
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

MAPPING BPEL PROCESSES TO DIAGNOSTIC MODELS MAPPING BPEL PROCESSES TO DIAGNOSTIC MODELS

Hamza Ghandorh

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Ghandorh, Hamza, "MAPPING BPEL PROCESSES TO DIAGNOSTIC MODELS" (2011). Digitized Theses.
3409.
https://ir.lib.uwo.ca/digitizedtheses/3409

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3409?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

MAPPING BPEL PROCESSES TO DIAGNOSTIC MODELS

(Thesis format: Monograph)

by

Hamza Ghandorh

Graduate Program in Computer Science

A thesis report submitted in partial fulfillment

of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Hamza Ghandorh 2011

THE UNIVERSITY OF WESTERN ONTARIO

School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:

Prof. Hanan Lutfiyya

Supervisory Committee:

Examiners:

Prof. Michael Bauer

Prof. Mike Katchabaw

Prof. Abdallah Shami

The thesis by

Hamza Ghandorh

entitled:

Mapping BPEL Processes to Diagnostic Models

is accepted in partial fulfillment of the

requirements for the degree of

Master of Science

Tuesday, December 20, 2011
Date Prof.

Chair of the Thesis Examination Board

Abstract

Web services are loosely-coupled, self-contained, and self-describing software modules

that perform a predetermined task. These services can be linked together to develop an appli

cation that spans multiple organizations. This linking is referred to as a composition of web

services. These compositions potentially can help businesses respond more quickly and more

cost-effectively to changing market conditions. Compositions can be specified using a high-

level workflow process language.

A fault or problem is a defect in a software or software component. A system is said to

have a failure if the service it delivers to the user deviates from compliance with the system

specification for a specified period of time. A problem causes a failure. Failures are often

referred to as symptoms of a problem. A problem can occur on one component but a failure is

detected on another component. This suggests a need to be able to determine a problem based

on failures. This is referred to as fault diagnosis.

This thesis focuses on the design, implementation and evaluation of a diagnostic module

that performs automated mapping of a high-level specification of a web services composition

to a diagnostics model. A diagnosis model expresses the relationship between problems and

potential symptoms. This mapping can be done by a third party service that is not part of the

application resulting from the composition of the web services. Automation will allow a third

party to do diagnosis for a large number of compositions and should be less error-prone.

Keywords: Web Service Composition Diagnosis, Codebook Technique, BPEL Mapping.

iii

Acknowledgements

First of all I would like to thank Allah who gave me the strength and patience to learn and

accomplish my dream of getting M.Sc. I am thankful to the Ministry of High Education of

Saudi Arabia and the Saudi Cultural bureau for being a primary partner in this success. I

would like to thank my supervisor, Prof. Hanan Lutfiyya, for her guidance and assistance. She

was very helpful and encouraging in choosing the topic of this thesis and pursuing the research.

Thanks to her for the help and inspiration she extended. I am grateful to the people from the

Distributed and Grid Research Group (DiGS) for their help and constructive feedback. I would

like also to thank faculty members and staff of the Department of Computer Science for making

my studying here highly enjoyable. In addition, I would like to thank my grad classmates for

their suggestions to complete this work. And many thanks go to my beloved parents, wife,

son and friends for their understanding and endless love through the duration of my Masters

program.

IV

Contents

CERTIFICATE OF EXAMINATION ii

ABSTRACT in

ACKNOWLEDGEMENTS iv

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF APPENDICES xi

1 Introduction 1

1.1 Introduction about Web Services Compositions .. 1

1.2 Thesis Focus .. 2

1.3 Thesis Outline.. 3

2 Background 4

2.1 Web Services Compositions... 4

2.1.1 Definition... 4

2.2 Enabling Standards.. 5

2.2.1 X M L .. 6

2.2.2 S O A P .. 6

2.2.3 WSDL ... 7

2.2.4 U D D I.. 7

v

2.3 Quality of Services (Q o S).. 9

2.4 Service Level Agreement (S L A) .. 9

2.5 Management .. 10

2.6 Monitoring ... 11

2.7 Fault D iagnosis... 11

2.8 Related W o rk .. 12

2.8.1 Event C orrela tion .. 13

2.8.2 Diagnosis in Policy-based Management System 16

2.8.3 Diagnosis by Fault Taxonom ies.. 19

2.9 Summary .. 20

3 Proposed Approach 21

3.1 BPEL .. 22

3.2 Business Process E xam ples... 23

3.2.1 Loan Business P ro c e s s ... 23

3.2.2 Office Business Process... 26

3.3 BPMN M a p p in g .. 26

3.4 Diagnostic M o d e ls .. 31

3.5 Summary .. 34

4 Architecture 35

4.1 Third Party Management System .. 35

4.1.1 T P A ... 36

4.2 Diagnosis Module O v e rv iew .. 37

4.2.1 M ap p er... 37

4.2.2 Event Coordinator.. 38

4.2.3 M atcher... 39

5 Implementation 40

vi

5.1 Implementation of diagnosis module com ponen ts... 40

5.1.1 M ap p er... 40

P a rse r ... 43

CD Graph .. 43

Mdfs and PathG enerator.. 43

PathH andler... 44

Problem Code M atrix .. 44

5.1.2 Event Coordinator.. 44

5.1.3 M atcher.. 44

5.1.4 D a tab ase ... 45

5.2 Evaluation.. 46

5.2.1 H ardw are.. 46

5.2.2 S o ftw a re ... 46

5.2.3 M ethodology... 46

6 Conclusion 48

6.1 Contributions.. 48

6.2 Future W ork ... 49

A Evaluation Results 50

B Execution Time 56

Bibliography 57

VITA 60

vii

List of Tables

2.1 All covers set disorders £>/ of set manifestation M .. 18

3.1 Problem codes matrix for the loan business p ro c e ss ... 32

3.2 Problem codes matrix for the office business process ... 32

3.3 Result list of the loan business process... 33

3.4 Result list of the office business p ro cess .. 34

A . l Ten CD graphs specifications... 51

B. 1 Execution time for the ten CD graphs specifications.. 56

viii

1.1 Hello BPEL Example [1] .. 2

1.2 Hello BPMN Example [2] .. 3

2.1 SOAP request message example [3] ... 6

2.2 SOAP response message example [3] ... 7

2.3 WSDL document example [4] ... 8

2.4 Compression correlation applied in a system of four web serv ices.................... 13

2.5 Example of causality graph and problem code matrix [5] 14

2.6 Causal network for automotive problems [6] ... 17

3.1 Simple BPMN e x am p le ... 22

3.2 LoanProcess pool [7] ... 24

3.3 CheckLoanApplicationlnformation pool [7] ... 25

3.4 MakeDisbursement pool [7] ... 25

3.5 OfficePool.. 26

3.6 Abstract view of loan business process .. 27

3.7 Abstract view of office business p rocess.. 27

3.8 Causality graph of the loan business p ro c e s s ... 31

3.9 Causality graph of the office business process... 32

4.1 TPA with the Client Agent .. 37

4.2 Diagnosis module with the TPA .. 38

4.3 Mapper with the diagnosis module components .. 39

List of Figures

IX

5.1 The diagnosis module class diagram part 1 .. 41

5.2 The diagnosis module class diagram part 2 .. 42

5.3 Example of composition description.. 43

5.4 Example of generated p a th s ... 45

5.5 Example of composition observed events and its C S V ... 46

A.l Loan C D ... 52

A.2 Office C D .. 52

A.3 CD 1 ... 52

A.4 CD 2 ... 52

A.5 CD 3 .. 53

A .6 CD 4 .. 53

A.7 CD 5 .. 53

A .8 CD 6 ... 54

A.9 CD 7 .. 55

A. 10 CD 8 ... 55

x

List of Appendices

Appendix A: Evaluation Results.. 50

Appendix B: Execution T i m e ... 56

xi

Chapter 1

Introduction

This chapter provides the motivation for the research presented in this thesis. Section 1.1

defines web services composition. Section 1.2 states the problem statement. Section 1.3 shows

how this thesis is organized.

1.1 Introduction about Web Services Compositions

Web services are loosely-coupled, self-contained, and self-describing software modules that

perform a predetermined task. These services are physically distributed and are able to com

municate using SOAP messages. These services can be linked together to develop an appli

cation that spans multiple organizations. This linking is referred to as a composition of web

services. These compositions potentially can help businesses respond more quickly and more

cost-effectively to changing market conditions. Compositions can be specified using a work-

flow process language e.g., Business Process Execution Language (WS-BPEL). WS-BPEL or

BPEL is an XML-based block-structured language that specifies actions within compositions

and its services [2], An example of BPEL is shown in figure 1.1. Figure 1.1 shows a simple

BPEL process that receives a greeting phrase, composes a greeting phrase and replies with

the greeting. Because BPEL is intended for business process designers, it has to be graphi

cally modelled to be readable by human. BPEL has a few graphical modelling standards. The

1

Chapter 1. Introduction 2

<process name="Hello" targetNamespace="http://jbpm.org/examples/hello"
xmlns.tns="http://jbpm.org/examples/hello"
xmlns:bpel="http://schemas.xmlsoap.org/ws/2QO3/03/business-process/"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<partnerLinks>
< ! - - establishes the relationship with the caller agent - - >

<partnerLink name="caller" partnerLinkType="tns:Greeter-Caller"
myRole="Greeter" />

</partnerLinks>

<variables>
< ! - - holds the incoming message - - >

<variable name="request" messageType="tns:nameMessage" />
< ! - - holds the outgoing message -->
<variable name="response" messageType="tns:greetingMessage" />

</variables>

<sequence name=”MainSeq">

< ! - - compose a greeting phrase -->
<assign name="ComposeGreeting">
<copy>

<from expression^"concat('Hello,’,bpel:getVariableData(’request’,’n a m e />
<to variable="response" part="greeting" />

</copy>
</assign>

< ! - - send greeting back to caller - - >

<reply name="SendGreeting" operation^"sayHello" partnerLink="caller"
portType="tns:Greeter" variable="response" />

</sequence>

</process>

Figure 1.1: Hello BPEL Example [1]

most commonly used standard to model BPEL processes for humans is referred to as Business

Process Modeling Notation(BPMN). An example of BPMN is shown in figure 1.2 [2],

1.2 Thesis Focus

In order to guarantee the consistency of web services composition’s workflow execution within

its distributed environment, a vision of the whole interactions of web services is necessity. Such

vision is gained based on the execution of an automated management system with diagnostics

capabilities. Our work provides a diagnostic facility to the management system with all pos

sible faulty web services interactions. The diagnostic facility will assist to provide automated

self-healing capabilities, which will be a key feature in a web services industrial future.

http://jbpm.org/examples/hello
http://jbpm.org/examples/hello
http://schemas.xmlsoap.org/ws/2QO3/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/

Chapter 1. Introduction 3

►O
End

Figure 1.2: Hello BPMN Example [2]

This thesis focuses on the design, implementation and evaluation of a diagnostic module,

which is referred to as diagnosis module, that performs automated mapping of a high-level

specification of a web services composition to a diagnostics model. A diagnosis model ex-

presses the relationship between problems and potential symptoms. Fault localization software

can analyse instances of the diagnostics model to determine faults. This mapping can be done

by a third party service that is not part of the application resulting from the composition of

the web services. Automation will allow a third party to do diagnosis for a large number of

compositions and should be less error-prone.

