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Abstract 

 High resolution functional MRI allows for the investigation of neural activity within 

the cortical sheet. One consideration in high resolution fMRI is the choice of which sequence 

to use during imaging, as all methods come with sensitivity and specificity tradeoffs. The 

most used fMRI sequence is gradient-echo echo planar imaging (GE-EPI) which has the 

highest sensitivity but is not specific to microvasculature. GE-EPI results in a signal with pial 

vessel bias which increases complexity of performing studies targeted at structures within the 

cortex. This work seeks to explore the use of MRI phase signal as a macrovascular filter to 

correct this bias.  

 First, an in-house phase combination method was designed and tested on the 7T MRI 

system. This method, the fitted SVD method, uses a low-resolution singular value 

decomposition and fitting to a polynomial basis to provide computationally efficient, phase 

sensitive, coil combination that is insensitive to motion. Second, a direct comparison of GE-

EPI, GE-EPI with phase regression (GE-EPI-PR), and spin echo EPI (SE-EPI) was 

performed in humans completing a visual task. The GE-EPI-PR activation showed higher 

spatial similarity with SE-EPI than GE-EPI across the cortical surface. GE-EPI-PR produced 

a similar laminar profile to SE-EPI while maintaining a higher contrast-to-noise ratio across 

layers, making it a useful method in low SNR studies such as high-resolution fMRI. The final 

study extended this work to a resting state macaque experiment. Macaques are a common 

model for laminar fMRI as they allow for simultaneous imaging and electrophysiology. We 

hypothesized that phase regression could improve spatial specificity of the resting state data. 

Further analysis showed the phase data contained both system and respiratory artifacts which 

prevented the technique performing as expected under two physiological cleaning strategies. 

Future work will have to examine on-scanner physiology correction to obtain a phase 

timeseries without artifacts to allow for the phase regression technique to be used in 

macaques.  

 This work demonstrates that phase regression reduces signal contributions from pial 

vessels and will improve specificity in human layer fMRI studies. This method can be 

completed easily with complex fMRI data which can be created using our fitted SVD 

method.  
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Summary for Lay Audience 

Functional MRI investigates brain function using the changing concentration of blood 

oxygen in the brain. This process has several pitfalls, one of which is inaccurate signals in 

large vessels far from the activating region caused by the pooling together of changing blood 

oxygen signals from many small vessels. One possible solution to these spurious signals is 

using a secondary imaging contrast from the MRI machine, the phase, to estimate these 

pooled signals and remove them. This technique has previously shown success in resting 

state and task based human studies. This thesis extends upon this work by investigating this 

technique at high resolution.  

The first chapter of this thesis describes a method for the combination of phase data 

from a multi-coil radio-frequency array. High resolution fMRI requires a multi-coil radio-

frequency array to acquire a high signal-to-noise image. These arrays require additional steps 

to create a high-quality phase image. This method estimates and corrects offsets for these 

arrays using data routinely acquired throughout the imaging session. 

The second chapter of this thesis goes on to investigate phase regression at high 

resolution in a visual task. This chapter compares images collected with and without phase 

regression as well as a control image technique sensitive to small vessels. The findings show 

that fMRI with phase regression resulted in less pooled signal in the observed activation 

while retaining a higher contrast-to-noise ratio than the control condition.  

The third chapter of this thesis details the study of phase regression in macaques 

during resting state. Macaque fMRI also contains pooled signal and is a common model for 

high resolution imaging studies. Phase regression did not perform well due to the presence of 

system and breathing noise in the acquired images. Several recommendations pertaining to 

quality determination are discussed to improve this experiment and phase regression studies 

generally. 

Overall, this thesis extends the use of phase regression to high-resolution human 

fMRI and designed a multi-coil combination method for this application. A pilot of this 

procedure in animals was completed but requires further correction for phase artifacts, like 

system and breathing noise.   
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Chapter 1  

1 Introduction 

1.1 Background for high resolution study of the human 

brain 

Studying the healthy brain allows us to better understand human behaviour, 

development, and physiology. This progresses our understanding of psychology, 

neuroscience, and medicine. In addition to advancing science, understanding the 

neurophysiology of a healthy human allows us to better understand diseased brains as we 

can compare them to these healthy studies. 

One ongoing area of research in healthy humans aims to improve non-invasive 

imaging of human brain function. Prior to the invention of positron emission tomography 

(PET), human studies of neuroscience were limited to studies of external behaviour, post-

mortem examination, and presurgical patients [1]. Anatomical data was used to develop 

hypotheses of brain function and it was understood that blood flow and brain function 

were linked through surgical observation [1]. Development of PET further improved 

imaging of brain function, though it required the use of exogenous radioactive tracers. 

Finally, in the early 1990s, the breakthrough development of functional MRI (fMRI) 

provided an endogenous contrast sensitive to changes in blood oxygen concentration that 

changed the landscape of functional imaging of the brain [2]. 

Functional MRI provided a method to image healthy humans non-invasively, 

repeatedly, and with no radiation exposure or other long-term side effects. This allowed 

for detailed investigations into novel experimental paradigms involving complex tasks, as 

well as repeated experiments important for studying long processes such as the 

development of motor skills [3]. Many physics developments in fMRI have led to improved 

resolutions, acquisition times and image quality since its inception [4–6]. Functional MRI 

has also been supported by parallel development of higher field magnets which drive 
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improvements in resolution and image quality [7]. In combination, these developments 

have allowed for state-of-the-art non-invasive imaging of the human brain.  

 This higher resolution and improved SNR enable imaging of cortical layers and 

columns, structures that have been shown to provide information as to whether a signal is 

an input or an output as well as revealing how the cortex is internally organized [8]. 

Studying inputs and outputs of cortex gives us knowledge of information flow within the 

brain and this can be applied to investigate hypotheses developed in invasive 

electrophysiology work where the condition could be affected by the experiment [9] as 

well as study how information transfer is different in disease models [10]. This thesis 

contributes to a constantly advancing field of high-resolution fMRI by (1) outlining a 

method that can be used for the acquisition of high-resolution EPI phase data, (2) 

examining the effects phase regression has on a task based BOLD response at high 

resolution, and (3) piloting phase regression in a macaque model, a common target for high 

resolution fMRI work [11,12]. 

1.2 The structure of the human cortex  

 The mammalian brain is organized into three major structures: the cerebrum, the 

brainstem, and the cerebellum. The cerebrum is primarily responsible for processing many 

unique human cognitive abilities and is made up of two tissue types: white matter, which 

primarily contains axons connecting neural bodies to their synapses; and grey matter, 

where neurons reside, and the cognitive processes of the cerebrum occur [13]. Grey matter 

resides on the surface of the white matter and displays laminar structure with neuronal and 

vascular layers that run parallel to the grey matter surface [14]. In some areas of the cortex, 

grey matter also exhibits functionally organizing columns that show tuning to different 

stimuli such as visual stimulus orientation [15]. 

The laminar structure of the cortex was determined through examination of the 

different neuronal and glial cell types as well as their physical connectivity as a function 

of cortical depth. The majority of cortical areas exhibit a common six-layer structure, and 

the input and output structure has been simplified into the canonical microcircuit, however 
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this may not be consistent across the whole brain [16]. In the canonical microcircuit the 

inputs to a cortical area terminate in layer IV, whereas the cortical outputs originate in 

layers I-III, and layers V-VI project neurons into subcortical structures. For example, the 

laminar structure of the primary visual cortex is displayed in Figure 1.1. 

 

Figure 1.1: Laminar Structure of Visual Cortex. a) Review of the inputs and outputs of 

the laminar structure of the primary visual cortex. LGN is the lateral geniculate nucleus 

which contains parvocellular (P-cells), magnocellular (M-cells), koniocellular (K-cells) 

cells. These cells process information from rods, cones, and short-wavelength cones 

respectively. b) Nissl stain of the primary visual cortex to show different neuronal 

patterning as a function of layer, image sourced from Webvision: The Organization of the 

Retina and Visual System [17] © Webvision and reproduced under the CC BY-NC 4.0 

license. 

 In addition to cortical layers, some brain areas, such as the visual cortex, display 

task specific cortical columns [15]. These functional projections outline areas specialized 

to a certain kind of input. For example, the primary visual cortex (V1) displays columnar 

sensitivity to orientation and ocular dominance [18], and the secondary visual cortex (V2) 

displays columnar sensitivity to colour [19]. These cortical substructures provide a way of 

examining the processing within the visual cortex to determine sources of communication 

as well as the content of the communicated information. For example, the distribution of 
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ocular dominance across layers provides clues as to how information from both eyes is 

merged into a single representation of the visual field [15].  

This complex neuronal structure is supported by an extensive vascular network that 

delivers oxygen and other materials to the brain. At any given time 20% of the total blood 

supply is in the brain [20]. The vascular organization of the cortex begins with the major 

arteries of the brain which feed pial arteries running along the surface of the cortex. Pial 

arteries are made up of smooth muscle cells and endothelium. These pial arteries subdivide 

and feed penetrating arterioles which penetrate the cortical sheet perpendicular to the pial 

vessels. Penetrating arterioles feed the capillary network surrounding and directly supply 

the cortical neurons with oxygenated blood. Capillaries, 5-10 µm in diameter, lack smooth 

muscle cells, and this allows for gas and ion exchange through their endothelium. These 

capillaries drain into ascending venules (80-170 𝜇m, no smooth muscle) and pial draining 

veins (>280 µm, smooth muscle present) and out to the sinuses of the brain [21]. The 

vessels with the highest importance to fMRI are the pial veins, penetrating veins, and 

capillaries which can be seen in Figure 1.2. This is because these vessels undergo changes 

in blood oxygenation in response to neural activity and are the source of the blood 

oxygenation level contrast in the brain. 

 

Figure 1.2: Example cortical vessel distribution of the visual cortex. Arrow points to 

the calcarine sulcus. Image sourced from Cortical Blood Vessels of the Human Brain, 

Duvernoy et al. [21] © Wiley and reproduced with permission of the copyright holder.  
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1.3 MRI Physics 

 The MRI system relies on three magnetic fields: 𝐵0, the main magnetic field; 

𝐵1
+/−

, the excitatory and receive fields from an RF coil; and 𝐺, the gradient fields used to 

form an image. These three fields work in tandem to produce an image, but the 

fundamentals of nuclear magnetic resonance can be applied using only 𝐵0 and 𝐵1
+/−

. 

These two fields allow for information about the properties of matter being imaged to be 

acquired and when paired with gradients can be used to produce an image [22].  

1.3.1 Nuclear magnetic resonance 

 Spin is a fundamental property of matter that takes values of ½ integer multiples. 

A nucleus’ spin number is based on the number of charged particles in it. Spin gives rise 

to a nucleus’ angular momentum and as a result all nuclei with a nonzero spin have a 

magnetic moment. This follows the following equation:  

�⃗� = 𝛾𝐽 (1.3.1) 

where �⃗� is the magnetic moment, 𝐽 is the angular momentum and 𝛾 is the 

gyromagnetic ratio which varies depending on the nucleus. When a nucleus with a non-

zero spin is placed in a magnetic field, its magnetic moment begins to precess parallel (low 

energy state) or anti-parallel (high energy state) to that field. Multiple nuclei placed in the 

field have their magnetic moments sum to form a net magnetization which precesses 

according to the Bloch equation: 

𝑑�⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗� × �⃗⃗� (1.3.2) 

where �⃗⃗⃗� is the net magnetization of the nuclei, and �⃗⃗� is the applied magnetic field. 

The frequency of this precession, 𝜔, is determined by that nucleus’ gyromagnetic ratio.  

𝜔 = 𝛾𝐵 (1.3.3) 
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When many precessing nuclei are considered across a whole system there is a 

measurable difference in the number of nuclei in the higher versus lower energy state as 

determined by the Boltzmann distribution shown below: 

Δ𝑁

𝑁0
=

ℏ𝛾𝐵0

2𝑘𝑇
(1.3.4) 

where Δ𝑁 is the number of excess nuclei in the low energy state, 𝑁0 is the number of nuclei 

in the system, ℏ is the reduced Plank’s constant, 𝐵0 is the strength of the magnetic field of 

the main magnet, 𝑘 is Boltzmann’s constant, and 𝑇 is the temperature of the system. This 

fraction of excess nuclei is small, for example at 7T water has a Δ𝑁

𝑁0
= 2.3𝑥10−5. These 

excess nuclei will lead to a net magnetization according to Curie’s law (shown here for a 

spin ½ system). 

𝑀0 = 𝑁0

ℏ2𝛾2𝐵0

4𝑘𝑇
(1.3.5) 

At equilibrium, the magnetization will point in the direction of the main magnetic field, as 

depicted by �⃗⃗⃗� = 𝑀0�̂�. In order to obtain a signal from the system it is necessary to perturb 

it. To do this, excitatory coils are placed close to the system and an oscillatory current with 

frequency 𝜔 is applied, 𝐵1
+. The frequency 𝜔 is in the radio frequency range. This current 

is applied in a perpendicular direction to 𝐵0 which changes the direction of the overall field 

experienced by the net magnetization, �⃗⃗⃗�,  and causes it to precess around 𝐵1
+. This current, 

commonly referred to as a pulse, is applied only briefly in order to move the magnetization 

to a desired offset angle from �̂�, called a flip angle. One example of this is a 90o pulse 

which moves the magnetization to a maximum in the x-y plane transverse to 𝐵0. When the 

current is turned off, �⃗⃗⃗� relaxes back to its equilibrium direction of �̂� and, as result of 

�⃗⃗⃗� moving in a magnetic field, produces an electromotive force detectable by receiver coils, 

𝐵1
−, in the form of a measurable current.  

 Three constants govern the relaxation of �⃗⃗⃗� back to equilibrium. These constants 

are longitudinal relaxation, reversible transverse relaxation, and irreversible transverse 

relaxation. The longitudinal relaxation constant, 𝑇1, is the recovery of the longitudinal 
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component of the magnetization back to its equilibrium value along �̂� and is the longest of 

the three constants. This relaxation is caused by the interaction of the precessing spins and 

their surrounding lattice and cannot be reversed with RF pulses. The reversible transverse 

relaxation constant, 𝑇2
′, is caused by static magnetic field inhomogeneities and represents 

the amount of �̂�-�̂� dephasing that can be reversed with 180o radio frequency refocusing 

pulses. The reversal occurs due to the rotation of the spins around the �̂�-�̂� plane causing 

them to rephase together to a maximum signal, called an echo. The irreversible transverse 

relaxation constant, 𝑇2, is due to spin-spin interactions causing irreversible dephasing in 

the �̂�-�̂� plane. Together 𝑇2 and 𝑇2
′ combine to become 𝑇2

∗, the apparent transverse relaxation 

constant, which is the dominant constant for decay in accelerated imaging such as gradient-

echo echo planar imaging (GE-EPI). 

1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2
′ (1.3.6) 

 These constants can be added to the Bloch equation as follows: 

𝑑�⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗� × �⃗⃗� −

1

𝑇1

(𝑀0 − 𝑀𝑧)�̂� −
1

𝑇2
𝑀⊥
⃗⃗ ⃗⃗ ⃗⃗ (1.3.7) 

 

1.3.2 NMR and Phase 

The net magnetization, �⃗⃗⃗�, is often represented as a complex signal as it is 

attempting to represent the position of a vector on a plane (the transverse plane). This is 

shown in the following equation: 

�⃗⃗⃗� = 𝑀𝑥�̂� + 𝑖𝑀𝑦�̂� = 𝑀𝑒−𝑖𝜑 (1.3.8) 

Here the phase, 𝜑, represents the position on the transverse plane. Phase is a function of 

frequency shown below: 

𝜑 = ∫ 𝑑𝑡 𝜔(𝑡) (1.3.9) 
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where 𝜔 is frequency of precession and 𝑡 is time. The frequency of precession is affected 

by any local field inhomogeneities which can arise from the system itself or local 

characteristics of the tissue being imaged. In tissue, phase is affected by local field 

perturbing compounds such as iron [23] or myelin [24], in addition to factors that cause 

large changes in susceptibility, such as air tissue interfaces or effects caused by 𝐵0 or 𝐵1
+ 

inhomogeneities. These effects may lead to complications when measuring phase data, and 

therefore must be corrected prior to downstream analysis [25]. 

1.3.3 Magnetic Resonance Imaging  

MR imaging cannot be completed using a homogeneous magnetic field and 

homogeneous RF coils alone because there is no spatial discrimination, only one spatially 

indistinct signal is generated for each excitation and no image is formed. The gradient field, 

G, allows for spatial encoding of the MR signal. To achieve this, gradient coils apply a 

selection of spatially varying magnetic fields (
𝑑𝐵𝑧⃗⃗ ⃗⃗ ⃗

𝑑�⃗�
,

𝑑𝐵𝑧⃗⃗ ⃗⃗ ⃗

𝑑�⃗⃗�
,

𝑑𝐵𝑧⃗⃗ ⃗⃗ ⃗

𝑑𝑧
) in combination with the RF 

excitation in order to perturb the frequency of the precessing magnetization as a function 

of space. This causes the spins to accrue phase as a function of their spatial position. This 

phase accrual takes the following form: 

𝜙(𝑟, 𝑡) = 𝛾 ∫ 𝐺(𝑡′)𝑟𝑑𝑡′
𝑡

0

(1.3.10) 

where 𝜙 is the accrued phase, 𝐺 is an example gradient, 𝑟 is a spatial position and 

𝑡 is the moment in time the phase is calculated. Magnetic resonance imaging data is 

collected in k-space which is a spatial frequency space that is defined as follows: 

𝑘(𝑡) =
𝛾

2𝜋
∫ 𝐺(𝑡′)𝑑𝑡′

𝑡

0

(1.3.11) 

where 𝑘(𝑡) is the signal for a given spatial frequency at time 𝑡. This means the 

phase accrued from gradients can be represented as follows: 

𝜙(𝑟, 𝑡) = 2𝜋𝑘(𝑡)𝑟 (1.3.12) 
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This phase definition can be used to form the MRI signal equation: 

𝑠(𝑘, 𝑡, 𝑇2
∗, 𝑇1) = ∫ 𝑑𝑟 �⃗⃗⃗�(𝑟,⃗⃗⃗ 𝑡, 𝑇2

∗, 𝑇1)𝑒−𝑖𝜙(𝑟,𝑡)𝑡 = ∫ 𝑑𝑟 �⃗⃗⃗�(𝑟, 𝑡, 𝑇2
∗, 𝑇1)𝑒−𝑖2𝜋𝑘(𝑡)𝑟𝑡 (1.3.13) 

where �⃗⃗⃗� is the magnetization at a location 𝑟 which will include the history of the 

magnetization (aka the Bloch equation solution). Equation 1.3.13 is a Fourier transform of 

�⃗⃗⃗� and an inverse Fourier transform can be applied to produce an image of 𝑀. Using the 

gradients to manipulate the signal’s position in k-space allows for acquisition of different 

spatial frequencies of the spin distribution. This eventually leads to collection of an entire 

spatial frequency and density map in k-space which can be transformed using the inverse 

Fourier transform to get an image in real-world space.  

1.3.4 Echo formation 

As nuclei relax, they can be manipulated through the application of RF excitatory 

signal or gradients to form a maximum magnetization called an echo. These echoes can be 

produced two ways, gradient-echo, and spin-echo. Gradient-echo applies a dephasing 

gradient after RF excitation and then applies a rephasing gradient to produce an echo in the 

middle of the signal acquisition. This echo reforms with a decay constant of 𝑇2
∗ . Spin-echo 

uses an RF refocusing pulse between the dephasing and rephasing gradients which rotates 

�⃗⃗⃗� around the transverse plane and reverses the 𝑇2
′ effects leaving a signal contribution that 

is weighted by 𝑇2. A pictorial representation of these two echoes as played out in k-space 

is shown in Figure 1.3a and b. Echoes are usually designed to rephase the magnetization to 

a maximum at kx=0, obtaining an entire line of k-space by acquiring data during both signal 

rephasing and dephasing. This linear gradient application during an echo is called 

frequency encoding and is used to fill the kx direction of k-space. Phase encoding applies 

a gradient to prior to the application of the frequency encoding gradient in order to change 

the signal’s position along ky. By combining application of frequency encoding and phase 

encoding gradients a k-space image can be acquired one line at a time and then performing 

an inverse Fourier transform will result in an acquired image.  
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Figure 1.3: Example k-space trajectories. a) Gradient echo trajectory, a dephasing 

gradient is applied (green) to move to the start of a line and then a rephasing gradient is 

applied (black) with the echo centered on kx=0. b) Spin echo trajectory, a dephasing 

gradient is applied (green) to move to the start of a line and then a refocusing pulse (grey) 

is applied to flip the magnetization to the opposite end of k-space as well as refocus T2
′ 

dephasing, finally a rephasing gradient is applied (black) with the echo centered on kx=0. 

c) Example GE-EPI trajectory, opposed to one line of acquisition per excitation many lines 

are acquired. After the initial phase encoding gradient (green), small gradient blips are 

applied in the y direction to allow for successive line collection from a single RF pulse, 

collecting the whole plane of k-space from a single excitation. d) Example SE-EPI 

trajectory where a refocusing echo is applied prior to image acquisition. Figures modified 

from [22] ©Wiley and reproduced with permission of the copyright holder. 

1.3.5 Echo Planar Imaging 

 When completed a single k-space line at a time MR imaging is too slow to be used 

for the whole brain at the temporal resolution required for functional imaging as it takes on 

the order of minutes to form a single image. The most common imaging method for fMRI 

is the use of echo planar imaging (EPI), a pulse sequence that typically reads out an entire 

�̂�-�̂� plane of k-space from a single excitation opposed to a single line per excitation (Figure 

1.3c and d). This is accomplished by using a small phase encoding gradient pulse offset 

prior to the collection of each frequency encoding line in order to alter the spatial frequency 

sampled in the �̂� direction for each line acquired. This method aims to center the echo on 

kx=0 and ky=0. This results in one direction of k-space being acquired much slower than 

the other direction which can result in blurring but lowers acquisition time to well under a 

second.  
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1.3.6 Multiple coil arrays 

Further improvement in fMRI speed and signal-to-noise are achieved by use of the 

multi-element RF coil receive array. Radio frequency receive coil arrays benefit from 

higher SNR, compared to a single bird cage coil positioned around the head [6]. Each 

receive coil is typically a loop with a complex sensitivity profile that is proportional to loop 

radius [6]. Although these loops are not sensitive to the whole brain independently, they 

can be combined to form a high SNR image. This is especially important at ultra-high field 

(7T and above) where traditionally built bird cage coils show interference or dark spots in 

the images due to the shorter wavelength of the RF at higher frequencies [7]. Use of data 

acquired through an array of coils with a selection of coil sensitivity profiles allows for 

these wavelength effects to be reduced resulting in higher SNR and more uniform images.  

Leveraging multiple coil data relies on knowing the complex coil sensitivity 

profiles to allow for combination without signal interference [26]. This combination is well 

defined for a magnitude image where sum-of-squares combination uses the magnitude of 

the signal itself as an estimate of the coil sensitivity [6]. This combination has the advantage 

of being simple and computationally efficient but can result in higher noise in regions with 

low coil sensitivity. Unlike magnitude combination, phase combination across multiple 

coil receivers requires special techniques. Sum-of-squares combination cannot be used as 

it results in an image with a phase of zero. Phase combination therefore requires an 

estimation of the coil sensitivity for each receive coil so it can be removed prior to a 

complex sum. These methods are reviewed in the introduction of Chapter 2. 

 One additional benefit of multiple coil arrays is they also allow for additional 

accelerations through parallel imaging or accelerated excitation. Two main forms of 

acceleration used in this thesis are generalized auto calibrating partial parallel acquisition 

(GRAPPA) [4] and multiband [5]. GRAPPA uses calibration lines collected over multiple 

coils to interpolate between under sampled high frequency lines of k-space. This is 

different than multiband which uses an multifrequency excitation pulse created to excite 

multiple slices and then separates this aliased signal using sensitivity encoding [27]. 
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Multiband and GRAPPA are the two most common on the Siemens scanners in the Centre 

for Functional and Metabolic Mapping. 

