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ABSTRACT

Corrosion in steel bridge members is common in Northern climates and can occur 

uniformly in the vehicle splash zone or locally near connections. The analysis of 

corroded compression members in steel bridges is often uncertain due to a lack of 

experimentally verified theoretical knowledge of their underlying mechanics. Code 

criteria for analyzing compression members with section loss may be overly conservative 

because the effect of localized deterioration on local and Euler buckling is not well 

understood.

The research reported in this thesis clarifies the local buckling susceptibility of corroded 

steel bridge compression members. A finite element analysis model was developed to 

predict the critical load causing local buckling of a W-shape given a predetermined 

flange cross sectional loss. The finite element analysis model was validated 

experimentally with five full-scale column tests with idealized corrosive patterns. A 

robust sensitivity analysis was conducted to determine the sensitivity of the axial capacity 

to geometric variables that affect local buckling for a range of slenderness ratios. A 

simplified assessment method, based on data obtained in the sensitivity study, is 

presented that accounts for both localized and uniform deterioration in steel bridge 

compression members with corroded flanges. This method provides engineers with a 

means to quickly and conservatively assess the reduced capacity of such members.

Keywords: buckling; corrosion; design; deterioration; finite element analysis; column 

tests; steel.
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NOMENCLATURE
A gross-cross sectional area
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L column length
Lc critical length
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P fea failure load predicted by finite element analysis
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R radius of curvature
r radius of gyration
t flange thickness
tc time required to achieve the maximum compressive load
t0 thickness of undeteriorated flange
t* thickness of deteriorated flange
w web thickness
w* thickness of deteriorated web
x horizontal offset
y* distance of the corroded region from the column midpoint

xiv



Greek Symbols
ai coefficient of thermal expansion (12x 1 O’6 /°C for structural steel)
A deflection
AT  temperature differential
S initial out-of-straightness in the direction of weak-axis buckling
Sc camber
dmax maximum local buckling displacement at failure perpendicular to the flange
Ss sweep
e strain
X slenderness parameter
<Tcr critical local buckling stress
or maximum magnitude of residual stress
¥  capacity reduction factor accounting for the thickness of deterioration
y/ curvature
Cl capacity reduction factor accounting for the length of deterioration

xv



1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

A large number of bridges in Canada and the United States are nearing the end of their 

service lives and are in need of rehabilitation or replacement. In steel bridges, corrosion 

can lead to cross-sectional losses and reduced live-load capacity. Aging steel truss 

bridges in northern climates are particularly prone to corrosion because they are typically 

exposed to chlorides in the form of deicing media (Kayser and Nowak 1989). Figure 1-1 

shows the likely locations where section loss due to corrosion may occur in a typical steel 

through truss. Corrosion often occurs uniformly within the splash zone and locally (in 

the form of pitting) at gusset plates, hand rails, or where the concrete deck is cast against 

web members (Kulicki et al. 1990). Such corrosion resulting from vehicular spray is 

clearly visible across a 3m high region of the interior truss members of the East Brough’s 

Bridge in London, as shown in Figure 1-2 (Jelinek 2002), that was replaced in 2000. The 

research presented in this thesis concentrates on assessing the axial capacity of corroded 

compression members in steel truss bridges, specifically, those fabricated using W- 

shapes.

The analysis of corroded compression members in steel bridges is often uncertain due to 

a lack of experimentally verified knowledge of their underlying mechanics. In bending 

and tension members, local yielding results in a redistribution of stresses and is 

associated with plastic deformations that provide warning of an impending structural



2

failure. In compression members, corrosion may reduce axial capacity of W-shape 

columns in the following three ways:

1. For stocky members, a loss in cross-sectional area can lead to premature yielding.

2. For intermediate and slender members, deterioration can lead to a reduced second 

moment of area which may initiate a premature instability failure.

3. For all column lengths, deterioration that increases the width-to-thickness ratio of 

the flange or web elements may lead to local buckling.

Case 1 is readily calculated theoretically by computing the axial capacity using the 

reduced cross-sectional area, Ad- Case 2 has been studied by others (e.g., Jelinek 2002) 

and theoretical models have also been developed to assess the capacity of columns with 

second moments of area that vary over the length of the member (e.g., Timoshenko and 

Gere 1961). Case 3, however, has not been investigated in detail by previous researchers 

and the effect of localized deterioration on local buckling needs to be investigated further.

1.2 LIMITS FOR LOCAL BUCKLING

Corrosion can initiate local buckling by reducing the flange or web thickness, or by the 

build-up of pack rust between elements that bulge locally and so induce out-of-plane 

eccentricities. The research herein will focus on cross-sectional area losses causing local 

buckling. As shown in Figure 1-3, corrosion typically reduces the thickness of a flange 

from t to t* or the thickness of a web from w to w*. As the flange width is not 

significantly reduced, i.e., b*^b, the width-to-thickness ratio of the corroded flange, 

b*/t*, can be markedly greater than that of the uncorroded flange, b/t. Similarly, for the 

web, h/w* cab be markedly greater than the original h/w.
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The flanges of W-shape compression members are prone to local buckling when the 

flange width-to-thickness ratio exceeds the limit (Kulak 2006):

[ 1. 1]
b 277

where: b = flange width [mm]

t = flange thickness [mm]

<jcr -  critical local buckling stress [MPa]

The factor of 1/2 on the left side of Eq. [1.1] is necessary because in this thesis, local 

buckling is described in terms of the full flange width b whereas in CAN/CSA SI6-09 

(CSA 2009) and other standards, it is described in terms of the half-flange width. To 

account for the adverse effects of residual stresses and out-of-straightness, the design 

provisions of the Canadian Highway Bridge Design Code (CHBDC) (CSA 2006) and 

CSA SI6-09 (CSA 2009) require that, if the flange is required to resist the specified 

minimum yield strength Fy, in MPa:

[1.2]

The CHBDC commentary (CSA 2006a) to Clause C l4.14.3 states that deterioration in 

compression members can reduce the net cross-sectional area, reduce the second moment 

of area, and cause distortion that may cause local buckling. It emphasizes the need to 

quantify the extent and distribution of corrosion along the length of a member accurately 

in the field. While the CHBDC effectively limits width-to-thickness ratios in the design
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of new bridge compression members to prevent local buckling, it provides little guidance 

for evaluating the capacity of existing corroded compression members with flanges that 

may not satisfy Eq. [1.2]. Despite this shortcoming, Clause 10.6.2 of the CHBDC still 

requires that: “ ...deterioration mechanisms considered for steel components shall include 

corrosion.”

CSA Standard S I6-09 "Limit States Design of Steel Structures" (CSA 2009), however, 

gives some general guidance for the analysis of compression members with flanges that 

do not satisfy Eq. [1.2] and so are Class 4 cross sections. Clause 13.3.5 states that the 

capacity of a Class 4 section in compression shall be calculated using reduced values of 

either Fy or b such that the Class 3 limits are met. Thus the capacity of the member can 

be computed based on a reduced yield strength, (Fy)eq:

[1.3] ( F )  =( —  
V y)tq \  b / t ,

or based on cross-section properties computed using a reduced flange width, beq:

[1.4] 400/

As shown in Figure 1-4, the compressive resistances determined using these two methods 

are rarely equivalent. The figure shows, for a Grade 350W W610x153 with 65% section 

loss on both flanges causing / *=0.35/, the variation of the nominal compressive resistance 

of the corroded section, Csi6, expressed as a fraction of the nominal compressive 

resistance of the original uncorroded section, C0, with the slenderness ratio kL/r. The
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reduced flange width method, Eq. [1.4], makes the shape more susceptible to weak-axis 

buckling at long unsupported lengths and so markedly reduces the capacity at high 

slenderness ratios. The reduced yield strength method, Eq. [1.3], is more severe for low 

slenderness ratios but gives a greater capacity at higher slenderness ratios, kL/r 70, 

where the member capacity is more dominated by buckling. Both methods 

conservatively assume that the reduced material thickness is present over the entire length 

of the column, whereas in practice corrosion is usually localized in relatively short 

regions along the member. Typically, in practice the evaluator will compute capacities 

using both methods and adopt the larger of the two for subsequent assessment, however, 

the conservatism inherent in both methods may lead to unrealistic predictions.

To prevent local buckling of the webs of W-shape compression members, the CHBDC 

(CSA 2006) limits the height to width ratio:

Most available W-shapes meet this requirement, however, web corrosion may also cause 

this limit to be exceeded. In steel bridge truss members, typically flanges are more prone 

to corrosion because they are more exposed to airborne spray and are susceptible to 

crevice corrosion due to their direct contact with gusset plates. Therefore, any effect of 

web deterioration will be outside the scope of this research study.

[1.5] h 670

where: h = web height [mm]

w = web width [mm]
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Table 1-1 presents the likely structural consequences for corrosion at different locations 

in bridge compression members, previously identified in Figure 1-1. Local buckling may 

develop at any of these locations provided the deterioration is severe enough. It is logical 

that compression members would be more susceptible to local buckling if the 

deterioration is located near the midheight because bending stresses due to initial out-of- 

straightness and subsequent second-order response are typically higher in this region, so 

the distance of the deterioration from the column midpoint should be investigated further.

1.3 LITERATURE REVIEW

Previous research has demonstrated that even non-corroded compression members in 

older steel bridges may be deficient by modem codes, particularly if their slenderness 

ratio exceeds 70 (Shek 2006). During a full-scale destructive bridge test to validate in

plane buckling prediction methods, Bakht witnessed premature local buckling of a steel 

compression chord that resulted in a significantly reduced structural capacity (Bakht et al. 

1996). These studies demonstrate the need for a greater knowledge of the effects 

corrosion can have on the local stability of steel bridge compression members.

The effect of corrosion on the behavior of steel bridge members is currently an inactive 

subfield in structural engineering. The most significant contribution is the National 

Cooperative Highway Research Program (NCHRP) Report 333 (Kulicki et al. 1990), a 

comprehensive guideline intended to be a practical reference for design engineers and 

bridge inspectors. Detailed inspection guidelines and evaluation procedures are 

presented to help the engineer predict capacity and failure modes of corroded bridge

members.
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Figure 1-5 summarizes the guidance given in NCHRP 333, concerning local buckling 

initiated by corrosion of steel compression members. The report addresses all forms of 

bridge corrosion and thus is extremely useful for general diagnostic problems. However, 

its provisions concerning local buckling in truss compression members are insufficient. 

Specifically, accurate guidelines to account for localized deterioration where the primary 

failure mode is local buckling are not given. A method is proposed to account for 

varying column slenderness, but it may be overly simplistic and can only be used to 

determine the global column buckling load. The provisions of Appendix C of the 1978 

AISC specifications (AISC 1978) are recommended to account for premature local 

buckling but, like the similar provisions in CAN/CSA S I6-09, the results are 

conservative because uniform section loss over the entire length of the column is 

assumed. Finally, these procedures do not account for the complex interaction between 

local and global buckling. Several subsequent papers [e.g. (Prucz and Kulicki 1998), 

(Van De Lindt and Pei 2006)] cite NCHRP 333 as a key reference, but the methodology 

it recommends does little to address local buckling instability.

More recently, a study in Japan investigated the effects of pitting corrosion on the local 

stability of structural bending members in marine bulk carriers (Nakai et al. 2004). The 

study yielded somewhat inconclusive results, though a general trend of reduced capacity 

with increased corrosion was established. As the nature of pitting corrosion in such 

environments is generally quite uniform compared to bridges, the effects of more 

localized deterioration on local buckling was not investigated.

Research investigating the general capacity loss of corroded steel bridge girders found 

that buckling of the web in bearing was the critical mode of failure (Kayser and Nowak
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1989). The study concluded that the addition of bearing stiffeners significantly increases 

the capacity of deteriorated steel girder webs and therefore results in a “more corrosion- 

tolerant structure”. A similar study that focused on the web crippling capacity of 

corroded steel girder ends in Michigan has suggested that assumptions made by engineers 

are often overly conservative and can lead to the premature load posting, rehabilitation or 

closure of a bridge (van de Lindt and Ahlbom 2005). It was shown that design equations 

provided by the state transportation department assumed that web loss occurred over the 

entire web height and so ignored much of the uncorroded web steel. While these two 

studies are superficially related to the present study, they consider only girder webs 

subjected to local bearing loads and the resulting equations, recommendations, and 

design aids are not applicable to corroding steel bridge compression members. Van de 

Lindt and Ahlbom (2005) do effectively demonstrate how the results of their complex 

finite-element analysis can be presented in simple design chart form for use by 

practitioners.

The lack of literature addressing the effect of deterioration on local buckling highlights 

the need for a greater understanding of this phenomenon. There is a need to define, and 

recognize the structural impact of common corrosion geometry and patterns in bridge 

truss members. A clear relationship between corrosion intensity and the local buckling 

resistance of steel compression members must be quantified and the findings must be 

presented in a simplified form, so bridge evaluators can rapidly and accurately assess the 

likelihood of a brittle structural failure of steel W-shape compression members with 

corroded flanges due to local buckling.
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1.4 RESEARCH OBJECTIVES

This objective of the research reported in this thesis is to clarify the local buckling 

susceptibility of corroded flanges in steel W-shape bridge compression members. Both 

uniform and localized pitting corrosion patterns will be considered as they commonly 

occur in practice. Due to the high variability of corrosion patterns, intensity, and 

location, a realistically bounded sensitivity analysis will be conducted to identify the 

corrosion geometry most critical to local buckling.

The specific objectives of this research are as follows:

1. Develop a 3-D finite element analysis (FEA) model that can accurately predict the 

reduced axial capacity of deteriorated columns that are prone to local buckling.

2. Validate the model experimentally through full-scale laboratory tests of W-shapes 

in axial compression with simulated corrosion.

3. Conduct a robust sensitivity analysis to determine the variables that are most 

critical to local buckling instability.

4. Examine the accuracy of the current method for evaluating steel compression 

members with Class 4 flanges, as given in CAN/CSA SI6-09 (CSA 2009).

5. Produce a simplified assessment method that can provide a quick and accurate 

technique for conservatively estimating the remaining capacity of steel bridge 

compression members with flange deterioration.
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1.5 OUTLINE OF THESIS

Chapter 2 presents the finite element modeling techniques that were developed to analyze 

deteriorated steel compression members using Solidworks Simulation (Dassault Systèmes 

2010). It is demonstrated that typical column imperfections, including residual stress and 

initial out-of-straightness, can be readily and realistically simulated using thermal loads. 

The analysis of undeteriorated columns is then calibrated using the conventional 

empirical equations given in the CHBDC (CSA 2006). Practical challenges with 

idealizing flange corrosion in the finite element analysis model, such as mesh sizes and 

time-dependent loading schemes, are presented.

Chapter 3 summarizes the testing of five full-scale columns at the Structures Laboratory 

at The University of Western Ontario in 2011. The testing program was undertaken to 

validate the finite element analysis model presented in Chapter 2. The selection of test 

specimens and the design of the test apparatus are described in detail, the test procedure 

is outlined, and results are presented. The test results are then compared to FEA 

predictions and conclusions regarding the adequacy of the model are given.

Chapter 4 presents an in-depth sensitivity analysis that was conducted using the finite 

element model validated in Chapter 3. The objective of the analysis presented in this 

chapter is to rank, by order of importance, dimensional variables that affect local 

buckling in column flanges with localized deterioration. Each variable is examined over 

the range of slenderness ratios permitted for bridge compression members by CAN/CSA 

S6-06 (CSA 2006). Recommendations concerning critical variables that should be
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considered in the any simplified assessment method to assess the compressive resistance 

of such columns are proposed.

Chapter 5 presents a simplified method that can be used to quickly and accurately assess 

the capacity of steel W-shape compression members with corroded flanges. Two design 

charts are given which allow the evaluator to determine rapidly strength loss factors that 

account for the increased width-to-thickness ratio of the deteriorated flange and the 

length of deterioration. The accuracy of current methods in S I6-09 (CSA 2009) 

analyzing compression members with Class 4 flanges is examined and compared to that 

of the proposed simplified method.

Chapter 6 summarizes the research program and presents the conclusions of this research. 

Recommendations for future work are also presented.
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Figure 1-5: Steps Given in NCHRP 333 to Assess Local Buckling in Corroded Steel Compression Members
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Table 1-1: Likely Consequences of Corrosion Type and Location in Bridge W-Shape Compression Members

Case *
Type and Location of 
Corrosion in W-Shape 
Compression Members

Likely Consequence

A Uniform corrosion in vehicle 
splash zone.

When b */t * exceeds the limit given by 
Eq. [1.2], there is a risk of local buckling in 
the deteriorated region. Compressive 
yielding capacity will also be reduced.

B
Pitting in flange at base of 
member near deck due to 
ponding or deposit attack.

Some effect on local buckling resistance. 
Governing failure mode will depend on 
slenderness ratio. Compressive yielding 
capacity will also be reduced. Further 
investigation required.

C Pitting in flange at top of 
member at gusset plate.

Some effect on local buckling resistance. 
Governing failure mode will depend on 
slenderness ratio. Compressive yielding 
capacity will also be reduced. Further 
investigation required.

D

Localized uniform corrosion, 
pitting or holes in flange in the 
middle of the member at 
handrail or bracing 
connections.

Localized deterioration may attract local 
buckle and change governing failure mode 
provided the limit given by Eq. [1.2] is 
exceeded. Compressive yielding capacity 
will also be reduced. Complex interaction 
between global buckling, yielding, and 
local buckling requires further 
investigation.