O
Start

Say Hello

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 provides the background and related work,

Chapter 3 presents the proposed approach for this research, Chapter 4 describes the architecture

of the third party system, Chapter 5 describes how the diagnosis module was implemented,

Chapter 6 concludes the thesis.

Chapter 2

Background

This chapter presents key definitions and concepts, and reviews the current research relevant

to fault diagnosis within web services composition. In Sections 2.1 and 2.2, the basic concepts

that describe compositions and underling standards are mentioned. Section 2.3 presents run

time attributes that facilitate the analysis of dynamic behaviours of services in compositions.

Section 2.4 shows how these attributes can be used to form agreements between a service

provider and client. Section 2.5 presents the role of management in applications composed

of web services. Section 2.6 discusses the monitoring of web services. Finally, Section 2.7

presents common definitions, diagnosis process, and some related work with respect to fault

diagnosis.

2.1 Web Services Compositions

This Section introduces web services compositions and some of their aspects.

2.1.1 Definition

Services can be linked together to develop an application that spans multiple organizations.

This linking is called composition. These services are physically distributed. These services

4

C hapter 2. Background 5

are able to communicate using messages [8]. Compositions can be conducted by a third party

component. This is referred to as orchestration. An alternative approach is to use a choreog

raphy description. In the orchestration approach, the third party component, which is central,

deals with a workflow of services and defines when and how compositions’ members would

interact. In the choreography approach, designers have a member service interact based on the

previously agreed operating steps without the need for a central conductor. The choreography

approach is discussed in more detail in [9].

Services can be used in multiple applications and thus are reusable. A service of a partic

ular type can be replaced by another service if necessary. Services can be formed at anytime.

Applications are flexible in that they can change topological structure, interdependencies, and

workloads at run time [10].

The following is an example that illustrates a possible composition. A client wants to apply

for a loan from a bank. The bank needs to obtain the credit rating for the client. Such service

is provided by a credit composition, which has access to the entire credit history of individu

als in a geographical zone. Therefore, the bank needs to subscribe to the credit composition.

As soon as clients apply for the loans, the bank will integrate needed services from the credit

composition into its own loan approval business processes.

Compositions are implemented using a workflow process language. Web Services Business

Process Execution Language (WS-BPEL), which was developed by OASIS [11], is considered

a standard for compositions modelling. It is an orchestration language which defines roles that

take part in the message exchanges, what functions must be supported and so on.

2.2 Enabling Standards

For services accessed over the Internet several standards are needed to facilitate discovery of

services and communication with the services. This Section describes several aspects of these

standards.

Chapter 2. Background 6

2.2.1 XML

XML (Extensible Markup Language) is an open standard language used to describe and trans

mit formatted data, which was developed by W3C. It is a set of defined rules used to encode

web documents in a machine-readable format [9], It is a universal method to facilitate exchange

information between Internet-based applications.

2.2.2 SOAP

SOAP (Simple Object Access Protocol) is an open standard XML-based exchange message

protocol. SOAP is a simple and lightweight means for exchanging information between peers

over a network [3]. It relies on RPC and HTTP for message transmission. There are two types

of SOAP messages: request and response. Any SOAP message should consist of the following

attributes: SOAP envelope, SOAP encoding rules, and SOAP RPC representation. SOAP re

quest and response messages examples are presented and denoted in Figure 2.1 and Figure 2.2

[3]. In Figure 2.1, G e tL astT rad eP rice function is being called with one parameter, which

is a stock symbol (DIS) in <symbol> tag, from a service, which is StockQuote. In Figure 2.2,

the service will reply with the last trade price as a numerical value in <Price> tag as output of

the invoked function, which is denoted in Figure 2.2.

<SOAP-EN ViEnvelope
xmlns:SOAP-ENV=” h t t p : / / s c h e m a s . xnilsoap . o r g / s o a p / e n v e l o p e / ”
SOAPENV:
e n c o d i n g S t y l e = ” h t t p : / / s c h e m a s , xmlsoap. o r g / s o a p / e n c o d i n g / ”>
<SOAP-ENV:Body>

<m- .GetLas tTradePr ice xmlns:m=” Some-URI”>
<symbol>DIS</ symbol>

< /n i : G e t L a s t T r a d e P r i c e >
< / SOAP-EN V: Body >

</SOAP-EN V:Envelope>

Figure 2.1 : SOAP request message example [3]

C hapter 2. Background 7

<SOAP-ENV: Envelope
xmlns:SOAP-ENV=” h t t p : / / s c h e m a s . xmlsoap . o r g / s o a p / e n v e l o p e / ”
SOAPENV:
e n c o d i n g S t y l e = ” h t t p : / / s c h e m a s , xmlsoap . o r g / s o a p / e n c o d i n g / ” />
<SOAP-EN V: Body>

< m :G e tL a s t T r a d e P r ic e R e sp o n se xmlns:m=”Some-URI”>
< P r i c e > 3 4 . 5 < / P r i ce>

< /m : G e t L a s t T r a d e P r i c e R e s p o n s e >
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 2.2: SOAP response message example [3]

2.2.3 WSDL

Web Services Description Language (WSDL) is an XML-based shared schema that describes

interfaces and interactions within services [9]. Any WSDL document has seven attributes:

Types, Message, portType, Operation, Binding, Port, and Service. To illustrate WSDL usage,

the WSDL of StockQuote service is presented in Figure 2.3 [12] . The Types attribute is a

container for data type definitions using some type system (line 10 - 18). The Message at

tribute is a definition of the sent data (line 20 - 25). The portType attribute is set of operations

supported by services’ port (line 27 - 32). The Operation attribute refers to input messages

and output messages. Four basic operations can be defined in any WSDL document [2], The

request-response operation is used in the given example (line 28 -31). The Binding attribute

is a definition of service implementation for a particular portType (line 34 - 45). The Service

attribute is a combination of related ports (line 47 - 52). The Port attribute is a single commu

nication endpoint defined as a combination of a binding and a network address (line 4 9 -5 1)

[4].

2.2.4 UDDI

UDDI (Universal Description, Discovery, and Integration) is a set of service registries that are

used as brokers between users and service providers [9]. UDDI is similar to yellowpage books

that direct people to needed services’ information, such as, local hospital phone. UDDI provide

users with necessary information about deployed services in an intended composition. UDDI

Chapter 2. Background 8

1 <?xml version*"1.0"?»
2 <definitions name«"StockQuote"
B targetNamespace*"http://example.com/stockquote.wsdl"
4
5 xmlns:tns«"http://example.com/stockquote.wsdl"
6 xmlns:xsdl«”http://example.com/stockquote.xsd"
7 xmlns:soap-"http://schemas.xmlsoap.org/wsdl/soap/"
8 xmlns«,,http://schemas.xmlsoap.org/wsdl/,,>
9
10 <types>
11 <schema targetNamespace=”http://example.com/stockquote.xsd"xmlns«"http://www.w3.org/.. .'*>
12 <element name*"TradePriceRequest"»
13 <complexType>
14 <all>
15 «element name-"tickerSymbol" type*"string"/>
16 </all>
17 </complexType>
18 </types>
19
20 «message name«"GetLastTradePriceInput,,>
21 «part name*"body" element*,,xsdl:TradePriceRequest'V>
22 «/message»
23 «message name»"GetLastTradePriceOutput'*>
24 «part name«’’body" element*'*xsdl :TradePrice"/>
25 «/message»
26
27 «portType name*"StockQuotePortType"»
28 «operation name-,,GetLastTradePrice">
29 «input message«"tns:GetLastTradePriceInput'V»
30 «output message-”tns:GetLastTradePriceOutputM/>
31 «/operation»
32 «/portType»
33
34 «binding name«MStockQuoteSoapBinding•, type-'‘tns:StockQuotePortType"»
35 <soap:binding style*"document'* transport*"http://schemas.xmlsoap.org/soap/http"/»
36 «operation name-"GetLastTradePrice"»
37 «soap¡operation soapAction-"http://example.com/GetLastTradePrice"/»
38 «input»
39 «soap¡body use-'*literalH/>
40 «/input»
41 «output»
42 «soap¡body use-'literal"/»
43 «/output»
44 «/operation»
45 «/binding»
46
47 «service name»"StockQuoteService">
48 «documentation»My first service«/documentation»
49 «port name*,,StockQuotePort'’ binding«"tns:StockQuoteSoapBinding">
50 «soap:address location-,,http://example.com/stockquote,,/>
51 «/port»
52 «/service»
53 «/definitions»

Figure 2.3: WSDL document example [4]

http://example.com/stockquote.wsdl
http://example.com/stockquote.wsdl
http://example.com/stockquote.xsd
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/
http://example.com/stockquote.xsd%22xmlns%c2%ab%22http://www.w3.org/
http://schemas.xmlsoap.org/soap/http%22/%c2%bb
http://example.com/GetLastTradePrice%22/%c2%bb
http://example.com/stockquote,,/

Chapter 2. Background 9

locates services and provides access to their WSDL documents. This information is important

to users because UDDI allows users to interact with their suitable services.

2.3 Quality of Services (QoS)

In order to understand the dynamic behavior of compositions, the run-time behavior of the ser

vices in compositions should be observed and understood. The following Section presents a

brief introduction about the run-time behavior properties of composition.

It is possible that for a service that there are several service instances that can be used. Ser

vice instances may distinguish themselves by making promises about run-time behavior. Run

time behavior may be characterized by a set of attributes (or metrics) referred to as Quality of

Service or QoS. QoS metrics include: performance, reliability, scalability, capacity, robustness

and so on [13]. A promise is made about that the behavior, as characterized by a QoS metric,

will satisfy a condition. For example, service time, which is a time needed to process a request

from a service, is a QoS performance metric, and the promise is that the service time will be

less than x time units.

2.4 Service Level Agreement (SLA)

To determine the responsibilities and expectations of the services in a composition an agree

ment or contract should be initiated. The following Section presents several aspects related to

these agreements.

