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Abstract

Ultrasound-guided needle insertions at the site of the internal jugular vein (IJV) are rou-
tinely performed to access the central venous system. Ultrasound-guided insertions maintain
high rates of carotid artery puncture, as clinicians rely on 2D information to perform a 3D
procedure. The limitations of 2D ultrasound-guidance motivated the research question: “Do
3D ultrasound-based environments improve IJV needle insertion accuracy”. We addressed
this by developing advanced surgical navigation systems based on tracked surgical tools and
ultrasound with various visualizations. The point-to-line ultrasound calibration is used to en-
able the use of tracked ultrasound. We automated the fiducial localization required for this
calibration method such that fiducials can be automatically localized within 0.25 mm of the
manual equivalent. The point-to-line calibration obtained with both manual and automatic lo-
calizations produced average normalized distance errors less than 1.5 mm from point targets.
Another calibration method was developed that registers an optical tracking system and the
VIVE Pro head-mounted display (HMD) tracking system with sub-millimetre and sub-degree
accuracy compared to ground truth values. This co-calibration enabled the development of an
HMD needle navigation system, in which the calibrated ultrasound image and tracked models
of the needle, needle trajectory, and probe were visualized in the HMD. In a phantom experi-
ment, 31 clinicians had a 94 % success rate using the HMD system compared to 70 % for the
ultrasound-only approach (p= 0.018). We developed a machine-learning-based vascular recon-
struction pipeline that automatically returns accurate 3D reconstructions of the carotid artery
and IJV given sequential tracked ultrasound images. This reconstruction pipeline was used to
develop a surgical navigation system, where tracked models of the needle, needle trajectory,
and the 3D Z-buffered vasculature from a phantom were visualized in a common coordinate
system on a screen. This system improved the insertion accuracy and resulted in 100 % suc-
cess rates compared to 70 % under ultrasound-guidance (p=0.041) across 20 clinicians during
the phantom experiment. Overall, accurate calibrations and machine learning algorithms en-
able the development of advanced 3D ultrasound systems for needle navigation, both in an
immersive first-person perspective and on a screen, illustrating that 3D US environments out-
performed 2D ultrasound-guidance used clinically.
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Summary for Lay Audience

Central line insertions are used to access the central venous system require inserting a nee-
dle into a vein, such as the internal jugular vein (IJV) on the neck. Ultrasound-(US)-guidance
is used to navigate the needle into the vein using 2D US images, but still results in high com-
plication rates, such as carotid artery (CA) puncture, as clinicians rely on 2D information to
guide a 3D procedure. The use of 3D US environments for surgical navigation is an active
research area and this thesis focuses on the development of 3D US-based systems for needle
navigation into the IJV. A surgical navigation system was developed that employed a spatial
tracking system and provides tracked US images aligned with tracked models of the needle,
needle trajectory, and US probe. Tracked US requires US probe calibration that enables the US
image to be positioned and scaled to the field-of-view of the US beam, such that the interac-
tions between the image and surgical tools can be visualized for the user. This system can be
rendered on a monitor or within a head-mounted display (HMD) by means of a co-calibration
apparatus that places the surgical navigation system described above in a first-person perspec-
tive in the HMD. The components required to develop this system were evaluated and found to
be highly accurate. The surgical navigation system displayed on the monitor and in the HMD
were compared to the US-guidance technique, and the HMD system significantly improved
the needle insertion accuracy in a phantom study with 31 experienced clinicians compared to
the US-guidance approach. As clinicians have a preference for monitor-based systems, a sec-
ond surgical navigation system was developed, based on a method to automatically obtain 3D
models of the CA and IJV given a tracked US recording that was developed in this work. In
a phantom study with 20 experienced clinical practitioners a system that employed models of
the 3D vessel models and surgical tools, delivered significantly improved the needle insertion
accuracy, compared to the system that employed US-only guidance. Overall, 3D US environ-
ments outperformed US-guidance for needle navigation.

Keywords: Surgical navigation, ultrasound, tracking, reconstruction, needle-based inter-
ventions, machine learning
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Chapter 1

Introduction

1.1 Clinical Procedure of Interest

Blood vessels play vital roles in the circulation of blood to and from the central venous sys-
tem. Many interventional procedures routinely access the central venous system using central
venous catheterization (CVC), also referred to as central line insertion, with over 6 million
insertions performed annually between the United States and Europe [126, 90, 13]. Central
lines may be required for hemodynamic monitoring, delivery of drugs, hemodialysis, aspira-
tion of air emboli, or insertion of transcutaneous pacing leads [16, 99, 126, 106]. Catheters are
inserted following a percutaneous needle puncture into a vein, which provides the path for the
catheter (line) to enter the vein, such that it can be navigated to the central venous system [17].
The three insertion sites that are commonly used for central venous access are the internal jugu-
lar vein (IJV), the subclavian vein, and the femoral vein [6]. Performing the insertion at the
IJV is preferred as it provides direct access to the superior Vena Cava, which allows for easier
navigation to the central venous system [17, 6]. While the IJV is the most common insertion
site [17, 6], it also results in high rates of arterial puncture due to the close proximity between
the IJV and the carotid artery (CA) [17], as seen in Fig. 1.1. This thesis focuses on central line
insertion at the IJV due to the high prevalence of this insertion and the risks involved.

1.1.1 Relevant Anatomy

Jugular veins (JV) and carotid arteries are major vessels required for the circulation of blood
to and from the organs superior to the heart [66]. The CA supplies the face, neck, and brain
with oxygenated blood [66], and the JV receives and returns the de-oxygenated blood from
these areas to the heart to be oxygenated and redistributed [66]. Humans have a CA and JV on
the left and right sides of the neck [66]. Both vessels bifurcate as the common trunk of each
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blood vessel is divided into internal and external branches [66]. Typically, the JV is positioned
1.5 cm below the skin and is proximal to the CA in the anterior and lateral directions. However,
the relationship between the CA and JV is extremely variable across humans [49, 148]. The
internal branch is positioned medially compared to the external branch for both the CA and
JV [66]. The relevant anatomy and direction of blood flow in the neck are depicted in Fig. 1.1.

Figure 1.1: Vascular anatomy in the neck, where the direction of blood flow is indicated with
black arrows

Current clinical approaches and complications

The Seldinger technique is the most commonly used method to cannulate the vein during the
central line insertion procedure, regardless of the insertion site [6]. First, a needle is inserted
into the vein percutaneously [6], and a guidewire is advanced through the needle into the vein.
Following extraction of the needle, a catheter is inserted into the vein along the path formed
by the guide wire [6]. The guidewire is then extracted and the catheter is navigated from the
insertion vein to the Vena Cava providing access to the central venous system [6]. As the IJV is
also deformable in humans the Trendelenburg position is commonly employed for IJV puncture
during central venous catheterization [157]. Trendelenburg position requires the patient to be
supine on the table with their head declined below their feet at an angle of roughly 16°, which
allows the vessel to distend reducing the amount of deformation during scanning [157].

