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Abstract

This thesis investigates the use of 3D scene flow and 3D range flow as a means of 

computing 3D observer (sensor or camera) motion. We implemented and evaluated 

the scene flow algorithm presented in Stereoscopic Scene Flow Computation for 3D 

Motion Understanding by Wedel et al. 2010. We modified (performed pyramidal 

image processing with warping) and re-implemented the range flow algorithms pre­

sented in Quantitative Regularized Range Flow by Spies et al. 2000. Both algorithms 

are 2-frame algorithms using a pyramid. The results for these scene and range flow 

algorithms were quantitatively and qualitatively compared on synthetic and real car 

driving stereo sequences.

Keywords: range flow; scene flow; least squares; regularization; disparity; depth 

maps; warping; pyramid;
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Chapter 1

Introduction

This thesis is concerned with the computation of 3D range flow and 3D scene flow. 

Both range and scene flow compute the same thing (3D sensor motion) relative to 3D 

environmental points). Before we can explain these terms more fully we need to define 

2D and 3D optical flow first. This thesis presents the results of one algorithm from 

each of the 2 approaches and compares them on the same synthetic and real data. 

Synthetic data allows a quantitative analysis while real data allows only a qualitative 

analysis. We first define 2D/3D optical flow, 3D scene flow and 3D range flow in this 

chapter. Then we outline the thesis topics and give a summary of the contributions 

of the thesis. Finally, an outline of what to expect in the coming chapters is provided.

1.1 2D Optical Flow, 3D Optical Flow, Range Flow, 

and Scene Flow

This section explains the meaning of 2D/3D optical flow, 3D range flow and 3D scene 

flow.

Optical flow is a significant research area in Computer Vision and Image Process­

ing. Optical flow, also known as image velocity, is the apparent visual motion that

1



2

you experience as you move through the world. One example of optical flow is while 

sitting in a moving car and looking out the window, you see that trees, the ground, 

buildings, etc., appear to move backwards. The speed of this motion depends on the 

distance of these objects from you. Far away objects move slower and close objects 

move faster. Individual motions are called optical flow or image velocities. The entire 

motion field is called the optical flow field. Figure 1.1 shows an example of a synthetic 

image (the 8th image of the Yosemite fly through sequence) and its correct 2D optical 

flow field. We see vectors at each pixel, telling us where that pixel will move to in 

the next image.

Figure 1.1: (a) The middle frame from the Yosemite Fly-Through sequence and 
(b) its correct flow field.

Optical flow methods try to calculate the motion between two image frames which 

are taken at times t and t +  5t, meaning that optical flow specifies how much each 

pixel moves between two adjacent image frames. There are many methods to compute 

optical flow and some of these methods are explained in detail in Chapter 2. Optical 

flow is important for motion estimation, video compression, object detection and 

tracking, image dominant plane extraction, movement detection, robot navigation 

and visual odometry. Some useful applications of optical flow include traffic analysis



3

and vehicle tracking.

However, optical flow provides only projected 2D information so this has some 

drawbacks. For example, there are ambiguities when dynamic (or moving) 3D objects 

are explained using 2D optical flow. 3D optical flow can be calculated on 3D images 

(3D volumes of data). 3D optical flow specifies how much each voxel moves between 

adjacent volumes in the dataset. Barron [2] showed how 3D optical flow could be 

extended from 2D optical flow and this will be explained further in Chapter 2.

There are two types of 3D optical flow called range flow and scene flow. They 

are the same 3D concept, but range flow is computed from a depth map and its 

spatio-temporal derivatives while scene flow is computed from a disparity map (and 

its gradient map) as well as the 2D optical flow of the left and right images in a stereo 

image sequence. Both scene flow and range flow can be described as the 3D optical 

flow on visible environmental object surfaces. Scene flow is both depth (disparity) and 

intensity based while range flow (in its purest form) involves depth based only (but 

we have added intensity data to our calculations). If a scene is rigid and stationary 

and only the sensor (camera) is moving, then correct 3D scene flow and 3D range 

flow will just be a constant 3D vector at each pixel. Of course, computed 3D scene 

flow and 3D range flow may have different 3D vectors for each pixel due to various 

types of error (although generally they should be similar).

This thesis describes the implementation and evaluation of the scene flow algo­

rithm presented in papers entitled “Efficient Dense Scene Flow from Sparse or Dense 

Stereo Data1 and “Stereoscopic Scene Flow Computation for 3D Motion Understand­

ing1' by Andreas Wedel, Clemens Rabe, Tobi Vaudrey, Thomas Brox, Uwe Franke and 

Daniel Cremers in 2008 and 2010 [29, 28] and the range flow algorithms presented 

in papers entitled “Differential Range Flow Estimation11, “Dense Range Flow from 

Depth and Intensity Data11,, “Quantitative Regularized Range Flow11, “Regularized 

Range Flow11 and “Range Flow Estimation11 by Hagen Spies, John Barron and Bernd 

Jahne from 1999 to 2002 [23, 4, 22, 24]. Our results for scene and range flow were
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quantitatively and qualitatively compared on a number of different synthetic and real 

stereo image sequences (of cars driving on road environments). The 2010 Wedel et 

ah IJCV paper and the Spies et ah 2000 ICPR paper are the main papers.

1.2 Thesis Contributions

The contributions of the thesis are summarized below.

1. We implemented and evaluated the scene flow algorithm presented in Stereo­

scopic Scene Flow Computation for 3D Motion Understanding by Wedel et al. 

2010 [28] in MATLAB. Since MATLAB is optimized for matrix operations, we 

vectorized our programs as much as possible to gain higher efficiency. We also 

use the same differentiation method as proposed by Brox et ah 2004 [6] (namely 

simple pixel differences for temporal derivatives and 4-point central differences 

for spatial derivatives). We tested this algorithm on synthetic and real car 

sequences and on synthetic sinusoid data.

2. We derived new range flow equations for perspective projection based on the 

work by Spies and Barron [24], since their old equations were for orthographic 

projection only. We modified and re-implemented the least squares and regular­

ized range flow algorithms presented by Spies et al. [24] in the same pyramidal 

data structure as used by Wedel et al. for his scene flow algorithm.

3. We displayed the correct 3D scene/range flow field using vector fields instead 

of colour images. When we do this, we see that the colour images often “hid15 

problems in the flow fields that are very visible in the vector fields.

4. We performed a quantitative analysis using two synthetic stereo car image se­

quences and one (out of seven) real Daimler car driving sequences our scene 

arid range flow implementations.
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5. We showed the need to robustify both the least squares and regularization 

solution frameworks. As future work, we plan on using Brox et al.’s [6] robust 

estimation framework (as was used in Wedel et al.’s algorithm presented here). 

There are simply too many outliers for the range flow results to be considered 

good.

6. We showed some problems with respect to the correct car flow data (the pres­

ence of outlier data) requiring us to “clean” the data. We also observed some 

problems for Wedel et al.’s scene flow algorithm with respect to warping (for 

example, we found 2 typos in the sor-step (algorithm 5) which Wedel has con­

firmed). We don’t know if our other problems are a result of our not fully 

understanding their algorithm or a lack of detail in their journal paper (es­

pecially about warping). We communicated with Wedel by email about our 

problems but were unable to resolve them. Wedel et al.’s code is not available.

7. We verified the mathematical equivalency of range flow and scene flow in Chap­

ter 3. We also verified that u,v,p  can be inversely solved from [7, V, W  in that 

chapter. [/, V, W  is the 3D range or 3D scene flow velocities while (it, v) is the 

2D optical flow and p is the change in disparity. Note that if we have computed 

U ,V,W  from range data, then u,v,p  are for the equivalent scene (imaginary) 

data.

8. We introduced a primitive warping technique for range flow in the Z pyramid 

by removing the incremental change dW  from the depth maps at each level 

before projecting the Z  values to the next level. This slows down the motion 

at lower levels and reduces the possibility of aliasing.
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1.3 Outline of Thesis

In this chapter, we defined the basic concept of optical/scene/range flow, provided 

an outline of the thesis, and listed the thesis contributions. The rest of the thesis is 

organized as follows. Chapter 2 provides a literature survey of range and scene flow 

algorithms. To keep this survey manageable we only look at optical flow algorithms 

relevant to range and scene flow as referenced by Spies et al. and Wedel et al. In 

Chapter 3, we discuss the two implemented algorithms by Wedel et al. [28] and 

Barron and Spies [4] in detail. Chapter 4 explains the methods/tools we used to 

implement and evaluate the two algorithms. In Chapter 5, we present and discuss 

our experimental results. We end the thesis with conclusions and future work in 

Chapter 6.



Chapter 2

Literature Survey

This chapter provides background information on relevant 2D optical flow and 3D 

optical flow algorithms before we review 3D range flow and 3D scene flow algorithms 

relating to this thesis. We summarize many of the papers relevant to Wedel et al.’s 

work as outlined their 2010 IJCV paper [28] and to Spies et al.’s work as outlined in 

their 2002 CVIU paper [24]. We present Wedel et al’s and Spies et al.’s algorithms 

in detail in Chapter 3.

2.1 Overview

To understand the basics of optical flow, we review relevant papers on optical flow 

cited in Wedel et al. 2010 [28], such as Horn and Schunck 1981 [13] and Brox et 

al. 2004 [6]. Also, some concepts in Longuet-Higgins and Prazdny 1980 [17], and 

an implementation and evaluation of Brox et al.’s 2D optical flow algorithm work by 

Faisal and Barron 2007 [8] are presented below.

Scene flow can be categorized into two kinds of algorithms:

1. Motion and disparity estimation methods are performed simultaneously as in

7
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Huguet and Devernay 2007 [14], Rabe et al. 2007 [20], Isard and MacCormick 

2006 [15], Zhang et al. 2001 [30], and Patras et al. 1997 [19] and

2. Position and velocity estimation steps are decoupled in the algorithm as in 

Wedel et ah 2008 [29] and Wedel et ah 2010 [28].

Range flow algorithms can be categorized in two kinds of algorithms:

1. Motion estimation of locally rigid objects moving in an environment observed 

by a stationary sensor such as in Spies et al. 2002 [24], Spies et al. 1999 [23], 

Spies et al. 2000 [10], and the regularized range flow algorithm in Spies et ah 

2000 [22] and Barron and Spies 2000 [4] and

2. Motion estimation of globally rigid objects as in Harville et ah 1999 [12].

The relevant aperture problems associated with 2D/3D optical flow, 3D scene flow 

and 3D range flow are also presented below.

2.2 2D Optical Flow

2D optical flow methods calculate the motion or displacement of pixels between two 

image frames acquired at times t and t +  8tl . It is assumed that the scene lighting 

is Lambertian (no specularities), that intensity variations between adjacent images 

are due to the motion of the camera with respect to the scene and not due to other 

artifacts such as changing illumination or deforming objects, that local motion can be 

well approximated by pure translation and that image intensity derivatives are due 

to motion only. In as much as these assumptions are satisfied, optical flow is a good 

approximation to the local 2D motion motion in image sequences. Basic concepts 

needed to explain optical flow, such as how to project a 3D world point onto a 2D

1Wc will ignore differential optical flow using more than 2 frames.
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image plane and the derivation of the image velocity (optical flow) equations in terms 

of 3D sensor velocity and environmental depth are explained in detail in Longuet- 

Higgins et al. 1980 [17]. In this thesis, we are only concerned about differential based 

optical flow. That is, we use intensity derivatives in the computation of optical flow.

A pioneer method to calculate optical flow is the 1981 algorithm presented by 

Horn and Schunck [13]. A basic assumption in this algorithm is that if a pixel moves 

from one location to another, the grayvalues or intensities in the neighbourhood of 

that pixel remains constant. In other words, even if an object changes position during 

the short time interval from to t2, the reflectivity and illumination of the object 

will remain the same. Mathematically, this can be expressed as

7(x, y,t) =  I(x  -\- Sx,y +  Sy,t +  St), (2.1)

where 7(x, y, t ) is the intensity of the image at position (x, y) and time t, while Sx, 8y 

is the change in position of that pixel over time St. This leads to the 2D motion 

constraint equation, whose derivation is shown in the next section. We also discuss 

the aperture problem.

2.2.1 2D Motion Constraint Equation

We derive the 2D motion constraint equation in this section. Assume /(x , y, t) moves 

by Sx and Sy in time St to / (x  +  Sx, y +  Sy,t +  St) as shown in Figure 2.1 below.

Because /(x , y, t) and 7(x +  Sx, y +  Sy, t +  St) are the images of the same point, 

we can write:

/(x , y, t) =  7(x +  Sx, y +  Sy, t +  St), (2.2)

. If we perform a Ist order Taylor series expansion about I (x ,y ,t ), we get:

or or or
7(x +  Sx. y +  Sy, t +  St) =  I(x, y, t) +  — Sx +  — 5y +  — St +  H.O.T. (2.3)

ox oy at
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Figure 2.1: A pixel7s displacement from (x,y) to (x +  5x,y +  Sy) from time t to time 
t +  1.

We can ignore the higher order terms, H.O.T , as we are dealing with a small neigh­

borhood, and because I(x, y, t) =  I(x +  6x,y-\-5y,t +  5t) we substitute Equation (2.2) 

into Equation (2.3) and obtain the motion constraint equation:

d l s dr dl 
d i Sx +  8 i Sy +  d iSt

dl Sx d l Sy d l St
dx St dy St dt

=\
IXU +  IyV +  If

V / •#+/*  =  0. (2.4)

Here u =  jj- and v =  ^  are the x and y components of image velocity, Ix =

Iy — and h =  % are image intensity derivatives at I(x,y, t )  and v =  (u,u). The 

motion constraint equation is also sometimes referred to as the optical flow constraint 

equation.

=  0,

=  0,

=  0

2.2.2 2D Aperture Problem

One important problem to be overcome when computing 2D optical flow is the 2D 

aperture problem (points for which optical flow cannot be determined) which is ex­
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plained in Horn and Schunck 1981 [13]. The aperture problem can be explained in 

terms of the motion constraint equation line. Intuitively, the aperture problem means 

that only the component of the flow perpendicular to the local intensity structure (in 

the direction of the intensity gradient) can be computed while the tangential compo­

nent of the flow cannot be computed. In order to compute full velocity or full optical 

flow additional constraints must be incorporated into the solution.

That is, V I  ■ v +  It — 0 is 1 equation with 2 unknowns (the line described by the 

motion constraint equation), as shown below in Figure 2.2 and the correct velocity is 

some unknown point on this line. The velocity with the smallest magnitude that is 

on this line is called the normal velocity vn =  (unx,vny). Note that a line from the 

origin to that point is perpendicular or normal to the motion constraint line.

Figure 2.2: The motion constraint line. Normal velocity vn — (unx,vny) is the velocity 
with the smallest magnitude that is on this line.

The relationship between the motion constraint equation and normal velocity can 

be described as follows. Consider a straight contour moving up/down and to the right 

with true full velocity v. Since it is viewed through an aperture we can only see the 

motion perpendicular to the contour. Since the normal velocity is the smallest of all 

potential velocities it is the point on the motion constraint line closest to the origin. 

A line from that point to the origin is normal to the motion constraint line.
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We can compute vn (the magnitude of vn) and h (its direction) and hence, the 

normal velocity, vn =  vnn, very simply using the motion constraint equation V I  • v — 

—It and the fact that v • h — vn as:

V I - v  =  - I t

V I  =  It 

V/ \ \ 2 ' V  ||V/||2
h • v =  vn.

where

=> h and vn - It

i iv / ib '
(2.5)

Methods to overcome the aperture problem and solve for full optical flow require 

that additional constraints must be brought to bare on the problem. For example, 

Lucas and Kanade 1981 [18] assume than velocity is constant in local neighbourhoods 

(but normal velocity is not). In that case, 2 or more different normal velocities yield 

the true full velocity (in the least squares sense). On the other hand, Horn and 

Schunck 1981 [13] assumed that velocity varies smoothly everywhere and regularized 

or minimized a smoothness term across the image. Detailed descriptions of these two 

algorithms are given below. Other, state-of-the-art methods, include Brox et al. 2004 

[6], where larger displacements were dealt with using image warping in a pyramidal 

data structure and a nonlinearized robust regularization model. This computational 

framework is used by Wedel et al. and presented below.

2.3 Horn and Schunck 1981 [13]

Horn and Schunck’s [13] algorithm estimates optical flow between tŵ o images. An 

energy function assumes constant pixel intensities and a smooth flow field and this 

function is minimized using local variational optimization. In other words, the al­
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gorithm assumes that even if a pixel moves from one location to another, the gray 

values of the pixel remain constant. This assumption leads to the motion constraint- 

equation or the optical flow constraint equation: Ixu +  Iyv +  It =  0. This means that 

if a local image patch is translating with velocity (u,r>), then this local velocity is 

constrained by the motion constraint equation.

To deal with the aperture problem, Horn and Schunck suggest a variational 

method which uses an additional smoothness term to yield a 100% dense optical flow 

field. This additional smoothness constraint minimizes the square of the magnitude 

of the gradient of the optical flow velocity. The smoothness term is:

fd u \ 2 (  du\2 i  d v\ 2 (  dv\2 
\ 9 x )  + \dy)  + \dx)  + \dy )

(2 .6)

Horn and Schunck proposed a scheme to estimate the derivative of brightness mea­

surements from two images only (a weighted difference calculation). However the flow 

field turns out much better if Simoncelli derivatives [21] are used, requiring an image 

sequence containing 7 images [3]. The functional:

Ixu +  Iyv +  h.{x , y) +  A2
du \2 / du \2 / dv \2
dx)  \dy)  \dx)

dv
dy

dxdy (2.7)

is minimized using the Gauss Seidel method to iteratively minimize the Euler-Lagrange 

equation to produce a globally smooth optical flow field. The parameter A is a regu­

larization constant (sometimes called the Lagrange multiplier) and larger values of A 

lead to a smoother optical flow, A2 is a weighting factor (squaring A guarantees the 

term is always positive) between the brightness constraint and smoothness constraint; 

larger values mean more smoothing.

The minimization of this function will yield the optimal optical flow velocity (u, v). 

Using Gauss Seidel and the Euler-Lagrange equations, a solution for u and v can be 

found iteratively. It would be very costly and probably impossible (due to roundoff
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error) to solve these linear equations simultaneously by one of the standard methods, 

such as Gauss-Jordan elimination. Horn and Schunck compute a new set of velocity 

estimates (un+1, cn+1) from the estimated derivatives and the average of the previous 

velocity estimates (unyvn) as:

un+1 =  un — Ix[Ixun +  Iyvn +  / t]/(o -2 +  1% +  Iy) (2.8)

u" +1 =  vn - I x[Ixun +  Iyvn +  It}/(a2 +  I 2x +  I 2y). (2.9)

The averages of u and v are usually initialized to 0 for each pixel. Eventually, the 

difference in the optical flow between two successive iterations will become very small 

(less than some preset threshold r), at winch point we assume that we reached the 

optimal solution.

One of the advantages of the Horn Schunck’s algorithm include that it yields a 

100% dense flowr field. But, on the other hand, it often smoothes out discontinuities 

in the flow field. Horn and Schunck’s algorithm cannot deal with large displacements, 

and this problem was tackled using a hierarchical approach with image warping and 

non-linearized model equations in Brox et al. 2004 [6 ] (they were not the first to use 

a hierarchical approach, see Bergen et al. [5] for an earlier hierarchical approach).

2.4 Brox et al. 2004 [6]

The best results in terms of accuracy (still to this day) were obtained by Brox et 

al. 2004 [6 ]. They avoided the linearizaton of the different energy terms in the 

variational formulation by warping (see item 4 on the next page) the image at time 

t +  1 onto the image at time t, and they only linearized the global energy inside the 

minimization algorithm. To compute optical flow, they proposed an energy functional 

that combined three assumptions: brightness constancy, gradient constancy and a 

discontinuity-preserving spatio-temporal smoothness constraint. They included the
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following constraints in their model:

1 . Gray value constancy assumption, which means that the intensity/brightness/gray 

value of a pixel is not changed by the displacement, which leads to the image con­

straint equation, I (x , y , t) =  I(x-\-u, y+v, ¿+1), where v =  (u, v). This equation 

is nonlinearized. The linearised version of the grey value constancy assumption 

using Taylor expansion yields the famous optical flow constraint/motion con­

straint equation: Ixu +  Iyv +  7̂  =  0. This equation is true or the linearizaton is 

valid only when the image changes linearly along the displacement, which is not 

held in case of large displacements. This model uses the nonlinearized equation. 

This function is quite susceptible to slight changes in brightness, which often 

appear in natural scenes.

2. Gradient constancy assumption, V I(x ,y , t )  =  V /(x  +  n, y +  v, t +  1). Here 

V =  (dx,dy)T is the spatial gradient. This function requires that the spatial 

gradient does not vary due to displacement. This criterion is invariant under 

grayvalue changes.

3. Smoothness assumption, which is based on the Horn and Schunck [13] smooth­

ness assumption with quadratic penalisers. The spatio-temporal gradient which 

indicates a spatio-temporal smoothness assumption is involved for applications 

with more than two images.

4. Pyramid coarse to fine warping is used. Warping (using the computed flow 

to warp the 2 nd image towards the 1st image at each level in the pyramid) 

removed the current flow from the image. Thus as processing continues down 

the pyramid towards the original image, the flow between the 1st image and 

the warped 2 nd image becomes smaller and smaller.
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The grayvalue and gradient assumptions are measured by the energy:

EData(u ,v )=  [  ^(\I(x +  u,y +  v,t +  1) -  I(x,y,t)\2) (2.10)
Jo,

+ 7 (|V/(x +  u,y +  v,t +  1 ) -  V I(x ,y , t)\2)dxdydt. (2 .1 1 )

Here 'I' does the robust estimation, ^ (s2) =  \Js2 +  e and e= 0.001.

