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Study of System Parameters and Control Design
for a Flexible Manipulator using Piezoelectric
Transducers

M.R. Kermani†, M. Moallem‡, R.V. Patel§
Department of Electrical and Computer Engineering,
University of Western Ontario,
London, ON, Canada, N6A 5B9.

E-mail: †mkermani@uwo.ca, ‡mmoallem@engga.uwo.ca, §rajni@eng.uwo.ca

Abstract. In this paper, a nonlinear control scheme is presented to achieve
small tracking errors in a 2-DOF flexible manipulator. A secondary actuation
mechanism using piezoelectric materials is added to the system for suppressing
residual vibrations at the end point of the flexible link. A small piece of piezo-
ceramic is also used, as a sensor, in order to obtain the modal states of the system.
The effects of changing physical parameters such as relative thickness of the
piezoelectric ceramic with respect to the flexible link, the optimum location and
the length of the actuator are studied based on the singular value decomposition
of the controllability Grammian of the system. It is shown that for each of the
aforementioned parameters, an optimum value can be found which maximizes
the singular value associated with one vibration mode. A partial feedback
linearization technique based on output redefinition is utilized to obtain an
appropriate control output for each joint and the piezoelectric actuator. A model
for friction is obtained and included in the control law. Experimental results
show that applying the suggested control scheme results in smooth and precise
motion of the flexible manipulator without exciting unwanted vibration modes.
Comparisons are made when a linear control scheme is used for the tracking
problem.

1. Introduction

There has been a tremendous growth in the development of new actuator technologies
in the past few years. The new actuators have been used in diverse applications.
Amongst them, vibration suppression of flexible structures has received considerable
attention in such applications as robotics, biotechnology and aviation [4]. To this
end, many researchers have concentrated on dynamic modeling of piezoelectric (PZT)
materials as elements of intelligent structures [2] [12], while a number of others
have focused on control methods of piezoelectric actuators for suppressing vibrations
and reducing noise [1]. Sun and Mills [14] conducted studies on the application of
segmented PZT ceramics and Poly Vinylidene Fluoride (PVDF) materials for this
purpose. Patnaik [10] studied stability issues in controlling a flexible beam. Hanagud

§ This research was supported in part by grants RGPIN227612 and RGPIN1345 from the Natural
Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for
Innovation (CFI) under the New Opportunities Program.
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[4] investigated the possibility of using piezo-stack actuators for controlling vibrations
in a fuselage. A comprehensive literature review is given in [12].

Achieving precise, fast and smooth manipulation with lightweight structures (e.g.,
flexible-link manipulators) is a challenging objective in today’s control applications.
These structures, due to their flexibility, are under-actuated. As a result, controlling
such systems with the above requirements and a limited amount of control effort
is in general difficult. Adding secondary actuation mechanisms such as piezoelectric
materials helps to overcome these difficulties. In selecting a PZT actuator for vibration
control, it is useful to know how the physical parameters of the PZT and its location
can affect system performance in order to make use of its maximum strength. In this
regard, the authors have attempted to address the selection process for PZT actuators
using the controllability Grammian concept [6]. This paper promotes the above idea
in a practical setting where piezoelectric materials are used for suppressing vibrations
in a 2-DOF flexible-link manipulator for precise motion control.

The organization of this paper is as follows. In section 2, the dynamic model of a
2-DOF flexible manipulator actuated with piezoelectric transducers is reviewed. A
generalized control scheme for a class of nonlinear flexible-link systems is discussed in
section 3, following a discussion on actuator sizing and placement to achieve optimum
controllability. In section 3 a friction compensation scheme is also presented. Finally,
in section 4 experimental results are presented and further compared with the case
when a linear controller is used.