The central line needle insertion location was originally selected using the landmark guid-
ance technique, where clinicians employed landmarks that could be identified visually or via
palpation to determine the location of needle insertion [90]. To perform the insertion at the IJV,
clinicians relied on the knowledge that the IJV is located at the apex of the triangle formed by
the heads of the sternocleidomastoid muscle and the clavicle [90], as depicted in Fig. 1.2.

Complications that occur during central line insertions at the IJV are classified as either
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infectious, thrombotic, or mechanical [17]. The complication of highest clinical importance is
arterial puncture, especially at the site of the IJV where the CA is at risk of puncture and is
classified as a mechanical complication [17]. CA punctures have been found to occur in 10.6 %
of landmark-guided cases [69, 17] and can result in adverse outcomes such as hematoma, hem-
orrhage, pseudo-aneurysm, and stroke [17]. The high complication rates associated with this
approach motivated a shift from landmark-based guidance to image-guidance. Ultrasound (US)
imaging was introduced to the central line insertion procedure to improve insertion accuracy
by providing visual anatomic information to the clinicians. Studies reported in the literature
have demonstrated that US-guided central line insertions significantly reduced the number of
mechanical complications, compared to the landmark-based approach [93, 11, 98].

Figure 1.2: Visual depiction of the landmark-based central line insertion technique

1.2 Ultrasound for Interventional Guidance

1.2.1 Overview of Ultrasound principles

US images are formed by the transmission of sound waves between 2 MHz and 12 MHz through
a medium [1]. The velocity or speed of sound of an US wave is related to the frequency and
wavelength by equation 1.1 [1].
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velocitysound(m/s) = Frequency(Hz) ∗ wavelength(m) (1.1)

The wavelength varies depending on the density and elasticity of the material through
which the sound wave is travelling, and thus the velocity is also material dependent [1].
To account for the variance in US velocity, US systems assume the velocity of sound to
be 1540 m s−1, which is an average associated with various soft tissues found in the human
body [1]. The frequency of the sound wave interpreted by the US imaging system is either set
by the operator or is inherent to the US probe [1].

US probes are designed to transmit and receive US signals, where the transmitted signal
is referred to as a pulse and the received signal as an echo. US pulses are transmitted by the
elements in the US probe and interact with the tissues through which they pass. As the US
wave traverses through tissue, the intensity of the signal is attenuated as it can be reflected,
refracted, or absorbed. At a tissue interface, the US wave may be reflected or refracted, where
the amount of signal that is reflected depends on the difference in acoustic impedance between
the two tissues [64]. The impedance (Z) of a material is determined by the density and speed
of sound as per equation 1.2 [64]. Since the speed of sound of an US pulse is largely consistent
amongst soft tissues, the difference in tissue impedance is proportional to the difference in
density [64]. The reflected echoes return to the transducer and are used within the image
formation process.

Z = density ∗ velocitysound (1.2)

US waves may also be refracted when the tissue boundary is at an oblique angle to the
direction of the wave [64]. Refracted waves are typically not received by the transducer [64].
US waves are also refracted if they traverse a tissue boundary between two media with different
acoustic impedances. This large difference in tissue impedances produces a large change in
the velocity of the wave [64]. The velocity change results in the redirection of the sound
wave, where the angle of the refracted wave is quantified by Snell’s law [64] as defined in
equation 1.3. These refracted signals may be received by any element in the US probe or may
miss the probe altogether, resulting in artifacts [1]. US waves are also scattered, which refers to
their redirection as they interact with small, rough, or uneven structures [64]. This redirection
results in the specular artifact typical of US images as the signals are being received by a
different element from which the signal was produced or miss the transducer entirely [64]. US
waves are attenuated as they traverse tissue as they are converted into heat and absorbed by the
tissue [64]. Fig. 1.3 illustrates the redirection of the US wave through reflection, refraction,
and scatter when it comes into contact with the material boundary.
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Figure 1.3: Visual depiction of the three ways an US wave may be redirected after making
contact with a material boundary, illustrating a) a reflected wave, b) a refracted wave, and c) a
scattered wave.

The sound waves received by the elements in the probe are converted to electrical signals
where the amplitude of the voltage is proportional to the strength of the received echo [14].
Amplitude Mode (A-mode) displays a plot of the voltage amplitudes over time on the moni-
tor [14], it is not commonly used for clinical interventions due to its lack of spatial information.
Brightness Mode (B-mode) provides a 2D visualization of the US information as the received
echoes are plotted on a 2D pixel grid, where signals with higher amplitudes result in brighter
pixels in the image [14]. The echo is mapped to a pixel and the lateral position depends on the
element receiving the echo and the axial position is determined by the time delay between the
transmitted pulse and the received echo [14]. B-mode is commonly used for clinical applica-
tions, as it provides an intuitive 2D image of the anatomy scanned by the probe. Motion Mode
(M-mode) is another way to use US signals, where a single B-mode scan line is selected and
the system displays the change in echo intensity as a function of time [14]. M-mode is typically
used to map the motion associated with the beating heart, such as the motion of a valve [14].
The M-mode graphs are typically used to supplement B-mode images. Doppler signals offer
another method to use US information. Doppler physics relates changes in frequency to ve-
locity, thus the change in frequency between the pulse and echo can be used to calculate the
velocity of blood flow [14]. The velocity of a scan line can be plotted over time and visualized
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as a graph. Alternatively, power Doppler or duplex US imaging expands on B-mode scanning
through the inclusion of a visual representation of the blood flow overlaid onto a B-mode im-
age [14]. If the blood is flowing away from the transducer it is depicted in blue, and if blood
flows in the opposite direction, it is displayed in red [14].

The resolution of a B-mode US image differs in the axial, lateral, and elevation directions
as the nature of the US image in each of these directions is determined by independent factors,
these three resolutions are depicted in Fig. 1.4. The lateral resolution (X-axis) determines the
ability to distinguish two objects perpendicular to the direction of the US beam [14]. The lat-
eral resolution is determined by the beam width, if the two structures are smaller than the width
of the beam they are visualized as one object [14]. The axial resolution (Y-axis) determines
the ability to distinguish two objects that are aligned with the US beam [14]. The axial resolu-
tion is determined by the wavelength and pulse length of the US pulse, where the smaller the
wavelength and pulse length the better the resolution [14]. The elevation resolution (Z-axis) is
the ability to distinguish two structures that are aligned perpendicularly to the image plane and
is determined by the elevation beam width [14]. The elevation and axial resolutions change
throughout the beam and are typically best at the focal point [14].