E Localized corrosion of web 
near deck.

Localized deterioration may attract local 
buckle and change governing failure mode 
provided the limit given by Eq. [1.5] is 
exceeded. Compressive yielding capacity 
will also be reduced.

F
Localized corrosion of web in 
the middle of the member due 
to ponding or debris buildup.

Localized deterioration may attract local 
buckle and change governing failure mode 
provided the limit given by Eq. [1.5] is 
exceeded. Compressive yielding capacity 
will also be reduced.

* See Figure 1-3
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CHAPTER 2:FINITE ELEMENT ANALYSIS 

USING SOLIDWORKS SIMULATION

2.1 INTRODUCTION

This chapter presents justification for using Solidworks Simulation Finite Element 

Analysis (FEA) to investigate the research objectives set out in Chapter 1. Section 2.2 

outlines the benefits of a FEA study in the previously defined research scope. Section 2.3 

discusses the modeling capabilities of Solidworks Simulation and validates its use for 

basic buckling problems. Section 2.4 discusses the incorporation of imperfections 

inherent in rolled structural steel shapes into the model, and investigates the adequacy of 

the program to predict intermediate column buckling accurately. Finally, meshing 

parameters are discussed in Section 2.5 and the buckle geometry is examined at a 

preliminary level in Section 2.6.

2.2 COLUMN BUCKLING AND FINITE ELEMENT ANALYSIS

The interaction between localized deterioration, local buckling, and Euler buckling is 

complex and therefore not easily investigated by manual calculations. To fully 

understand and accurately predict the effect of localized deterioration on local buckling 

instability using physical experimentation, a large number of column tests would be 

required. Using FEA, a large number of tests can be simulated rapidly and validated 

using a few select physical tests. Furthermore, the investigation is not limited by 

experimental constraints such as actuator capacity restrictions as FEA can be easily
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applied to large cross sections. Finally, input variables including material strength, 

stress-strain relationships, initial column imperfections, location and intensity of 

deterioration, end-fixity, and column dimensions can be easily and accurately controlled 

throughout the course of a FEA-based sensitivity analysis.

2.3 SO L ID W O R K S SIM U LA TIO N

Solidworks, a solid modeling design suite used primarily for mechanical engineering 

applications, has been integrated with a robust finite element analysis engine: Solidworks 

Simulation (Dassault Systèmes 2010). The software is written and distributed by 

Dassault Systèmes Simulia Corp. This company also developed Abaqus, which is widely 

used by structural engineering researchers. Additionally, Solidworks includes a full- 

featured Computer Aided Design (CAD) package that allows for quick and intuitive 

model manipulation without having to resort to cumbersome programming languages.

Solidworks was originally adopted in the present investigation as a drawing tool but, 

because steel columns are readily idealized, it was decided to investigate Solidworks as 

an analysis tool. Other more robust FEA software packages (such as Ansys) were 

considered, but the additional cost and added complexity could not be justified. Before 

fully committing to Solidworks as the primary research analysis package, however, 

preliminary validation was conducted to ensure that the software could accurately 

analyze steel columns with intermediate slenderness ratios that fail by inelastic buckling.

The first step was to ensure Solidworks could accurately model simple Euler buckling. 

This required the development of purely pinned end conditions that provide no resistance 

to rotation (i.e., and so idealize a column with an effective length factor, k, of 1.0). The
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use of fixities built into the program was not satisfactory. As shown in Figure 2-1, 

Solidworks applies deformation constraints over the entire element face, Fig. 2-la, 

causing unintended fixity at the bottom of the column when it was restrained in the x, y  

and z directions, Fig. 2-lb. To solve this problem, the rocker assembly shown in 

Fig. 2-2a was created for the analysis to allow free rotation at the lower end of the 

column. Once fixity was relieved at both ends, Fig. 2-2b, the model accurately predicted 

the Euler buckling loads computed using the familiar equation (e.g. Timoshenko and 

Gere 1961):

[2. 1]
tt2EI
( k L f

where: Pcr -  critical Euler buckling load [N]

E  = Young’s modulus (200 000 MPa for structural steel) 

I  = second moment of area about the weak axis [mm4] 

k = effective length factor (1.0 for pin/pin)

L — column length [mm\

For a W150x30 column of Grade 350W steel with I  = 5.56xl06 mm4 about the weak 

axis and L -  7000 mm, the buckling load predicted by Solidworks of 210.2 kN was within 

6.2% of the theoretical value obtained using Eq. [2.1]. To ensure buckling would occur, 

a small out-of-straightness was created using a lateral load of 0.5 kN distributed evenly 

over the web. If the out-of-straightness is induced by thermal gradients the Solidworks 

prediction would more closely approximate the Euler Buckling load.
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2.4 M O D E LIN G  O F IM PE R FE C T IO N S

Current steel column design criteria are not limited to Euler buckling but must also 

address inelastic buckling of intermediate columns initiated by imperfections. CAN/CSA 

S6-06 (CSA 2006) computes this nominal resistance as:

[2.2] Cs t =AFr ( l +

where: CS6 = nominal compressive capacity [TV]

A = gross cross sectional area [mm2]

Fv = yield strength of steel [MPa] 

n = 1.34 for rolled W-shapes

and the slenderness parameter, A , is:

[2.3] A = kL [ X
r \ n 2E

where: r -  radius of gyration y J l / A  j [mm]

Column imperfections must be included for the accurate computation of inelastic 

buckling failure loads. The two principal imperfections that contribute to the buckling 

strength of hot-rolled steel cross sections are residual stress and initial out-of-straightness 

(Galambos 1998). There is currently no built-in routine in Solidworks to simulate these 

imperfections, so the available features had to be manipulated to suit.
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2.4.1 Residual Stress

Residual stresses develop in hot-rolled steel sections and plates due to uneven cooling 

after rolling, and are a primary cause of reduced buckling strength in intermediate 

columns (Galambos 1998). The flange tips are generally first to cool and can develop 

significant residual compressive stresses and so also may reduce the load corresponding 

to local flange buckling.

Previous research has indicated the simplified linear residual stress pattern shown in 

Figure 2-3, with a maximum stress magnitude of 0.3F^ is acceptable for wide flange 

cross sections in compression (ASCE 1971). The validity of this residual stress 

idealization to generate a column curve numerically that closely resembles Eq. [2.2] was 

confirmed by Shek (2006). The applicability of this residual stress idealization when 

local buckling is the primary failure mode will be confirmed through calibration with 

physical testing, and modifications will be made if necessary.

Solidworks Simulation offers no direct way to simulate initial residual stresses, but 

because residual stresses are related to thermal dissipation, it is logical to simulate them 

using thermal gradients. Fig. 2-4a shows the thermal loading used, selected by trial and 

error, to create compressive stresses at the flange tips and centre of the web and tension 

stresses at the web/flange interfaces of a W150x30 shape. The flange tips and centre of 

the web are uniformly heated to +50 °C and the web/flange interfaces are uniformly 

cooled to -33 °C. The thermal loads are allowed to distribute evenly throughout the 

model during the thermal analysis thus ensuring even stress distribution after the resulting 

strains are resolved, as shown in Fig 2-4b.
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Figure 2-5 shows the resulting normalized stresses approaching ±0.3/^ in the flange and

web of a W150x30 column (compression positive, tension negative) withF^ =350 MPa.

The stress variations across the half width of the flange and half depth of the web are 

linear.

2.4.2 O ut-of-S traightness

Column sweep or camber causes bending to occur from the onset of loading, and is the 

primary reason buckling manifests as a failure mode (Galambos 1998). Without initial 

out-of-straightness, concentrically loaded columns could, at least theoretically, crush 

uniformly. Current specifications permit hot-rolled steel W shapes to vary in straightness 

up to Z/1000, provided the flange widths equal or exceed 150 mm (ASTM 2010). 

Initially, out-of-straightness was simulated by applying a lateral load to the web face 

normal to the weak axis. In stockier columns (i.e., kL/r<50), however, the lateral force 

required to create the target sweep induced large internal moments that lead to premature 

failure.

To alleviate undesirable moments and minimize model variability, a thermal gradient 

causing constant curvature about the weak axis was instead applied. The magnitude of 

the gradient was determined using Eq. [2.4], and then calibrated using linear 

interpolation:

[2.4] A r = — =
a, Ra,

where: AT = required thermal gradient [°C]



e = cross-sectional strain in the direction of weak-axis bending 

a , = coefficient of thermal expansion (12xlO'6/°C for structural steel)

R = radius of curvature [mm] 

b = flange width [mm]

No additional internal stresses are generated due to the additional thermal loading 

because there is no fixity at the column ends and the temperature gradient varies 

uniformly across the cross section. The shape of the deformed member is therefore an 

arc of a circle.

2.5 M ESH  SIZE

Balancing mesh size with model performance and solution time was an iterative process. 

Increasing the overall element size decreases the solution time but results in a less 

accurate analysis. Using an extremely fine mesh, however, is computationally inefficient 

and so results in an unreasonably long solution time. Figure 2-6 shows the two primary 

mesh controls applied to the model: 1) an overall minimum global mesh size with a 

maximum element size of 30 mm and 2) a finer local mesh in the deteriorated regions. A 

transition zone exists between the two controlled regions which eliminates undesirable 

stress concentrations due to abrupt changes in element size. It was found through trial 

and error that the global mesh size of 30 mm was sufficiently fine to capture Euler 

buckling. In the deteriorated regions, the maximum mesh size was set equal to the 

thickness of the deteriorated flange, t*, to accurately capture local buckling.

22
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Solidworks offers the user several meshing options each comprised of different element 

types: solid mesh, shell mesh, beam mesh and mixed mesh (Dassault Systèmes 2010). 

Shell elements are 2-dimensional and are meant to idealize thin plates with a uniform 

thickness (e.g. sheet metal in plane stress conditions), and beam elements idealize 

extruded structural members with uniform cross-sectional properties. While beam 

elements are capable of resisting axial, bending, shear and torsion, they are not able to 

simulate complex buckling phenomena and thus a solid mesh consisting of 3-dimensional 

elements was used throughout the model. Figure 2-7 shows the default parabolic 

tetrahedral element used to mesh solid bodies. This particular element type is defined by 

10 nodes: four comer nodes and six mid-side nodes. During the thermal analysis, each 

node has one degree of freedom, and during the nonlinear stress analysis, each node has 

three degrees of freedom.

2.6 B U CK LE G E O M E T R Y

The geometry of buckled slender plates is well-understood when the edges are pinned 

and the plate is subjected to uniform compression, however, deteriorated flanges of W- 

shapes are difficult to idealize.

In an attempt to verify that the buckle geometry obtained with FEA were realistic, an 

approximate comparison was made with the flange of a W 150x30 that failed due to local 

buckling in a 4-point bending test. Figure 2-8 shows the local buckle that occurred in the 

4-point bending test and Figure 2-9 shows the simulated local buckling failure of a 

W150x30 column with localized deterioration at mid-height. Clearly the distance 

between inflection points in both buckled shapes is approximately half the flange width.
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While the accuracy of buckling geometry in the model will be examined in-depth after 

physical testing, the present comparison indicates that results are reasonable and provides 

further justification for continuing with the proposed analysis approach.

2.7 SU M M A RY  O F M O D EL

Like most FEA software packages, Solidworks requires the user to apply loading using 

pre-defined time steps. However, before stresses can be resolved, a thermal analysis was 

necessary to ensure temperatures are linearly distributed throughout the cross section. 

After the thermal analysis, resulting temperatures are automatically input as thermal loads 

in the primary analysis. Figure 2-10 summarizes the three-step approach adopted in the 

primary analysis:

i. In the first step, stresses caused by the linear variation temperature are resolved to 

generate and simulate residual stresses across the cross section.

ii. In the second step, column sweep is created by applying an additional uniform 

thermal gradient to cause bending about the weak axis.

iii. In the third step, the column is loaded axially until failure occurs.

Figure 2-11 compares the nominal axial capacity of a W 150x30 column calculated using 

FEA with those calculated using S6-06 (Eq. [2.2]). The W 150x30 has an overall depth, 

d, of 157 mm, a flange width, b, and thickness, t, of 153 mm and 9.3 mm, respectively, 

and a web width, w, of 6.6 mm. It is made from steel with F  =350 MPa. Clearly the 

FEA results conform extremely well to the empirically based code equation: the 15 FEA
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values shown are on average 0.7% greater than the values computed using Eq. [2.2], and 

the ratios of CFEA/C S6 have a coefficient of variation of 1.8%.

The time required for Solidworks Simulation to fully analyze columns with localized 

deterioration ranged from approximately fifteen minutes to three hours depending on the 

slenderness ratio and geometry of the localized deterioration. The hardware of the 

analysis PC exceeded all minimum and recommended system requirements specified by 

the Dassault Systèmes help database (2010). For a typical intermediate column, 

W150x30x4500 (kL/r = 120), with 50% section loss on both flanges, the finite element 

analysis model consisted of approximately 54000 elements, 94000 nodes, 281000 degrees 

of freedom, and took one hour and fifteen minutes to run the full analysis.

2.7.1 A ssum ptions

The finite element model is based on the following assumptions:

•  Column ends have no fixity to prevent rotation (i.e., k = 1.0).

•  Columns are concentrically loaded.

•  Modulus of elasticity for steel is 200 000 MPa.

•  Steel stress-strain curve is bilinear: linear elastic-perfectly plastic.

•  Residual stress distribution is linear with a maximum magnitude of ±0.3FV.

•  Columns are not perfectly straight and have a maximum mid-height sweep of

L/1000.
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2.8 SUM M ARY

In this chapter, the feasibility of finite element analysis using Solidworks Simulation for 

the previously discussed study has been investigated. Specifically, the failure of 

undeteriorated columns was examined in detail by comparing results obtained from FEA 

to Eq. [2.2], the empirically derived equation given in CAN/CSA S6-06 (CSA 2006).

It has been determined that Solidworks Simulation can very accurately predict the failure 

load and buckled shape of undeteriorated W-shape columns provided that the following 

conditions are met:

1. End fixity is relieved at both ends of the column (k = 1.0) by restraining one face 

in the x  and y  directions and creating a rocker-assembly at the other end of the 

column.

2. Residual stress is simulated using thermal loads that are allowed to redistribute 

prior to axial loading.

3. The resulting residual stress has a linear distribution with a maximum stress 

magnitude of 0.3Fy, as shown in Figure 2-3.

4. The column is not perfectly straight and an initial sweep of 1/1000 is created prior 

to axial loading using a thermal gradient in the direction of free rotation about the 

weak axis. The magnitude of the thermal gradient can be determined using Eq. 

[2.4] and calibrated using linear interpolation.

5. The overall mesh size should be a maximum 30 mm for a W150x30 column.

6. A finer mesh control should be defined in the region of local deterioration so that 

the maximum element size is less than the thickness of deterioration (t*).
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7. The stress-strain curve for the column steel is bilinear: linear elastic-perfectly 

plastic.

The ability of Solidworks Simulation to analyze columns having local flange 

deterioration was also investigated and validated at a preliminary level. However, due to 

the complex interaction between local buckling, global buckling, and yielding and the 

lack of an accurate theoretical model, additional experimental testing is necessary to fully

validate FEA results.



(a)
Figure 2-1: Inadequacy of Built-in Fixities

(a) End constraint over column end face
(b) Associated undesirable end fixity, (k  <  1.0)

Figure 2-2: Column Rocker Assembly
(a) Rocker at column bottom
(b) No end fixity (k  =1.0)
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Figure 2-3: Residual Stress in Cross Section

Figure 2-4: Thermal Analysis Used to Develop Residual Stresses
(a) Thermal loading
(b) Resulting temperature distribution
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D is ta n c e  F ro m  F la n g e  C e n tre  (mm) aJFy (C=Negative, T=Positive)

(a) (b)

Figure 2-5: Residual Stress Distribution due to Thermal Loading
(a) Flange
(b) Web

Figure 2-6: Mesh Control in Deteriorated Region



Figure 2-7: Second-Order Tetrahedral Element Used Throughout FEA (after Dassault Systèmes 2010)

Figure 2-8: Local Buckle from a 4-Point Bending Test
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Figure 2-11: Solidworks FEA Results Compared with CSA S6-06 (CSA 2006) for a W150x30 Column
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C H A P T E R  3 : EX PER IM EN T AL V A LID A TIO N  O F 

SO LID W O R K S FEA M O D EL

3.1 IN T R O D U C TIO N

This chapter summarizes a series of full-scale steel column tests, conducted to validate 

failure loads and mechanisms predicted using the Solidworks finite element analysis 

(FEA) model presented in Ch. 2. This chapter describes the test specimens, test 

apparatus and instrumentation, testing procedure, experimental results, and a comparison 

with the Solidworks predictions. Additionally, ancillary tests to determine yield strength 

and residual stress magnitudes in the column test specimens are briefly described.

3.2 SPE C IM E N  D ESC R IPTIO N S

The five W150x30 column specimens with varying deterioration patterns, each selected 

to validate key findings in the preliminary sensitivity analysis, are shown in Table 3-1. 

Although lighter than most bridge compression members, a W150x30 shape was chosen 

to accommodate the maximum capacity of the MTS 243.70 actuator in the UWO 

Structures Lab, 1500 kN. Additionally, the 2.3 m columns had a mass of 69 kg (weight of 

150 lbs) and so could be easily handled by one or two people without the need for the 

overhead crane. The slenderness ratio, kL/r, for weak-axis instability was typically 60 

and so representative of intermediate columns that fail by inelastic buckling.