The smoothness term that models the assumption of piecewise smoothness is:

E sm ooth f 'UjVaH2 + \V3v\2)dxdydt. (2 .1 2 )
Ja

Here V 3 =  (dx, dy, dt)T is the spatio-temporal gradient. The total energy is:

e m  — EjJata d* CkEgmoQtfo. (2.13)

For better readability, they define the following abbreviations:

lx =  dxI(x +  w) (2.14)

Iy — 8yI(X +  W) (2.15)

E =  I(x +  w) — I(x) (2.16)

Ex ”  $ x x l d~ w'j (2.17)

Ey ^xyl (•£ + (2.18)

ŷy "h ^ 0 (2.19)

Ez — dxI(x +  w) — dxI(x) and (2 .2 0 )

IyZ =  +  U>) -  dyl(x). (2 .2 1 )
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According to the calculus of variations, a minimizer of the equation must satisfy 

the Euler-Lagrange equations:

(C2 +  7 ( 4  +  4 ) 4 C  +  7 ( / « / »  +  4 4 ) )  (2 -2 2 )

-  aDivtf'(|V3u |2 +  |V3t f ) V 3u) =  0 (2.23)

and

(C2 +  7 ( 4  +  4 )(4 C +  7 ( 4 4  +  4 4 2)) (2.24)

-  aD iv4 '/(|V3'u|2 +  |V3u|2)V 3u =  0) (2.25)

A consistent numerical scheme based on two data nested fixed point iterations 

is presented to compute the Euler-Lagrange equations. In order to find the global 

minimum, a multiscale warping strategy is used: One starts with solving a coarse, 

smoothed version of the problem. Then the coarse solution is used to warp the second 

image back into the first. This is done by building an image pyramid with a certain 

number of levels and a downsampling factor 77 =  0.95 from the original image. The 

computation of velocities begins from the top level, i.e. the coarsest level. Once a 

solution is obtained, the velocities are projected down to the adjacent finer level, and 

are used to warp the second image back to the first one. The construction of image 

pyramid and the projecting of velocities between adjacent levels are performed by 

bilinear interpolation. If the warping at a level was well performed and the coarse 

optical flow was good on the previous level, most of the motion between the 2 images 

will have been removed. Further optical flow calculations and warping a.s one descends 

the pyramid can lead to a good final optical flow.
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Method Yosemite with clouds Yosemite without clouds

2D
3D

2.16' -  7.31° 
1.9-1° ±  6.02°

1.59° ±  1.39°
0.98° = 1.17°

Figure 2.3: The computed flow fields for the Yosemiie image sequence (left) with and 
(right) without clouds computed by Brox et al. [6].

2.5 Faisal and Barron 2007 [8]

Faisal and Barron investigated the Brox et al. algorithm in detail and proposed 2 

variants on Brox et al.’s algorithm. In the first variant, they adopt standard Horn and 

Schunck averaging to solve the smoothness term. In the second variant, they employed 

Brox el al.’s technique, as developed in his Ph.D. thesis, to solve the smoothness term 

but then used Crammer’s rule in an iterative framework rather than using SOR 

(Successive Over- Relaxation) to obtain convergence. They obtained quantitative 

error results that were similar and often exceed Brox et al.’s results on the Yosemite 

sequence.

2.6 3D Optical Flow

3D optical flow can be computed from 3D images (or in the case of scene flow from 

2D stereo images). 3D optical flow specifies how much each voxel moves between



19

adjacent volumes in the dataset 3D optical flow is a simple extension of 2D optical 

flow [2]. The next sections describe the 3D intensity motion constraint equation as 

well as the 3D aperture problem.

2.6.1 3D Intensity Motion Constraint Equation

Consider a small 3D n x n x n block or voxel at (x ,y ,z)  at time t moving to (x +  

6x, y +  5y,z +  Sz) at time t +  St as shown in Figure 2.4.

/ /

_ o ________

/ t F
iw> /

Timet Tia«t+3<

Figure 2.f: The small n x n x n 3D neighbourhood of voxels centered at (x,y, z) at 
time t has moved to (x +  5x, y +  Sy, z 4- Sz) at time t +  St.

We assume a 3D voxel I (x ,y ,z )  at time t moves with a displacement (5x,5y,5z) 

over time St. Since /(x , y 1 z, t) and I(x  +  Sx, y +  Sy,z +  Sz,t-\- St) are equal, we can 

perform a l ,sf order Taylor series expansion and obtain similarly to the 2D case:

Ixu + IyV +  IZW  =  VJ ■ K =  - I u

IXJ Iy, Iz and It are 3D spatio-temporal intensity derivatives computed via Simoncelli 

convolution. The 3D velocity is V — (U, V,W).

2.6.2 3D Aperture Problem

Equation (2.6.1) describes a plane in 3D space. Any point on that plane is possibly 

the correct 3D velocity. The velocity on the plane that is closest to the origin is called
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the plane normal velocity (the velocity normal to a local intensity planar structure) 

The line normal velocity is the velocity on the line caused by the intersection of 2 

planes that is closest to the origin. Of course if three planes intersect at a single point, 

that point is the full 3D velocity. A graphical representation of the 3D plane and line 

velocities is shown in Figure 2.5 (taken from Spies et al. 2002 [24]). A graphical

Figure 2.5: The graphical representation of the 3D plane and line velocities.

representation of the types of flows (full, line, and plane) are shown in Figure 2.6 

(also taken from Spies et al. 2 0 0 2  [24]). We are not concerned with the computation

W-

Figure 2.6: Types of Flows: (a) full flow, (b) line normal flow and (c) plane normal 
flow.

of normal velocities in this thesis.
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2.7 3D Horn and Schunck

The extension of Horn and Schunck to 3D is shown in this section (see [2]). 3D Horn 

and Schunck regularization is written as:

F =  [  (Ixu +iyv + izw + itf + a 2 {Ul + u2 + u2z + Vl + v 2 + v 2 +  if2 + if2 + w 2) .
J D

We use the Euler-Lagrange equations:

d d d d
Fu ~ d X Füx ~ d Ÿ Fuy ”  “  di ^

Fv -  — Fv -  —  Fv -  —  Fu -  — Fu 
V dX dF dZ Vz dt Vt

Fw ~  1x Fwx ~  dÿF^  " “ â Fm/'

0 ,

0 ,

0 .

where:
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Fu 2 Ix(IxU + IyV + I z w  + h)

Fv = 2 Iy(IXU + IyV + IZW  + It)

Fw = 2IZ(IXU +  IyV +  IzW  + It)

Fux = 2 a2Ux

Fu y 2a2UY

Fuz = 2a2Uz

Fut 2 a2Ut

Fvx — 2 a2Vx

FVy — 2 a2Vy

Fvz — 2 a2Vz

Fvt = 2 a2 Vt

Fwx 2 a2lVx

Fwy — 2 a2Wy

F\VZ = 2 a2Wz

Fw, = 2 a2Wt
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and

dFUx
dX

=  2a2Ux x , dFY,dZ — 2 a2Vzz
dFjjy
dY = 2a2UYY, dFV/

dt =  2 a2Vtt

dFUz
dZ =  2a2Uzz,

dFWy
dX = 2q2VEyz

dFUt
dt =  2a2Utt, dFWy

dY = 2 a2Wyy

(FFVx
dX

=  2a2Vx x , dFŵ
dZ =  2 c?W zz

dFVy
dY

=  2a2VYY: dFwt
dt = 2a2Wtt.

Uxx +  Uyy +  Uzz +  Utu v 2v =  Vxx +  Vyy +  ^zz +  Vtt and

V 2W  =  W xx  H- Wyy  H- 'Wzz H- we can rewrite the Euler-Lagrange equations as:

I\U + IXIYV + IXIZW + Ix It =  a2V2U 

Ixh ’U +  lyV  + IYIZW + /y /t = a2V V  

Ix IzU +  Iy IzV + I2zW + IzIt = a 2V 2lU

Using V 2£/ «  Ü — U, V 2U ?» Ü — V and V 2VU ?» W  — W  we can write:

(a2 +  I 2x )U +  Ix IYV +  Ix Iz W  =  (a2Ü +  Ix It)

IXIYU +  {a2 +  I2) V +  IYIZW  =  (a2V +  Iy It)

IXIZU +  IYIZV +  (a2 +  I\)W  =  (a2lÿ  +  / z / f).
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The Gauss-Seidel iterative equations can be written as:

Uk+1

V k+1

w k+1

ü k ■

v k

wk

Ix [Irük +  IyVk + IzW k +  It]
( a 2 +  / 2 +  / 2 +  / 2)

I y  [ l x Ü k +  I y V k +  I z W k +  I t ]

(«2 + Px +  /2 + /2)

h [lMk +  IyVk +  IzW k +  It]
(a 2 +  42 +  C2 +  C )

and are n x n x n averages of neighbourhoods of velocities at iteration 

¿7° ,  V° and W° are typically set to 0 .

2.8 Two Specific Types of 3D Optical Flow: 3D 

Range Flow and 3D Scene Flow

Range and Scene flow is 3D motion of voxels on a moving surface relative to the sensor 

(such as 3D motion data of a growing leaf). So, for example, for an observer moving 

through a stationary environment with a moving car in it, both scene and range flow 

should have one constant vector for at all background pixels and a second constant 

vector for all car pixels. This is in contrast to 3D optical flow, which is the 3D motion 

of each voxel in a volume sequence. Examples of 3D optical flow include the 3D motion 

vectors computed from gated MRI data of a beating heart or the 3D motion vectors 

recovered from 3D Doppler radial velocity and reflectivity images. Scene and range 

flow are distinguished by how they are computed. Range flow uses a 3D depth map 

of a scene measured over time. These maps can be measured by a range scanner 

(such as a ShapeGrabber), computed from the disparity map recovered from stereo 

images or computed from relative depth maps recovered from a monocular motion 

and structure algorithm. Scene flow, on the other hand, uses disparity and disparity 

gradients maps (denoted d and p respectively) computed from a stereo sequence,



25

and the left and right optical flow fields, denoted (wl, ul) and ( u r , v r )  respectively, 

computed from the images in the stereo sequence to compute 3D motion. Note that 

u and v are the horizontal and vertical components of 2D optical flow. So scene flow 

does not use any 3D information directly for input.

2.9 Range Flow

There are two basic kinds of range flow problems:

1 . motion estimation of locally rigid objects moving in an environment observed 

by a stationary sensor such as in Spies et al. 2002 [24], Spies et al. 1999 [23], 

Spies al. 2000 [10], and the regularized range flow algorithm in Spies et al. 2000 

[2 2 ], and

2. motion estimation of globally rigid objects as in Harville et al. 1999 [12].

2.10 Range Flow Motion Estimation of Globally 

Rigid Objects

Harville et al. [12] used depth measurements calculated from stereo camera and other 

sensors along with the traditional linear brightness constraint equations to derive a 

new depth constraint equation. Consequently, estimation of certain types of motion, 

such as translation in depth and rotations out of the image plane, becomes more 

robust. They derive linear brightness and depth change constraint equations that 

govern the velocity field in 3D for the perspective projection model. They first dis­

cuss the classic brightness change constraint equation and its application to motion 

estimation under perspective camera projection. The coordinate of a point in 3D
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space is: X  —
1 T

V* Vy VZ . The bright-X  Y Z and the 3D velocity is V = 

ness change constraint equation is /(x , y, t) =  I(x  +  cx, y + i +  1 ) and the depth 

constraint equation is Z (x ,y ,t )  +  Vz =  Z(x +  vXiy +  vy, t + 1). This equation is further 

simplified using a Taylor series expansion and the brightness change constraint equa-

tion can be written as — It =  y f  j d" yiy) VT. They then introduce

and develop a second, analogous constraint that operates directly on depth informa­

tion. The depth constraint equation is Zt =  J? f Z x f Z y — (Z +  xZx +  yZy) VT. 

They further constraint the 3D world velocities to result from rigid body motion by 

incorporating a Q matrix, thus replacing V with V =  Q4>, where

Q =  [ I - X }  =

and

X  =

1 0 0 0 Z - Y

0  1 1 - Z 0 X

1---
-- O O 1 Y - X 0

0 - Z Y

z 0 - X

- Y X 0

and f T ÜT

(2.26)

(2.27)

. (f) =  T  and T  and ft are the instantaneous translation and rotation

of an environmental object, so (j> is the motion parameter vector.

Finally, they show how to combine the brightness change constraint equation and 

the depth change constraint equation across image pixels into a single linear system 

which may be solved for the 3-D motion parameters.

They tested the algorithm both on real and synthetic images. They showed results 

for tracking the pose of faces on both types of images. For each of the two image 

sequences discussed, motion between all pairs of successive frames were computed 

using:

1 . the brightness change constraint equation (BCCE) only (with measured depth),
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2. the depth change constraint equation (DCCE) only, and

3. both constraints together.

Results using either the BCCE or the DCCE alone, with measured depth in each 

case, were not as good as those obtained using the combined constraints.

2.11 Range Flow Estimation of Locally Rigid Ob­

jects

The papers surveyed to understand range flow estimation of locally rigid objects were 

Spies et al. 2002 [24], Spies et al. 1999 [23], Spies et ah 2000 [10], and the regularized 

range flow algorithm in Spies et ah 2000 [22] and Barron and Spies 2000 [4]. A 

discussion of these papers is given below with the least squares equations in Barron 

and Spies 2000 [4] explained in detail in Chapter 3. Locally rigidity is necessary for 

the various range flow constraints but global rigidity is not required. Indeed, some 

of the work of Spies et al 2002 [24] show the range flow on Castor Oil Bean leaves, 

where global rigidity does not hold.

2.12 Spies et al. 1999 [23]

Spies et ah compute local 3D motion of objects in the scene using a sequence of depth 

maps that were measured by a Biris laser range sensor. The equation Z =  Z(X ,Y ,t)  

expresses Z the depth as a function of space and time. Taking the time derivative 

of Z, they get the equation +  I f  ’ which leads to the range flow

motion constraint equation:

Z\X  -f- ZyY  — Z T- Zt — 0 (2.28)
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Note the dot notation for temporal derivatives, i.e. X  =  ^~ and X dX 
at •

The range flow which is defined as the local 3D-motion of objects in the scene is

denoted as /  =  (A , T, Z) — ( f f  7 5 7 , )■ They solve for the range flow (X ,Y ,Z )  via

a total least squares method. Equation (2.28) represents a plane in (X , T, Z)-space or
1 T

zx 'Y T . One solution,a plane in 3D velocity space with with surface normal 

also known as the raw normal flow, is the vector with minimum norm between the 

origin and the constraint plane and is given by the Equation (2.29) below:

- Z t
Z2X +  Z£ +  1

Z x

Zy

1

(2.29)

The raw normal flow is sensitive to noise because it is a local calculation.

2.12.1 The 3D Aperture Problem

Equation (2.28) is one equation with three unknowns, which lead to the 3D aperture 

problem. The 3D aperture problem means that on a plane, only the movement 

perpendicular to the plane can be observed. The 3D aperture problem, as manifested 

by full flow, line flow, and plane flow resulting from the 3D aperture problem were 

explained above and in two of Spies et al. papers [24, 2 2 ].

2.12.2 Solution using Total Least Squares (TLS) Method

One way to solve the range flow problem is to use local TLS. The solution is as

follows. First, let u = X  Y  - Z  1
1 T

U V w 1 Then rewrite the range

flow motion constraint equation (Equation (2.28)) as d, • u =  0. If there are N  pixels, 

then there are N  such equations. The flow estimation is formulated as:

IZ)tf||2 —» min subject to uTu =  1 , (2.30)
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T T ■  ̂  ̂-
where d = 1-Hts?

__
j , Û =

----1
T—Î

à__
1 and D = d\ • • * dn

solution is given by the eigenvector e4, corresponding to the smallest eigenvalue À4 of 

the generalized 4 x 4  structure tensor:

<  Z x Z x  > <  Z x Z y  > <  Z x  > <  Z x Z y  >

<  Z y Z x  > <  Z y Z y  > <  Z y  > <  Z y Z y  >

<  Z x  > <  Z y  > <  1 > <C Z y  >

<  Z y Z y  > <C Z y Z y  !> <  Z y  > <1 Z y Z y  >

(2.31)

Here < • > denotes local averaging using a Box or Binomial filter. (Where possible 

we keep the notation used in the papers we discuss.) The full flow is:

/ /  =  —  e44

eu

€24

€■34

(2.32)

and the eigenvalues and eigenvectors are solved using Jacobi-Rotations transforma­

tions. The plane flow is:
en

fp =  ~  ~~3. 7~jT e2i (2.33)
e\\ +  e 21 +  e31 €21

e 31

and the line flow is:

fi =
e 41

1 -  P2 _ p2 i c41 c42

€ l l 6 1 2

€■41 €21 +  642 622

631 632

(2.34)

The performance of their method was assessed on both synthetic and real data. The 

good quantitative and qualitative data analysis demonstrate the robustness of their 

method.
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2.13 Regularized Range Flow, Spies et al. 2000

work in Spies et al. 1999 [23] was extended. First, it was shown how to solve range 

flow via total least squares using Equations (2.28) to (2.34), as was first presented in 

the paper by Spies et al. 1999 [23]. However, to reduce computational cost, they only

threshold. This can lead to holes in the depth data. So they introduced an iterative 

regularization approach to fill in these holes and to compute dense range flow. The 

iterative regularization approach yields the following minimization problem:

In Equation (2.35) above, P  is the projection matrix which projects onto the sub­

space determined by the TLS algorithm, & is the confidence measure of the TLS

and V =  [dx,dy,dt]T, which not only considers spatial neighborhoods but also en­

forces temporal smoothness as well. The confidence measure is used to detect motion 

discontinuities caused by sharp edges or occlusions and to remove noise, because the 

TLS algorithm fails when there are motion discontinuities.

Solving for the range flow via the TLS algorithm produces outliers on real data, so 

Spies et al. introduced another method called direct regularization, which is applied 

on a sequence of depth maps. The minimization in this case is written as in Equation 

(2.36) below:

Spies et al. 2 0 0 0  [2 2 ] used range flow to study the motion of a Castor oil bean leaf. The

compute the range flow where the trace of the tensor matrix is greater than a certain

(2.35)

algorithm, /  is the combined plane flow, line flow, and full flow, v — U V W

(2.36)

Spies et al. tested their algorithm on synthetic and real data and also applied the
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Figure 2.7: Range flow fields for some Castor Oil Bean leaves, from Spies et ai 2002 
[24].

range flow algorithm to range data from a growing Castor Oil Bean leaf to study its 

3D motion. The regularization algorithm yielded excellent results on pure synthetic 

data. Most of the error was bias error (the error distinctly was biased in one direction). 

The remaining error was due to small segmentation mistakes. A range flow field on 

real data is shown in Figure 2.7. The results show that sub-pixel displacements can 

be estimated.
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2.14 Dense Range Flow from Depth and Intensity 

Data, Spies et al. 2000 [10]

Spies et al. [10] showed that combining intensity and depth information greatly aids 

in the estimation of the local 3D range flow of moving surfaces. They demonstrated 

how that intensity and depth information can be combined in both a local total least 

squares algorithm and in an iterative global variational technique.

They used two constraint equations, the range flow motion constraint equation

ZxU  +  ZyV +  W  +  Zt =  0 (2.37)

and the brightness change constraint equation

Ix u  +  IYV +  It =  0 . (2.38)

Again, (total) least squares and regularization solutions are possible. We use both 

intensity and range data in our range algorithm in Chapter 3.

2.14.1 The Solution Using Total Least Squares

The range flow motion constraint given by Equation (2.37) and the bright change 

constraint given by Equation (2.38) are recast in a total least squares framework as 

follows:

u\Zx "b UoZy U3 T  1/4Zf — 0 and 

Uilx  +  u2Iy +  u4It =  0..

(2.39)

(2.40)
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Here iq, u2, Us are the 3D velocities scaled by u4 as computed by total least, squares. 

The range flow is given by Equation (2.41) below:

U V w
1 T 1 T

u2 Us

The vector:

u
1 T

U\ U2 Us U4

is normalized and the following energy functional:

(2.41)

(2.42)

J — / [(wj Z»x T u2Zy +  Us T u4Z%)2 +  P?{u\Ix T u2Iy T u4If^  H~ Xiu^u^dXdY (2.43) 
J A

is minimized. Here, A is an eigenvalue of the extended structure tensor, which is 

computed using convolution and smoothing operator. ¡32 is a weighting term, weighing 

the relative importance of the intensity and depth terms.

2.14.2 Solution Using Global Smoothness

To solve for the range flow using the global smoothness method, the following energy 

functional is minimized:

J — f  [(u\Zx +  U-2Zy +  Us +  U4Zt)2 +  p2(uilx  +  u2Iy +  u4It)2 +  (2.44)
J A

a2(VU2 +  W 2 +  V W 2]dXdY.

Here, the smoothness term is weighed by the constant factor a2, which specified how 

important smoothness in the solution. The minimization of J leads to the following
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set of linear equations in Equation (2.45) below:

(a2 +  Z2 + P2PX) + (ZXZY + 32IxIy) Zx U

(ZxZy + ¡32IxIy) (a-2 + Zy + f32I 2) ZY V

Z X Zy a2 + 1 w
=A

a2U -  Zx Zt -  fPlxh 

■a2V -  ZYZt -  p2IYIt 
a2W -  Z£

Spies et al. solve these equations iteratively as:

U n+\ a 2U  -  Z x Z t -  P 2I x It

yn+1 a 2V  -  ZYZt -  (32I Y I t

w n+1

-----
1

1

C4s

___
1

(2.45)

(2.46)

In Equation (2.45), the intensity values are about 100 times larger than the depth 

values (for the data Spies et ah used) so the intensity values will dominate the 

numerical calculation (unless appropriately weighted). Therefore, the two constraints 

are weighted by the factor /?2, where (32 is We used a term like this in our

range flow algorithm in Chapter 3.

Note that the Biris range sensor collects both range and intensity data under 

orthographic projection. Therefore, we can assume l x  and Ix and Iy and Iy are 

the same (X  and Y are 3D coordinates and x  and y are their corresponding image 

coordinates), something not true when the depth data is collected under perspec­

tive projection from a stereo calculation. We show how to handle violation of this 

assumption in Chapter 3.

Spies et al.’s results showed that the integrated use of intensity and depth data 

greatly improve range flow estimation.



2.15 Barron and Spies 2000

We implemented the paper titles “Quantitative Regularized Range Flow” by Barron 

and Spies 2000 [4]. We leave the details to Chapter 3.