Figure 1.4: Diagram illustrating the axial, lateral, and elevation resolution. This diagram also
depicts the 3D beam profile from a single crystal element.

B-mode US imaging can be used for a wide range of applications, and there are ways to op-
timize images for different applications. Many different types of US probes are used clinically
with linear, curvilinear, and phased array transducers being the most common [14]. Linear
arrays have the elements arranged in a straight line producing a rectangular image through
parallel scan lines that are perpendicular to the transducer face [14]. Curvilinear transducers
have the elements arranged in a convex curve to produce a fan-shaped image where the im-
age grows progressively wider in the lateral direction as depth increases [14]. Phased arrays
can produce various US waveforms by strategically timing the firing of the elements in the
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array [14]. These delays cause purposeful interference between the US signals generated by
the elements, thereby changing the US beam profile and the shape of the resulting image [14].
This allows for the focal point and scanning direction of the beam to be altered depending on
the application and imaging depth.

1.2.2 Physical principles of US as they relate to interventional imaging
advantages and limitations

An image artifact is something that can be seen in the image that is not present in reality.
There are a few artifacts common to US images due to the way that US waves interact with
tissues. Acoustic shadowing occurs when the US beam passes through an interface with a
large difference in acoustic impedance between materials, such as an interface between soft
tissue and air, bone, or metal [1]. Due to the difference in impedance, all or most of the US
signal is reflected back to the transducer or absorbed at the interface [1]. Therefore, the area
behind these structures appears black because almost no signal reaches this area, resulting in
almost no reflections [1]. Acoustic enhancement occurs when the US wave passes through a
fluid (as opposed to the transmission through an attenuating medium) because the US signal
has almost no attenuation under these conditions [1]. The structures distal to the fluid appear
hyper-echoic as the signal is stronger than expected for the depth due to the lack of attenuation
of the wave when travelling through the liquid [1]. Such artifacts can be reduced by using the
time gain compensation control (see below) that enables signals reflected from various depths
to be visualized with equal brightness [1]. In general, these artifacts are a limitation to US, as
issues such as shadowing or enhancement may affect the ability to produce accurate diagnoses
or clinically relevant metrics.

The general attenuation of US waves as they travel through a medium also affects the ap-
pearance of the output image. The amount of wave attenuation depends on depth and frequency,
as quantified by equation 1.4 where α is the attenuation coefficient, d is the depth, and f is the
frequency.

Attenuation = α[
dB

MHz ∗ cm
] ∗ d[cm] ∗ f [MHz] (1.4)

The Sonographer has control over the frequency of the signal and the imaging depth.
Higher frequency signals produce images with better axial resolution but will cause more at-
tenuation [1]. Thus, there is a trade-off between frequency and imaging depth and it is recom-
mended to use the highest frequency that is capable of penetrating the required depth, while
still producing acceptable image quality. Since US signals attenuate as they interact with tis-
sues, signals received from deep structures have inherently lower amplitudes compared to the
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echoes that return from closer objects. Thus, a direct mapping of amplitude would result in
pixels with increasingly lower grey levels as depth increases regardless of the tissues that are
being imaged [1]. To account for this issue, the time gain compensation control is implemented
on the system, where the operator can adjust the amplitude of returning echoes at set depths [1].
The time gain compensation can be used to compensate for the attenuated signals and allow
for deep structures to be more visible [1]. Time-gain compensation is also used to minimize
the effects of artifacts such as acoustic enhancement and shadowing [1]. The ability for the
operator to alter the appearance of the US image, while imaging the structure of interest, can
be seen as an advantage as well as a disadvantage. While the sonographer can use the controls
to alter the image appearance based on the application, this may result in them developing their
own style and habits, which could lead to differences in the appearance of images collected by
different operators. Most US scanners have preset configurations that intend to optimize the
US parameters for different applications.

1.2.3 Ultrasound guidance

US can be used for both diagnosis and real-time image guidance. Due to its portable, real-time
characteristics, and lack of ionizing radiation, US is commonly used for interventional image-
guidance, including needle navigation [110]. US is an ideal imaging modality for surgical nav-
igation as the operator can relate the position of the US probe to the visual information of the
anatomic target and surgical tool displayed within the US image that is being updated in real-
time [110]. Some applications that use US needle guidance include biopsy, regional anesthesia
(including epidural or other injections), drainage, aspiration, and venous catheterization [110].
As venous catheterization at the IJV is the focus of this thesis, I describe US-guided CVC in
more detail. US-guided central line insertions with percutaneous access at the IJV employ two
common US image orientations. The out-of-plane approach provides a cross-sectional view of
the CA and IJV [157, 135], as depicted in 1.5 a) and b). In this approach, the needle is inserted
out-of-plane or perpendicular to the image plane, such that a bright point echo formed by the
needle is seen within the IJV in the US image [135], as shown in Fig 1.5 a). Alternatively,
the in-plane method can be used, providing a view of the IJV along its long axis (Fig. 1.5
d)). In the in-plane approach, the needle is inserted at an oblique angle parallel to the image
plane, allowing the entirety of the needle to be visualized within the image [157, 135], (Fig. 1.5
d)). Regardless of the approach, once the clinician believes the needle to be within the vessel
lumen, they attempt to aspirate blood into the syringe to verify the needle placement [135].
While US-guidance has improved the accuracy of the needle insertion required for central ve-
nous catheterization, clinical studies have found rates of CA puncture to be approximately 7 %
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for US-guided cases [93].

(a) (b) (c) (d)

Figure 1.5: Two representative visualizations of US-guided central line insertions. Figure a)
depicts the US visualization provided for out-of-plane needle insertions and figure b) depicts
an example of the spatial configuration of the needle, the US probe and image, and the vessel
during the out-of-plane insertion. Figure c) provides an US visualization for an in-plane needle
insertion, and figure d) provides the spatial configuration of the needle, US probe and image,
and vessel.