Localized flange corrosion was simulated as uniform section loss in rectangular regions, 

to facilitate direct comparison with the FEA predictions. It was also convenient and
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efficient to reduce the flange cross section by machining predetermined patterns. The 

rationale for selecting each particular specimen is as follows:

1. Control Specimen (No Deterioration'): A control specimen with full flange cross 

sections was tested first. It also served as a pilot test to ensure the test apparatus behaved 

appropriately, with no significant end fixities or eccentricities. The failure load of the 

control specimen was the greatest of all specimens tested so adequate performance of the 

load frame and actuator during this test would ensure that the remaining tests should 

proceed smoothly.

2. Symmetric Flange Deterioration (Case A): The second test column had symmetric 

flange deterioration at midheight as shown in Table 3-1. The length of deterioration was 

300 mm and the thickness of the remaining flange was 3.5 mm. The width-to-thickness 

ratio in the deteriorated region was 21.0, or approximately 41 o /^ T ^ , which markedly

exceeds the Class 3 limit (CSA 2006) of 200jy[F~y ■ These details were selected to

validate the failure load, weak-axis buckling deflections and the geometry of the local 

buckle predicted using FEA.

3. Non-svmmetric Flange Deterioration: The third test column had only one flange with 

deterioration at midheight as shown in Table 3-1. The length of deterioration was 

300 mm and the thickness of the deteriorated flange was 3.5 mm. This specimen was 

selected to examine the extent and effect of torsional rotations anticipated at failure and 

determine the validity of FEA predictions for cases with non-symmetric deterioration.
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4. Symmetric Flange Deterioration (Case B): The fourth test column had symmetric 

flange deterioration at midheight as shown in Table 3-1. The length of deterioration was 

100 mm and the thickness of the deteriorated flange was 3.5 mm. This deterioration 

geometry was selected to further validate the failure load, weak-axis buckling deflections, 

and the local buckle geometry as predicted by the FEA. As shown in Figure 3-1, the 

FEA predicted that the local buckle of test Column 2 would exhibit 2.5 sinusoidal waves 

while that of Columns 4 would exhibit only 0.5 sinusoidal waves. Additionally, the 

effect of the length of deterioration on the axial capacity could also be validated.

5. Contingency Column: The fifth test column was reserved as a contingency specimen 

in the event of an unsatisfactory test or data acquisition malfunction. This turned out to 

be prudent because Column 4 was accidently subjected to its failure load before the data 

acquisition logger was functioning. The local deterioration pattern for Column 4 was 

recreated on Column 5, i.e., symmetric 100 mm lengths at midheight with the thickness of 

the deteriorated flange of 3.5 mm.

3.2.1 In itia l G eom etric Im perfections

The cross-section dimensions were measured at the top, bottom and midheight of each 

test column to verify the gross area of steel and indicate any skew of the cross section. 

Out-of-straightness was measured with a theodolite, assuming that the maximum camber 

or sweep occurs at the column mid-point. The column was placed with its axis oriented 

towards the theodolite, as shown in Figure 3-2, the offsets to the column midpoint (b) and 

far comer (c) were measured with respect to the nearest comer (a). Camber and sweep 

were computed using:
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[3.1] S ' . S . = x . - X’/ (

where: dc = camber [mm]

Ss = sweep [mm]

xm = Horizontal offset from Line a-d to Point b, as shown in Fig 3-2 

xe = Horizontal offset from Line a-d to Point c, as shown in Fig 3-2

Given the accuracy inherent in this procedure, it is estimated that the measured cambers 

and sweeps, shown in Table 3-2, are accurate to ±0.5 mm. In general, the columns were 

very straight, making it difficult to accurately predict the direction of weak-axis buckling 

before each test.

3.2.2 M ateria l P roperties and  R esidual Stresses

Table 3-3 summarizes material yield strengths and maximum residual stresses obtained 

from tensile coupon tests and stub column tests, respectively. Columns 1 and 4 were 

obtained from a single member, and Columns 2 and 3 were obtained from a different 

single member.

Tensile coupon tests were conducted in accordance with ASTM A370 (ASTM 2010a) to 

determine the yield strengths. The coupons were loaded to failure at a constant load rate 

of approximately 175 MPa/minute or a strain rate of approximately 15 ¡ue/sec. Samples 

were taken from the web and flange, but the flange yield strength was used for analysis 

because when W-shapes buckle about their weak axis, the flanges yield first and thus 

govern the axial capacity.
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Stub-column tests are conducted on stocky members to determine the magnitude of the 

maximum residual stress in the cross section (Galambos 1998). The load at which the 

response deviates from its initial linearity indicates the magnitude of the maximum 

residual stress present. Three stub-column tests were conducted at McMaster University 

in accordance with the procedure recommended by Tall (1961). The main objective of 

the stub column tests was to determine the magnitude of the maximum residual stress, but 

a second objective was to validate the tensile coupon tests by obtaining the average static 

yield strength of the full cross section. Further details of these tests are presented 

Appendix A l.

In general, the average yield strength calculated from the coupon tests were very 

consistent with those calculated from the stub column tests. The maximum residual 

stress magnitude (ar), however, was less than the conventionally assumed value of 0.3Fy: 

only 10.8%, 8.9%, and 6.6% of the average yield strength for the three columns 

examined. As residual stresses are a function of rates of cooling as defined by the cross 

section geometry (Galambos 1998), it would appear that the W 150x30 shape, with 

flanges and web of similar widths and thicknesses, cools relatively uniformly.

3.3 T E S T  APPARA TU S

Custom column end supports were necessary to hold the specimens securely at high axial 

loads yet permit free rotation about the weak axis. To minimize eccentricity, the centroid 

of the cross-section had to be aligned with the centre of the actuator head throughout the 

test. The column end supports also required sufficient thickness to distribute the applied 

compressive force uniformly across the cross-section without significant deformation.
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Figure 3-3 shows the knife-edge rocker assembly, similar to that used by Gardner and 

Nethercot (2003), that was designed and fabricated to achieve this boundary condition 

reliably. Initially, steel shims were envisaged to secure the end of the cross section 

during the test (Fig. 3-3a), but, during fabrication, a detail with set-screws (Fig. 3-3b) was 

adopted to ensure the shims did not become dislodged. The recesses to accept the 

column ends in each pin plate assembly were oversized by 2 mm in both plan dimensions 

to allow for deviation from the nominal dimensions of the W150x30 section. Figure 3-3c 

shows the finished bottom plate, which was attached to the strong floor of the Structures 

Lab using anchor rods through the long slotted holes, and the top plate which threaded on 

to the actuator head. A full drawing set of the column end support assembly is presented 

in Appendix A2.

3.3.1 N um erical Analysis o f C olum n End Supports

To ensure that no significant deformations or internal stress concentrations would be 

encountered during testing, a finite element analysis (FEA) of the proposed column end 

supports was conducted prior to fabrication. Figure 3-4 shows the response predicted by 

FEA at an applied load of 880 kN, which corresponds to the failure load of a 2500 mm 

long undeteriorated W 150x30 column made from Grade 350 steel. The maximum 

observed stresses in the pin plate (Fig. 3-3c) and base plate (Fig. 3-3d) assemblies were 

237 MPa and 73 MPa, respectively. The regions of high stress were highly localized as 

shown. To reduce these peak stresses, a 2 mm radius fillet at the knife-tips and top and 

bottom pin plates was adopted for the final design to increase the bearing area. No 

measurable flexural deflection of any of the plates was predicted by the FEA.
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3.3.2 L oad F ram e and  A ctuato r

The expected failure loads of the proposed test columns were in the order of 1000 kN. 

While the MTS 243.70 actuator at the UWO Structures Lab is rated to 1500 kN, 

excessive deflections had been observed in the past when the actuator load exceeded 600- 

BOO kN (Logan 2010). Preliminary tests were therefore conducted to examine the frame 

behaviour at high loads, and so investigate any outstanding issues of safety or 

serviceability. Figure 3-5 shows the general configuration of the original unbraced load 

frame and actuator, and Figure 3-6 shows schematically the lateral deformations of the 

unbraced and braced loading frames that were observed during the preliminary tests. 

Figure 3-7 illustrates the bracing systems that were progressively implemented into the 

load frame to minimize these deformations.

Prior to the first preliminary test, a small initial out-of-straightness of the actuator (A/) 

equal to approximately 5 mm at the actuator head was noted (Fig. 3-6a). During this 

preliminary test, time-lapse video imagery showed 20-30 mm (A a) horizontal movement 

of the top cross-beam caused by rotation of the load frame columns about their bases 

(Fig. 3-6b) at the maximum applied load of 1200 kN. No slip was observed at the 

crossbeam-column connections of the loading frame, even though the 5% fractile of the 

slip resistance for the 24 bolts in these connections is only 809 kN. However, the out-of- 

plane sway (Aa) would have been unacceptable when testing a pin-ended column to 

failure, and a system of two inclined HSS braces was designed to secure the columns by 

preventing rotation (Fig 3-7b) about their bases.
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During the first attempt to test Column 1 using the braced loading frame, displacement 

transducers were placed on the actuator head, Point B on Figure 3-5, to verify that the 

braces were effectively preventing displacement there. Lateral movement at the actuator 

head (Ab in Fig 3-6c) of 24 mm was observed at a load of 375 kN (i.e. only 37.5% of the 

anticipated failure load), however, and the test was stopped. Analysis of test data and 

time-lapse video footage indicated that while the diagonal braces had effectively 

eliminated deflection due to load frame column rotation (Aa ), the actuator was now 

pivoting about the centroid of the cross beam (Fig 3-6c). To eliminate this additional 

displacement and further reinforce the load frame, a horizontal beam was installed 

between the load frame columns to restrain the actuator head (Fig 3-7c). With these two 

bracing systems installed, the out-of-plane deflections of the load frame and actuator 

were essentially eliminated, and the test program could proceed.

3.3.3 In stru m en ta tio n

To gain a full understanding of column buckling behaviour and facilitate an accurate 

comparison with the numerical models, it is generally desirable to monitor lateral 

displacement, twist and overall shortening of the test column (Tall and Tebedge 1970). 

As shown in Figure 3-8, the test columns were monitored using five displacement 

transducers deployed to isolate each of these key variables independently. The accuracy 

of the transducer measurements is approximately ±0.01 mm and their readings can be 

archived continuously. Transducers 1 and 2 were spaced at 120 mm apart on the column 

flange at mid-height, to capture both lateral displacement due to strong axis bending, if 

any, and column rotation. Transducer 3 was located at the centre of the web face at mid

height, to capture lateral displacement due to weak axis buckling. Transducer 4, located
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on the vertical face of the top plate, monitored lateral movement of the actuator head to 

verify the effectiveness of the load frame bracing systems and to account for out-of-plane 

displacement of the load frame, which is necessary to compute the lateral midheight 

deflection with respect to the ends of the column. Transducer 5, aligned vertically, 

measured vertical displacement of the top plate with respect to the floor of the Structures 

Lab, and so essentially measured the vertical contraction of the test specimen.

Columns 2, 3, 4 (and 5) were also instrumented with foil strain gauges. Because the test 

specimens were generally very straight and the buckling direction could not be accurately 

predicted, strain gauges were placed on all flange tips with reduced cross sections. 

Figure 3-9, Figure 3-10 and Figure 3-11 each show the local buckling pattern predicted 

by the FEA (a) that provided the basis for the number and location of strain gauges (b) 

fixed to Columns 2, 3, 4 (and 5), respectively.

Each column was also coated with a whitewash consisting of white acrylic paint and 

water in a 1:2 ratio by volume. This coating was applied to facilitate visual identification 

of mill scale flaking, indicating local yielding and often the onset of local buckling.

Finally, all tests were recorded using a digital video camera so that failure mechanisms 

could be confirmed by viewing the column failure in slow motion.

3.4 T E ST  PR O C ED U R E

The following general procedure was adopted in accordance with Tall and Tebedge 

(1970):
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1. Top and bottom plates were aligned using a plumb bob and theodolite. No formal 

error study was conducted, however, both plates were typically aligned to within a 

horizontal tolerance of ±2 mm.

2. Strain gauges were affixed to the column flanges (Tests 2, 3, 4 and 5 only).

3. Pin plates were clamped to test column ends using set-screws (Fig. 3-3b).

4. The column was placed on the lower pin plate and the actuator head was lowered 

to secure it in place. The weak axis was aligned to be parallel to the free 

rotational axis of the column-end assembly.

5. A small load (~1 kN) was applied to hold the column in place while the 

displacement transducers were deployed.

6. A preliminary load, equal to 20% of the anticipated failure load, was applied to 

minimize unintended displacements due to initial seating. The preliminary 

seating load was then removed and all instrumentation was zeroed.

7. As shown in Figure 3-12, loading was then applied at two speeds (Tall and 

Tebedge 1970):

a. 28 MPa/minute until 50% of the anticipated failure load is achieved (i.e., 

while the column response is still fully linear elastic).

b. 7 MPa/minute until the maximum load is achieved.

c. 0 MPa/minute so that the maximum static load can be determined.

d. 7 MPa/minute until the column is fully buckled.

While the above values are given in MPa/minute, the actuator is in stroke- 

controlled mode at all times to ensure the column does not become dangerously



44

unstable. The actual loading rates, in mm/mm, were computed assuming the 

reduced cross section was present over the entire length of the column.

3.5 T E ST  R ESU LTS

Figure 3-13 shows the load versus midheight weak-axis deflection, measured at the web 

face, for Columns 1, 2, 3, and 5. Not unexpectedly, each of the deteriorated column 

curves lie roughly within the failure envelope defined by the undeteriorated pilot test 

except Column 5, which unexpectedly changed its direction of buckling near failure. 

Columns 2, 4 and 5 displayed brittle failures because all had symmetric flange 

deterioration. Very little weak axis lateral deformation occurred prior to the maximum 

load. Conversely, the failure of Column 3 with unsymmetrical flange deterioration was 

more ductile because stresses were able to redistribute to the undeteriorated flange after 

local buckling had occurred in the deteriorated region. This post-buckling strength gain 

in Column 3 can be seen clearly after approximately 5 mm of web deflection.

As noted in Table 3-2, the columns had very little sweep making it very difficult to 

predict the direction of buckling before the test. Furthermore, the method of measuring 

out-of-straightness using a theodolite, discussed in Section 3.2.1, was only accurate to 

within 0.5 mm. The test results will be discussed qualitatively first and compared with 

the FEA predictions in Section 3.6.

3.5.1 C olum n 1; C ontro l

The failure of Column 1 was sudden, but slightly ductile. As shown in Figure 3-14, the 

load versus lateral deflection response was linear until approximately 0.95Pu. As shown
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in Fig 3-15a, flaking of the whitewash coating provided a good indication of yielding, 

and as expected, yielding was concentrated at midheight on the compression flange ends, 

opposite to the buckling direction. The presence of Leuder Lines perpendicular to the 

compressive force after column failure indicates that the specimens may have been cold- 

straightened.

No significant twist or weak-axis deformation was observed indicating that the load was 

concentric and uniform throughout the cross section. The column end supports 

performed very well.

3.5.2 C olum n 2

Despite the extremely slow actuator stroke-controlled loading rate of 0.1 mmlmin, 

Column 2 failed very suddenly with little warning. Figure 3-16 shows the plastic hinge 

that formed in the area of local deterioration as a result of local buckling, which led 

immediately to the global collapse of the column. Figure 3-17 plots time versus web 

displacement in the direction of weak-axis buckling throughout the test, and illustrates 

the extremely brittle nature of the failure.

While the local buckling deformation was not visible until after failure, flaking of the 

whitewash was evident in the deteriorated region at 0.93Pu indicating the stresses in this 

region were approaching the yield strength. No significant torsion or strong-axis 

deformation was observed during or after the test. This feature was typical for all tests 

with symmetric deterioration.
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3.5.3 C olum n 3

While the failure of Column 3 can still be characterized as brittle, it was not as sudden as 

Column 2 because the non-symmetric flange deterioration allowed for stress 

redistribution after the deteriorated flange had buckled locally. Figure 3-18 illustrates 

the progression of Column 3 to failure: yielding begins in the deteriorated flange (as 

indicated by the arrows in Fig 3-18a and b) followed by local buckling and yielding of 

the web (Fig 3-18c) and finally, by yielding and buckling of the undeteriorated flange 

(Fig 3-18d). This sequence also indicates how stresses redistribute after local buckling: 

first to the web, then to the undeteriorated flange. The redistribution of stresses is 

accompanied by a 9.9% gain in axial capacity, but also a loss in stiffness.

As expected, Column 3 twisted in torsion about its centroid due to the plastic hinge that 

was formed by the local buckle in the deteriorated flange. Figure 3-19 shows the 

midheight twist observed in Column 3, calculated from the measurements obtained from 

the displacement transducers mounted on the flanges, Instruments 1 and 2 on Fig. 3-8. 

Twisting of the column becomes detectable at approximately 0.75PU, and provides some 

advanced warning of the incipient local buckling. After the deteriorated region had 

buckled locally and could no longer carry load, at approximately 0.9Pu, the twist 

increases until the column capacity is reached at approximately 0.035 rads. The 

increased twisting after local buckling occurs is further evidence of stresses redistributing 

to the undeteriorated flange.
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3.5.4 C olum n 4

Unfortunately the failure of Column 4 occurred before of the data logger was started, and 

the only test parameter recorded was the maximum applied load. The load rate was very 

rapid and not controlled. The local deterioration pattern therefore was replicated on 

Column 5, which had a slightly shorter overall length.