1.4 Blood Oxygen Level Dependent Contrast 

Blood oxygenation level dependent contrast (BOLD) is an MRI measure of 

physiological vascular effect resulting from brain activity. Neuronal firing near an area of 

interest causes a metabolic cascade leading to vascular changes that result in a decrease in 

the deoxyhemoglobin concentration which, due to its difference in susceptibility from 

surrounding tissue, is ultimately detectable on an appropriately acquired MR image due to 

changes in relaxation times. Images with changing BOLD contrasts can be preprocessed 

and analyzed to answer questions discussed in section 1.1. 

1.4.1 Metabolism and stimulus response 

The physiological BOLD response is composed of the following components: 

stimulus to a brain area of interest, increases in neuronal firing, a metabolic response to 

neuronal firing, vasodilation causing an increase in cerebral blood volume (CBV), an 

increase in cerebral blood flow (CBF), and an increase in the concentration of oxygenated 

hemoglobin and decrease of deoxygenated hemoglobin [28]. When examining this 

cascade, it is important to understand the tremendous amount of energy that neural activity 

demands. Seventy four percent of the adenosine triphosphate (ATP) in the brain is used to 

create and recover from action potentials of neurons [20]. A constant and large supply of 

oxygen and glucose is required to allow for the aerobic production of ATP to sustain this 

energy demand. Cortical neural activity results in a cascade of vasoactive substances and 

electrical signals to the cortical vessels which triggers dilation in both the pial arteries and 

descending arterioles. This change was measured to be 33% in diameter [29]. This increase 

in CBV lowers vascular resistance and therefore there is an increase in CBF which results 

in a delivery of more oxygenated hemoglobin to the local area. There is significantly more 

oxyhemoglobin delivered to the area than is used by the active neurons [28]. These changes 

in the concentration of oxy-/deoxy-hemoglobin cause two effects detectable with MR 

imaging. First, a local shift in magnetic susceptibility that is detectable on MR images as 
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an increase in signal intensity to the local area [28]. Second, the 𝑇2 of blood increases as 

the concentration of oxygenated hemoglobin increases causing additional signal 

brightening in T2 or T2
* weighted images [30].  

This BOLD response is characterized by three temporal phases: an initial dip, the 

main BOLD response, and a post stimulus undershoot. The initial dip is a smaller short 

onset negative response generally lasting 1-2 seconds thought to be due to the initial 

demand for oxygen that occurs before the CBF increases and compensates. The initial dip 

has been observed to have greater spatial specificity than the main BOLD response [20]. 

The main BOLD response is the inflow of oxygenated blood due to the changes in CBV 

and CBF described above and takes on the order of 6 seconds to reach its peak. After this 

response peaks there is a post-stimulus undershoot where the area slowly returns to baseline 

due to the slow recovery of CBV to baseline levels. 

1.4.2 Frequency response to BOLD changes 

Deoxyhemoglobin has a magnetic susceptibility difference of 0.18 ppm relative to 

surrounding tissue and oxyhemoglobin [31]. This susceptibility difference leads to a signal 

dephasing that is sensitive to the blood oxygenation fraction, or the BOLD effect. This 

BOLD signal change has two main effects on frequency: intravascular and extravascular 

[32]. The intravascular frequency is determined using this equation: 

𝜔𝑖𝑣 = 2𝜋𝛾Δ𝜒𝐵0𝐻𝑐𝑡(1 − 𝑌)
3𝑐𝑜𝑠2𝜃 − 1

3
(1.4.1) 

where 𝛾 is the gyromagnetic ratio for a proton, Δ𝜒 is the change in magnetic susceptibility 

from the BOLD effect (0.18 ppm), 𝐵0 is the strength of the main magnetic field, 𝐻𝑐𝑡 is the 

subject’s hematocrit (percentage of red blood cells in the blood), 𝑌 is the fractional oxygen 

saturation of blood, and 𝜃 is the angle of the vessel orientation to B0. Although the 

deoxyhemoglobin concentration is changing inside the vessel only, there is also an inverse 

squared frequency response outside the vessel. The equation below explains the 

extravascular frequency distribution: 
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𝜔𝑒𝑣 = 2𝜋𝛾Δ𝜒𝐵0(1 − 𝑌) (
𝑎

𝑟
)

2

𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙 (1.4.2) 

where a is the vessel radius, r is the cylindrical distance and 𝜙 is the angle of B0 to r 

projected into the plane perpendicular to the vessel. These angles and radii are outlined on 

Figure 1.4. Importantly, both of these frequency responses have a dependence on the angle 

of the vessel to B0, 𝜃. This results in an orientation dependence of the BOLD signal being 

observed in GE-EPI imaging as most of the GE-EPI signal comes from pial vessels running 

along the surface of the cortex. There is high BOLD signal from cortical sections which 

are perpendicular to the main magnetic field and a lower BOLD signal when parallel due 

to the 𝑠𝑖𝑛2𝜃 term in the extravascular equation. This effect has been shown to result in a 

signal difference across orientations of up to 40% [33]. 

 

 

Figure 1.4: Angle definitions for a vessel in a magnetic field. Figure reproduced from 

Menon, MRM, 2002 [34] ©Wiley and reproduced with permission of the copyright holder. 

1.4.3 Preprocessing of fMRI data 

Analyzing the BOLD response requires acquisition of a series of susceptibility-

weighted images which need preprocessing prior to further analysis. Functional MRI 
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preprocessing traditionally tries to correct for three main sources of noise in the image 

series: motion artifacts, physiological artifacts, and system artifacts.  

1) Motion artifacts due to subject movement are usually corrected using tools that 

use image-based registration to align the fMRI series to a single reference image 

[35]. These tools generally correct for linear errors only and do not incorporate 

sheer or stretch. The registration parameters can be observed for spiking or high 

motion as a source of quality assurance. Another quality assurance method for 

motion correction is reviewing the timeseries for signal spikes post correction 

and examining the noise in the image both before and after correction. Noise at 

the edges should be reduced in the motion corrected case compared to the 

uncorrected case [36]. 

2) Physiological artifacts such as frequency changes due to breathing and cardiac 

pulsatility can interfere with BOLD analysis. This is especially true as subjects 

tend to change their breathing pattern in response to tasks with high cognitive 

loads. Physiological correction can be achieved by regressing out recorded or 

estimated physiological signals from the BOLD data. One example, 

RETROICOR, takes high temporal resolution traces of a cardiac signal (usually 

from a pulse oximeter) and a breathing signal (usually from a respiratory belt) 

and creates regressors with identical timing to the images for removal of these 

signals [37]. This is completed by identifying the peaks in the signal and 

creating sine waves matching those frequencies. This allows for the signal 

created to match the peaks with an arbitrary phase offset allowing for a delay 

which may compensate for signals occurring between the measurement location 

and the brain. Another method to conduct physiological correction is by 

estimating the physiological signal from the collected BOLD data. In general, 

these methods identify a mask of voxels that do not carry any neurological 

signals, such as the white matter or ventricles. Subsequently, these masks can 

be used to extract nuisance timeseries (i.e., by calculating the average or 

principal component time courses) which can then be used as an estimate of 

physiological noise. An example of this is CompCor which estimates noise 

regressors from a white matter mask or a mask of noisy voxels [38]. 
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3) System noise most frequently comes in the shape of spikes across only a few 

volumes, frequency drift, or oscillatory noise. Spikes are detected by a de-

spiking tool such as fsl_motion_outliers [35]. This creates a regressor of the 

problem volumes allowing them to be discounted from analysis. Frequency 

drift is usually removed using a low pass filter on the time series data and 

systematic frequencies can also be present and are usually detected and 

eliminated through corrections such as CompCor or ICA denoising [39].  

1.4.4 Task based BOLD responses 

Once preprocessing is completed, the data is ready to be fit to the expected 

hemodynamic response function (HRF). This HRF can be convolved with a stimulus 

waveform to estimate the expected voxel response to a stimulus design. This is possible 

because the HRF response has been shown to have linear characteristics, provided the 

space between new stimuli are at least two seconds in length for a one second event [40]. 

Studies have found that the HRF is somewhat inconsistent across subjects making it 

necessary to correct for these variations [41]. This can be corrected by allowing the 

convolved HRF and its derivative to both be used for signal fitting [35]. This convolved 

HRF, its derivative and physiological regressors are then fit to a general linear model. This 

fit results in estimations on a per voxel basis of the BOLD activity usually expressed as 

percent BOLD change or a t-statistic.  

Voxel-wise estimates of the fit can be used to conduct inference on brain regions 

that are relevant to a specific task-based paradigm. Inference is usually completed using 

group statistics after multiple comparisons correction. This is done through different 

methods depending on the software package. For example, one such package FSL, utilizes 

gaussian random field theory of activated clusters to determine each cluster’s significance 

or permutation testing to calculate a data driven threshold for significance [35]. Multiple 

comparison correction methods are an important step in fMRI analysis as analysis is 

performed across thousands of voxels in the brain. 
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1.4.5 Resting State BOLD responses 

In addition to examining BOLD responses to a task there is an alternative paradigm 

aiming to measure BOLD effects in the absence of a stimulus, resting state fMRI. When 

the brain is not directly responding to an input, the neurons still fluctuate in activity and an 

activity-correlated BOLD fluctuation can still be measured, however its response shape 

cannot be well characterized as in the case of task based BOLD responses. Resting state 

fMRI is incredibly popular as a basic science and clinical research tool as it does not require 

additional input from subjects who may be unable to perform tasks in the scanner. Brain 

areas with high temporal correlation to each other define various resting state networks, 

that have been shown to correspond well with known functional task activation patterns, 

such as the motor or visual networks and more complex tasks with higher cognitive load 

have shown similar patterns to the salience and default mode networks [42]. Changes in 

these networks have been shown throughout development and in patient vs control 

populations [43,44].  

 There are two traditional methods for analysis of resting state BOLD data: seed-

based analysis and spatial independent component analysis (ICA). Seed based analysis uses 

the signal from a specific region (the seed) and examines its correlation with the rest of the 

brain. When these correlations are higher it indicates the signal time courses from the two 

brain regions are synchronized which is inferred to mean these two regions are functionally 

connected [42]. Using a seed from a region known to associate with a specific network will 

result in high correlations with the areas of that network. 

As an alternative to seed-based correlation, it is possible to perform spatial 

independent component analysis on the resting state data. Independent component analysis 

decomposes an image series into various independent spatial maps and associated time 

courses as well as their mixing matrix. These maps and time courses can be summed using 

the mixing matrix to create the original input. When applied to the resting state images 

from multiple runs ICA will produce a series of resting state networks and their associated 

patterns for an individual. This method can also be extended to find common spatial 

patterns across a group with can then be subdivided into specific populations (example 
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patient versus control) and determine if there are spatial network differences between 

groups [45]. 

A current limitation of resting-state analyses is the lack of clarity with regards to 

which region drives the synchronicity between two regions. High resolution fMRI may 

provide additional information which helps bridge this gap, to better understand the 

directionality of functional connectivity. For example, if the activity is in an output layer 

in region A and an input layer in region B, then it is probable region A is driving region B. 

An example of this has already been shown in the motor cortex [46]. 

1.4.6 High resolution BOLD analysis 

 Performing fMRI experiments aimed at discriminating layers and columns requires 

several extra considerations above the preprocessing and modelling described above. 

These include projecting functional data onto a surface at varying depths, sampling data 

across layers, registration and surface generation at high resolution and reducing pial 

surface bias from laminar profiles.  

 Surface projection is a common part of fMRI analysis at both high and low 

resolutions. By moving from a volume to a surface it is possible to reduce the geometrical 

complexity of the brain through inflation to smooth the sulci and gyri [47]. Surface 

projection is useful when examining features like retinotopic projections onto V1 [48] or 

correlating BOLD signal with cortical features like vessels and curvature [49]. At high 

resolution, this is made more complex by the addition of depth, as where to sample a 

surface in the cortical sheet is an open area of research. The easiest method is equi-distant 

sampling, where the amount projected along a surface normal is the same for every part of 

cortex. There is a competing model, the equi-volume model which shows more anatomical 

accuracy by preserving the volume of the cortical sheet between layers regardless of 

surface curvature. This has shown greater anatomical accuracy [50]. Laminar sampling is 

also done through projection of layers using either equi-distant or equi-volume projection 

and then sampling the voxels along those layers to create a profile of an area across cortical 

depth. This sampling is dependent on the number of layers used as well as the projection 

model [51]. 
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 High quality surface generation and registration is required for these surface 

analyses to be successful. Surface generation is an open area of research but is typically 

completed using a 𝑇1weighted image, with the software package Freesurfer and manually 

edited [52]. A 𝑇2 weighted image can be included for refinement of the pial surface.  

Registration is also an ongoing field but at high resolutions has included the generation of 

an EPI space structural image [53], using registration of the surface boundaries [54] and 

using field map correction to prevent EPI distortions [35].  

 Finally, high resolution analysis that uses gradient echo or spin echo must contend 

with pial surface bias. This bias is a result of the pial vessel signal extending within the 

cortex through the extravascular bold effect. This is discussed in the next section. 

1.4.7 Venous Correction of the BOLD Response 

 The BOLD response is constrained by vascular physiology. Due to the summation 

of oxyhemoglobin changes in many vessels, task based BOLD changes are observed not 

only in capillaries but also in draining venules and sinuses. This venous BOLD response is 

occurring as many capillaries drain into the same venous bed [55]. In order to obtain 

specificity to the capillary bed closest to the neurons of interest, it is required to correct for 

this large venous response. This is of upmost importance in laminar fMRI where you are 

trying to discriminate signal to layers <<1 mm in thickness.  

The choice of MR sequences can help mitigate the effects of large pial vessel 

signals on the cortical surface. Varying the length of the echo train in an SE-EPI sequence 

will in turn, affect microvascular weighting of the image [12], however this technique 

comes at a cost of sensitivity. This effect results in a reduction in signal of in grey matter 

of 22% but reduces vessel signal by 81% [56]. Other sequences such as GRASE combine 

a gradient and spin echo train to help improve the resulting sensitivity [57]. By interleaving 

a refocusing spin echo pulse into a gradient echo readout the vascular weighting is reduced 

over the acquisition. VASO uses an inversion to null the blood prior to measurement and 

in this way can create a measure of CBV opposed to the BOLD contrast in order to measure 

neural activity. This has shown extreme efficacy at high resolution for layer-based studies 

[46,58]. However, GE-EPI remains the most popular and sensitive sequence for fMRI and 
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allows for wide uptake of laminar imaging across sites, and so solutions aimed at GE-EPI 

are the focus of this thesis.  

In GE-EPI, this venous BOLD response is typically larger than the response of 

BOLD in tissue [56]. Several methods have attempted to reduce this bias after imaging 

such as temporal deconvolution [59], masking [60], modeling of the laminar PSF to reduce 

the effects of vascular drainage [61] and phase regression [34]. This bias can be suppressed 

to various degrees depending on the paradigm and is currently an ongoing field of research. 

 Venous correction for low resolution studies is often skipped as one typically 

applies spatial smoothing of the fMRI images and the voxel size already encompasses the 

entire cortical thickness. As a consequence, both veins and capillaries will exist within the 

large voxels of the resultant image and smoothing blurs these vessel populations further. 

This measures a population containing both venous and capillary BOLD effects but greatly 

increases your point spread function, potentially obscuring your activity of interest.  

1.5 BOLD and Phase 

 Gradient echo EPI based fMRI has phase information which is usually discarded 

without coil combination. This phase information is collected as part of the sequence and 

once combined, can produce valuable insights into what is happening during the sequence 

and has been used several ways to refine BOLD techniques. Phase of EPI trains can be 

used to correct for field distortions [62], physiological noise [63], macrovascular filtering 

[34] or detection of fMRI signals using complex data or phase data [64].  

 The phase of GE-EPI images has been used for realignment and distortion removal 

due to local field changes from physiology like breathing. Phase images are spatially 

unwrapped and smoothed to determine the field perturbations across time and create a 

dynamic field map. This dynamic field map can be used with conventional EPI distortion 

correction techniques to remove GE-EPI distortions [62]. 

 Phase data from EPI sequences contains significant signal from physiology which 

can be used to clean the data. Physiological signal cleaning can be performed by using 
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voxels with a high magnitude and phase correlation (assumed to be due to motion or 

breathing) and performing principal component analysis on those voxels to determine a set 

of regressors representative of these physiology changes [63]. This method, HighCor, is an 

extension of the CompCor methodology [38].  

 In addition to containing information about the physiology and distortions much 

work has been completed investigating whether phase contains meaningful BOLD signal. 

Recent work investigating using phase for resting state fMRI showed weak functional 

connectivity when compared to established magnitude networks [64]. The low functional 

connectivity could result from the known vessel orientation dependence of extravascular 

phase signal. This has also been investigated by the same group using phase to provide 

higher spatial specificity across a group when using complex ICA [65]. This method has 

shown greater sensitivity to spatial changes compared to magnitude only fMRI when 

comparing patients with schizophrenia and controls [66].  

 Functional quantitative susceptibility mapping (fQSM) has been investigated in 

order to evaluate the BOLD response’s relationship to magnetic susceptibility [67]. 

Functional QSM deconvolves the phase images with the dipole kernel to produce maps of 

the change in magnetic susceptibility in response to a task. This change in magnetic 

susceptibility can be used to quantify the BOLD response.  

 Complex fMRI, using both the magnitude and phase data to create activation maps 

has shown maps with higher similarity to anatomy than the magnitude only model [68]. 

The motivation behind this is that the gaussian noise structures of complex data allows for 

stronger fits and higher power models. This technique has also been shown to perform 

better in low SNR regimes [69]. 

 This thesis focuses on using phase data to remove venous signal from magnitude 

data prior to data analysis. This technique was proposed by Dr. Menon in 2002 [34] and 

has seen many extensions and studies since. Phase regression relies on the fact that voxels 

containing large vessels will provide a meaningful phase signal and voxels containing 

small vessels will not. In a voxel with many small vessels within it, such the capillary beds 

of the cortex, BOLD related frequency offset (Equation 1.4.1-2) will sum to zero due to 
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the varying orientations of these vessels. At the other extreme, in a voxel dominated by a 

single vessel the frequency offset due to the BOLD response will be detectable but scaled 

by the vessel orientation term. This effect of varying phase responses can be exploited to 

estimate the macrovascular content of each voxel. 

This estimation, phase regression, was originally performed using chi squared 

minimization shown below: 

𝜒2(φ, 𝑀) = ∑
(𝑀(𝑖) − 𝐵 − 𝐴φ(𝑖))

2

(𝜎𝑀
2 + 𝐴2σφ

2)
2

𝑁

𝑖=1

(1.5.1) 

where 𝑀 is the magnitude signal, 𝜑 is the phase signal, N is the number of volumes 

collected, and A and B are the fit coefficients. Subtraction of this estimated macrovascular 

signal results in the microvasculature signal: 

𝑀𝑚𝑖𝑐𝑟𝑜 = 𝑀 − (𝐴𝜑 + 𝐵) (1.5.2) 

This technique has been expanded and investigated by several publications which are 

summarized in Table 1.1. 
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Table 1.1: Summary of Phase Regression Method Papers 

Authors Year Title Summary 

AT Vu  

and JL Gallant 

 

2015 

Using a novel source-localized 

phase regressor technique for 

evaluation of the vascular 

contribution to semantic category 

area localization in BOLD fMRI 

[70] 

Used the voxel with the highest correlation in 

a nearby area for phase regression. 

Attempted to reduce the effects of large 

extravascular signal in high resolution data.  

RL. Barry,  

and JC Gore 
2014 

Enhanced phase regression with 

Savitzky‐Golay filtering for high‐

resolution BOLD fMRI [71] 

Applied a Savitsky-Golay filter (polynomial 

window) over phase timeseries prior to 

fitting. Filter order is data driven to allow for 

varying noise levels. Removed changes due 

to scanner jitter and high-frequency 

physiology changes.  

AT Curtis,  

RM Hutchison,  

and RS Menon 

 

2014 

Phase based venous suppression in 

resting-state BOLD GE-fMRI [72] 

 

Examined a band passed version of the 

original technique under resting state 

conditions. Demonstrated that resting state 

correlations show changes using phase 

regression and the macrovascular effects on 

resting state activation need consideration in 

future work. 

RL Barry, 

SC Strother,  

and JC Gore 

 

2012 

Complex and magnitude-only 

preprocessing of 2D and 3D BOLD 

fMRI data at 7 T [73] 

Investigated phase regression to determine 

the best physiology correction pipeline. 

Determined phase regression, Stockwell 

filtering and retrospective image correction 

led to more reproducible activation. 

RL Barry,  

JM Williams,  

LM Klassen,  

JP Gallivan,  

JC Culham,  

and RS Menon. 

 

2009 

Evaluation of preprocessing steps 

to compensate for magnetic field 

distortions due to body movements 

in BOLD fMRI [74] 

Investigated phase regression for the 

correction of motion-related field shifts 

generated by movement outside the imaging 

region. Demonstrated an improvement in 

statistical power when phase regression was 

used to correct for this effect. 

RE Martin et al. 2004 

Cerebral areas processing 

swallowing and tongue movement 

are overlapping but distinct: a 

functional magnetic resonance 

imaging study [75] 

Applied phase regression to suppress 

erroneous signal due to motion from 

swallowing. Isolated swallowing regions of 

the brain without motion contamination.  

DB Rowe, 

CP Meller, and 

RG Hoffmann 

 

2007 

Characterizing phase-

only fMRI data with an angular 

regression model [76] 

Compared the original technique to an 

angular regression. Angular regression 

reduced the low SNR effects present in phase 

timeseries with vessels close to the magic 

angle. 

DG Tomasi,  

and EC 

Caparelli. 

 

2007 

Macrovascular contribution in 

activation patterns of working 

memory [77] 

Performed phase regression using an HRF. 

Set all voxels above a certain statistical 

threshold to have no BOLD response. 

Demonstrated large BOLD suppression in 

occipital and parietal cortex in a working 

memory task.   
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1.6 Thesis Objectives 

The high-level objective of this thesis was to examine the use of GE-EPI phase data in 

high resolution functional MRI. This first required development of a combination method 

that could combine coil signals to create a phase image of sufficient quality for this large, 

high-resolution data. This method was then used to investigate the effect of phase 

regression in humans and primates. We hypothesized that phase regression could be used 

for venous suppression in both task and resting state high-resolution fMRI. Evidence 

presented in this thesis supports that hypothesis and shows a marked reduction in pial 

vessel contamination in the human task study, although more work is required when 

extending this technique to macaque resting state data. 

Chapter 2 outlines the coil combination method developed to combine GE-EPI 

phase data for the rest of this thesis. This method relies on a mixture of existing coil 

combination methods to estimate coil receiver sensitivities using prescans and then applies 

them to combine GE-EPI data. This method has low computational requirements in both 

memory and time. We hypothesized this combination method would provide sufficient 

quality phase images for further high-resolution fMRI studies. 

Chapter 3 investigates the use of phase regression on high resolution GE-EPI 

human task-based data. To do this, we collected functional data from seven subjects on a 

neuro-optimized 7T system at 800 m isotropic resolution with both GE-EPI and SE-EPI 

while observing an 8Hz contrast reversing checkerboard. We then directly compared GE-

EPI, SE-EPI, and GE-EPI-PR across a surface and across the laminar profile. We 

hypothesized that GE-EPI-PR would show higher spatial similarity to SE-EPI than GE-

EPI. We also hypothesized that the laminar profiles of GE-EPI-PR would approach SE-

EPI and show less macrovascular bias than GE-EPI. 

Chapter 4 investigates the utility of phase regression in a macaque model during 

resting state. Macaques are an important model for high resolution fMRI as they allow for 

simultaneous imaging and electrophysiology. Sources of noise were quantified and 

identified in both the magnitude and phase data. Two strategies for combining 
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physiological cleaning and phase regression were compared using seed-based resting state 

analysis. We hypothesized that phase regression could provide an increase in spatial 

specificity to resting state connectivity maps and remove any artifacts present in the 

magnitude and phase spectrum.  