Both the in-plane and out-of-plane approaches have their own benefits and disadvantages.
One factor that is believed to influence the targeting accuracy of out-of-plane US-guided needle
insertions, is the inability to distinguish the needle tip from any other point along the needle
shaft [9, 157]. For out-of-plane needle insertions, the probe scans the cross-section of the nee-
dle and the resultant reflection is a bright hypo-echoic point in the US image. This approach
may result in users losing line-of-sight with the needle tip, as the reflections produced when
imaging the needle tip and shaft are very similar [135]. The visualization of this needle makes
it difficult for clinicians to properly identify whether the needle tip has inadvertently punctured
the posterior wall of the vessel [9, 157]. The inability to visualize the needle tip precisely
can result in complications such as inadvertent arterial and posterior wall punctures [9, 157].
The in-plane approach provides the ability to see the entire shaft of the needle including the
tip [9, 157]. However, it can be difficult to keep the needle within the thin image plane, as even
small movements can result in losing sight of the needle within the US image [9, 157]. An-
other limitation of this method is that it provides no information about the spatial relationship
between the CA and IJV [9, 157]. Both of these factors can increase the number of inadvertent
punctures that occur during the out-of-plane approach [9, 157]. The limitations of these two
methods can be summarized as the inability to simultaneously visualize all relevant anatomy
and the entirety of the needle including the needle tip due to the use of 2D US-guidance for
needle navigation. The current state-of-the-art US-based navigation systems typically employs
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external spatial tracking systems, US registration or fusion, 3D US or anatomic reconstruction,
advanced visualizations [30].

1.3 Tracking Technology

1.3.1 Spatial Tracking

External spatial tracking technologies provide the pose (position and orientation) of associated
sensors with respect to the tracker’s coordinate system [42]. For surgical applications, these
sensors are typically rigidly integrated into or fixed onto surgical tools or the patient [30, 143].
In general, spatial tracking systems comprise one or more sources that generate the signal,
one or more sensors that receive the signal(s), and a data acquisition and signal processing
unit [143]. The two main tracking systems used for surgical navigation are optical and magnetic
tracking, each having advantages and disadvantages with respect to the other [143].

The most commonly used optical tracking categories include videometric or visible light-
based systems and infrared (IR) light-based system [143]. In both methods, one or more cam-
era(s) act as the sensor that receives the signal. IR-based optical tracking markers can be active
or passive. Passive IR-based systems contain light-emitting diodes (LEDs) that flood the field-
of-view (FoV) with IR light, which in turn is reflected by the passive reflective markers, to be
detected by the IR camera(s) [143]. Active IR-based systems use sensors containing embedded
IR LEDs and directly emit IR light that is detected by the IR camera(s) [143]. In videometric
systems, the sensor contains one or more calibrated video cameras that are used to localize
checkered-type markers, with distinct patterns similar to those found on a QR code, that act as
the signal source [143]. Videometric systems are inherently passive, as the checkered patterned
markers act as a “source” that provides the signal by reflecting visible light to the camera, rather
than generating a signal of a specific type. The video camera acts as the sensor that receives the
visible-light signals reflected by the markers [143]. To localize optical tracking markers with
six degrees-of-freedom (DoF) both types of systems require that at least three “source” markers
that generate or reflect the desired light waves, be arranged in a rigid and known non-collinear
geometric pattern [143]. These distinct groupings of markers are called dynamic reference
frames (DRF) [143]. Multiple DRFs can be simultaneously localized by the camera(s) if they
have mutually unique patterns [143]. Mathematical triangulation is used to estimate the pose
of the DRFs in 3D.

Stereo reconstruction or stereo vision is the process of using two cameras with known con-
figurations that simultaneously capture the same scene from different vantage points, to esti-
mate the 3D pose of an object [143]. Stereo reconstruction is commonly implemented in optical
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tracking systems, as optical markers can be localized with superior accuracy to mono-camera
triangulation [143]. Stereo vision mimics the process whereby humans and other animals si-
multaneously use the visual information from both eyes to interpret the position of objects in
3D. The stereo cameras capture left and right images of the same scene at the same time [143].
As the viewpoint of each camera is different, the two images contain depth-dependent dis-
parities [143]. Stereo vision relies on the known intrinsics of the camera, including the focal
length, the known horizontal distance between the cameras, and the pose of the camera [143].
In addition, stereo vision also relies on the known pixel correspondences between left and
right images and the knowledge that the light rays that generate the pixel positions must pass
through the camera’s focus [143]. The stereo vision problem is commonly used to reconstruct
a 3D scene given the left and right images. This problem is simplified for the case of estimating
the 3D pose of an optical marker, as optical tracking systems have image-processing methods
to localize the pixel coordinates that represent the tracking markers [143]. It is for this reason
that IR-based systems have superior accuracy to visible light-based systems, as the IR markers
appear as bright reflections on a black background, making localization trivial [143]. These
known parameters allow for simple trigonometry to be used to solve for the 3D X, Y, and Z
coordinate of the optical marker [143]. As the 3D pose of the optical sensor is derived using
2D images with known X and Y pixel locations, the tracking will be the least accurate in the
Z-direction and thus the accuracy is not isotropic. A diagram of the collinear camera stereo
reconstruction problem can be seen in Fig, 1.6.

Figure 1.6: Collinear camera stereo reconstruction (triangulation) diagram illustrating how a
point can be reconstructed in 3D using two cameras. The diagram shows the Left and Right
cameras, the distance between them (b), the focal length ( f ), the pixel coordinate of the object
on the image UL and UR, and the reconstructed point P(XR,YR,ZR)

The specific optical tracking system that is used throughout this work is the Polaris Spectra
with passive spherical markers (NDI, Canada). This tracking system has a pyramid-shaped
FoV where the tracking has a 0.3 mm root mean square error (RMSE) in the optimal tracking
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area and 0.3 mm RMSE in the non-optimal zone [103]. The tracking FoV is depicted in
Fig. 1.7 [103].

Figure 1.7: Polaris tracker FoV, showing the front, side and top view with all dimensions
labelled. The diagram has the optimal zone labelled on the side and top view, denoted as O.Z.,
which extends from the vertical line in the diagram.