35

2.16 Scene Flow

Scene flow was introduced by Vedula et al. 1999 [26]. The two major classes that the 

scene flow algorithms surveyed can be categorized as:

1. joint motion and disparity estimation methods as in Huguet and Devernay 2007 

[14], Rabe et al. 2007 [20], Isard and MacCormick 2006 [15], Zhang et al. 2001 

[30] and Patras et al. 1997 [19] and

2 . position and velocity estimation steps are decoupled in the algorithm as in the 

papers Wedel et al. 2008 [29] and in 2010 [28].

2.17 Vedula et al. 1999 nd 2005 [26, 27]

Vedula et al. designed linear algorithms to compute dense 3D scene flow under three 

different scenarios where the camera is fully calibrated. The first two algorithms 

compute scene flow from regularized optical flow, assuming the scene shape is known. 

One of the algorithms uses a single camera, while the other uses a multiple camera 

setup. The third algorithm computes scene flow from the inconsistencies in multiple 

optical flows. Vedula et al. 2005 [27] is an improvement to algorithm in Vedula et al. 

1999 [26].

If many cameras are used to image the scene, it is impossible to compute scene 

flow directly from the image measurements without any smoothing or regularization
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(except at points with sufficient structure, such as corner points) and only the normal 

flow can be computed without regularization. This is the aperture problem and means 

that computation of scene flow is an ill-posed problem. The following equations:

and

[Pih(x,y,z)'1
[P i\i{x,y,zy

[P i ] i {x ,y ,z f

(2.47)

(2.48)
[Pi}3(x ,y ,z )T

where [P¿]j is the j th row of P ,̂ show the relationship between a 3D world point 

x =  (x, y, z)T on the surface and 2D image coordinates =  (ut, Vi)T of its projection 

in camera C{.

Assume that the surface Sl is Lambertian with albedo p =  p(x;t). If the point 

x =  (x,y, z)T is visible in camera C*, the intensity can be written as:

4 (Ui) =  - K  ■ p(x; t) [n(x; t) ■ (r(x; £)], (2.49)

where K  is a constant that only depends upon the diameter of the lens and the 

distance between the lens and the image plane and n and r are the scene structure 

and illumination respectively. Assuming:

1 . the illumination is constant or

2 . the surface normal does not change rapidly so that ^ [n  ■ r] — 0 ,

then the optical flow constraint equation or the gradient constraint equation is:

rf
1 * di

(2.50)

It is not possible to combine the normal flows from several cameras to estimate the 

scene flow without having to regularize the problem. This is because: if x =  x(£) is
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the 3D path of a point in the world, its instantaneous scene flow is — . If the image of 

this point for camera Cl is û  =  Uj(£), then the optical flow is simply the projection 

of the scene flow into the image plane:

du, = 8 u,dx (251)
d t dx dt

where — 1 is a 2 x 3 Jacobian. The gradient constraint equation [Equation (2.50)] can 

be rewritten as:

V/ / -
d\ii dx
dx dt

(2.52)

Differentiating Equation (2.52) with respect to x yields:

Il(ui) =  - K  ■ Vp(x; £)[n(x; t) ■ (r(x;i)]. (2.53)

Because this expression is independent of the camera Ci and depends on properties 

of the scene (the surface albedo p, the scene structure n, and the illumination r), the 

coefficients of ^  in Equation (2.52) should ideally always be the same. Hence, any 

number of copies of the equation will be linearly dependent. Thus, this result means 

that it is impossible to compute 3D scene flow independently for each point on the 

object, without some form of regularization of the problem.

Of the three algorithms presented, the first uses a single camera and inverts Equa­

tion (2.51) to get:
r l-v  /Ov r i l l  f)-Y

(2.54)dx <9x dui dx
d t du, d t dt

In the second algorithm, multiple cameras are used, and the following system of 

equations is solved:

(2.55)
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where

B =

du\ d u -1 d u j
d x dy dz du  i

dv\ dwi d v } dt
d x dy dz dv  i 

dt

, u  =

dujsj dUN d u x
d x dy dz du m

d v N dVN dvN dt
d x dy dz dvN

dt

(2.56)

In the third case, there are inconsistencies in the multiple optical flows so the solution 

to Equation (2.51) is written as:

(lx
d t

du j 
dx

du,
d t +  /irj(uj). (2.57)

Veluda can only recover the structure where the scene is actually moving. By comput­

ing optical flow separately, their algorithms still relies on the accuracy of the optical 

flow computation. Also, the linear algorithms may be sensitive to noise.

2.18 Joint Motion and Disparity Estimation Scene 

Flow Methods

The joint motion and disparity estimation methods do the following: at each time 

instant the two dense motion fields, for the left and the right sequences, and the dense 

disparity field of the next stereoscopic pair are jointly estimated. Some research using 

joint motion and disparity estimation technique to calculate scene flow are discussed 

below.



2.19 Patras et al. 1997 [19]
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This work used a joint motion and disparity estimation technique. At time t. they 

solve the stereo correspondence problem to calculate a smooth disparity field from 

a pair of stereo images, using a regularization method. The stereo correspondence 

problem is solved by finding a dense disparity field 5t at time through which every 

point (xi,yi) in the left image is matched to a point (x/ + d, y{) in the right image. The 

intensity preservation principle leads to Ii(xi,yi) =  7r(x/ +  S,yr). They minimize a 

cost function, which consists of the intensity preservation principle and a smoothness 

constraint. The kind of smoothness constraint they use is a Discontinuity Adaptive 

Function, meaning that it regularizes the solution and preserves the discontinuities 

simultaneously. Preserving discontinuities such as edges is important in order to 

understand the structure of the scene.

After minimizing the cost function and performing a 1st order Taylor expansion, 

they devise an iterative solution to solve for the disparity field. To make their solu­

tion work for data where large disparity values are present, they use a coarse-to-fine 

multi-scale method. They also use an error confidence measure to get rid of occlu­

sions (image regions which cannot be seen by both cameras) since occlusions lead to 

miscalculated disparity fields.

Afterwards, at time t +  1, they use the previous disparity field calculate at time 

t and coarse-to-fine method or pyramid, to jointly estimate the motion field/optical 

flow at time t and the disparity field at time ¿ +  1. If there is a correct correspondence 

between points ( 7  j )  in time t and (7, f )  at time t +  1 , then the following equations 

hold true:

vr(i',j') =  Vl{i,j) (2.58)

and

St+l(i +  Ui, j  +  Vi) =  uT{ i , j ' )  -  Ui{ i , j ) +  6t ( i , j ) . (2.59)
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To solve this step, they minimize a cost function which had 3 major parts. For the 

first part, the points are not stereo occluded, so the estimation of the disparity field 

and the estimation of the second disparity field at time t are interconnected. For 

the other 2 parts, motion fields are estimated independently for the left and right 

stereo occluded areas respectively. They minimize the cost function and solve it 

iteratively. This only leads to a partial construction of the disparity field as there 

were motion occlusions. Therefore, they use error confidence measures to detect 

the motion occlusions. Then the construction of the disparity field at time t +  1 is 

completed by finding the corresponding point (i +  u\ j  +  vl) at the left image at time 

t +  1 for each point (?', j )  in the left image at time £, and assign it to Equation 2.59 .

The advantage of the work of Patras et al. is that due to the joint motion and dis­

parity estimation, the spatial and the temporal consistency of the disparity fields are 

good and the intermediate pictures natural. One disadvantage is that their algorithm 

doesn't run in real time. Another disadvantage is that in the joint motion/estimation 

method proposed in this work the motion occlusion/disclosures and stereo occlusions 

are detected at steps that follow the estimation of the corresponding fields. In this 

way the estimation of the disparity and motion fields near these areas is deteriorated, 

which is shown by their results. Most visible artifacts in the interpolated images ap­

pear in such areas. They evaluated their results qualitatively and not quantitatively.

2.20 Zhang et al. 2001 [30]

Zhang et al. provide an energy minimization framework, that includes regularization 

constraints, to compute dense scene flow.

Initially, they presented a stereo-matching algorithm that employs graph-based 

image segmentation information to enforce the depth discontinuities. The output 

of this stereo-matching algorithm includes a disparity map, an occlusion map and a 

confidence map. Then they show two ways of computing the scene flow.
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In the first formulation, they assume that the initial disparity map is accurate 

enough. The disparity value at point P in frame t in the reference view is denoted 

as dt. 3D scene flow at point P is denoted as (u,v,w), where u,v are actually the 

components of optical flow vector, w is denoted as the change in disparity motion 

dt+1 — dt. Note that w is referred to as df or p, the gradient of the disparity in 

other literature. In their algorithm, they assumed that there are N(C0, Ci, ...Cjv- i ) 

cameras available and the reference camera is Cq. The motion constraints they used 

combined the optical flow constraints from every single camera. They reprsented the 

optical flow in camera i as ^  =  0. Thus for a 2-camera setup, the

combined motion constraint for cameras Co and C\ is written in Equation (2.61) as

K

f  dl0[ dl0, dl0
[ d x ^ y)U dy ^ y)V dt '{x'y)

2

+

d h , , x
~Q^\(x+d,y) {U  +  W )  +

dh. ^ d h ,
Qy \(x+d,y)V +  \(x+d,y)

2

(2.60)

where k is the confidence measurement of disparity that is obtained from the stereo 

matching algorithm, provided that the object point P is visible in camera C\ or 

otherwise k is considered 0. To make the disparity map more accurate, they added the 

hard constraint Sh- They added hard constraints by setting the weight of the equation 

to a very large number for the points with high confidence measure. Equation (2.61) 

represents the hard constraint at a point in the temporal domain as

£h =  nc(u -  Hh)2 +  ( v -  Vhf ) , (2.61)

where (uh,Vh) is the valid motion found by cross-validation. If valid motion has 

been measured, then ¡x is the normalized matching score while searching for motion 

correspondence; and otherwise it is 0 and c is a large constant. To solve for u,v,w,
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they minimize the following energy function:

JJ (em +  eh +  es)dxdy (2.62)

where ern is the motion constraint that combines all the optical flow constraints from 

all the cameras. is the smoothness term represented by Equation (2.63) shown 

below:

In the second formulation for 3D scene flow computation, they assume that the initial 

disparity is inaccurate or noisy, and to account for that, they add two more energy 

terms ec and to the equation. ec consists of a stereo constraint and the Si made use 

of confidence map. ec — —rCx^(d) and r  is positive if a point in the corresponding 

camera is not occluded and otherwise 0. The disparity should maximize the value of 

Cx,y(d), where d is the disparity and CXiV is the correlation volume computed from 

initial stereo matching, e* =  ((d  -  d{), where d{ is the initial disparity and (  is its 

confidence measurement.

They formulate the problem as computing a 4D vector (u,v,w,d) at every point 

on the reference image where the initial disparity is used as an initial guess. They 

use a multi-resolution strategy here as well and minimize the following energy term

There are a few differences between formulations one and two. They expect that when 

large motion exist (i.e. camera ego-motion) formulation 2 will be more appropriate.

the entire image. This is the reason why their method can maintain sharp motion and 

depth boundaries. The basic advantage of their algorithm was the ability to exploit

(2.64)

One advantage is that the smoothness constraint is not unconditionally applied to
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all the available constraints in one minimization framework. One disadvantage is that 

they need to improve the efficiency. They found that if serious occlusions occurred, 

the results were not good. However, their algorithm maintains very good depth 

boundaries.

2.21 Isard and MacCormick 2006 [15]

Isard and MacCormick 2006 [15] compute a dense estimate of motion and disparity, 

given a stereo video sequence containing moving non-rigid objects. This is a dense 

scene flow technique and it is a fast (real-time) technique but it yields only integer- 

pixel accurate results. This method estimates motion using loopy belief propagation. 

Belief propagation is a message passing algorithm for performing inference on graph­

ical models, such as Markov random fields. This algorithm is often used in graphs. 

The algorithm is sometimes called loopy belief propagation, because graphs typically 

contain cycles, or loops.

Motion and disparity are estimated simultaneously from a single coherent prob­

abilistic model that correctly accounts for all occlusions, depth discontinuities, and 

motion discontinuities. The approach models a two-frame stereo and motion problem 

as a single MRF, and extends to the multi-frame case by using temporal filtering 

in the same MRF framework. They first describe the MRF employed for two-frame 

stereo +  motion and then they explain the extension to the multi-frame case. Finally, 

they discuss the use of loopy belief propagation to approximate MAP estimates in 

these MRFs. The advantages are

1 . their estimates are dense,

2 . they employ a single coherent probabilistic model, in contrast to iterative seg­

mentation and too much dependence of segmentation give wrong result as in 

Rabe et al. 2007 [20] and
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3. the likelihoods correctly account for occlusions and discontinuities.

The disadvantage is the computational expense.

2.21.1 Isard and MacCormick 2006 Results

Isard and MacCormick found that with the use of temporal filtering, they get better 

results. Temporal filtering means that the stereo was filtered. Their results also 

showed that dense stereo and motion produces superior results compared to stereo 

alone. For example, if there are certain image regions in which stereo alone provides no 

velocity information, but if stereo and motion does have information in (the majority 

of) those regions, then better results can be obtained.

2.22 Rabe et al. 2007 [20]

Rabe et al. introduce a fast but sparse scene flow technique. This is another al­

gorithm that fuses optical flow and stereo information together. The performance 

of this algorithm is real time, but provides sparse results for both the disparity and 

displacement estimates.

The block diagram in Figure 2.8 shows the main components of the Rabe et al. 

system. As seen from the Figure 2.8, during each cycle, they obtain a new stereo 

image pair. First, they track the left image with a Kanade-Lucas-Tomasi tracker 

to calculate optical flow. Then the left and the right image are sent to the stereo 

algorithm which gives back depth information. The optical flow along with the depth 

information is used to calculate the ego-motion. Afterwards, the measurements of the 

tracking and the stereo module together with the calculated ego-motion are given to 

the Kalman filter system. For each pixel, one Kalman filter estimates the 6 D state 

vector consisting of the 3D-position and the 3D-motion vector. The 6 D state vector
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Figure 2.8: Main Components of the System of Rabe et al. 2007 [20]

is shown in Equation (2.65) below:

A  u ^ k k̂ — 1

Av Vk — vk-1

Ad 11¿c

Sx (0) Ci $ zf  sensor

Sy $ sensor SinO

Sz SsensorCOsO

(2.65)

In this equation, the vector contains the components of the A u and An, which are 

the measured optical flow and Ad, which is the change of disparity. In addition, the 

translational velocity components also known as the ego-motion parameters or the 

3D motion vectors, sx, sy, and sz, are calculated using the inertial sensor data speed

8sensor and tlie yaw rate f̂ sensor-

In the next cycle, for the next image pair analysis, the already acquired 6 D infor­

mation is used to predict the image position of the pixels in the tracker. This yields
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a better tracking performance with respect to speed and robustness. In addition, the 

predicted depth information is used to improve the stereo calculation.

Rabe et al. showed two ways of calculating the ego-motion. First, they calcu­

late the ego-motion using just the inertial sensors installed in the cars, which just 

measures the current speed and the yaw rate. This results in wrong 3D motion es­

timation. Another way of calculating the ego-motion was to use a Kalman filter to 

accumulate other measurements such as pitch and roll rate, and estimate a state vec­

tor containing all ego-motion parameters. This is known as image-based ego-motion 

compensation. The results are shown in Figure 2.9. The image on the left shows 

that when ego-motion is computed with just only inertial sensors, the world seems to 

move downwards as the car undergoes heavy pitch movement and this is the incorrect 

result. The image on the right shows that they got better results with image-based 

ego-motion compensation.

Figure 2.9: The results of the Rabe et al. system. The image on the left shows that 
when ego-motion is computed with only inertial sensors, the world seems to move 
downwards as the car undergoes heavy pitch movement and this is an incorrect result. 
The image on the right shows that they got better results with image-based ego-motion 
compensation.

2.23 Huguet and Devernay 2007 [14]

Huguet and Devernay 2007 address some problems that occur with the reconstruction 

of scene flow from optical flow in the work of Zhang et al. 2001 [30] and Vedula et
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al. 1999 [26]. The reconstruction in these related papers were either under- or over­

constrained and the different cameras sometimes yields non-consistent optical flows. 

To overcome these problems, the algorithm takes into account the epipolar constraint 

between images taken at the same time, which leads to a minimal parameterization 

of scene flow from the optical flow and the disparity of a stereo image sequence. Since 

this parameterization is done in the image space, the problem becomes close to an 

optical flow estimation problem with more unknown and more measures per image 

point. Their work is also similar to Brox et al. 2004 [6] as they did not linearize 

the energy terms minimized by their algorithm. Brox et al. have shown that better 

results can be obtained by avoiding the linearizaton of the optical flow constraint.

Their goal was to estimate dense scene flow, while preserving the surfaces and 

motion discontinuities. They first rectify the two image streams so that the stereo 

disparity was along the horizontal direction in the images. Gaussian smoothing (<j  =  

1.25) was also applied to the images in order to avoid numerical instabilities. Their 

method also benefited from numerical properties of Brox et al. approach: robustness 

to variation in illumination thanks to the constant image gradient constraints and 

robustness to stereo or optical flow occlusions, by using the 4/ robust regularization 

function. Their scene flow algorithm is shown in the Figure 2.10 below and this 

algorithm is the same diagram in Wedel et al. [29, 28].

The global energy function is shown below:

F/(u, U, d, d ) — EDatd “b OtESmooth) (2.66)

where a is the parameter that controls regularization. The equation for Eoata is 

shown below:

EData =  [  (PfiEfi +  (3frEfr +  0stEst +  0sEsdx), (2.67)

where (3fi is 1 for non occluded pixels for the left optical flow and 0 otherwise and 

other 0  functions play a similar role.
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Ii (left image) Ir (right image)

Figure 2.10: Figure taken from Huguet and Devemay 2007 [14], showing the Huguet 
and Devemay Scene Flow Algorithm.

Efi is the data term corresponding to the left optical flow and Efr corresponds 

to the right optical flow, which has the same vertical component as the left optical 

flow. Similarly, Es corresponds to stereo matching between the left and right images 

at time t , and Est corresponds to stereo matching at time t +  1. Efi and other terms 

are defined in terms of the equation shown below and

A (/, x; / ,  y) =  |/'(y -  7(x)| +  7  |VJ'(y -  V/(x)| (2.68)

where the above equation is the difference in intensity and illumination between two 

image points and V =  (<9X, dy)T and 4/ =  y/(s2 +  e2, with e =  0.01. The 4/ function is 

used because pixels in the left image may become occluded in some of the other three 

images, and quadratic penalisers would give them too much influence on the solution. 

The 4/ function leads to a robust energy, corresponding to minimization, but is still 

differentiable everywhere. The ^  function is applied separately to each data term, 

since pixels may be occluded by stereo, but not by optical flow, and vice-versa. In 

addition, Equation (2.68) incorporates a gradient constancy assumption in all data 

terms, so that the energy is also robust to illumination changes (local or global) and
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non-Lambertian surfaces (the stereo terms may be highly affected by such surfaces, 

since they use images coming from different viewpoints). The parameter 7  is set 

empirically, depending on how much illumination change is expected in the scene.

The regularization term is shown below:

Esmooth =  [  *(|Vu|2 +  |Vu|2 +  A IVd' -  d\2 +  fi IVd\2). (2.69)
Jet

By reducing the influence of high gradients on the optical flow or the disparity on the 

global energy, the 4/ function helps preserving the discontinuities of the functions u, 

v, d and d'. Unlike in the data term, vp is applied to the sum of the gradient norms, 

since discontinuities usually appear simultaneously in the disparity d, the optical flow 

(u,u), and the disparity gradient d'.

The problem is ill-posed because the energy is not trivially convex, since the optical 

flow constraint was not linearized and the nonlinearities are present both in the data 

term and in the diffusion term of the Euler-Lagrange equations. Therefore, to solve 

these highly non-linear coupled differential equations, they used an incremental multi­

resolution algorithm, with two nested fixed-point iterations (which were obtained by 

doing a 1st order Taylor expansion of the Euler-Lagrange equations to transform them 

into a linear system) on the solution for (u, u, d, d') to improve them at each resolution 

level. The inside fixed point iterations uses the SOR method to solve the final linear 

system. The stereo image pyramids are computed with a down sampling factor 77, 

0.5 < 77 < 1 to get a smooth transition between pyramid levels (they used 77 =  0.9). 

The multi-resolution approach ensures that they converge to a global minimum.

Then the scene flow algorithm is presented. Since the problem is to solve strongly 

non-linear and non-convex equations, the solution must be carefully initialized in order 

to avoid local minima which correspond to a wrong solution. In the Brox et al. optical 

flow algorithm [6 ], the coarsest or smallest resolution level in the pyramid ensured 

convergence to the global minimum, since the optical flow is usually small compared
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to the image dimensions. However, the amplitude of the stereo disparity is usually 

comparable to image size (it is usually even bigger than the size of the objects as seen 

in the images), so they start the scene flow algorithm at an intermediate resolution.

Since the nature of a disparity map is different from the optical flow in the sense 

that occlusions are larger and the disparity range is comparable to the size of the 

objects in the image, many difficulties arise from this in multi-resolution stereo al­

gorithms. Therefore, they proposed a two-step algorithm, where the initial solution 

is bootstrapped by separate solutions to the optical flow and the stereo problem and 

that initial solution is then refined by their scene flow estimation method.

One advantage of their algorithm is that the method is able to handle real stereo 

sequences with large motion and stereo discontinuities. Also the regularization terms 

can handle discontinuities both in the reconstruction and in the motion field, thus 

allowing fractures to appear on a smooth surface during time. One disadvantage was 

that it was not computed in real-time. They also want to estimate deterministic 

continuous function for the /3 coefficients.

To evaluate their algorithm, they calculated the RMS error. The discontinuity in 

the mouth area shown in Figure 2.11 was recovered, but it was not subpixel accurate.
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Figure 2.11: Figure taken from Huguet and Devernay 2007 [If], showing that scene 
flow was recovered in the mouth area.

.
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2.24 Decoupling the Motion and Disparity Esti­

mation Scene Flow Methods

Decoupling the motion and disparity estimation steps in scene flow methods means 

calculating the disparity and the optical flow separately. Since we implemented Wedel 

et al.’s algorithm [29, 28] for this thesis the two papers that use this technique are 

discussed in detail in the next chapter.