The final chapter of the thesis, Chapter 5, discusses and summarizes the findings of 

these three chapters. Limitations of this work are reviewed and used to develop 

recommendations for phase regression studies moving forward. These discussions help 

outline future research questions for high resolution phase regression work. Specifically, 

this conclusion proposes how to investigate the venous sizes affected by phase regression 

through a cortical orientation study.  
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Chapter 2  

2 Receiver phase alignment using fitted SVD derived 

sensitivities from routine prescans 

This article is open access. A version of this chapter has been published in: 

Stanley OW, Menon RS, Klassen LM. Receiver phase alignment using fitted SVD 

derived sensitivities from routine prescans. PLoS One. 2021; 16(8): e0256700. 

doi:10.1371/journal.pone.0256700 

Magnetic resonance imaging radio frequency arrays are composed of multiple 

receive coils that have their signals combined to form an image. Combination requires an 

estimate of the radio frequency coil sensitivities to align signal phases and prevent 

destructive interference. Several approaches exist for ultra-high field combination that 

require manual intervention, specific prescans, or must be completed post-acquisition. 

This makes these methods impractical for large multi-volume datasets such as those 

collected for high-resolution functional MRI. This study proposes a fitted SVD method 

which utilizes existing combination methods to create a phase sensitive combination 

method targeted at large multi-volume datasets. This method uses a multi-image prescan 

to calculate the relative receive sensitivities using voxel-wise singular value 

decomposition. These relative sensitivities are fit to the solid harmonics using an iterative 

least squares algorithm. Fits of the relative sensitivities are used to align the phases of the 

receive coils and improve combination in subsequent acquisitions during the imaging 

session. This method was compared against existing approaches in the human brain at 7T 

by examining the combined data for the presence of singularities and changes in phase 

signal-to-noise ratio. The proposed fitted SVD method can combine imaging datasets 

accurately without supervision during online reconstruction. 

2.1 Introduction 

Using phase as a contrast has been a subject of interest since the development of 

magnetic resonance imaging (MRI). Conventional applications of MRI phase have 

included thermometry [1], susceptibility weighted imaging [2], quantitative susceptibility 



 

 

33 

mapping (QSM) [3,4], and velocity encoding to measure vessel flow [5]. Improvements 

in MRI technology and techniques has led to increased popularity of these applications 

and has also resulted in the development of many novel techniques that use complex data, 

such as functional MRI (fMRI) analysis [6–8] and the development of functional QSM 

[9]. These novel functional applications require the collection of large time series datasets 

where both the magnitude and phase data are analyzed. The current defaults provided by 

MRI systems are not always optimized for phase datasets and additional coil combination 

methods may be required [10]. One such example is the default combination for phase 

fMRI images which is complex sum on many systems, such as the CMRR Multiband EPI 

sequence on Siemens systems prior to 2017 [11]. The CMRR Multiband EPI sequence on 

Siemens systems after 2017 is not known to have any of the issues considered in this 

paper. It is advantageous to generate the phase and magnitude image volumes during 

reconstruction on the MRI system because exporting the complex data from each 

individual coil for offline reconstruction can be resource and time consuming. This is 

particularly true for functional MRI data sets which are routinely large due to their multi-

volume nature.  

Phase reconstruction is complicated by the use of multi-element receive arrays 

that are composed of 32, 64 or more radio frequency (RF) coils. Each RF element in 

these arrays has a complex, spatially varying receive coil sensitivity profile which 

weights the measured signal of that element. To form an image with optimal signal-to-

noise ratio (SNR), RF arrays require accurate receive coil sensitivities during image 

combination. At lower magnetic fields, relative receive coil sensitivities are typically 

obtained by using a reference coil or body coil with a spatially homogeneous sensitivity 

profile [12]. At ultra-high fields, body coils are rarely available, and if they are, they 

suffer from poor homogeneity [10]. This translates to poor relative complex-valued 

sensitivity estimates and thus poor combination of phase data. These in turn result in a 

reduction in SNR and, in the worst case, phase singularities in the combined phase 

images. Phase singularities can be caused by destructive interference between coils as the 

magnitude sums to zero and the phase is undefined. These phase singularities cause 

issues for downstream phase processing such as spatial unwrapping and high pass 
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filtering [10] and can also be mistaken for pathology [4]. A successful coil combination 

method should not introduce phase singularities into the combined data.  

Coil combination in absence of a physical reference coil has many possible 

solutions that can be organized into two main categories: inline, where combination is 

done on the MRI system as images are acquired and reconstructed, or offline, where 

combination occurs post-acquisition after all volumes have been collected and the data is 

exported off the MRI system. For large multi-volume imaging sets like those used in 

fMRI or fQSM, fast, robust, and automatic inline combination is essential to an efficient 

workflow, as data transfer and handling for offline processing becomes prohibitive. Inline 

combination methods include complex sum, adaptive combine [13], the virtual reference 

coil (VRC) [14], and the virtual body coil (VBC) [15]. These methods can often 

experience issues with robustness. Complex sum and adaptive combine create 

combinations with phase singularities, indicating their poor combination quality. The 

VRC method is susceptible to error because it relies on calculating phase of the virtual 

coil relative to a single voxel [14]. If this voxel is poorly selected, VRC requires user 

intervention to correct this error. This results in suboptimal combination without user 

supervision. The VBC method relies on compressing the data globally using a singular 

value decomposition (SVD) across the image. This can yield suboptimal combinations 

when completed at ultra-high fields [15,16]. Thus, while these inline implementations are 

fast enough to be used for high resolution phase imaging, they tend to lack robustness and 

require user supervision [10,17].  

Post-acquisition combination methods require all the data to be collected before 

combination, making them difficult to apply to large datasets as they require the complex 

data from each coil to be exported, resulting in 32x to 64x larger amounts of data for 

typical studies performed with a head coil array. Common offline combinations include 

voxel-wise SVD [13], combining phase images from array coils using a short echo time 

reference scan (COMPOSER) [17], Block Coil Compression (BCC) [16], and the 

Adaptive Combine Phase Solution [18]. Voxel-wise SVD can be parallelized across 

voxels, but because all the processing must occur after acquisition is completed it would 

introduce significant processing delays if implemented inline for long time-series data 



 

 

35 

such as fMRI. COMPOSER uses a specialized short echo reference prescan and relies on 

scan-to-scan alignment which is completed using software such as FSL [19], which is not 

available on vendor-implemented reconstruction systems. Additionally, COMPOSER can 

result in edge effects such as Gibbs ringing when a low frequency prescan is used [20]. 

BCC uses a modification of the VBC method to initialize an ESPIRiT reconstruction [21] 

as ESPIRiT at ultra-high fields requires a locally varying phase estimate to capture the 

coil sensitivities. Unfortunately, BCC has high compute costs and would not be feasible 

on large datasets without refactoring. The adaptive combine phase solution [18] uses an 

SVD on a block of voxels to combine data with smooth image phase but may not be 

optimal for ultra-high fields. These solutions all yield optimal or near optimal SNR 

combinations but are hard to implement for larger imaging datasets, such as time-series 

data.  

One possible option to expand on existing offline coil combination methods is to 

use them on low resolution data to create a reference coil that can be applied to every 

imaging scan with minimal overhead. One potential method to generalize coil 

sensitivities from a low resolution prescan to higher resolution images is to fit them to a 

physically plausible basis. Previous work has shown that RF coil sensitivities are 

governed by the Helmholtz equations [22]. These equations rely on a wave number that is 

variable across the brain and can be difficult to estimate [23]. As an alternative, we 

suggest a relaxation of the Helmholtz equations whose solution is the solid harmonics. 

This basis is similar to the Helmholtz solution without the complexity of estimating a 

wavenumber. Fitting sensitivity profiles to the solid harmonics would allow them to be 

applied quickly to all images acquired during the imaging session.  

Coil combination of large imaging sets requires an inline method that is robust 

across the imaging session. Our proposed approach uses existing small, low-resolution 

datasets to estimate coil sensitivities, in order to reduce the processing time requirements. 

These sensitivity estimates are then fit to a functional basis, allowing the estimates to be 

applied inline to any acquired geometry. Throughout the manuscript this method is 

referred to as the fitted SVD method and is outlined graphically in Figure 2.1. The fitted 

SVD method exploits the use of the routinely acquired 𝐵1
+ shimming prescan on our 
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parallel transmit (pTx) enabled 7T scanner in order to calculate relative receive coil 

sensitivities using a voxel-wise SVD. The use of SVD-derived sensitivities is similar to 

work done by previous groups that have used ESPIRiT [21], BCC [16] or the Adaptive 

Combine Phase Solution [18]. These relative receive coil sensitivities, as a consequence 

of the SVD algorithm, contain an arbitrary common phase which must be removed to 

allow accurate fitting. This common phase can be removed using a robust virtual 

reference coil [14] created through a minimax algorithm. The corrected relative coil 

sensitivities can then be iteratively fit to a physically plausible basis of solid harmonics to 

create a computationally efficient representation. The phase of these fitted coil 

sensitivities can be applied to align imaging data prior to complex sum combination to 

produce phase images. Hence, our proposed fitted SVD method is the amalgamation of 

ESPIRiT [21], voxel-wise SVD combination [13], VRC combination [14] and the Sbrizzi 

representation of sensitivities [22]. Combining these methods yields a technique tailored 

for robust acquisition of large multi-volume datasets for complex fMRI or fQSM, and 

additionally, may be applied to other acquisitions in the same session.  
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Figure 2.1: Flow chart of the Fitted SVD method. Images represent example 

coil sensitivities across the same slice of the brain (four of 32 shown). The four left 

images are magnitudes of the coil sensitivities, and the four right images are phases of the 

coil sensitivities. a) Relative coil sensitivities calculated by voxel-wise SVD in prescan 

space, b) Coil sensitivities after alignment to a virtual reference coil created through 

minimax optimization across prescan space, c) Fitted coil sensitivities in target image 

space, d) Combined phase image after alignment with fitted coil sensitivities. 
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2.2 Methods 

2.2.1 Mathematical Methods 

Calculation of the relative receive coil sensitivities   

The relative receive coil sensitivities can be calculated from a conventional voxel-

wise SVD combination as follows. The measured complex-valued signal 𝑠 from a voxel 

is given by the integral of the product of the receive coil sensitivity 𝑐 and the 

magnetization 𝑚 over the sensitivity volume of the voxel.  

𝑠 = ∫ 𝑐(𝑟)𝑚(𝑟)𝑑𝑉 (2.2.1) 

If either the coil sensitivities or the magnetization are assumed to be uniform over the 

integrated region, then the integral becomes separable and measured signal is given by 

the product of the average sensitivity 𝑐̅ and the average magnetization �̅�. 

𝑠 = 𝑐̅�̅� (2.2.2) 

Assuming the coil sensitivity is constant in time, i.e., over multiple images, then a voxel’s 

measured signal for the ith coil and the jth image is given by 

𝑠𝑖,𝑗 = 𝑐�̅��̅�𝑗 (2.2.3) 

This can be represented as a rank one matrix 𝐒, where 𝐜 is the vector of coil sensitivities 

and 𝐦 is the vector of magnetizations across images, and 𝑇 is the transpose operator. 

𝐒 = 𝐜𝐦𝑇 (2.2.4) 

Assuming the noise in the measurements is uniform and normally distributed, the 

optimum least squares low rank approximation of 𝐒 is given by the SVD [24], where the 

first left and right singular vectors give the best estimate of 𝐜 and 𝐦, respectively. As 

singular vectors are defined to have unit norm, the magnitudes of 𝐜 and 𝐦 are contained 

in the first singular value, 𝜆1: 
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𝜆1 = (𝐜𝐻𝐜𝐦𝐻𝐦)1/2 (2.2.5) 

where 𝐻 is the Hermitian conjugate. This deconstruction works with any number of coils 

and images greater than zero and is equivalent to the traditional sum of squares 

combination when only one image is used. However, the accuracy of 𝐜 and 𝐦 estimates 

is improved with increasing numbers of images. Estimation of 𝐜 and 𝐦 also improves 

with large variation in contrast in the images, such as in 𝐵1
+ mapping.  

Phase correction of the relative receive coil sensitivities 

The SVD of a complex matrix is only unique up to an arbitrary phase. Typically, 

the phase of the first element of the left or right singular vector is assigned to zero to 

impose a unique solution. If the phase of the right singular vector, i.e., 𝐦, is set to zero, 

this forces the phase of the magnetization for the first image, 𝜑𝐦, to be assigned to 𝐜. The 

estimated complex-valued coil sensitivity, 𝐜′, is then defined as: 

𝐜′ = 𝐜
𝑚1

𝐻

(𝑚1
𝐻𝑚1)1/2

=
𝐜

|𝐜|
𝑒−𝑖𝜑𝐦 (2.2.6) 

𝜑𝐦 comes from numerous sources, including the 𝐵1
+  phase, off-resonance phase accrued 

from 𝐵0 inhomogeneities, and acquisition timing. It is preferable to set the phase of an 

image to zero because it is likely to be well defined over the entire imaging region, 

whereas the sensitivity of the first coil will often have areas where its magnitude 

approaches zero and the phase is therefore ill defined. Because 𝜑𝐦 contains 𝐵1
+ 

contributions, it may contain phase singularities related to destructive interference during 

excitation. This is particularly an issue with parallel excitation schemes or ultra-high 

magnetic fields. These phase singularities introduced by 𝜑𝐦 do not correspond to 

magnitude nulls in the coil sensitivities and make solid harmonic fitting difficult. 

Therefore, it is necessary to remove 𝜑𝐦 from the coil sensitivity estimates. For a single 

voxel, any linear combination of 𝐜′ with weights, 𝐰, will also contain 𝜑𝐦 and can be 

applied to 𝐜′ to remove 𝜑𝐦 as follows: 
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�̃� = (𝐰𝐻𝐜′)𝐻𝐜′ = (𝐰𝐻
𝐜

|𝐜|
𝑒−𝑖𝜑𝐦)

𝐻 𝐜

|𝐜|
𝑒−𝑖𝜑𝐦 = (𝐰𝐻

𝐜

|𝐜|2
)

𝐻

𝐜 (2.2.7) 

where �̃� represents the coil sensitivities with 𝜑𝐦 removed. Since 𝐜 is desired, the 

optimum 𝐰 would result in 
𝐰𝐻𝐜

|𝐜|2
 being one. To maintain spatial phase coherence, the same 

𝐰 must be used for all voxels. Therefore, we want 𝐰 that provides a spatially uniform 

virtual reference coil. We extend the voxel-wise case across the image by defining 𝐂′ as 

the matrix of all the relative sensitivities across all k voxels in the image as shown. 

𝐂′ = [𝐜′
𝑘] (2.2.8) 

Finding 𝐰 which makes 
𝐰𝐻𝐜

|𝐜|2  spatially uniform over all voxels is difficult and simply 

minimizing least-square deviation can lead to solutions with signal nulls which may 

remain in the final combination. These signal nulls are problematic because they 

introduce phase singularities common to all coils prior to fitting. This could result in 

phase singularities in the final image which will interfere with downstream processing. 

Alternatively, a robust elimination of signal nulls can be obtained via the use of a 

minimax algorithm which maximizes the minimum value of the combination across the 

image. 

max
𝐰

min
𝑘

|𝐰𝐻𝐂′| (2.2.9) 

This minimax estimation is restricted to the imaging volume by defining a SNR-based 

mask created via SNR threshold as discussed below in “Masking Considerations”. Using 

this method for finding 𝐰 provides a non-uniform but signal null free 𝐰𝐻𝐂′ for removing 

𝜑𝐦. The corrected relative coil sensitivities for all k voxels are 

�̃� = [�̃�𝑘] (2.2.10) 

and is weighted by this minimax generated virtual reference coil. 

Fitting the relative receive coil sensitivities to a solid harmonic basis 
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 In order to apply the relative coil sensitivities, it is necessary to represent them 

using a form that can be generalized to different orientations and resolutions. This can be 

done by fitting �̃� to a physically plausible basis in order to interpolate the estimated 

sensitivities. Such a basis set are the solid harmonics, which are composed of polynomial 

functions. If the coil sensitivities can be modeled as solid harmonics, �̃� can also be 

modelled using solid harmonics of higher order because it is the product of two coil 

sensitivities. A solid harmonic fitting basis is chosen for two reasons. First, solid 

harmonics are an efficient basis for spheroid shapes, such as human and animal heads. 

Secondly, the 𝐵1
− field, which governs the coil sensitivities, in a homogeneous medium 

follows the Helmholtz equation. The general solution of the Helmholtz equation is 

similar to the solid harmonics and therefore the solid harmonics are a physically plausible 

basis set that can be used to approximate the true 𝐵1
− field behavior.  

Fitting to the solid harmonics is completed using variable exchange. After 

removal of 𝜑𝐦, �̃� will contain a virtual reference coil sensitivity component. This means 

that �̃� has an unknown common voxel-wise complex spatial scaling across coils, 𝐝. This 

common voxel-wise scaling originates from the minimax virtual reference coil and does 

not affect the relative phase of the individual relative coil sensitivities and its removal 

will only serve to improve interpolation quality. However, as 𝐝 is only estimated, there 

could remain an incomplete removal of the virtual reference coil or physical common 

phase (such as 𝐵1
+ phase) which may result in a low frequency spatial phase offset in 

phase images which will require background removal. As a result, this combination is 

best used for phase images for which further analysis uses phase differences [6,9] or will 

employ postprocessing methods to remove low frequency background patterns [25]. Post 

processing to remove low frequency patterns would aid in correcting any asymmetry 

introduced into the image by incomplete removal of 𝐝.  

The solid harmonic basis 𝐴 is defined below where 𝑟, 𝜃, 𝜑 represent the spherical 

coordinates, 𝑁 is the maximal fit order, and 𝑌𝑚
𝑙  is a spherical harmonic 

𝐴(𝑟, 𝜃, 𝜑) = ∑ ∑ √
4𝜋

2𝑙 + 1
𝑟𝑙𝑌𝑚

𝑙 (𝜃, 𝜑)

𝑙

𝑚=−𝑙

𝑁

𝑙=0

(2.2.11) 
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The exchange is set up in two steps as follows: 

𝑚𝑖𝑛 ∑|𝐀𝐗 − 𝑑𝑖𝑎𝑔(𝐝)�̃�|
2

 𝑠. 𝑡.  𝐝H𝐝 = 𝑘

𝑖

(2.2.12) 

Where 𝑿 is the fit coefficients,  𝑑𝑖𝑎𝑔(𝐝) = [
𝑑1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑𝑘

] and 𝑘 is the number of voxels 

in the fit. The iteration begins with the calculation of 𝐗 through least squares fitting. 𝐝 is 

then calculated from 𝐀𝐗 = 𝑑𝑖𝑎𝑔(𝐝)�̃� and applied to the next iteration. The least squares 

fit was weighted by the square-root of the first singular value (√𝜆1 ) in order to reduce 

the effects of noise in areas of low signal. The scaling of 𝐝 is required to avoid the trivial 

𝐗 = 0, 𝐝 = 0 solution. Fitting is completed over an SNR-based mask and is continued 

until the residuals of the least-squares fit change by less than 0.01%. The fit coefficients 

can then be used to estimate phase of the relative coil sensitivities and align receivers 

prior to combination.  

Image combination 

         The application of the relative sensitivity estimates can be done inline as each 

image is reconstructed. The complex signals are multiplied by the normalized conjugate 

of the relative sensitivity estimates and combined via a complex sum to create a complex 

image. This operation is applied voxel-wise as shown: 

𝑣 =
�̃�𝐻

|�̃�|
𝐬 (2.2.13) 

The resulting phase of this image should be free of singularities and have high SNR. This 

could be further improved by inclusion of the noise covariance matrix if desired [12].  

2.2.2 Masking Considerations 

 The fitted SVD method is reliant on masking out the regions without sensitivity 

information. To accomplish this, an SNR estimate was created using the ratio of the first 

and second singular values. This ratio is then thresholded by a hyperparameter in order to 
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determine which voxels in the imaging volume should be included in either the minimax 

algorithm or the fitting. The effect of the threshold on the minimax algorithm was 

examined over nine values from 5 to 45. A second SNR threshold was applied during 

least squares fitting and was also tested over values from 5 to 45.  

In order to apply the relative sensitivity estimates to images with differing 

geometries from the prescan it is necessary to constrain the fitted sensitivities to only 

parts of the image where the prescan data was able to estimate the sensitivities. Due to 

the known poor extrapolation performance of polynomial fits, a convex hull around all 

voxels used in the least squares fitting is computed. When applying the fit for phase 

alignment, voxels within the convex hull are aligned based on the fit and exterior points 

are aligned based on the fit at the closest point on the convex hull. This allows the 

method to be applied to differing fields of view and ensures only reliable coil sensitivity 

estimates are used. 

2.2.3 Imaging 

 All imaging was completed on the 68 cm bore 7T Siemens Magnetom Step 2.3 

System equipped with an AC-84 Mark II head gradient coil located at the Centre for 

Functional and Metabolic Mapping at the University of Western Ontario. Imaging of 

three healthy volunteers (ages 23-27) was performed with written informed consent and 

approved by the Human Subjects Research Ethics Board at the University of Western 

Ontario. To investigate the fitted SVD method three datasets were acquired with one 

subject each: one dataset to compare the fitted SVD method to existing combinations, one 

dataset with an asymmetrical coil, and one dataset with subject motion.  

Dataset 1: Comparative Combination  

This experiment used a whole head coil with a conformal 32 channel receive 

array and an eight channel transmit array operated in parallel transmit mode [26]. Three 

sets of images were acquired. First, prescan data was acquired for 𝐵1
+ shimming which 

was then used as the low-resolution input for the fitted SVD method. This data consisted 

of one actual flip-angle imaging map [27] (TE/TR=2.75/20 ms, FA=70o) and 8 fourier 
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encoded 𝐵1
+  images [28] (TE/TR=2.75/6 ms, FA=5o) with an 8 mm isotropic resolution, 

matrix size of 32x32x32, and BW=1000 Hz/pixel. Next, an ultrashort echo time prescan 

was acquired to allow for comparison to COMPOSER [17], this data was a gradient 

recalled echo (GRE) with a resolution of 2x2x4 mm, matrix size 128x122x52, 

TE/TR=0.8/5ms, FA=10o, BW=810 Hz/pixel and no acceleration. Finally, an acceleration 

free GRE sequence was collected 10 times. Five GRE images were used to generate high 

resolution coil sensitivities for testing the fitted SVD method on parameter matched data 

and five were used to calculate the voxel-wise SVD solution for the quality ratio 

calculation as well as serve as the target volume to combine when different combinations 

were compared. This target GRE sequence had a 1 mm isotropic resolution, matrix size 

210x210x60, TE/TR=7.7/15 ms, FA=15o, BW=140 Hz/pixel. 

Dataset 2: Asymmetrical Coil 

This experiment used a highly asymmetric head coil with a conformal 32 channel 

receive array and eight channel transmit array also operated in parallel transmit mode, 

with both transmit and receive coils covering only the occipital-parietal regions [29]. This 

dataset consisted of two image sets, a 𝐵1
+ prescan as described above and a gradient echo 

echo planar image set (GE-EPI) collected as the target image set to combine. The GE-EPI 

had a 2 mm isotropic resolution, matrix size 104x104x54, TE/TR=20/1250 ms, FA=45 o, 

BW=1457 Hz/pixel and GRAPPA factor 3 with 36 reference lines [11]. 

Dataset 3: Subject Motion 

This dataset was collected with a third coil that is the next generation whole head 

coil from the coil used for Dataset 1. It was a 32 channel receive array and eight channel 

transmit array with dipoles (rather than loops) as transmit elements and loops as receive 

elements [30]. As the dataset was investigating motion it was acquired in two parts. Part 

one consisted of a 𝐵1
+ prescan and 5 GRE images without motion. Part two then 

instructed the subject to move in the coil before an additional GRE and another 𝐵1
+ 

prescan were collected. This allows assessment of the fitted SVD method in the case of 

subject motion. Due to an intervening MRI system upgrade the prescan parameters are 

slightly different than the other two sets. The prescan data still consisted of one actual 
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flip-angle imaging map [27] (TE/TR=2.84/20 ms, FA=50o) and 8 fourier encoded 𝐵1
+  

images [28] (TE/TR=1.75/3.8 ms, FA=3o) with an 8 mm isotropic resolution, matrix size 

of 32x32x32, and BW=1000 Hz/pixel. The target GRE sequence was collected 

identically to the target GREs in Dataset 1. 

2.2.4 Comparison Metrics 

 To compare different combination techniques, three methods were employed. 