Magnetic (electromagnetic) tracking systems comprise a magnetic field generator, mag-
netic tracking sensors, and a control unit. The field generator contains solenoids that generate
a pulsed magnetic field and magnetic sensors that interact with the changing magnetic field to
generate current pulses [143]. The solenoids are arranged in a specific configuration, whose
geometry and nature of the excitation electric currents determine the properties of the magnetic
field that defines the tracking coordinate system [143]. The control unit aids in the generation
of the magnetic field, the data acquisition, and processing required to localize magnetic sen-
sors [143]. There are three common types of magnetic tracking systems including alternating
current (AC) driven systems, quasi-static direct current (DC) driven systems, or passive sys-
tems that use permanent magnets or transponders that emit a radio-frequency signal [143].
Passive systems are the only type of magnetic tracker that can perform wireless tracking, but
due to the reduction of accuracy in passive systems, the majority of the magnetic tracking
systems used for medical applications are AC- or DC-driven systems. Magnetic tracking sen-
sors contain small coil(s) [143]. When the sensor intercepts the magnetic field produced by the
field generator, there are local changes in the field strength that induces current flow in the coils
windings [143]. The magnitude of the currents is related to the position of the sensor within the
range of influence of the field generator [143]. The two commonly used sensing coils are search
coils and fluxgate sensors. Search coils measure the magnetic flux over time using inductors
and require an AC-driven magnetic field [42]. Fluxgate coils contain two inversely arranged
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inductors that measure the second harmonic Fourier component of the magnetic field and thus
are used to measure static or low-frequency alternating fields such as those provided by DC-
driven systems [42]. AC-driven systems are susceptible to local distortions caused by eddy
currents [143] and pulse-driven DC systems are highly affected by the presence of metallic and
magnetic materials [143].

The magnetic tracking system used throughout this work is the NDI Aurora Desktop Mag-
netic Tracker (NDI, Canada) that is capable of tracking 5 and 6 degree-of-freedom (DoF) sen-
sors (NDI, Canada). The Aurora Desktop Tracker is an AC driven system with a dome volume a
position and rotational accuracy of 0.7 mm (RMSE) and 0.3° (RMSE), for 6 DoF sensors [102].

Figure 1.8: Aurora tabletop tracker and FoV labelled with measurements.

Both optical and magnetic tracking have advantages and disadvantages, thus the system
selection is dependent on the required application. Optical tracking offers a larger FoV [120]
and superior tracking accuracy compared to magnetic tracking [41, 159]. However, optical
tracking requires a clear line of sight between the camera and sensors, which can be difficult
to ensure in crowded surgical environments [41, 159]. Magnetic trackers do not require line
of sight and the tracking sensors are significantly smaller than optical sensors allowing for
the integration of sensors into surgical tools. One of the major limitations of the magnetic
tracking system is that the accuracy may become compromised when a ferromagnetic material
is present [42, 89]. Active magnetic tracking also requires a wired connection between the tool
and the control unit, whereas optical tracking is wire-less [41, 159].

The NDI optical and magnetic tracking systems represent the pose of a tracking sensor
as a 4 × 4 homogeneous transform provided in Eq. 1.5. The DoF associated with tracking
sensors describes the number of axes in which the system can capture the movement of the
sensor in 3D space. Most tracking sensors can be tracked with 5 DoF (translation in X, Y, and
Z, and rotation about the Y-axis (pitch) and Y-axis (yaw)) or 6 DoF (translation in X, Y, and
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Z, and rotation about the X-axis (roll), pitch, and yaw), as illustrated in Fig. 1.9. The values
of each element in the inner rotation matrix (Rab) within the 4 × 4 matrix in Eq. 1.5 depend
on the DoF of the tracking sensor as transforms produced by 5 DoF sensors exclude the roll.
The homologous transform in Eq. 1.5 can be applied to a 3D coordinate in space ([X,Y,Z,1])
through matrix multiplication to produce a transformed 3D coordinate ([X’,Y’,Z’,1]).
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Figure 1.9: Graphic demonstrating the 5 and 6 DoF tracking of a stylus, courtesy of
NDI https://www.ndigital.com/technology/6dof-explained/

The pose of a tracking sensor can be provided with respect to the origin of the coordinate
system defined by the tracker (SensorToTracker), or with respect to another pose sensor tracked
by the same system, which is denoted as a reference sensor (SensorToReference). Reference
sensors may be fixed to a patient to provide the pose of the tools with respect to a patient co-
ordinate system. A visual example of tracking a sensor with respect to the tracker’s coordinate
system and a reference sensor are provided in Fig. 1.10 a) and b), respectively. More infor-
mation on the use of virtual models to visualize the motion of a tracked tool is provided in
Section. 1.4.2

https://www.ndigital.com/technology/6dof-explained/
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Figure 1.10: Two instances of tool tracking, with graphic a) illustrating tracking a sensor with
respect to the origin of the tracking system, and graphic b) illustrating tracking a sensor with
respect to another sensor denoted as the “reference”.

1.4 Ultrasound Registration and Calibration

Registration algorithms are used to find the geometric transform that maps one coordinate
system to another to align them in space [19]. US registration is required for US calibration
and registration between US and other medical images. US calibration registers the US image
to the coordinate system defined by the external spatial tracking system being used, through
a tracking sensor fixed to the US probe [63]. US-image registration aims to solve for the
transformation matrix that best aligns the two images or volumes in space, where the coordinate
system is defined by the pixel grid [19]. Real-time US images may be registered with medical
images from other modalities such as MRI or CT scans [19]. Alternatively, US images may be
registered with other US images to detect changes over time, relate 2D to 3D US images, or
compare images across patients [19].

Image registration pipelines require five main components, i) the input to the pipeline, ii)
an initial estimate of the transform, iii) a registration or similarity metric, iv) an interpolation
algorithm, and v) an optimization algorithm. A registration or similarity metric provides a way
to judge the accuracy of the registration [19]. The optimizer algorithm employs the similar-
ity metric to comprehensively search for the transformation that maximizes or minimizes this
parameter [19]. Optimization algorithms for registration are typically iterative processes. The
input to a registration algorithm is either images, volumes, or some corresponding information
extracted with respect to both coordinate systems [19]. Registration pipelines may require a
pre-processing step to extract useful information, which can aid in the selection of the similar-
ity metric and thus the optimization algorithm [19]. One coordinate system is designated as
the fixed coordinate system, while the other coordinate system is designated as the moving co-
ordinate system implying that the transformation matrix derived by the optimization algorithm
is applied to the moving coordinate system to register it to the fixed coordinate system [19].
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This is more commonly referred to as the moving image, as in the case of most US registration
applications, the 2D US image is typically designated as the coordinate system that is adjusted
to align with a second coordinate system, whether it is the external tracker’s coordinate system,
or a 2D or 3D medical image [19]. For image registration, after the registration transform is
applied to compute the coordinates of the output (transformed) image, the pixel intensities of
the output image need to be resampled from the original image [19]. To avoid artifacts, this is
typically performed with inverse mapping by applying the inverse transformation to map the
output image pixel coordinate back to the original image space to compute the output pixel
intensity [19]. However, the pixel positions determined during the inverse mapping may not
lie within the bounds of the original image or may not be integers indices (as pixels are dis-
crete), thus the pixel intensity can not be directly resampled. In these cases, interpolation is
required to estimate the intensity value of the transformed pixel [19]. The pixel intensity can
be interpolated using a nearest-neighbour approach where the output pixel intensity is the same
as the closest neighbouring pixel to the coordinate produced during inverse mapping [19]. Al-
ternatively, the intensities of the pixels surrounding the inverse transformed position can be
averaged using bilinear or cubic interpolation to produce the transformed pixel intensity [19].
The interpolation step is a consistent error source in all registration problems as the new pixel
intensities are estimates. Once the moving image has been interpolated, the similarity metric
is calculated to measure the accuracy of the derived transformation matrix [19]. Depending
on the resultant similarity metric, the optimization algorithm adjusts the transformation matrix
and the process is repeated until the similarity metric has been optimized [19]. The algorithm
typically ends when the change in the similarity metric is within a certain tolerance, or it has
run for a set number of iterations [19]. Registrations can be performed in both 2D in the case of
image-to-image registration, or 3D which is required for registration where at least one of the
two coordinate systems is in 3D, such as an image volume or the tracker’s coordinate system.
In the case where a 2D image is registered to a 3D coordinate system, the image is represented
as a 3D volume with a single pixel-width plane in the Z-dimension.