Chapter 3

Theoretical Technique

We implemented the scene flow algorithm presented in Wedel et al. 2008 [29], Wedel 

et al. 2010 [28] and the least squares and regularized range flow technique presented 

in Barron and Spies 2000 [4]. We explain these range flow and scene flow algorithms 

in detail in this chapter. The pseudocode of the algorithms is also provided. We 

conclude the chapter by showing how range flow and scene flow are the same thing 

mathematically and we also note the basic similarities and differences between the 

two algorithms.

3.1 Scene Flow

The Wedel et al. 2010 [28] paper is the extended journal version of their 2008 con­

ference paper [29]. We most closely follow the algorithm in the journal paper, rather 

than the conference paper. Scene flow deals with the recovery 3D observer motion rel­

ative to the environment. Scene flow is a combination of optical flow of stereo image 

sequences and the disparity maps and the disparity gradient maps for those images. 

Disparity is computed using a stereo algorithm. The stereo algorithm uses epipolar 

geometry, so that the y pixels in both the left and right images are the same. Thus

53
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disparity needs only to be computed in the x direction (making the stereo algorithm 

considerably simpler). Stereo epipolar geometry can be achieved by aligning the 2 

cameras so that they are frontoparallel (having the same 3D Y and Z coordinates 

with X  in the right camera being X  +  6, where b is the known baseline and having 

the same direction of gaze).

3.1.1 Wedel et al. Stereo Disparity Estimation

Wedel et al. follow the rectification algorithm given by Liu and Klette 2007 [16] 

to obtain stereo images that satisfy the epipolar constraint. Given a pair of stereo 

images, an environmental point [.X , Y, Z]T is projected into cameras images with 

perspective projection [x, y]T in the left image and perspective projection [x +  d, y]T 

in the right image. Equation (3.1) gives the formula:

H ( X f x N Ml
y -  z Yfy + yo

\ d )

1 o- > {  0 )

where f x and f y are the focal lengths (in pixels) for the x  and y direction and b 

(in meters) is the baseline distance between the two camera projection centers. The 

disparity value d is the difference in the x  coordinates of an image correspondence 

between the left and right image. With known camera intrinsic parameters, the 3D 

environmental point can easily be recovered from an (x, y , d) measurement. The goal 

of the stereo correspondence algorithm is to estimate the disparity d, for every non- 

occluded pixel in the left image. This can be accomplished by local methods (using 

a small matching window from the left image to the right image) or global methods 

(incorporating some global energy minimization). Two such methods will be outlined 

in the next chapter.
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3.1.2 The Outline of the Wedel et al. Scene Flow Algorithm

The Figure 3.1 below shows the outline of their scene flow algorithm. This figure 

describes how scene flow can be calculated from two consecutive images.

Figure 3.1: The outline of the scene flow algorithm, taken from Wedel et al. 2010 
[28]. From the figure, it is evident that the information needed to compute scene flow 
at time t — 1 are the rectified stereo image pairs at times t — 1 and t, along with the 
disparity map at time t — 1.

As can be seen from Figure 3.1, the rectified stereo images pair is required for both 

the previous and current time frame. The rectified stereo image pair in the previous 

time frame is passed to the stereo algorithm and the stereo algorithm produces the 

disparity image. The disparity image, d, and the rectified left and right images from 

both times frames are then passed to the scene flow algorithm to produce left and right 

optical flow fields ({uL,vL) and (ur, vr)) and the disparity gradient field, p, between 

the image pairs. Given left optical flow, (u/,, Vl) and d and p, the 3D velocity at each 

pixel (x ,y ) can be computed (we give these equations below).

3.1.3 Wedel et al. Constraint Equations

Several equations arise because of the “consistent intensity assumption” , which means 

that the image intensity is the same in both images for the same 3D environmental
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point in the scene. If L(x,y, £) is the intensity of the left image at pixel position 

[x,y]T and time £, then

L(x, y, t) =  L[x +  u(x , y , £), y +  v{x , y, £), t +  1), (3.2)

which Wedel et al. called the left flow constraint equation.

Due to rectification, the left and right images have the same y component so the 

right flow constraint equation is:

R(x +  d (x ,y ,t),y ,t) =  R(x +  u (x ,y ,t) +  d (x ,y ,t )+ p (x ,y ,t ) ,y + v (x ,y ,t ) ,t  + 1). (3.3)

This equation says that the flow in the x  component is only different by the disparity 

d and the disparity change p. Also, p (the disparity change) is defined as uR — uL, 

which are the respective left and right optical flows.

Moreover, the grayvalue of the left and right images should also be the same. This 

leads to the 3rd constraint equation shown below in Equation (3.4):

L(x +  u(x, y, i), y +  v{x, y, t), t +  1) =

R(x +  u(x, y, t) +  d{x, y, t) +  p(x, y, i), y +  v(x, y, i), t +  1). (3.4)

The motion and the disparity constraints employed by the scene flow algorithm is 

illustrated in Figure 3.2 below.

After rearranging Equations (3.2), (3.3) and (3.4), we get the following 3 equations
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Figure 3.2: This figure, taken from Wedel et al. [28], shows the motion and disparity 
constraints of the scene flow algorithm. The intensities of the corresponding points 
in the left and right stereo images and in successive time frames are assumed to be 
constant.

shown below in Equations (3.5) to (3.7):

Elf :=  L(x  +  u ,y  +  v ,t +  1) — L (x ,y ,t) =  0, (3.5)

Erf :=  R(x +  d +  p +  u, y +  v, t +  1) — R(x +  d, y, t) =  0 and (3.6)

Eof '=  R{% +  d +  p +  u, y +  v ,t +  \) — L(x  +  u, y +  v, t +  1) =  0. (3.7)

The relationships of Erf, Erf and Er>f are illustrated in Figure 3.3 below.

3.1.4 Wedel et al. Energy Equations

The scene flow algorithm estim ates u, v and p  by minimizing an energy functional

consisting of a da ta  term  (derived from constraints) and a smoothness term th a t

- 
iS
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Figure 3.3: This figure, taken from Wedel et al. 2010 [28], illustrates the relationships 
between the quantities in Equations (3.5) to (3.7) for two stereo image pairs.

enforces smooth and dense scene flow parameters:

Esf =  [  {Ed +  Es )dxdy, (3.8)
Jn

where Ed and Es are the data and smoothness term and E sf is the scene flow. By 

using the constraint equations in Equations (3.5) to (3.7), we get the following data 

term in Equation (3.9):

ED =  ^ E 2lf + c { x ,y , t )^ E 2RFF c {x ,y ,t )^ E 2DFdxdy.
Jn

(3.9)



59

In Equation (3.9), \k(s) 2 =  y/s2 +  e, where e=0.0001, and ty(s)2 denotes a robust 

function that compensates for outliers and the function c (x ,y ,t ) returns 0  if there is 

no disparity known at [x, y]T and returns 1 where a disparity exists at [x,y]T. The 

disparity might not be known at a location because of occlusion or a sparse stereo 

method.

Moreover, local deviations in the scene flow components are penalized by the 

smoothness term and the smoothness term employs the same robust function as the 

data term in order to deal with discontinuities in the scene flow field:

Es  =  tf(A |Vu|2 +  A |Vu|2 +  7  |Vp|2). (3.10)

where V  = JL A
d x  ’ d y

-|T
. The parameters A and 7  regulate the importance of the smooth­

ness constraint, optical flow and disparity gradient values respectively.

3.1.5 The Minimization of the Energy Equations

This section shows the minimization of the energy equations found by computing the 

Euler-Lagrange equations.

3.1.5.1 The Initial Euler-Lagrange Equations

The minimization of energy uses the Euler-Lagrange equations:

'¡>'E2lfLx +  cV'E2rfRx +  ĉ 'E 2dfEd f (Rx -  Lx) -  XdivÇVuEs') =  0, (3.11)

y 'E 2LFLy +  c^'E2RFRy +  dfl'E2DFEDF(Ry -  Ly) -  Adiv{VvEs') =  0, (3.12)

and

c V E 2rfErfRx +  c^'E2dfEd fRx -  Adiv(VpEs') =  0, (3.13)
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with

E's :=  '¡''(A |Vu|2 +  A |V̂ |2 +  7  |Vp|2). (3.14)

where ty'(s2) — denotes the derivatives of ^ with respect to s2. Partial derivatives of 

R(x +  u, y +  u, t) and L(x +  d +  p +  u, y +  v, t) are denoted by subscripts x  and y. 

For simplicity, c =  c (x ,y ,t). We can also see from Equations (3.10) and (3.14) that 

E's =  Es with all 4/ functionals being replaced by 4/'.

3.1.5.2 Warping and Linearizaton

Because the Euler-Lagrange equations are non-linear in the unknowns [u, u,p]T, they 

used the strategy of two nested fixed point iterations loops as suggested by Brox et 

al. 2004 [6]. The outer fixed point iteration loop contains the linearizaton of the 

Elf , Erf , and Ed f• They start with [u0,u0,p°]T =  [0,0,0]T =  for all [x,y]T, where 

k is the increment of the unknowns [¿u°, 6p°]T that is estimated in each iteration.

The second image is then warped according to a new estimate shown below:

[Ufc+i, vk+i,p k+]T =  [uk +  Suk,vk +  6vk,pk +  Spk]T. (3.15)

The linearizaton is performed in the left and right images as follows:

L(x +  u*+1, y +  vfc+1, t) «  L(x +  uk,y  +  vk, t) +  6ukLx +  SvkLy (3.16)

and

R(x +  d +  {p)M  +  ufc+1, y +  vM , t) w R(x +  d +  (p)k +  uk,y  +  vk, i)+

5uk R (x+d) +  $(p)k R(x+d) +  SvkRy. (3.17)

In Equation (3.17), R(x +  d) is the derivative of R with respect to (x +  d). From 

Equations (3.16) and (3.17), we can derive linearized versions of Elf, Erf, and E’d f -
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The warping is combined with a pyramid or coarse-to-fine strategy, meaning that they 

work with the down-sampled versions of the image whose resolutions are successively 

refined with each iteration.

3.1.5.3 Final Linearized Euler-Lagrange Equations

The remaining non-linearity in the Euler-Lagrange equations is because of the robust 

function, 'll. In the inner fixed point loop, the expressions are kept constant and 

are recomputed after each iteration l. This leads to the following linear equations:

+c*3ÿ • (EkRF +  Rk(6uk'l+1 +  Sd,{k'l+l)) +  Rk6vk’l+1)Rk+  

Xdiv^'s’1 ■ V(uk +  6uk’l+1)) =  0, (3.18)

^ l f  ■ ( e Ï f  +  LkJ u k’l+1 +  Lkôvk’l+1)Lk 

+c'S/R’F • (EkRF +  Rk(6uk'l+1 +  6dr{k'l+1)) +  Rk6vk’l+1)Rk+  

A d iv^ 'g ’1 ■ V {vk +  6vk’l+1)) =  0 (3.19)

and

c V r f  ■ (E r f  +  Rkx(Suk'l+1 +  Sd,(k'l+1)) +  Rkôvk’l+1)Rk 

+cV 'ki - ( E kDF +  Rkj S k'l+l'>)Rk-  

7  div(^'k’1 ■ V(p* +  6p{k’l+1))) =  0, (3.20)

with

<a'k’1 :=  <b{E.(uk +  5uk\ vk +  6vk’1, d!k +  6d,k'1)). (3.21)

These equations are solved using SOR (successive over-relaxation is an iterative 

method to solve large systems of equations).
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3.1.6 Derivation of Image Scene Flow to 3D Scene Flow (World 

Flow)

After deriving the image scene flow as a combined estimation of optical flow and 

disparity change, Wedel et al. use the image scene flow to compute world point tuples 

that represent the start and end point of the 3D scene flow. These 3D environmental 

points can be computed as:

X t- i  =  (x -  x0)~, Yt- i  =  (y sfy b
V0) fxd

and Zt- i  = f*b (3.22)

and

X t =  (x +  u -  xo) d +  p ’
Yt =  (y +  u -  y0) fy b

fxd  +  p
and Zt = fxb

d +  p ’
(3.23)

where (x0,yo) are offsets computed so that the image origin is at the center of the 

flow field.

The 3D scene flow [[/, V, W]T =  [.X Y \  Z']T is the subtraction between these two 

3D environmental points:

( u ) f x ' )
(x t -  x t+ /

V = Y' = Yt -  Ft- i =  b

w { z > j \ ^ t~  Z t-1 j V

— X q __  X + U — X  Q \

d d+p
y -y o  _  y + v - y o

d d+p
Ll __ Ùl.d d+p’ /

(3.24)

3.1.7 Wedel et al. 2008 Results

Wedel et al. minimized the energy functional using the Euler-Lagrange equations 

and solved for (u,v,p). Then they tested their scene flow algorithm with 4 stereo 

algorithms: semi-global matching (SGM) and SGM with hole filling (which favors
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smaller disparities), correlation pyramid stereo and an integer accurate census-based 

stereo algorithm. They achieved lower scene flow errors than Huguet et al. method

[14]. They also found that the RMS (root mean square) error of their scene flow is 

much smaller. RMS measures the magnitude of a varying quantity. RMS is an useful 

statistical measure when the variates are positive and negative such as in sinusoid 

data. They also observed that SGM with hole filling yielded inferior results than the 

other stereo methods and that normal SGM yielded the best results.

S tereo
A lg o r ith m

— nsrv—
(d e n s ity )

W it h o
RMSUV

ut o c c lu d e c
RM Suvj ’

areas
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------- W ith
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o c c lu d e d
RMSû j'

ireas
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H u gu et et al. [7] 3 .8  (1 0 0 % ) 0 .3 7 0 .8 3 1.24 0 .6 9 2.51 1.75

F lo w  O n ly d  ~  0  for 0 .3 4 1 .46 1.26 0 .67 2 .85 1.72
F lew  O n ly ' e v a lu a tio n 0 .3 0 1.40 0 .95 0 .04 2 .85 1.36

G ro u n d  truth 0 .3 3 0 .5 8 1.25 0 .6 7 2 .40 .1,78
G ro u n d  tru th ’ 0.31 0 .5 6 0.91 0 .65 2 .40 1,40

S G M  151 2 .9  ( « 7 % ) 0 .3 5  0 .0 4 1.33 0 .6 6  2 .45 1.82
S G M * 0 .34 0 .6 3 1.04 0.6G 2.45 1.50

P il l-S C M 10.9 (1 0 0 % ) 0 .4 3 0 .7 5 2 .18 0 .77 2 .55 2 .99
F ilJ -S G M ' 0 .4 5 0 .7 0 1.99 0 .77 2 .55 2 .7 6

C o rre la tio n  [3] 2 .6  (4 3 % ) 0 .34 0 .75 1.31 0 .67 2.51 1.84

C o r r e la t io n ' 0 .3 3 0 .7 3 1.02 0 .6 5 2 .50 3.52
C e n su s  b a sed  115] 7 .8  (1 0 % ) 0 .3 6 1.08 1.30 0 .67 2 .65 1.75

C e n su s  based* 0 .3 2 1.14 1.01 0 .05 2 .68 1.43

Figure 3.4'- Figure taken from Wedel et al 2008 [29] showing the evaluation of their 
algorithm.

3.1.8 Wedel et al. 2010 Results

Wedel et al. used RMS (root mean square) error to evaluate their results in this paper. 

Some root mean square errors (in pixels) and average angular errors in degrees for 

computed scene flow for a rotating sphere sequence are shown in Figure 3.5.

3.2 Pseudo code of Scene Flow Algorithm

We implemented the scene flow algorithm according to the pseudo code that was 

provided in Wedel et al. 2010 [28] as shown below.
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Stereo RMS a W ithout occ lu d ed areas W ith o cc lu d ed  areas
Algorithm (density ) RMSU RM SUVyCi> AAEu.i- RMSu.v RMSUtV,i' AAEU,V

G round truth 0 ( 1 0 0 % ) 0 .31 0 .5 6 O 'J l 0 .6 5 2 .4 0 1.40

S G M  ¡6 ] 2 .9  (8 7 % ) 0 .3 4 0 .6 3 1 .04 0 .6 6 2 .4 5 1.50
C orrelation |4| 2 .6 ( 4 3 % ) 0 .3 3 0 .7 3 1 .0 2 0 .6 5 2 .5 0 1.52

C ensus based 117] 7 .8 ( 1 6 % ) 0 .3 2 1 .1 4 1.01 0 .6 5 2 .68 1.43
H ug.-D ev. [8 ] 3 .8 ( 1 0 0 % ) 0 .3 7 0 .8 3 1 .2 4 0 .6 9 2.51 1.75

F ill-S G M 1 0 .9  (1 0 0 % ) 0 .4 5 0 .7 6 1 .9 9 0 .7 7 2 .55 2 .76

Figure 3.5: Figure taken from Wedel et al. 2010 [28] showing the evaluation results 
in their IJCV paper.

for all levels do

for outer iterations do

Compute structure (Algorithm 2)

Utmp =  U\ Vtmp =  V'-, d v  1  =  O j  Ptmp =  d  . 

for all inner iterations do do

Build Equation System (Algorithm 3)

Compute Diffusivity (Algorithm 4) 

for all SOR iterations do 

SOR step (Algorithm 5) 

end for 

end for

warp L(x, y, t) and R(x + d, y , t) using u, v and p. 
end for

warp u, v and p to upper level (double size and interpolate), 

end for

Note that line 14 (warp L (x ,y ,t ) and R(x +  d,y,t) using u, v and p) is unclear. 

We interpret this to mean warp L(x, y, t +1 ) and R(x  +  d, y, i + 1 ) back into L(x, y, t) 

and R(x +  d, y, t) using v and p. Then after the highest level of the pyramid has 

been processed this warping removed that motion from the images. Then processing 

at the second highest to lowest levels in the pyramid only computes U, v and p for 

the first left and right images and their warped versions. vtmp and Ptmp, besides
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being used in Wedel et al.’s “trick” to avoid an explicit calculation of 6u, 6v and 6p 

and thus speed up the calculation is also used to retain the velocities used to compute 

the warped images. We contacted Wedel by email about this and later found that, 

they do all of their warping in the compute structure algorithm.

Moreover, Wedel wrote1 that ” he didn’t warp the images, but only warped the 

derivative images instead,” which is done inside Algorithm 2, called compute struc­

ture such as in line 1 [Lx Ly]T =  \(\7L(x +  u, y +  u, t +  1) +  VL(x,y, t)). So if only 

the derivative images are warped, we believe that line 14 of Algorithm 1, where it 

talks about warping is not in the right place.

Algorithm 2, called compute structure is shown below: 

for all pixels do

[Lx Ly]T =  tj(VL(x + u,y + v,t +  1) + VL(x,y,t))

Lt = L(x + u, y + v, t +  1) -  L(x, y, t) 
if disparity d is known, i.e. c(x,u)=l then

[Rx Ry]T = ^(VR(x + ?z + d + p,2/ + v,£ + l) + VR(x + d,y,t))

Rt = R(x + x/ + d -fp ,y  +  u,£ + 1 ) -  R(x, y, t)

Dx = \{-j%R{x +  u +  d + p,y +  v,£ +  l) +

Dt = R(x + u + d + p, y +  v, t + 1) — L(x + u,y + v,t +  1) 
else

[Rx Ry}T =  0 
Dx =  0, Rt =  0, Dt =  0 

end if 

end for

Algorithm 3, called build equation system is shown below: 

for all pixels do

Elf = Et + (̂ tmp 'E)LX (̂ tmp E)Ly
vp' — i 

LF

ErF = Rt d* (u<tmp “b Ptmp — u P)Rx H- (̂ tmp v)Ey

JBy email on June 4th,2011.
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E d f  — D t ( p  tm p  P ) E ) X

bu = ty'̂ pL/x̂ Lt -f- UtmpLx H” t̂mpEy) + ppRx(Rt H" (̂ tmp "b Ptmp)RX ”1“ t̂mpRy) 

bv = ty'ppLy^Lt +  UtmpLx + t̂ tmpL/y) *b ^RF^yi^  "h (̂ tmp "1“ Ptmp)Rx "b t̂mpRy) 

bp =  SfrppRx(Rt “b (̂ tmp ”b Ptmp)Rx “1“ VtmpRy) “f" ^ DJpEx(̂ Di "b Ptmp-̂ x) 
end for

Algorithm 4, called computing diffusivity is shown below: 

for all pixels do

for all ae{u, v ,p ) do

Ra,north = (a(x, y) -  a(x , y -  l))2 + JQ (a(x + l , y ) - a ( x - l , y )  + a(x + 1, y -  1) -  

a(x -  1 , 2/ -  l))2
Ra,east =  (a(x, y) -  a(x -  1, y))2 + ¿ (a (x , y + 1) -  a(x, y -  1) + a(x -  1, y + 1) -  

a(x — l , y — l))2
Ra,south =  (ot(x, y +1) — a(x, y))2 + jj:(a(x + 1, y + 1) — a(x — l, y +1) +  a(x +1,  y) — 

a(x -  1 ,y))2

Rawest =  (a(x +  1 ,2 /)- a{x, y))2 + ¿ (a (x  + 1 , y + 1) -  a(x + 1 , y -  1) + a(x, y + 

1) -  a (x ,y -  l))2
end for

for all dir e {north, east, south, west} do

^dir —

end for

end for
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Note that to prevent the denominator in ir =  , ■ A— ------- from vanishing
\l Ru,dir~̂~Rv,dir~̂~'̂ 2Rp,dir

(which would make Rdir infinity), we added e =  0.001 as suggested by Wedel. 2 

Algorithm 5 for the SOR step is shown below: 

for all pixels do

Ream — f?north d” -^south d" Rwest d" Reast A  £

UR =  Rnorthu{x, y -  1) +  Rsouthu{x, y +  1) +  Rwestu(x -1 ,2 /) +  ReastÛ X +  1, y) 

u(x, y) =  (1 -  lj)u(x, y) +  ~ K ~  Auvv(x, y) -  Aupp{x, y))

VR =  RnoTthv{x, y -  1) +  -Rsouthv(a;, 2/ d -1) +  Rwestv(x -  1, y) +  R*astv(x +  1, y) 

v(x, y) =  (1 -  uj) v (  x, y) + a~ ¥ r̂  (uR ~ K ~  Auvu(x, y) -  Avpp(x, y))

PR =  RnorthP(x, 2/ ~ 1) +  #southP(z, V +  1) +  Ry,estP{x ~l , y )  +  ReastP(x +  1, 2/) 

p{x, y) =  (1 -  Uj)p(x, y) +  App+Rsum (Ur ~ bP ~ AuPu(x, y) -  Avpp{x, y)) 
end for

Note that we changed the terms (Vr — bv — Auvu (x ,y ) — Avpp(x,y)) and (PRbp — 

Aupu(x, y ) — Avpp(x , y)) in the SOR step pseudo code that initially were (ur — bu — 

Aupu (x ,y ) -  Avpp(x,y)) and (uR -  bu -  Aupu(x,y) -  Avpp(x ,y)) in Wedel et al.’s 

IJCV paper [28] (lines 6 and 8 in algorithm 5) These corrections have been verified 

as correct with Wedel by email.