2. System Modeling

Consider a 2-DOF flexible-link manipulator (Figure 4) consisting of a flexible beam
clamped to the hub of a rotary motor where the whole mechanism of the beam and
rotary motor is mounted on top of a linear motor moving along a track. Different
methods can be used to obtain a finite-dimensional model of such a flexible-link
manipulator. The most commonly used method to obtain a discrete model is based
on the Raleigh-Ritz expansion [11]. It is assumed that the transverse motion of the
beam can be expressed in terms of the mode shapes as follows:

δ(x, t) =
∞∑

i=1

ϕi(x)qi(t) (1)

where δ(x, t) is the transverse displacement, qi is generalized displacement and ϕi

is the mode shape of free vibrations, which can be any function that satisfies the
geometrical boundary conditions. The Lagrangian formulation is probably one of
the most popular methods used to develop a discrete model for a flexible structure.
It is based on the energy of the system and is relatively easy to apply. Assuming
a generalized displacement vector composed of the linear displacement of the linear
motor θ1[m], the angular displacement of the rotary motor θ2[rad], and the first n
components of q(t), i.e.,

r = (θ1, θ2, q1, . . . , qn)T (2)

and applying the Lagrangian formulation given by:
d

dt
(
∂L
∂ṙ

)− ∂L
∂r

= τ (3)
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the dynamic equations of the system can be obtained. In the above equation, L is
the difference between the total kinetic energy and the potential energy of the system.
Considering a pair of PZT actuators with their two ends located at distances xa and
xb from the root position of the beam, the dynamic equations of the system are given
by:

M(r)r̈ + V (r, ṙ) + Kr = τ (4)

where

M(r) =
(

Φθθ Φθq

ΦT
θq Φqq

)
K =

(
0 0
0 Ω

)
(5)

Φθθ(1, 1) = Mh + ρAL

Φθθ(1, 2) = Φθθ(2, 1) = −ρA(
L2

2
sin θ2 + qT Φ∆ cos θ2)

Φθθ(2, 2) = Jh + ρA(
L3

3
+ qT Φqqq) + ρzAz

x3
b − x3

a

3

Φθq(1, i) = −ρAΦ∆(i) sin θ2

Φθq(2, i) = ρA

∫ L

0

xϕi(x)dx + 2ρzAz

∫ xb

xa

xϕi(x)dx

Φqq(i, j) = ρA

∫ L

0

ϕi(x)ϕj(x)dx + 2ρzAz

∫ xb

xa

ϕi(x)ϕj(x)dx

Φ∆(i) = ρA

∫ L

0

ϕi(x)dx + 2ρzAz

∫ xb

xa

ϕi(x)dx

Ω(i, j) = EI

∫ L

0

ϕ′′i (x)ϕ′′j (x)dx + EzIz

∫ xb

xa

ϕ′′i (x)ϕ′′j (x)dx

V (r, ṙ) is the vector of Coriolis and centrifugal forces:

V (r, ṙ) =
(

vθ

vq

)
=

− ρAθ̇2




(θ̇2
L2

2 + 2q̇T Φ∆) cos θ2 − θ̇2q
T Φ∆ sin θ2

−2q̇T Φqqq

θ̇2Φqqq


 (6)

and τ is the vector of the input torques, provided by each motor and the PZT
actuators:

τ =
(

τmotor

τz

)
(7)

In the above formulas, ρA is the mass per unit length of the beam, ρzAz is the mass
per unit length of the PZT, Mh is the mass of the motor hub, E and Ez are the
moduli of elasticity of the beam and the PZT ceramic respectively, I = w

t3h
12 and
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Iz = 2( t2htz

4 + tht2z
2 + t3z

3 ) are the moments of inertia of the cross section of the beam
and the PZT respectively, Jh is the motor inertia, L, w and th = 2h are the length,
the width and the thickness of the beam, respectively and tz is the thickness of the
PZT.

The induced torque of the PZT is a function of the voltage v(t) applied to the actuator.
The modal elements of this torque can be obtained by initially deriving the relationship
between the voltage v(t) and the moment generated by the PZT. This approach follows
the procedure presented in [13]. It can be shown that the moment ετ induced by a
single PZT actuator per unit length of the beam is as follows:

ετ (x, t) = Kz[H(x− xa)−H(x− xb)]v(t) (8)

Kz = −E
P

1− P

2
3
wh2 d31

tz

P =
−3htz(tz + 2h)

2(h3 + Ez

E t3z) + 3Ez

E ht2z

Ez

E

where d31 is the electrical displacement constant of the PZT, xa and xb are the
distances from the two ends of the PZT actuator to the clamped end of the beam and
H(x) is the unit step function. The second partial derivative of the induced moment
with respect to x, i.e. ∂2ετ (x,t)

∂x2 , appears in the dynamic equation of a cantilevered
beam, and the modal elements of the PZT torque with respect to each vibration mode
can be obtained as follows:

