c jl428::CAT and 

c jl430::CAT complementation constructs were mobilized into their respective C. jejuni 

mutants using the method outlined by Donahue et al (36). Mobilization of the 

c jl428::CAT plasmid into the cjl428::CAT mutant was successful using both 

electroporation and natural transformation. It was noted that natural transformation was 

much more efficient than electroporation; this may be due to several factors. Firstly, it is 

known that C. jejuni is naturally competent (178); this in combination with the fact that 

the complementation construct has been selectively methylated to have the restriction 

endonuclease signature of C. jejuni ATCC 700819 results in highly efficient 

transformation. Electroporation was also thought to be less efficient than natural 

transformation due to the stress that is placed onto the cells during the procedure. 

Regardless of the method that was used, transformants for the cjl428::CAT complement 

were obtained. These potential clones were screened via PCR to ensure that the 

complementation construct was indeed present within C. jejuni. While PCR showed that 

the complementation construct was within C. jejuni, homologous recombination into the
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16S -  23S rRNA region of the genome did not occur (Figure 19A and B, respectively). 

This is puzzling, as there are three copies of the 16S -  23 S rRNA region within the C. 

jejuni genome (87); by design, the complementation construct should have integrated into 

one of these three regions. Due to this failure to integrate into the 16S -  23 S rRNA region, 

we attempted to investigate the precise location of the complementation construct. The 

other two elements in the complementation construct were the cj1428c gene and the porA 

promoter. Each gene was investigated using flanking primers to determine whether the 

complementation construct inadvertently recombined into these areas as homologous 

recombination can occur with as few as 200-300 base pairs (3, 80). PCR revealed no 

increase in size corresponding to the insertion of the complementation construct in either 

gene (Figure 19C and D, respectively). It was also verified that the pBluescript vector 

was not replicating within C. jejuni by attempting to extract the plasmid. The failure to do 

so agrees with the literature that indicates the pBluescript vector is a suicide vector. 

While the complementation construct did not integrate into the 16S -  23 S rRNA region 

as initially desired, the construct has been verified to be within C. jejuni, and thus, 

phenotypic studies involving this complemented mutant were conducted.

Interestingly, for the cjl430::CAT mutant, both electroporation and natural 

transformation were not successful at transforming the complementation plasmid into G. 

jejuni, despite it being methylated. At first, it was thought that the surface properties of 

the cjl430::CAT mutant were refractive to transformation. This would result in an 

inability of the plasmid to enter the cells. However, this theory was quickly disproved 

when it was found that the cjl430::CAT complementation plasmid was unable to enter 

the easily transformable cj!428::CAT mutant as well. In addition, the cjl428\\CAT

167



complementation construct as well as other plasmids in our collection were easily 

transformed into the cjl430::CAT mutant, indicating that the problem was not due to 

differences in the surface properties of the cjl430::CAT mutant. The reason for the 

inability of the cj!430::CAT complementation construct to be mobilized into the 

cjl430::CAT mutant is unknown at this time. One possible explanation for this failure is 

that Cjl430c may require another interacting protein within the capsular cluster to be 

expressed at wild type levels. However, preliminary data in our laboratory by M. 

McCallum indicates Cj 1430c does not interact with any of the other enzymes within the 

capsular cluster. In the future, to complement the cj1430::CAT mutant, a cjl426c -  

cj1430c complementation construct may be attempted. While the construction and 

subsequent transformation of this construct will be difficult due to the large size (> 8 Kb), 

it may alleviate the difficulties encountered when attempting to complement the 

c jl430::CAT mutant. The region from cjl426c -  cjl430c will be used so that the 

expression of each gene product is at equimolar level; this will also ensure that if (an) 

interacting partner(s) is (are) required by any of the enzymes within the capsular cluster, 

this requirement will be met. A shuttle plasmid based complementation approach will be 

used if this method is attempted, for several reasons. Firstly, homologous recombination 

into the 16S -  23 S rRNA region was shown not to work for the complemented 

cjl428::CAT mutant. Secondly, with a large region of the C. jejuni genome in the 

plasmid, there is a high chance that inadvertent homologous recombination will occur, 

causing additional problems.

Despite the failure of the c jl428::CAT complementation construct to integrate 

into the desired area of interest, the phenotypes that were previously investigated by our
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laboratory (100) and showed striking differences compared to the wild type were 

analyzed in the complemented strain to determine whether the phenotypes would be 

restored to wild type levels. Specifically, complementation should restore the 

susceptibility of the mutant to be phagocytosed by macrophages, restore the survival 

kinetics of the mutant within macrophages to wild type susceptible levels and return 

motility to wild type levels.