There are different types of geometric transformations, broadly categorized as linear (ma-
trix) and elastic that can be solved to align two coordinate systems in space [19]. Linear trans-
formations uniformly transform the entire image (or coordinate system) such that all pixels
(coordinates) are manipulated in the same manner. Elastic transforms may apply both global
and local changes to the moving image and there is no consistency between how the pixels are
manipulated. This section focuses on linear transforms as they are used extensively through-
out this thesis. Linear transformations can be sub-categorized as rigid, similarity, and affine.
These transformations are grouped together as they are all typically modelled using matrices
and share common characteristics. Linear transforms between 2D coordinate systems require



1.4. Ultrasound Registration and Calibration 17

a 3X3 transformation matrix [19]. For linear registrations where one or more of the coordi-
nate systems is in 3D, a 4X4 transformation matrix is required [19]. These transforms can be
grouped based on how they alter the moving image and are often described in terms of degrees
of Freedom (DoF), which is the number of independent ways that the transformation can alter
the coordinate system to which it is applied. Rigid transforms preserve the relative distances
and angles of the original moving image coordinate system by only altering the translation and
rotation parameters [19]. For 2D registration, rigid transforms have 3 DoF, which includes X
and Y translation and rotation about the Z-axis [19]. In 3D rigid transforms contain 6 DoF -
rotation about the X, Y, and Z axes and translation in the X, Y, and Z directions [19]. Rigid
registrations are commonly used to register two images collected from the same system at dif-
ferent time points, as they are typically of the same size. Similarity transforms can change the
rotation, translation, and scaling, but the scaling factor is consistent in all directions, maintain-
ing the original aspect ratio of the coordinate system but increasing or decreasing it by some
factor [19]. In 2D, similarity transforms have 4 DoF which includes rotation about the Z-axis,
X and Y translation, and scaling. In 3D, similarity transforms have 7 DoF including translation
in the X, Y and, Z directions, rotation about the X, Y, and Z axes, and scaling. Similarity trans-
forms are common for the registration of images with isotropic pixel size. Affine transforms
alter the translation, rotation, shear and scaling while preserving lines and parallelism [19].
Unlike similarity transforms, the scaling values can be unique for each dimension for affine
transforms. 2D affine transforms have 6 DoF, - rotation about the Z-axis, X and Y translation,
X and Y scaling, and shear about the Z-axis. 3D affine transforms have 12 DoF including ro-
tation about the X, Y and Z axes, X, Y and Z translation, X, Y and Z scaling, and shear about
the X, Y, and Z axes. Affine registrations are commonly used for registration between different
modalities and US Probe calibration.

1.4.1 Registration approaches

Numerous registration approaches have been developed for various image registration applica-
tions. Broadly they can be classified as intensity- or feature-based methods. Intensity-based
methods implement a similarity function that measures the correlation between the pixel inten-
sities within the two images, and the higher the correlation the more accurate the registration.
Intensity-based similarity metrics are used to quantify how similar two overlapping images are
based on the values of the pixels in the image, and include Mutual Information, Normalized
Cross-Correlation, and Correlation Coefficient [19]. Gradient descent or ascent is a well-used
optimization algorithm for intensity-based image registration [19]. A gradient measures how
much the similarity function changes based on small changes to the transformation matrix [19].
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The algorithm aims to change the transformation matrix such that the resultant gradient is
smaller than in the previous iteration. This process continues until the applied transformation
results in a local minimum of the gradient where the similarity metric is minimized [19]. Gra-
dient ascent algorithms output the transformation matrix that results in a local maximum and
a maximized similarity function [19]. Intensity-based methods are commonly used for multi-
modal registration and to register images from the same patient over time, but are not employed
in the work described in this thesis. Thus, this section focuses on feature- and landmark-based
registration methods.

Landmark-based registration requires the identification of a set of homologous points in
both coordinate systems, which are used to solve for the transformation matrix that best aligns
the landmarks and thus the coordinate systems [111]. The landmarks used for registration are
commonly referred to as fiducials and can be automatically or manually identified, and can
be anatomical structures, features common in both images, or physical markers. Pair-wise
landmark-based registration requires corresponding pairs of coordinates in 2D or 3D, where
both point clouds comprise the same number of points [111]. A least-squares solution can
be applied to pair-wise landmark registration to solve for the transform that minimizes the
distance error between the fixed point set (Yi) and transformed moving point set (Xi) [5], as per
equation 1.6, where R is the rotation matrix, t is the translation vector, and Np is the number of
points used in the registration.

E =

Np∑
i=1

||RXi + t − Yi||
2 (1.6)

In the most trivial case, the least-squares approach [5] solves for the rotation and transla-
tion to transform each point pi in the moving set to pi

′

as per the equation pi
′

= Rpi + t. To
solve for the translation values, the centre of mass (centroid) of both point clouds are calcu-
lated [5]. The translation value is obtained by calculating the difference between the centroid
values between the two point clouds across the X, Y and Z (for 3D) axes independently [5].
Both point clouds are shifted by their respective centroid value such that the centroid is at the
origin (0,0,0), allowing for the rotation to be solved independently from the translation [5]. To
solve the rotation the point clouds are represented by a 3XNp matrix, where Np is the num-
ber of points [5]. A 3X3 cross-covariance matrix (W) can be calculated by performing matrix
multiplication between the 3Xn matrix of points from one cloud and the transposed matrix of
points (nX3 matrix) from the other cloud [5]. Performing singular value decomposition (SVD)
on this 3X3 cross-covariance matrix allows W to be decomposed into W = UDVT , where U
and V are 3X3 basis vectors [5]. The 3x3 rotation matrix that aligns the two point clouds in
space is solved for using R = UVT (T is the transpose) [5]. Alternatively, applying Eigen de-
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composition to the cross-covariance matrix can be used to derive the rotation matrix, where the
eigenvector with the smallest eigenvalue provides the rotation in quaternion form, which can
be converted to a 4x4 matrix [62]. Fiducial-based pair-wire registrations are used throughout
this thesis to register phantoms to tracker or image space.