3.3 Range Flow

Range flow requires 2 depth maps, Zt and Zt+1. Using the range flow constraint 

equation, [f/, V, W]T can be computed directly from the Z values and their Ist order 

derivatives. Z  can be computed from stereo image sequences (as has been done 

for Wedel et al.’s scene flow), from Z data measured directly from a laser scanner or 

from relative/absolute depth computed by monocular/binocular motion and structure 

algorithms. The algorithms below were initially based on being able to measure 

Z  data via a laser scanner assuming orthographic projection. Since we compute

2By email on July 5th,2011.
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our depth data from disparity data computed from stereo images under perspective 

projection we need to make a slight modification to these algorithms that we describe 

in the next section.

In the following sections, we discuss some of the range flow algorithms presented in 

Spies 20001. [4, 10, 22, 24]. We describe the range flow algorithms as we implemented 

them.

3.3.1 Least Squares Range Flow

Least Squares Range Flow was introduced in the paper “Differential Range Flow” by 

Spies et al. 1999 [23]. The motion constraint equation can easily be extended into 

3D using range derivatives as:

ZxU  +  Z y l/ +  +  Zt =  0. (3.25)

For range data Zz =  1 (we only have Z values at environmental surfaces) and the 

range constraint equation becomes:

ZXU +  ZYV  +  W  +  Zt =  0. (3.26)

Sometime + W  is written as —W in this equation, depending on whether a 3D left- 

handed or right-handed coordinate system is being used (we are using a left handed 

system, as Z  gets bigger as we move further into the environment). Note that variables 

X  and Y  are 3D coordinates. Under orthographic projection (which a range sensor 

approximates) Zx  ~  Zx and Zy «  Zy, where x  and y are the image coordinates (pixel 

coordinates). Under perspective projections the image coordinates are given as:

(x ,y) =  f
( X ,Y )

Z
(3.27)
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where /  is the focal length of the sensor (camera). Sometimes, there are slightly 

different focal lengths in the x  and y dimensions. In this case we denote these focal 

lengths as f x and f y. When we can only compute Zx and Zy, then using the chain 

rule we have:

(dZ_ dZ\ =  ( d Z c h  d Z d y  \ =  ( d Z l  d Z f \  ( .
\ d X 'd Y J  \ d x d X 'd y d Y J  \ d x Z ' d y Z ) '  1 ’ 1

The 3D range constraint equation then becomes:

ZXU +  ZyV +  j W  +  j Z t  =  0. (3.29)

We can compute Anx3V =  Bnxi, where the ith row of A has entries Zx, Zy and j  

and the ith row of B  has entries —jZ t- The least squares solution for V =  (U ,V ,W )T 

is:

V =  (.AtA )-1AtB . (3.30)

The eigenvalues eo, e\ and ¿2  and their corresponding eigenvalues, Ao < Ai < A2 , can 

be computed from the 3 x 3  symmetric matrix ATA and can be used to compute a 

reliable least squares full range velocity, V , when the smallest eigenvalue, A0 is greater 

than some threshold r.

3.3.2 Least Squares Range and Optical Flow

It is possible to compute (£/, V, W )T using both intensity and range derivatives as 

described in the paper “Dense Range Flow from Depth and Intensity Data” by Spies 

et al. 2000 [10]. We need to minimize:

(32{UIX +  V IY +  It) +  (UZX +  +  W  +  Zt)dXdYdWdt. (3.31)
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This yields the linear functional:

U((32Ix  +  Zx ) +  V(/32Iy +  Zy ) +  W  +  (/32It +  Zt) =  0 , (3.32)

which can be solved in local (n x n) neighborhoods by a least squares calculation.

Again, because we can only compute Ix and Iy (and not l x  and Iy) because we are 

using perspective and not orthographic projection), the constraint equation becomes:

U (02IX +  Zx) +  V((32Iy +  Zy) +  j W  +  j { p 2It +  Zt) =  0 (3.33)

/32 is a weighting term that can take into account the relative magnitude of the inten­

sity and range derivatives. (3 can be computed separately for each local neighborhood, 

as in general, there is not a good correlation between intensity gradient and range 

gradient values across the image. Typically, intensity derivatives are 2 orders of mag­

nitude larger than depth derivatives. In that case, a value of (3 £ [0.01,0.1] might 

better balance the influence of the two types of derivatives. Alternatively, we could 

compute (3 as suggested by Spies et al. [10] for a 2r +  1 x 2r +  1 neighbourhood as:

(3(x,y) = (3.34)

(3 =  0  reduces the solution to the least squares range flow solution.

As for the purely range flow case in the previous section, we can set up and solve 

a linear least squares system of equations, An x 3 =  vecV =  5 nxi, where the ith row 

of A as entries (P2IX +  Zx), (f32Iy +  Zy) and j  and the ith rows of B have entries 

— j((32It +  Zt). The least squares solution with eigenvalue thresholding are as in the 

previous section.



71

3.3.3 Regularized Range Flow

We show how to directly compute range flow from range (depth map) derivatives 

as described in the paper “Regularized Range Flow” by Spies et al. 2000 [22]. We 

minimize:

/ / / /  F (X , Y, t, U, V, W, Ux , UY, Uz , Ut,

Vx, Vy, Vz, Vt, Wx , Wy , Wz , Wt)dXdYdZdt, (3.35)

where the functional to be minimized is:

F (X , Y, t, U, V, W, Ux, Uy, Ut, Uz, Vx, Vy, Vz, Vt, WX ,W Y, Wz, Wt)

(.ZxU  +  ZYV +  W  +  Zt)2+

a2{U2x  +  Ul +  U2z +  U2 +  V 2 +  V2 +  Vi +  Vt2+

Wx  +  W 2 +  W\ +  W?) =  0. (3.36)

Here we have used the fact that Zz =  1 and Zzz =  0 for range data (which is a 3D 

surface in the depth data). Again, as in the Least Squares case, we actually can only 

compute Zx and Zy so the functional to be minimized becomes:

F(x, y, t, [/, V, W, Uy, Uy, Uz, Ut, Vx , V y , V z , Vu W x , Wy, WZ, Wt) =

(ZXU +  ZyV +  j W +  j Z t ) 2+  

a2(U2x  +  U$ +  U2z +  U2 +  V i +  Vi +  +  Vt2+

w2x +  +  w2z +  w t2) =  o, (3.37)
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where we have again used the chain rule so that Zx and Zy can be used in place of 

Zx  and Zy. We minimize the general 3D Euler-Lagrange equations:

where:

Fu -  d x Fu*-  W Far -  a z Fa‘ ~  =  ° ’
d d d d

F v ~ d x Fv* ~ d Y Fv'’ ~ d z Fv° ~ d i Fv‘ =  °'
Î? 9 F 9 f  9 p ^ n
F w ~ d X F w x~ d Ÿ FwY~ d Z F w z~ d t Fwt ~  ° ’

(3.38)

(3.39)

(3.40)

F u =  2Zx(ZxU +  ZyV +  j W  +  tzt) (3.41)

F v =  2 Zy(ZxU + ZyV +  j W  + f- Z t) (3.42)

F w =  2 j ( Z xU +  ZyV +  j W  + j Z t) (3.43)

F u x =  2  o?Ux (3.44)

F u y =  2a2 UY (3.45)

F u z =  2a2Uz (3.46)

F u t =  2 a2Ut (3.47)

F v x =  2 a2Vx (3.48)

Fvy =  2a2 Vy (3.49)

F v z = 2 a2Vz (3.50)

Fvt =  2a2Vt (3.51)

(3.52)
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and

FWx -  2o?W x (3.53)

FWy =  2a2 WY (3.54)

FWz =  2a2Wz (3.55)

Fwt =  2 a2Wt (3.56)

dFux
dX

= 2 a2Uxx (3.57)

dFUy
dY

= 2o?U yy (3.58)

dFuz
dZ

= 2 a2Uzz (3.59)

dFUt
dt = 2a2Utt (3.60)

dFVx
dX = 2a2Vx x (3.61)

dFyY
dY

= 2 a2VYY (3.62)

dFVz
dZ

= 2 a2 Vzz (3.63)

dFyt
dt

= 2a2Vtt (3.64)

dFWx
dX

= 2 a2Wx x (3.65)

dFWy
dY

= 2 a2Wyy (3.66)

dFWz
dZ

= 2 a2Wzz (3.67)

dFwt
dt

= 2 a2Wtt. (3.68)

Note that we have used the spatio-temporal gradients here. However, if Ut, Vu Wt, 

Utt, Vtt and Wtt are unknown then we just use the spatial gradient and use 0 for these 

terms.

Since V 2i7 =  Uxx +  Uyy +  Uzz +  Utt, V 217 =  Vxx +  Vyy +  Vzz +  Vtt and
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\72W  =  W xx  +  W yy +  W zz +  Wtt we can rewrite the Euler-Lagrange equations as:

Z 2XU +  ZxZyV +  Zxj W  +  j Z xZt =  a2V 2U (3.69)

ZxZyU +  Z 2V +  Z y jW  +  j Z yZt =  a2V 2V  (3.70)

j Z xU +  j Z yV +  ( j j  W + ( j )  Zt =  C*2V 2W  (3.71)

Using the approximations V 2C7 ~  Ü — U, V 2U ~  V — V  and V 2VL ~  W  — W , we 

can rewrite the Euler-Lagrange equations as:

(a2 +  Z 2X)U +  ZxZyV +  Zxj W  =  (a2Ü - j Z xZt), (3.72)

ZxZyU +  (a2 +  Z 2)V +  Z y jW  =  (a2V - j Z yZt) and (3.73)

j Z xU +  j Z yV +  ( a 2 +  ( j j  W  =  ( a ? W - ( j j  Zt), (3.74)

or in matrix form as:

(a2 +  Z 2X) ZxZ y f  Zx u {a2L7 -  f  ZxZ t)

ZxZ y (a2 +  Z 2) Z Zy V = (a2V  -  f  Z vZ t)

f z ,  j z ,  (<*2 +  ( f  ) 2) w

-----
1

11̂CN

(3.75)

Note that the 3 x 3  matrix on the left hand side of this equation is denoted as A. 

Then the Gauss Seidel iterative equations can be written as:
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3.3.4 Regularized Range Flow using Intensity and Range 

Derivatives

It is possible to compute V  =  ([/, V, W )T using both intensity and range derivatives 

and the same smoothing term as above. This was shown in the paper “Dense Range 

Flow from Depth and Intensity Data” by Spies et al. 2000 [10]. We need to minimize:

F  =  (UZX +  VZy +  j W  +  j Z t ) 2 +  (32(UIX +  Vly +  j i t f

W { U 2X +  U$ +  U2Z +  U2 +  v$ +  v ?  +  vg +  V2 +  W 2X +  W$ +  W 2Z +  W 2), (3.77)

i.e. we need to minimize J J J J F dXdYdWdt. The first three Euler Lagrange 

equations (see Equations (3.38) to (3.40) above) become:

Fu

Fv

Fw

2 ZX(ZXU +  ZyV +  j  W  +  j Z t) +  2 02Ix(IxU +  IyV +  j l t), (3.78) 

2Zy(ZxU +  ZyV +  —W  +  ~yZt) F  2(32Iy(IxU +  IyV +  — It) and (3.79)

2 { j Z’ U +  J Z< V + ( j f w +  ■ (3.80)

The other derivatives are the same as in Equations (3.44) to (3.68) Since X72U =  

Uxx +  Uyy +  UZz  +  Utu V 2F  =  +  Vyy +  Vzz +  Vtt and V 2W =  W xx  +  WYY +

W zz +  we can rewrite the Euler-Lagrange equations as:

ZX(ZXU +  ZyV +  ~jW  +  ~jZt) +  p2lX(lXU +  IyV +  y /* ) 

Zy{ZxU +  ZyV +  j W  +  j Z t )  +  /32Iy(lXU +  IyV +  J  It)

| w + f v + ( £ ) V + ( f ) U

=  a2W2U (3.81) 

=  a2V 2V  (3.82)

-  a 2V 2lT. (3.83)

.m
fe.

 a*
*.

 *
 g
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Using the approximations V 2C7 «  U — [/, V 2U «  V — V  and V 2VU ~  W  — W  as 

above, we can rewrite the Euler-Lagrange equations as:

(a2 +  Z 2 +  (32I2X)U +  {ZxZy +  F I xIv)V  +  Zxj W

(a2Ü - j ( Z xZt +  (32IxIt) (3.84)

(ZxZy +  0 2I 2)U +  (a2 +  Z2 +  f32I 2)V  +  Z y j W  

(a2V — y ( Z y Z t +  (32IyIt))

z
1 ‘ 7 Z>

(3.85)

(3.86)

In matrix form, this becomes:

(a2 +  Z2 +  P2I 2) (ZxZy +  i32IxIy) 

(ZxZy +  0 2IxIy) (a2 +  Z2y +  P2ly)

— 7f 2Jx
— 7f ̂ y

f  Zx Z7
f ̂ y a 2 +

u

V

w

=A

a2Ü — j ( Z xZt +  (32IxIt) 

a2V - j ( Z yZt +  (32IyIt) 

a2W  — ( y ) '  Zt

(3.87)

When (3 =  0 we have standard range flow regularization as given by Equation (3.76). 

Thus, the Gauss Seidel iterative equations for range/intensity flow can be written as:

un+1 ' (a2Ün- j ( Z xZt + /32IxIt)) '
y n + 1 (a2Vn -  f  (ZyZt +  (32IyIt))

wn+1 (a2W n -  ( j )  Zt)

(3.88)
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3.4 Mathematical Equivalence of Scene Flow and 

Range Flow

Since the disparity d is the perspective projection of the baseline b, scene flow (X Y ' , Z')T 

and range flow (U ,V ,W )T are the same thing theoretically and this can be expressed 

mathematically by the following equation shown below.

( a x \
a t ( x t -  x t^ \

V = d Y
d t

= Y' = i-H11

[ w j d Z
\ d t  ) V ' )

1 1

=  b

( X — XQ    X + I L  —  XÇ)

d d+p
y -y o  _  y + v —yo 

d d+p

\

\
Ll ___¿k_d d+p ’

(3.89)

where f x is the focal length in the x  direction. Thus, given u ,v ,d ,p  we compute 

i/, V, W.

3.5 Inversely solving for u , v , p  from U , V , W

We can also go the other way: given U ,V ,W  we can compute u, u,p. Note that if 

we have computed [/, V, W  from range data then are for the equivalent scene

(imaginary) data.

Given W(x,y),  we can solve for p (x ,y ) as:

=  d2(x ,y ) * W (x ,y )
d(x,y) * W (x ,y ) +  B * f x

Note that here we have used f x (rather than / )  as the focal length in case f x ^  f y. 

Then given f / (x,y),  we can solve for u(x ,y) as:

u(x ,y)
(d(x, y) * p(x, y) +  d2(x, y ) ) * U (x, y) +  (p(x, y) * x -  p(x, y) * x0) * B

d(x, y) * B
(3.91)
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and finally given V(x,y) ,  we can solve for v(x,y)  as:

/ \ (d{x, y) * p(x, y) +  d2(x, y)) * V (x, y) +  (p(x, y) * y -  p(x, y) * y0) * B
v{x,y)  = ------------------------------------------- —---- T— - ------------------------------------------- .

d(x,y)  * B
(3.92)

Note that while i/, V, W  are theoretically constant almost everywhere (except for non- 

stationary objects in the sequence) we use x, y to denote that in practice they can be 

different (due to measurement error, etc.).

Then we can warp the left images with (ul, vl) =  (u, v) and the right images with 

(ur, vr) =  (u +  p,v)  to remove this motion. Suppose L\,L, 2  and are the two

adjacent left and right images respectively, at two time instances. Then, we could 

warp L2 into Lx using (ul, vl) and could warp R2 into Rx using (Ur ,Vr). Of course, 

for range flow we do not explicitly use the right images. The Z  values (or disparity 

values d could come from stereo image sequences as we do here but they could be 

measured directly by a range sensor or computed indirectly from a monocular motion 

and structure calculation. We explain monocular motion and structure calculation as 

follows. A motion and structure algorithm computes the camera motion and depth 

map of the environment from time varying optical flow. Since only a a single camera 

is used, the quantities are relative and not absolute. Thus, if one object is 10m away 

and another is 5m away then we can only say that the first object is twice as far away 

as the second object but we cannot give any absolute depth information. The motion 

parameters describe the camera translation and rotation. Rotation is independent 

of depth and so can be fully recovered. On the other hand, only the direction of 

translation (scaled by a depth factor) can be recovered.

3.6 Warping Range Flow

We can also warp the depth map Z2 into Z 1 using dW,  which is the incremental 

change in W  by subtracting dW  from Z 2 via simple difference. Z 2 approaches closer
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to Z\ as a result of this.

3.7 Basic Similarities and Differences Between Scene 

Flow and Range Flow Methods

Both scene flow and range flow are the 3D optical flow on visible environmental ob­

ject surfaces. For a stationary scene and moving observer, all these vectors should 

be in the same direction and have the same magnitude. For non-stationary scenes, 

independently moving objects should have different 3D vectors, whose directions and 

magnitudes correspond to their motion relative to the observer. Methods for comput­

ing scene flow involve using depth information in conjunction with left and right 2D 

optical flows computed for a stereo image sequence to compute 3D optical flow. As 

such, it is both depth and intensity based. Range flow, on the other hand, involves 

using a range flow constraint equation on the depth values and their l si order deriva­

tives to recover 3D optical flow. Sometimes, range flow is depth based only. However, 

range flow can also be depth and intensity based when intensity information of the 

images is incorporated in the range flow algorithm. Another minor difference between 

range flow and scene flow is that the scene flow algorithm takes the disparity d as 

input while the range flow takes the depth map Z  as input (of course, Z  =  where 

B  is the stereo baseline and /  is the focal length).



Chapter 4

Experimental Technique

This chapter describes the tools used to implement and evaluate our two algorithms. 

We begin this chapter by describing the datasets we used when testing these al­

gorithms. We give the extrinsic and intrinsic parameters of the camera for these 

datasets. Then we present the filters we used to compute the Ist order derivatives 

of the images and the depth maps. We present descriptions of the two stereo al­

gorithms we used to calculate the disparities and the depth maps. We also explain 

other techniques we used to implement the algorithms such as the need to use bilinear 

sampling. Afterward, we explain the methodology used to display the 3D scene and 

range flow fields. Finally, we close this chapter with a description of our programming 

environment.

4.1 Experimental Datasets

This section describes the synthetic and real datasets that we used in our analysis. 

Both the real and the synthetic datasets are stereo image sequences of traffic envi­

ronments. Images of these traffic sequence are shown in Figure 4.1. The image data 

used in this thesis is publicly available at

80
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http://www.mi .auckland.ac.nz/EISATS

4.1.1 Synthetic Dataset

The synthetic data is a driver assistance stereo image sequence provided by Toby 

Vaudrey (University of Auckland) and Clemens Rabe (Daimler AG) from the website

http://www.m i .auckland.ac.nz/
index.php?option=com_content&view=article&id=162&Itemid=67

The website refers to these images as Sequence 1 and Sequence 2. We used both 

synthetic Sequence 1 and Sequence 2 to do our experiments. The ground truth for 

stereo disparity (d), stereo disparity gradient (p) 2D left image optical flow (u, v) and 

the extrinsic and intrinsic camera parameters were also provided for both of these 

sequences. Sequence 1 is a stereo sequence is 1 0 0  image pairs long, while Sequence 

2 has 396 frames, and both were taken with perfectly calibrated stereo cameras as 

mentioned in Vaudrey et al. [25]. The resolutions of images in both the stereo 

sequences were 640 x 480 pixels.

4.1.2 Real Data Set

The real dataset we used is called the ’’ construction site” sequence. Daimler AG, 

which is a German car manufacturer, provided Wedel et al. [29] with this traffic 

sequence for research purposes on the website

http://www.mi .auckland.ac.nz/
index.php?option=com_content&view=article&id=45&Itemid=67\$

http://www.mi.auckland.ac.nz/EISATS
http://www.mi.auckland.ac.nz/
http://www.mi.auckland.ac.nz/
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The ” construction site” sequence features normal traffic density on an expressway, 

with a standard safety fence between opposite traffic directions. However, normal 

lanes have been cut in width and shifted to the right, with several slow large trucks 

in the right lane. This sequence has been captured with a calibrated stereo pair of 

12-bit grey-scale cameras near Stuttgart, Germany. This sequence contains 300 pairs 

of frames. The intrinsic and extrinsic camera pairs were also made available. The 

resolution of the images is 640 x 481 pixels and they are saved in PGM (Portable 

Grey Map) format.

(a) Real data at (b) Synthetic data at (c) Synthetic data at
frame t =  11 frame t =  11 frame t =  215

Figure 4-1-- Synthetic and Real Images used in the experiment: (a) The real data at 
frame t =  11, (b) Synthetic data at frame t =  11 for Sequence 1 and (c) Synthetic 
data at frame t =  215 for Sequence 2.