3.5.5 C olum n 5

Figure 3-20 shows the load-midheight deflection relationship observed for Column 5. 

Small positive deflections are noted initially, but as the load exceeded approximately 

400 kN, the deflections became negative. At a load of approximately 700 kN, the trend 

again reversed and the eventual buckling failure corresponded to a large positive 

midheight deflection. There is no explanation for this behaviour. Similar to Column 2, 

the failure of Column 5 was brittle with little warning of failure. The failure mode was 

local buckling followed by plastification at midheight leading to global collapse of the 

column.

Some minor flaking of the whitewash was evident in the deteriorated region just prior to 

failure indicating the stresses in this region were approaching the yield strength. The 

progression of the flaking was not sufficient, however, to provide warning of failure. No 

significant torsion or strong-axis deformation was observed during or after the test, 

indicating that the two deteriorated flanges buckled simultaneously.
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3.5.6 S tra in  G auge R eadings

Figure 3-21 shows the locations of the strain gauges in the deteriorated region of Column 

2 at midheight, relative to the failed shape shown as dashed lines. Figure 3-22 and Figure 

3-23 show the strain gauge data obtained from the left flange and right flange, 

respectively. The interaction between global buckling of the column and local buckling 

in the deteriorated region is reflected by the strain readings. Local buckling can be 

clearly identified by the abrupt change in direction of the light grey lines, located on the 

tension side of the local buckle (SGI8 and SG11). As the local buckle forms, the 

compressive strains recorded by those gauges quickly decrease. Similarly, the strain 

gauges located on the compression side of the local buckle (SGI4 and SG3) show 

increasing compressive strains. Global column buckling is indicated by the abrupt 

reversal of strain increments at the strain gauges on the flange tips located on the tension 

side of the global buckling direction (SGI 9, SG22, SG8 and SG4).

The decrease in the compressive strains in Gauges SGI9, SG22, SG4 and SG8 indicate 

the onset of global buckling at an applied load of approximately 600 kN. The reversed 

strain increments in Gauges 18 and 11 indicate the onset of local buckling at a slightly 

higher load. Both local buckling and global buckling propagate simultaneously at 

approximately 650 kN. These observations are consistent with the weak-axis 

deformations at midheight, shown in Figure 3-24.

In general, the strain gauge data were typical for the different test columns. In all cases, 

the measured strains at a cross section were uniform, indicating concentric loading. In
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some cases, however, several gauges became detached prior to failure and so stopped 

registering with the data logger.

3.6 COMPARISON TO FEA

In general, the Solidworks models accurately predicted the observed failure loads and 

weak-axis midheight deflections. Table 3-2 summarizes the measured camber and 

sweep, yield strength, and the predicted and actual failure loads for each specimen. The 

flange deterioration investigated (1 - t* / tn =0.62) caused the capacity to be reduced to

between 60% and 69% of that of the undeteriorated column, depending on the length and 

symmetry of the deteriorated regions. The professional factor, P, is the ratio of, the 

actual failure load, Ph to the FEA predicted failure load, Pfea-

[3.2]

The average professional factor for all five test columns is 1.010 and the coefficient of 

variation (CoV) is 3.8%. These values are similar to the professional factor statistics for 

regular W-shape columns which were reported by Kennedy and Gad Aly (1980) to have a 

mean value of 1.030 and a CoV of 5.0%. Thus the accuracy of the FEA to predict the 

strength of columns with deteriorated flanges is similar to that of Eq. [2.2] to predict the 

strength of W-shape columns.

Table 3-4 compares the predicted shapes of the local buckles with those observed in the 

test columns. In general, the length and amplitude of the individual local buckles were 

consistent with FEA predictions, but symmetry and the presence of plate buckling was 

not, despite accurate machining of the deteriorated regions. These inconsistencies can
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perhaps be attributed to minor imperfections in the cross-sectional geometry and residual 

stress distributions locally that are different from those idealized. Despite the slight 

differences in the geometry of the local buckle, the overall axial capacity and global 

column deformations are still accurately predicted by the FEA. Furthermore, yielding in 

the web and flanges, indicated by flaking of the whitewash during testing, was consistent 

with predicted yielding stresses in the FEA, shown by red in Table 3-4. The adequacy of 

the FEA model will now be explored for each test specimen individually.

3.6.1 C olum n 1: C ontro l

The purpose of the initial pilot test was to validate that the test frame and end supports 

performed adequately. The anticipated failure load predicted by FEA was 1151 kN, and 

the column failed at a maximum static load of 1087 kN. In general, the failure can be 

described as brittle, with slight ductility.

Figure 3-14 compares the lateral web displacement at midheight obtained from the FEA 

to test data. The FEA accurately predicts the global response until the maximum axial 

load, but does not accurately predict the post-buckling behaviour after the maximum 

axial load is achieved.

As expected, yielding was concentrated on the flange tips opposite of the buckling 

direction, and there was good correlation between flaking of the whitewash (Fig. 3-15a) 

coating and yielded regions predicted by the FEA (red regions in Fig 3-15b).

In Ch. 2 it was shown that the FEA predicted strengths of a W150x30 column closely 

approximated capacities determined using CAN/CSA S6-06 for a range of slenderness
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ratios. The control test, when compared to the FEA prediction given the measured out- 

of-straightness and residual stress magnitude, therefore indicates any bias associated with 

the test apparatus. The control column failed at a load that was 5.3% less than the 

predicted value, indicating that the test apparatus simulated the loading and idealized 

boundary conditions adequately. No modifications to the FEA model are necessary.

3.6.2 C olum n 2

The anticipated failure load predicted by FEA was 652.3 kN and the test column failed at 

653 kN, a difference of 0.1%. Figure 3-24 compares the web deflection at midheight in 

the direction of weak-axis buckling observed during the test with that predicted in the 

FEA. As in the control specimen, the FEA predicts overall column response well until 

the maximum load, but indicates an even more brittle response than that observed during 

the test. This may be due to the lack of perfect symmetry in the test specimen, which 

may increase the axial capacity slightly because both deteriorated regions do not buckle 

simultaneously as they do in the FEA.

While the failure load and weak-axis deflection of the test specimen was in good 

agreement with those predicted by the FEA, the geometry of the local buckle was 

different. As shown in Table 3-4, the observed local buckle was not symmetric as 

predicted by the FEA. Minor variance in flange thickness distributions may have caused 

the right flange to buckle first before the plate buckling pattern could fully develop in the 

left flange. Yielding in the web and the inside faces of local buckles predicted by the 

FEA, indicated as red, was in good agreement with flaking of the whitewash during the

test.
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3.6.3 C olum n 3

The anticipated failure load predicted by FEA was 692 kN and the test column failed at 

710 kN, a difference of 2.5%. Figure 3-25 compares the weak-axis deflection of the web 

at midheight observed during the test with that predicted by FEA. There is good 

agreement in the elastic range, however, the FEA does not accurately predict deflections 

after of the deteriorated flange buckles locally at a load of approximately 620 kN.

Figure 3-19 compares the torsional rotation predicted by FEA to that observed for 

Column 3. While the general trend between the two is consistent, there was more 

rotation during the test than was predicted by the FEA, especially after local buckling had 

occurred. In the test column, there was a loss in stiffness followed by significant rotation 

after the local buckle formed, at approximately 0.90PU. The rotation was followed by 

strain hardening and a slight increase in stiffness, indicated by the marked reduction in 

slope at approximately 0.92Pu. This behaviour was not accurately predicted because the 

stress-strain curve adopted for the FEA was bilinear (elastic-perfectly plastic).

As Column 2 was cut from the same stock and so has the same material properties as 

Column 3, it is appropriate to compare them. In Figure 3-25 , the dashed horizontal line 

represents the axial capacity of Column 2 with symmetric flange loss. Both columns 

exhibit an initial failure by local buckling at approximately 640 kN, but Column 2 does 

not exhibit post-local-buckling strength gain exhibited by Column 3. It is conservative, 

therefore, to assume symmetric deterioration when analyzing columns with non- 

symmetric deterioration.
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As shown in Table 3-4, the FEA predicted plate buckling in the deteriorated region, 

where multiple adjacent local buckles develop simultaneously, however, only one local 

buckle developed in the test column. In general, the yielded regions in the FEA, shown 

in red, are in good agreement with flaking of the whitewash. The FEA did not predict 

full yielding of the undeteriorated flange, however, because it did not predict the post- 

local-buckling strength gain.

3.6.4 C olum n 4

Despite the lack of data and the rapid application of axial load, the FEA prediction 

closely approximated the maximum failure load: the predicted failure load was 664 kN 

and the observed failure load was 641 kN, a difference of 3.4%. The geometry of the 

local buckle observed in the test corresponded well with that predicted by FEA as shown 

in Table 3-4. Yielding in the web predicted by the FEA, indicated in red, was also in 

good agreement with whitewash flaking observed during the test.

3.6.5 C olum n 5

The predicted failure load was 719 kN and the test column failed at 749 kN, a difference of 

4.0%. Figure 3-20 compares the weak-axis deflection of the web at midheight observed 

during the test with that predicted by FEA. The observed brittle failure corresponded well 

with FEA predictions. The differences between observed and predicted web deflections 

can be attributed to the unexpected change in buckling direction.

As shown in Table 3-4, the observed geometry of the local buckle was close to that 

predicted using FEA. In both cases, one half-sine wave develops at the at the centre of
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the deteriorated region, however, the buckles predicted by FEA are symmetric about the 

column centreline whereas those observed are not. Additionally, web yielding predicted 

by the FEA, indicated in red, is in good agreement with whitewash flaking observed 

during the test.

3.7 SUMMARY

This chapter has presented experimental validation that was undertaken to validate the 

column failure loads and behaviour predicted by the finite element model. The five test 

specimens were discussed in detail, the test apparatus and test procedure were described, 

and results from all full-scale column tests were presented. Finally, comparisons were 

made between the test results and the FEA predictions.

It can be concluded that FEA modeling using Solidworks, as described in Ch. 2, can 

accurately predict the failure load of columns with local deterioration subject to axial 

loading, provided that both residual stress and initial out-of-straightness are accounted 

for. The professional factor, P, of the test failure load, Ph to the predicted failure load, 

P fea, had a mean of 1.01 and a coefficient of variation of 3.8%. These values are 

consistent with those reported by Kennedy and Gad Aly (1980) who reported a 

professional factor of 1.03 with a CoV equal to 5.0% for numerous full-scale column 

tests.

The FEA predicts the lateral midheight column deformation accurately in the linear- 

elastic range, but not necessarily in the plastic range just prior to failure. Furthermore, 

the analysis generally indicates a less ductile failure mode than observed, possibly 

because the bilinear stress-strain relationship for steel used in the analysis does not
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account for strain hardening that can occur in the test columns. While the length and 

amplitude of individual local buckles are consistent with FEA predictions, symmetry and 

the presence of multiple adjacent local buckles was not. Despite these inconsistencies, 

however, the maximum axial capacity and global response can still be accurately 

predicted using the Solidworks FEA model.

Columns with non-symmetric flange loss display more ductile failures than columns with 

symmetric flange loss because stresses are able to redistribute to the undeteriorated flange 

after local buckling occurs, resulting in some post-local-buckling strength gains. The 

FEA does not accurately predict the response after local buckling initiates. It is proposed 

that, in practice, symmetric deterioration be assumed be for all cases, effectively creating 

a lower-bound solution that is more reliable to calculate using FEA.



Figure 3-1 ; FEA
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Figure 3-3: Column End Support Assembly
(a) Design Overview
(b) Screw Jacks in Finished Knife-Edge Component
(c) Finished Bottom (left) and Top (right) Plates
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(c) (d)

Figure 3-4: FEA of Column End Supports Prior to Fabrication
(a) Model Prior to Analysis
(b) Model After Column Failure (Deformation Scale = 40x)
(c) Stresses in Bottom Pin Plate
(d) Stresses in Bottom Plate
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, A SECTION
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Figure 3-5: Load Frame General Arrangement

Figure 3-6: Lateral Deformations Observed in Load Frame
(a) Undeformed Shape of Unbraced Frame (A,=initial actuator out-of-straightness)
(b) Observed Deformation of Unbraced Frame
(c) Observed Deformation of Braced Frame
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Figure 3-7: Implementation of Load Frame Bracing
(a) Original Unbraced Frame (during initial capacity test)
(b) Frame With Diagonal Braces
(c) Frame With Actuator Head Brace Installed
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Figure 3-8: Displacement Transducer Locations
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Figure 3-9: Strain Gauge Locations for Column 2
(a) Predicted Local Buckle
(b) Strain Gauge Locations in Deteriorated Region
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Figure 3-10: Strain Gauge Locations for Column 3
(a) Predicted Local Buckle
(b) Strain Gauge Locations in Deteriorated Region
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Figure 3-11: Strain Gauge Locations for Columns 4 and 5
(a) Predicted Local Buckle
(b) Strain Gauge Locations in Deteriorated Region
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t/tc
Where: tc is the time required to achieve the maximum compressive load 

Figure 3-12: Actuator Loading Rate Used during Column Tests
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Figure 3-14: Comparison of Weak Axis Midheight Deformation Predicted by FEA to Test Data (Column 1)

Figure 3-15: Yielding in Flange of Column 1
(a) Leuder Lines Observed
(b) Extent o f Yielding Predicted by FEA (shown in red)
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Figure 3-16: Plastic Hinge at Midheight (Column 2)
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Figure 3-18: Failure Progression in Column 3
(a) Yielding begins in the deteriorated flange.
(b) Yielding progresses in the deteriorated flange.
(c) Local buckling in deteriorated flange, yielding extends to web.
(d) Undeteriorated flange yields and buckles.
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Figure 3-19: Comparison of Curvature Predicted by FEA to Test Data (Column 3)

Weak-Axis Midheight Deformation (mm)
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ELEVATION STRAIN GAUGE LOCATIONS

Figure 3-21: Strain Gauge Locations on Column 2 Relative to Failed Shape

e (mm/mm)

Figure 3-22: Strain Gauge Data for Column 2 (Left Flange)
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e (mm/mm)

3-23: Strain Gauge Data for Column 2 (Right Flange)

F ig u r e  3 -2 4 :  C o m p a r iso n  o f  W e a k  A x is  M id h e ig h t  D e fo r m a tio n  P r e d ic te d  b y  F E A  to  T e s t  D a ta  (C o lu m n  2 )



A
xi

al
 L

oa
d 

(k
N

)

70

Figure 3-25: Comparison of Weak Axis Midheight Deformation Predicted by FEA to Test Data (Column 3)
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Table 3-1: Summary of Test Specimen Geometry and Flange Deterioration (dimensions in m m )
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Table 3-2: Summary of Test Data

Specimen C am b er
(mm)

Sweep
(mm)

/y F Ia n g e
(MPa)

P fea
m

P,
m

P

Column 1 
(Pilot) 0.5 l.i 365 1150 1090 0.948

Column 2 0.1 0.5 368 652 653 1.002

Column 3 0.8 1.1 368 692 710 1.026

Column 4 0.5 1.0 365 641 664 1.036

Column 5 1.0 0.6 380 719 749 1.042

Mean= 1.010

Std. Dev. = 0.038

CoV = 3.8%

Table 3-3: Material Data from Tensile Coupon and Stub Column Tests

Tensile Coupons S tub  Colum ns

Specim en Flange Fy
(M P a)

Web Fy
(M P a)

Average
Fy
(M P a)

Max <rf
(M P a)

<*r
Fy

Column 1 
(Control) 365 364 370 40 10.8%

Column 2 368 371 111 33 8.9%

Column 3 368 371 372 33 8.9%

Column 4 365 364 370 40 10.8%

Column 5 380 394 378 25 6.6%
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CHAPTER 4: SENSITIVITY ANALYSIS

4.1 INTRODUCTION

The objective of the research reported in this chapter is to determine the sensitivity of the 

compressive strength of a simply supported steel W-shape column to several geometric 

parameters that quantify flange section loss caused by corrosion. In this case, 

compressive strength is defined as the maximum load that the column can withstand, 

after which either excessive deflections cause column instability or section yielding 

prevents the member from resisting further compressive loading. As shown in Figure 

4-1, the dimensional variables that will be examined in the sensitivity study are: extent of 

flange loss (1 - t * / t 0) , where /* is the thickness of the deteriorated flange and t0 is 

thickness of the original flange; length of deterioration (L *); distance of the corroded 

region from the column midpoint (y*); and, initial out-of-straightness in the weak axis 

direction (<5). Table 4-1 summarizes the ranges of each parameter, selected to clarify how 

the critical local buckling load and primary failure mechanism (yielding, local buckling, 

intermediate column buckling, or Euler buckling) are influenced. The cross section 

aspect ratio (d/b), the ratio of the flange area to web area (Af  / Aw) , and symmetric versus

non-symmetric flange losses will also be investigated. As shown in the reference 

sketches to the left of Table 4-1, symmetric flange loss represents uniform corrosion of 

both flanges whereas unsymmetric flange loss represents uniform corrosion of a single 

flange only. The ranges of parameters investigated do not necessarily reflect realistic
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conditions that may be encountered in a typical bridge, but are exaggerated to explore the 

underlying mechanics behind local buckling failures.