τz = ∆v(t) = (∆1, . . . , ∆n)T v(t) (9)

where

∆i = Kz

(
ϕ′i(xa)− ϕ′i(xb)

)
i = 1, ..., n

In order to obtain the modal states of the system a small piece of piezo-ceramic is
bonded to the beam as a sensor. This sensor produces a charge proportional to the
strain. The output charge of each sensor is fed to a charge amplifier. Hence, the output
voltage of the charge amplifier measures the strain produced along the sensor in the
beam. The relationship between the charge distribution and strain in a piezoelectric
material is given by:

D = d31σ = d31EzS (10)

where D is the charge distribution per unit area of the sensor, σ is the stress and S is
the longitudinal strain. The ceramic used as a sensor has the same material as PZT
actuators; therefore Ez and d31 are as defined above. Since the sensor is bonded to
the beam, the amount of strain developed along the sensor is equal to the strain of
the beam. It is also known that the strain at each cross section of the link can be
obtained by multiplying the rotation angle of the cross section by half the thickness of
the link (i.e. th

2 ). Therefore the total strain produced along the sensor can be written
as:

S =
th
2

∫ x2

x1

∂2

∂x2
δ(x, t)dx =

th
2

∫ x2

x1

∂2

∂x2

(
Σn

j=1ϕj(x)qj(t)
)
dx (11)
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where x1 and x2 are the two ends of the piezo-sensor along the beam. The total output
voltage of the charge amplifier can be obtained after dividing the total produced charge
by the sensor capacity as follows:

vs =
d31Ezthws

2Cs

∫ x2

x1

Σn
j=1

(∂2ϕj(x)
∂x2

qj(t)
)
dx (12)

where ws is the width and Cs is the capacitance of the sensor. All other parameters
are as defined previously. As observed, equation (12) provides a weighted sum of
all vibration modes of the system. However, in the frequency domain and for free
vibration of the link, the information about each mode can be extracted from the
original signal using appropriate filtering methods. Furthermore, the output voltage
of the sensor is relatively high compared to the noise level. Thus the output voltage
of the sensor can be numerically differentiated to obtain q̇j(t).

3. Control Design

In this section, following a study of actuator parameters and placement, a control
law is developed for the 2-DOF flexible-link manipulator bonded with piezoelectric
ceramics (Figure 4). Moreover a linear quadratic optimal controller, based on the
dynamics of the flexible part, is used to obtain the input control signal for the PZT
actuators. In addition to the control method, successful suppression of the dominant
vibration modes depends on efficient use of the piezoelectric actuators. Therefore
optimizing actuator parameters becomes an important issue.

3.1. Effect of system parameters and actuator placement

In this section, the effect of system parameters on the performance of a PZT actuator
mounted on a flexible beam is studied. Since a PZT actuator has limited torque
generation capability, it is desirable to maximize the performance of the actuator used
for suppressing vibrations. Toward this end, let us consider the dynamic equation that
is governed by the flexible modes (i.e., Φqq q̈ + Ωq = τz). For this model, re-written
in state-space form, the controllability Grammian matrix is calculated. The principal
directions of the controllability Grammian matrix, Wc, span a sub-space of reachable
states at time t1, from zero initial state at time t0, by a bounded amount of input
energy. More precisely, this can be stated as follows [7]:

Let Sx be the set of all reachable states at time t1 from zero initial state at time t0
by constrained inputs with unit energy ‖u(t)‖ = 1. The set Sx is the n dimensional
ellipsoid:

Sx = {x | x = UcΣcu(t), ‖u(t)‖ ≤ 1}
where Uc and Σc = diag(σn, . . . , σ2, σ1) are obtained from the singular value
decomposition of the Wc(t0, t1) = UcΣcU

T
c . Also, the minimum amount of energy

required to reach a state q̃ = (q, q̇)T at time t1 from zero initial condition at time t0,
is given by:

E ≡ ∫ t1
t0

uT udt = q̃T W−1
c (t0, t1)q̃ =

∑n
i=1

(UT
ci

q̃)2

σi
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The above energy is a sum of the potential and the kinetic energies associated with
each state. Each term in the above summation is proportional to the inverse of one
singular value. In particular, the inverse singular values 1