4.2 Camera Parameters for Synthetic Data

We show the extrinsic and intrinsic camera parameters for the synthetic data as 

provided by a website

http://www.m i .auckland.ac.nz/DATA/6D/Set02/camera.dat 

[INTERNAL]
F =1 # [m] focal length
SX=0.001225 # [m] pixel size in X direction

http://www.mi.auckland.ac.nz/DATA/6D/Set02/camera.dat
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SY=0.00122 # [m] pixel size in Y direction
X0=319.5 # [pixel] X-coordinate of principle from top-left (0,0)
Y0=239.5 # [pixel] X-coordinate of principle from top-left (0,0)

[EXTERNAL]
B =0.3 # [m] width of baseline of stereo camera rig
LATP0S=0 # [m] lateral position of rectified images (virtual camera)
HEIGHT=0 # [m] height of rectified images (virtual camera)
DISTANCE=0 # [m] distance of rectified images (virtual camera)
TILT =0 # [rad] tilt angle
YAW=0 # [rad] yaw angle 
R0LL=0 # [rad] roll angle

# Notes:
#

# In a stereo camera system the internal parameters
# for both cameras are the same.
#

# The camera model is right handed.
# The X axis is the lateral distance (positive to the right)
# The Y axis is the height (positive pointing up)
# The Z axis is in the depth direction (positive in the
# direction of driving)
#

# The world to camera transformation is performed by first a translation
# (latpos, height, distance) followed by a rotation (tilt, yaw, roll).
#

# The angle directions are:
# tilt > 0 <=> looking down



# yaw > 0 <=> looking right
# roll > 0 <=> rolling clockwise
#

4.3 Camera Parameters for Real Data

The camera parameters and their descriptions are shown below. We obtained these 

values from technical report CITR-TR-207, Computer Science, University of Auck­

land, “ Performance Evaluation of Stereo and Motion i Analysis on Rectified Image 

Sequences” by Zhifeng Liu and Reinhard Klette [16].

########################################################

# Camera parameter file for ts.StereoCamera class. #
########################################################

[INTERNAL]
F = 820.428 # [pixel] focal length
SX = 1.0 # [pixel] pixel size in X direction
SY = 1.000283 # [pixel] pixel size in Y direction
X0 = 305.278 # [pixel] X-coordinate of principle
Y0 = 239.826 # [pixel] Y-coordinate of principle

[EXTERNAL]
B = 0.308084 # [m] width of baseline of stereo camera rig
LATPOS = -0.07 # [m] lateral position of rectified images (virtual camera)
HEIGHT = 1.26 # [m] height of rectified images (virtual camera)
DISTANCE = 2.0 # [m] distance of rectified images (virtual camera)
TILT = 0.06 # [rad] tilt angle
YAW = “0.01 # [rad] yaw angle

= 0.0 # [rad] roll angleROLL
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Note that the TILT, YAW and ROLL angles are essentially zero, meaning the 3D 

motion is pure translation. TILT is the pitch angle, i.e. rotation about the x  axis. 

YAW is rotation about the y axis while ROLL is rotation about the longitudinal axis.

4.4 Gaussian Smoothing

There is a lot of noise in the depth maps as well as the images. We applied 2D 

separable Gaussian filtering with a =  2.5 to blur the images and reduce noise effects. 

We show the result of Gaussian blurring for one image and its depth map in Figure

fa) smoothed Image
Unsmoothed lmage:Z1 Smoothed image, sigma=2.5

(b) smoothed Depth Map

Figure 1̂ .2: The II th image and depth map before and after Gaussian smoothing with 
a =  2.5.



4.5 Differentiation using Filters
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To compute 1st order derivatives of the blurred images and their depth maps, we used 

two 4 point central difference filtering. Thus the 5 tap filter is [—1 8  0 — 8  1]/12. We 

used 4 point central difference as this filter is used by Brox et al. [6 ]. The numerical 

calculations using 4 point central difference are better than those using 2 point central 

difference. Other 5 tap filters (the number of coefficients), such as Simoncelli [2 1 ] have 

similar performance to 4 point central difference.

In our range flow algorithm and the implementation of Wedel et al.’s scene flow al­

gorithm, we used 4 point central difference to compute the x  and y spatial derivatives. 

We used simple pixel differences to compute the temporal derivatives because Wedel 

et al. [28, 29] also used simple difference to compute these temporal derivatives.

We show some derivative images of intensity and depth maps in Figure 4.3.



87

X derivative of Image

fai x  derivative of imaere
Time derivative of Image

(c) t derivative of imaee
Y derivative of Depth Map

(e) y derivative of depth map

Y derivative of Image

(b) v derivative of imaee
X derivative of Depth Map

(di x  derivative of deoth map
Time derivative of Depth Map

f  '

(f) t derivative of depth map

Figure 4-3: Some derivative images: (a)-(c) the spatio-temporal intensity derivative 
images and (d )-(f) the spatial-temporal depth derivative images for the 11th synthetic 
image of sequence 1.



4.6 Stereo Algorithms
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To compute the disparity d and the depth maps Z, we used the two stereo algorithms 

provided in a paper titled “Depth Maps From Color Images By Region Based Stereo 

Matching Algorithms” by Baris Baykant Alagoz [1]. One of the stereo algorithms 

is global error energy minimization technique while the other one is line growing 

method. These algorithms seem to provide good disparity maps and the MatLab im­

plementations were available. We explain the concepts of these two stereo algorithms 

in the upcoming sections.

4.6.1 Global Energy

In this section, we describe the steps of the global error energy minimization stereo 

algorithm. Alagoz used a block-matching technique to calculate an error energy 

matrix d) for every disparity d in disparity search range (i.e. 0  to maximum 

disparity) using Equation (4.1) below.

 ̂ z + n  j + m  3

e(i’ i ' <i) = 3 7 ^ ; ' S E E  (4-‘ )
x = i  y —2 k = l

Here n x m is  the block or neighborhood size, (x, y) and (z, j ) are pixel locations, L and 

R are the left and right images respectively and k represents the RGB components 

of images and takes the values 1, 2 or 3, corresponding to red , blue, and green.

In the next step of the algorithm, every error energy matrix e(z, j, d) is smoothed 

by applying an averaging filter. The averaging filter removes very sharp changes in 

energy, which may be caused by incorrect matching. The averaged values of e(z, j, d) 

are represented by e(i,j,d) in Equation (4.2):

^ z + n  j + m

c(*. j,d) = —— E  E  e(x> d)- (4-2)n x m L '
x = i  y = j
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Finally, for every (z ,j) pixel location, Alagoz selected the d value that had min­

imum error energy e(z,j, d), as the most reliable disparity estimation for pixel ( i , j )  

and assigned it to d(i, j ) .

4.6.2 Region Growing

The line growing stereo algorithm uses the following three steps to compute the 

disparity and the depth map. In step 1, since disparity of stereo images only exist in 

row or x directions due to the epipolar constraint, we search along the rows to find 

a root point, which does not belong to any grown region and then find its disparity 

using the energy function in Equation (4.3):

If the error energy of a selected point is equal to or lower than a line growing threshold, 

we select it as root point disparity and go to step 2. If no disparity with lower enough 

energy was found, we repeat step 1 for the next point in the row.

In step 2 of the algorithm, Alagoz calculates the error energy of the neighbour 

points adjacent to the root point disparity. If the error energy is less than or equal 

to some predetermined error energy threshold (line growing threshold), we associate 

this point with the region. Otherwise, we return to step 1 to find a new root point. 

Note that a point being associated with a root point means that point has the same 

disparity as the root point. Thus, the pixels in a region formed from all associate 

points have the same disparity value.

Finally, in step 3 of the algorithm, Alagoz performs Step 1 and Step 2, row by

row, until the last point in the image is reached. Thus, the grown disparity regions

are composed of the disparity m ap d ( i , j ) .

t - fn  j + m  3

(4.3)
x = i  y = j  k = l
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4.6.3 Converting Pixels to Meters

We used the ’’ construction site” sequence provided by Daimler AG as the real dataset. 

Daimler gave the focal length in pixels (820.428) and the pixel sizes in pixels (1.0 and 

1.000283). We used the stereo matching algorithms provided by Alagoz [1]. These 

algorithms require that the baseline and the focal length be in meters. Therefore, 

we had to convert the focal length and baseline to meters for the real data. In order 

to do the conversion, we asked Reinhard Klette at the University of Auckland about 

the details of the Bosch camera, which was used to image the traffic sequence. The 

formula to convert focal length in pixels to meters is:

F[px]*pixelSixe=F[m],

where F is the focal length. The details of the left camera are given below.

# ##### Details of left recording camera ##########
# Pixel size = 8 micrometers (0.000008 [m])
# Sensor size = 5.12 x 3.84 millimeters (0.00512 x 0.00384 [m])
# Focal length = 6.6563424 millimeters (0.006 [m])
# Focal length = 820.428 [px]

Therefore, the focal length can be converted into meters using the pixel size of the 

recording cameras ( 8  micrometers) to be 0.00656 meters for 820.428 pixels.

4.6.4 Depth Map Generation from Disparity Maps

To derive the depth map from the disparity map, Wedel et al [29, 28] used the formula 

given in Equation (4.4) below:

b
d(i, j )

Z ( i , j )  =  f  x (4.4)
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Here /  is the focal length, d is the disparity and b is the baseline (the distance between 

the two stereo cameras).

4.6.5 Selection Rational for the Stereo Algorithms

As we mentioned earlier, we used these two stereo algorithms because they were both 

implemented in Matlab. Both algorithms used median filtering to eliminate unreliable 

disparities (occlusions). Occlusion occurs when there are regions in one image that the 

matcher cannot find a good match for in the other image of the stereo pair (probably 

the region is “hidden” in the second image). Both of these algorithms used median 

filtering to make the depth maps and the disparity maps smoother which reduced 

noise. Also, the line growing algorithm was more time efficient than the global error 

energy minimization technique. The global error energy minimization produced more 

reliable disparity maps, but this algorithm was more time consuming.

4.7 Converting the Gray Value Images to Color

The stereo algorithms in the paper by Baris Baykant Alagoz [1] used RGB color 

image for the stereo pair input. However, the Daimler data set was gray value images. 

Therefore, we converted the data set to color images using the Matlab ’cat’ operator. 

The idea of this conversion is to take the grayvalue image and make it the red, 

green and blue images. The resulting color image will still look gray because each 

corresponding color tuple has the same values for red, green and blue.

4.8 Warping

Below we describe the warping performed for scene flow and range flow.
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4.8.1 Pyramid Technique for Coarse to Fine Warping for 

Wedel et al.’s Scene Flow

A multiscale (hierarchical) approach is combined with fixed point iterations via a 

downsampling strategy. We downsample the full size images to build a pyramid with 

smaller images in each level, k is used as an index to the pyramid level. The top 

level number of pyramid is 4 and the re-scale factor is p =  0.5. The pyramid can go 

all the way to the top having the smallest possible sized images on the top level. At 

the top of the pyramid, the size of the image is the smallest and then both the image 

size and the magnitude of the scene flow get larger and larger as it goes down the 

pyramid. We build 4 separate pyramids for the left image at time t and t +  1, and 

the right image at time t and t +  1 respectively. Warping in such a manner reduces 

problems caused by aliasing.

4.8.2 Range Flow Warping

We can also warp the depth map Z 2 into Z 1 using dW,  which is the incremental 

change in W  by subtracting dW  from Z 2  via simple difference. Z 2  approaches closer 

to Z1 as a result of this.

4.9 Bilinear Sampling

The scene flow algorithm in Wedel et al. 2010 [28] calculates u and v and p. We set 

u, u, and p initially to zeros as suggested in Wedel et al. 2010 [28]. To compute the 

derivatives of the left image at time t +  1, we had to compute X7L(x +  u ,y +  v , t - hi), 

where x, y are pixel locations or image coordinates. Moreover, we use 4 point central 

difference to calculate V. The variables u, u, and p are updated during the algorithm.

However, one thing to note is that x +  u and y +  v are floating point numbers.
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We do not know what these values are when we only have integer values for pixels. 

To get values at floating point numbers, they used bilinear interpolation. Suppose 

x =  y =  100 and u =  0.236 and v =  0.49345. That means we need a value at 

( x ,y )= (  100.236,100.49345). But how would we compute this? We would simply use 

values at integer locations (x ,y ), (x +  1 , y), (x ,y  +  1 ), {x +  1 , y +  1 ) or (1 0 0 ,1 0 0 ), 

( 1 0 1 ,1 0 0 ), ( 1 0 0 ,1 0 1 ) and (1 0 1 ,1 0 1 ) respectively and appropriately weighted using bi­

linear weights. Matlab function interp2 does this for us (actually this function also 

allows bicubic interpolation which is slightly better but computationally more expen­

sive than bilinear interpolation).

4.10 Displaying the 3D Range Flow and 3D Scene 

Flow

We plotted ([/, V, W )  which is the range flow and scene flow against (x, y , Z )  instead 

of plotting the range flow and scene flow against ( X , Y , Z ) .  (x,y)  are the image 

coordinates of where the world points X , Y, Z  would project to. If we plotted ([/, V, W)  

at ( X , Y , Z ) ,  we would get flow at a cluster of these values and this doesn’t look 

qualitatively good. Using Z  with x  and y shows the depth at the image coordinates. 

How we get a dense uniformly sampled flow field. The Z  values add depth to the flow 

and makes it 3D.

4.11 Programming Environment

We implemented both of the algorithms in MATLAB (a programming language devel­

oped by the Math Works). MATLAB (Matrix Laboratory) is a tool that allows the 

user access to high performance numerical computation and visualization capabilities. 

With more than 50 sets of built-in functions, available via toolboxes, Matlab contains
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many collections of functions (toolboxes) written for specialized applications, such 

as image processing and graphics. We use the IPT (Image Processing Toolbox) for 

the work described here. MATLAB also provides an interface for other programming 

languages such as C /C + + , JAVA and Fortran. Because Matlab can call functions 

and subroutines written in languages such as C and Fortan, this allows users to in­

tegrate functions written in these languages into their MATLAB program. Another 

thing we should mention is that matrices (vectors are special cases of matrices and 

a scalar is an array of size l x l )  are at the heart of MATLAB, since all data in 

MATLAB are stored in matrices [11]. MATLAB is optimized for array operations, 

i.e. allows vectorized code to be written. According to results in Gonzalez, Woods 

and Eddins [9], for a simple application that computes sin of each element of a certain 

matrix, the un-vectorized function is 34 times slower than the vectorized code that 

computes the same result. Vectorized MATLAB code (although interpretated) is as 

fast as compile C code [11]. Therefore, in our programming, we vectorized our code 

as much as possible to get the highest efficiency.



Chapter 5

Experimental Results and Analysis

We explain the difference measures, such as Fleet’s angular error, used in the quanti­

tative evaluation of these algorithms. We present and analyze the flow fields obtained 

by the scene flow and range flow algorithm. We also show qualitative results on syn­

thetic and real data.

5.1 Synthetic Data Results

We used the synthetic data, which is a driver assistance stereo image sequence pro­

vided by Toby Vaudrey (University of Auckland) and Clemens Rabe (Daimler AG) 

from the website

http://www.m i.auckland.ac.nz/
index.php?option=com_content&view=article&id=162&Itemid=67

for our quantitative error analysis. We used the 11th image of Sequence 1 because 

Wedel et al. [28] used the same image to do their error analysis. They also used 

the 25th image, but we found that the 25th image gave comparable results so we just 

decided to show the results for the 11th image. We also used the 215th frame of

95
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Sequence 2  to evaluate our range flow algorithm because it involved 2  non-stationary 

cars. Note that when we talk about using the 11th image throughout the thesis, 

we mean images 11  and 1 2  in Sequence 1 , because these are 2-frame algorithms. 

Similarily, the 215th means images 215 and 216 in Sequence 2.

Note that these images were generated by Persistence of Vision Raytracer or 

povray, which is a ray tracing program. Ray tracing is a computer graphics method 

to generate synthetic images with moving camera and independently moving ob­

jects. Basically, a ray is cast from the camera through each image pixel out into 

the 3D world. What object the ray first encounters is the object seen at that 

pixel. A lighting calculation is done for that 3D point and the pixel is coloured 

that colour. More details about ray tracing can be found on the web (for example, 

see http://en.wikipedia.org/wiki/Ray_tracing).

These images were pgm images, which are 16bit gray values so we needed to use 

the Matlab function ’im2uint8’ to rescale the data so that derivatives can be correctly 

computed. These images were generated by the povray ray tracing program so the 

intensity resolution is a program design decision.

5.1.1 Correct Range/Scene Flow

We were given the ground truth u, u,p, d values, and from them, we computed correct 

[/, V, W  values using the equations shown below in Equation (5.1) [28].

(u\
V

\w )

(x.-xt -  X t_!
Yt -  Yt- !  

\zt-  Z * _ 1 J
=  b

( x + u —x n 
d + p

y + v - y o
d + p

X — X q  \

y-ypd
£x_
d ’

(5.1)

/\  d + p

where f x is the focal length in the x  direction. However, the ground truth data had 

many errors, so simply plugging them into the Equation (5.1) did not give us good 

3D correct scene flow. Figure 5.1 shows the 3D flow field directly computed using

http://en.wikipedia.org/wiki/Ray_tracing
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Equation (5.1) without any pre-processing (occlusion disparities are correctly handled 

but Z  values are used as given).

Correct Range/Scene Flow for image without conditions 011 in sequence 1 sam ple=30 scale=25

Figure 5.1: Correct range/scene flow for the 11th image of Sequence 1 before thresh­
olding

We see from Figure 5.1 that there are outliers in the data. Figure 5.2 shows the 

vector field in Figure 5.1 as a colour image. Note that most of the image is blue 

corresponding to the small magnitude velocities. The lower left part of the image 

corresponds to the large velocities.

For this data, the £/, V, W  vectors should be constant everywhere, except when 

there are independently moving objects (cars). Notice that in Figure 5.1, there seems 

to be a “wall” of tiny velocities, these are correct velocities at relatively small depth 

values. Removal of the Z  outlier shows that these velocities are actually quite signif­

icant.
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Magnitude Image Correct Range or Scene Flow sample=30 scale=25 
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Figure 5.2: Correct range/scene magnitude image for the II th image of Sequence 1 
before thresholding

5.1.2 Pre-processing Steps to Obtain Correct Range/Scene 

Flow

We used several pre-processing steps to obtain the correct looking flow field in Figure

5.3 and its colour magnitude image in Figure 5.4. Note that the colour image now 

clearly shows the three cars (red, orange and blue) and the moutain outline correctly. 

First, we computed the ’’ correct” depth map using the equation Z  =  *B*F./(d*SX),  

where F  is the focal length, B  is the baseline, d is the disparity, S X  is the pixel size 

in X  direction and . /  is vectorized division. We used histogram equalization to view 

the depth maps. Histogram equalization equalizes the contrast distribution in the 

image. Because there were many outliers in the depth maps, we thresholded those 

values whenever disparity was very small (Z >  1000 ). To obtain U, V, W,  we made
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a slight modification to Equation (5.1), as shown in Equation (5.2) below, where we

(u) fx t -  x t.^\

V = Yt -  Yt-i

w

fH11

=  b

- 1 by SX or the

/ X + U — X 0 x —xn
d + p d

y + v -y o y-yp
d + p

F

d

f x

\  (d + p )* S X d * S X

\

(5.2)

We applied 7 x 7  median filtering to remove further local outliers and then assigned 

the final answers to £/, V, W. We show the correct range/scene flow below in Figure

5.3 for the 11th image for synthetic Sequence 1. We use the 11th image because 

Wedel et al. [28] used that in their paper. We believe that Figure 5.3 is closer to 

the correct 3D display because there is significant flow in the lower part of the image 

where there is disparity. We also see lots of empty spaces in the flow field. This is 

because thresholding removed a lot of velocities. Because of occlusion, only 3.46% 

of the velocities were eliminated. However, the Z thresholding eliminated 22.25% of 

the velocities, but we can see from Figure 5.3 that still some outliers remain in the 

correct range/scene flow.



Correct Range/Scene Flow for image 011 in sequence 1 sample=30 scale=25

Figure 5.3: Correct range/scene flow for the II th image of Sequence 1 after thresh­
olding



Figure 5.J,: Correct range/scene magnitude image for the II th image 
after threshol ding
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5.1.3 Measuring Flow Difference

Because we are not 100% confident that the correct flow fields are actually the correct 

flow fields, we are actually computing differences rather than errors. We use average 

angular error (or average angular difference) to do quantitative analysis on our results.

5.1.3.1 Error Analysis for Depth Maps

We use relative magnitude error to measure the error/difference in depth map values.

We also computed the differences between the “correct” depth map and the com­

puted depth maps as given by the region growing and global energy stereo algorithms 

of Alagoz 2008 [1].

5.1.3.2 Error Analysis for 3D Range Flow

We used Fleet 3D average angular error to measure the difference between the correct 

3D scene flow field and the computed 3D flow field from the range flow and scene 

flow algorithms. 3D velocity can be written as displacement per time unit as in 

v  =  (U ,V ,W ) pixels/frame or as a space-time direction vector (U,V,W, 1) in units 

of (pixel, pixel, pixel, frame). Let v c =  (t/c, Vc, Wc, 1) represent the correct velocity 

at the pixel ( i , j )  and ve =  {Ue,Ve,W e, 1) represent the computed velocity at point 

We can compute a normalized velocity using:

(5.3)

Let v c and ve be normalized versions of v c and ve. The 3D angular error between 

the v c and ve is:

'ipE =  arccos(vc • v e). (5.4)
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We can also compute the relative magnitude difference (ME) between the correct flow 

and the computed flow using:

ME =  * 100%, (5.5)
Fell

and the direction difference (DE) as:

DE =  arccos (vc • ve). (5.6)

5.1.3.3 Error Analysis for 2D Optical Flow from Wedel et al.’s algorithm

We followed Fleet’s method [3] to do quantitative analysis (average angular difference, 

relative magnitude difference, and average angular direction difference). We can write 

velocity as displacement per time unit as in v =  (u , v) pixels/frame, or as a space-time 

direction vector (u, u, 1) in units of (pixel, pixel, frame). Of course, velocity is obtained 

from the direction vector by dividing by the third component. Viewing and measuring 

velocity as orientation in space-time, it is natural to measure errors/differences as 

angular deviations from the correct space-time orientation. Therefore, we let velocities 

v =  (u,u)T be represented as 3D direction vectors1, v =  - ^ = T==(u)v , l ) T. The 

angular error between the correct velocity vc and the measured velocity ve is then:

'ipE =  arccos(i)c • ve) . (5.7)

Because of normalization, this error metric takes into account both direction and 

magnitude error. This error measure is convenient because it handles large and very 

small speeds without the amplification inherent in a relative measure of vector dif­

ferences. It does have some bias however. For example, directional errors at small 

speeds do not give as large an angular error as similar directional errors at higher 

xNote that the v is for 2D velocities written as (u, v, 1) while v  is for 3D velocities written as
(U,v,w, 1).
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speeds [3].