First, the output phase was unwrapped [31] and examined for singularities inside the 

volume of interest. Second, to quantify the performance of the fitted SVD method 

relative to other combinations, the quality ratio was measured across the target dataset for 

each combination method. The quality ratio is a measure of magnitude signal loss and 

therefore will be proportional to the phase SNR [32]. The quality ratio is defined as: 

𝑄 =
|𝑆𝑚𝑒𝑡ℎ𝑜𝑑|

|𝑆𝑉𝑆𝑉𝐷|
(2.2.14) 

where 𝑆𝑚𝑒𝑡ℎ𝑜𝑑 is the complex signal resulting from the combination method of interest 

and 𝑆𝑉𝑆𝑉𝐷 is the complex signal resulting from a voxel-wise SVD combination. This is a 

modification of the quality factor which uses the sum of the magnitudes in the 

denominator [10,17]. The magnitude sum has a noise bias that is not present in the voxel-

wise SVD combination. All average quality ratios are calculated across a brain mask 

excluding voxels less than 3% of the median value to reduce outliers such as large veins 

where signal is naturally too low to compare combination techniques [17]. Brain masks 

were generated based off sum-of-squares combined magnitude images using FSL’s Brain 

Extraction Tool (5.10.0) [19] and then eroded once using fslmaths. Finally, to compare 

the relative runtime of the different methods, all combinations were run single-threaded 

on a Centos 6.0 system with 256 GB of memory and Intel Xenon E5-2760 CPU and the 

reported runtime is the average clock time in seconds that the operation took to complete 

over five runs. This was performed single threaded as not all comparative combinations 

were available in a multi-threaded implementation.  
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2.2.5 Fitted SVD Parameter Selection 

Three input hyperparameters are required to use the fitted SVD method: the SNR-

based mask thresholds for the minimax and least squares fitting steps as well as the fit 

order. In order to determine the optimal hyperparameter set in the case were the 

𝐵1
+ prescan is used to create sensitivities, the fit was run from solid harmonic orders one 

to ten as well as nine equally spaced masking thresholds between 5 and 45 for both the 

minimax correction and solid harmonic fitting. The mean quality ratio and the coefficient 

of variation of the quality ratio were examined across the brain mask to determine the 

optimal hyperparameter set. The coefficient of variation is defined as: 

𝐶𝑉 =
𝜎

𝜇
∗ 100 (2.2.15) 

Where 𝜎 is the standard deviation of the quality ratio over the brain mask and 𝜇 is 

the mean quality ratio over that mask. The mean quality ratio determines what degree of 

signal loss that a parameter set incurs but the coefficient of variation ensures that the 

spread in quality ratio is consistent across the brain.  

2.2.6 Comparative Combinations 

 Complex sum, voxel-wise SVD [13], VRC [14], COMPOSER [17], and the fitted 

SVD method were all implemented using in-house MATLAB code (R2018a) that is 

available at:  https://gitlab.com/ostanley1/phasecombofunctions-matlab. These are also 

briefly described below. The BCC method [16] was implemented using the toolbox 

provided by the authors.  

 At the time of development, complex sum was the default on the MRI system for 

functional phase data (CMRR-MB on the Siemens scanner [11] prior to R16 (2017)). 

Complex sum is a simple sum of all the coil data followed by a calculation of the phase. 

We were particularly interested in the CMRR-MB sequence for studying the phase 

effects of large vessels in fMRI, but the method we propose is applicable to all types of 

images, where appropriate phase combinations may still not be available.  
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Voxel-wise SVD [13] is completed by calculating the SVD of a matrix formed by 

volumes and coils. To prevent singularities resulting from the arbitrary phase of the SVD, 

the phase of the first volume is set to zero making this method a measure of relative 

phase as opposed to absolute phase.  

The VRC method [14] uses a voxel as a reference to align the coil images and 

create a reference coil. The reference voxel is chosen as the voxel with the largest 

minimum magnitude across all coils [14]. This voxel’s phases are then subtracted from 

each coil profile before summation to create a virtual reference coil. This virtual 

reference coil is then subtracted from each coil profile to create phase offsets which are 

smoothed with a three-dimensional 10mm gaussian blur and used to align the data prior 

to combination. 

COMPOSER [17] was implemented using the FSL registration tool FLIRT 

(5.10.0) on the magnitude images to determine the transformation between the short echo 

time reference image and the target data. Uncombined coil data was then saved to real 

and imaginary NIFTIs, and this transformation was applied to both the real and imaginary 

components separately [19]. These transformed reference images were used to remove 

shared coil signal prior to image combination using complex sum.  

The BCC method [16] uses a regional SVD to create a common reference coil 

block by block, followed by aligning adjacent blocks to ensure phase smoothness. Once 

this reference data is created the data undergoes an ESPIRiT combination [21] using the 

newly created virtual coil as a reference channel to ensure successful phase combination.  

The fitted SVD method was completed on the 𝐵1
+ shimming dataset and a set of 

five matched scans identical to the target image set. This was done to examine the effects 

of using a prescan for fitting and to compare against a reference approach using identical 

parameters to the target image set. The method was developed to use a multi-image 

prescan such as the 𝐵1
+ shimming datasets because they are routinely collected on pTx 

systems and can be used with no additional imaging time requirements. On non-pTx 

systems other multi-image sets could be used such as those collected for B0 shimming to 

obtain the same time benefits.  
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2.2.7 Temporal Noise 

 To compare the noise across time the EPI data from Dataset 2 was used. The 

fitted SVD method was used to calculate sensitivities from the 𝐵1
+ prescan and was 

applied to each volume in the EPI series. As comparators, the VRC and BCC sensitivities 

were calculated from the first volume and applied to every volume in the series and 

voxel-wise SVD was performed across all volumes. Finally, the fitted SVD method was 

performed using the sensitivities from the voxel-wise SVD as input, a case equivalent to 

performing the fitted SVD method on matched image data. Once these time series were 

created the phase of the first volume was removed and the images were unwrapped 

through time to remove any jumps of 2. In order to remove system drift, the time series 

were linearly detrended voxel-wise prior to calculating the phase noise. The temporal 

standard deviation was then calculated to create phase noise images. The phase noise 

ratio between each combination and the voxel-wise SVD was used to investigate 

differences in phase noise levels between combinations. It is defined as: 

𝑃ℎ𝑎𝑠𝑒 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝜎𝑚𝑒𝑡ℎ𝑜𝑑

𝜎𝑉𝑆𝑉𝐷

(2.2.16) 

where 𝜎𝑚𝑒𝑡ℎ𝑜𝑑 is the temporal standard deviation of the phase time course for the 

combination method of interest and 𝜎𝑉𝑆𝑉𝐷 is the temporal standard deviation of the phase 

time course for the voxel-wise SVD. Comparing noise relative to a reference method 

removes sources of variance shared across combination methods such as an increase in 

noise in lower SNR areas of the asymmetric coil.   

2.3 Results 

2.3.1 Fit Order and Masking Threshold Selection  

The fitted SVD method relies on three hyperparameters: the thresholds for the 

SNR-based masks during minimax phase correction and solid harmonic fitting as well as 

the order of the solid harmonic basis. The effect of solid harmonic order and SNR-based 

masking during the fit are shown in Figure 2.2 for a single subject. To assess 

performance the quality ratio was averaged over an eroded brain mask generated using 



 

 

49 

FSL’s BET tool on all sixty slices (example Figure 2.3). These results show there is a 

large parameter space which allows for high quality combinations. For this paper the 

chosen parameters were SNR-based mask thresholds of 20 for the minimax algorithm and 

20 for the least squares fitting and a basis of solid harmonic order 6 which yields a high 

mean quality ratio of 0.96±0.04 (µ±) and a low coefficient of variation of 4.4%. This 

shows that using a low resolution prescan slightly reduces phase SNR (4% reduction), but 

still effectively combines the data. 

 

Figure 2.2: Fitted SVD Method in a human using 𝑩𝟏
+ prescan data from a single 

subject. a) Average quality ratio and b) coefficient of variation of quality ratio as a 

function of fit order and fit mask size. Example convex hull (grey) and voxels included in 

fit (white) for various mask thresholds c) 10, d) 20, e) 30. f) Example phase image, g) 

unwrapped phase image, and h) quality ratio map at the selected parameters (order 6, fit 

mask of 20, minimax mask of 20).  
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Figure 2.3: All slices of Dataset 1 for inspection for artifacts. a) phase image, b) 

unwrapped phase image, and c) quality ratio map at the selected parameters (order 6, fit 

mask of 20, minimax mask of 20).  

2.3.2 Fitted SVD and Comparative Methods 

To investigate the quality of the fitted SVD method against other benchmarks, 

three criteria were used: singularities, quality ratio, and runtime. Figure 2.4 shows a 
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qualitative comparison between complex sum, VRC, the fitted SVD method using 

prescan data, COMPOSER, BCC, voxel-wise SVD combination, and the fitted SVD 

method using a parameter matched image set. Receiver-based phase singularities can 

indicate destructive interference, the worst case of coil combination, and any phase 

combination method should not produce these artifacts. Singularities present in the 

complex sum are corrected in all the combination methods except the VRC method. 

Singularities can also be present due to global phase shared across coils and in this case 

still present post processing difficulties that need to be corrected. This was the case in the 

VRC combination where it was not possible to obtain an acceptable virtual coil for the 

VRC method using the maximum shared signal method for voxel selection [14]. The 

voxel selected was outside the brain in our target data and produced a reference with 

signal nulls and phase singularities (Figure 2.5). Unfortunately, this is not a robust option 

for phase combination as the singularity introduced by the reference coil will cause 

downstream processing issues when the data is further analyzed. For the fitted SVD 

method, the minimax algorithm was used to overcome this inherent VRC limitation. One 

additional observation is that most methods do result in a left-right asymmetry that can be 

seen in the wrapped and unwrapped phase images. The images in Figure 2.4 are sorted by 

relative runtime. One consideration when comparing runtimes is that fitted SVD method 

runtimes include both relative receive sensitivity estimation and fitting as well as 

applying the fit to the target dataset. The estimation of the fitted sensitivities needs to 

only be done once per session and then can be applied to the remaining images in the 

session. This application of the fitted sensitivities takes 18 seconds on the target data 

when the prescan was used for fitting. 
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Figure 2.4: Comparison of Phase Combination Methods. One example slice is shown 

for each method. Top row: raw phase image, Middle row: unwrapped phase image for 

easier visualization (singularities circled in white), Bottom row: quality ratio across a 

representative slice. a) Complex sum combination, b) VRC c) Fitted SVD method using a 

low resolution 𝑩𝟏
+ prescan, d) COMPOSER, e) Voxel-wise SVD combination, f) BCC, g) 

Fitted SVD method using parameter matched dataset. Single threaded runtime of each 

method increases left to right and can be found in Table 1. Note: the BCC method applies 

a rough mask to the region-of-interest during combination and this causes zeros in the 

exterior of the raw phase image. 

 

Figure 2.5: VRC Combination. a) Image of the largest minimum magnitude across all 

coils for VRC reference voxel selection. Voxel is in red and is indicated by a red arrow. 

b) Virtual reference coil created when using the selected voxel. A singularity is circled in 

red. This singularity is also present in the combined images and using VRC in this case 

results in an image with a phase singularity which affects downstream processing. 
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Phase singularities represent complete signal loss at their location in the image 

however there can also be subtler SNR decreases throughout the brain. To identify phase 

SNR decreases it is necessary to compare quality ratio between combination methods 

(Figure 2.4 and Table 2.1). The fitted SVD method can combine the target image with no 

loss of phase SNR when matched resolution images are used. In contrast, there was a 

slight quality degradation (4%) when the lower resolution 𝐵1
+ prescan data was used. 

This degradation was small compared to the complex sum combination. Although 

methods such as COMPOSER and BCC show fractionally higher quality ratios, this is 

offset by substantially larger computational expense which makes using them for large 

phase datasets impractical.  

Table 2.1: Summary of Coil Combination Methods quality and single threaded 

runtime when implemented in Matlab R2018a. All quality ratio values are calculated 

over the entire brain mask.  

Combination Method Singularities 

Present 

Quality ratio 

(mean±std) 

Runtime in 

Matlab 

(seconds) 

Complex Sum Yes 0.17±0.08 0.09 

Virtual Receive Coil Yes 0.98±0.05 1.2 

Fitted SVD Method 

(Prescan data) 

No 0.96±0.04 36 

COMPOSER No 1.00±0.03 137 

Voxel-wise SVD No 1.00±0.00 400 

Block coil combination No 1.00±0.04 2700 

Fitted SVD Method 

(Image data) 

No 1.00±0.03 4900 

 

2.3.3 Fitted SVD and the Occipital-Parietal Coil 

To investigate potential coil geometry dependency of the fitted SVD method, it 

was used with an occipital-parietal coil designed for high-resolution imaging of the visual 

system [29]. The same fit parameters were used from the whole head coil. The 
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combination shows no degradation in signal in the areas targeted by the coil (Figure 2.6). 

The quality ratio across the area of interest was 0.95±0.04 when the 𝐵1
+ prescan was used 

to determine coil sensitivities. As this combination was done without new parameter 

selection for the occipital-parietal coil, this demonstrates that the solid harmonic fitting is 

not dominated by RF receiver design and the fitted SVD method can operate even when 

imaging with an asymmetrical coil. 

 

Figure 2.6: Combination quality of an asymmetrical coil. a) Quality ratio of data 

collected in an occipital parietal coil when combined with the fitted SVD method, b) 

Spatially unwrapped phase data after fitted SVD combination. 

The functional data acquired using the occipital-parietal coil also allowed for 

investigation of the phase noise over time. This was investigated by calculating the 

temporal standard deviation of the unwrapped and linearly detrended phase time courses 

to create phase noise images. The ratios of these phase noise images were then calculated 

between each combination and, our reference method, the voxel-wise SVD (Figure 2.7). 

Two combination methods lead to singularities in the combined images when the EPI 

data was used (Figures 2.7a and 2.7b) and these can be seen in the noise images as 

hyperintensities. BCC shows elevated phase noise throughout the image (Figure 2.7c). 
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The phase noise ratio images show that there are no large increases in noise between 

voxel-wise SVD and the fitted SVD method using a prescan (Figure 2.7d) or a matched 

image set (Figure 2.7e), demonstrating that for applications such as complex fMRI using 

the fitted SVD method will not lead to significant additional noise. This is advantageous 

because using voxel-wise SVD can become expensive when operating on long timeseries 

or large image sets. 

 

Figure 2.7: Phase noise ratios in an asymmetrical coil. Voxel-wise SVD was used as 

the reference method. Phase noise ratio combined using a) complex sum, b) VRC, c) 

BCC, d) the fitted SVD method using the B1+ prescan, and e) the fitted SVD method 

using the EPI timeseries as input. Hyperintensities correspond with phase singularities in 

a and b. 

2.3.4 Fitted SVD and subject motion 

Finally, it is necessary to investigate the fitted SVD method in the case of subject 

head motion. Subject head motion could slightly change the coil loading and as a result 

could degrade the quality of the phase combination as the sensitivities change. This 

limitation is always a concern when using any prescan based approaches, including 

reference lines for accelerated acquisitions. A 𝐵1
+ prescan and five target GREs were 
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collected after which the subject was asked to move in the coil and a single GRE and the 

𝐵1
+ prescan were collected again. Registration between the first GRE and the reference 

collected after the subject moved show the subject had a root-mean-squared motion of 3.5 

mm, far beyond the tolerance of any functional study and representing a true worst-case 

scenario with respect to subject motion [33]. The premotion 𝐵1
+ prescan resulted in a 

quality ratio across the brain of 0.95±0.05. When the prescan collected after large head 

motion was used the quality ratio remained the same (0.95±0.05). This demonstrates that 

combination quality is tolerant of significant head motion (Figure 2.8). This is likely due 

to the smooth spatial frequency characteristics of the solid harmonic fitting and the low 

resolution prescan.  

 

Figure 2.8: Effects of motion on the fitted SVD method. a) Raw phase image, b) 

unwrapped phase image, c) quality ratio map created with no motion between the 𝑩𝟏
+ 

prescan and the imaging. d) Raw phase image, e) unwrapped phase image, f) quality ratio 

map created with 3.5 mm motion between the 𝑩𝟏
+ prescan and the imaging. No 

singularities were observed. 
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2.4 Discussion 

Phase imaging requires robust coil combination to be useful. In large multi-

volume imaging datasets, such as those acquired for fMRI or fQSM, inline combination 

becomes vital as the computational load for exporting uncombined data can be 

prohibitive (hours for a typical fMRI timeseries). The fitted SVD method was created to 

combine these large imaging sets, though it is equally applicable for all MRI applications. 

Its implementation will allow for combination of phase data inline, expanding the utility 

of phase based image processing such as fQSM [9] or phase regression at high resolution 

[8]. This method is needed as these applications are growing fastest at ultra-high field 

strengths where the combination issues are most pronounced. The idea of creating a 

phase combination method tailored to a specific application has already been established 

in the literature. Several methods have already been established for multi-echo data for 

QSM such as phase difference methods [34], ASPIRE [35] and voxel-wise SVD 

combination (Equation 1, [13]). In addition, work has been undertaken to complete a 

reference free coil combination of water fat imaging [36] and provide a bias free 

combination for QSM [20]. The proposed fitted SVD method is another such approach to 

optimizing phase sensitive combination to a specific application, in this case large 

functional imaging datasets. This method is uniquely suited to processing large datasets 

in two ways: (1) by creating a combination that could be applied to the data during inline 

reconstruction and (2) by ensuring the method is robust across coil configurations and 

motion. 

2.4.1 The fitted SVD method will require no export of data off 

system 

In order to avoid export of large uncombined datasets off the MRI system, the coil 

sensitivities could be quickly estimated using prescans and then applied to a scanning 

session during inline reconstruction. This is future work. However, in MATLAB testing, 

the use of a B1
+ prescan reduced computational runtime by two orders of magnitude 

compared to using data with parameters matched to the target imaging set. When 

compared to other combination methods, the fitted SVD method performed faster than 
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BCC or COMPOSER [17] and had no singularities, like VRC [14] or complex sum 

(Table 1). These results establish that this method is a suitable trade-off between quality 

and functionality. 

2.4.2 The fitted SVD method is robust across coil configurations 

and motion 

Several features of the fitted SVD method were designed to increase its 

robustness for routine use. First, the use of a voxel-wise SVD to derive receive coil 

sensitivities makes the method extensible to any multi-image prescan, including several 

of the conventionally used shimming prescans. As a result, this method easily fits into 

existing protocols and produces images with a quality ratio of 0.96±0.04 (mean±std) 

when using these prescans, as opposed to 1.00±0.03 when using a matched image set. 

The image created by the default combination on our MRI system results in a quality 

ratio of 0.17±0.07 across the brain and contains phase singularities (Figure 2.4). Second, 

use of the minimax algorithm to create a virtual receive coil increases robustness above 

maximum shared signal selection [14], making this method more robust than VRC. 

Finally, through fitting the coil sensitivities to a basis, we can extend their utility to scans 

of various geometries with minimal SNR penalties (Figures 2.2 and 2.6). This fitted SVD 

method produces a stable combination across time (Figure 2.7) as well as maintains high 

SNR results in the case of extreme subject motion (Figure 2.8). The solid harmonics can 

model sensitivities from a coil with symmetrical or asymmetrical geometry to produce 

high quality ratio images (Figure 2.6). As the solid harmonic solution is a relaxation of 

the Helmholtz equations, this method should also be able to model coil sensitivities far 

from the head, where the shapes are non-spheroid [22], although more investigation is 

required. These factors demonstrate that the fitted SVD method is a robust phase 

sensitive combination. 

2.4.3 Applications of the fitted SVD method for phase combination 

This fitted SVD method can be used for any type of imaging and is ideally 

positioned to combine large multi-volume datasets such as those used in complex valued 
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fMRI and fQSM. Although the fitted SVD method results in a left right asymmetry this is 

not due to a reduced quality ratio and can either be corrected using relative phase across 

time [6] or high pass filtering as is common in QSM [20]. Several other factors make it 

attractive for phase combination in other applications, including that this method can be 

applied in absence of a body coil, making it a strong choice in a research environment 

that uses high 𝐵0 fields where body coils cannot be used to estimate coil sensitivities. 

Additionally, implementation of the method requires no extra acquisitions in a 

conventional pTx scanning protocol, due to the use of an existing prescan to derive the 

receive coil sensitivity estimates.  This combination method can be used for all 

applications free of supervision, as the three parameters governing its operation can be set 

to be optimal for the specific system (and potentially coil) as needed. In this study, once 

these parameters were selected, there was no case collected in the three datasets in which 

the fitted SVD method produced singularities. These factors make the fitted SVD method 

useful for any ultra-high field system in need of a push button solution, particularly those 

applications that acquire multivolume phase data.  

2.4.4 Study limitations 

This preliminary study of the fitted SVD method used datasets targeted at the goal 

application for analysis. These experiments included our proposed target application, 

functional phase imaging, and provided estimates of quality as well as temporal noise. 

Future work could further investigate the efficacy of this technique across a larger subject 

group to ensure quality in other applications.  

The quality of the fitted SVD method does depend on the resolution of the data 

used to derive coil sensitivities, which becomes a trade-off between quality versus time 

because the low-resolution nature of the prescan reduces the time required to fit it to the 

solid harmonics. The fitting will take more time if it is applied to higher resolution data, 

but this trade-off does not result in a large phase SNR decrease (4%, Figure 2.2). This 

method is also limited by any motion between the prescan and the imaging session, 

however the worst-case analysis in our head coil shows that this effect is minimal (Figure 

2.8). In fact, the resistance of this method to motion makes it an excellent candidate for 
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functional imaging. While it may not be suited to every application of phase imaging, it is 

an excellent option for those that would otherwise be limited in compute resources. 

2.5 Conclusions 

In conclusion, the fitted SVD method proposed in this pilot study potentially 

allows for robust phase coherent combination inline and with minimal phase SNR loss. 

This method is an extension of the existing ESPIRiT, voxel-wise SVD, and VRC 

combination methods. Using voxel-wise SVD allows us to compute coil sensitivity 

estimates from routinely acquired prescans without relying on a physical reference coil. 

Using a minimax optimization to determine our virtual reference coil has removed shared 

singularities from our sensitivities and ensures a good fit across the region of interest. 

The solid harmonic fitting allows us to use the power of the voxel-wise SVD combination 

on a small, acquired dataset and apply that solution to align and combine the entire 

session for better phase imaging that takes full advantage of conventionally acquired 

protocols. These different steps allow for stable phase imaging on high throughput 

systems such as ultra-high field research systems, allowing for phase contrast images to 

be added without additional scan or compute time. 
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Chapter 3  

3 Effects of Phase Regression on High-Resolution 
Functional MRI of the Primary Visual Cortex 

This article is open access. See Appendix 3. A version of this chapter has been published 

in: 

Stanley OW, Kuurstra AB, Klassen LM, Menon RS, Gati JS. Effects of phase regression 

on high-resolution functional MRI of the primary visual cortex. NeuroImage. 2021;227: 

117631. doi:10.1016/j.neuroimage.2020.117631 

This study investigated the efficacy of phase regression at high-resolution to 

determine its utility in laminar fMRI. Phase regression was applied to GE-EPI timeseries 

and compared to SE-EPI to determine if GE-EPI’s specificity to the microvascular 

compartment improved. To do this, functional data was collected from seven human 

subjects at 800 𝜇𝑚 isotropic resolution. Phase data from the GE-EPI was used to create a 

microvasculature-weighted time series (GE-EPI-PR). The GE-EPI-PR surface activation 

maps showed a high qualitative similarity with SE-EPI and produced laminar activity 

profiles similar to SE-EPI. Furthermore, it was shown that GE-EPI-PR has a higher 

contrast-to-noise ratio than SE-EPI demonstrating the technique has higher sensitivity 

than SE-EPI. Taken together this evidence suggests phase regression is a useful method 

for macrovascular signal reduction in high-resolution fMRI. 