A set of promises agreed upon between a client and service provider is referred to as Service

Level Agreement in order to execute a business process, which is an action taken in the course

of conducting business. Each promise is referred as service level SLO). Any SLO

has a functional part and a guarantee part. The functional part refers to a system, endpoint, or a

process. The guarantee part involves a particular instance of the agreement that will be applied

on the functional part of the SLO. For example, manufacturing PCs company (PCMaker.com)

Chapter 2. Background 10

and a company buying PCs company (PCBuyer.com) initiated an SLA for a period of x time

with several SLOs. One SLO of this contract would be “PCMakers e-procurement system will

be available to PCBuyerl, Monday to Friday from 9AM-5PM, 99.9% of the time”. SLOs play

a crucial role in SLA life cycle [14]. If the condition specified in the SLO is not satisfied at

run-time then SLO is considered to be violated.

Several standards have been developed in recent years for negotiating and representing

formal SLAs. WSLA [9, 15], WS-Agreement [16], WSOL [9], and SLAng [17] are few ex

amples to count. There is not yet a SLA specification language that is considered as an official

modeling language because most languages are designed and used to fit certain requirements

[15].

2.5 Management

In order to offer a clear view of how services of compositions perform, management that ob

serves and reacts to faulty actions within compositions should be deployed. The following

Section introduces several aspects related to management.

Management entails the operation, administration and maintenance of a computing system

so that the system behaves as expected with respect to availability, performance and security.

The management of a service composition spans a range of activities that includes monitoring

of the run-time behavior of a service, analysis of monitored data, and determining recovery

actions to modify the run-time behavior [18]. The monitoring activity typically consists of

periodically monitoring the on-line status of services. Monitoring is an essential part of man

agement. The management analysis is concerned with the causes of why services do not satisfy

the expectation specified in a SLA. Decision making components are leveraged to perform re

covery actions. Recovery actions should benefit the affected party by informing with the source

of the violation or suggesting with alternative providers or services if applicable [19].

Chapter 2. Background 11

2.6 Monitoring

To improve the performance of a composition, monitoring of QoS measurements of intended

services either that show normal or abnormal behaviours is a necessity. The following Section

introduces several aspects related to such monitoring.

Two typical monitoring mechanisms are mentioned in the literature - message intercep

tion [8, 19] and code level instrumentation [8]. Message interception mechanism intercepts

exchanged requests and responses messages between services’ compositions and the clients.

Message interception is used as two styles. The first style is that standalone internal agents

are embedded within messaging framework at host environments. This style requires installed

agents for each individual web service in a composition and gives management capabilities to

the host of these services [20]. The second style is that a decoupled external intermediary or

third party component is located between clients and services’ composition. The third party has

its sensors that monitor run-time behaviors of services and record QoS metrics of a managed

service. By this style, the third party has better visibility and control over each of the services

[21]. Although message interception is a common mechanism and offers easy maintenance,

it suffers from management complexity, possible bottlenecks, and points of failure [8]. Code

Level Instrumentation refers to code that is place in the code of the service that provides vari

ous monitoring and reporting functions about these services. Code Level Instrumentation can

provide extensive and accurate monitoring data but is costly to build. Further discussion about

code level instrumentation mechanism is provided in [8].

2.7 Fault Diagnosis

A fault (known as a problem(P)) is a defect in a software or software component [22]. A system

is said to have a failure if the service it delivers to the user deviates from compliance with the

system specification for a specified period of time [23]. A problem causes a failure. To illus

trate these concepts consider the following examples: (1) A hardware power loss causes a web

C hapter 2. Background 12

service to become unavailable (i.e, physical problem leads to failure); (2) An unexpected load

causes a web service to violate its SLA (i.e, operational problem leads to failure). Failures are

often referred to as symptoms of a problem. The term symptom (S) is often used interchange

ably with failure and an event is defined as a notification of a failure. A problem can occur on

one component but a failure is detected on another component. The two examples presented

earlier show this. The hardware power problem occurs at the server side but the failure that is

the^result of this fault is detected by a process on a different machine. This suggests a need to

be able to determine a problem based on failures. This is referred to as fault diagnosis.

Because problems are unavoidable and may pose critical impacts on compositions (i.e,

problems may delay system functionalities or may terminate processes) [24], their quick diag

nosis is essential to maintain the robustness, reliability, and accessibility of a system [5].

The process of fault diagnosis usually involves three steps: fault detection, fault local

ization, and testing [5], Fault detection is a process of capturing symptoms arising from the

affected system [24], Detection techniques can be based on active schemes (e.g, polling) or

symptom-based schemes, where a system component indicates that it has detected a failure.

Several fault detection techniques are proposed, e.g, Angeli et al [25], Hwang et al [26]. Fault

localization requires an analysis of a set of observed symptoms. The goal of fault localization

is to find an explanation of the symptoms’ occurrence. The explanations are delivered in the

form of hypotheses. Hypotheses are statements which explain that each observed symptom is

caused by one or more designated problems. The validity of a hypothesis is evidenced by the

efficiency of its fault diagnosis. Based on these hypotheses, a testing step is performed in order

to determine the actual problems through the application of a suitable testing mechanism [5].

2.8 Related Work

The following Sections present common event correlations and some previous work on fault

diagnosis.

Chapter 2. Background 13

Figure 2.4: Compression correlation applied in a system of four web services

2.8.1 Event Correlation

Event correlation is a technique that can be used for the fault localization process. Event

correlation attempts to associate one symptom with another symptom in order to infer the

relationship between their occurrences [27]. Through an examination of these associations, a

number of possible hypotheses are generated that reflect the symptoms’ occurrence.

There are several different types of correlations, which are useful for diagnosing problems

in a network. Compression correlation, for example, reduces multiple occurrences of the same

symptom into a single symptom [27]. Compression correlation can be used for an application

that consists of a set of services. For example, an application may consist of four interacting

web services WS,, WS2, WS3, and WS4. WS1, WS2, and WS3 make requests of WS4. This is

presented in Figure 2.4.a. If the machines that hosts WS4 has a power loss problem, WS 1, WS2,

and WS 3 would generate symptoms indicating that WS4 is being slow or unavailable. This is

depicted in Figure 2.4b. Since a management system has knowledge about the workflow of

these services, the management system could apply compression correlation in order to reduce

the multiple occurrences of the redundant symptoms from WS 1, WS2, and WS3.

Chapter 2. Background 14

P i P2 p

S i 1 0 0

s 2 1 1 0

0 1 0

s 4 0 1 1

Sr, 0 1 1

(b) Matrix C

Figure 2.5: Example of causality graph and problem code matrix [5]

Steinder et al [5] proposed a classification of fault localization techniques which is derived

from Graph-theoretic techniques, Artificial Intelligence, and Model-traversing techniques. Graph-

theoretic techniques rely on a graphical model. This type of graphical model is referred to as

a fault propagation model (FPM). FPM is a graph that include symptoms, problems, and the

relationship between them. This type of graph is an example of a causality graph. In such

graphs, endpoints may be marked as being solely problems or being solely symptoms, while

others may be marked as problems and symptoms at the same time. Edges describe cause-

effect relationships between problems and symptoms or symptoms and other symptoms. An

example is seen in Figure 2.5a. To create such a model, an accurate knowledge of current de

pendencies among the system components is required. Codebook, context-free grammar, and

bipartite causality approaches are a few examples of Graph-theoretic techniques [5].

The codebook technique [5] uses a matrix representation of causality graph1 in order to

infer the causes of observed symptoms. A causality graph is a bipartite graph whose vertices

can be partitioned into two disjoint subsets V and W such that each edge connects a vertex

from V to one from W [28]. The matrix is referred to as problem codes matrix (PCM)2 and

is built based on the causality graph. An example of the causality graph and the problem

codes matrix (say matrix C)are illustrated in Figure 2.5a and 2.5b, respectively. The matrix

'For system analysis purposes, a causality graph is considered as an efficient knowledge base
2 Problem codes matrix term equals to the codebook term

Chapter 2. Background 15

consists of a column that represents symptoms that problems cause. A matrix entry either has

the value of zero or one. For example, the value of one assigned at C [l, 1] position in matrix

C indicates that symptom S i can be observed for problem P\. The value of zero assigned at

C [1,3] position indicates that symptom S \ can not be observed for problem P3.

At run-time a problem will cause one or more symptoms to be generated. From this a string

can be formulated. If the i,hsymptom was observed then the ith position in the string is one

otherwise it is zero. This string will be referred to as a current symptoms vector (CSV).

The diagnosis process uses the Hamming distance. The Hamming distance is the minimum

number of substitutions that transforms one string into the another. For example, the Hamming

distance between two words “toned” and “roses” is three letters and the Hamming distance

between the two strings 1011101 and 1001001 is two bits [29]. Each value in a column in the

matrix is compared with its corresponding code in a given CSV. If both values are identical (i.e,

the value in the column in the matrix and its corresponding code in the given CSV are the same),

the Hamming distance value is denoted as zero. Otherwise, the Hamming distance is denoted

as one. The values are then summed to determine the Hamming distance of the two words.

The minimum of the Hamming distance values is an indicator of the corresponding problems

as the causative problems. For the matrix C, if the given CSV is 11000, the Hamming distance is

(0,4,4). Thus, the causative problem was P \ . If the given CSV is 11101, the Hamming distance

is (2,2,4). Thus, the causative problems are limited to P\ and

Since the coding phase is performed only once, the codebook approach is very fast, robust,

and efficient. On the other hand, the accuracy of the codebook technique is hard to predict

when more than one problem occurs with overlapping sets of symptoms. In addition, since

each change of system configurations requires regenerating the codebook, the technique is not

suitable for environments with dynamically changing dependencies [5].

Chapter 2. Background 16

2.8.2 Diagnosis in Policy-based Management System

Tighe [30] implemented a distributed fault diagnosis algorithm, proposed by Peng and Reggia

and is referred to as Parsimonious Covering theory [6, 31], in a policy-based management tool

called BEAT (Best Effort Autonomic Tool) [32, 33]. In this context, Tighe used the terms dis

order and manifestation instead of problem and symptom, respectively. The algorithm is con

cerned with the generation of plausible hypothesises, based on given information that comes

from graph-theoretic models, prior to diagnosis. Hypotheses are delivered and grouped in or

der to generate disorder-and-manifestation statements that are forwarded to a decision making

system for recovery actions.

Tighe used the algorithm to generate hypothesises based on a simple bipartite (disorder-

and-manifestation) graph. The disorder-and-manifestation graph, which is referred to as a

causal network, consists of a set of vertices representing underlying disorders and manifes

tations and a set of arcs or edges representing the causal relationship between the two. All

disorder vertices are directed to manifestation vertices. Therefore, a disorder vertex causes or

covers a set of manifestation vertices and the manifestation vertices are caused or covered by

the disorder vertex. The presence of a manifestation vertex can evoke or suggest that all of

its linked disorders vertices possibly are causatives [6]. An example of the causal network is

depicted in Figure 2.6.