5.1.4 Least Squares Range Flow Results

In this section, we present quantitative and qualitative results from the least squares 

algorithm.

5.1.4.1 Tabular Results for Least Squares

The Table 5.1 shows the 3D average angular error for U,V,W  as well as the 3D 

magnitude error and the 3D direction error from execution of the least squares algo­

rithm for different (3 values at the lowest pyramid level. Note that we used the word 

“error” but because we are not 1 0 0 % confident in our ground truth they are really 

“differences” . We used 4 pyramid levels and a downsampling of 77 =  0.5. When ¡3 is 

zero, the intensity information is not used. Non-zero ¡3 values weigh the depth and 

intensity contribution to the computed flow. When /? is not a constant such as 10-3 , 

it is a local ratio. According to Spies et al. [10] (3 ratio should be computed in small 

local neighbourhoods as in Equation (3.34) in Chapter 3. This (3 ratio is different for 

every pixel location. The advantage of using a ratio for ¡3 values is that one doesn’t 

have to guess the optimal ¡3 value using constant number. Usually (but not always) 

this provides among the best results.

STD in Table 5.1 is the abbreviation for standard deviation, while AAE is the 

abbreviation for average angular error, ME is the relative magnitude error and DE is 

the average angular direction error.

We observe from Table 5.1 that when the (3 values are <  0.1 or the ratio is used 

as /?, the AAE and ME are lower. However, when the ¡3 value is 1, the AAE, ME and 

DE are much higher. This is because the intensity derivatives are much larger than 

the depth derivatives so when (3 is 1, the least squares range flow operation is heavily
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dominated by intensity derivatives, which really throw off the solution (especially for 

W).  In order to obtain the optimal solution, we need a (3 value that scales the Z  and 

I  derivatives to be on the same order of magnitude (so that both constraints have 

roughly equal influence on the resulting 3D flow).

(3 3D AAE ±  STD 3D ME ±  STD 3D DE ±  STD
0 14.90°±9.73° 73.65 %±43.96% 6.84°±21.94°

I F ” 14.90°±9.73° 73.65 %±43.96% 6.84°±21.94°
I F " 14.90° ±9.73° 73.65 %±43.96% 6.83°±21.92°

1 0 " 1 15.01°±9.72° 73.75 %±44.24% 7.21°±22.81°
i 28.34°±26.55° 248.40 %±423.91% 36.18°±56.24°
ratio 14.69°±9.72° 72.45 %±43.73% 7.97°±22.20°

Table 5.1: The 3D average angular difference, magnitude difference and the direction 
difference from the least squares range flow algorithm with different (3 values for the 
11th image of Sequence 1.
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5.1.4.2 Graphical Results for Least Squares Algorithm

In the figures below, we show the graphical results computed from the least squares 

algorithm at the lowest level of the pyramid. We used a downsampling rate of r] =  0.5 

and 4 pyramid levels. We see that when (3 — 1, the qualitative answer looks much 

worse, which is consistent with the results in Table 5.1 because when (3 > =  0.1, the 

average angular difference is also higher when compared to the other ¡3 values. We 

think that bigger (3 values produce higher average angular difference because the ratio 

of the image gradients to the depth gradients becomes larger.

From the correct 3D flow field shown in Figure 5.3, we see that the best flow 

are where the most significant disparities are. The least squares algorithm could not 

detect them because the least squares integration matrices at these locations were 

singular (The L2 condition number was greater than 107).
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Computed Least Squares Range Flow, sample=30 scale=25
beta=0 image number=011 sequence number=1

(a)
Computed Least Squares Range Flow, sample=30 scale=25 

beta=0.001 image number= 0 1 1 sequence number=1

(b)

Figure 5.5: Least Squares Range Flow for the II th image of Sequence 1 (a) for /3 =  
0.0 where the AAE is 14.9(F±9.73°, the ME is 73.65% ±  43.96% and the DE is 
6.84°±21.94° and (b) for f3 =  0.001 , where the AAE is 14.9CP± 9.736, the ME is 
73.65%± 43-9&Zo and the DE is 6.84°±  21.94°■
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Computed Least Squares Range Flow, sample=30 scale=25
beta=0.01 image number=011 sequence number=1

(c)
Computed Least Squares Range Flow, sample=30 scale=25 

beta=0.1 image number=011 sequence number=1

( d )

Figure 5.5: Least Squares Range Flow for the 11th image of Sequence 1 (c) for ¡3 =  
0.01 where the AAE is U.90P±9.73?, the ME is 73.65 %±43.96% and the DE is 
6.83°±21.999 and (d) for  /? =  0.1, where the AAE is 15.01°±9.729, the ME is 73.75 
%±44.24% and the DE is 7.21°±22.81°.
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Computed Least Squares Range Flow, sample=30 scale=25
beta=1 image number=011 sequence number=1

Computed Least Squares Range Flow, sample=30 scale=25 
beta=ratio image number=011 sequence number=1

( f )

Figure 5.5: Least Squares Range Flow for the 11th image of Sequence 1 (e) for (3 =  
1.0 where the AAE is 28.34°±26.55°, the ME is 248.40 %±423.91% and the DE is 
36.18°±56.24° and (f) for (3 =  0.1, where the AAE is 14-69p±9.72? , the ME is 72.45 
%±43.73% and the DE is 7.9T±22.2CP.
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p Pyramid Level 3D AAE ±STD 3D ME ±STD 3D DE ±STD
ratio 4 3.43°±3.72° 912.17 %±20351.76% 14.49°±35.94°
ratio 3 5.90°±4.96° 294.62 %±6345.18% 11.56°±27.45°
ratio 2 8.96°±6.29° 88.25 %±254.54% 9.10°±25.54°
ratio 1 14.69°±9.72° 72.45 %±43.73% 7.97°±22.20°
0 4 3.42°±3.69° 906.38 %±20165.48% 14.57°±36.04°
0 3 5.92°±4.95° 302.31 %±6338.84% 11.32°±26.89°
0 2 8.90°±6.25° 86.95 %±242.86% 8.20°±24.36°
0 1 14.90°±9.73° 73.65 %±43.96% 6.84°±21.94°

Table 5.2: The 3D average angular difference, magnitude difference, and the direction 
difference from the least squares range flow algorithm with different ft values for the 
11th image of Sequence 1 at different pyramid levels.

5.1.5 Results of Least Squares at Different Pyramid Levels

In this section, we present the results of the least squares algorithm at different 

pyramid levels. We show how putting the least squares algorithm in a pyramid 

structure improved the result as we go down the pyramid. We show these results for 

¡3 =  0 .0  and (3 as a ratio because we see from the previous section that these values of 

(3 gave the best results. We see from Table 5.2 that as we go down the pyramid level 

and W  is removed from the second depth map to bring it closer to the first depth 

map, the answer becomes more accurate. For example, both the magnitude difference 

and the direction difference decrease as we go down the pyramid level. Strangely, the 

AAE increases. We cannot see the reason why this happens. We verified our MatLab 

average angular error calculation.

The qualitative results in Figures 5.7 and 5.7 also show that at the highest pyramid 

level, the vectors are sometimes in the wrong direction and the magnitude is much 

larger. Also, the standard deviations at the highest levels are high, which means there 

are a lot of variations. However, at the lowest level, most of the vectors are in the 

correct direction and the magnitude difference is smaller for both the (3 values of zero 

and when ¡3 is a ratio.
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Least Squares Range Flow, sample=12 scale=25
beta=ratio image number=011 pyramid level=4

(a)
Least Squares Range Flow, sample=12 scale=25 

beta=ratio image number=011 pyramid level=3

(b)

Figure 5.6: Least Squares Range Flow with (3 as a ratio for the l l ift image of Sequence
1 (a) at level 4 where the ME is 912.87 %±20351.76% and the DE is 14.49p±35.94°
and (b) at level 3 where the ME is 294-62 %±6345.18% and the DE is 11.56°±27.45°.
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Least Squares Range Flow, sample=12 scale=25
beta=ratio image number=011 pyramid level=2

(d )

Figure 5.6: Least Squares Range Flow with (3 as a ratio for the II th image of Sequence
1 (c) at level 2 where the ME is 88.25 % ± 254.54% and the DE is 9.1 OP ±25.54° and
(d) at level 1 where the ME is 72-45 %o±43.73% and the DE is 7.9T±22.2(F.
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Least Squares Range Flow, sample=12 scale=25
beta=0 image number=011 pyramid level=4

Least Squares Range Flow, sample=12 scale=25 
beta=0 image number=011 pyramid level=3

(b)

Figure 5.7: Least Squares Range Flow with (3 =  0 for the IIth image of Sequence 1 (a)
at level 4, where the ME is 906.38 %±20165.4&%> and the DE is 14.5T±36.04° and
(b) at level 3, where the ME is 302.31 % ± 6338.84% and the DE is 11.325±26.89p.
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Least Squares Range Flow, sample=12 scale=25
beta=0 image numbered 1 pyramid level=2

(d )

Figure 5.7: Least Squares Range Flow with ¡3 =  0 for the 11th image of Sequence 1
(c) at level 2, where the ME is 86.95 %±242.86% and the DE is 8.2(F±24.36° and
(d) at level 1, where the ME is 73.65 %±43.96% and the DE is 6.84°±21.94°.
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5.1.6 Regularized Range Flow Results

In this section, we present quantitative and qualitative results from the regularized 

range flow algorithm.

5 .1.6.1 Tabular Results for Regularized Range Flow

Table 5.3 shows the 3D average angular difference for U ,V ,W  as well as the 3 D 

magnitude difference and the 3D direction difference from execution of the regularized 

range flow algorithm for different (3 values, with the beta flag on (when the ratio is 

used) and with beta flag off (when a constant (3 value is used). STD in Table 5.3 is 

the abbreviation for standard deviation, while AAE is the abbreviation for average 

angular difference. The results in Table 5.3 are for the lowest pyramid level. We 

used 4 pyramid levels and downsampling rate of 77 =  0.5. We see from Table 5.3 that 

the regularization algorithm performed based when the (3 value is set to zero and no 

intensity information is used. We used 100 for the maximum number of iterations 

because it was converging and we saw minimal improvement after 1 0 0  iterations. 

For example, we set the tolerance r  to 0.001, but at 100, it reached tolerance r  of 

0.0021 but after 500 iterations, the tolerance was still 0.0017, so we decided just to 

use maximum 100 iterations. We also note that using /? as a ratio did not perform as 

well for regularization as it did for least squares.

5.1.6.2 Graphical Results for Regularized Range Flow

In the figures below, we show the graphical results computed from the regularized 

algorithm. We see that when ¡3 > =  0.01, the qualitative results look really bad, 

which is consistent with the results of Table 5.3 because when (3 > =  0.01, the average 

angular difference is also high compared to the other f3 values. We think that bigger 

/3 values produce higher average angular difference because the ratio of the image 

gradient to the depth maps become higher.
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P 3D AAE ±STD 3D ME ±STD 3D DE ±STD
0.0 14.79°±10.40° 72.48 %±50.46% 16.58°±26.88°
10~3 14.81°±10.40° 72.55 %±50.48% 16.43°±26.91°
10"2 15.49°±10.42° 76.91 %±51.08% 19.97°±38.90°
10-* 15.11°±9.32° 76.13 %±48.70% 34.27° ±43.22°
1 26.92°±23.10° 179.42 %±216.29% 28.99°±40.29°
ratio 16.56°±11.78° 83.99 %±63.73% 35.55°±45.52°

Table 5.3: The 3D average angular difference, magnitude difference, and the direction 
difference from the regularization range flow algorithm with different (3 values for the 
I I th image of Sequence 1.

Although in the correct 3D flow field shown in Figure 5.3 we see that the best 

flow are where the most significant disparities are, the regularization algorithm did 

not detect them because the inverse matrix at that location is singular (thresholding 

on the condition number 106 eliminated them). We expected the opposite.
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Computed Regularized Range Flow, sample=30 scale=25
beta=0 image number=011 sequence number=1

number of iterations=100

(a )
Computed Regularized Range Flow, sample=30 scale=25 

beta=0.001 image number=011 sequence number=1 
number of iterations=100

(b)

Figure 5.8: Regularized Range Flow for the IIth image of Sequence 1 (a) for ¡3 =  
0.0 where the AAE is 14.7SP±10.4(P, the ME is 72.48 %±50.46%, and the DE is 
16.58°±26.88? and (b) for (3 =  0.001, where the AAE is 14-81°±10.4(F , the ME is 
72.55 %±50.48% and the DE is 16.43°±26.910.
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Computed Regularized Range Flow, sample=30 scale=25
beta=0.01 image number=011 sequence number=1

number of iterations=100

( c )
Computed Regularized Range Flow, sample=30 scale=25 

beta=0.1 image number=011 sequence number=1 
number of iterations=100
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( d )

Figure 5.8: Regularized Range Flow for the IIth image of Sequence 1 (c) for (3 =  
0.01, where the AAE is 15.49P±10-42>, the ME is 76.91 %±51.08% and the DE is 
19.9T±38.9CP and (d) for ¡3 =  0.1, where the AAE is 15.11°±9.82P , the ME is 76.13 
%±48.70% and the DE is 34-2T±43.2S5.
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Computed Regularized Range Flow, sample=30 scale=25
beta=1 image numbered 1 sequence number=1

number of iterations=100

(e)
Computed Regularized Range Flow, sample=30 scale-25  

beta=ratio image number=011 sequence number=1 
number of iterations=100

Figure 5.8: Regularized Range Flow for the 11th image of Sequence 1 for (e) (3 =  
0.1, where the AAE is 26.92?±23.1(F, the ME is 17942 %±216.29% and the DE 
is 28.99p±40.298 and (f) (3 as a ratio, where the AAE is 16.56°±11.788, the ME is 
83.99 %±63.73% and the DE is 35.55°±45.52D.
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5.2 Range Flow Results for the 2nd Synthetic Car 

Sequence

In the previous sections, we found that least squares performed best when (3 was used 

as a ratio. We also found that regularized range flow performed best when ¡3 =  0.0. 

Therefore, we have decided to show range flow results on Sequence 2 for these values 

of /?. We used the 215t/l image of Sequence 2, because Wedel et al. used that in 

their paper. We show the correct 3D flow field for this image in Figure 5.9 below. 

We believe this correct flow field also has problems like the ones we mentioned in 

Section 5.1.1. There were many outliers so we thresholded those values whenever the 

disparity was very small (Z  > 1000). Thus 23.41% of the values were thresholded. 

Notice that the 2 areas with moving cars have no correct flow.

Correct Range/Scene Flow for image 215 in sequence 2 sample=30 scale=25

Figure 5.9: The correct 3D flow field for the 2\bth image of Sequence 2.

We found that regularization converged at a much slower rate than for Sequence 

1. For example, we specified a tolerance of 0.001 but found that after 100 iterations, 

the tolerance achieved was 0.007 and not 0.001. Therefore, we decided to let the
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0 Algorithm 3D AAE ±  STD 3D ME ±  STD 3D DE ±  STD
ratio least squares 31.24°±20.94° 85.72 %±853.52% 12.30°±28.51°
0 regularization 41.43°±23.10° 154.19 %±4280.33% 26.93°±41.31°

Table 5.4: The 3D average angular difference, magnitude difference and the direction 
difference from the least squares range flow algorithm and regularized range flow for 
the 215th image of Sequence 2.

program run for maximum number of iterations of 5000. We saw that tolerance was 

achieved at iteration 2336. This produced AAE of 41.43°±23.10°, the ME is 154.19 

%±4280.33% and the DE is 26.93°±41.31° for /3 =  0.0. Table 5.4 shows that for least 

squares with (3 as ratio the AAE is 31.24°±20.94°, the ME is 85.72 %±853.52% and 

the DE is 12.30°d=28.51°. We show the flow field in Figure 5.10.
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Computed Least Squares Range Flow, sample=30 scale=25 
beta=ratio image number=215 sequence number=2

(a)
Computed Regularized Range Flow, sample=30 scale=25 

beta=0 image number=215 sequence number=2 
number of iterations=2366

(b)

Figure 5.10: Range flow results for the 215th image of Sequence 2 for (a) Least Squares 
(3 as ratio, where the AAE is 31.24°±20.94°, the ME is 85.12 %±853.52% and the 
DE is 12.30p±28.51° and (b) Regularized range flow using (3 as a ratio where the AAE  
of 41.43°±23.1(F, the ME is 154.19 %±4280.33% and the DE is 26.93°±41.31°.



5.3 Stereo Algorithms with Synthetic Car Data

5.3.1 Depth Map Analysis

We computed depth maps using the global energy minimization algorithm and the 

region growing algorithm by Alagoz [1]. In Figure 5.11, we show the correct and 

experimental depth maps. Figure 5.11(a) show the correct depth map. We viewed 

this depth map using the log spectrum. If the grayvalues have great variation in a 

image, say 10 to 107, then taking the log of the images makes the structure at the 

different grayvalues clearer. Figures 5.11b and 5.11c show the depth maps computed 

using the global energy and region growing methods. These images show the texture 

outlines of the large stones in the road (computed from large disparities) but do not 

show the tree and mountain depth outlines well (computed from small disparities). 

The correct depth map seems to have a plane as the road but captures the tree and 

mountain outlines well. These stereo images again re-inforce our suspicions about the 

correct depth maps for the synthetic car sequences.
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(a) The correct depth map (b) The depth map (c) The depth map
computed by computed by
global energy region growing

Figure 5.11: (a) The correct versus (b) and (c) experimental depth maps generated 
by the global energy and region growing stereo algorithms by Alagoz [1] for the 11th 
image in Sequence 1.
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Type of Depth Map Magnitude Difference ±STD
Depth Map using Global Energy 253.78 %±406.01%
Depth Map using Region Growing 211.16 %±375.28%

Table 5.5: The magnitude difference between Wedel et al’s correct depth map and the 
depth maps computed using the stereo algorithms by Alagoz [1] for the 11th image of 
Sequence 1

We show the magnitude difference the between the correct depth map and the 

depth maps computed by the stereo algorithms in Table 5.5. Table 5.5 shows that 

there is a high amount of error between Wedel et al.’s depth map and the computed 

depth maps. This is because the two stereo algorithms do not seems to capture the 

tree and mountain outlines well (these are far away objects with small disparities). 

Occlusions may also be causing some of the problems as well.

Table 5.5 shows the difference between Wedel et al.’s computed depth map and 

the depth maps computed by the stereo algorithm for the 11th image of Sequence 

1. We see that the magnitude difference is very high since the stereo algorithms by 

Alagoz [1] do not deal with occlusions.

5.3.2 Results W ith Synthetic Data

We show the results of using the two stereo algorithms with the synthetic data for the 

11th image in Table 5.6. We see that because the depth maps are extremely inaccurate 

as shown by the results in Table 5.5, the least squares results are inaccurate as shown 

in Table Table 5.6. Note that we have reduced the sampling from 30 (when using 

the correct depth map) to 10 when using computed depth maps from the Alagoz [1] 

stereo algorithms.

We also show the qualitative result of least squares with the (3 ratio on the 11th

image of Sequence 1 using the global energy and the region growing stereo algorithm in

Figure 5.12. We see th a t the vectors are in the incorrect direction and the magnitudes
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Type of Depth Map p 3D Mag. Difference ±STD 3D Dir. Difference ±STD
Region Growing ratio 125.50 %±152.83% 94.86°±43.04°
Global Energy ratio 103.38 %±54.94% 89.63°±27.92°

Table 5.6: The 3D magnitude difference and direction difference between the correct 
range/scene flow and least squares range flow with depth maps computed from Alagoz 
[1] stereo algorithms for the 11th image of Sequence 1

of the vectors are much larger. This may be caused by the outliers in the depth map. 

We need to put the least squares range flow in a robust framework to deal with outliers. 

The fact that there are such large differences in the depth values with respect to the 

correct depth map may also account for some of these problems.
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Computed Least Squares Range Flow, sample=10 scale=25 
beta=ratio image number=011 sequence number=1 Stereo=region

(a)
Computed Least Squares Range Flow, sample=10 scale=25 

beta=ratio image number=011 sequence number=1 Stereo=global

Figure 5.12: Least Squares range flow with (3 ratio for the 11th image of Sequence 1
(a) using computed depth maps from region growing algorithm where the magnitude 
difference is 125.50 %±152.83% and the direction difference is 94-86°±43-03° and
(b) using computed depth maps from global energy algorithm where the magnitude 
difference is 103.38 %±54-94% and the direction difference is 89.63°±27.928
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5.4 Real Data Result

We show the result of real data using least squares in Figure 5.13. The vectors should 

be coming towards you but they are not. This is probably because the stereo algorithm 

gives inaccurate results. Also, preprocessing of real images might be necessary.
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Computed Least Squares Range Flow, sample=10 scale=25 
beta=ratio image numbered 1 sequence number=3 Stereo=region

(a)
Computed Least Squares Range Flow. sample= 10 scale=25 

beta=ratio image number=011 sequence number=3 Stereo=global

(b)

Figure 5.13: Least Squares range flow with f3 ratio for the 11th image of Sequence 3 
(a) using computed depth maps from region growing algorithm and (b) using computed 
depth maps from global energy algorithm

*
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5.5 Results from the Implementation of Wedel et 

al. Scene Flow Algorithm

In this section, we present some results we obtained from our implementation of the 

scene flow algorithm in Wedel et al. [29, 28]. The algorithm does not currently work 

as well as claimed and so we do not present any 3D flow fields.