When the survival within macrophages of the complemented cjl428:\CAT mutant 

was investigated, it was found that complementation occurred (Figure 22). Interestingly, 

the complemented cjl428::CAT mutant is able to survive better within macrophages; this 

may be due to the overexpression of Cj 1428c, as production of this enzyme is driven by a 

highly active par A promoter.

The phagocytosis of the complemented c jl428:: CAT mutant was partially 

complemented to wild type levels (Figure 23), particularly at timepoint one. However, at 

later timepoints, complementation does not seem to be occurring. This indicates that 

partial complementation for the initial steps of infection (i.e. adhesion and initial 

internalization) is likely occurring. As the data from (Figure 22) shows that 

complementation is occurring, this indicates that there may be differences on the surface 

of the complemented cj!428:\C AT mutant that results in the blockage of further 

internalization. While the c jl428::CAT complementation construct did not integrate into 

the desired 16S -  23 S rRNA area, complementation is occurring due to the expression of 

Cj 1428c (Figure 20).

It was found that motility of the cjl428::CAT mutant was significantly reduced 

compared to wild type (Table 3). Contrary to expectations, results showed that the
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complemented mutant was less motile than both the wild type and the cjl428::CAT 

mutant. The decrease in motility was deemed significant (p < 0.05) when comparing the 

diameter of the halos to the wild type and also to the cj!428:: CAT mutant.

The failure of the complementation construct to restore motility, while 

complementing the macrophage phenotypes that were studied cannot be explained at this 

time. It is possible that the complementation construct is somehow affecting genes 

involved in motility of C. jejuni. Further elucidation will need to be conducted to 

determine where the construct has integrated. This can be accomplished using inverse 

PCR after digestion of the C. jejuni genome with a low -  medium frequency restriction 

endonuclease to create multiple fragments. As the construct must not be cut by the 

restriction endonuclease for this strategy to work, this necessitates a relatively uncommon 

restriction endonuclease. The fragments can then be ligated together to create circularized 

DNA, and inverse PCR carried out to generate PCR products that can then be sequenced 

to determine the precise integration site of the cj!428:: CAT complementation construct.

4.10 Overall summary

C. jejuni is a pathogen that is able to cause disease in humans, and it has evolved 

to successfully achieve this goal. The work that has been carried out as part of this thesis 

has furthered our knowledge of the involvement of modified heptoses in the C. jejuni 

capsule in pathogenesis. Once ingested, C. jejuni must avoid the bile that is secreted by 

the gall bladder, and then adhere to and invade the target intestinal epithelial cells. 

Following this, the bacterium must evade avoid host defense such as complement and 

macrophages. With the disruption of putative genes involved in modified heptose 

production, we had in our possession the exclusively heptoseless cj!428::CAT, and



c jl430::CAT mutants, the capsuleless KpsMmutant and the side-branchless 

cjl427::CATA mutant. Since then, we have also completed the heptoseless cjl427::CAT 

mutant.

Nuclear magnetic resonance (NMR) has elucidated the composition of the capsule 

in each of these mutants, and revealed that the cjl427::CAT,cjl428"CAT, cjl430:\CAT, 

and cjl427::CATA mutants all lack heptose. With exception of the cjl427::CATA mutant, 

the c jl427::CAT, cjl428::CAT, cjl430::CAT also showed the confirmed presence of 

phosphoramidate, while the wild type strain did not. This likely indicates that capsular 

phase variability is occurring. This phase variability may assist C. jejuni in the evasion 

of host defenses.

Real-time PCR was initially conducted to verify that the insertion of the 

chloramphenicol antibiotic resistance cassette into the mutants was non-polar. However, 

it was also found that the levels of some of the genes investigated within the capsular 

cluster showed very low levels of expression. This could either be due to the differential 

degradation of the mRNA or could be attributed to the actual low expression levels of the 

genes. Therefore, complementation was still necessary to assess gene specificity of the 

phenotypes.

Interestingly, the newly constructed cjl427\:C AT mutant showed different 

phenotypes compared to the cjl428:\C AT and cjl 43 O:\CAT mutants, despite all of these 

mutants lacking a heptose and having similar capsular compositions. The cjl427:\C AT 

mutant was found to be significantly susceptible to serum, while comparatively resistant 

to bile salts. In addition, the cjl427\\<2AT mutant was found to be phagocytosed by 

macrophages as much as wild type, and showed similar survival kinetics within
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macrophages, again differing from the observed trends for the c jl428::CAT and 

cjl430::CAT mutants. This indicates that the modified heptose is not directly responsible 

for changes in the pathogenesis of C. jejuni, and that another factor is at play.

While complementation of the cj!427::CAT and c jl430::C AT mutants has yet to 

be completed, thus far, the cjl428::CAT mutant has been complemented, despite the 

complementation construct not recombining into the desired 16S -  23 S rRNA region. 