In order to understand the Peng and Reggia algorithm, a few notations should be declared

in the first place. Peng and Reggia [31,6] used (D, M, C, M+) notation to represent their algo

rithm. D = {d\ , . . . , dn} is a finite non-empty set of disorders and n is the number of disorders.

M = {mi is a finite non-empty set of manifestations where n is the number of man

ifestations. C i Dx Mis a relation with domain(C) = D and) = M. The causal

relationship between sets D and M is contained in C with (J„m ;) 6 C iff di causes m,. M+ is

a subset of M that represents a set of present manifestations. In general, the algorithm is de

ployed in the form of abductive reasoning. Abductive reasoning most closely resembles how

a human being diagnoses problems. A problem consists of a set of rules, a specific case, and a

Chapter 2. Background 17

»

Associations

D
left headlight right headlight fuel Mae
hurnpd out burned out blocked

engine
does not
start come on

headlight

come on

Figure 2.6: Causal network for automotive problems [6]

result that occurs given the relationship between the two. C represents the set of rules. D repre

sents all possible specific cases or disorders. M represents all possible result or manifestations.

M+ represents a designated set of manifestations of the current problem. The set of rules and

the result are already known. What is needed is to hypothesize about the specific case that is

causing the result. To illustrate the concept of abductive reasoning, when a doctor diagnoses a

patient, the set of manifestations experienced by the patient would be analogous to the result

and the doctor’s medical knowledge would be the set of rules. Thus, the doctor’s diagnosis

would indicate to the set of specific cases [30].

As mentioned earlier, the algorithm [6] concerns about generating a set of hypothesises or

covers. A cover of M+ is a set disorders D/ c Dsuch that each manifestation in M+ can be

caused by at least one disorder in Dt. The process of covers generation is about encapsulating

M+ with possibly causative disorders in D/. The source of such causality relationship is based

on the graphical model of the causal network. Each cover represents a single hypothesis that

gives potential explanations for each manifestation in M+. It is logically that if present mani

festations M+ equals M, the generated covers should cover all manifestations in M. This fact

makes the proposed algorithm very effective, for single disorder and manifestation, or might

not be effective, for multiple disorders and manifestations. For that reason, Peng and Reggia

[6, 31] suggested that simple or parsimonious covers, which have fewer disorders, are more

Chapter 2. Background 18

Cover Disorder Set
1 d\ ,¿2^39^4
2 d\ ,d2,d?,
3 d\ ,d2,d4
4 d\
5 d\,ds
6 d\,d^,d4
7 d\ ,¿4
8 dx
9 d2,d->,
10 d“2 yd̂ f ̂ 4

Table 2.1: All covers set disorders D\ o f set manifestation M

likely to be true. They also suggested different criteria for judging the simplicity. Inferring

more simple covers will help to narrow down the broad spectrum of disorders to a satisfied

limit. The simplicity criteria includes: Minimal, Irredundant and Relevant covers, and etc. A

Minimal cover is a cover D, of Mj, since Mj c M, that the cover contains the minimal num

ber of disorders required to cover My. An Irredundant cover is a cover Dt of My where each

disorder causes at least one manifestation that no other disorders in the same cover causes. A

Relevant cover is a cover D/ of My where each disorder causes at least one manifestation with

considering that two or more disorders may cause the same manifestation in the same cover.

The set of Minimal covers for a set of manifestations is a subset of Irredundant covers, which

is a subset of the set of Relevant covers. Because the criteria create increasingly broad sets of

covers as moving from Minimal to Relevant covers, a sequence of covers filtering should be

applied [30].

Figure 2.6 depicts an example given by Peng and Reggia [6,31] that describes the diagnosis

of automotive problems. The disorders include battery dead (d\), left headlight burned out [df),

right headlight burned out {df), and fuel line blocked which are the upper-side vertices.

The manifestations are engine does not start (mi), left headlight does not come on (m2), and

right headlight does not come on (m3), which are lower-side vertices. All covers Dt of M+

are generated in table 2.1 considering that M+ = {mi,m2,m3} = M. It is obvious that all

Chapter 2. Background 19

current covers do not indicate the causative disorders and will not help to generate a plausible

hypothesis. The goal is to reduce the number covers in order to gain simple covers. For

example, say that M+ = In order to get simple covers, any disorder must cause at

least one manifestation in M+. From table 2.1, it is obvious that there are live covers, that is,

Relevant and cover M+. These covers are 2,4,5,8, and 9. Others covers are non-useful because

they entailed d\which does not cause any manifestation in M+. It is obvious that such covers

are qot simple enough to generate a plausible hypothesis. In order to gain more simple covers,

any disorder must cause at least one manifestation in M+ that is not caused by any other disorder

in the same cover. From table 2.1, it is obvious that there are two covers, that is, Irredundant

and still cover M+. These covers are 8 and 9. Cover 2,4,5 are not needed because they entailed

redundant disorders. Cover 8 and 9 may considered as a plausible hypothesis, but it is better to

have very simple covers. In order to gain more simple covers, at least one manifestation in M+

must be caused by the possible fewest number of disorders. From table 2.1, it is obvious that

there is one cover, that is, Minimal and still covers M+. This cover is 8. Cover 9 is excluded

because the disorders of M+ could be covered by cover 8 alone. Therefore, cover 8 or both 8,9

covers seem to be reasonable hypotheses.

Although producing a hypothesis that explains the occurrence of manifestations would help

in fault diagnosis, it is impossible to guarantee that a definitive diagnosis can be obtained

because determining which hypothesis is correct or more likely to be correct is a complex task.

2.8.3 Diagnosis by Fault Taxonomies

Other work on fault diagnosis [34, 35] state that only knowing what faults to look for is a con

venient approach to suggesting a suitable recovery mechanism more quickly by building fault

taxonomies that explicitly indicate symptoms and problems. Therefore, system administrators

are educated on how to react or treat present problems and might be capable of handling future

problems as soon as they are faced with the listed symptoms in the fault taxonomies. However,

some problems are unpredictable and might spread to a new composition. Knowing the tax

Chapter 2. Background 20

onomies alone will not identify the problems in the future compositions. Therefore, to some

degree, fault taxonomies are not the optimal approach to fault diagnosis.

2.9 Summary

This chapter covered basic information necessary to build a context for the following chapters

and to present related research on fault diagnosis.

Chapter 3

Proposed Approach

This Chapter is concerned with mapping of a high-level specification of a web services com

position to a diagnostic model. This mapping can be done by a third party service that is not

part of the application resulting from the composition of the web services. This process should

be automated in order to reduce errors.

Fault localization is a process of deducing the source of a failure from a set of observed

symptoms. In the previous Chapter we presented approaches based on graph-theoretic tech

niques. These techniques require a priori specification of a failure condition in component is

related to failure conditions in other components. In this Chapter we show how a specification

of a composition of web services can be used as the a priori specification.

This Chapter is organized as follows: Section 3.1 describes the high-level specification of

a web services and some of its properties in more details. Section 3.2 shows two business

processes examples that are used to illustrate the proposed approach. Section 3.3 shows the

mechanism used for the high-level specification of a web services composition mapping. Sec

tion 3.4 shows a diagnostic model used to represent the diagnosis method used in our research.

21

Chapter 3. Proposed Approach 22

Figure 3.1: Simple BPMN example

3.1 BPEL

This Section focuses on the high-level specification of a web services composition. BPEL is a

standard for an XML-based language for describing the interaction between the participants in

a process, its operational logic and execution flow. BPEL specifications can be quite complex

and hence there are a number of tools that allow users to conceptualize business processes as

directed graphs. One example is Business Process Modelling Notation (BPMN). Notational el

ements in BPMN include FlowObjects which are contained in pools. One type of FlowObject

represents an activity 1 [36]. An activity can either be atomic or compound where a compound

activity is structured from other activities. An activity FlowObject is a node that may have

multiple outgoing links representing different possible flows. The outgoing link chosen de

pends on the result of the evaluation of a condition. Decision points or Gateways represent

these conditions. The link from a Gateway node to an activity node is referred to as a Se-

quenceFlow. MessageFlows describe the exchange of messages between pools [36]. Another

type of FlowObject denotes Events the start or end of a flow. A pool consists of a composi

tion of FlowObjects, Gateways, and SequenceFlows and MessageFlows. A pool may have an

activity FlowObject that can be represented by another pool. Each pool represents a workflow

and a business process is associated with a set of pools. An example of a business processes

workflow modelled as a BPMN specification is presented in Figure 3.1.

We can use the specification of a business process using BPMN to generate a composition

1 An activity represents a web service

C hapter 3. Proposed A pproach 23

dependency graph. This will be used to generate a causality graph which is the basis for the

problem code matrix to be used in the coding technique.

3.2 Business Process Examples

This Section shows two business processes examples: loan business process, and office busi

ness process.

3.2.1 Loan Business Process

A BPMN model of the loan business process composition is depicted in Figure 3.2 [7]. This

business process has three players: client, bank composition, and credit company composition.

Three pools are presented in Figure 3.2, Figure 3.3, Figure 3.4: LoanProcess,

cationlnformation, and MakeDisbursement, respectively. The first and the third pools represent

the bank composition and the second pool represents the credit composition. The LoanProcess

pool is the main pool in this business process.

In the LoanProcess pool, the workflow of the loan process is triggered as soon as loan ap

plication forms are received from clients after the forms have been filled. All loan application

forms from other branches are gathered and submitted to establish the loans requests. The loan

requests will be sent to the second pool, CheckLoanApplicationlnformation pool, for verifica

tion purposes. The verification step indicates if a client has a bad credit or has a good credit.

The results of the verification are returned to the LoanProcess pool in order to make disburse

ment decisions or rejection decisions with the justification for rejection. If the results of the

verification were negative, the decision is made to reject the loan requests. Before the business

process workflow is terminated, the clients are informed about the rejection. If the results of

the verification were positive, the LoanProcess pool notifies the client that their loan request

approved and forwards the loan request to the MakeDisbursement pool in order to finalize how

the loans are disbursed. After the disbursement step, the workflow is completed.

Figure 3.2: LoanProcess pool [7]

n

Loan
Application

Form

O
Start

Send Out Loan . .. Receive Loan
Appbcation

Form
w

o
) > Application

Form
w

_____ H ___ IsP
Check Loan Application Information

Is Result OK?