4.2 SE N SIT IV ITY  ANALYSIS RESULTS

Although the sensitivity analysis has been carried out for a W 150x30 shape with a yield 

strength, Fy, of 350 MPa, the results presented in this section are expressed as much as 

possible in dimensionless form, to be more broadly applicable. The W 150x30 has an 

overall depth, d, of 157 mm, a flange that is 153 mm wide by 9.3 mm thick, and a web 

thickness, w, of 6.6 mm. Linear variations of residual stresses in the flanges and web, as 

shown in Figure 2-3, with maximum values of 0.3Fy are assumed.

4.2.1 E xten t o f F lange Section Loss

Flange section losses of 0% (0 mm), 25% (2.33 mm), 50% (4.65 mm), 62.5% (5.81 mm), 

and 75% (6.98 mm) were considered. These losses cause flange width-to-thickness 

ratios, 6/2/*, to vary from 154/  yjF^ to 6\4/^F~y as shown in Table 4-2. The limits

given in CAN/CSA S6-06 (CSA 2006) and CAN/CSA S I6-09 (CSA 2009) indicate that 

shapes with 6/2/ * > 200/ F̂~y should not be expected to achieve the yield capacity of the

flange but will fail by local buckling. Local buckling might therefore be expected to 

govern the capacity of sections with 25% or more flange section loss.

Neglecting the dotted lines, Figure 4-2 illustrates the sensitivity of the axial capacity to 

flange section loss for a W 150x30 column with a 200 mm length of local deterioration on 

both flanges at mid-height. Clearly, localized changes in flange thickness can have a 

significant impact on compressive strength, particularly for low slenderness ratios.
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Strength loss is relatively less at higher slenderness ratios, and the axial capacity tends to 

converge to that of the undeteriorated column, except when flange section loss is 75%, 

the worst case examined. Such extreme cross-sectional losses cause local buckling to 

occur at loads that are less that the Euler buckling load of the undeteriorated column 

because the applied stress is markedly amplified in the region of deterioration.

Table 4-3 compares global and local deformed shapes at failure of columns with a 

constant flange section loss of 50% for various slenderness ratios. The primary failure 

mechanism tends to transition from local buckling to Euler buckling as the column 

slenderness ratio increases from 15 to 172. Stocky columns exhibit large local buckling 

deformations at failure in the deteriorated region but do not appear to have significant 

global buckling deformations. Slender columns, on the other hand, appear to fail mainly 

by elastic buckling with very little local deformation. The effect of flange section loss on 

buckling capacity and failure mode is best described by looking at slender columns, 

stocky columns and intermediate columns separately.

Slender Columns

The axial capacity of slender columns with local deterioration tends to converge to that of 

the underiorated column because Euler buckling occurs when the applied stress is much 

less than the critical local buckling stress. Table 4-4 compares the deformed shapes at 

failure of slender columns having slenderness ratios k L /r  = 159, where kL is the 

effective length and r is the radius of gyration, with varying flange section losses. The 

degree of deterioration can affect both the load and slenderness ratio at which Euler- 

dominated buckling failure occurs. Symmetric flange section loss of 25% causes a
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reduction in axial capacity of only 3% compared to that of the undeteriorated column. 

However, for the worst case of 75% symmetric flange section loss, the compressive 

resistance is only 59% of that of the undeteriorated column. As confirmed by the local 

deformation for this member shown in Table 4-4, local buckling contributes to the 

reduction of axial capacity. As the flange loss increases, the local buckle becomes more 

defined, particularly for the cases of 62.5% and 75% flange loss shown, and the column 

fails essentially by local buckling before Euler buckling occurs.

In general, very slender members fail by Euler buckling because critical stresses are too 

small, even in the reduced cross sections, to cause local buckling unless the flange is very 

severely deteriorated.

Stocky Columns

Stocky columns subject to localized deterioration also have reduced axial resistances. In 

general, stocky columns with localized deterioration fail by yielding or local buckling, 

depending on the severity of section loss. The deformed shape of stocky columns at 

failure suggests that this decrease in capacity is largely due to local buckling. This can be 

seen in Table 4-3: clearly significant local deformations occur at failure in columns with 

low slenderness ratios (e.g. kL / r = 15 and kL / r = 41).

At the left edge of Figure 4-2, the failure load of stocky columns determined by FEA, 

shown by the solid lines, are compared with the yield capacity of the reduced cross 

section, Cy, shown by the dotted lines for 0 < kL / r < 20. The Cy value is computed as:
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[4.1] Cy =AdFy

where: Ad is the reduced cross-sectional area [mm2]

Clearly, there is little difference between the value computed using Eq. [4.1] and the 

FEA-predicted failure load until the flange loss is between 50% and 62.5, where the 

difference jumps from 1.7% to 8%, as noted in the table in the comer of Figure 4-2. This 

indicates that while local buckling deformations may occur, they do not significantly 

decrease the axial capacity of stocky columns until the section loss becomes quite severe 

(i.e. in this case: 0.50 < t * lt0 < 0.375).

Figure 4-3 examines several additional points in this region and compares flange section 

loss to the percent-difference between FEA-predicted failure loads and Cy. Local 

buckling does not reduce axial capacity by more than 5% until the flange section loss 

exceeds approximately 60%. This corresponds to a width-to-thickness limit of 

380 / yfp\ or nearly double the limit for columns that develop the yield capacity of the

flange. If the width-to-thickness ratio of the deteriorated flange exceeds this limit, local 

buckling further reduces the yield capacity of the reduced cross section.

Similarly, Figure 4-4 shows flange section loss variation with the ratio £max/i* , where 

^  is the maximum local buckling displacement at failure perpendicular to the flange 

and /* is the thickness of the reduced flange. The method for determining dmax is shown 

in Figure 4-5: it is the maximum amplitude of the buckle measured from the original 

centreline of the undeformed flange. The limiting ratio that corresponds to 60% flange
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loss is dmm/t*  = 0.45 . This ratio gives a quantitative guideline for identifying when local 

buckling may contributing to the reduction of axial capacity. It may not be useful in 

practice because loading approaching the failure load may cause dmax to escalate quickly.

Intermediate Columns

Table 4-5 shows the failure progression of a W 150x30 column with an intermediate 

slenderness ratio of 80.5 and 75% symmetric flange loss. The initial uniform curvature at 

P /  Pfea = 0 is created by thermal loading as described in Chapter 2 to simulate sweep. 

At low loads, e.g. P /P FEA% 0.56 , the global deformed shape exhibits relatively uniform 

curvature and resembles that of early Euler buckling. However, at higher loads, local 

buckling at mid-height causes an unstable global plastic mechanism to develop. At 

failure, the deformed shape of the column consists essentially of two tangents that 

intersect at the local buckle at mid-height. Thus, intermediate columns can initially fail 

by local buckling which creates a plastic hinge at mid-height causing global inelastic 

instability.

Summary

The axial capacity of columns with flange deterioration is very sensitive to the changes in 

flange loss for both stocky and intermediate columns but not necessarily for slender 

columns, unless the extent of deterioration is particularly severe.

Local buckling does not begin to significantly decrease axial capacity until the flange 

width-to-thickness ratio reaches 380 / Jp\, even though local deformations are observed 

in failed columns with a lower width-to-thickness ratio. Additionally, when analyzing
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the FEA results, local buckling can be deemed to reduce the axial capacity when 

<?_//*;> 0.45.

4.2.2 Sym m etry  o f F lan£e Section Loss

The effect of symmetric and non-symmetric flange losses was examined concurrently 

with the extent of flange section loss (1 - t * / t 0). Figure 4-6 shows how the axial capacity 

is affected by uniform flange losses across the width of one (non-symmetric) or both 

(symmetric) flanges of 25%, 50% and 75% of the flange thickness. As expected, as the 

extent of flange section loss increases, the capacity is more sensitive to the absence of 

symmetry. For the case of 75% flange section loss, the axial capacity of the section with 

symmetric flange loss is as much as 38% less than the capacity of the section with non- 

symmetric flange loss. For cases with less flange section loss, this difference reduces: for 

example, the column with 25% symmetric flange loss is only a maximum of 7% weaker 

than the column with 25% non-symmetric flange loss.

Non-symmetric flange loss increases the axial capacity because the reduction in cross- 

sectional area is only half that for symmetric flange loss. As shown in Figure 4-7, 

however, the relationship between strength gain and symmetry is complex because non- 

symmetric section loss introduces torsion that is magnified as buckling progresses. As 

demonstrated by test Column 3, in Figure 3-25, the response is even more complex 

because strain hardening can produce a post-local-buckling strength peak that is not 

captured by the FEA model.
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Due to the complexity of including torsion in an evaluation procedure, and the 

unlikelihood of extremely severe corrosion progressing unnoticed in steel bridge 

compression members, only the case of symmetric flange loss will be further 

investigated. This is conservative because the symmetric loss case provides a lower 

bound on the capacity of a member with non-symmetric flange losses.

4.2.3 L ength  o f D eterioration

Figure 4-8 shows how the axial capacity is affected by the length of deterioration (Z,*). A 

W150x30 column with flange loss centered at the midpoint was analyzed with lengths of 

deterioration of: 0 mm, 50 mm, 100 mm, 200 mm, 400 mm and full column length. The 

axial capacity is not particularly sensitive to the length of deterioration for very stocky 

and very slender columns, however, capacity loss becomes more evident for intermediate 

slendernesses, in this case when 40 ^  kL/r < 100.

The worst case examined, L*=L, is meant to simulate uniform corrosion over the full 

length of the member. When kL /r <30, the axial capacity converges to the crushing 

capacity of the deteriorated cross section given by Eq. [4.1]. As expected, when 

kL /r  >30, the axial capacity is further reduced because uniform flange corrosion 

reduces the second moment of area of the entire column, and thus, decreases the critical 

Euler buckling load.

Because typical steel bridge compression members generally have slenderness ratios that 

fall in the intermediate range, L* should be taken into consideration when evaluating 

localized deterioration. Long sections of deterioration should be treated as uniform 

corrosion over the full length of the column.
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4.2.4 D istance from  C orroded  Region to C olum n M idpoint

Figure 4-9 shows how the distance from the centroid of the deteriorated region to the 

column midpoint (y*) affects axial capacity. W 150x30 columns with relative distances 

of y* equal to 0Z,, LI8, and LI4 were considered. For stocky columns, where failure is 

largely governed by the yield capacity of the reduced cross section, the location of

deterioration along the length of the column has no effect on compressive strength. As
/

expected, for slender and intermediate columns the worst case is when the deterioration is 

centered at the column mid-point. While there is a minor increase in axial capacity for 

slender and intermediate columns as localized deterioration moves away from the column 

midpoint, the column curves align very closely indicating that the axial capacity of the 

deteriorated member is not very sensitive to y*. For the purposes of evaluation it can be 

assumed, slightly conservatively, that deterioration occurs at the column midpoint, y*=0, 

for all cases.

4.2.5 In itial O ut-of-S traightness

Figure 4-10 shows how axial capacity is affected by initial out-of-straightness in the 

direction of weak-axis buckling (d). A W150x30 column with flange deterioration 

centered at the midpoint was analyzed. Two cases of out-of-straightness were examined: 

sweeps of Z-/1000 and Z,/500. Because it is permissible for steel mills to supply rolled 

shapes with a camber or sweep of up to Z/1000 (ASTM 2010), it is unsafe to assume the 

out-of-straightness to be less than Z./1000.

Doubling the initial out-of-straightness can decrease axial capacity as much as 9.3% in 

intermediate columns. The effect of small changes in initial column out-of-straightness
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on axial capacity, however, is minimal which is consistent with current literature (e.g. 

Galambos 1998).

Vehicle collision, pack rust, or other factors could potentially cause such larger initial 

out-of-straightness deflections to occur during the service life of a steel bridge 

compression member. Including out-of-straightness that occurs during the service life of 

a bridge in an evaluation method, however, is beyond the scope of this research study 

because other factors, such as local yielding and non-uniform deformation, complicate 

the analysis. If such distress is observed during an evaluation, a more detailed analysis is 

necessary.

4.2.6 Cross-Section A spect R atio

The W 150x30 section used throughout the sensitivity analysis has an aspect ratio roughly 

equal to 1.0. While most W-shapes used as columns are roughly square, the d/b ratio 

may vary and the effect on local buckling should be investigated. Figure 4-11 shows the 

custom cross section used in the analysis, which was created by modifying a W150x30 

such that the modified cross section had the same cross-sectional area but d /b  = \.5, 

which is the upper limit for column shapes listed in the CISC "Handbook of Steel 

Construction" (CISC 2010). The cross-sectional width, b, remains constant, as does the 

geometry of the localized deterioration. The width-to-thickness ratio of the modified web 

is: h l w - 9 \ l / ^ F ry , and while this is greater than the Class 3 limit given in CAN/CSA

S6-06 (CSA 2006) of h / w  < 670/^F ^ , no local deformation in the web was observed 

throughout the FEA of the modified cross section. The reasoning for this is twofold:
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1. The local buckling limits specified in S6-06 are conservative with respect to the 

FEA predictions. As stated in Section 4.2.1, while the Class 3 limit for flanges is 

b/2t < 200/ jF y , local buckling did not decrease axial capacity determined by

FEA until b/2t = 380/ j F ÿ  .

2. The increased flange slenderness in the region with localized deterioration causes 

the flange to be 47% more slender than the Class 3 limit, while the modified web 

is only 27% more slender than the Class 3 limit. Therefore, it can be assumed that 

the flange would attract a local buckle before the web.

Figure 4-12 shows how axial capacity is affected by the aspect ratio (d/b) of the cross 

section. Clearly it can be seen that changing the aspect ratio of a cross section does not 

affect axial capacity. Therefore, the simplified general conclusions of the sensitivity 

analysis are applicable to typical W-shape columns, irrespective of their d/b ratio.

4.2.7 R atio o f F lange A rea to W eb A rea

The ratio of the flange area to web area {A j/ Av ) for the W 150x30 section used 

throughout the sensitivity analysis is 3.1. To ensure that the conclusions obtained in the 

sensitivity analysis are valid for a variety of W-shapes, the effect of Af / Aw of the 

undeteriorated cross section on the axial capacity was investigated for both slender and 

stocky columns independently. Figure 4-13 shows the distribution of Af jA v for W- 

shape columns that may be prone to local buckling given 25% section loss. In general, as 

the gross cross-sectional area increases, so too does Af  /  Aw . The mean ratio of flange to 

web area is 3.4 with a coefficient of variation of 12.2%, with a maximum of 3.8 and a
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minimum of 2.5. The study presented in this section will examine 2.5 < Af  / Aw < 4.0,

however, 13 out of the 15 columns shown have a flange to web area approximately equal 

to or greater than that of a W 150x30.

Figure 4-14 shows the effect of Af■/A^ on the axial capacity of stocky columns 

(kL/r = 15). To isolate the effect of local buckling, the axial capacity predicted by FEA, 

C fea, is normalized by the yielding capacity of the net cross section, Cy, and plotted 

against the ratio t* /t0. For flange section losses where t*/t0 = 0.38, the effect of local 

buckling is less pronounced for W-shapes with larger flange-to-web area ratios. As the 

flange section loss progresses (t */t0 <0.38), CFEA/C y converges for all ratios of flange

to web area. This is consistent with Section 4.2.1 where it was shown that local buckling 

does not significantly reduce Cy until the width-to-thickness ratio of the deteriorated 

flange exceeds 380 / yJ~F/ ■ Therefore, the data obtained from a W150x30 column would

be slightly conservative for stocky columns with Af /A W>3A.

Figure 4-15 shows the effect of Af  / A^ for slender columns (kL /r = 159). To isolate the

effect of local buckling, C fea is normalized by the axial capacity of the undeteriorated 

column C0. Clearly, the flange to web area has no significant impact on the axial 

capacity reduction caused by localized deterioration unless the flange section loss is

particularly extreme, i.e. t*/t0 < 0.25.
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4.3 SUM M ARY

Table 4-6 summarizes variables that will be included in the simplified evaluation 

technique presented in Chapter 5. They are based on conclusions made during the 

sensitivity analysis, which are summarized below.

The axial capacity of columns with local deterioration is very sensitive to the extent of 

flange loss for stocky and intermediate columns. Slender columns tend to be dominated 

by Euler buckling at failure except when the severity of flange loss becomes especially 

severe, as seen for the cases of 62.5% and 75% flange loss on a W150x30. While the 

axial capacity of stocky columns decreases for all cases of flange loss examined, the 

difference between the theoretical crushing capacity of the deteriorated cross section and 

the failure load determined by FEA does not deviate significantly until the flange loss on 

a W150x30 exceeds 60%. This infers that local buckling does not adversely affect axial 

capacity of stocky columns until the width-to-thickness ratio exceeds 380 / \ ■

Columns with localized deterioration may exhibit some local buckling deformation 

without a reduction in axial capacity. For a W150x30 column made from Grade 350 

steel, this is true for flange losses less than 60%. This relationship can be further 

identified in the FEA when the ratio of the maximum deflection of the local buckle to the 

remaining thickness of the deteriorated flange is less than 0.45. If such conditions are 

present, the axial capacity is not significantly reduced by local buckling.

Columns with non-symmetric deterioration have increased strength compared to those 

with symmetric deterioration because less steel is removed from the cross section. Such
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columns exhibit torsional deformations as they buckle and due to the complexity of 

including torsion in a simplified analysis, symmetric deterioration can conservatively be 

assumed.