σ1
and 1

σn
denote the range

of maximum and minimum control energies to attain a unit state at the terminal
time from zero initial state. Therefore, minimizing the energy required for steering
the system to an arbitrary state implies maximizing singular values (σ1, . . . , σn) with
respect to the parameter(s) under study such as the relative thickness of the PZT with
respect to the beam, Young’s modulus of elasticity, or the PZT location. Let us first
look at the variations of the system singular values with respect to the thickness ratio of
the beam and the actuator, i.e., th/tz. Figure 1 shows such variations associated with
the first vibration mode. Three different materials are considered. As an example, for
steel the optimum thickness is found to be in the range 1.2 ≤ th/tz ≤ 1.7. The same
optimum thickness ratio is obtained if these graphs are plotted for the other singular
values associated with other vibration modes. An immediate implication of this fact
is that a unique optimum thickness ratio can be found that maximizes all singular
values simultaneously.

0 1 2 3 4 5 6
0

0.5
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1.5

2

2.5

3
x 10

−6

th/tz

S
m
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st
 s

in
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la
r 

va
lu

e

Aluminum
Brass
Steel

Figure 1. Variations of the singular values vs thickness ratio
th
tz

Next, the location of the actuator as one of the most important parameters, is studied.
The total energy required to suppress an initial vibration in the system is a weighted
sum of the inverse of the singular values. Each singular value corresponds to one mode
of vibration considered in modeling. Thus, a minimum value of the control energy to
steer a specific mode is obtained at the position where the associated singular value
is maximum [6]. This corresponds to minimizing the energy required for suppressing
that specific mode.
Along the same lines, the variation of the singular values associated with the first
two modes of vibration with respect to the location of the actuator along the flexible
beam is studied. The smaller singular value associated with the 1st vibration mode
(Figure 2(A)), has a maximum value close to the root of the beam. This is the optimum
location of the actuator for the first vibration mode (i.e., xa

L ≈ 0.1). It is noteworthy
that the optimum location for this mode is not exactly at the root of the beam. For
the 2nd mode, there are two local maxima (Figure 2(B)), one of which is at the root
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Figure 2. Variations of the singular values vs PZT location xa
L

of the beam and the other one is at the mid-point. Also, increasing the length of
the PZT improves its control authority on the 1st vibration mode, while its optimum
location mentioned above is unchanged. The effect of this parameter on the 2nd mode
is the same except for the fact that as the length is increased, the optimum location
of the actuator moves toward the mid-point of the beam, where the corresponding
singular value becomes maximum. More details can be found in [5]

3.2. Feedback Linearization

Here we briefly discuss the scheme used for controlling the system. The general idea is
based on partial feedback linearization applied to flexible-link manipulators [8] [9]. A
flexible link manipulator is not in general feedback linearizable, however, the system
is locally input-output linearizable. In order to apply the input-output linearization
technique to the flexible beam, let us consider the system dynamics as described in
(4). This can be re-written as follows:

θ̈ = hθθ

(
τmotor − vθ(r, ṙ)

)
+ hθq

(
τz − vq(r, ṙ)− Ωq

)

q̈ = hT
θq

(
τmotor − vθ(r, ṙ)

)
+ hqq

(
τz − vq(r, ṙ)− Ωq

)

(13)

where

H(r) = M−1(r) =
(

hθθ hθq

hT
θq hqq

)
(14)

Defining the output as:

y =
(

θ1

θ2L + δ(x, t)|x≈L

)
(15)

and differentiating it with respect to time until the input vector appears, leads to the
input-output description of the system in (13) as given below:

ÿ = b(r, t)τmotor − a(r, ṙ, t) (16)
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where
a(r, ṙ, t) = b(r, t)vθ + (hθq + Φϕhqq)(vq + Ωq − τz) (17)

b(r, t) = hθθ + ΦϕhT
θq

with

Φϕ =
(

0
ϕ1(L), . . . , ϕn(L)

)

Now suppose that there is a finite domain around the desired reference trajectory, yd,
in which b(r, t) is nonsingular. This assumption is a controllability-like assumption for
nonlinear systems and is guaranteed to hold when for instance Φϕ = 0. In that case,
b(r, t) = hθθ is positive-definite and therefore invertible. Thus in the neighborhood
of Φϕ = 0, b(r, t) is guaranteed to be invertible. Furthermore, let τmotor take the
following form:

τmotor = b−1(r, t)(τnew + a(r, ṙ, t)) (18)
where τnew is taken as a new input to the system. This results in the linearized
input-output dynamics of the system as given by:

ÿ = τnew (19)
Also substituting τmotor from (18) into the right-hand side of (13) yields

q̈ = −pΩq + pτz − pvq + hT
θqb

−1τnew (20)
with:

p = hqq − hT
θqb

−1(hθq + Φϕhqq)
Let us now proceed as if (19) is the open-loop dynamics of a system to be controlled.
Defining

τnew = ÿd + Kpe + Kdė (21)
and substituting it into the right-hand side of (19) leads to the closed-loop error
dynamics

ë + Kdė + Kpe = 0 (22)
where

e = yd − y (23)
and Kp and Kd can be chosen to make the closed-loop system have the desired damping
behavior. Moreover, the dynamics of the flexible part can be utilized to obtain a proper
control law for the secondary input (i.e., the PZT actuators). It then follows from (9)
and (20) that

˙̃q = Aq q̃ + Bqv(t) + dq (24)
where

Aq =
(

0 I
−pΩ 0

)
Bq =

(
0

p∆

)

dq =
(

0
−pvq + hT

θqb
−1τnew

)

q̃ = (q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t))T

Then, a linear quadratic optimal controller can be used to obtain the feedback control
signal v(t) = Kq q̃, to damp out the residual vibrations.
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3.3. Friction Compensation

A friction model is especially important in applications involving high-precision motion
control, where the friction force needs to be adequately compensated for in order to
improve the transient performance and to reduce steady-state tracking errors. It
also ensures smooth control signals and allows for using smaller feedback gains. A
dynamic model of friction can be obtained using LuGre’s model of friction. This
model incorporates a single continuous state to model presliding displacement [3].
However, in our case, it was found that a steady-state model of the friction based on
LuGre’s model can yield consistent results.
For each motor of the 2-DOF manipulator a separate friction model was obtained to
match the experimental data. Then the models were included in the control law as a
feed-forward term. The friction force characteristic of the linear motor is different
from that of the rotary motor. The linear motor has larger stiction friction Fsl

than Coulomb friction Fcl
. Also there is a considerable amount of viscous friction

as the manipulator speeds up. The behavior of the linear motor is different during
acceleration and deceleration. Therefore two different functions were used for positive
and negative acceleration, i.e.,

if sgn(θ̇1) 6= sgn(θ̈1)
FFl

= sgn(θ̇1)(Fcl
+ (Fsl

− Fcl
)e−αl|θ̇1|) + βlθ̇1

otherwise
FFl

= Fm( 2

1+e−λθ̇1
− 1)

(25)

where Fcl
and Fsl

are the Coulomb and stiction levels, αl determines the transition
of friction force between Fcl

and Fsl
and βl accounts for the viscous friction. Fm is

chosen so that the the friction force is continuous. Figure 3A represents this model
compared with the experimental data obtained from the linear motor.
The same procedure was followed in obtaining a friction model for the rotary motor.
However experimental results revealed that in this case, friction characteristics could
be captured only by including the velocity of the motor in the model, i.e.,

FFr = sgn(θ̇2)(Fcr + (Fsr − Fcr )e
−αr|θ̇2|) + βr θ̇2 (26)

All parameters in this model can be defined in the same way as for the linear motor.
Comparison between this model and the experimental data obtained from the rotary
motor are shown in Figure 3B.
Using the graphs in Figure 3, the parameters of the steady-state model can be
appropriately selected. Table 1 lists these parameters for the linear and rotary motor
respectively.
Having obtained the friction force, its value is added to the right-hand side of (18) as
a feed-forward term.

4. Experimental Results

In order to examine the performance of the control algorithm, a flexible link bonded
with a pair of PZT actuators, as shown in Figure 4, was built and mounted on top
of a 2-DOF manipulator. A small PZT ceramic was also used as a sensor in order to
obtain the modal information (q1, ..., qn) of the flexible part.
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Figure 3. Steady-State friction force vs velocity

Table 1. Friction Force Parameters

Fc Fs α β λ

Linear Motor 4.0 6.5 -0.1 0.05 0.1

Rotary Motor 0.15 0.4 -5.0 0.18 -

Figure 4. 2DOF flexible manipulator bonded with PZT’s

The physical parameters of the flexible link and each actuator are listed in Table 2.
The gain matrices Kp and Kd were set such that critical damping behavior of the
tracking error was satisfied. Also Kq was obtained such that, in addition to suppressing
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Table 2. System Parameters

Link PZT Act.