5.5.1 Debugging Wedel et al. using Sinusoidal Data

We followed Wedel’s suggestion2 for debugging our program. We use disparity d and 

disparity gradient p both equal to 0. This means the left and right images are the 

same (so no stereo) and scene flow is simply 2D optical flow. We used 3 sets of 2D 

sinusoidal image pairs: the motion in pair moves from right to left by 1 pixel as 

shown in Figure 5.14(a)-(b); the motion in the 2nd pair moves from bottom to top 

by 1 pixel as shown in Figure 5.14(c)-(d); while the motion in the 3rd pair moves 

diagonally upwards and to the left by y/2 pixels (1  pixel left and 1 pixel upwards). 

Sinusoidal images images are simple and allow accurate differentiation. Thus, the 1st 

image pair has motion (-1 , 0 ), the 2nd image pair has motion (0 ,-1 ), and the 3rd image 

pair has motion (-1 , 1 ). These images have an added advantages over other images 

in that they are small ( 1 0 0  x 1 0 0 ) so our code runs fast and they allow accurate 

differentiation by most derivative kernels. The first two motion allows us to detect 

problems along the x  and y dimensions.

2By email on June 17th,2011.
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Image number=008 Sequence Number=Oa Image number=9 Sequence Number=Oa

Image number=008 Sequence Number=Oc

(e )

Figure 5.14: The Ist sinusoidal pair in (a)-(b), the 2nd sinusoidal pair in (c)-(d) and 
3rd sinusoidal image pair in (e)-(f).
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We use 2 outer iterations and 15 inner iterations as suggested by Wedel et al. We 

view how the angular error and magnitude error change from inner and out iteration 

for the right to left motion in Table 5.7. We view how the angular error and magnitude 

error change from inner and outer iteration for the bottom to up motion in Table 5.8. 

Table 5.9 shows how the angular error and the magnitude error change from inner 

and outer iteration for the 3rd image pair. In these tables, AAE is the abbreviation 

for average angular error. Table 5.7 shows that using the first sinusoidal image pair 

with motion of (-1 ,0 ), for the 1st outer iteration, the accuracy converges nicely from 

about 44.31° of angular error after inner iteration 1 (basically the flow field is all 

0’s) to 4.58° at inner iteration 15 for the 1st image pair. For the 2nd outer iteration, 

the accuracy converges from 18.95° of angular error after inner iteration 1 to 11.36° 

at inner iteration 15. Table 5.8 shows that using the 2nd sinusoidal image pair with 

motion of (0 ,-1 ), for the 1st outer iteration, the accuracy converges nicely from about 

43.96° of angular error after inner iteration 1 (basically the flow field is all 0’s) to 2.70° 

at inner iteration 15 for the 1st image pair. For the 2nd outer iteration, the accuracy 

converges from 18.10° of angular error after inner iteration 1 to 7.09° at inner iteration 

15. Table 5.9 shows that using the 3rd sinusoidal image pair with motion of (-1,1), 

and we see that for the 1st outer iteration, the accuracy converges nicely from about 

53.93° of angular error after inner iteration 1 (basically the flow field is all 0’s) to 

11.49° at inner iteration 15 for the 1st image pair. For the 2nd outer iteration, the 

accuracy converges from 13.03° of angular error after inner iteration 1 to 9.39° at 

inner iteration 15. Wedel (by email) says that it is possible that the error after the 

convergence of the inner iterations after the 2 nd outer iteration could be greater than 

the the error after the convergence of the inner iterations after the l 5t outer iteration 

but it should not happen all the time (otherwise he suggests that something may be 

wrong with the warping). In our experience, the error is always greater after the 2nd 

iteration than after the 1st outer iteration. We believe our warping is correct. This 

is an open research problem for us.
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outer
iteration

inner
iteration

2D AAE ±STD 2D ME ±STD 2D DE ±STD

i i 44.31°±0.31° 98.79 %±0.55% 31.93°±21.32°
i 2 37.04°±3.14° 85.87 %±5.62% 32.11°±18.11°
i 3 23.71°±9.97° 59.24 %±15.69% 23.78°±16.02°
i 4 17.72°±9.04° 44.53 %±19.76% 18.18°±15.28°
i 5 13.73°±9.39° 34.91 %±20.69% 13.84°±14.67°
i 6 10.84°±9.61° 27.74 %±21.06% 10.71°±14.22°
i 7 8.73°±9.81° 22.25 %±21.47% 8.46°±13.90°
i 8 7.19°±9.98° 18.16 %±21.83% 6.83°±13.68°
i 9 6 .1 1 ° ± 1 0 .1 0 ° 15.23 %±22.11% 5.64°±13.50°
i 1 0 5.37°±10.18° 13.30 %±22.30% 4.76°±13.35°
i 11 4.90°±10.23° 12.18 %±22.40% 4.10°±13.23°
i 1 2 4.64°±10.25° 11.70 %±22.41% 3.59°±13.13°
i 13 4.53°±10.25° 11.70 %±22.34% 3.20°±13.05°
i 14 4.53°±10.22° 11.96 %±22.22% 2.90°±12.97°
i 15 4.58°±10.19° 12.34 %±22.08% 2.66°±12.91°
2 1 18.95°±7.10° 91.56 %±18.01% 3.90°±10.41°
2 2 16.21°±7.65° 66.96 %±16.91% 7.35°±10.51°
2 3 15.03°±8.09° 57.93 %±18.73% 8.36°±11.33°
2 4 14.44°±8.30° 54.48 %±19.26% 8.30°±11.77°
2 5 13.94°±8.48° 52.06 %±19.54% 7.96°±12.02°
2 6 13.54°±8.61° 50.15 %±19.66% 7.69°±12.20°
2 7 13.20°±8.70° 48.54 %±19.72% 7.46°±12.33°
2 8 12.91°±8.78° 47.14 %±19.77% 7.25°±12.43°
2 9 12.64°±8.84° 45.88 %±19.80% 7.06°±12.50°
2 1 0 12.39°±8.90° 44.74 %±19.84% 6.89°±12.57°
2 11 12.16°±8.96° 43.68 %±19.88% 6.73°±12.63°
2 1 2 11.95°±9.01° 42.70 %±19.92% 6.57°±12.67°
2 13 11.74°±9.05° 41.78 %±19.97% 6.42°±12.72°
2 14 11.55°±9.10° 40.90 %±20.03% 6.28°±12.76°
2 15 11.36°±9.14° 40.07 %±20.09% 6.14°±12.80°

Table 5.7: The 2D average angular error, magnitude error, and the direction error
from Wedel et al. ’s algorithm for the l si sinusoidal image pair with right to left motion.
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outer
iteration

inner
iteration

2D AAE ±STD 2D ME ±STD 2D DE ±STD

i i 43.96°±0.40° 98.20 %±0.69% 11.88°±8.36°
i 2 34.71°±3.53° 81.76 %±6.34% 12.33°±7.49°
i 3 19.19°±7.24° 49.90 %±14.88% 12.77°±7.14°
i 4 11.98°±9.04° 31.25 %±17.67% 10.47°±6.19°
i 5 8.32°±8.35° 21.56 %±18.58% 7.14°±5.35°
i 6 6.05°±8.60° 15.54 %±19.22% 4.72°±4.65°
i 7 4.65°±8.75° 11.79 %±19.62% 3.15°±4.08°
i 8 3.81°±8.82° 9.54 %±19.79% 2.18°±3.61°
i 9 3.31°±8.84° 8.26 %±19.85% 1.59°±3.24°
i 1 0 3.04°±8.84° 7.60 %±19.82% 1.21°±2.93°
i 11 2.90°±10.23° 7.29 %±19.75% 0.98°±2.67°
i 12 2.82°±8.80° 7.12 %±19.68% 0.83°±2.46°
i 13 2.77°±8.79° 7.00 %±19.63% 0.74°±2.29°
i 14 2.73°±8.77° 6.91 %±19.59% 0.67°±2.15°
i 15 2.70°±8.77° 6.83 %±19.57% 0.62°±2.04°
2 1 18.10°±5.94° 89.13 %±16.10% 0.98°±1.80°
2 2 14.75°±6.64° 62.53 %±17.64% 4.05°±3.99°
2 3 12.55°±7.26° 41.51 %±16.36% 9.41°±5.54°
2 4 13.10°±7.64° 38.78 %±17.60% 12.52°±6.60°
2 5 12.68°±7.87° 36.74 %±18.38% 12.42°±6.70°
2 6 11.91°±8.04° 34.27%±18.90% 11.58°±6.610
2 7 11.16°±8.19° 31.98 %±19.29% 10.70°±6.51°
2 8 10.48°±8.30° 29.91 %±19.58% 9.87°±6.38°
2 9 9.84°±8.39° 28.02 %±19.81% 9.10°±6.25°
2 10 9.26°±8.47° 26.31 %±19.99% 8.39°±6.11°
2 11 8.73°±8.54° 24.76 %±20.15% 7.73°±5.97°
2 12 8.25°±8.59° 23.36 %±20.72% 7.12°±5.83°
2 13 7.82°±8.64° 22.11 %±20.36% 6.57°±5.70°
2 14 7.43°±8.67° 21.00 %±20.42% 6.09°±5.57°
2 15 7.09°±8.70° 20.03 %±20.46% 5.64°±5.43°

Table 5.8: The 2D average angular error, magnitude error, and the direction error
from Wedel et al. ’s algorithm for the 2nd sinusoidal image pair with bottom to top
motion.
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outer
iteration

inner
iteration

2D AAE ±STD 2D ME ±STD 2D DE ±STD

i i 53.93°±0.47° 99.00 %±0.58% 33.73°±24.13°
i 2 46.46°±5.28° 89.57 %±6.73% 32.06°±23.41°
i 3 31.07°±15.98° 64.68 %±25.60% 28.69°±23.36°
i 4 24.74°±18.29° 50.40 %±30.59% 23.58°±20.61°
i 5 21.87°±17.75° 44.97 %±33.31% 19.18°±17.54°
i 6 19.80°±17.16° 41.34%±32.51% 15.94°±15.19°
i 7 18.17°±16.62° 38.49 %±31.78% 13.56°±13.42°
i 8 16.85°±16.13° 36.14 %±31.09% 11.78°±12.09°
i 9 15.75°±15.67° 34.16 %±30.41% 10.42°±11.06°
i 1 0 14.81°±15.26° 32.43 %±29.76% 9.34°±10.28°
i 11 13.98°±14.88° 30.90 %±29.14% 8.48°±9.68°
i 1 2 13.25°±14.54° 29.52 %±28.55% 7.78°±9.20°
i 13 12.61°±14.23° 28.27 %±28.00% 7.21°±8.82°
i 14 12.02°±13.96° 27.11 %±27.49% 6.72°±8.52°
i 15 11.49°±13.73° 26.03 %±27.02% 6.32°±8.28°
2 1 13.03°±10.80° 46.39 %±22.01% 6.60°±7.55°
2 2 11.24°±11.54° 34.47 %±24.70% 6.80°±7.86°
2 3 10.63°±11.65° 31.01 %±24.53% 6.65°±7.83°
2 4 10.32°±11.66° 29.26 %±23.86% 6.50°±7.82°
2 5 10.10°±11.67° 28.06 %±23.38% 6.41°±7.84°
2 6 9.93°±11.69° 27.14%±23.08% 6.32°±7.87°
2 7 9.80°±11.72° 26.42 %±22.90% 6.26°±7.91°
2 8 9.70°±11.74° 25.85 %±22.79% 6.20°±7.95°
2 9 9.61°±11.77° 25.39 %±22.72% 6.16°±7.98°
2 1 0 9.55°±11.79° 25.03 %±22.68% 6 .1 2 ° ± 8 .0 0 °
2 11 9.49°±11.81° 24.74 %±22.66% 6.09°±8.03°
2 1 2 9.46°±11.83° 24.51 %±22.64% 6.07°±8.05°
2 13 9.43°±11.84° 24.33 %±22.63% 6.05°±8.07°
2 14 9.41°±11.86° 24.19 %±22.63% 6.03°±8.09°
2 15 9.39°±11.87° 24.08 %±22.62% 6 .0 1 o± 8 .1 1 o

Table 5.9: The 2D average angular error, magnitude error, and the direction error
from Wedel et al. ’s algorithm for the 3rd sinusoidal image pair with diagonal motion.
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Figure 5.15: (a) Computed flow for 1st image pair with motion (-1,0) and angular 
error 4.58°, (b) computed flow for 2nd image pair with motion (0,-1) and angular error 
2.70°, and the (c) computed flow for 3rd image pair of motion (-1, 1) with angular 
error 11.49°. The flows are for inner iteration 15 and outer iteration 1.

Figures 5.15(a), (b) and (c) show the 2D optical flow computed by Wedel et al. 

for the 1st, 2nd, and 3rd sinusoidal image pairs respectively.

One may wonder if warping is done correctly. We assume the warping algorithm 

we used that was coded by Thomas Pock [7] is correct, because that was the same 

code used in Ali Aljohani’s project, which involves a MatLab implementation of 2D 

Brox et al. optical flow [6 ]. We report the results of that implementation here. He 

used 77 =  0.7, 5 pyramid levels, 25 outer iteration and 30 inner iteration for the 

11th image of Sequence 1 . Table 5.5.1 shows that using Pock’s method for warping 

improved average angular error as we go down the pyramid. We also note that the 

magnitude error is very high. This was a problem also observed in our range flow 

algorithm. We show the qualitative result of 2D Brox in Figure 5.16.
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Pyramid Level 2D AAE ±STD 2D ME ±STD 2D DE ±STD
5 18.66°±16.76° 639.19 %±3044.20% 25.56°±35.48°
4 11.23°±10.82° 614.62 %±3886.17% 21.34°±33.60°
3 8.51°±11.19° 619.48 %±5896.08% 19.58°±33.91°
2 7.50°±12.52° 912.67 %±16474.99% 17.98°±33.20°
1 7.07°±14.04° 1111.26 %±23801.55% 16.01°±31.45°

Table 5.10: The 2D angular error, magnitude error, and the direction error from the 
computation of 2D Brox at different pyramid levels for the 11th image of Sequence 1.

Final Brox Flow,Sp=25,Sc=2
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Figure 5.16: (a) The computed flow field (u ,v ) for the II th image of Sequence 1 using 
2D Brox.
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After outer iteration 1, the left and right images at time t +  1 are warped back 

into time t: the computed motion is removed from the images. Figures 5.17, 5.18 and 

5.19 show the original 1st image, the original 2nd image and the warped 2nd image for 

the 3 sinusoidal sequences.

We can see from Figures 5.17, 5.18 and 5.19 that the average image difference 

after warping is 4 times less than the average image difference between the 1st and 

2nd images. Now the inner iterations for the 2nd outer iteration should compute the 

optical flow for the original images and the warped images (which should be small). 

At the end of the inner iteration this is added to the optical flow computed for outer 

iteration 1. For some unknown reason, our results after the second outer iteration 

are less accurate than after the first outer iteration. We also note that we start with 

a less accurate flow at the 1st inner iteration of the 2nd outer iteration than for the 

last inner iteration of the Is* outer iteration. Since the warping seems to work we do 

not expect this. We get the same result for the 2nd image pair but the 3rd pair shows 

that warping produces a larger average difference.

L t Old L_tp1 diff:0.14379 New L_tp1 diff:0.037089

***###*nmhmmmmmmm
•* #H|M|NNNNMNiNiNH

*+*+****#••*•«**
# *  *  «MNMMHis###

mm

Figure 5.17: Left to right: The 1st image, the 2nd unwarped image (repeated here from 
Figure 5. If. for comparison purposes) and the 2nd warped images. Printed above the 
images are the average difference with the 2nd unwarped and warped images with the 
l 8t image. This shows how well warping works for the right to left motion.
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Old L_tp1 diff:0.19205 New L_tp1 diff:0.048496

Figure 5.18: Left to right: The l si image, the 2nd unwarped image (repeated here from 
Figure 5.14 for comparison purposes) and the 2nd warped images. Printed above the 
images are the average difference with the 2nd unwarped and warped images with the 
1st image. This shows how well warping works for the bottom to top motion.

5.5.2 Results of Wedel et al. on the Synthetic Car Data

We show the correct disparity, optical flow field in Figure 5.20(a)-(b) and the correct 

disparity gradient field in Figure 5.21 below for image 11 of Sequence 1, which was 

also used by Wedel et al. [28].
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L t Old L_tp1 diff:0.23969
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New L_tp1 diff:0.0592
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Figure 5.19: Left to right: The Ist image, the 2nd unwarped image (repeated here from 
Figure 5.14 for comparison purposes) and the 2nd warped images. Printed above the 
images are the average difference with the 2nd unwarped and warped images with the 
Is* image. This shows how well warping works for the diagonal motion.
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flow for image 011 ,Sampling=25,Scaling=2

Figure 5.20: (a) Correct (u,v) and (b) Correct d for the IIth image of Sequence 1
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Figure 5.21: Correct p, the disparity gradient field for image 11th image of Sequence 
1

disparity gradient field for image 011 ,Sampling=25,Scaling=5
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We saw in Section 5.5.1 that the solution gets worse after inner iteration 15, outer 

iteration 1 because of the warping. As soon as the wrarping is done, outer iteration 

2 starts off with a higher error. Therefore, we just decided to report the result for 

Wedel et al’s [28, 29] algorithm for outer iteration 1 and inner iteration 15.

We used A =  1 and 7  =  0.1 x A. We also tried A =  20.0 as suggested by Wedel 

via email, but we found that A =  1 gives better results. Also, we kept the other 

parameters such as 77 =  0.5 and 4 pyramid levels as same as the paper. And Wedel 

suggested u  =  1.97, but we found that uj =  1.97 gives really wrong result and we 

found that u  =  0.5 gives the best answer.

We show the result on the car sequence for the IIth image of Sequence 1 at inner 

iteration 15, and outer iteration 1 with the Wedel test (left and right image same 

and no disparity) and without the Wedel test (when left and right image are not 

the same and there is disparity and p, the gradient of disparity, is also computed). 

With the Wedel test, we got average angular error of 14.69°±17.88°, direction error 

of 38.69°±41.03° and magnitude error of 417.50%±7156.032 as shown in Figure 5.22. 

Without the Wedel test, we got average angular error of 18.13°±20.01° , direction 

error of 46.77°±43.30° and magnitude error of 681.74%±9844.14 as shown in Figure 

5.23. We see that the error measure for Figure 5.23 is higher than Figure 5.22 after we 

turned off the Wedel test (when disparity was included). We believe this is happening 

because error for p is very high. For example, we can see from Figure 5.24 that the 

computed p has much higher magnitude and is much longer than the correct disparity 

gradient field shown in Figure 5.21. It also has many outliers.
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FLO W  inner: 15 outer:1 level: 4 A E =14.6917 ST D =17.8757,S am pling=4,S caling=2

Figure 5.22: The computed flow field 11th image in Sequence 1 with average angular 
error of 14-69P±17.88P using Wedel test (d =  p =  0).

FLO W  inner: 15 outer: 1 level: 4  A E =18.1305 S T D =20.0062,S am pling=4,S caling=2

Figure 5.23: The computed flow field for the \\th image of Sequence 1 with average 
angular error o f 18.138±20.01° without using Wedel test, d and p not zero.
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Computed p: inner=15 outer=1 level=4,Sampling=4,Scaling=5

Figure 5.24: The computed disparity gradient field p for the 11th image of Sequence 
1.

5.5.3 Results of Wedel et al. on Real Data

Because we found from Section 5.5.2, that the algorithm works better when no dis­

parity is used, and scene flow is then just optical flow, we decided to show the optical 

flow u, v from Wedel et al.’s algorithm without the disparity on a real data called the 

construction site sequence. We used 4 pyramid levels, and 77 =  0.5. We show the 

qualitative result in Figure 5.25 for the 11th image of Sequence 3. We only show the 

qualitative result for outer iteration 1, and inner iteration 15. Figure 5.25 shows that, 

the flow field is clearly divergent.
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FLOW inner: 15 outer: 1 level: 4,Sampling=4,Scaling=2

Figure 5.25: The computed flow field (u,v) for the 11th image of Sequence 3.

5.6 Running Time

Table 5.11 presented the time required for our algorithm running on the 11^ image of 

Sequence 1. We ran our program on newfie.csd.uwo.ca, which is a Linux (Fedora Core 

9.3) machine at the University of Western Ontario, Computer Science department. It 

is a 64-bit machine with 2.8GHz clock speed and 8 GB of main memory. The time is 

given in seconds. For the 11th image of Sequence 1, the least squares algorithm was 

the most time efficient with 30.89 seconds. The slowest was scene flow.
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Algo-
rithm

Image Sequence Pyramid
Level

Outer
Iter.

Inner
Iter.

Beta Iterations
Used

Time

Scene
Flow

1 4 2 15 N/A N/A 1212.15 sec.

Least
Squares

n th 1 4 N/A N/A ratio 100 30.89 sec.

Regula­
rization

1 1 th 1 4 N/A N/A ratio 100 222.78 sec

Table 5.11: Time measurements for range and scene flow for the 11th image of Se­
quence 1.



Chapter 6

Conclusions and Future Work

We draw conclusions based on our work. Future enhancements to the work reported 

in this thesis is also outlined.

6.1 Conclusions

Range Flow and scene flow are the 3D optical flow on visible environmental surfaces. 

They are the same 3D concept, but range flow is computed from a depth map and its 

spatio-temporal derivatives while scene flow is computed from a disparity map (and 

its gradient map) as well as the 2D optical flow of the left and right images in a stereo 

image sequence.

We presented a scene flow algorithm and a range flow algorithm (least squares 

and regularization) and performed a quantitative and qualitative analysis on them. 

We tested the 2 algorithms on synthetic and real car driving sequences.

For range flow, we saw that least squares performed better than regularization. 

However, these algorithms both need to be put inside a robust framework to deal 

with outliers. We also found that there were high magnitude error. This is probably 

due to poor differentiation.

147
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Because we have incomplete results we are not able to say definitely which algo­

rithm is best.

6.2 Future Work

Future work includes improving the spatio-temporal derivatives so that the magnitude 

error is not that high. We hope to find better stereo algorithms to check our program, 

such as the ones on the Middlebury website. We also will put the least squares and 

the regularization range flow algorithms in a robust framework to deal with outliers. 

We also hope to get the Wedel method to work at all levels in the pyramid.
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