The axial capacity of columns with local deterioration is sensitive to the length of 

deterioration L*, so this variable should be included as a parameter in the proposed 

evaluation procedure. If L* is especially long uniform loss along the entire length of the 

member should be assumed.

The axial capacity is not sensitive to the distance from the mid-height of the column to 

the deteriorated region, y*. For the purposes of the proposed evaluation, it should be 

assumed that the deterioration is centered about column midpoint.

Although very large initial column out-of-straightness can affect axial capacity, it is not 

likely to occur in a bridge compression member except under extenuating circumstances 

which are beyond the scope of this research. Therefore, the proposed simplified 

assessment method will assume the worst case permitted by ASTM A6/A6M-10,1/1000. 

If an inspection reveals a greater out-of-straightness, a more detailed assessment will be 

required.

The axial capacity is not sensitive to the aspect ratio of the cross-section. Furthermore, 

the reduction in axial capacity caused by deterioration is not sensitive to the ratio of the 

flange to web area of the cross section for stocky or slender members unless the 

flange section loss is very extreme (t*/t0 >0.63). Therefore, the proposed simplified
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assessment method will be applicable to all W-shape columns regardless of d/b and for

2.5 < A f / A w < 4 .0 .
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Figure 4-3: Percent Difference between Axial Capacity Determined Using FEA (Pfea) and the Theoretical 
Crushing Capacity (Cy) for Stocky Columns with Varying Flange Loss
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F ig u r e  4 -4 : R a tio  o f  th e  M a x im u m  D isp la c e m e n t o f  th e  L o c a l B u c k le  (¿m(iX) to  th e  T h ic k n e s s  o f  th e  R e d u ce d
F la n g e  ( /* )  fo r  V a r y in g  F la n g e  L o ss

[
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Figure 4-5: Method for Determining S max
(a) Deformed Shape after Failure
(b) Measurement of Smax

kUr

i
j

F ig u r e  4 -6 : S e n s it iv ity  o f  A x ia l  C a p a c ity  to  S y m m e tr ic  a n d  N o n -S y m m e tr ic  F la n g e  D e te r io r a t io n  (W 1 5 0 x 3 0 ,
f* /fo= 0 .5 , L * = 2 0 0  m m ,y * = 0 ,  <5=L/1000)
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Figure 4-7: Torsional Rotation Caused by Non-Symmetric Corrosion
(a) Elevation
(b) Section A-A
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Figure 4-8: Sensitivity of Axial Capacity to L *  (W150x30, Symmetric Deterioration, /*//o=0.5, y * = 0 L , ¿=Z,/1000)
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Figure 4-9: Sensitivity of Axial Capacity to y *  (W150x30, Symmetric Deterioration, t*/t0= 0.5, ¿*=200 mm, 
¿=¿71000)

F ig u r e  4 -1 0 : S e n s it iv ity  o f  A x ia l C a p a c ity  to  d  (W 1 5 0 x 3 0 , S y m m e tr ic  D e te r io r a t io n , t* /t0= 0 .5 ,  L * = 2 0 0  m m ,
y * = 0 L )
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1=9.3

As = 3790 mm2

d /b  = 1 . 0  (a)

As = 3790 mm2

d /b  = 1.5 (b)

Figure 4-11: Cross-sectional Properties Used in Aspect Ratio Sensitivity Analysis
(a) Original W 150x30 {d /b -1.0)
(b) Modified Cross Section (d/b= 1.5)
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k U r

Figure 4-12: Sensitivity of Axial Capacity to Aspect Ratio of the Column Cross Section (Symmetric 
Deterioration, t*/ t0= 0.5, L*=200 m m ,y * = 0 L y <5=1/1000)
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Gross Cross-Sectional Area, A (mm2)

Figure 4-13: Ratio of Flange to Web Area for W-Shape Columns Prone to Local Buckling

F ig u r e  4 -1 4 :  S e n s it iv ity  o f  th e  A x ia l C a p a c ity  o f  S to c k y  C o lu m n s  to  A / A w (W  1 5 0 x 3 0 , S y m m e tr ic  D e te r io r a t io n ,
L * = 2 0 0  m m , y  *=0L, kL /r=  15)
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t * / t 0

Figure 4-15: Sensitivity of the Axial Capacity of Slender Columns to A / A w(W  150x30, Symmetric Deterioration, 
¿*=200 n tm ,y * = 0 L , k U r=  159)



T a b le  4 -1 :  P a r a m e te r  M a tr ix

CONSTANTS

VARIABLES 1 -t*lt0 L*
(mm)

J*
{mm)

s
{mm) d/b A f/  Aft, Symmetry # of Column 

Curves

l-t*/t0 (%): 
Symmetric 

{0, 25, 50, 62.5, 75}
200 0 L L/1000 ~1.0 3.1 5

\-t*/ta (%): Non- 
Symmetric 

{0, 25, 50, 75}
200 0 L Z/1000 ~1.0 3.1 4

L * (mm)
{0, 50, 100, 200, 

400, L}
50% 0 L L/1000 ~1.0 3.1 Symmetric 6

y* (mm) 
{0L, L/8, L/4} 50% 200 L/1000 ~1.0 3.1 Symmetric 3

S (mm)
{L/1000, L/500} 50% 200 0 L ~1.0 3.1 Symmetric 2

d/b
{~10, 1.5} 50% 200 0 L L/1000 3.1 Symmetric 2

A f/ Aw
{2.5,3.1,4.0}

{25%, 50%, 
62.5%, 75%} 200 0 L L/1000 ~1.0 Symmetric 6

I  = 28
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Table 4-2: Flange Section Loss as a Function of Yield Strength

Flange Section Loss R em aining Flange Flange
W idth-to-Thickness

0% 9.3 mm
b  _ 153.9

2 , ~ JK
25% 6.98 m m

b 205.0 

2

50% 4.65 m m
b _  307.8 

2 l ~ ^

62.5% 3.49 m m
b 410.1

2 , ~  ^
75% 2.33 m m II

$¡1
? 1 to
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Table 4-4: Deformed Shapes of Slender Columns (kL/r=  159) with Varying t*/t0 after Failure
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Table 4-6: Summary of Sensitivity Variables to Include in Analysis

Variable Significant Effect on 
Axial Capacity?

Include in Simplified 
Evaluation Procedure?

Flange Loss 
(l-t*/t0) Yes Yes

Symmetry Yes
No:

Difficult to accurately account 
for torsion. Assume symmetric.

Length of Deterioration
(LV Yes Yes

Distance of Deterioration 
from Column Mid-point

&*)
No

No:
Assume centered at column mid

point.

Initial Out-of-Straightness
0 )

No
No:

Assume ¿/1000 unless damage 
observed.

Aspect Ratio
(d/b) No No

Ratio of Flange Area to 
Web Area No No
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C H A P T E R  5: S IM P L IF IE D  ASSESSM ENT O F C O R R O D ED  STEEL

C O M PRESSIO N  M EM BERS

5.1 IN T R O D U C TIO N

Though CAN/CSA S6-06 (CSA 2006) requires evaluators to account for deterioration 

caused by corrosion, it fails to provide guidance for calculating the axial capacity of 

compression members with deteriorated flanges that do not satisfy the Class 3 local 

buckling limit. The numerical techniques presented in Chapter 2 have been shown in 

Chapter 3 to be accurate but are too time consuming for design-office use. Therefore, the 

primary objective of the research reported in this chapter is to formulate a simplified 

assessment procedure for steel bridge compression members with corroded flanges that 

may be susceptible to local buckling, based on the research findings presented in 

Chapters 3 and 4. As a secondary objective, the accuracy of the CAN/CSA SI 6-09 (CSA 

2009) provisions for assessing the capacity of W-shapes with Class 4 flanges will also be 

investigated.

In this chapter: necessary parameters for the simplified assessment method are identified; 

the method is introduced and illustrated using several examples; the analysis of Class 4 

members using CAN/CSA SI6-09 is investigated; and realistic maximum limits of 

deterioration are discussed. Finally, the capacities of W-shapes with deteriorated flanges 

as determined using Finite Element Analysis (FEA), CAN/CSA SI6-09, and the 

proposed simplified assessment method are compared. The FEA methodology presented 

in Chapter 2 has been thoroughly validated in Chapter 3, so the FEA results will serve as
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the gold standard when evaluating the accuracy of capacities determined using the 

simplified assessment method and CAN/CSA SI6-09.

5.2 S IM P L IF IE D  ASSESSM ENT M ETH O D

5.2.1 Iden tification  o f Key P aram eters

As previously shown in Table 4-6, the most critical factor affecting the axial capacity of 

columns with local flange deterioration is flange section l o s s , ( l - / * / 0 ’ where t* is the

remaining thickness of the deteriorated flange and t0 is the undeteriorated flange 

thickness. Additionally, the length of deterioration, L*, also affects axial capacity, 

especially when it approaches the full column length, as shown previously in Figure 4-8, 

as is typical for the case of uniform corrosion.

The data points in Figure 5-1, derived directly from the sensitivity analysis data presented 

in Chapter 4, show the variation of the reduced axial capacity, Cj, shown as a fraction of 

the original axial capacity, Cs6, with the column weak-axis slenderness ratio, kL/r, for 

flanges with varying width-to-thickness ratios. The dashed lines on the figure show 4th- 

order polynomials fit to these data. Irrespective of the slenderness ratio, increasing the 

width-to-thickness ratio dramatically reduces axial strength, and thus the degree of flange 

section loss is a critical variable that controls the reduced axial capacity. The strength 

loss is particular significant for relatively stocky columns with kL/r  < 60.

The data points in Figure 5-2, also derived from the sensitivity analysis data, show the 

variation of the normalized reduced axial capacity with kL/r for columns with varying 

L*/b. The dashed lines on the figure show 4th-order polynomials fit to the data for
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L*/b = \.3 and 2.6, and L * ~ L . It is appropriate to normalize the length of 

deterioration, L*, using the flange width, b, because as noted in Section 2.6, the length of 

the typical local buckle is proportional to the half flange width. The ratio of the reduced 

axial capacity to the benchmark axial capacity exceeds 1.0 if the normalized deteriorated 

length L*/b is less than 1.3 because the W 150x30 column used as the benchmark case in 

the sensitivity analysis had L* = 200mm, b = \53mm so L * /b - \ .3 .  For slender 

columns with kL/ r  ^  80, long lengths of deterioration can significantly reduce the axial 

capacity while changes in the width-to-thickness ratio have less impact. Clearly, the 

axial capacity of columns with deteriorated flanges prone to local buckling can only be 

accurately captured if both the flange width-to-thickness ratio and the normalized length 

of deterioration are considered. As a simplification, deteriorated lengths of L*/b= 1.3, 

L*/b=2.6 and L*=L will be used as bounds for actual deteriorated lengths when deriving 

the simplified assessment procedure.

The proposed assessment method will therefore provide two reduction factors that 

account for flange section loss and the length of deterioration independently.

5.2.2 Proposed  M ethod

The simplified equation to allow engineers to quickly assess the reduced capacity of 

deteriorated compression members is:

[5.1] C(/=¥/ x /2 xCS6

but
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[5.2] Cd < AdFy

where: Cd = nominal axial capacity of the deteriorated column

F  = Factor accounting for the increased width-to-thickness ratio b/2t *

Q  = Factor accounting for the length of deterioration L *

Ad -  Reduced cross-sectional area in the deteriorated region 

and the nominal capacity of the undeteriorated column, Cs6, is:

[2.2] Csi = AFy{ 1 + A2’ )1' '

The inequality shown in Eq. [5.2] requires that the nominal capacity of the deteriorated 

column cannot be taken larger than the yield capacity of the deteriorated cross section. 

Both F  and Q  are functions of the column slenderness ratio and are determined 

empirically using the design charts presented in the next section.

5.2.3 Design C h arts

This section presents design charts that may be used to determine F  and Q , for use in 

Eq. [5.1]. For cases of very localized deterioration, ¿2 = 1.0 and the axial capacity is 

reduced only by F . For cases of deterioration along a greater length of the column, 

¿2 < 1.0, and so further reduces the axial capacity.

Figure 5-3 shows the reduction factor F  for width-to-thickness ratios, b /2 t* , ranging 

from 205/ -jFy to 4 \ o / , as derived from the sensitivity analysis data shown in
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Figure 5-1. The equations of the 4th order polynomials shown are given in Appendix A3. 

Knowing of the deteriorated flange and the column slenderness ratio, kL/r,

*F is obtained directly.

Figure 5-4 is the design chart for the reduction factor, ¿2, that accounts for the length of 

deterioration, L*, as derived from the sensitivity data shown in Figure 5-2. The equations 

for the curves shown are given in Appendix A3. The factor has been quantified for cases 

of localized deterioration where L*/b<  1.3 and ¿2 = 1.0, and deterioration along a 

greater length of the column, L*/b>  1.3and Q  < 1.0. The assumption that L*/b>  2.6 

is equivalent to uniform deterioration over the entire length of the column is conservative, 

but represents the lower bound on Q .

While the majority of the data obtained in the sensitivity analysis were for a W150x30 

cross section, geometric changes to the ratio of the flange area to the web area, Af  /  Aw

and the aspect ratio, d /b , did not significantly affect axial strength. To further facilitate 

the assumption that this data can be applied to a broad selection of W-shapes, however, a 

number of deteriorated columns with varying cross sections will be compared with new 

FEA results in Section 5.4.2.

5.2.4 A ssessm ent P rocedure

The following procedure is envisaged for evaluators using the simplified assessment 

method:

1. Determine the remaining thickness of the deteriorated flange, t*.
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2. Quantify the length of deterioration, L*, as that which would contain the 

entire corroded region.

3. Verify the flange width and length of the column.

4. Determine the nominal yield strength of the steel, perhaps using the 

provisions of Clause 14 of CAN/CSA S6-06 (CSA 2006).

5. Compute the column slenderness ratio, kL/r , assuming no deterioration is 

present.

6. Compute (¿>/2t*)^F^ and obtain IF from Figure 5-3.

7. Compute L*/b and obtain Q  from Figure 5-4.

8. Compute the nominal strength of the undeteriorated column using 

Eq. [2.2],

9. Compute the reduced nominal strength of the deteriorated column using 

Eqs. [5.1] and [5.2].

5.2.5 Exam ple C alculations

Exam ple 1: W 310x90 W ith  Localized Flange D eterioration

Figure 5-5a shows a W310x79 column rolled from Grade 350W steel with localized 

deterioration over a 200 mm length of one flange as shown. Using the simplified 

assessment method, the nominal reduced capacity of the deteriorated column is computed 

as follows:

1. The corroded region is thoroughly wire-brushed and cleaned and the minimum 

undeteriorated flange thickness, t*, is measured as 11 mm.
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2. The corroded region can be fully enclosed in the rectangle shown by the dashed lines

that has a vertical dimension, L*, of 200 mm.

3. The flange width, b, is measured as 254 mm and the column length, L, is measured 

as 3150 mm.

4. The nominal yield strength, Fy, is determined to be 350 MPa.

5. The column slenderness ratio is computed for weak-axis buckling of the 

undeteriorated cross section, with ry= 63 mm. kL/r = 1.0x3150 mm/63 mm = 50.

6. The width-to-thickness constant is computed as 

(6/2/*) .^7^" = 254 m m /(2x \ 1 mm)y/350 MPa = 216

For this value, is obtained by interpolation on Fig. 5.3 as 0.87.

7. The L*/b is computed as 200 mm/254 mm = 0.8. For this value, from Fig 5.4,

¿2 =  1.0 .

8. The nominal strength of the undeteriorated column is computed. First, the 

slenderness parameter X is determined:

[2.3]

[2.3a]

For this value, from Eq. [2.2], for ,4 = 10100 mm2 and «=1.34:

-l
[2.2a] CS6 =10100 wm2 x 350 MPa[l + 0.666(2xl34)] '34
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= 2850xl03 N  = 2S50kN

9. The reduced nominal strength of the deteriorated column, Q , is calculated, using Eq. 

[5.1 ] as: F  x Q x  CS6 = 2850 kN x 0.87 x 1.0 = 2480 k N . Next, the yield capacity of 

the deteriorated cross section, assuming symmetric deterioration, is computed using 

Eq. [5.2]. For a flange section loss of (14.6 mm — 11.0 wm) = 3.6 mm), the area at

the deteriorated section is Ad = (\0\00 mm2-2 x 2 5 4  mmx3.6 mm} = 827\mm2. 

Thus,

AdFy = (8271 mm2 x350xl0~3 kN/mm2  ̂= 2895 kN and, because this exceeds the 

value calculated using the two factors from Steps 6 and 7, C d = 2480 k N .

Exam ple 2: W 310x79 W ith  U niform  Flange D eterioration

Figure 5-5b shows the same W310x79 column considered in Example 1 except that the 

length of the deterioration, L*, is now 2300 mm. Using the simplified assessment 

method, the nominal reduced capacity of the deteriorated column is computed as it was in 

Example 1 except:

2. The corroded region can be fully enclosed in the rectangle shown by the dashed lines 

that has a vertical dimension, L*, of 2300 mm.