___y Make Loan
Ve? Assessment

Loan
Application

Form

... 1>

No

Loan
Assessment

Report

O
Appr >ved

Send Rejection

7ìt

J±L
Loan

Assessment
Report

Make Disbusement

•ò
Refection

O
Disbusem

ent

LO

ir 3.
P

ro
po

sed A
ppro

ach

Chapter 3. Proposed Approach 25

c
%
9ccg|
Vi

f
O-Io0»
6

Figure 3.3: CheckLoanApplicationlnformation pool [7]

Figure 3.4: MakeDisbursement pool [7]

Chapter 3. Proposed Approach 26

Figure 3.5: OfficePool

3.2.2 Office Business Process

Another business process example is an office process, which is depicted in Figure 3.5. In the

OfficePool, the workflow of the office business process is triggered as soon as office mails are

received by the ReceptionRepresentative task. The TeaMan task takes the mails from Recep-

tionRepresentative task and passes it to the Secretary task in order to be filtered and passed to

the Manager task. If there are urgent mails, the Secretary task will forward it to the Manager

task directly. If there is non-urgent mail, commercial, or spam mails, the Secretary task will

forward it the SecretaryAssistant for filtering purposes. The Secretary Assistant task forwards

mail to the second SecretaryAssistant task to perform the filtering. Once the filtering is done,

the second SecretaryAssistant task forwards the mail to the TeaMan task prior to delivery to

the Manager task.

3.3 BPMN Mapping

This Section describes how a BPMN mapping of a web services composition is performed.

The BPMN mapping is done through the transformation from BPMN graphs to a composition

dependency graph (CD) which is done prior to determining the causality graph.

The transformation from BPMN to CD is performed as follows: assume that CD is repre-

Chapter 3. Proposed A pproach 27

Figure 3.6: Abstract view of loan business process

Figure 3.7: Abstract view o f office business process

sented as (V,E). Each BPMN atomic activity node is a node in V. If a decision point follows an

activity then the node in V representing the activity will have two outgoing edges. Edges rep

resent different possible flows. The CD graph for the LoanProccess pool process is depicted in

Figure 3.6, where PI represents SendOutLoanApplicationForm task, P2 represents Received-

LoanApplicationForm task, P3 represents CheckLoanApplicationlnformation subprocess, P4

represents the MakeLoanAssessment task, P5 represents the MakeDisbursement subprocess

and P6 represents the SendReject task. P3 and P5 represented subprocesses each with its own

set of activities. The CD graph for the office business process is depicted in Figure 3.7, where

PI represents ReceptionRepresentative task, P2 represents TeaMan task, P3 represents Secre

tary task, P4 represents the Secretary Assistant task, P5 represents the Secretary Assistant2 task

and P6 represents the Manager task. As can be seen the CD graph is an abstract view of a

BPMN process.

Assume that the CD graph is represented as () while the causality graph is represented

Chapter 3. Proposed A pproach 28

as (V',E')2. The set V can be partitioned into two sets W,X such that each edge in E’ connects

a vertex from Wto a vertex in X. The set W is the set of potential problems. Since each node

in the CD graph represents an activity and any of these activities can be faulty then the set of

W is the same as the set V. Let v be a node in a CD graph. This node represents a potential

problem. Any node, u, in the CD graph, for which there exists a path from it to the node v,

potentially could exhibit a failure condition if v becomes faulty. Any node that could exhibit a

failure condition is in set X. For a node u we use the notation Pu to represent u as a problem

and S uto represent uas a symptom. Determining the causality graph of the CD graph requires

these two algorithms: Modified Deph-first Search (mdfs), and pathGenerator. The mdfs and

pathGenerator algorithms are presented in algorithm 1 and algorithm 2, respectively. The mdfs

algorithm takes as input a CD graph and does a depth-first traversal. When all child nodes of

node v have been traversed then the pathGenerator algorithm is used to generate all paths from

node v to each leaf node. These paths are used to produce the causality graph. The causality

graph of the loan business process is depicted in Figure 3.8. The causality graph of the office

business process is depicted in Figure 3.9.

The mdfs algorithm uses two variables: VerticesList, and BackTrackEdgesList. VerticesList

is a list that keeps track of each node’s label. The BackTrackEdgesList maintains a list of

backtrack edges. A backtrack edge (v,w) indicates that the mdfs algorithm is revisiting node

w and that not all of node w’s children had yet been visited. White is a label that indicates an

unvisited node, which is the initial state for all nodes. Gray is a label that indicates a node

has been visited but not all of its children have been traversed. Black is a label that indicates a

node has been visited and all of its children have been processed. When the input CD graph is

received, mdfs is triggered (line 1). If the current node being visited is White, mdfs will assign

the Gray label (line 3). The mdfs algorithm examines each outgoing edge (lines 4-5). If the

node on the other end of the edge is labelled White then this means that the node has not been

visited and thus no paths have been generated (lines 6-7). If the node on the other end of the

2The causality graph vertices are known in advance based on the g iven information from a client about fault
and symptom quantities

Chapter 3. Proposed Approach 29

Algorithm 1: Modified depth-first search(mdfs)

1
2

3
4
5
6
7
8
9

10

11
12

Procedure: mdfs {executed on receipt Graph G with root node v}
Input : G = (V,E)where E = {(v, w) |v, we V}and node v is a zero indegree edge

and all nodes v are initially unvisited.
Variables : VerticesList carrys on all nodes, White is label for unvisited node state,

Gray is label for the visited but not finished node state. Black is label for the
finished node state. BackTrackEdgesList carrys on edges resulted from
visiting Gray nodes.

mdfs(G,v)
if VerticesList [v] = White then

VerticesList [v] = Gray
forall the e 6 G .in c id e n tE d g e s (v)do

w = G .incident Edge s(v, e)
if VerticesList [w] = White then
| mdfs(G, w)

else if VerticesList [v] =Gray then
putEdge(v,w,BackTrackEdgesList)

VerticesList [v] = Black
/ / when th e r e a re zero u n v is i te d nodes, b a ck trac k
pathGenerator(v)

edge is labelled Gray then the edge is put in the BackTrackEdgesList (lines 8-9). If there is no

unvisited neighbour node for the current node, mdfs executes the pathGenerator algorithm in

order to generate paths (line 12).

The pathGenerator algorithm is executed when all nodes on the other end of the outgoing

edges of node v have been visited. The pathGenerator uses three variables: newPath, pathsW,

and P a th s. The newPath variable is used to represent a sequence of nodes, and pathsW

represents a set that contains all the paths from w to all leaf nodes. P a th s is a container for

all possible paths. pathGenerator algorithm is executed when a current node v is received

from mdfs. The pathGenerator looks for outgoing edges of node v. If there are no outgoing

edges (line 2), the pathGenerator algorithm creates a new path, appends v node in this path,

and adds the path to P a th s (lines 5-7). If there are one or many outgoing edges (line 8),

the pathGenerator algorithm retrieves each path associated with w and creates a new path by

putting together v and the path associated with w (lines 10-19).

Chapter 3. Proposed A pproach 30

Algorithm 2: pathGenerator
Procedure: pathGenerator {executed on receipt a graph G and node v}
Input : Graph G and node v from mdfs
Variables : newPath, pathsW, and Paths
Output : Possible set of paths

1 begin
2 if G.incident Edge s(v) == null then
3 // Create a new path, add v node in this path,
4 // and add the path to Paths.
5 newPath = null
6 newPath.append(v)
7 Paths = Paths u newPath
8 else
9 forall the e e G. incident Edge s(v) do

10 w = G .in c id e n tE d g e s { v ,e)
n pathsW = emptySet
12 // Retrieve all previously generated paths from
13 // w to each leaf node reachable from w
14 forall the p € Paths.gei(w) do
is newPath = null
16 newPath.append(v)
n newPath.append(p)
is pathsW.add(p)
i9 Paths = Paths u pathsW

The execution of the algorithms does not always provide all paths. This happens where

there is a cycle. The existence of backtrack edges indicate a cycle. Assume a backtrack edge:

(v,w). The mdfs algorithm will generate all paths from node w to leaf nodes but the paths

generated for node v will not include those paths that start at w. For example, if the edge

(P5,P2) is a backtrack edge in the office business process (see the Figure 3.9). The paths

from the root node (PI) to all nodes in the office CD graph are: ((PI), (PI, P2), (PI, P2, P3),

(P1,P2,P3, P6), (P1,P2,P3,P4), (P1,P2,P3,P4,P5)). After considering the backtrack edge

(P5,P2), the paths will be: ((PI), (P1,P2), (P 1 ,P 2 ,P 3), (P1,P2,P3,P6), (P1,P2,P3,P4),

(P I , P2, P3, P4, P5), (P I , P2, P3, P4, P5, P2)). Paths generated considering backtrack edges

are done after mdfs terminates. Let (v,w) be a backtrack node. Let P be the set of paths. For

Chapter 3. Proposed Approach 31

Figure 3.8: Causality graph of the loan business process

each path that ends with w create a new path that appends v to the path that ends with w.

3.4 Diagnostic Models

This Section shows a diagnostic model used in this research. The coding technique [5] is used

to represent our diagnostic models. Each path generated starts from a node v and ends at a

node w. If a problem occurs in node w then it is possible that symptoms are detected by each

node in the path. Thus each path generated is represented in PCM as a column. We see this with

Figure 3.8 and Figure 3.9 and tables 3.1 and 3.2.

By applying the mdfs and pathGenerator algorithms on the loan CD graph, the generated

paths are: ((PI), (PI,P2), (PI,P2,P3), (PI, P2, P3,P4), (PI, P3, P4, P5), (PI,P2, P3, P4,P6),

(PI, P2, P3, P6)). After the loan causality graph is determined, PCM is ready to be maintained.

From Figure 3.8, we can see that 55 can be observed for P5 (PCM[55,P5]) so the PCM[5,5]

is denoted with one. Symptom 55 can not be observed for problem P6 (PCM[55,P6]) so

PCM[5,6i] has been assigned zero. The PCM matrix for Figure 3.8 is presented in table 3.1.

In table 3.1, there are two P6 columns (P6i,P 62> that indicate different patterns of symptoms

resulting from problem P6. Each pattern corresponds to a path and since there are two paths to

the web service corresponding to P6 there are two columns.

By apply the mdfs and pathGenerator algorithms on the office CD graph, in Figure 3.9,

since 54 can be observed for P4 the PCM[4,4] is assigned the value of one. Since symptom

Chapter 3. Proposed Approach 32

PI PI P3 P4 P5 P6, P62
51 1 1 1 1 1 1 1
52 0 1 1 1 1 1 1
53 0 0 1 1 1 1 1
54 0 0 0 1 1 0 1
55 0 0 0 0 1 0 0
56 0 0 0 0 0 1 1

Table 3.1: Problem codes matrix for the loan business process

Figure 3.9: Causality graph of the office business process

55 can not be observed for P6 PCM[5,6] has been assigned the value 0. All codes assigned to

present the causality relationships in Figure 3.9 are portrayed in table 3.2. In table 3.2, there are

two columns representing different patterns that result in symptoms associated with the web

service that is associated with problem P2.