Material Steel

Modulus (N/m2) E : 19.5× 1010 Ez : 7.14× 1010

Length (m) L : 0.45 Lz : 0.0765

Thickness (m) th : 0.001 tz : 0.0005

Width (m) w : 0.0285 wz : 0.0285

Density (Kg/m3) ρ : 7800 ρz : 7650

Charge Const. (m/volt) d31 : 250× 10−12

Actuators Linear Rotary

Max. Force/Torque 90 (N) 4 (Nm)

Max. Speed 2 (m/s) 2.5 (r/s)

Weight 1.4 (Kg) 3 (Kg)

Encoder Resolution 1× 106 (p/m) 655360 (p/r)

Rotor Inertia 0.0025 (Kgm2)

the residual vibrations at the end point of the link, the applied voltage to the PZT
actuators remained within the maximum permissible voltage range.

A PC, running the Windows operating system, was used to implement the control
strategy written in the C language. A sampling rate of 1 msec was used. A
Multimedia timer (winmm.lib) that interrupted the program at the specified rate,
was used under User mode of the Windows environment. The timer can trigger the
control algorithm periodically (CALLBACK routine), yet it runs its own thread at
the TIME CRITICAL level which is the highest priority under User mode. In this
way, the system can keep track of time while the control algorithm is being executed.

In order to show the effectiveness of the nonlinear control scheme, the performance
of the system was tested experimentally. The desired trajectories to be tracked
by the linear motor and the end point of the flexible link, were defined. The
performance of the system using a linear PD controller with no PZT actuation and
no friction compensation as shown in Figure 5 was used for comparison purposes.
Figures 5(A,C,E) show the position of the linear motor, the angular position of the link
and the deflection of the link respectively. Figures 5(B,D,F) show the corresponding
torques applied to each motor and the PZT voltage.

As observed, the linear PD controller cannot successfully deal with flexibility in the
system. However, the nonlinear controller, by including a model of the system in
the control law, handles this problem efficiently. Figure 6 illustrates this fact. In
this case, the manipulator is moved twice as fast as in the linear controller case, yet
the performance of the system in terms of flexible link vibrations is still considerably
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Figure 5. Performance of the linear PD controller

improved.
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Figure 6. Performance of the nonlinear controller

In order to show the advantage of using PZT actuators, the performance of the
nonlinear algorithm with PZT actuation is obtained as shown in Figure 7.
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Figure 7. Performance of the nonlinear controller with PZT

Although residual vibrations at the end point of the link have been considerably
attenuated, the performance of the system in terms of the tracking error may need
further improvment. It is noteworthy that the PZT actuation most effectively, occurs
when the motors decelerate at the end of the trajectory and the flexible link tends
to vibrate. On the other hand, during tracking the desired trajectory the nonlinear
algorithm is the most effective part in preventing vibrations in the system. Comparison
of the maximum amplitude of vibration in the linear case (Figure 5E, maximum
deflection = 4mm) and the nonlinear case (Figure 7E, maximum deflection = 2mm)
explains this fact. To alleviate the tracking error problem, a friction compensation
term is added to the control law. This term is calculated from the desired velocities
in light of the fact that the tracking errors remain sufficiently small. As shown in
Figure 8, including this term in the control law results in smaller tracking errors.
By taking advantage of the PZT actuators, all performance requirements in terms of
speed of manipulation and vibration of the link are satisfied.

5. Conclusions

In this paper, the utilization of piezoelectric actuators for suppressing vibrations in
flexible-link manipulators was studied. A model for a 2-DOF flexible manipulator
actuated with piezo-ceramics was derived. A non-linear control scheme based on
partial feedback linearization was implemented, which incorporates a PZT actuator
as a secondary input to the system. A steady-state model for the friction force was
obtained and included in the control law. Experimental results were given to illustrate
the effectiveness of the control algorithm in suppressing vibrations without sacrificing
accuracy or speed.
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Figure 8. Performance of the nonlinear controller with PZT actuation and
friction compensation
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