7. The L*/b is computed as 2300 mm/254 mm = 9.1. For this value, from Fig 5.4,

Q  = 0.85.
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9. The reduced nominal strength of the deteriorated column, Cd, is calculated as: 

!P x i3 x C S6 = 2850 kN x  0.87x0.85 = 2110 kN . As in Example 1, the yield capacity 

of the deteriorated cross section is computed as AdF  = 2895 kN  and, because this

exceeds the value calculated using the two factors from Steps 6 and 7, 

C d =2110Ar7V

5.3 CAN/CSA S I6-09 PR O C ED U R E FO R  EV A LU A TIN G  COLUM NS W ITH  

C LA SS 4 FLA N G ES

CAN/CSA S I6-09 (CSA 2009) provides two methods for evaluating columns with Class 

4 flanges. Based on the Class 3 width-to-thickness limit of 200j^F~y , the evaluator may 

compute a reduced equivalent yield strength, (F  ) :

[1.3] (FX 400

Where b* is the net flange width and /* is the net flange thickness. Alternatively, the 

evaluator may compute a reduced equivalent flange width, beq.

[1.4] 400/*

and recomputed geometric properties based on this reduced width. As described in 

Chapter 1, the resistance obtained using (Fy)eq will likely exceed that obtained using beq

for slender columns, and vice-versa, so the evaluator can use the larger of these two 

resistances. This section explores in detail the difference between the resistances
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computed using these two methods. Significantly, it is assumed using either method that 

the deterioration extends the full length of the column.

Figure 5-6 shows the variation of the nominal capacity of the deteriorated shape, Csi6, 

expressed as a fraction of the nominal capacity of the original undeteriorated column, C0, 

for a Grade 350W W150x30 with 50% symmetric flange section loss, as predicted using 

the two methods. The maximum length shown corresponds to a slenderness ratio of 

approximately 160. In general, reducing b causes the column to be more susceptible to 

global buckling at high slenderness ratios while reducing Fy causes premature yielding at 

low slenderness ratios. There exists a critical length, Lc, where the capacity computed 

using the reduced flange width method exactly equals that computed using the reduced 

yield strength method. As an alternative to computing the capacities based on both 

methods and selecting the larger value, an evaluator could compute Lc and compare it to 

the actual column length L : for L > Lc the larger capacity will be obtained using the

reduced flange width method, Eq. [1.4], and for L < L C the larger capacity will be 

obtained using the reduced yield strength method, Eq. [1.3].

The critical length values for the strong and weak-axis capacities for W-shape columns, 

first derived by Bartlett (2011), are shown in Appendix A4. For weak-axis buckling:

i

[5.3]
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where E is Young’s modulus (200 000 MPa for structural steel), n = 1.34 for rolled W- 

shapes, and:

[5.4] a ~ bA t *

[5.5]
( d - t * ) w  

p  t*2

[5.6]

For strong-axis buckling:

[5.7]

(  2 > a f Y2 Y
4 n  I T \ A a  + p > U r + /? J

( d - t * )

_ \

1
n f  \  

1

Ka  + /X l ;

In practice it may be computationally more difficult to use Eqs. [5.3] and [5.7] than to 

simply compute the capacities based on Eqs. [1.3] and [1.4] and select the larger value.

5.4 C O M PA R ISO N  W IT H  FIN IT E  EL EM EN T ANALYSIS RESULTS

This section examines the accuracy and conservatism of the simplified assessment 

method by comparing it to FEA results and the CSA SI6-09 methods. Before doing an 

in-depth comparison, however, realistic flange section loss needs to be considered so the
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analysis procedure can be adequately validated with cases that are typical of those that 

would likely be experienced in practice.

5.4.1 R ealistic M axim um  Flange Section Loss in B ridge C om pression M em bers

The very wide range of flange thickness losses examined in Chapter 4 included extreme 

cases of 50% to 75% section loss. In practice, it seems likely that the discovery of flange 

section loss in excess of 25% during a routine inspection would trigger some form of 

intervention, either strengthening the compression member or posting the bridge with a 

maximum truck weight restriction. It is unlikely that an assessment method would be 

used to determine the capacity if more severe deterioration was noted, although it would 

be beneficial if the assessment consistently underestimated the capacity for such extreme 

cases, given the uncertainty present. It is therefore worthwhile to identify the W-shape 

cross sections commonly used as columns that would be susceptible to local flange 

buckling if a flange thickness loss of up to 25% occurred. These shapes represent the 

domain of realistic shapes that should be considered in the comparison of the assessment 

methods with the FEA results.

Table 5-1 lists Grade 350W W-shapes specifically referred to as columns in the 

Handbook o f Steel Construction (CISC 2010) that would have a width-to-thickness ratio,

(b /2 t*), in excess of 200j y j j ^  given 25% flange section loss. This list is not 

exhaustive as compression members in older bridges may consist of custom built-up 

sections or obsolete W-shapes. The most slender flange has b /lt*  = 287/^F~y , and 11 of

16 have b/2t* < 2 3 0 / ^ .
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5.4.2 C om parison  of Colum ns Sensitive to C orrosion

This section examines the accuracy of the simplified assessment method for several 

column cross sections with flanges that are particularly sensitive to local buckling due to 

corrosion, listed in Table 5-1. Two independent analyses were conducted:

1. Assuming a maximum realistic flange section loss of 25%, as discussed in 

Section 5.4.1, to determine how accurately the proposed and CSA S16-09 

methods can estimate the axial capacity of realistic deteriorated columns.

2. Assuming a more extreme maximum flange section loss of 50%-63%, to 

ensure the assessment method is sufficiently robust.

In both cases, the reduced axial capacities calculated using the proposed or CAN/CSA 

SI6-09 methods are compared to those predicted using the FEA.

Table 5-2 shows the analysis results of columns with maximum flange deterioration of 

25%. For the 17 cases examined, the ratio of the reduced axial capacity computed using 

the proposed simplified method to the axial capacity predicted by FEA, Cd /  Cfea, have a 

mean of 0.98 and a coefficient of variation of 3.6%. The ratios of the reduced axial 

capacity calculated using CSA SI6-09 to that computed using the FEA (Cs i6 / C fea)  have 

a mean of 0.77 and a coefficient of variation of 7.1%. Clearly, the simplified assessment 

method is less conservative and has less variability than the CAN/CSA SI6-09 criteria 

for determining the axial capacity of W-shape columns with deteriorated flanges.

Figure 5-7 illustrates the conservatism of the procedures in CAN/CSA SI 6-09, compared 

to the previously validated FEA. The vertical axis represents the ratio of the greater of
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the axial capacities computed using the two methods given in CAN/CSA SI6-09 (Csi6), 

i.e. based on Eqs. [1.3] and [1.4], to the axial capacity determined using FEA (C fea)• The 

horizontal axis represents the slenderness ratio, kL/r, and the comparison is made for 

b/2t* as large as 614/  J f^ • As the width-to-thickness ratio of the deteriorated region

increases, the capacities determined using CAN/CSA SI6-09 become increasingly 

conservative. As previously noted, it is unlikely that corrosion would be so severe in 

practice to cause b/2t* > 3 0 0 / .  However, even given moderate section losses that

cause b j21* -  2 0 5 / ,  the CAN/CSA SI6-09 procedures can yield axial capacities that 

are only 77% of those determined using the validated FEA.

Table 5-3 shows the analysis results of columns with more extreme cases of deterioration, 

where the flange section loss exceeds 25%. For the 16 cases examined C¡j/ Cfea has a 

mean of 0.95 and a coefficient of variation of 6.2%. In contrast, Csi6 /  Cfea has a mean 

of only 0.44 and a coefficient of variation of 34%. This further illustrates the inadequacy 

of the S16-09 methods to accurately estimate the reduced axial capacity of columns with 

severe localized flange deterioration.

Changes to the slenderness ratio, width-to-thickness ratio, or L*/b do not significantly 

affect the accuracy of the simplified assessment method. The method becomes slightly 

more conservative, however, for slender members when L*/b> 2.6 because the method 

assumes uniform deterioration along the entire length of the member for these cases. 

Conversely, the S I6-09 methods become significantly more conservative as the width-to- 

thickness ratio increases or L */b decreases.
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While the proposed simplified assessment method is very accurate when compared to the 

FEA, it has some conservatism when used to evaluate the reduced axial capacity of 

corroded bridge members in practice. It is very unlikely that corrosive deterioration 

would occur uniformly in rectangular regions and symmetrically on both flanges, and the 

additional steel not accounted for in the simplified assessment method would increase the 

overall axial capacity of the column. Additionally, any end fixity of the bridge 

compression members being analyzed would further increase the conservatism of the 

proposed simplified method.

5.5 SUM M ARY

This chapter has presented research findings that justify the development and use of a 

simplified assessment method to determine the axial capacity of W-shape columns with 

corroded flanges that are susceptible to local buckling. The simplified assessment 

method uses two design charts that assist the evaluator in determining factors that 

account for the capacity reduction due to flange section loss and deteriorated length. A 

procedure for implementing the simplified assessment method is presented, and 

illustrated with example calculations. Finally, resistances computed using the method are 

compared with actual resistances computed using the validated FEA model and using the 

procedures in CAN/CSA S I6-09 (CSA 2009).

In general, the simplified assessment method is markedly less conservative than the 

procedure given in CAN/CSA SI6-09. For 17 columns with a realistic maximum flange 

section loss of 25%, the mean ratio of the axial capacity of the deteriorated column 

computed using the proposed simplified method to that predicted by FEA, Q /  C fea, is
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0.98 with a coefficient of variation of 3.6%, indicating that the proposed assessment 

method is quite accurate when compared to the finite element analysis. For the same set 

of W-shapes with corroded flanges, the mean ratio of the axial capacity of the 

deteriorated column computed using the methods in CAN/CSA S I6-09 to that predicted 

by FEA, Csiô/ C fea, was only 0.77 with a coefficient of variation of 7.1%.

The conservatism in the CAN/CSA SI6-09 method becomes even more apparent when 

examining more severe cases of deterioration. When examining 16 cases of more 

extreme flange section loss (>25%), the mean ratio: Ç / /  C fea was 0.95 with a coefficient 

of variation of 6.2%, while the mean ratio of Csi6  /  C fea was only 0.44 with a coefficient 

of variation of 34%.
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W310x79
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A -A (a)

to
CMII
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A -A (b)

Figure 5-5: Deteriorated Columns for Example Calculations
(a) Example I (W310x79, f*=l 1, ¿*=200)
(b) Example 2 (W310x79, f*= ll, ¿*=2300)
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Figure 5-7: Conservatism of CAN/CSA S16-09 with Respect to FEA (W150x30, ¿*=200 mm, Symmetric 
Deterioration)
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T a b le  5 -1 :  W -S h a p e  C o lu m n s  S u b je c t  to  L o ca l F la n g e  B u c k lin g  g iv en  2 5 %  F la n g e  T h ic k n e s s  L o ss

Metric
Designation

to
(mm)

—  [f2 /*v y

(given t*/t0 =  0.25)

d/b

W360xl62 21.8 212 1.0

W360xl47 19.8 233 1.0

W360xl34 18.0 256 1.0

W310xl 18 18.7 205 1.0

W310xl07 17.0 224 1.0

W310x97 15.4 247 1.0

W310x79 14.6 217 1.2

W250x80 15.6 204 1.0

W250x73 14.2 223 1.0

W250x49 11.0 229 1.2

W200x52 12.6 202 1.0

W200x46 11.0 230 1.0

W200x36 10.2 202 1.2

W 150x30 9.3 205 1.0

W150x22 6.6 287 1.0



T a b le  5 -2 :  A n a ly s is  o f  C o lu m n s  S e n s it iv e  to  C o r r o s io n  (R e a l is t ic  C a se s )

Cross
Section

kJL/r t*/t
5 ^

L*/b Cfea

m

cd
[kN\

Cd/  Cfea Csi6

m
Cs-i6 /  Cfea

W150x30 80.5 0.75 205.2 0.3 735 702 0.96 564 0.77
W150x30 159 0.75 205.2 0.7 266 263 0.99 203 0.76
W360xl62 50 0.75 212.3 0.1 5520 5111 0.93 4229 0.77
W360xl62 50 0.75 212.3 1.1 5156 5111 0.99 4229 0.82
W360xl62 50 0.75 212.3 1.3 5113 5111 1.00 4229 0.83
W360xl62 159 0.75 212.3 1.3 1416 1405 0.99 1096 0.77
W360xl62 159 0.75 212.3 1.2 1420 1405 0.99 1096 0.77
W310x79 50 0.75 217.0 0.2 2677 2478 0.93 1924 0.72
W310x79 50 0.75 217.0 1.3 2506 2478 0.99 1924 0.77
W310x79 50 0.75 217.0 0.8 2558 2478 0.97 1924 0.75
W310x79 50 0.75 217.0 3.1 2353 2106 0.90 1924 0.82
W310x79 159 0.75 217.0 0.2 697.5 696 1.00 456 0.65
W310x79 159 0.75 217.0 1.2 684.1 696 1.02 456 0.67
W310xl 18 50 0.75 204.8 0.2 3984 3764 0.94 3247 0.82
W310xl 18 50 0.75 204.8 1.1 3724 3764 1.01 3247 0.87
W310xl 18 159 0.75 204.8 1.1 1020 1034 1.01 801 0.79
W310xl 18 159 0.75 204.8 0.3 1047 1034 0.99 801 0.77

Mean = 0.98 0.77
Std. Dev. = 0.035 0.055

CoV = 3.6% 7.1%
bo
O n



T a b le  5 - .3 :  A n a ly s is  o f  C o lu m n s  S e n s it iv e  to  C o r r o s io n  (E x tr e m e  C a s e s )

Cross
Section

kL/r t*/t L*/b C f e a

[kN\
Cd

[kN\
C d / C fea C si6

[kN]
C s-i6  /  C fea

W150x30 61.5 0.38 408.9 2.0 634 539 0.85 153 0.24
W150x30 53.7 0.38 408.9 0.7 719 577 0.80 158 0.22
W150x30 159 0.38 410.1 1.3 212 211 1.00 79 0.37
W150x30 159 0.5 307.8 39.0 133 133 1.00 121 0.91
W3 60x162 50 0.5 318.4 0.3 4256 3891 0.91 1583 0.37
W3 60x162 50 0.5 318.4 1.2 3791 3891 1.03 1583 0.42
W360xl62 159 0.5 318.4 2.2 1208 1145 0.95 642 0.53
W360xl62 159 0.5 318.4 0.1 1373 1244 0.91 642 0.47
W310x79 50 0.5 325.5 0.8 1973 1908 0.97 757 0.38
W310x79 50 0.5 325.5 3.1 1778 1622 0.91 757 0.43
W310x79 159 0.5 325.5 0.2 662 610 0.92 274 0.41
W310x79 159 0.5 325.5 1.2 616 610 0.99 274 0.44
W310x118 50 0.5 307.1 0.7 2994 2918 0.97 1245 0.42
W310xl 18 50 0.5 307.1 2.6 2671 2743 1.03 1245 0.47
W310x118 159 0.5 307.1 0.3 962 917 0.95 476 0.49
W310x118 159 0.5 307.1 2.0 878 871 0.99 476 0.54

Mean = 0.95 0.44
Std. Dev. = 0.062 0.152

CoV = 6.5% 34.1%

to
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6.1 SU M M A RY

Localized and uniform corrosion in the flanges of steel bridge compression members 

adversely affect strength and can cause local buckling and sudden failure of the member. 

While CAN/CSA S6-06 (CSA 2006) requires that deterioration caused by corrosion be 

fully accounted for, no criteria are given to aid a bridge evaluator facing this problem. 

The two methods for calculating the axial capacity of Class 4 columns, given in 

CAN/CSA S I6-09 (CSA 2009), do not give consistent results and are especially 

conservative for cases of localized deterioration which are common in steel truss bridge 

members. Thus, an investigation has been conducted to examine the effects of local and 

uniform flange deterioration on the local buckling of W-shapes to create an assessment 

procedure that more accurately predicts the axial capacity of deteriorated steel bridge 

compression members.

Solidworks Simulation, a full-featured finite element analysis (FEA) package used 

primarily for mechanical engineering applications, was used to accurately simulate Euler, 

intermediate and local buckling of steel compression members. Although the program 

lacks direct methods to implement imperfections common in rolled W-shapes, the built-in 

thermal analysis tools were manipulated to create realistic residual stress patterns and 

initial out-of-straightness.
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After the finite element analysis model was validated for undeteriorated columns, an 

experimental testing program was undertaken to check the validity of its use in predicting 

the axial capacity of columns with flange deterioration. Five full scale column tests were 

conducted in the Structures Lab at The University of Western Ontario. One test column 

had no deterioration and was used as a control specimen to ensure end fixity and 

displacement in the load frame were minimal. The other four test columns each had 

varying degrees and patterns of localized flange deterioration. The deterioration patterns 

were idealized as rectangular regions at midheight that were machined out in 

predetermined patterns. Ancillary tests were conducted to determine material yield 

strength and maximum magnitude of the residual stresses.

Using the validated finite element model, an in-depth sensitivity analysis was conducted. 

The sensitivity of the compressive strength of deteriorated steel W-shape columns to 

several geometric parameters that define the flange section loss caused by corrosion was 

examined in detail. The dimensional variables examined that define corrosion geometry 

were: the extent of flange section loss, the distance of the corroded region from the 

column midpoint, and initial out-of-straightness. The cross-section aspect ratio, the ratio 

of the flange area to web area, and the effect of symmetric and non-symmetric flange loss 

were also examined. The range of parameters examined in the sensitivity analysis were 

exaggerated beyond realistic limits to explore the underlying mechanics behind the 

complex interaction between local and column buckling.