PI P2i P2 2 P3 P4 P5 P6
51 1 1 1 1 1 1 1
52 0 1 1 1 1 1 1
53 0 0 1 1 1 1 1
54 0 0 1 0 1 1 0
55 0 0 1 0 0 1 0
56 0 0 0 0 0 0 1

Table 3.2: Problem codes matrix for the office business process

Fault diagnosis assumes a vector of symptoms that have been reported. It is assumed that

these symptoms are generated by a failure detection component located within a composition.

The Hamming distance between the vector and each column is calculated. The Hamming dis

tance the more likely that the column explains what is causing the symptoms.

C hapter 3. Proposed A pproach 33

Assume that the loan business process has been executed. When a set of unpredictable

changes of web service behaviour are observed, the loan composition should gather these com

plaints and pass them to its diagnostic model. These changes are presented as web services’

complaints from other web services. An example of these complaints is “PI says P2 time

out”. Such complaints or symptoms will be represented as CSV, where ones denotes that a web

service complaints about another web service. Otherwise, CSV will be filled by zeros. If the

loan business process observed the following symptoms: PI says P2 is time-out, P2 says P3

is time-out, P3 says P4 is time-out, and P4 says P4 is not responding, the diagnostic model

should receive these symptoms and maintain the composition’s CSV. For this pattern of symp

toms, the CSV is 111100. After the PCM for the loan composition has been maintained, the

Result list is depicted at table 3.3. From table 3.3, the causative web service for the observed

symptoms is (P4) because it has the minimum value between its peers.

P i P2 P3 P4 P5 P6, P62
51 0 0 0 0 0 0 0
52 l 0 0 0 0 0 0
53 l 1 0 0 0 0 0
54 l 1 1 0 0 1 0
55 0 0 0 0 1 0 0
56 0 0 0 0 0 1 1
£ 3 2 1 0 1 2 1

Table 3.3: Result list o f the loan business process
*

Assume that the office business process has been executed. When a set of unpredictable

changes of some web services’ functionality are observed, the office composition should gather

these complaints and pass them to its diagnostic model. If the office composition observed the

following symptoms: PI says P2 is time-out, PI says P3 is time-out, P3 says P4 is time-out,

and P4 says P5 is time-out, and P5 says P5 is not responding, the diagnostic model should

receive these symptoms and maintain the composition’s CSV. For this pattern of symptoms,

the CSV is 111110. After After the PCM for the loan composition has been maintained, the

Result list is depicted at table 3.4. From table 3.4, the causative web service for the observed

Chapter 3. Proposed Approach 34

symptoms are (P22 or P5) because they have the minimum values between their peers.

PI P2 , P22 P3 P4 P5 P6
51 0 0 0 0 0 0 0
52 1 0 0 0 0 0 0
53 1 1 0 0 0 0 0
54 1 1 0 1 0 0 1
55 1 1 0 1 1 0 1
56 0 0 0 0 0 0 1

£ 4 3 0 2 1 0 3

Table 3.4: Result list o f the office business process

3.5 Summary

This Chapter covered detailed description of the proposed approach for this research.

Chapter 4

Architecture

This Chapter describes the architecture of the proposed diagnosis module. Section 4.1 provides

an overview of the host system for the diagnosis module. Section 4.2 provides an overview of

the diagnosis module and the functionality of each component of the module.

4.1 Third Party Management System

This Section describes the context that the diagnostic system is to be used in. We assume that

the diagnosis module is a component of a third party policy-based management system[37].

In this thesis we primarily focus on management issues that are concerned with interactions

between web services. This management is guided in its decision making by three kinds of

policies: service selection, SLA violation and recovery policies [37]. The service selection

policy is defined by clients to guide choice of services. The violation policy specifies what

constitutes a violation of an SLA. The recovery policy is defined by clients that specifies re

covery actions to be taken when the management system detects a SLA violation.

The following case shows how the three policies are used. The clients specify the desired

values or range of values for a QoS attribute such as service time. For example, if a client wants

a currency rate service that has a service time1 between 2000 to 4000 milliseconds, the service

1 Service time is a time taken by the provider to process the service request and generate response [37].

35

Chapter 4. A rchitecture 36

selection policy specifies the desired service time. The policy also specified the number of

SLA violations that are to occur before an event is generated. The event represents a failure or

symptom. The clients set recovery reactions for each event. If the clients want to set a recovery

actions, such as change a service provider,, the recovery policy has to only change providers

when the defined violation policy generated events about the selected service.

4.1.1 TPA

A key component in the management system is the third party agent (TPA). The TPA carries

out these tasks: (1) allows all clients, providers, and provided services to be registered with it;

(2) negotiates SLAs, polices, and keeps track of violated SLAs; (3) generates events to indicate

failures and performs recovery actions.

The TPA consists of several components; Registration Gate, Negotiator, Event Generator,

Diagnosis Module, and Recovery Agent. An overview of the TPA is presented as Figure 4.1.

The Registration Gate is responsible for (1) forwarding a BPEL specification to the BPEL

Repository, which stores the BPEL specification for each composition being managed by the

TPA. This is one of the inputs for the Diagnosis Module. (2) forwarding relevant information

about clients and providers to the Negotiator. The Negotiator is responsible for maintaining

an agreement (i.e. SLA) between a client and a service provider if both parties have a match

between the former’s needs and the latter’s specification. These agreements are stored in the

Contract Repository. The Event Generator relies on the stored information found in logs stor

age, such as, information related to service invocations. The Event Generator also “uses SLAs

and SLA violation policies to generate events that represent SLA violations ... when the num

ber [SLA violations] exceeds what is specified in the SLA violation policy then an event is

generated”[37]. The diagnosis module receives the generated events and uses the BPEL spec

ifications to deliver diagnostic hypotheses. The Recovery Agent is responsible for analysing

the diagnosis module’s hypotheses and executing reactive actions.

Chapter 4. Architecture 37

Third Party Agent

>> Client Agent

Figure 4.1: TPA with the Client Agent

4.2 Diagnosis Module Overview

Our proposed diagnosis module provides a hypothesis about the source of symptoms observed

in a composition. The basic module architecture is presented in Figure 4.2. There are main

three components: (1) The Mapper which transforms received BPEL specifications to PCM; (2)

The Event Coordinator which transforms the generated events to CSV; (3) The Matcher which

is responsible for matching PCM and CSV to deliver a hypothesis. The following Sections

describe each component in more detail.

4.2.1 Mapper

An overview of the Mapper is presented in Figure 4.3. The BPMN description of each com

position is sent to the Mapper. The Mapper passes the BPMN’s description to a component

called Parser. The Parser receives the BPMN description and prepares a composition graph

(i.e. CD graph), which is an input for the Mdfs component. A copy of the composition graph

is placed in the CD Graphs Storage. The Mdfs component then applies the mdfs algorithm on

the composition graph and passes its graph traversal output to the Path Generator component.

Chapter 4. Architecture 38

TPA

Recovery Registration

Diagnostic Module

Mapper

Event
Coordinator Matcher

Figure 4.2: Diagnosis module with the TPA

Based on the mdfs algorithm output, the Path Generator component applies the pathGenerator

algorithm and delivers paths of the composition graph to Handler component. The Path

Handler uses the generated paths from pathGenerator algorithm and produces all paths from

the starting vertex in the composition graph to each adjacent vertex to it until the end of each

branch in the composition graph. The new paths represent the causality graph. After generat

ing the causality graph, the Path Handler transforms the causality graph to PCM with respect

to the vertices number in the composition graph stored in the CD Graph Storage. Before the

end of the mapping stage, PCM is recorded in the Problem Code Matrix Storage. The PCM is

now referred to as composition PCM. The functionality in the Mapper component is executed

once for each composition when the composition is registered.

4.2.2 Event Coordinator

The Event Coordinator receives as input events. The Event Coordinator transforms these events

to CSV. Before the transformation, the Event Coordinator requires the number of vertices for

the composition graph in order to maintain a vector that is compatible with the size of the PCM

generated from the mapping stage. After receiving the number of vertices for the composition

graph from the CD Graph Storage, the Event Coordinator creates a vector of zeros. For each

element in the vector, the element is replaced by one if its corresponding generated event was

Chapter 4. Architecture 39

Mapper

Figure 4.3: Mapper with the diagnosis module components

observed. The CSV is now referred to as composition CSV.

4.2.3 Matcher

After the mapping and event coordinating stages are executed, the Matcher component receives

both outputs (i.e. PCM, CSV) and applies the Hamming distance procedure for each column

in the composition PCM against the composition CSV. The minimum value of the Hamming

distance values indicates the source for symptoms occurrences. In the end, the PCM, CSV, and

minimum value of the Hamming distance values will be used to determine the faulty services.

This information is sent to the Recovery Agent. The Recovery Agent uses recovery policies to

determine the appropriate action.

Chapter 5

Implementation

This Chapter gives an overview about the implementation of the diagnosis module. Section 5.1

describes diagnosis module’s necessary parts. Section 5.2 describes how the diagnosis module

was evaluated.

5.1 Implementation of diagnosis module components

We have implemented the Mapper, the Event Coordinator, and the Matcher. All these com

ponents are written in the Java programming language. The implementation details of these

components are described in this section. A set of classes were created to perform the diagnosis

module’s task. Figures 5.1 and 5.2 show this set of classes with a simplified view of a set of

properties and methods.

5.1.1 Mapper

The Mapper is an application that has four processing components (Parser, Mdfs, PathGenera-

tor, PathHandler) and two data storages (CD Graph and Problem Code Matrix). Implementa

tion details of these components are described in this section.