Iterative closest point (ICP) registration is required if the correspondences between points
are not known, or if one point cloud contains more points than the other. In the case where
there is an unequal number of points, the smaller point cloud should be registered to the larger
one. Due to the lack of known correspondence between points, an additional step is added
into the method to find the corresponding points [8]. This is typically done by calculating the
Euclidean distance between each point and the closest point from the other point cloud [8].
Once the correspondence has been estimated, the same process outlined above is implemented
such that the translation and rotation values can be obtained. An error metric E(R,t) is then
computed, typically by calculating the Euclidean distance between points, and the algorithm
continues to iterate until the error is less than some specified threshold or the algorithm has run
for a set number of iterations [8].

In this thesis, a point-to-line registration method that solves for the translation, rotation,
and anisotropic scaling is used extensively to solve for US calibration [35]. This problem
is formatted as an Anisotropic Orthogonal Procrustean Analysis (AOPA) and is implemented
as an iterative approach to solve for the relationship between corresponding point and line
pairs [35]. This method is similar to fiducial-based and ICP registrations with isotropic scaling
but allows for the scaling to be unique across the X, Y, and Z axes [35]. Additionally, as
the input data are point and line pairs, there is an additional step where the shortest distance
between each point and its corresponding line is computed allowing for a coordinate on each
line to be extracted to reformat the problem as a point-to-point registration [35]. The use of
this procedure in the context of US calibration is outlined below.

1.4.2 Tool Calibration and Visualization

To virtually represent a tracked instrument, the object must be tracked and a transformation
matrix providing the relationship between the coordinate system of the tracked element, and
that of the instrument must be determined via a calibration process [25]. The output of the
calibration is a homogeneous transformation matrix that registers the coordinate system of the
object and the coordinate system defined by the spatial tracker fixed to the object [25]. This
process allows for: i) the position of landmarks on the object to be known with respect to the
pose sensor, ii) the motion of the virtual object to replicate the motion of the true object, and iii)
the interactions between virtual models of tracked objects to replicate real interactions. Tool
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calibrations are typically used within a transformation chain that concatenates all the transfor-
mation matrices within that chain. An example is provided in Fig. 1.11 depicting the calibration
transform (ObjectToObjectSensor) which provides the relationship between the object geom-
etry and the object sensor that would be concatenated with the tracking of the object sensor
(ObjectSensorToTracker) to produce the output transform ObjectToTracker.

Figure 1.11: Sample of the transformations associated with tracking a calibrated object, with
objectToObjectSensor being the calibration transform that when concatenated with objectSen-
sorToTracker can directly provide the transform objectToTracker.

Pivot-based calibrations are commonly used to calibrate a ball-tipped stylus, where the rele-
vant information is the position of the stylus tip [25]. Pivot calibration is the process of pivoting
the tool around its tip, such that the motion of the tracking sensor forms the surface of a sphere
about the stylus tip [25]. Sphere fitting can be used to solve for the relationship between the
collected data points and the centre of the sphere using a least-squares approach [163]. Pivot
calibration can only determine the tip location but not the mechanical axis of the stylus [25]. If
the anatomical axis of the stylus does not align with the mechanical axis of the sensor spin cali-
bration is required to provide the correct axis of rotation [152]. The output of this process is the
transform that relates the stylus tip to the stylus sensor (StylusTipToStylusSensor). Thus, the
pose of the stylus tip can be tracked with respect to the tracking system through concatenating
the transforms StylusTipToStylusSensor and StylusSensorToTracker, which provides the trans-
form StylusTipToTracker. A visual example of these transformations and their use for tracking
a calibrated stylus is provided in Fig. 1.12.
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Figure 1.12: Sample of the transformations associated with tracking a stylus including the
raw transform stylusSensorToTracker, the calibration StlyusTipToStylusSensor, and the output
transform stylusTipToTracker.

Fiducial-based calibrations require an object that is equipped with a tracking sensor and has
calibration fiducials that are fixed to or engraved into the object [25]. The positions of these
fiducials are known with respect to the geometry of the object, either through the CAD model
or a CT scan of the object. The model (or volume) of the object has its own coordinate system
such that its geometry, and that of the fiducials, are known with respect to the origin of the
model. The position of the fiducials are extracted from the model or volume of the object by
segmentation or by design and are obtained with respect to the origin of the model [25]. The
positions of the fiducials are also digitized, such that their positions are collected with respect
to the tracking sensor fixed to the object using a tracked and calibrated ball-tip stylus [25].
A paired fiducial-registration approach can be applied to solve the relationship between the
geometry of the tool and the position of the tracking sensor fixed to the object (objectToOb-
jectSensor) [25]. An example of the transformations used to position the model or volume of
the object with respect to the optical tracking sensor is provided in Fig. 1.13, depicting the
transforms objectToObjectSensor and objectSensorToTracker which are concatenated to pro-
duce objectToTracker. Thus, if a tracked model of a calibrated stylus (stylusTipToTracker)
and a tracked model of the calibrated object (objectToTracker) are both visualized, their in-
teractions would replicate the interactions between the real objects. This provides a method
to visually validate a calibration, as the interactions and relative position between the two vir-
tual objects should mimic the relationship between the true objects. This process is commonly
required within phantom-based US calibrations, as described in Section 1.5.
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Figure 1.13: Sample of the transformations associated with tracking an object that was cal-
ibrated using a fiducial-based method, where objectToObjectSensor is the output calibration
transformation which can be concatenated with objectSensorToTracker to produce objectTo-
Tracker.