3.1 Introduction 

The human cortex is organized into functionally distinct layers parallel to the pial 

surface and, in select areas, columns perpendicular to the surface. Cortical layers and 

columns are key functional units in understanding how the brain is organized. Similarly 

positioned layers perform similar tasks across different parts of the brain [1]. Specifically, 

the neuronal inputs and outputs are contained in different cortical layers. Measurement of 

interactions between cortical features such as these could allow for a deeper 

understanding of intra-cortical and inter-cortical communication. Historically, 

investigating the function of these small structures required invasive electrophysiology 

techniques of single and multi-cell recordings in human or animal models [2,3]. 
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More recently, ultra-high field MRI has afforded investigation of brain function at 

high-resolution through increased signal-to-noise ratio (SNR) and sensitivity to blood 

oxygenation. High-resolution fMRI using various methods in healthy human subjects has 

shown agreement with previously published electrophysiological results from animals 

[4]. This agreement supports the use of high-resolution fMRI as a neuroscience tool. This 

technique has been used to investigate the organization of cortical layers [5–9] and 

columns [10–13] across the human brain. 

High-resolution fMRI using blood oxygenation level dependent (BOLD) contrast 

struggles with various acquisition challenges that require consideration prior to data 

collection. These include lower SNR as resolution increases, macrovascular bias, and 

specific absorption rate (SAR) constraints at ultra-high fields. Several different 

acquisition approaches have been used to perform high-resolution fMRI although the two 

most commonly used are gradient echo EPI (GE-EPI) and spin echo EPI (SE-EPI). 

Conventional GE-EPI produces the largest signal changes but is not specific to 

microvasculature [14–18]. Unlike GE-EPI, SE-EPI is more specific due to the use of a 

refocusing pulse to suppress the macrovascular signal. Unfortunately, this sequence 

suffers from SNR and SAR penalties making it a less sensitive technique overall. 

Comparisons between the sensitivity and specificity of these techniques shows that GE-

EPI has 1.29 times higher percent signal change in grey matter than SE-EPI and 5.33 

times higher percent signal change in vessels at 7T [19]. These advantages have made 

GE-EPI the overwhelming choice for high resolution fMRI studies. 

 Several alternatives to GE-EPI and SE-EPI have been investigated such as 

vascular space occupancy (VASO) [20,21], balanced steady state free procession 

(bSSFP) [22] and gradient and spin-echo imaging (GRASE) [13,23]. VASO focuses on 

imaging changes in cerebral blood volume which results in more specificity to the 

microvasculature [21]. bSSFP shows 𝑇2-like weighting and SNR efficiency but is limited 

to a small slab to avoid excessively long acquisition times. GRASE reduces 

macrovascular signal by placing refocusing pulses throughout a GE-EPI sequence which 

lowers 𝑇2
∗ weighting [23] but also limits coverage to a specific region of interest to avoid 



 

 

66 

reintroducing these 𝑇2
∗ effects. However, GE-EPI remains the most commonly used fMRI 

technique today due to its robustness and well understood signal properties.  

Previous work by many groups has attempted to reduce the vascular bias from 

high-resolution GE-EPI while maintaining sensitivity. These methods include optical 

imaging to identify larger vessels [24], susceptibility weighted imaging to identify veins 

[9,25], removing venous bias through deconvolution with a vascular PSF [26], looking at 

the initial dip of the BOLD response [27], contrast subtraction [10,28] and removing the 

higher cortical layers where such veins are present from further analysis [29]. These 

techniques all rely on knowledge and/or assumptions of the vein’s locations in the GE-

EPI images which can require additional acquisitions or signal modelling, and this can 

complicate their use in high resolution fMRI. Another very recent approach that utilizes 

the temporal lag between microvascular BOLD signals and macrovascular BOLD signals 

shows promise in an initial report [30]. 

This paper proposes the use of the phase of the high-resolution GE-EPI images to 

estimate BOLD signal caused by large vessels and subtract it from the magnitude data. 

This data-driven method reduces macrovascular bias without using additional venous 

identification. fMRI phase is an intrinsic part of a conventional GE-EPI acquisition but is 

usually not reconstructed and saved as part of the fMRI pipeline. Phase regression has 

previously been used at low resolutions to reduce large vessel contributions in the 

magnitude images [31–34]. This technique relies on the fact that although magnitude 

signal will contain BOLD changes from both large and small vasculature, phase data will 

primarily contain BOLD changes from large vessels [34].  

Some discussion of what constitutes a large vessel with respect to this technique 

is necessary. Cortical veins can be divided into three groups: pial veins (>280 𝜇m), run 

along the cortical surface; intracortical penetrating veins (80-170 𝜇m), run perpendicular 

to the cortical surface; and smaller intracortical tangential veins, which run at different 

depths parallel to the layers of the cortex [35]. For the current experiments, it is unlikely 

that useful phase information can be obtained from vessels smaller than 150 𝜇m in 

diameter [36]. Additionally, all phase related BOLD changes will increase in amplitude 
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as the vessel size increases [37] so larger vessels will dominate the phase time course. 

Thus, for the purposes of this paper we define the macrovasculature as vessels large 

enough to produce a detectable BOLD phase change, which will primarily be pial vessels 

and a few of the largest intracortical veins.  

At low resolutions, BOLD related phase changes are primarily due to the 

intravascular BOLD signal [34,37]. The extravascular phase signal for the 

macrovasculature will be negligible at low resolutions due to the symmetric extravascular 

frequency profile. Therefore, it can be assumed any voxel with a high correlation 

between magnitude and phase contains signal from the intravascular component of 

macrovasculature. This assumption has yet to be tested in voxels near the size of pial 

vessels on the cortical surface which this paper seeks to investigate. Extravascular 

frequency shifts could produce a phase change in a sufficiently small voxel when the 

symmetry assumption is violated [38]. This would result in phase changes and 

suppression of extravascular and intravascular BOLD signal, improving the reduction in 

macrovascular bias for high resolution data. 

This paper investigates phase regression of high-resolution GE-EPI functional 

time series data as a method to reduce macrovascular bias. Laminar structures are 

evaluated in GE-EPI and SE-EPI functional acquisitions and compared with GE-EPI-PR 

(GE-EPI with phase regression) data. This paper examines the surface activation maps of 

the GE-EPI, SE-EPI and GE-EPI-PR as well as their activation distributions and contrast-

to-noise ratio (CNR). Furthermore, the laminar profiles of GE-EPI, SE-EPI and GE-EPI-

PR are compared to determine the effect of phase regression on the laminar profile 

proximal to and distal from a vessel.  
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3.2 Methods 

3.2.1 Data Acquisition 

Imaging Protocol 

Data from seven subjects was acquired (5 male, 2 female, 25.8 ± 4.0 years). Each 

individual was positioned supine on the MRI bed with a mirror placed over the eyes for 

viewing a rear-projection screen 28-cm away producing a left-right visual angle of 27.5 

degrees. Foam cushions were placed around the head for comfort and immobilization as 

well as medical tape across the forehead for haptic feedback to reduce motion. Informed 

consent of all participants was collected in accordance with and approved by the Human 

Subjects Research Ethics Board at the University of Western Ontario.  

Imaging was performed using a 680 mm neuro-optimized 7 T MRI (Siemens 

Magnetom Step 2.3, Erlangen, Germany) equipped with an AC84 Mark II head gradient 

coil. An 8-channel Tx, 32-channel Rx radiofrequency coil optimized for occipital-parietal 

imaging with no visual obstruction over the face was chosen for data collection [39]. The 

actual flip-angle imaging (AFI) technique [40], augmented with an RF and gradient 

spoiling scheme [41], was used to map the transmit field. In addition, 8 images with 

Fourier B1
+

 encoding were acquired to map relative transmit profiles. RF shimming was 

subsequently performed, which consisted of setting the phase and magnitude of 

each transmit channel using a least-squares optimization that balanced transmit efficiency 

and uniformity [42]. The B1
+

 shim solution was optimized over the region of interest 

relevant to the BOLD measurements. To ensure phase was not inappropriately filtered 

zero-filling partial Fourier was used. The scanning protocol consisted of GE-EPI, SE-

EPI, a multi-echo gradient echo sequence for venous localization and an MP2RAGE 

sequence with high gray-white contrast to extract functional surfaces. Parameters for all 

imaging sequences can be found in Table 3.1.  
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Table 3.1: Imaging Parameters 

Sequence Resolution 

(mm) 

Matrix Size Slice 

Spacing 

TE 

(ms) 

TR 

(ms) 

FA 

(deg) 

BW 

(Hz/Px) 

Acceleration Notes 

Actual Flip 

Angle 

Imaging 

8x8x8 32x32x32 0% 2.75 20 70 1002 none  

Relative 

𝐵1
+ images 

8x8x8 32x32x32 0% 2.75 6 70 1002 none 8 images were collected with 

fourier-encoding to provide 

relative 𝐵1
+contrast [42] 

Gradient 

Echo-EPI 

0.8x0.8x0.8 240x238x29 10% 23 2500 60 1488 GRAPPA 3, 

Partial 

Fourier 6/8 

FWHM of the magnitude of 

the complex PSF in PE 

1.35mm 

Spin Echo-

EPI 

0.8x0.8x0.8 240x240x25 10% 41 2500 90 1488 GRAPPA 3, 

Partial 

Fourier 6/8 

 

FWHM of the magnitude of 

the complex PSF in PE 

1.54mm 

Multi-Echo 

GRE 

0.31x0.31x0.8 620x542x32 0% See 

note 

40 9 202 GRAPPA 2 TE=5.82,11.68,17.54,23.4ms 

MP2RAGE 0.75x0.75x0.75 214x214x128 0% 2.4 6000 4 180 GRAPPA 3 Inversion times 800ms and 

2700ms 

 Phase reconstruction of the GE-EPI data was completed using the fitted SVD 

method [43] described in Chapter 2 to prevent destructive interference. Coil sensitivity 

estimates are obtained by utilizing the multi-image prescan collected for B1
+ mapping and 

performing a singular value decomposition. These estimates are fit to a functional basis to 

allow for their interpolation to other fields of view during the imaging session. The fitted 

SVD derived coil sensitivities are multiplied with the uncombined coil data to align it 

prior to a complex sum. This multiplication and complex sum were completed as part of 

the Siemens reconstruction chain of the CMRR multiband sequence through insertion of 

a custom functor. Maxwell correction is turned off to prevent any spatial translation 

differences between the magnitude and phase images after combination. This method of 

combination is memory efficient due to the low resolution prescan and through the use of 

custom functors during the normal Siemens reconstruction pipeline; typically, a few 

hundred megabytes. For non-Siemens sites, phase combination can use the fitted SVD 

method or additional methods such as COMPOSER [44,45], the virtual reference coil 

method [46] or the voxelwise SVD method [47]. We recommend an online combination 

for computational efficiency when dealing with large datasets [48]. A sum-of squares 

combination from all Rx channels was used to reconstruct the magnitude data. 
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The magnitude of the complex point spread function of the EPI acquisitions was 

calculated for the phase encode direction, by simulating a real uniform EPI echo train in 

k-space to estimate the effective image resolution (Table 1). The effects of acceleration 

were applied, lines were skipped from GRAPPA,  𝑇2
∗ and/or 𝑇2 signal decay added, and 

the echo was zero filled consistent with the partial Fourier technique used during 

acquisition. The phase encode profile was inverse Fourier transformed and the full width 

half maximum of the magnitude was measured and reported as the point spread function 

(PSF) of each EPI sequence. The protocols for the SE-EPI and GE-EPI acquisitions were 

matched as closely as possible resulting in the SE-EPI having a slightly wider PSF than 

the GE-EPI. This estimate was performed to compare the two EPI acquisitions and may 

not be entirely representative of the true resolution [49].  

Functional Stimulus 

 The visual stimulus was an 8 Hz contrast reversing checkerboard created using 

Pyschtoolbox (3.0.11) in Matlab (2015a). This was delivered in a rest-activation 

paradigm of 15 seconds off, 15 seconds on lasting for 8 repetitions and ending on a rest 

block. To help maintain attention, a button press task was used where participants were 

asked to respond when a central fixation cross changed orientation by 45 degrees. Three 

runs were acquired for each participant and for each sequence type: GE-EPI and SE-EPI. 

3.2.2 Data Preprocessing 

Data Analysis Software 

All imaging data was converted to the brain imaging data structure (BIDS) format 

using in-house conversion tools wrapped around heudiconv (Heuristic Dicom 

Conversion). Analysis was completed using Nipype pipelines (1.1.8 [50]) including 

several custom interfaces for phase analysis. The in-house software used can be found at: 

https://github.com/ostanley/phaseprep. An overview of reconstruction and preprocessing 

is available in Figure 3.1. 
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Figure 3.1: Overview of reconstruction and preprocessing prior to phase regression. 

Functional Data Preprocessing 

 Both GE-EPI and SE-EPI underwent the same magnitude preprocessing. Each 

functional imaging run (GE-EPI or SE-EPI) was motion corrected and aligned to the first 

volume of the first run using AFNI (18.1.24 [51]). Brain extraction was completed on the 

same first functional volume using FSL’s BET tool and the mask was applied to all 

functional runs (FSL version 5.0.10). The preprocessed magnitude data was then used as 

the magnitude input for phase regression. After phase regression but prior to general 
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linear modelling all data was scaled to a mean of 10000 and high pass filtered with a 

window of 100 seconds (identical to conventional FSL FEAT preprocessing [52]).  

Preprocessing of the phase data was performed using the in-house Nipype 

workflow, preproc_phase_wf.py. The workflow consists of conversion of the magnitude 

and phase data to real and imaginary. Motion correction was performed in real and 

imaginary space since it is spatially smooth and interpolatable. The transformations from 

the magnitude images were applied to the real and imaginary data and then converted 

back to magnitude and phase images. The phase data was further processed by 

performing first volume subtraction, temporal unwrapping, and linear detrending. 

Voxelwise detrending was performed to remove systematic linear frequency drift and B0 

field variations over time. The result was a motion corrected phase timeseries, free of 

temporal and spatial wraps which also accounts for linear system and B0 field variation.  

Phase regression 

Previous work on phase regression has shown BOLD related phase changes will 

correlate with an associated BOLD related change in magnitude and this can be used to 

estimate signal originating from macrovasculature [34]. This estimated signal can then be 

subtracted from the magnitude signal to reduce signal from large vessels. This method 

relies on two assumptions: (1) the temporal correlation of magnitude and phase is 

different in the microvasculature than in macrovasculature, which prevents complete 

suppression of the tissue signal in a voxel with a large vessel [53], (2) that all large 

vessels produce a phase change, which may not be true for vessels at certain orientations 

[37].  

Phase regression was performed using voxelwise orthogonal distance regression 

(ODR) in the in-house Nipype gadget, PhaseFitODR.py [32]. ODR uses residuals 

perpendicular to the line of best fit and was selected due to the noise present in both 

magnitude and phase data. The regression was completed to solve the following equation: 

𝑀 = 𝐴𝜑 + 𝐵 (3.2.1) 
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where M is the magnitude signal, 𝜑 is the phase signal and A and B are the fit 

coefficients. ODR requires inputs to estimate error ellipses prior to fitting. In order to 

estimate these errors for magnitude and phase, each time course is high pass filtered at 

0.15 Hz (above the task frequency). The temporal standard deviation of these filtered 

signals was then used as the inputs to the ODR for uncertainties and the unfiltered signals 

are used as input to the fits. ODR is then used to estimate the component of the signal 

with high magnitude and phase correlation which is assumed to be macrovascular signal. 

Subtraction of this estimated macrovascular signal results in a signal weighted towards 

microvasculature (𝑀𝑚𝑖𝑐𝑟𝑜 or GE-EPI-PR): 

𝑀𝑚𝑖𝑐𝑟𝑜 = 𝑀 − (𝐴𝜑 + 𝐵) (3.2.2) 

The effect of this on the timeseries of both a tissue and venous voxel is shown in Figure 

3.2. Both the estimated macrovasculature and GE-EPI-PR timeseries underwent the same 

preprocessing steps as the GE-EPI and SE-EPI time courses (scaling to 10000 and high-

pass filtering with a filter window of 100 seconds). 

 

Figure 3.2: Time series for example voxels. (a) a voxel containing a visible vein and (b) 

a voxel with no visible vein. Left column: preprocessed phase time course, Middle 

column: the preprocessed magnitude time course and the estimated macrovascular time 

course and, Right column: the preprocessed magnitude time course as well as the GE-

EPI-PR time course. Red indicates a stimulus-on period. 
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Functional Data Fitting 

 In order to perform physiological noise correction, regressors were created using 

anatomical Compcor [54] from each subject’s eroded white matter mask transformed to 

native EPI space. Compcor masks were generated with two erosions in fslmaths using a 

3x3x3 kernel. Six compcor regressors and the six motion regressors were included as 

regressors of no interest in the GLM to account for noise caused by physiology and/or 

motion. All four time series (GE-EPI, SE-EPI, GE-EPI-PR, and the estimated 

macrovascular timeseries) were analyzed using the FSL film_gls tool. The output was 

converted to % BOLD signal change through normalization to the mean intensity of the 

timeseries. CNR was calculated by dividing the amplitude of the fit signal by the standard 

deviation of the residuals [55]. 

Structural Image Analysis 

 The MP2RAGE image was run through the Freesurfer high resolution recon-all 

pipeline to create cortical surfaces with two modifications (6.0.0 [56,57]). First, the 

Talairach registration was turned off as the structural image was limited to the posterior 

part of the brain (-notalariach, due to coil construction). Second, the corpus collosum and 

pons were manually seeded to ensure proper initialization. The cortical segmentations 

were manually inspected for agreement with the borders in the region of interest and 

brain mask corrections were performed, if necessary. The white matter surfaces were 

equidistantly expanded to allow for depth analysis using Freesurfer’s mris_expand tool 

[25]. All results were calculated at 10% cortical depth intervals from 0 (pial surface) to 

100% (white matter surface). This does not represent the expected anatomical distribution 

of the cortical layers but allows for investigation across surfaces and depths. All results 

were presented across the flattened surfaces by sampling voxel results onto the vertices 

that make up the surface at each depth. 

To restrict analysis to a reasonable area an occipital patch was cut from the rest of 

the cortex and flattened using Freesurfer’s mris_flatten tool. A patch over the calcarine 

sulcus was selected by manual delineation from the white matter curvature and the field 

of view of all acquisitions projected onto the occipital flat patch (Figure 3.3). This 
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selected patch is expected to be within primary visual area V1, but more importantly this 

cortical patch would contain a variety of activation levels and contain vessels required for 

this investigation. This area was 1000 ± 300 mm2 per subject leading to on average 1600 

voxels analyzed for each hemisphere’s surface patch.  

 

Figure 3.3: Visual demonstration of the surface pipeline. 1: Quality assurance figures 

for registration and segmentation. FSL Fast segmentation of a) GE-EPI and b) SE-EPI 

overlaid on the T1weighted MP2RAGE image, c) Freesurfer surfaces overlaid on the 

T1weighted MP2RAGE image. 2: Surface processing pipeline. First the MP2RAGE is 

used to generate surfaces (a). From the generated surfaces (b) a calcarine patch is 

extracted (c) and flattened (d). The ROI (blue area) for analysis is then manually 

delineated using tksurfer and the curvature map as well as slice coverage from the 

functional scans (e). 

Venous Maps 

 As a simple, robust method for identifying venous vasculature, the product of  𝑅2
∗ 

and the initial magnetization (𝑀0) from multi-echo susceptibility weighted imaging was 

used. This was done because 𝑅2
∗ is a physical value and is therefore expected to be 

consistent across subjects except for the presence of a low frequency background field 

[58]. In addition, 𝑀0 can be calculated from the same fit and does not require free 

parameters. In order to calculate these parameters, the multi-echo GRE data was run 



 

 

76 

through the qsm_sstv pipeline (https://github.com/AlanKuurstra/qsm_sstv/releases, 

1.0.0). Briefly, this BIDS app extracted the brain from the multi-echo data and performed 

complex fitting to calculate 𝑅2
∗, frequency, and 𝑀0. These maps were then registered to 

the T1 image using the same methods as the EPIs (described below) to transfer them to 

surface space for functional analysis.  

Registration to Structural Data 

Registration of the functional maps to structural space was completed using ANTs 

(2.2.0 [59]). After initialization using the center of mass, a rigid transform was completed 

followed by two affine transformations, one general and one targeted at the region of 

interest. Mutual information was used as the target metric and all interpolation was 

completed using order 3 splines. In most laminar studies it is common to bring the 

anatomic surfaces into functional space. This was not done in this study due to the 

different fields of view of the GE-EPI and SE-EPI. As an alternative all transformations 

prior to the GLM were kept to a minimum (one spatial transform per volume) and then 

performed one single transform of each result to T1 space. These results were then 

transferred onto the cortical surface ROI using mri_vol2surf and allowed for surface 

comparison between both pulse sequences. The T1 transform and sampling to surface 

space will result in some effective blurring of the data, however these effects are 

minimized by performing phase regression and GLMs prior to transformation. 

3.2.3 Analysis Methods 

Surface Visualization 

 Surface activation maps become distorted during flattening resulting in uneven 

vertex placement across flat space. The vertices for each layer were converted to a three-

dimensional mesh and the laminar surface activation maps were plotted as a triangular 

mesh in order to reduce this effect. By doing so, it becomes easier to view as it does not 

involve varying amounts of dead space. The effect this has on visualization is displayed 

in Figure 3.4. All laminar profiles and signal distributions were calculated across vertices 

and did not use an interpolation. 
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Figure 3.4: Surface visualization demonstration. a) The vertices for a cortical patch 

plotted over a grey background (used to calculate all laminar profiles and distributions). 

b) A triangular mesh to make the data more contiguous and easier to visualize when 

examining surface activation maps qualitatively. 

Vessel Segmentation 

 Manual segmentation was performed in order to delineate visible vessels from 

tissue. The product of the 𝑅2
∗ and 𝑀0 surface maps was selected for manual segmentation 

as it showed reduced noise compared to the 𝑅2
∗ surface map. Each laminar surface map 

was manually segmented for every subject and every cortical depth. Hyperintensities 

were outlined as polygons on top of the mesh using matplotlib. All vertices in these 

hyperintense region polygons were then labelled as vessels. To control for bias, no 

indication of cortical depth or subject was given when each map was presented, each map 

was presented with an identical colour bar, and the maps were presented in randomized 

order. After manual segmentation was completed, two forms of continuity clustering 

were used. First, vertices which were labelled as a vessel across two adjacent depths were 

included in the final vessel map to include penetrating vessels. Second, marked vertices 

greater than 0.3 mm away from another marked vertex were excluded, this provides for 

the possibility of a vessel running along the surface of a single layer. These thresholds 

were both applied to improve vessel continuity and reduce the presence of single noisy 

vertices causing mislabeling. An overview of this process can be seen in Figure 3.5.  
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Figure 3.5: Vessel segmentation overview. All patches are presented at 10% cortical 

depth. a) 𝑅2
∗ map, b) 𝑀0 map, c) the product of the 𝑅2

∗ and 𝑀0 maps from an example 

subject. d) Areas identified as vessels after both manual segmentation and continuity 

correction are shown in green over the product map. e) Average count of vessel vertices 

across subjects as a function of cortical depth. Error bars represent the standard error of 

the mean. 

Laminar Profile Generation 

 Laminar profiles were plotted by averaging across all vertices in the calcarine 

patch of interest for each of the nine depths from 10% to 90%. Vertices were also 

classified as proximal to or distal from a vessel based on their minimum Euclidean 

distance to a vessel vertex thresholded at 2.4 mm. At this distance, an activation based 

frequency shift of 24Hz is expected, compared to 220Hz at the surface of a 0.8 mm vessel 

(calculated from [38]). This was considered sufficiently out of the influence of large 

veins for this study.  

 

3.3 Results 

 The temporal SNR in the field of view of interest is uniform (Figure 3.6). A poor 

B1
+ shim in one subject’s hemisphere was observed and verified on the actual flip angle 

map. This hemisphere was excluded from the group metrics reported below and from all 

further analysis. Temporal SNR across the cortical ribbon of all subjects was 10.2 ± 1.2 

(mean ± standard deviation) for the GE-EPI and 8.36 ± 0.83 for the SE-EPI data. The 

tSNR of the GE-EPI and SE-EPI was significantly different in a Welch’s t-test (p=0.015) 

and this is an important note for later surface activation map comparison. Finally, the 

phase standard deviation of the timeseries was 0.21 ± 0.12 radians across all subjects.  
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Figure 3.6: Volumetric Data Quality Example. Temporal signal-to-noise ratio maps for 

an example subject. a) GE-EPI, b) SE-EPI, c) GE-EPI-PR, d) Phase temporal standard 

deviation for the same subject.  