40

Figure 5.1: The diagnosis m
odule class diagram

 part 1

n
DiagnosticModule

± mairKaras Strinali) : void
+ staftDiaqnosina(vefticesXmlFile String, EdaesXmlFile String. cdFile : Strina. CDPathsFile : String. CDCsvFile : String. compoitlonName : String. observattonTime : String) : void

~cdCraph

PathCenerator

- uNode int

PathCeneratorO
startPathCenerating(cdCraph Digraph, vNode mt) void
findNeighborhoodNodes(cdCraph Digraph, vNode : int) : void

Digraph

V : int
E : int

+ DigrapMV int)
+ Digraphiin : int)
+ Digraph(G Digraph)
+ V O : int
+ EO : int
+ addEdge(v int, w in t): void
+ adjacencylist(v : In t): lterable<Integer»
+ reverseO : Digraph
+ toStringO : String

Mapper

MapperO
startMappingicdCraphFile : String, pathsFile String) void

- pathCenerator

~ databaseConnection

DatabaseCon nection

nonDuplicatedPathsSet : int * newTreeSet<String>0
pathsList : int « new Arraylist<String>0

createConnectionToPathsBaseO : void
prepareThePathBaseO : void
dropThePathBaseContentsO : void
createConnectionToTheSymptomsBaseO : void
doseConnectionO : void
addV(v int) : void
preparePathsofViv : int) : void
setPathsofVtv int) : void
createWiw int. neighbourhoodNodesList : String) : void
setPathsofWiw : int) : void
createTablelw int) : void
prepareFullPathsO void
splitStringToArrays(str : String, match : String) : String]]
generateFullPathsitmp : String!]) : int
generateNonDuplicatedPaths(fullPathsList int) : void
insertSymptomsToSymptomsBase(compositionName : String, source : String, destination : String, symptomsType String) void
prepareCSVicompoitionName String, observationTime String) : Set

MDFS

t . RQQT-NQ.PE .jn t
+ marked boolean]]
~ BackTrackEdges : int ■ new ArrayList<String>0

+ MDFSO
+ markedtv : in t): boolean
+ MDFS(cdCraph : Digraph, currentV : int)
+ setRootNode(v in t): void
- mdfs(cdCraph : Digraph, vNode : in t): void

- databaseConnection

Im
plem

en
ta

tio
n

Figure 5.2: The diagnosis m
odule class diagram

 part 2

n

y

4̂K>

Im
plem

en
ta

tio
n

Chapter 5. Implementation 43

7
9
0 1
1 2
2 3
3 4
4 5
5 3
4 4
5 6
4 2

Figure 5.3: Example o f composition description

Parser

The Parser is an application that receives a composition description, which is denoted in XML,

and examines all tags of these XML files through using of the SAX parsing methodology [38].

The Parser uses the java.io and java.util packages.

CD Graph

The CD Graph storage is a directory that stores descriptions of compositions presented as text

files. Each composition description text file has three parts: first line (number of vertices),

second line (number of edges), and the remaining lines describe the edges of the composition.

An example of a composition description is presented in Figure 5.3.

Mdfs and PathGenerator

The Mdfs is an application that implements the mdfs algorithm. We have modified an existing

implementation of dfs algorithm that is available in [39]. The used dfs algorithm implementa

tion represents the composition description as an adjacency list representation.

The PathGenerator is an application that implements the pathGenerator algorithm by which

a path from the root node of the composition description until all last vertices in all branches

is delivered. The PathGenerator component uses Apache Commons API [40] and java.util

package. An example of maintained paths from the PathGenerator component is presented in

Chapter 5. Implementation 44

Figure 5.4a.

PathHandler

The PathHandler is an application that maintains all paths needed to represent the causality

graph of the composition. Each path represents a new column in a PCM matrix, where each

node in a path is replaced with the value of one in the PCM. The PathHandler uses the java.io

and java.util packages. An example of maintained paths from the PathHandler component and

its PCM are presented in Figure 5.4b and Figure 5.4c, respectively. In Figure 5.4c, the first row

represents all possible problematic web services in the composition where each service is titled

by a notation (i.e. Pjc|y). The notation has two parts: (1) a is a node that represents a service in

the composition description graph; (2) y is an identifier of a path that starts with node x.

Problem Code Matrix

The Problem Code Matrix storage is a directory that stores the PCM for each composition.

5.1.2 Event Coordinator

The Event Coordinator is an application that creates a vector that represents observed events.

Each event is replaced by the value of one in the CSV when the event is observed within a com

position. The Event Coordinator formulates the vector according to event’s source order within

the composition. The Event Coordinator uses the Transmorph API [41] and java.util package.

An example of observed events and its vector is presented in Figure 5.5a and Figure 5.5b,

respectively.

5.1.3 Matcher

The Matcher component finds the minimum Hamming distance values. The Matcher compo

nent uses the java.util package.

Chapter 5. Implementation 45

0 1 2 3 4 2
0 1 2 3 4 4 2
0 1 2 3 4 4
0 1 2 3 4 5 3

0 1 2 3 4 5 3 0 1 2 3 4 5 60 1 2 3 4 5 6 0 1 2 3 4 50 1
0 1

2
2

3 4 4
3 4 4

2 0 1 2 3 4
0 1 2 3 4 2 0 1 2 3
0 1 2 3 4 0 1 2
0 1 2 3 0 1
0 1 2 0

(a) Paths from (b) Paths from
PathGenerator PathHandler

P2110 P2|9 P418 P3|7 P616 P515 P414 P3|3 P212 PI 11 |P010
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0

(c) Example of PCM

Figure 5.4: Example of generated paths

5.1.4 Database

A database is used to store generated paths from the Path Generator and observed events.

The database is referred to as ServiceManager, which is a MySql database. The diagnosis

module uses Mysql Java 5.0.8 connector [42] to interact with the ServiceManager database.

The generated paths are stored at a table is referred to as PathOfNode, and the observed events

are stored in events table. Each PathOfNode table represents a node’s path. Each PathOfNode

table stores node name, successor node name, and successor nodes’ paths stream. Each record

in a PathOfNode table consists of the following information: start node (v), end node (w),

path from w to v. Each record in the events table consists of the following information: name

of composition, source node who claimed about the events, node who is claimed about as

destination of the event, event type, and time where the composition observed the events.

C hapter 5. Implementation 46

id compositionName source destination type__________ time

171 D G ” P0 P1 TIM E-OUT 2011-10-23 04:33:30

172 DG1 P1 P2 TIM E-OUT 2011-10-23 04:33:30

173 DG1 P2 P3 TIM E-OUT 2011-10-23 04:33:30

174 DG1 P3 P4 TIM E-O UT 2011-10-23 04:33:30

175 DG1 P4 P5 TIM E-OUT 2011-10-23 04:33:30

176 DG1 P5 P3 TIM E-OUT 2011-10-23 04:33:30

(a) Composition observed events (b)
CSV

Figure 5.5: Example of composition observed events and its CSV

5.2 Evaluation

We wanted to test our diagnosis module on composition description graphs to see if the module

is able to accurately and correctly determine the source of events.

5.2.1 Hardware

We ran the diagnosis module on a single machine with 2.66 GHz Intel Core 2 Duo processor,

Mac OS X 10.6.8 , and eight gigabyte 1.07 GHz memory.

5.2.2 Software

We used Netbeans 7.0.1 IDE to run tests and create or manipulate CSVs. For the transformation

from BPMN to the composition description graphs, we used a tool referred to as the BPMN

Modeler, which is an extension of eclipse IDE [43]. The BPMN Modeler is responsible for

creating a BPMN for a business process and forwarding a BPMN textual description to the

Mapper component.

5.2.3 Methodology

We applied our diagnosis module to ten subjects which consists of:

Single or many joins (i.e. single or many vertices’ edges ending in one vertex).

Chapter 5. Implementation 47

Single or many splits (i.e. single or many vertices’ edges starting from one vertex and

ending at an other vertex).

Single or many cycles (i.e. single or many vertices’ edges starting and ending at the same

vertex).

self cycles (i.e. single vertex’ edges is starting and ending at the same vertex).

trees (i.e. single or more vertices are interconnected in a hierarchical manner).

For each performed test, we assumed that one fault could happen for each subject. For each

subject we did a test for each web service going down. All evaluation results and composition

dependencies graphs are presented in table A. 1 and Figures A. 1, A.2, A.3, A.4, A.5, A.6,

A.7, A .8 , A.9, A. 10, respectively.

A correct diagnosis was found 100% of the time. In cyclic composition description graphs,

the diagnosis module indicates not only the problematic node but also the closest predecessor

node to the causative node. The reason is that both the causative node and the predecessor node

have the same code in the PCM. Thus, any faults occurring in either these nodes will generate

the same events in the composition.

Chapter 6

Conclusion

This thesis relates to the area of web service management and the focus is on mapping the

a BPEL specification to a diagnostic module to determine the source of complains within a

web service composition. Section 6.1 presents our contributions. Section 6.2 presents possible

future work.

6.1 Contributions

By using our diagnosis module the complexity of diagnosis can be hidden from the system

administrators by outsourcing this functionality to a third party agent. The proposed diagnosis

models enhance the automated diagnosis for a large number of compositions.

Because the codebook technique can not cope with overlapping events or compositions

with dynamically changing dependencies, our work generates a new PCM for each change in

the structure of a composition. Each new PCM represents a diagnostic knowledge base for

the current structure of composition by which the diagnostics’ output builds on. The more the

diagnostic knowledge base is updated about the composition’s possible faulty interactions the

more the diagnostic is correct.

Because the diagnosis module does require JDK environment to be executed, we believe

that the diagnosis module could be integrated with other systems that require codebook-driven

48

Chapter 6. Conclusion 49

diagnostics capacities. Table B.l shows the execution time for the examined ten compositions

description graphs.

6.2 Future Work

There is a good deal of room for improvement in the diagnosis module. The selection ability

of the module for observed events needs to be more consistent in order to pick qualified events.

For example, when events are collected for creation of CSVs, some of these events are impor

tant and some of them are duplicated or are outdated. These kind of events need to be filtered

in order to generate accurate CSVs.

An interval of time needs to be carefully selected such that events generated during that

interval are sufficient for analysis. However, an interval that is too long could impact the time

it takes to take corrective actions.

The current version of the diagnosis module only uses the the codebook technique. We will

enable the module to use several event correlations techniques by which the module will be

able to regenerate more efficient diagnostic knowledge bases.

Appendix A

Evaluation Results

The following table shows ten composition description graphs used as subjects for the evalua

tion of the diagnosis module. The table has 12 columns. The second column shows the name of

the composition description graphs. The third and forth columns show the number of vertices

and edges of each composition description graphs, respectively. From the fifth column until

the 1 1th column represents aspects about the structure of the composition description graphs.

These attributes involve: (1) have single or many cycles; (2) have self cycles; (3) have single or

many splits; (4) have single or many joins. The last column shows the time needed to determine

the source of observed events, which is Diagnosis Time.

50

No
Composition
Description

Graph

Vertices
Number

Edges
Number

Single
Cycle

Self
Cycle

Many
Cycles

Single
Split

Many
Splits

Single
Join

Many
Joins

Diagnosis
Time

1 Loan CD 6 6 • • 4 ms
2 Office CD 6 6 • • • 3.2 ms
3 CD 1 7 9 • • 5.8 ms
4 CD 2 6 6 • 2 ms
5 CD 3 10 10 • • 13.2 ms
6 CD 4 11 12 • • 9 ms
7 CD 5 16 20 • • 32.8 ms
8 CD 6 100 114 • • • 328.8 ms
9 CD 7 9 11 • • 9.4 ms
10 CD 8 33 34 • • • 32.8 ms

Table A. 1 : Ten CD graphs specifications

C
h

a
pt

er A
.