While restoration of motility o f the mutant was not observed, restoration of the 

phagocytosis rate as well as survival kinetics to wild type susceptible levels was observed 

indicating that the phenotypes observed for the cjl428::C AT mutant were gene specific.

4.11 Future Directions

The real-time PCR data that have been gathered as part of this thesis has raised 

several interesting questions. Further work is warranted to determine whether the low 

levels of transcript found by real-time PCR represent actual changes in gene expression. 

This can be accomplished using a reporter system to determine whether regulatory effects 

are causing the lowered expression levels observed. In addition, investigation into 

phosphoramidate synthetic genes will allow us to determine why the wild type lacks a 

phosphoramidate, while the cjl427::CAT, cjl428::CAT, and cjl430::CAT mutants 

possess a phosphoramidate. Upregulation of genes involved in phosphoramidate as a 

compensatory mechanism for the lack of heptose may be responsible, and thus 

determination if  these genes are being more highly expressed is needed.

The different trends for the cjl427::CAT mutant that were observed in the 

phagocytic uptake as well as survival within macrophages experiments have also raised
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several interesting questions. As the cjl427::CAT, cjl428::CAT, and cjl430::CAT 

mutants all have the same capsular composition as elucidated by NMR, it was expected 

that they would behave similarly. However, this was not the case, as the c jl42 7::CAT 

mutant behaved like the wild type, while the cjl428::CAT and cjl430::CAT mutants did 

not. Enzyme-linked immunosorbent assays (ELISA) will determine if the macrophages 

are failing to activate in the presence of these different mutants. Alternatively, using 

selective capture of transcribed sequences (SCOTS), it will be possible to determine 

genes that may be differentially expressed within each mutant and the wild type both 

inside and outside the macrophage. This will also aid in the understanding of bacterial 

factors necessary for prolonged survival of C. jejuni within macrophages. ,

Lastly, the work that has been presented as part of this thesis has shown that the 

role of the modified heptose in the C. jejuni CPS is not as straightforward as initially 

imagined. While the work presented here has shed light on some important aspects of C. 

jejuni pathogenesis, more importantly, it has laid the groundwork for future studies in the 

field. Elucidation o f the various factors involved in C. jejuni pathogenesis and 

identification of novel targets for therapeutic agents against C. jejuni will help alleviate 

the symptoms caused by this organism and possibly eliminate this pathogen from the 

world.
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Vectors
pHcl 3 H. pylori shuttle vector 

containing a kanamycin 
resistance cassette

Heuermann and Haas, 
1998

pR Y lll C. jejuni shuttle vector 
containing a chloramphenicol 
resistance cassette

Yao e ta l ,1993

pET23 cj1427:: CAT The CAT cassette (743 bp) 
inserted into cjl427

This study

pBluescriptKS(+):: 16SrRNA- 
28SrRNA

The 16SrRNA-28SrRNA 
intragenic region (1400 bp) 
inserted into 
pBluescriptKS(+)

This study

pBluescriptKS(+):: 16SrRNA- 
28SrRNA (-Xbal)

The 16SrRNA-28SrRNA 
intragenic region (1400 bp) 
inserted into 
pBluescriptKS(+) with the 
additional Xbal site in 
pBluescriptKS being removed

This study

Primers Sequence (5’ -  3’)

Aph3 PI eaasatctsataaacccagcgaacca

Aph3 P2 agestccategaeacatctaaatctaggtac

CatColi P2 gtcggta ccttatttattcagcaagtcttg

CatColi P3 gtcatcgggcccttcctttccaagttaattgc

cjl418 PI cactcttactgcttccatctg

cjl421 PI ggtcaaactgtgatagaacatag

cjl421 P2 ccccattttctaccataagc

cjl421 P3 gctactatatctggacgatg

cjl421 P4 ; gattgcggcctttgtccttc

cjl422 P2 ggctgaatttgggttgagcatgg

cjl422 P3 ggatatagttggagacaagac
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cjl422 P4 gaattggtataaaggaggtgg

cjl423 PI gatattggtgtgcctgagg

cj!427?3 scetcesatccttaattaaaatttecaaagcea

c/1427 P4 etgggtacctagaatgagacttga

cjl427  P5 ctgctagggcccatattctgagatagg

cjl428 P2 aggtaccatgggcatgcaaacaaattcaaaaatataa

cjl428 P3 gctsgatcctcaattttgtgttttatacca

cj!428 P4 gtgeetacctgtagctatctatacgatgc

cj1428 P5 ctgctaeeecccctcaggatacatataccca

c/1430 P2 agggtccatsecaatagaatttgatata

cjl430 P3 gcgtcggatccttatcctttatttttagttgcaa

cjl430 P4 gtgggtaccaaatatgggaaattct

c/l 430 P5 ctgctagggcccattttaaataggttgg

P2 aggtaccatggtgagttatgattatagtttatg

kpsM~P3 gctggatcctagattaattaactttatcattc

kpsMY4 gaagatcttgtatttcctgttcatttgc

kpsM P6 aggtaccatggagttctagcaataaatacatg

Complementation primers
KAN 1427 Rev caaatggttcgctgggtttcttaattaaaatttgcaaagcgatta