 To investigate the changes in the laminar surface activation maps due to phase 

regression the BOLD % signal change was projected onto surfaces at various cortical 

depths (an example subject is shown in Figure 3.7). The equidistantly projected data 

shows surface veins that are clearly visible in the higher layers of cortex (towards the pial 

surface). This is to be expected, even in the SE-EPI case as the purely T2 weighting only 

applies for the central measurement of k-space. The lower tSNR in the SE-EPI does 

affect the laminar surface activation maps as they appear noisier, but it is still clearly less 

sensitive to large vessels. The hyperintense venous regions in the GE-EPI data exhibit the 

largest signal suppression after phase regression compared to surrounding areas. The 

spatial distribution of GE-EPI-PR appears to match the SE-EPI case more closely. To 

validate the areas of high activation in the GE-EPI are truly large vessels the data was 

examined in conjunction with the structurally derived, vessel sensitive 𝑅2
∗ and M0 data 

(Figure 3.8). 
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Figure 3.7: Laminar surface activation maps over a calcarine mask. Data is presented 

across equidistant cortical depths where 0% is the pial surface and 100% is the white 

matter boundary. a) GE-EPI % signal change, b) SE-EPI % signal change, c) GE-EPI-PR 

% signal change. Grey arrows indicate a region with a pial vein. 

Figure 3.8 shows the 𝑅2
∗ and M0 product maps projected onto the cortical surfaces 

indicating the vessel locations from independent anatomy without the functional data. 

Also shown are the two metrics that illustrate the performance of the phase regression. 

These are the correlation between the fitted phase and magnitude (R2), and the activation 

resulting from the fitted phase time series (estimated macrovascular activation). The 𝑅2
∗ 

and M0 map shows vessel like structures where the largest reduction in GE-EPI-PR % 

signal change occurred. The estimated macrovascular activation also shows areas of 

hyperintensity at these locations indicating that phase regression is suppressing venous 

signal. This can be further quantitatively investigated through examining the distributions 

of the different functional imaging methods. 
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Figure 3.8: Vessel localization using 𝑹𝟐
∗  and M0. a) Product of 𝑅2

∗ and M0 projected 

onto the cortical surface, b) Correlation between fitted phase and magnitude (R2 of the 

phase regression fit), c) Activation resulting from the fitted phase timeseries (estimated 

macrovascular activation)  

 SE-EPI exhibits specificity to the microvasculature making it an appealing 

method for BOLD imaging of cortical substructures like columns [17]. By comparing the 

GE-EPI and GE-EPI-PR distributions to SE-EPI, a direct comparison to a microvascular 

control can be evaluated (Figure 3.9). A group of Kolmogorov–Smirnov tests with 

Bonferroni multiple comparisons correction were used in order to investigate similarities 

between distributions of the imaging methods. These tests show the distributions are all 

significantly different (p<0.05) except the distributions of GE-EPI-PR and SE-EPI from 

depths of 10 to 60% demonstrating that the distribution of GE-EPI-PR is more 

characteristic of SE-EPI than GE-EPI in the higher layers of cortex. This supports the 

hypothesis that GE-EPI-PR is suppressing pial vessel signal and producing a SE-EPI-like 

activation map. 



 

 

82 

 

Figure 3.9: Test statistic of the two-sided Kolmogorov-Smirnov test between 

distributions as a function of depth. The dashed line represents the significance 

threshold (p<0.05) after Bonferroni comparisons correction across all depths. 

One concern in using phase regression in fMRI processing is the reduced contrast-

to-noise ratio. GE-EPI-PR shows signal suppression relative to GE-EPI (Figure 3.10). 

CNR was calculated by dividing the amplitude of the activation by the standard deviation 

of the residuals. This was done to investigate whether phase regression is introducing any 

noise through the fit subtraction process which could potentially reduce the method’s 

efficacy. The average CNR across layers of the GE-EPI data is 0.9 ± 0.3 (mean ± std dev. 

across layers), for GE-EPI-PR the CNR is 0.5 ± 0.2 and finally SE-EPI has a CNR of 

0.27 ± 0.07. This means the CNR of the SE-EPI data is only 30% of the GE-EPI data 

compared to the CNR of GE-EPI-PR which is 60% of the GE-EPI data. This shows that 

the phase regression method reduces GE-EPI CNR as expected, however it has higher 

CNR than SE-EPI. These findings suggest that although some noise may be introduced 

GE-EPI-PR is still an advantageous method to use over SE-EPI as it has more statistical 

power. 
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Figure 3.10: Laminar CNR profiles across subjects. Error bars represent the standard 

error of the mean across subjects. All vertices were used for this calculation. 

Large venous vessels exhibit both an intra- and extra-vascular BOLD response. 

Removal of the extravascular bloom is an important component in reducing the signal 

bias from these large draining veins. The laminar profiles distal from all vessel vertices 

were examined in order to determine if this extravascular bloom was being successfully 

reduced. Two bins of vertices were created, one proximal to and one distal from a vessel 

vertex. Figure 3.11 shows laminar profiles over all vertices as well as for vertices 

proximal (<2.4mm) and distal to a vein (>2.4mm). The GE-EPI-PR data shows activation 

similar in profile to the GE-EPI data but with a lower percent signal change when distal 

from vasculature. The difference between the GE-EPI-PR and GE-EPI is most prominent 

in the higher depth vertices proximal to veins where the GE-EPI-PR laminar profiles 

have a lower slope than GE-EPI. This would indicate that the phase regression is 

reducing contribution from pial veins to a higher degree than tissue as we expect.  
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Figure 3.11: Laminar activation profiles across subjects. Error bars represent the 

standard error of the mean across subjects. a) Profile across all vertices, b) Profile across 

vertices proximal to a vein (thresholded at a Euclidean distance of 2.4 mm to a vessel 

vertex) and c) Profile across vertices distal to all veins.  

3.4 Discussion 

In this study, we investigated the use of phase regression on high-resolution GE-

EPI data to assess the feasibility of the technique for use in intracortical BOLD fMRI at 

the laminar and/or columnar level. GE-EPI is an attractive sequence for use in high-

resolution fMRI as it has an inherently higher contrast-to-noise ratio per unit time 

(sensitivity) compared to other popular intracortical fMRI approaches (i.e., SE-EPI, 

VASO, GRASE, or bSSFP), as well as lower SAR requirements and higher spatial 

coverage making it easier to achieve high temporal resolutions and shorter imaging times 

[15,60]. Unfortunately, GE-EPI suffers from macrovascular contamination leading to low 

specificity to the capillary bed microvasculature [16]. Phase regression of the GE-EPI 

images was investigated to determine if the specificity could be improved without 

sacrificing microvascular sensitivity, improving GE-EPI utility in high resolution studies.  

GE-EPI and GE-EPI-PR were compared to SE-EPI, a sequence that has been well studied 

and provides functional signal with specificity to the microvasculature [17]. We 

demonstrated the utility of phase regression for intracortical fMRI by showing GE-EPI-

PR (1) has specificity across cortical surfaces comparable to SE-EPI, (2) has higher 

sensitivity than SE-EPI across all cortical layers, and (3) reduces the extravascular and 

intravascular functional contributions from pial veins compared to GE-EPI. With these 
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advantages in mind, GE-EPI-PR is a useful addition to a laminar imaging toolkit as it 

improves specificity of GE-EPI with only a minor reduction in sensitivity. 

3.4.1 GE-EPI: Specificity and Sensitivity 

GE-EPI is the workhorse sequence for fMRI studies and has advantages over T2 

based methods such as SE-EPI as it requires less RF power (lower SAR) and has higher 

SNR efficiency. As a result of the high SNR efficiency, GE-EPI has higher contrast-to-

noise per unit time than SE-EPI, from 2 to 2.9 experimentally [18,28,61] and this has 

beneficial effects when voxels are evaluated for activation models such as tuning or 

encoding as the fits are more robust [28,62]. However, GE-EPI profiles as a function of 

cortical depth have a positive slope towards the cortical surface, indicative of large 

BOLD changes due to large pial vessels [14]. The tradeoff of sensitivity for specificity 

between GE and SE is further complicated by the high SAR requirements of SE-EPI 

which lengthen acquisition time and limit coverage [63]. Alternative sequences such as 

GRASE and VASO have been developed that have improved specificity compared to 

GE-EPI but also have reduced CNR, spatial coverage limitations and SAR restrictions 

[63,64]. Thus GE-EPI remains the most popular fMRI sequence to date and is widely 

used in the high-resolution fMRI field. 

3.4.2 GE-EPI-PR: Specificity and Sensitivity 

Large venous vessel BOLD signal reduction through phase regression produces 

activation maps (Figure 3.7) and laminar profiles (Figure 3.11) comparable to SE-EPI. 

Activation map similarity was quantified through two-sided Kolmogorov-Smirnov tests 

which show GE-EPI-PR and SE-EPI activation map distributions are not significantly 

different on the upper laminar surfaces of cortex (10-60% cortical depth). This 

demonstrates that phase regression produces a SE-EPI-like signal which will have higher 

specificity to microvasculature without incurring the conventional penalties for that 

specificity such as higher SAR and longer imaging times. Using GE-EPI-PR also offsets 

one of the major problems with SE-EPI, namely reduced sensitivity. 
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The low BOLD sensitivity of SE-EPI [15,19] produces data with low contrast-to-

noise efficiency and often requires repeated acquisitions to increase the statistical power. 

Consistent with prior studies, we found SE-EPI has 30% of the CNR of GE-EPI data 

averaged across layers.  Our approach demonstrates GE-EPI-PR doubles the CNR 

compared to SE-EPI across all layers which will make imaging using this technique more 

statistically powerful (Figure 3.10). This technique also shows GE-EPI-PR has 60% of 

the CNR of GE-EPI, which is the same as the CNR of VASO [64]. Utilizing GE-EPI-PR 

will therefore create a more microvasculature-weighted signal with increased sensitivity 

and some practical acquisition advantages over alternative fMRI sequences. 

3.4.3 GE-EPI-PR: Venous signal suppression 

Our hypothesis that phase regression decreases macrovascular signal in GE-EPI-

PR activation maps predicts a lower activation in the areas that correspond to veins. 

Indeed, in this study, the GE-EPI-PR activation maps (Figure 3.7) show spatially varying 

suppression compared to GE-EPI with the largest suppression in the ‘vessel’ regions as 

identified from the multi-echo GRE scan (Figure 3.8). This observation is further 

supported in Figure 3.11 showing that the GE-EPI-PR laminar profiles in vertices 

proximal to vessels show increased signal suppression compared to vertices distal to 

vessels. These results are a promising indication that at high resolution, phase regression 

has the ability to also suppress extravascular signal [38], which was not observed in 

previous studies at low spatial resolution [34,65]. Extravascular signal is the dominant 

BOLD producer at 7T [66] and the specificity improvements from extravascular signal 

removal is particularly significant for pial veins as they have been shown to impact the 

signal distribution across the entire cortical ribbon of the visual cortex [67]. In addition to 

the extravascular suppression, this study observed intravascular suppression as expected 

by phase regression [34]. This has a similar effect to applying a diffusion gradient to a 

GE sequence to suppress intravascular BOLD effects [66,68]. Both extra- and intra-

vascular signal suppression was greatest at the pial surface supporting the theory that 

phase regression exhibits the highest suppression effects near large vessels. All of the 

tangential and penetrating vasculature in cortex combines to confound BOLD signal 

distant from the capillary bed but for GE-EPI the effects from pial veins are dominant 
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[69] as proximity to a vessel affects the amplitude of the BOLD response to a greater 

degree than cortical depth.  Phase regression results in functional maps with higher 

microvascular specificity to the capillary bed. This is important as previous studies have 

shown that performing venous removal on GE-EPI BOLD data results in laminar profiles 

more closely matched to the expected laminar profiles from histology [9,64]. 

3.4.4 Venous signal removal from GE-EPI in literature 

 Removing GE-EPI signal contributions from large venous vessels to increase the 

specificity to the microvasculature remains one of the open problems in high resolution 

GE-EPI fMRI research today. Several studies have demonstrated reducing large vessel 

signal contributions from GE-EPI BOLD data using masking, profile correction, 

experiment setups or selective analysis. One such approach, masking, can be performed 

using additional acquisitions such as multi-echo GREs to identify and mask venous 

vessels [24,28] but suffers from poor localization of the venous voxels after registration 

of the multi-echo scan to the distorted EPI space [70]. Phase regression is performed in 

native EPI space so will not suffer from these potential registration errors. Alternatively, 

it is possible to mask vessels by determining cutoff thresholds of EPI intensity or percent 

BOLD change in order to separate venous voxels from non-venous voxels in native EPI 

space [9,25] but hard cutoffs may not be able to separate venous and non-venous signal 

completely and may require manual segmentation (as was done in this study) or 

additional filtering [9]. Additionally, hard cutoffs fail to account for the gradual distance 

dependent reduction in extravascular effects. Fortunately, phase regression requires no 

cutoffs and GE-EPI-PR also is useful at removing extravascular effects from pial veins 

proximal to vessels. Laminar profile correction can be completed spatially through PSF 

estimation and deconvolution to remove bias from penetrating vessels [26] but it does not 

consider pial vein effects [15] unlike the phase regression technique. It is also possible to 

correct the profiles temporally by estimating an early and late response across an area 

with temporal decomposition through manifold fitting [30]. This technique, like phase 

regression is agnostic to venous size or orientation but does require finite impulse 

response modelling as an initial step which can be challenging in resting state or 

naturalistic paradigms. Using phase and magnitude data separately could add additional 
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power to the manifold fitting approach. Phase regression uses the correlation between 

magnitude and phase and therefore works across functional paradigms.  Some 

experiments can reduce vessel bias using their experimental design, such as ocular 

dominance columns, where contrast subtraction removes most of the large venous effects 

[10,28] but this assumes linearity in the BOLD response and still shows some venous 

contamination [17]. It also eliminates the desirability of using single-condition maps. 

Other forms of selective analysis can be performed, such as focusing analysis on the 

initial dip of the BOLD signal as it is more spatially specific to the active microvascular 

blood pool, unfortunately it is smaller and requires additional modelling in order to 

determine the HRF voxel by voxel [27]. Alternatively, one can deliberately remove upper 

layers from further analysis [29] which limits the utility of intracortical fMRI to 

neuroscience problems fully described in the lower cortical depths. These experimental 

restrictions are not required by phase regression. Phase regression is an additional viable 

tool for this venous reduction literature as phase data is already available for many 

gradient echo sequences and only requires a robust phase sensitive method of coil 

combination. 

3.4.5 Study Limitations 

It is important to note, for studies requiring voxel sizes of less than a millimeter, 

appropriate echo times may only be achievable by using acceleration such as GRAPPA 

[71] or SENSE [72] possibly in combination with partial Fourier acquisition [73] which 

is ubiquitous in high-resolution EPI fMRI acquisitions in order to obtain short echo train 

lengths.  The phase regression technique works regardless of partial Fourier as long as 

more than half of the k-space is collected. Although we expect the phase to be affected by 

the partial Fourier we do not expect, nor do we observe, its complete destruction. Our 

data did not exhibit artifacts such as Gibbs ringing in the phase data which we could 

expect from the use of zero-filled partial Fourier. This may be due to the relatively low 

SNR this data was collected with obscuring the expected ringing. This evaluation 

demonstrates that partial Fourier will produce data with a lower effective resolution but 

without contributing significant additional artifact in the images and/or resultant 

functional maps. Future work on phase regression will have to perform similar quality 
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assurance in order to determine that the GE sequence and acceleration parameters used 

are appropriate for phase data. 

To examine the effects of sequence parameters on resolution, the magnitude of 

the complex PSF was reported for both GE-EPI and SE-EPI. The PSF provides additional 

acquisition information to the commonly reported nominal resolution and allows for an 

improved understanding of the effect acceleration has on our data. Several existing 

studies have attempted to compare PSFs this way in order to better explain the effects 

that different sequences and acceleration parameters have on their data [11,63]. This 

method calculating the magnitude of the complex PSF will not represent the 

physiological PSF [15,26,74] and will not provide results targeted at resolving a specific 

pattern such as ODCs [49]. However, our reported PSFs still provide a direct comparator 

between sequence parameters. This magnitude of the complex PSF represents the level of 

influence neighboring voxels have on each other in the phase-encode direction, the worst 

blurring case in our sequences [49]. Despite the blurring due to acceleration limitations 

these voxel sizes were sufficient to study reductions in macrovascular signal and still 

showed the phase regression effect at high resolution for the first time. 

3.4.6 Future Work 

Future work is needed to explore the properties of phase regression at high 

resolution. This study was conducted with limited spatial coverage, 22 mm in the slice 

direction limiting the ability to assess other aspects such as the relationship between 

phase regression and cortical orientation [75]. This was a deliberate choice due to the 

nature of the visual stimulation used. More study is needed to assess whether the phase 

regression effects reduce the orientation dependence of GE-EPI which is driven by pial 

vessels [76]. One additional area of interest would be the inclusion of phase regression 

into laminar modelling [26,77] as these methods focus on removal of penetrating 

vasculature and not correction for vessels on the pial surface. Finally, extension of phase 

regression to other GE sequences such as 3D-EPI could allow for wider adoption of this 

technique [78]. These proposed studies would help to expand the utility of phase 

regression beyond the investigation performed in this study. 
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3.5 Conclusions 

 This study has demonstrated that phase regression can be applied to reduce large 

vessel bias in high resolution functional acquisitions with complex data. Applying phase 

regression to GE-EPI data results in a similar activation map to SE-EPI while 

maintaining a higher contrast-to-noise ratio. Phase regression may be a useful tool in the 

laminar fMRI toolkit. This valuable technique can be used without additional acquisitions 

or equipment and requires only a method to combine phase data. Phase regressed GE-EPI 

is a powerful technique to reduce venous bias considered to be an important confounding 

factor at ultra-high fields and thus allowing GE-EPI imaging to have increased utility in 

laminar fMRI studies. 
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Chapter 4  

4 Phase Regression in Macaques: An investigation 
of physiological confounds 

Olivia W Stanley, Geoffrey N Ngo, Ravi S Menon 

This article is in preparation. 

Macaques are a useful model for laminar imaging as functional imaging can be 

performed alongside electrophysiology for the investigation of questions into the BOLD 

mechanism. Implementing phase regression in a macaque model would allow for such 

studies to be completed with increased microvascular specificity as previous work has 

shown that pial vessel bias, observed in humans in Chapter 3, also exists in macaques. 

This pilot study examined the efficacy of phase regression in a macaque model as a 

method of improving specificity for macaque laminar fMRI studies. Resting state 

magnitude and phase data was collected to assess the effect that phase regression had on 

macaque functional data. The resting state data was processed under two different 

physiological cleaning strategies: applying cleaning before and after phase regression. 

Neither strategy allowed phase regression to perform optimally as a macrovascular filter 

due to respiration artifacts. Future work should investigate on-system physiological 

correction to remove these large artifacts from the data.  

 

4.1 Introduction 

 Functional MRI is a non-invasive technique using endogenous contrast [1] that 

has proven to be a transformative tool in the study of cognition in both human and animal 

models [2]. Macaques are a common model for functional MRI, bridging the gap 

between human and small animal research due to their similar brain topology and ability 

to perform higher cognitive order tasks [3]. Additionally, macaques are used to study 

laminar activity and the BOLD response as it is possible to perform electrophysiology 

and fMRI simultaneously in the same animal [4]. The gold standard method for 
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performing fMRI is using blood oxygenation level dependent (BOLD) contrast [5] 

collected with gradient-echo echo planar imaging (GE-EPI). BOLD fMRI measures 

signal changes from blood oxygenation to determine neural activation in an area [4]. 

Unfortunately, BOLD contrast is an indirect vascular measure of neural activity, and this 

can present a challenge to spatially localize BOLD signal to the correct area of the cortex 

[6]. 

Macrovascular contamination is one cause of uncertainty in spatial localization, 

whereby large pial veins on the cortical surface pool oxygenated blood flowing from 

BOLD responses occurring within the cortex resulting in ambiguous localization of 

activation [6]. Phase regression (PR) takes advantage of the often-under-utilized phase 

signal from fMRI to identify and reduce draining vein contributions. To do this, PR 

models each voxel as a mix of two signal populations: a macrovascular, and a 

microvascular BOLD signal. Fortunately, due to signal dependence on vessel size and 

vessel orientations, the phase signal of fMRI is most sensitive to large vessels and any 

signal correlated with both magnitude and phase time courses can be assumed to be 

macrovascular in origin. This correlated signal is estimated through a linear regression 

and then subtracted from the magnitude signal to lower the magnitude signal’s 

macrovascular weighting and produce a signal with higher microvascular specificity (GE-

EPI-PR). PR has previously been used to reduce the macrovascular contamination in 

human subjects in both task [7–10] and resting-state fMRI experiments [11].  

Implementing PR in a macaque model could reduce macrovascular signal from 

pial vessels creating more microvasculature specific fMRI results. Pial vessel 

contamination is an established issue in macaque fMRI and correcting it in the past has 

used optical methods of vein detection [12], using both BOLD and cerebral blood volume 

(CBV) functional imaging in combination [13], or spin echo imaging which is more 

specific to microvascular signal [14]. PR requires no additional equipment like the optical 

case, does not require twice the functional imaging as was done in the BOLD and CBV 

study, and was shown to have better contrast to noise than spin echo in the human study 

performed in Chapter 3. PR operating as a macrovascular filter in macaques could also 

provide an ideal model for investigating the size of vessels that are affected by PR [15]. 
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BOLD signal shows a cortical orientation dependence that can be used to determine the 

orientation of the vessels dominating the BOLD response. At 7T, pial vasculature has 

been found to dominate resting state signal in humans [16]. A similar cortical orientation 

study could be used to determine the size of vasculature affected by PR. A reduction in 

cortical orientation dependence would indicate suppression of the pial vasculature. A 

sedated macaque model is a good candidate for this experiment as sedated macaques 

exhibit resting state activity [17], can undergo long experiments, and have minimal head 

motion. This pilot study seeks to determine the efficacy of PR in a macaque model to 

begin the pursuit of this cortical orientation study. 

 One challenge of performing PR is that the phase signal shows more artifacts and 

noise than the magnitude signal. It has shown increased sensitivity to breathing and other 

physiological effects [18], scanner noise [19], and non-BOLD susceptibility effects [20], 

in addition to lost signal near the air-tissue interfaces such as the sinus region [21]. As PR 

is performed on the relative phase time courses, only artifacts that affect the phase 

through time will create issues with this technique. These potential artifacts are mass 

motion field shifts because of breathing [18], increased physiological noise from the 

cardiac or respiratory cycle [19], and higher sensitivity to scanner noise [19]. Previous 

work has shown that these artifacts can be mitigated in humans using either a global 

frequency correction for physiological phase changes (DORK [22]) or post-imaging 

regression of physiological traces (RETROICOR [23]). The degree to which these artifact 

sources affect the phase signal as well as how effectively they can be corrected has not 

been examined in macaques to date.  

Mass motion field shifts are a major contributor to phase artifacts and occur when 

motion outside the imaging region creates inhomogeneities in the magnetic field [24]. 

These field shifts have been observed in human studies during swallowing [25] and 

reaching and grasping tasks [26]. Mass motion artifacts can also be caused by respiration 

as the chest moves and have been shown to affect the phase more than the magnitude 

images [18]. These artifacts result in shifts in the global frequency which change image 

intensity but are not due to BOLD contrast. Previous work has corrected mass motion 

artifacts in humans where PR [27] in combination with navigator echoes can reduce the 
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artifacts [26]. In these studies, PR was employed not as a macrovascular filter but to 

reduce the mass motion artifact. 