Using the data obtained in the sensitivity analysis, a simplified assessment method was 

developed to allow evaluators to quickly predict the axial capacity of deteriorated W- 

shape columns. The key variables identified in the sensitivity analysis, extent of flange
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section loss and length of deterioration, were included in the assessment method as two 

reduction factors: *P and Q,  respectively. These factors limit the original uncorroded 

column capacity such that localized and uniform deterioration is accounted for and can be 

obtained directly from provided design charts. Finally, the proposed simplified 

assessment method is compared with guidance given in CAN/CSA S6-06 as well as FEA 

predictions.

6.2 CONCLUSIONS

The major conclusions of this study are as follows:

1. To simulate accurately the response of W-shape columns in axial compression 

using finite element analysis, it is necessary to account for both residual stress and 

initial out-of-straightness. Using a linear residual stress pattern with a maximum 

magnitude of 0.3Fy and an initial out-of-straightness of Z./1000 effectively 

simulates the empirically based column curve given in CAN/CSA S6-06, for 

slenderness ratios, kL/r, between 0 and 160.

2. Solidworks Simulation can effectively simulate local buckling in steel bridge 

columns with deteriorated flanges, provided the maximum element dimension 

does not exceed the thickness of the deteriorated flange, in these regions. The 

ratio of the failure loads observed in the test columns to those predicted by FEA 

had a mean of 1.01 and coefficient of variation of 3.8%.

3. The failure of columns with local deterioration observed in full-scale tests can be 

very sudden, especially if there is symmetric section loss on both flanges. The 

specimen with section loss on one flange experienced a post initial-buckling peak
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because stresses were able to redistribute to the undeteriorated flange, resulting in 

a less brittle failure.

4. The exact geometry of local buckles is difficult to predict using FEA but this does 

not significantly affect overall axial capacity.

5. The axial capacity of columns with local deterioration is very sensitive to flange 

loss (1 — t*/t0),  particularly for stocky and intermediate columns. Slender

columns tend to be dominated by Euler buckling except when the flange section 

loss becomes particularly severe.

6. For very stocky columns with local deterioration (kL/r<  15), the difference 

between the theoretical crushing capacity of the deteriorated cross section and the 

failure load does not deviate significantly until the width-to-thickness ratio of the 

deteriorated flange exceeds 380/ y[F^ • This implies that while local buckling

deformation may occur, the axial capacity may not be significantly reduced until

b /lt*  > 3 8 0 ^ .

7. The axial capacity of columns with deteriorated flanges is also sensitive the length 

of deterioration, L*, particularly if the length of deterioration approaches the 

length of the member.

8. The worst location for deterioration is at the midheight of the column, but the 

axial capacity is not greatly increased as the deteriorated section is moved away 

from this location. Cross-section aspect ratio, initial out-of-straightness and ratio 

of the flange area to web area A / / A w do not significantly affect the axial capacity 

of columns with deteriorated flanges.
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9. Columns with symmetric deterioration on both flanges are weaker than columns 

with the same flange loss on one flange only. The torsional rotations and large 

lateral deformations at failure of columns with non-symmetric deterioration on 

one flange only make the associated strength calculations less accurate. 

Therefore, it is recommended symmetric deterioration be conservatively assumed 

for all cases.

10. The proposed simplified assessment method provides evaluators with a means to 

quickly assess the reduced capacity of columns with deteriorated flanges that are 

prone to local buckling. It is accurate for W-shape columns with 0 < kL/r < 160 

and is much less conservative than the methods given in CAN/CSA SI6-09. For 

deteriorated columns with realistic maximum flange section loss of 25%, the 

mean ratio of the axial capacity of the deteriorated column computed using the 

proposed simplified method to that predicted by FEA is 0.98 , with a coefficient 

of variation of 3.6%. The mean ratio of the axial capacity of the deteriorated 

column computed using the methods in CAN/CSA SI6/09 to that predicted by 

FEA was only 0.77, with a coefficient of variation of 7.1%.

6.3 RECOMMENDATIONS FOR FUTURE WORK

Recommendations for future work are as follows:

1. The implications of web deterioration on local buckling should also be examined, 

even though it is less likely than flange deterioration.

2. Repair techniques for deteriorated bridge compression members with flanges that 

are prone to local buckling should be investigated.
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3. The effect that changes in failure mode and ductility have on reliability should be 

further examined within the scope of guidance given in Clause 14 of the CHBDC 

(CSA 2006).

4. The applicability of conclusions obtained from the sensitivity analysis and the 

simplified assessment method should be examined for other typical rolled steel 

shapes and for built-up members.
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APPENDIX Al

STEEL PROPERTIES OF TEST COLUMNS
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A l. l  IN T R O D U C TIO N

This appendix presents the steel properties of the test columns used in the experimental 

validation presented in Chapter 3 that were determined from tensile coupon tests and stub 

column tests. Columns 1 and 4 were obtained from one original member and Columns 2 

and 3 were obtained from a different original member. Thus, the strength properties only 

had to be determined once for each pair of columns. In general, the yield strength of the 

flanges and webs determined from the tensile coupon tests and the average cross- 

sectional yield strength determined from stub column tests were in good agreement.

A1.2 T E N SIL E  CO U PO N  DATA

Figure Al-1, Al-2 and Al-3 show the tensile coupon test data for Columns 1 and 4 (Test 

Group A); 2 and 3 (Test Group B); and 5 (Test Group C), respectively. The tests were 

conducted in accordance with ASTM A370 (ASTM 2010). The coupons were loaded to 

failure at a constant load rate of approximately 175MPa/minute or a strain rate of 

approximately 15pe/sec.

For Test Group A (Columns 1 and 4), the flange and web yield strengths were nearly 

identical: the flange yield strength was calculated as 365MPa and the web yield strength 

was calculated as 364MPa.

For Test Group B (Columns 2 and 3), the flange yield strength was calculated as 368MPa 

and the web yield strength was calculated as 371 MPa, a difference of only 0.8%.

For Test Group C (Column 5), the flange yield strength was calculated as 380MPa and 

the web yield strength was calculated as 394MPa, a difference of 3.6%.
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A1.3 STUB COLUMN TEST DATA

The stub column tests were conducted in accordance with the procedure recommended by 

Tall (1961) at McMaster University. The main objective of the stub column tests was to 

determine the maximum magnitude of the residual stresses in the cross section, or, but the 

average yield strength of the full cross section was also obtained.

Columns 1 and 4 (Stub Column Test A):

Figure Al-4 shows the stress-strain response for Stub Column A. There results were 

favorable, and the slope of the elastic stress-strain curve is approximately equal to M E . 

The maximum magnitude of the compressive residual stress, o>, was calculated as the 

difference between the average cross-sectional yield strength and the stress at which the 

slope of the stress-strain curve started to deviate from M E : 

a r = Fy - 330MPa = 40M Pa , or 0.1 lFy.

Columns 2 and 3 (Stub Column Test BT

Figure Al-5 shows the stress-strain response for Stub Column B. The slope of stress- 

strain curve changed after the initial seating load was exceeded because there was a small 

hole in one of the bearing plates that went unnoticed. After the initial seating load had 

been overcome, the slope of the stress-strain curve was greater than M E . It was 

assumed that deviation from linearity was indicated the presence of residual compressive 

stresses.

The maximum magnitude of the compressive residual stress, or, was calculated as the 

difference between the average cross-sectional yield strength and the stress at which the
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slope of the stress-strain curve started to deviate from linearity: 

a r = Fy -3 3 9 MPa = 33MPa,  or 0.089Fy.

Column 5 (Stub Column Test C):

Figure A l-6 shows the stress-strain response for Stub Column C. Similar to Stub 

Column B, a small hole in the bearing plate caused the stress-strain curve to change 

slopes in the elastic region. The maximum magnitude of the compressive residual stress, 

o>, was calculated as the difference between the average cross-sectional yield strength and 

the stress at which the slope of the stress-strain curve started to deviate from linearity: 

cTr = Fy -3 5 3 MPa = 25MPa , or 0.066Fy.
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APPENDIX A2

DRAWING SET OF COLUMN END SUPPORTS
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EQUATIONS FOR DESIGN CHARTS
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A3.1 INTRODUCTION

This appendix presents the equations that define the curves in the design charts, presented 

in Chapter 5. The curves are 4th order polynomials fitted to data obtained in the 

sensitivity analysis, presented in Chapter 4.

The curve equations for the factor W are presented in Table A3-1 and the curve equations 

for the factor Q  are presented in Table A3-2.
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Table A3-1: Design Curve Equations for V

W idth-to-
Thickness

R atio
E quation

b 205 

2' * " ^

= 2.57x IO-9 ( kL /  r)* -8 .72x 10-7 ( kL /  r f  +8.37x 10-5 (kL /  r)2 

-4.75 x 10-4 (kL /  r )  + 0.80

b 2 4 6

2t ' ~ 4 K

«P = 2.54 x 1 O'9 (kL /  r )4 -  8.94 x 10‘7 (kL /  r f  + 9.05 x 10-5 ( k L / r f  

—5.50x10^ (kL /  r  ) + 0.70

b 308

2I’ ~ s[ K

*F =  1.55 x 10~9 (k L  /  r)A -  6 .00 x 1 O'7 (kL /  r f  + 6.90 x 1 O'5 (kL /  r f  

-4.38 x\0-4( k L / r )  +  0.61

b  410

2‘ , ~ W ,

= -8.19x10”“ ( k L / r ) 4 —1.17x10-7 ( k L /  r)3 +3.50xl0-5 ( k L / r ) 2 

-4.05x10^ ( f c£ / r )  + 0.49
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Table A3-2: Design Curve Equations for Q

Length to 
Width Ratio Equation

L*
—  = 1.3 
b

¿2 = 1.0

\

^  = 2.6 
b

For k L /r  < 15 :

¿2 = 1.0

For k L /r  > 1 5  :

¿2 = -2.35x 10-9 [kL/  r )4 + 7.67x 1 O'7 [kL /  r )3 - 6.99x 1 O'5 [kL / r )2 

+7.93x10“* ( t t / r )  + 1.00

L* = L

For k L /r  < 15 :

¿2 = 1.0

For k L /r  > 1 5 :

a  = -3.35x\0-9(kL/r)*+\.2 \x \0~6( k L / r f - \ . 2 S x \ 0 - s ( h L / r ) 2 

+4.97x10“* [kL/  r) + \.02
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APPEN D IX  A4

D ER IV A TIO N  O F TH E C R IT IC A L  LE N G TH
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A4.1 IN T R O D U C TIO N

This chapter presents the derivation of the critical length at which both the reduced yield 

strength method and the reduced flange width method (CSA 2009) give the same axial 

capacity for Class 4 columns. Eqs. [5.8] and [5.12] were first derived by Bartlett (2011). 

Figure A4.1 idealizes the cross-sectional dimensions of a W-shape in compression. In 

this method the web is assumed to extend into the top and bottom flange by t/2 and thus 

the area of steel is overestimated by t x w .  However, this simplification is offset by the 

fillet radius where the flanges and web intersect is not being accounted for in the cross- 

sectional area.

Given these assumptions, the following variables can be derived: 

a  =b/2t=b'/t

0  = ( d - 2 t ) w / t 2 = h 'w / t2

r  = 2W)/jF,

The axial capacity of a steel column is computed by CAN/CSA SI 6-09 (CSA 2009) as:

C = AFy ( l + A2n)'ln

where: A kL [ X  
r \ tt2E

SI 6-09 gives two methods for calculating the axial capacity of Class 4 columns. The 

reduced yield strength method, [Csi6]t , is a function of (Fy)eq and the reduced flange

width method, [CVI6 ]2, is a function of beq or b\  :
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( F X  =
f ' m } 2

\ b/ t  j

and

. 400/

and

h , _ 200/ 

b ' T ,

To simplify calculations, b'eq will be used throughout this derivation.

A4.2 C R O SS SE C T IO N A L PR O PE R T IE S

The cross section properties of for each method can be calculated as follows:

[̂ *516 ]i

Cross-sectional area:

A =  1 # b ' t )  +  h 'w  

= 4 a /2 + p t 2 

= (4 a  + p ) t2

Second moment of area and radius of 

gyration about the weak axis:

i y = 2 [ ( 2 b * t ) / n ]

= l 6 a Y / \ 2

= 4 a V /3

[^16 \

Cross-sectional area:

A = 2{2b'eqt) + h'w  

= 4yt2 + fit2 

= (4 Y + P)t2

Second moment of area and radius of 

gyration about the weak axis:

/ , = 2 [ ( 2 * V ') / 12]

= 16yV /l2  

= 4yV /3
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3 . 44 a Jt
'3 (4  a  + p y

= t
4 a 3

3(4 a  + (3)

Second moment of area and radius of

gyration about the strong axis:

Ix = [2 6 7 (/j '/2)2]2  + /7,3w/12

= a t 2h'2+ p t2h '2/ 12 
= (a  + p / \ 2 ) t 2h'2

I (a+  P/12) t2h û 
\  (4 a  + p ) t 2

l(a+  P/12)
i  (4a y  p )

= t 4 y3
3(4 Y + fi)

Second moment of area and radius of

gyration about the strong axis:

=  46 i  (A -/ 2 ) ’  + A ’1 w /12

= yt1h ,2+ 0 t 2h'2 / \2

= ( r + p / n y h ' 2

l( r + P I

V (4 r + f > y

¡(r+fi/12)

V (4 r + f i )

A4.3 WEAK-AX1S CRITICAL LENGTH

For the reduced yield strength method, the slenderness parameter is calculated as:

if * = 1.0:
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Ly 13(4a  + p )  l ( f X  
y t i  4 a 3 \  1?E

L> |3 (4  a+f  200 ^
t \ 4 a 3 Kn a j E ,

Iy  <3(200)2( 4 a + ^ )  

/ V 4tt2cc5E

Axial capacity for the reduced  yield streng th  m ethod, Eq. [1.3], is calculated as:

[ c w l - ^ O + V )
,\-K

[A4.1] [Cs„ ]1= (4 o  + y9)r! ( 2 '% ) !)2L L /3(2002)(4a  + p )
2*

t V 4;r2ar5£
*

-y.

For the reduced  flange w idth  m ethod, Eq. [1.4], the slenderness parameter is calculated

as:

if * = 1.0:

3(4r + f i )  U
» t 4

l ,  h F M r + P )
t  \  4

Axial capacity for the reduced  flange w idth m ethod is calculated as:

[Csl(]I = 4 F , ( l + V ’ )‘X
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[A4.2] [CsA={4y+PVFy

'

1 + L ¡ 3 ^ ( 4 ?  +fi)

1
t y 4;r2y3£

-y

Equating Eqs [A4.1] and [A4.2] to solve fo ri:

(4 a + p y ( ™ / J

= (4r  + /3)t2Fr

1 +
L 3(2002)(4a  + p )

—\2 wl -y

4 x 2a 5E

'

1 + L l 3 F , ( 4 r + / > )
2n

t \  4n2y sE

-y

Dividing both sides by Fy and simplifying:

a 2
n

1 r i T ~3(2002)"
n

« + /» ) .
i

( y j 4 n 2o?E l  J
1

4 y  + P
+

3 F.
4 tt2/ E

Multiplying both sides by Fy and rearranging to solve for Lc / 1:

[5.8]

r « 2 i
n

(  r 2 T
{ 4 a  + p j [ 4  y + P )

A4.4 STRONG-AXIS CRITICAL LENGTH

For the reduced yield strength method, Eq. [1.3] the slenderness parameter is calculated 

as:

if it = 1.0 :
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4  200 I 4  a + p  

h' n a  j E \ a + p l \ 2

_ 4  I ( 4 a  +  / ? ) 2 0 0 ~  

h ' \ ( a + p l \ 2 ) 7 r 2a 2E

= 4  1
h' y (a+P l\2 )7 r2a 2E

Axial capacity for the reduced  yield streng th  m ethod, Eq. [1.3], is calculated as:

-x

[A4.3] [Csl6] ,= (4 a  + A)<! ^ i ;

'

1 + L 1 (4a  + /} )r ‘Fy
In'

1 T
h ' \ ( a  + p l \ 2 ) n 2a 2E

For the reduced  flange w idth  m ethod, Eq. [1.4], the slenderness parameter is calculated 

as:

if k = 1.0:

. 4 | W [ i
'  fl'^r+fl/UVlpE

4 I (*r+fl)F~
h " \ ( y + p / \ 2 ) n - E
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Axial capacity for the reduced flange width method, Eq. [1.4], is calculated as:

-,2„i -y.
[A4.4] [Csli]! = ( 4 r + i»)<,F, 1 +

L_ (4 y + p )F y
h ' \ ( y  + p l \ 2 ) n 2E

Equating Eqs [A4.3] and [A4.4] to solve for L\

(4 a  + p y L - F
a

1 -1-
L 1 (4a + p ) y 2Fy

I n '

1 T
h' y ( a  +  p l \ 2 ) n la 2E

d

-x

= ( 4  r + P ) t 2Fy 1 4- L 1 (4 y * P
2 n

1 T
h ' \ ( y  + p ! \ 2 ) n 2E

-X

Simplifying and rearranging to solve for Lc/h'\

[5.12] 4 =£L ¡A.
V  y \ F v

a \" (  y 1 v

4a + p  )  \ 4 y  + p  y
r  \

1
" y ^

1

Kr + % 2 )  [ « + %/ Y l )  J

2 n
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Figure A4.1: Idealized Cross-Sectional Dimensions for a W-Shape
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