KAN For 1427 taatcgctttgcaaattttaattaagaaacccagcgaaccatttg

KAN 1428 Rev tcaaatggttcgctgggtttctcaattttgtgttttataccattc

KAN For 1428 gaatggtataaaacacaaaattgagaaacccagcgaaccatttga
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KAN 1430 Rev caaatggttcgctgggtttcttatcctttatttttagttgcaag

KAN For 1430 cttgcaactaaaaataaaggataagaaacccagcgaaccatttg

kpsM Rev CAT gcaattaacttggaaaggaactcattctttttttaccgccgtt

CAT For kpsM aacggcggtaaaaaaagaatgagttcctttccaagttaattgcg

16S rRNAIGS Top ctggaactcaactgacgctaa

28S rRNA IGS Bottom ctcttgcacattgcagtccta

OmpE prom Fwd IGS ggttggatcacctcctttctctttagatgtttttatccttcgg

OmpE-for-Xbal ectctaeactttaeatetttttatccttc

IGS Rev ompE Prom ccgaaggataaaaacatctaaagagaaaggaggtgatccaacc

28S rRNA Fwd KAN ttagtacctagatttagatgtcaaaagtaataagtctcacaactatt

Aph3P3 gctctagagacatctaaatctaggtac

28S rRNA Fwd CAT gaggaaggaaataataaatggctaaagtaataagtctcacaactatt

C AT-reverse-Xbal gctctagagccatttattatttccttcctc

KAN rev 28S rRNA aatagttgtgagacttattacttttgacatctaaatctaggtactaa

CAT rev 28SrRNA aatagttgtgagacttattactttagccatttattatttccttcctc

1427 For ompE taatttttgacaaggagaattctcatgtcaaaaaaagttttaattacag

1428 Fwd ompE taatttttgacaaggagaattctcatgcaaacaaattcaaaaatatatata

1430 Fwd ompE taatttttgacaaggagaattctcatggcaatagaatttgatatacaa

KpsM Fwd ompE taatttttgacaaggagaattctcatgttaaatgtaatttatgctttattt

ompE pro Rev 1427 ctgtaattaaaactttttttgacatgagaattctccttgtcaaaaatta

ompE Pro Rev 1428 tatatatatttttgaatttgtttgcatgagaattctccttgtcaaaaatta

ompE pro Rev 1430 ttgtatatcaaattctattgccatgagaattctccttgtcaaaaatta

ompE prom Rev kpsM aaataaagcataaattacatttaacatgagaattctccttgtcaaaaatta



16S rRNA Top Primer -  Kpnl seeetacccteeaactcaacteacectaa

28S rRNA Bottom Primer -  BamHI ceffgatccctcttecacattecastccta

23 S rRNA Bottom Notl ataaeaatscssccsctcttecacattecaetccta

Real-time PCR primers

1425 RTBtm accacttggtacatccgaataggt

1425 RT Top tgcgactatatctttatacatacattg

1426 RTBtm ttatcgacataaagcatcttgtaaaaaa

1426 RT Top attgataatcatcagcaagctaggaa

1427 RTBtm ccgcatgcactttatcgatccca v

1427 RT Top ctgatattattattcctctagctgct

1428 RT Top caagcggttgctaaattttttaaagaa

1428 RT Btm aaatcaccttgaaataaatattcctctt

1429 RTBtm gcttgtaccaaagtaattgtattctc

1429 RT Top gaataggtggtaatggagatggtg

1430 RT Top cagatggaattaaatttaag'catgaca

1430 RTBtm tggtggtaataaaataagttgctgatt

Acetyl RTBtm tagccccaatccttgcacaagct

Acetyl RT Top aatgtcttgatcgtcatatgaaaacaa

Cj 1444 RT Top agtggtggattctcaaggaaatattt

Cj 1444 RTBtm tgaatccgaactaagtccttgataaa

Cj 1445 RTBtm aaggtaaatctatatgttgctcttgat

Cjl445 RT top atacattgattgcagcaccaagatat



RTCj 1447c Fwd cctttatttagtggtggaagacatta

RTCj 1447c Rev ttatctctagctgttaaagaaccttg

KpsMRTBtm attacaaaataaatacaaaactcaagtaa

KpsM RT Top gttagagaatatcatcatcaagttatg
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