To date, PR efficacy for macrovascular suppression in a macaque model has not 

been assessed. Performing PR in a macaque will have different challenges such as 

imaging in the sphinx position, where the macaque lays prone in the magnet with their 

gaze facing forward through the bore. Macaques are usually scanned in sphinx position 

and have differing body geometry which could result in more respiratory signal 

contamination due to the proximity of the lungs to the imaging region. Additionally, 

macaques are routinely imaged under sedation which can cause attenuated resting state 

signal [17] and could reduce PR performance as there is less BOLD signal change 

overall. These confounds require investigating and quantifying prior to further PR studies 

in macaques. The PR method could provide improvement in spatial specificity of BOLD 

contrast which would directly benefit laminar macaque studies.  

This study seeks to investigate the efficacy of PR in a macaque animal model 

during resting-state fMRI. This would allow for greater spatial specificity in laminar 

macaque studies as it would reduce pial vessel bias. Factors such as sedation, body 

geometry, and scanner noise can all affect the efficacy of the PR technique to fit and 

remove signal and must be considered when migrating this technique to animals. This 

study attempts to quantify these artifact sources in both the magnitude and phase data as 

well as investigate whether there is a suitable fMRI denoising workflow that can improve 

PR results. First, the quantification of confounds is composed of two parts: examining the 

phase and magnitude spectra for artifacts and quantifying their relative signal power. 

Second, resting-state connectivity is calculated using two methods of physiological 

cleaning to examine connectivity in PR timeseries. This study aims to investigate PR to 

determine if it is an effective fMRI preprocessing strategy for future applications of fMRI 

in macaque studies. 
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4.2 Methods 

4.2.1 Animal Preparation 

All imaging described below was performed in accordance with the guidelines 

of the Canadian Council on Animal Care policy on the care and use of experimental 

animals and an ethics protocol approved by the Animal Care Committee of the University 

of Western Ontario. Animals were under close supervision by the university 

veterinarians. Two female macaques (Macaca fascicularis) were anesthetized with 

ketamine (10 mg/kg) and propofol (1.3 mg/kg) and sedation was maintained with 

isoflurane for the imaging duration. Isoflurane was kept to 1-1.25% when functional 

images were acquired. 

4.2.2 Imaging 

Imaging was performed using a 680 mm neuro-optimized 7 T MRI (Siemens 

Magnetom Step 2.3, Erlangen, Germany) equipped with an AC84 Mark II head gradient 

coil. The animals were scanned in sphinx position in a custom built 8 channel transmit, 

24 channel receive RF array intended for use with animals [28]. Structural MP2RAGE 

images were collected with 500 um isotropic resolution, TE/TR = 3.9/6500 ms, 

TI=800/2700 ms, BW = 150 Hz/Px and FA = 4 o/5o. Additionally to better delineate the 

pial surface, a T2-weighted turbo spin echo scan was collected with resolution 

0.3x0.3x1.1 mm, TE/TR = 85/7500 ms, BW = 220 Hz/Px, and FA = 120o. 

Functional imaging was collected in 10-minute runs with a GE-EPI sequence with 

1.0 mm isotropic resolution (10% slice gap), TE/TR = 22/1000 ms, BW = 1860 Hz/Px, 

FA = 40o, multiband factor 2, GRAPPA of 2, and partial fourier of 7/8 (zero-filled) [29]. 

Subject R had 10 runs collected (100 minutes) and Subject O had 6 runs collected (60 

minutes). To collect phase data, the fitted SVD method (Chapter 2) was used for coil 

combination [30]. Briefly, this method uses a voxelwise singular value decomposition of 

the B1
+ shimming prescan to calculate relative coil sensitivities which are fit to a 

polynomial basis allowing for their application to later imaging runs [30]. 
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4.2.3 Structural Image Registration to Standard Space 

 For this project the pipelining software macapype was used to create a 

segmentation and register the structural image to the D99 atlas in NMT space [31]. This 

software uses a combination of the T1-weighted and T2-weighted scans to perform 

denoising using AFNI [32], brain extraction using atlasbrex [33], NMT registration 

followed by Atropos segmentation [34]. Registration of the structural scan was completed 

using macapype which used linear and non-linear AFNI based registration [32] to register 

the structural image to the NMT template version 1.2 [31].  

4.2.4 Functional Image Preprocessing 

 Functional data was preprocessed using the phaseprep toolbox 

(https://github.com/ostanley/phaseprep), constructed in nipype [35]. This toolbox first 

processed the magnitude data through 3dVolReg motion correction [32], alignment to the 

first functional run using 3dAllineate [32], linear detrending, and masking of the 

magnitude data using FSL’s BET [36]. Phase data does not have similar image 

characteristics to magnitude data, and it is not well suited to motion correction or 

registration with established neuroimaging software. Phase data therefore undergoes 

processing using parameters from the magnitude data. The phaseprep toolbox was used to 

convert the phase of the timeseries to radians and motion correct the functional data in 

real and imaginary space using the transforms from the magnitude data preprocessing. 

Motion correction is done in real and imaginary space as it does not contain phase wraps. 

The motion corrected real and imaginary images are transformed back into phase data 

which is temporally unwrapped and linearly detrended as final preprocessing steps.  

 Temporal signal to noise was calculated after preprocessing was complete. The 

detrended magnitude timeseries was used to create a voxelwise map of the mean signal 

over the standard deviation. The temporal standard deviation of the phase data was 

similarly calculated over the preprocessed phase timeseries.  
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4.2.5 Phase Regression 

 PR was performed using orthogonal distance regression (ODR) with the following 

linear model: 

𝑀 = 𝐴𝜑 + 𝐵 

where M is the magnitude signal (GE-EPI), 𝜑 is the phase signal, and A and B are the fit 

coefficients. The resulting microvascular weighted signal, 𝑀𝑚𝑖𝑐𝑟𝑜, (GE-EPI-PR) is then 

calculated as follows: 

𝑀𝑚𝑖𝑐𝑟𝑜 = 𝑀 − (𝐴𝜑 + 𝐵) 

ODR was used as it allows for random errors in both magnitude and phase [37] 

which is representative of the situation when estimating a fit between two MRI signals. 

ODR requires estimation of the noise in both magnitude and phase to perform optimally. 

Given a single magnitude measurement of 𝑀𝑖 = 𝑀𝑖
∗ + 𝜀𝑖 and a phase measurement of 

𝜑𝑖 = 𝜑𝑖
∗ + 𝜂𝑖, where 𝑖 is an individual timepoint, 𝑀𝑖 and 𝜑𝑖 are the measured magnitude 

and phase data at that point, 𝑀𝑖
∗ and 𝜑𝑖

∗ are the true magnitude and phase values that lie 

on the regression line and 𝜀𝑖 and 𝜂𝑖 are the noise in the respective measurements. ODR 

minimizes the following sum of the squared residuals (SSR) as follows: 

𝑆𝑆𝑅 =
1

𝜎𝜀
2

∑ ((𝑀𝑖 − 𝐵 − 𝐴𝑀𝑖
∗)2 +

𝜎𝜀
2

𝜎𝜂
2

(𝜑𝑖 − 𝜑𝑖
∗)2)

𝑛

𝑖=1

 

Where 𝑛 is the number of image volumes, 𝜎𝜀  and 𝜎𝜂 were the standard deviation of the 

two signals and were estimated by applying a 0.15 Hz high-pass threshold and taking the 

standard deviation of the remaining signal as the noise estimate.  

4.2.6 Physiological Signal Cleaning 

 Denoising of physiological time series was performed with CompCor [38]. 

RETROICOR [39] was not implemented due to unreliable signal recording from the 

respiratory belt and pulse oximeter synchronized with the scanner. This poor recording 
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performance was a result of animal skin pigment and small animal size. As such, 

CompCor post-processing was selected as the main physiological signal correction, 

which has been found to provide identical correction to RETROICOR in human subjects 

[38]. Physiological signal cleaning was performed with 3dTproject [32] and the nipype 

TCompCor interface [35] to filter out 12 confound regressors (6 from TCompCor and the 

6 motion parameters from preprocessing) as well as temporally filter the data with a 

bandpass filter of 0.01 to 0.1 Hz. This physiological signal denoising was applied in the 

following two cases, (1) post-PR and (2) pre-PR where physiological cleaning was 

applied after and prior-to phase regression, respectively. The post-PR cleaning case is 

equivalent to previous PR studies in human tasks (Chapter 3) and the pre-PR cleaning 

case is equivalent to the previous study on PR in resting state in human subjects [11]. 

One note, in the pre-PR cleaning case the signals input to the PR fit were temporally band 

pass filtered as part of the physiological cleaning and therefore cannot be used to estimate 

noise above 0.15Hz. For this case, the noise estimates used timeseries that had undergone 

all physiological cleaning except the band pass filtering step.  

4.2.7 Functional to Structural Registration 

 EPI registration was completed using the mean functional image averaged across 

all runs after motion correction and first run alignment. This mean was calculated using 

fslmaths and was used to improve SNR. Coarse unrestricted registration was then 

completed using FLIRT to provide initial alignment. This registration was then passed to 

ANTS to perform the main registration. ANTS registration is performed in three stages: a 

rigid, 6 degrees of freedom linear registration; an affine, 12 degrees of freedom linear 

registration; and then a non-linear Symmetric Normalization registration bounded to the 

in-plane directions. This was done to help compensate for the EPI distortion in the phase 

encode direction [40]. Registration was evaluated using manual observation. The labels 

of the D99 atlas were then transformed to each subject’s EPI space for all resting state 

analysis. 
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4.2.8 Power Spectra Analysis 

 The power spectra from each run were calculated over all voxels in the D99 atlas 

using SciPy’s periodogram function and then averaged together. Integrals of band power 

were calculated using the composite Simpsons rule and divided by the integral of the 

whole signal as measures of relative power. This allows for direct comparison across 

frequency bands. Power spectra for individual voxels were identically calculated without 

any spatial averaging of the signal. Two frequency bands of interest were defined: the 

signal band from 0.01 to 0.1 Hz is expected to contain the resting-state activity, and the 

noise band at 0.15 Hz and above is expected to only contain noise from thermal and 

physiological contributions. These bands are defined identically to previous work on PR 

in resting-state [11]. 

4.2.9 Connectivity Mapping 

 Connectivity mapping was completed with the nilearn toolbox [41]. Prior to the 

resting state analysis timeseries were normalized to z-scores. Additionally, the 

physiological cleaning of the post-PR case was applied at this point in processing. This 

case was bandpass filtered to the signal band (0.01-0.1 Hz) prior to fitting and confound 

regression was performed as part of the general linear model and correlation steps. In this 

way both physiological cleaning cases compared data with the same cleaning applied, the 

only difference is where the cleaning was applied relative to the phase regression step. 

Seed based analysis was then performed using the D99 atlas in native EPI space 

to extract signals from three seeds: PGm, a parietal area implicated in the macaque DMN 

[3]; F1, the primary motor area [31]; and MT, a visual area involved in motion perception 

[31]. These seeds were selected as they are in relatively high signal areas in both subjects 

and have well understood expected connectivity in a macaque model [3]. These seed 

voxel timeseries were fit to the data using a general linear model. These first level fits 

across runs were then combined in a one-sided t-test and displayed with a false positive 

rate of 0.1-5% and a cluster size of 10. To perform a whole brain connectivity analysis all 

194 D99 areas were correlated to each other to create whole brain connectivity matrices.  
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4.3 Results 

4.3.1 Image Quality  

 Image quality was assessed through magnitude temporal signal-to-noise ratio and 

phase temporal standard deviation. The images for both monkeys can be seen in Figure 

4.1. Briefly, the temporal SNR shows decreases near the ventral surface of the brain 

distant from the coil as well as in the occipital lobe. This SNR decrease is mirrored in the 

temporal phase noise where the noise level in the visual cortex matches the background at 

the posterior of the brain. This decrease in SNR is due to animal placement in the sphinx 

position. This position results in the brain being further from the coil near the occipital 

region as well as partially covered by the neck fat. Additionally, due to prior placement 

of electrodes, Subject O had signal dropout in the frontal lobe of their brain.  

 

Figure 4.12: Magnitude and Phase Quality in Native EPI Space. Average a) 

magnitude temporal SNR and b) phase temporal standard deviation across all runs for 
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each animal. Subject O had previous surgery near the frontal eye fields causing anterior 

dropout. 

 To determine if the images and experimental setup was sufficient for resting state 

analysis the magnitude images were seeded at PGm, F1 and MT seeds and then visually 

compared against known connectivity areas for those seeds (Figure 4.2). All seeds 

showed expected connectivity and therefore it was concluded that the magnitude data was 

of sufficient quality for resting state analysis. Subject O has less statistically significant 

connectivity as expected because less resting state data was collected.  

 

Figure 4.13: Seed analysis: Both subjects, GE-EPI only. Connectivity shown after one 

sided t-test with a false positive rate specific to that subject’s signal strength and 

clustering of 10. Seed regions are shown in green. Top Row: Default mode seed (PGm), 
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Middle Row: Motor Seed (F1), Bottom Row: Visual Seed (MT). Subject O (alpha=0.05), 

Subject R (alpha=0.001). Connectivity maps are projected in anatomical space using 

nearest-neighbour interpolation. 

 

4.3.2 Power Spectrum Analysis 

To examine temporal properties of the magnitude and phase data, the power 

spectra for each run were plotted after preprocessing. These are the input signals in the 

post-PR cleaning case. The preprocessed magnitude power spectra (Figure 4.3a) and 

phase power spectra (Figure 4.3b) show physiological signal contamination in several 

ways. First, a physiological peak can be seen around 0.35-0.45 Hz in the phase spectra 

for both subjects and is also present, though less pronounced, in the magnitude data. 

Second, a peak at 0.2 Hz can be seen in the phase and magnitude data, likely system 

noise due to it its sharp definition and identical presentation in both subjects. Previous 

studies have observed such a peak caused by the cold heads of the magnet system [20]. 

Finally, in the phase spectra (Figure 4.3b), physiological aliasing can be observed for 

subject R between 0.1 and 0.2 Hz. Assessing these spectra quantitatively (Figure 4.3c) 

enables comparison of the average power in each band for the magnitude and phase data. 

The magnitude data have an average power of 1.90 ± 0.09 (mean ± standard dev.) in the 

signal band (0.1-0.01 Hz) and 1.99 ± 0.02 in the noise band (> 0.15 Hz). In contrast, the 

phase data have an average power of 0.7 ± 0.2 in the signal band and 2.24 ± 0.03 in the 

noise band. These averages mean that in the post-PR cleaning case the phase data has 

over three times more power in the noise band than the signal band, showing that the 

phase data is heavily noise-dominated, and identification and correction of these noise 

sources will be necessary for PR to work properly as a macrovascular filter. This is 

especially an issue in the post-PR cleaning case as the data is not bandpass filtered prior 

to fitting.  

The power spectra were also plotted for magnitude (Figure 4.3d) and phase 

(Figure 4.3e) after nuisance regression which allows for exploration of the power in the 

signal and noise bands of the pre-PR case. The artifactual signal peaks observed above 

are not completely suppressed in either magnitude or phase, although they are reduced 
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across both subjects. When comparing these signals quantitatively (Figure 4.3f), the 

magnitude data have an average power of 2.02 ± 0.03 (mean ± standard dev.) in the 

signal band and 1.96 ± 0.01 in the noise band. In contrast the phase data have an average 

power of 1.6 ± 0.2 in the signal band and 2.05 ± 0.03 in the noise band. The pre-PR 

cleaning reduces the noise power of the phase to 1.28 times the power in the signal band 

but shows that even the pre-PR case is not completely removing physiological confounds 

in the noise band of the phase (Figure 4.3e). This incomplete signal cleaning can be 

expected to affect the PR fit as this noise band is used for estimation of the uncertainty of 

magnitude and phase.  

 

Figure 4.14: Power spectrum analysis. Blue shading represents the signal band (0.01-

0.1 Hz) and orange, the noise band (> 0.15 Hz). Top Row: Post-PR cleaned data. The full 

power spectrum is used to perform PR and the noise is estimated from the orange noise 

band. Bottom Row: Pre-PR data (d-f), only the signal band frequencies are used for PR 

and noise is estimated from the orange noise band. a) Magnitude power spectra and b) 

phase power spectra across all voxels in the D99 atlas for the post-PR case. Coloured 

lines represent different subjects and shaded error is the 90% confidence interval of the 

mean across runs. c) Comparison of average power in the signal band and noise bands 

averaged across runs and subjects for the post-PR case. d) Magnitude power spectra and 

e) phase power spectra across all voxels in the D99 atlas for the pre-PR case. f) 
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Comparison of average power in the signal band and noise bands averaged across runs 

and subjects for the pre-PR case. Error bar is the standard deviation across runs and 

subjects. 

Further investigation of the different noise sources was completed in Subject R 

through manual identification of the different noise bands (Figure 4.4a and b) and 

plotting the relative power in those signal bands across space. The data used was not 

physiologically cleaned prior to this analysis. First, the signal band (0.01-0.1 Hz) shows 

uniform power across the magnitude data (Figure 4.4c) but not the phase data (Figure 

4.4d). Second, the peak at 0.2 Hz seen in the phase data shows some slice dependence 

towards the anterior of the brain, as would be expected if the peak were a system artifact 

(Figure 4.4f). The 0.2 Hz peak does not show any spatial pattern in the magnitude data 

(Figure 4.4e). The smaller amplitude physiology band from 0.3-0.38 Hz is most likely 

pulsation-based cardiac signal as it is most present in voxels around the brain and in 

ventricles in the phase data (Figure 4.4h) [42] and shows no specific pattern in the 

magnitude data (Figure 4.4g). The largest noise source in the magnitude (Figure 4.4i) and 

phase data (Figure 4.4j) appears to be coming from mass motion field shifts due to 

respiration (0.38 – 0.45 Hz). This artifact was identified as a mass motion artifact because 

of the increased relative power in the posterior of the brain, closer to the lungs, in the 

phase signal as well as by the frequency of the noise source. The uniformity of the signal 

leads to the conclusion it is caused by mass motion and not by respiratory induced 

changes in blood oxygenation which would have similar spatial behaviour to the smaller 

physiological signal (Figure 4.4i).  
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Figure 4.15: Noise Band Identification for Subject R. Average power spectra and 

noise bands for a) magnitude and b) phase time series. Relative power in the signal band 

(0.01 to 0.1 Hz) in c) magnitude and d) phase time series. Relative power from 0.18 to 

0.22 Hz, cold head artifact, in e) magnitude and f) phase time series. Relative power from 

0.3 to 0.38, cardiac signal, in g) magnitude and h) phase time series. Relative power from 

0.38 to 0.45 Hz, mass motion field shifts from respiration, in i) magnitude and j) phase 

time series. k) EPI image for reference. 
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4.3.3 Resting State Activity in PR Timeseries 

 Seed analysis reveals the connectivity before and after the PR fit, as well as the 

connectivity in the estimated macrovascular time course that is removed. Three seeds 

were selected: one parietal (PGm), one in the primary motor area (F1), and one in a visual 

area (MT). General linear models were used to conduct seed-analyses, and connected 

areas were tested by using a one-sample t-test. In the post-PR cleaning case (Figure 4.5), 

seed analysis shows that the PR is not suppressing signal in veins alone. In fact, GE-EPI 

(Figure 4.5a) vs GE-EPI-PR (Figure 4.5b) show only minor differences in the resultant 

connectivity maps across all three seeds. Examining the image without the statistical 

threshold reveals the only visible change was a general increase in noise in the GE-EPI-

PR case (Figure 4.6). This increase is expected as PR reduces contrast-to-noise ratio 

during application due to the inclusion of the noisier phase data in the resultant timeseries 

[8]. If PR were correctly removing macrovasculature as intended the estimated 

macrovasculature seeds should be activated near veins but this is not the case (Figure 

4.5c). The negligible difference between GE-EPI and GE-EPI-PR paired with the 

unexpected pattern in the estimated macrovasculature in the post-PR cleaning case 

appears to suggest PR fitting is dominated by the artifacts in the data (Figure 4.3a and b) 

and not the resting state BOLD signal. 
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Figure 4.16: Seed analysis: Post-PR Physiological Cleaning Case. Top Row: Default mode seed (PGm), Middle Row: Motor Seed 

(F1), Bottom Row: Visual Seed (MT). a) GE-EPI connectivity maps, b) GE-EPI-PR connectivity maps, c) estimated macrovasculature 

signal connectivity maps, d) seed regions are shown in green. Connectivity maps are projected in anatomical space using nearest-

neighbour interpolation. In columns a and b, connectivity is shown after a one-sided t-test with a 0.1% false positive rate for a cluster 

size of 10. Due to low connectivity in the macrovascular images, they are thresholded with a false positive rate of 1% and a cluster 

size of 10.  
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Figure 4.17: Seed analysis: Post-PR Physiological Cleaning Case, no thresholding. Top Row: Default mode seed (PGm), Middle 

Row: Motor Seed (F1), Bottom Row: Visual Seed (MT). a) GE-EPI connectivity maps, b) GE-EPI-PR connectivity maps, c) estimated 

macrovasculature signal connectivity maps, d) seed regions are shown in green. Connectivity maps are projected in anatomical space 

using nearest-neighbour interpolation. Connectivity shown after one sided t-test.
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Figure 4.7 shows the same seed analysis performed in the case of pre-PR 

physiological cleaning. In the pre-PR cleaning case, functional connectivity from each of 

the respective seeds in the GE-EPI-PR case is extremely suppressed (all seeds, Figure 

4.7b). In accordance with this observation, the estimated macrovascular connectivity 

(Figure 4.7c) matches functional connectivity in the GE-EPI case (Figure 4.7a). Together, 

these two observations suggest that the noise estimates for PR are inaccurate due to the 

remaining presence of physiological noise. In ODR as the ratio of the signal variances, 

𝜎𝜀
2

𝜎𝜂
2, approaches 0 the regression becomes an ordinary least squares regression with the 

dependent and independent variables switched and this may be what is occurring here. 

This suppression demonstrates a limitation of PR as it relies on robust physiological 

denoising to reliably remove the artifacts for improved fitting. Taken together these two 

cleaning cases present two extremes of physiological correction and show that in either 

case PR does not perform optimally.
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Figure 4.18: Seed analysis: Pre-PR Physiological Cleaning Case. Top Row: Default mode seed (PGm), Middle Row: Motor Seed 

(F1), Bottom Row: Visual Seed (MT). a) GE-EPI connectivity maps, b) GE-EPI-PR connectivity maps, c) estimated macrovasculature 

signal connectivity maps, d) seed regions are shown in green. Connectivity maps are projected in anatomical space using nearest-

neighbour interpolation. In columns a and c, connectivity is shown after a one-sided t-test with a 0.1% false positive rate for a cluster 

size of 10. Due to low connectivity in the GE-EPI-PR images they are thresholded with a false positive rate of 5% and a cluster size of 

1
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Next, we investigated the effects of PR on whole brain functional connectivity 

matrices generated from the D99 macaque atlas (Figure 4.8). These results show an 

identical pattern to the seed analysis where cleaning after PR added noise to the resultant 

series and cleaning before PR caused complete suppression of the resting state signal in 

the microvascular image. In the post-PR cleaning case, there was no overall significant 

change in connectivity (aka the mean of the connectivity matrix did not change between 

GE-EPI and GE-EPI-PR) and there were no individual significantly different connections 

across runs (pairwise t-test with 5% false discovery rate correction). In the pre-PR 

cleaning case, there was an overall decrease in connectivity of -0.04 ± 0.03 when 

comparing GE-EPI-PR to GE-EPI and 2267 of the 18721 individual connections were 

found to be significant (pairwise t-test across runs with 5% false discovery rate 

correction). Significant connections are shown in Figure 4.9. This shows that whether 

physiological cleaning is applied before or after PR can greatly alter performance of the 

technique across the whole brain. When it is applied after PR the method has no 

significant effect on the resting state data and when it is applied before it is completely 

suppressing the data similarly to what was seen in the seeds in Figure 4.5.
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Figure 4.19: Whole brain connectivity analysis. Top Row: Post-PR Cleaning, Bottom Row: Pre-PR Cleaning. All connectivity 

matrices are ordered by clustering the GE-EPI timeseries with post-PR cleaning. a) GE-EPI connectivity matrix, b) GE-EPI-PR 

connectivity matrix (𝑴 − (𝑨𝝋 + 𝑩)), c) estimated macrovasculature (𝑨𝝋 + 𝑩) and d) connectivity difference between GE-EPI-PR 

and GE-EPI.
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Figure 4.20: Resting-state functional connectivity analysis of different denoising 

strategies with PR. The upper triangle is the t-statistic from the pairwise t-test for 

differences between GE-EPI-PR and GE-EPI across runs and subjects and the lower 

triangle is whether that connectivity is significantly different between GE-EPI and GE-

EPI-PR (5% false discovery rate correction). a) post-PR cleaning had no significant 

correlations and b) pre-PR cleaning had 2267 significant correlations and showed a large 

reduction in connectivity. 