E
va

lu
a

tio
n R

esu
lts

Chapter A. Evaluation Results 52

Figure A. 1 : Loan CD

Figure A.2: Office CD

Figure A.3: CD 1

Figure A.4: CD 2

Chapter A. Evaluation Results 53

Figure A.5: CD 3

Figure A.7: CD 5

Chapter A. E valuation Results 54

Figure A.8: CD 6

I

Figure A.9: CD 7

C hapter A. E valuation Results

Figure A. 10: CD 8

Appendix B

Execution Time

The following table shows the execution time of the diagnosis module needed for each of the

ten composition description graphs. The table has 5 columns. The second column shows the

name of the composition description graphs. The third and forth columns show the number

of vertices and edges of each composition description graphs, respectively. The fifth column

shows the execution time based on the graphs’ attributes mentioned in the table A .l .

No
Composition
Description

Graph

Vertices
Number

Edges
Number

Execution
Time

1 Loan CD 6 6 1.57 sec
2 Office CD 6 6 1.68 sec
3 CD 1 7 9 1.85 sec
4 CD 2 6 6 1.65 sec
5 CD 3 10 10 2.24 sec
6 CD 4 11 12 2.30 sec
7 CD 5 16 20 5.87 sec
8 CD 6 100 114 16.16 sec
9 CD 7 9 11 1.93 sec
10 CD 8 33 34 5.43 sec

Table B. 1 : Execution time for the ten CD graphs specifications

5 6

Bibliography

[1] J. jBPM, “WS-BPEL Runtime User Guide.” h ttp : / /d o c s .jb o s s .c o m /jb p m /b p e l/
v l . 1 /u s e r g u id e / tu to r ia l .h e l lo .htm l. Online; accessed 17-Augest-2011.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Concepts, Architectures
and Applications. Springer, 1st edition ed., 2004.

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,
and D. Winer, Simple Object Access Protocol (SOAP) 1.1. World Wide Web Consortium
(W3C), May 2000.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web Services Description
Language (WSDL) 1.1. World Wide Web Consortium (W3C), March 2001.

[5] M. Steinder and A. S. Sethi, “A survey of fault localization techniques in computer net
works,” Science of Computer Programming, vol. 53, no. 2, pp. 165 - 194, 2004.

[6] Y. Peng and J. A. Reggia, Abductive inference models for diagnostic problem-solving.
Springer-Verlag New York, Inc., 1990.

[7] M. Keshk, “Executable BPMN: BPMN-2.0 Ontology-Based Native Engine.” h t t p : / /
www.umlowlgen.com/, 2009. Online; accessed 23-April-2011.

[8] F. H. Zulkernine, P. Martin, and K. Wilson, “A middleware solution to monitoring com
posite web services-based processes,” in Proceedings of the 2008 IEEE Congress on Ser
vices Part II, (Washington, DC, USA), pp. 149-156, IEEE Computer Society, 2008.

[9] D. Liu and R. Deters, “Management of service-oriented systems,” Service Oriented Com
puting and Applications, vol. 2, pp. 51-64, 2008.

[10] O. Levina and V. Stantchev, “Realizing event-driven soa,” in Internet and Web Applica
tions and Services, 2009. ICIW ’09. Fourth International Conference on, pp. 37 -42, May
2009.

[11] OASIS, “OASIS Web Services Business Process Execution Language (WSBPEL).”
h t t p : //www. o a s is -o p e n . o rg /com m ittees/tc_hom e.php?wg_abbrev=wsbpel.
Online; accessed 17-Oct-2011.

[12] A. Mller and M. I. Schwartzbach, “A WSDL example.” h ttp : / /w w w .b r ic s .d k /
-am oeller/W W W /w ebservices/wsdlexam ple.htm l, 2003. Online; accessed 19-Dec-
2010.

57

http://docs.jboss.com/jbpm/bpel/
http://www.umlowlgen.com/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.brics.dk/

BIBLIOGRAPHY 58

[13] K. Lee, J. Jeon, W. Lee, S.-H. Jeong, and S.-W. Park, QoS for Web Services: Require
ments and Possible Approaches. World Wide Web Consortium (W3C) Working Group,
November 2003.

[14] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and F. Casati, “Automated SLA monitoring for
web services,” in Proceedings of the 13th IFIP/IEEE International Workshop on DSOM
'02, pp. 28^11, Springer-Verlag, 2002.

[15] J. Spillner, M. Winkler, S. Reichert, J. Cardoso, and A. Schill, “Distributed contract
ing and monitoring in the internet of services,” in Proceedings of the 9th 1FIP WG 6.1,
pp. 129-142, Springer-Verlag, 2009.

[16] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu, Grid Resource Allocation Agreement Protocol
(GRAAP) WG. Open Grid Forum, March 2007.

[17] D. Lamanna, J. Skene, and W. Emmerich, “SLang: a language for defining service level
agreements,” in Proceedings of the Ninth IEEE Workshop on Future Trends of FTDCS
2003, pp. 100 - 106, May.

[18] M. Sloman, “Policy driven management for distributed systems,” Journal of Network and
Systems Management, pp. 333-360, 1994.

[19] A. Sahai and S. Graupner, Web Services in the Enterprise: Concepts, Standards, Solutions
and Management (Network and Systems Management). Plenum Publishing Co., 2005.

[20] G. Cabri, “An agent-based architecture for services management,” in Proceedings of the
18th IEEE International Workshops on WET1CE ’09, pp. 19-24, IEEE Computer Society,
2009.

[21] M. Papazoglou and W.-J. van den Heuvel, “Web services management: a survey,” Internet
Computing, IEEE, vol. 9, no. 6, pp. 58 - 64, 2005.

[22] S. Alam, “Fault management of web services,” master, University of Saskatchewan, 2009.

[23] A. Garza, J. Serrano, R. Carot, and J. Valdez, “Modeling and simulation by petri networks
of a fault tolerant agent node,” in Analysis and Design of Intelligent Systems using Soft
Computing Techniques (P. Melin, O. Castillo, E. Ramrez, J. Kacprzyk, and W. Pedrycz,
eds.), vol. 41 of Advances in Soft Computing, pp. 707-716, Springer Berlin / Heidelberg,
2007.

[24] A. Hanemann, Automated IT Service Fault Diagnosis Based on Event Correlation Tech
niques. PhD thesis, LMU Mnchen: Faculty of Mathematics, Computer Science and
Statistics, 2007.

[25] C. Angeli and A. Chatzinikolaou, “Online Fault Detection Techniques for Technical Sys
tems: A survey,” International Journal of Computer Science and Applications, vol. 1,
pp. 51-64, 2004.

[26] I. Hwang, S. Kim, Y. Kim, and Seah, “A survey of fault detection, isolation, and reconfig
uration methods,” Control Systems Technology, IEEE Transactions on, vol. 18, pp. 636-
653, may 2010.

BIBLIOGRAPHY 59

[27] M. Tiffany, “A Survey of Event Correlation Techniques and Related Topics.” h t t p : / /
c ite see rx .is t.p su .ed u /v iew d o c /su m m ary ? d o i= lQ . 1 .1 .19 .5339 , 2002. Online;
accessed 19-Dec-2010.

[28] C. Caldwell, “Graph Theory Glossary.” h ttp ://w w w .u tm .ed u /d ep artm en ts /m ath /
g ra p h /g lo ss a ry .htm l#b, 1995. Online; accessed 05-June-2011.

[29] Wikipedia, “Hamming distance.” h ttp ://e n .w ik ip ed ia .o rg /w ik i/H am m in g _
d is ta n c e , January 2011. Online; accessed 21-Jan-2011.

[30] M. Tighe, “Diagnosis in Policy-Based Autonomic Management,” master, University of
Western Ontario, 2009.

[31] Y. Peng and J. A. Reggia, “Plausibility of Diagnostic Hypotheses: The Nature of Sim
plicity,” AAAI-86, pp. 140-145, 1986.

[32] R. M. Bahati, M. A. Bauer, E. M. Vieira, and O. K. Baek, “Using policies to drive auto
nomic management,” in Proceedings of the 2006 International Symposium on on World of
Wireless, Mobile and Multimedia Networks, WOWMOM ’06, pp. 475^479, IEEE Com
puter Society, 2006.

[33] R. M. Bahati, M. A. Bauer, and E. M. Vieira, “Policy-driven autonomic management
of multi-component systems,” in Proceedings of the 2007 conference of the center for
advanced studies on Collaborative research, CASCON ’07, pp. 137-151, ACM, 2007.

[34] K. S. Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea, “Service-oriented computing -
icsoc 2007 workshops,” ch. A Fault Taxonomy for Web Service Composition, pp. 363-
375, Springer-Verlag, 2009.

[35] S. Brüning, S. Weissleder, and M. Malek, “A fault taxonomy for service-oriented architec
ture,” in High Assurance Systems Engineering Symposium, 2007. HASE '07. 10th IEEE,
pp. 367 -368, 2007.

[36] H. Endert, B. Hirsch, T. Küster, and S. Albayrak, “Towards a mapping from bpmn to
agents,” AAMAS’07/SOCASE’07, pp. 92-106, 2007.

[37] M. S. Hasan, “Policy Based Third Party Web Service Management,” master, University
of Western Ontario, 2011.

[38] Oracle, “SAX Parser.” h t tp : / /d o w n lo a d .o r a c le .e o m /ja v a s e / l .4 .2 /d o c s /a p i /
jav ax /x m l/p a rse rs/S A X P arse r.h tm l. Online; accessed 17-Oct-2011.

[39] R. Sedgewick and K. Wayne, “DirectedDFS.” h t tp : / / a lg s 4 .c s .p r in c e to n .e d u /
42d irec ted /D irec tedD F S . ja v a .h tm l. Online; accessed 17-Oct-2011.

[40] ApacheFoundation, “CommonsCollections.” h ttp ://c o m m o n s .ap a ch e .o rg /
c o l le c t io n s / . Online; accessed 17-Oct-2011.

[41] Transmorph, “Transmorph Project Wiki.” h t tp : / / t r a n s m o rp h .s o u rc e fo rg e .n e t /
w ik i/in d e x .php/Main_Page. Online; accessed 17-Oct-2011.

http://www.utm.edu/departments/math/
http://en.wikipedia.org/wiki/Hamming_
http://download.oracle.eom/javase/l.4.2/docs/api/
http://algs4.cs.princeton.edu/
http://commons.apache.org/
http://transmorph.sourceforge.net/

BIBLIOGRAPHY 60

[42] MySqlConnector, “ConnectorJ.” h ttp ://d e v .m y sq l.co m /d o v m lo ad s /co n n e c to r/
j /5 .Q .h tm l. Online; accessed 17-Oct-2011.

[43] Eclipse, “BPMN Modeler.” h t tp : / /e c l ip s e .o r g /b p m n / . Online; accessed 17-Oct-
2011.

http://dev.mysql.com/dovmloads/connector/
http://eclipse.org/bpmn/

	MAPPING BPEL PROCESSES TO DIAGNOSTIC MODELS
	Recommended Citation

	tmp.1634164912.pdf.7OaUz