4.4 Discussion 

4.4.1 Summary 

 This study investigated the use of PR in a macaque model for the first time. 

Macaques are a common target for laminar fMRI experiments [12–14,43] and thus it was 

our interest to see if the PR technique could be expanded to macaques to increase spatial 

specificity in that model. We collected resting state data from two female macaques over 

60 and 100 minutes respectively. This data was examined to determine power spectra 

features and signal properties. Two main sources of noise were found, respiratory mass 

motion field shifts, and a system oscillation related to the cold heads. PR was performed 

under two different physiology cleaning strategies: with physiological cleaning after and 

prior-to PR. The efficacy of PR under the two methods were assessed two ways, by 

looking at seeds in the motor, visual and parietal areas and by examining primate 

connectivity using the D99 atlas. Both seed connectivity and whole brain connectivity 

analyses provided supporting evidence to show that the PR technique could not tease 
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apart resting state activity into micro- and macro-vascular components in this data. 

Specifically, these cleaning methods resulted in over-filtering of resting state signal when 

the data was cleaned prior to PR, whereas cleaning the data after PR only decreased 

contrast to noise ratio. This study shows that two important considerations must be 

accounted for when performing PR for macaque resting-state fMRI experiments. First, 

care must be taken to ensure the phase data collected has a low amount of phase noise in 

it. This noise can drive the PR fit in an undesirable way and may not be easily removable 

post-acquisition. Second, PR in a macaque model must consider the proximity of the 

lungs which are a major source of non-neurovascular phase noise due to mass motion 

field shifts from respiration. Future work will have to incorporate corrections for these 

breathing effects [22].  

4.4.2 Phase noise can interfere with phase regression 

performance 

 Phase noise is a considerable confound in PR and care must be taken to reduce its 

affects. Figure 4.3 shows that there is more high frequency noise in the phase data than 

the magnitude data in both subjects. The main source of noise is structured with power 

concentrated at 0.3-0.45 Hz meaning it is physiological in origin [38]. Additionally, the 

phase noise has a single peak at 0.2 Hz which is believed to be related to the MRI system 

and has previously been associated with cold heads [20]. Together, these sources of noise 

present issues in both the post- and pre-PR cleaning cases (Figures 4.5 and 4.7). In the 

post-PR cleaning case, the noise power is approximately three times the signal power and 

is the principal driver of the PR regression. In the ideal case the macrovascular BOLD 

signal would drive the regression by causing phase changes in large vessels (Figure 4.3c). 

Alternatively, the pre-PR case uses noise with physiological signal in it (Figure 4.3e) for 

signal error estimation resulting in a fit that completely suppresses the GE-EPI-PR signal 

(Figure 4.7). This means that mitigating noise at the time of experimentation is key to 

performing PR in the macaque model successfully.  
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4.4.3 PR in macaques must consider the effects of respiration 

 The main noise peak is respiratory in origin (Figure 4.4) and occurs due to mass 

motion field shifts from respiration [18] (Figure 4.4i). This is mostly due to animal 

geometry, as being in the sphinx position puts the macaque’s lungs at greater proximity 

to the imaging region than in previous PR studies where a human was imaged in the 

head-first supine position [28]. This is an issue as phase data is susceptible to respiratory 

contamination in two ways, of which, only one maintains the phase signal’s specificity to 

neurovascular signal changes in large vessels. Firstly, respiration artifacts could lead to 

effects in BOLD contrast as the oxygen levels in the blood change. PR would correct this 

and still cause macrovascular suppression as these respiratory BOLD effects would 

correlate in magnitude and phase in large vessels. The second effect respiration could 

cause is respiration induced mass motion field shifts which result in global intensity 

changes across the whole brain. These were observed in this experiment and are most 

dominant in phase data but are present in magnitude as well (Figure 4.4i and j). As these 

respiratory artifacts are global across the brain and are not neurovascular in origin, they 

prevent any macrovascular reduction until they are removed from both timeseries. In this 

data they could not be completely removed with CompCor and as a result PR did not 

work as expected. In this case the method is performing similarly to the studies that use 

PR for correction of mass motion [26,27]. Possible avenues to correct this could include 

DORK, an on-system correction for the physiological drift of the central k-space [22] or 

removal of the respiratory timeseries through RETROICOR [39].  

4.4.4 Implication for the application of phase regression 

 This work highlights several important considerations about PR that must be 

considered when using it to reduce signal from draining veins. First, signal to noise ratio 

and phase variance over time are not adequate measures of signal integrity to check 

across a volume to ensure quality phase signal (Figure 4.1). Power spectrum analysis 

should be used to examine for temporal confounds and ensure signal integrity after 

physiological cleaning (Figure 4.3). It is important to obtain a signal with low phase noise 

from the initial pilot experiment as it is not always possible to recover this signal with 
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post processing methods (Figures 4.5 and 4.7). These three points have implications for 

all future studies of macaques but also provide helpful tools for future studies of phase 

regression in humans. Power spectra should be an important part of future PR quality 

assurance regardless of the species imaged. 

 Additionally, this study illustrates several points related to the implementation of 

PR in macaques. To this author’s knowledge this is the first study to attempt PR in a 

sedated macaque model. Sedation is an important consideration as it can cause heavier 

breathing and deeper breaths in the macaques which can increase the chance of mass 

motion field shift artifacts from respiratory motion. This occurred in our data (Figure 

4.4j) and is most likely due to the proximity of the macaque lungs to the imaging region 

compared to a human. This will be a potential issue for any animal imaged in sphinx 

position and on-system correction for these artifacts will be needed for these studies 

moving forward [22]. 

4.4.5 Study limitations 

 As this is a primate study, animal numbers are kept as low as possible. This work 

examined two macaques, and this limits the ability to create group statistics and all 

effects are measured across runs. This number was appropriate for a pilot study to 

investigate the effectiveness of PR at macrovascular suppression in a macaque model. 

One limitation of this pilot is that reliable collection of physiological data was not 

possible with the physiological recorder synced to the MRI system as it was not 

optimized for primate skin pigment. This meant it was not possible to examine the effects 

of RETROICOR on phase cleaning [23,39] as the approach has previously been 

successful in humans. Finally, this study was also performed using a resting state 

paradigm. This paradigm has no specific activation pattern to study and is more variable 

in its interpretation than a task-based paradigm. Previous work completed in humans on 

PR for the correction of mass motion artifacts has used tasks as it is possible to directly 

map the amount of spurious activation corrected [27] or the increase in t-statistics [26]. 

Using a task-based approach would allow for greater optimization of PR for macaques.  
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Due to the increasing reliability of task-based research in awake macaques [12,44,45], 

this research should be continued with an awake paradigm and a reliable task.  

4.4.6 Future Work 

 Three possible ways to improve this work in future would be to first, perform the 

work again with physiological traces to allow for direct determination of heart rate and 

breathing effects. Second, this experiment could examine different PR fit methods that 

have been published over the past 20 years to examine their efficacy in the high noise 

regime. PR with Savitsky-Golay filtering has demonstrated a per voxel data-driven 

cleaning that has reduced physiological effects in humans with a task-based experiment 

[10]. Third, given the size of the mass motion artifact, an on-system physiological 

correction such as DORK would be advised. More investigation is required to implement 

phase regression as a macrovascular filter in a macaque model.  

In the introduction, it was proposed, that the macaque would be a good candidate 

for studying PR effects on the cortical orientation dependence of the BOLD signal. Given 

the current challenges observed with macaques and PR, a cortical orientation study would 

be better performed in humans at a future date [16]. Compared to the results shown here, 

human phase data exhibits less noise as respiration effects are smaller due to the differing 

position and geometry of the subject in the magnet [8,11].  

4.5 Conclusions 

 PR has shown promise in cleaning of BOLD signal in humans in both task and 

resting state. Given the utility of macaques in laminar studies, this study attempted to 

extend PR to the macaque animal model. Unfortunately, excess phase noise from non-

neurovascular sources such as breathing and system noise in the phase timeseries means 

PR was not effective at performing macrovascular suppression in this experiment. Future 

work should investigate correction for these noise sources using DORK or RETROICOR.   
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Chapter 5 

5 Future Work 

5.1 Summary 

 Phase regression is a method in which the underutilized phase of GE-EPI is used 

to reduce macrovascular signal to increase the spatial specificity of the BOLD effect. 

This thesis implemented phase regression at high resolution for the first time. This work 

outlines several key points that contribute to the growing field of phase regression 

research, especially when it is completed at high resolution.  

First in Chapter 2, a coil combination method was developed that was targeted at 

combining large phase datasets. Multi-receiver RF arrays require coil sensitivity estimation 

to combine high quality phase images. This is a challenge at ultra-high fields such as 7T as 

the conventional technique of using a reference coil is not available due to the lack of body 

coils because of poor RF homogeneity and specific absorption rate constraints. Our 

proposed method, the fitted SVD method, used a voxel-wise SVD [1] of a routinely 

acquired prescan to calculate relative coil sensitivities. These relative sensitivities could 

then be extended to any imaging geometry using a fit to a polynomial basis. This allowed 

the fitted SVD method to combine data throughout the entire imaging session after the 

prescan was collected. We hypothesized that this combination method would provide 

images of sufficient quality to be useful for combining GE-EPI phase data. The fitted SVD 

method created a combination with 96% of the SNR when compared to the voxelwise SVD, 

our reference method. This was further explored in an EPI acquisition which showed that 

the fitted SVD method resulted in a low amount of phase noise and in a separate experiment 

showed a high resistance to motion.  

This technique was applied in Chapter 3 where high-resolution GE-EPI and SE-

EPI data was acquired at 800 µm isotropic resolution. The phase data was used to perform 

phase regression and create GE-EPI-PR time courses. The GE-EPI, SE-EPI, and GE-EPI-

PR data was then compared across varying cortical surface depths as well as in laminar 
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profiles. When examined on a surface the GE-EPI-PR data showed a reduction in BOLD 

signal near vessels. The GE-EPI-PR data also showed a statistically similar distribution to 

SE-EPI in the upper half of the cortical sheet when using a Kolmogorov-Smirnov test. 

Additionally, this data showed that phase regression resulted in a flatter laminar profile 

than GE-EPI with a 1.8x higher contrast-to-noise ratio than SE-EPI. This means using 

phase regression for macrovascular reduction will result in data with a high statistical 

power. Taken together these results show that phase regression demonstrates valuable 

improvements to GE-EPI for laminar fMRI. 

Chapter 4 piloted the phase regression technique in two sedated macaques 

undergoing resting state imaging at 1mm isotropic resolution. We hypothesized that phase 

regression could provide an increase in spatial specificity to resting state connectivity maps 

and remove any artifacts present in both the magnitude and phase data. This functional data 

was heavily contaminated by artifacts and so was not of sufficient quality to perform phase 

regression. These artifacts were identified as mass motion field shifts caused by subject’s 

breathing as well as a system artifact previously tied by other groups to the MRI cold heads 

[2]. As these artifacts originated from non-neurovascular sources and dominated the fit, 

they prevented phase regression from operating as a macrovascular filter. Two different 

physiological cleaning regimes were used to correct this data but neither resulted in phase 

regression performing as a macrovascular filter. Several methods to prevent this in the 

future were discussed such as collecting physiological traces synced with the acquisition 

to attempt RETROICOR to clean the data [3] or implementing a navigator echo to allow 

for the correction of bulk field shifts at the center of k-space [4]. Further work will have to 

be undertaken to perform phase regression in a macaque to prevent contamination by 

breathing noise.  

5.2 Thesis Limitations  

5.2.1 Phase noise due to coil combination 

The method designed in Chapter 2 resulted in combinations that had a 4% 

reduction in phase SNR. As this was significantly better than our default method at the 

time, complex sum, this posed great advantages and was used going forwards, but it 



 

 

130 

could be improved upon for future studies. Fitting of the sensitivities to a polynomial 

basis could be improved by using the Helmholtz solution, which is the true representation 

of the receive coil sensitivities [5]. However, this would include the wave number in 

fitting and would require modelling of the electric properties of the head [6]. 

Alternatively, combinations such as ASPIRE [7] or COMPOSER [8] with targeted 

prescans could be added to the imaging protocol. These applications combine the data 

with no noise increase but would extend scan length due to the need for the prescan. Our 

method proposed here also used a prescan, but it was integrated into the imaging protocol 

and so did not require added time.  

5.2.2 Unknown effects of partial Fourier 

Partial Fourier is always a concern in high resolution fMRI as it leads to signal 

blurring [9]. This could lead to signal bleeding across sulci or mixing signal from shallow 

or deep locations in the cortical sheet. Although all partial Fourier should be minimized, 

it remains crucial in order to obtain echo times at reasonable values [10]. Partial Fourier 

collects only a fraction of k-space, usually between 5/8 and 7/8, then uses conjugate 

symmetry to create the magnitude and phase images. This method has the assumption 

that phase at higher spatial frequencies is zero, an assumption that is known to be untrue 

generally, but is especially problematic during phase regression experiments. 

Additionally, there are many methods to perform partial Fourier such as zero-filling or 

homodyne reconstruction [11] and selecting the appropriate method is an open question. 

In Chapter 3, we selected zero-filling, so no assumptions were made about the 

uncollected phase data. The phase data did not show any expected artifacts of partial 

Fourier such as Gibbs’s ringing and so it was considered sufficient for the analysis. 

However, the use of partial Fourier for phase regression applications is a remaining 

caveat in this research that requires fuller investigation at a future date.  

5.2.3 Effects of physiological noise 

Physiological noise is a major contaminant of phase regression and needs to be 

corrected for the technique to be used as a part of high-resolution fMRI research. The 
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effects of physiological noise vary depending on the subject type and paradigm used as 

large differences were observed between Chapters 3 and 4. In Chapter 3, the human 

phase data did not contain a large amount of physiological noise and so BOLD activity 

was the dominant signal in the phase time courses. The phase data from Chapter 4 

contains noise from non-neurovascular sources, the MRI cold heads and respiration, and 

this noise dominated phase regression. Possible corrections for physiological noise as 

observed in Chapter 4 are the use of RETROICOR [3] or DORK to perform on-system 

correction for mass motion field shifts [4]. These methods would need scanner 

implementation to be useful in the macaques as they both require adaption of system 

equipment or implementation of navigators. Additionally, a threshold for phase data 

quality has not been well defined in the phase regression literature and would provide a 

benchmark for pilot studies attempting phase regression.  

5.3 Future Applications of Phase Regression  

5.3.1 Phase regression at high resolution 

 Using phase regression as a tool to reduce macrovasculature in high resolution 

fMRI shows great advantages in flattening the laminar profile. This can be directly 

applied to the study of layers and columns. Chapter 3 showed this effect flattened the 

laminar profile without the CNR reduction present in SE-EPI. The reduction in 

macrovascular signal across a surface was largest within and near pial vessels on the 

cortical surface. This means phase regression could be combined with existing correction 

for penetrating vessel effects to create a signal localized to the vascular bed [12]. These 

signals with increased specificity could then be used to perform cutting-edge laminar 

fMRI experiments, such as examining feedback and feedforward information 

discrimination in the visual cortex. Feedback and feedforward processes are defined by 

their differing inputs to the upper and deep layers of cortex [13]. These layers are 

expected to experience different amounts of contamination from the extravascular BOLD 

signal of the pial vessels thus, reduction of this signal would allow for these processes to 

be more easily separated and studied. 



 

 

132 

 High resolution fMRI can be performed with many sequences, but one popular 

sequence is vascular space occupancy (VASO). This technique uses an inversion pulse to 

null the blood and creates an image proportional to 1-CBV [14]. In this way the 

neurovascular response can be measured through changes in CBV opposed to the BOLD 

effect. VASO has been successfully used for laminar fMRI in the motor cortex [15], the 

visual cortex [16], and studying higher order memory effects [17]. Chapter 3 showed GE-

EPI-PR has a CNR of 60% of the GE-EPI signal, similar to VASO [18]. However, due to 

the required inversion pulse, VASO will be temporally slower than GE-EPI-PR and 

therefore have less statistical power overall. Additionally, VASO is constrained to a small 

slab, although this is improving over time [19]. A future direction of this work would be 

to examine these two techniques side by side to compare their specificity to a layer 

application and directly compare signal power. VASO may be more suited to high 

precision task based laminar studies where the temporal constraints can be 

accommodated while GE-EPI-PR benefits from the higher statistical power to study high 

resolution dynamic processes such as resting state and movie viewing [20] as well as 

offering whole-brain coverage.  

5.3.2 Phase regression in macaques 

 Applications of phase regression in macaques will require more research to 

resolve the issues observed in Chapter 4. In Chapter 4, noise from sources other than the 

neurovascular response dominated fitting and prevented the use of phase regression as a 

macrovasculature reduction tool. Future work would benefit from use of an awake animal 

model performing a task as this would allow for a single brain area to be examined and 

would provide a strong statistically powerful response to optimize phase regression with. 

Using a sedated macaque to perform a task experiment has been done in the past [21] but 

is not as powerful or reliable as an awake animal model [22]. Therefore, most sedated 

macaque papers examine resting state connectivity which is known to be reduced but not 

erased by sedation [23]. As stated in Chapter 4, it is harder to interpret changes in resting 

state connectivity and this is simplified by using a task paradigm. In addition, to prevent 

non-neurovascular noise from dominating the phase data such animal experiments should 
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use both physiological tracing and navigator correction to try and obtain the cleanest 

phase data possible [3,4].  

5.3.3 What vessels is phase regression affecting?  

 An open question in phase regression research is the size of vessels the technique 

is affecting. The larger a vessel is, the more phase signal it will produce and therefore the 

more that signal will be reduced. Comparatively, the minimum size threshold for phase 

regression is less defined as it will be dependent on both SNR and vessel orientations. 

The organization of the cortical vasculature makes this an exciting research question. For 

example, the penetrating veins, small vessels that run perpendicular to the cortical 

surface, are all oriented the same direction and could potentially sum to create a phase 

response. Additionally, pial vessels have been observed to dominate GE-EPI at ultra-high 

field through extravascular signal [24] and it is unclear if phase regression fully reduces 

this extravascular effect. One experiment that could tease these factors apart is using 

cortical orientation to examine whether these penetrating veins are being affected or if the 

extravascular BOLD response is fully removed. 

The orientation of the cortical sheet allows for interrogation of signal origin due 

to the regularity of its structure. The cortex is made up of three venous populations, pial 

vessels which run along the surface of cortex perpendicular to the cortical surface normal, 

penetrating vessels which dive into the cortical sheet and run parallel to the cortical 

surface normal and capillaries and venules inside the cortical sheet which run at arbitrary 

orientations to form the microvascular support structures for the neurons of the cortex 

[25]. Previous investigations of GE-EPI have shown that the GE-EPI BOLD signal has a 

cortical orientation dependence maximum at 0o to B0, and a minimum at 90o [26]. This is 

equivalent to a large extravascular signal running perpendicular to the cortical sheet, such 

as the pial vessels. Expanding on this work, cortical orientation has been used to measure 

pial vessel signal dominance in various cases with different sequence types and sequence 

parameters [27]. Such a cortical orientation investigation could be paired with phase 

regression to determine what effect this method has on pial vessel signal reduction and if 

phase regression effects the penetrating vessels. First, if phase regression will reduce 

signal from pial vasculature but, due to their size, does not affect the penetrating vessels 
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the orientation curve will reverse and have a maximum at 90o, as these penetrating 

vessels run parallel to the cortical surface normal. If the opposite is observed and the 

orientation curve is flat, this would indicate that the signal is now driven by capillaries 

and not any of the draining microvasculature. Finally, if the orientation dependence is 

reduced but remains the same direction then the pial vessel extravascular signal is not 

being fully reduced. In this way orientation dependence could be a powerful tool to 

determine the vascular origin of the GE-EPI-PR BOLD signal. 

As a preliminary analysis, data from Chapter 3 was used. Each vertex on the 

cortical surface was assigned an orientation using the surface normal and the Freesurfer 

tool, mris_convert [28]. The BOLD response was then plotted against the cortical 

orientation and is shown in Figure 5.1. GE-EPI shows the expected orientation 

dependence at all three depths. SE-EPI shows a reduced orientation dependence 

compared to GE-EPI but still shows the expected maximum at 0o and reduction towards 

90o. This is because SE-EPI reduces some venous bias but is still sensitive to large 

vessels, depending on pulse sequence parameters [29]. GE-EPI-PR shows no orientation 

dependence at the higher cortical depths, an increase in the middle of cortex, and a 

decrease near the white matter boundary. These results are preliminary but the reduced 

orientation dependence at the pial surface supports the hypothesis that phase regression is 

reducing signal from pial vessels. In a future experiment this could be fit to the expected 

responses to determine the vascular origin of the measured BOLD signal. This would 

help to understand the vessel size floor for phase regression to perform macrovascular 

signal reduction.   
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Figure 5.1: Percent BOLD change as a function of cortical orientation. Data from 

Chapter 3, humans with a visual checkerboard task. a) 10% cortical depth, b) 50% 

cortical depth, and c) 90% cortical depth. 

5.4 Conclusions 

 This work expands on the existing research into phase regression with the goal of 

implementing and investigating the technique at high resolution. This was done three 

ways: 1) by creating a combination method targeted at combining high resolution phase 

data, 2) investigating phase regression using human subjects and a visual task at high 

resolution, and 3) continuing this investigation by piloting phase regression in macaques 

during resting state. This thesis concludes that phase regression may require additional 

cleaning and finessing, to remove non-neurovascular sources of phase noise. Once clean 

phase data is achieved, the phase regression method does lead to a flatter laminar profile 

with a higher contrast-to-noise ratio than SE-EPI and this poses immediate advantages to 

its inclusion as part of laminar and columnar fMRI in humans.  
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Appendix 2: Animal Ethics - Chapter 4 

 

  

 
  

2015-084:7: 

  

AUP Number: 2015-084 

AUP Title: Shedding the Light on BOLD: understanding the how of "working" brain 

maps in NHPs     

Yearly Renewal Date: 02/01/2020  

  

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2015-084 has been approved 

by the Animal Care Committee (ACC), 

 and will be approved through to the above review date. 

  

 Please at this time review your AUP with your research team to ensure full understanding 

by everyone listed within this AUP. 

  

As per your declaration within this approved AUP, you are obligated to ensure that: 

  

            1) Animals used in this research project will be cared for in alignment with: 

                                     a) Western's Senate MAPPs 7.12, 7.10, and 7.15 

                                      http://www.uwo.ca/univsec/policies_procedures/research.html  

                                     b) University Council on Animal Care Policies and related Animal 

Care Committee procedures 

                                       http://uwo.ca/research/services/animalethics/animal_care_and_

use_policies.html  

            2) As per UCAC's Animal Use Protocols Policy, 

                                     a) this AUP accurately represents intended animal use; 

                                     b) external approvals associated with this AUP, including permits 

and scientif ic/departmental peer approvals, are complete and accurate; 

                                     c) any divergence from this AUP will not be undertaken until the 

related Protocol Modif ication is approved by the ACC; and 

                                     d) AUP form submissions - Annual Protocol Renewals and Full AUP 

Renewals - will be submitted 

                                     and attended to within timeframes outlined by the 

ACC.   http://uwo.ca/research/services/animalethics/animal_use_protocols.html  

            3) As per MAPP 7.10 all individuals listed within this AUP as having any hands-on 

animal contact will 

                                     a) be made familiar with and have direct access to this AUP; 

                                     b) complete all required CCAC mandatory training 

([%20%20training@uwo.ca]  training@uwo.ca); and 

                                     c) be overseen by me to ensure appropriate care and use of 

animals. 

            4) As per MAPP 7.15, 

                                     a) Practice will align with approved AUP elements; 

                                     b) Unrestricted access to all animal areas will be given to ACVS 

Veterinarians and ACC Leaders; 
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