Template-based calibrations provide another method to solve for the relationship between
a tooltip, such as a needle, and the sensor fixed to the tool [25]. The calibration template is
an additional tracked device that has the negative imprint of the surgical instrument, a tracking
sensor, and calibration fiducials [25]. The position of these fiducials and the geometry of the
tool are known with respect to the geometry of the imprint of the tool from the CAD model or a
CT scan of the template. The known geometry of the phantom is used to extract the transform
that relates the tip of the tool to the origin of the template geometry templateToToolTip [25].
The positions of these fiducials are measured with respect to the tracking sensor fixed to the
template [25]. The transformation matrix that registers these two paired fiducial sets provides
the relationship templateSensorToTemplate [25], between the template and its tracking sensor.
The relationship between the sensors on the tool and the template in which the tool is inserted
is provided by the tracking system through the transform toolSensorToTemplateSensor [25].
Thus, the calibration can be solved by concatenating the transforms toolSensorToTemplate-
Sensor, templateSensorToTemplate, templateToToolTip to provide the relationship between
the tooltip and the tool sensor (toolSensorToToolTip), as depicted in Fig. 1.14 [25].

Figure 1.14: Sample of the transformations associated with a template-based calibration.
Depicting the transformation chain toolTipToTemplate, templateToTemplateSensor, template-
SensorToToolSensor, which provides the output transform toolTipToToolSensor.



1.5. Ultrasound Probe Calibration 23

1.5 Ultrasound Probe Calibration

US probe calibration is a main application of US registration and is a specific case where the US
image is registered to an external spatial tracking system such as an optical or magnetic tracking
system [63]. All US probe calibration methods require some form of tracked marker (optical
or magnetic) to be rigidly attached to the US probe, whose location is determined with respect
to the tracker’s coordinate system via the tracking operation [94]. The tracking system can
provide the pose of the probe sensor with respect to the tracker’s coordinate system or another
reference sensor that may be fixed to the patient. Through the concatenation of transforms, the
US beam coordinates can ultimately be placed within the patient’s coordinate system by means
of the reference sensor(s). In general, the resulting 3D transformation matrix is a 4 × 4 rigid
or affine matrix that can consist of any combination of scaling, rotation and translation in up to
three directions X, Y, and Z [63]. Assuming the US image lies on the X-Y plane, this matrix
can be applied to each pixel location [X, Y, 0, 1] within the image to produce a new location
[X

′

,Y
′

,Z
′

, 1] within the tracker or patient coordinate system. Thus, the images obtained from
a calibrated US probe are positioned and scaled to the true FoV of the US beam, allowing for
pixel spacing to be related to standard units of measurement [63]. US probe calibration allows
the relationship between the US image and virtual models of tracked tools to be visualized and
enables free-hand 3D US reconstruction [63]. Fig. 1.15 a) displays the relationship between the
calibrated US image and the probe sensor, and Fig. 1.15 b) provides an example of a calibrated
US image and its interactions with other tracked objects. The various methods used to perform
US probe calibration are summarized below [63].

(a) (b)

Figure 1.15: a) depicting the relationship between the calibrated US image and the probe
sensors and b) provides an example of a calibrated US image interacting with a virtual models
tracked needle, US probe and spine model
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Free-hand Ultrasound Probe Calibration Methods

Fiducial-based US calibration methods rely on imaging some form of phantom containing land-
marks whose positions are known with respect to the probe sensor in the tracker’s coordinate
system, such that the corresponding landmarks can be automatically or manually localized in
the image coordinate system [63]. Fiducial-based US-calibration approaches are solved us-
ing landmark-based registrations to provide the relationship between the homologous point
sets known in the tracker’s coordinate system with respect to the probe sensor and within the
US image, which defines the relationship between the US image and the probe sensor [63].
Fiducial-based US calibrations are grouped into different categories based on the type of cal-
ibration phantom being used, although the specifics of each method within the category may
differ based on the calibration approach. These categories include single-point target phan-
toms, multiple cross-wire phantoms, multiple-point target phantoms, three-wire phantoms, Z-
fiducial phantoms, and needle phantoms. Fiducial-based calibrations are used throughout this
thesis and thus are the focus of this section.

The first type of phantom to be implemented for US probe calibration was a single point
4 mm bead target phantom [144]. This concept was extended to the cross-wire phantom, where
the phantom is composed of two intersecting wires producing a point within the image [144].
The point target or cross-wire phantoms are aligned with the US image plane and are scanned
from several viewing angles as the probe moves freely. These approaches are known as point-
based methods, as they consist of mapping a single point from image space to phantom space,
and then from phantom space to the tracker’s coordinate system. The concepts behind the point
target and single cross wire approaches were extended to phantoms that include multiple point
targets or cross-wires [75]. The principals of these approaches remained the same, however
through increasing the number of points, the registration algorithm has more information to
use as inputs [75]. The major limitation of point-based approaches is the requirement to place
the phantom in the mid-plane of the US beam. If the phantom does not lie within the mid-
plane of the US beam the fiducial within the image won’t represent its true location and error
is introduced into the calibration [94].

Three-wire phantoms involve three orthogonal wires that are scanned sequentially along
their length [15]. For this method, the origin of the phantom coordinate system is located at
the intersection of the three wires and then each wire is assigned to one axis [15]. When the
phantom is scanned the wire appears as a dot within the US image and again can be input into
the point-based registration algorithm. This method eliminates the issues associated with the
correct location within the US beam as it is intrinsically easier to scan the length of a wire than
a single point [120]. The three-wire method is still limited by the requirement of a precisely
designed phantom to insure perfect orthogonality of the wires and the requirement that the user
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must keep track of which wire they are imaging.

Z-fiducial (also known as N-fiducial) phantoms are perhaps the most commonly used for
probe calibration. The Z-phantom consists of three wires that are organized in a Z formation,
this phantom is tracked and requires calibration to the tracker’s coordinate system [120]. When
scanned, the three collinear points that correspond to the geometry of the phantom are visible
within the image, and thus can be used as corresponding point-pairs for registration [120].
This method has been extended to include multiple Z-phantoms to improve the accuracy of the
registration. This method is limited by the requirement of a precisely designed phantom for
that specific US probe and a phantom calibration step, which may introduce additional errors.

Tracked stylus or needle-based approaches utilize a tracked and pre-calibrated stylus or
needle as the calibration phantom, allowing it to be employed universally across all US probes
without any precise design requirements [21]. For the point-to-point implementation, the US
probe is fixed while imaging a water bath. The operator inserts the needle into the US beam
until they believe the tip of the needle to be aligned with the beam’s mid-plane [63]. The
stylus tip location, and the segmented centroid of the associated reflection, are used as input
to a point-to-point registration algorithm [63]. As previously mentioned, optimally positioning
an object in the mid-plane of the US beam is non-trivial and error-prone. Thus, line-based
calibration methods were developed to address this limitation. This approach does not require
positioning the needle in the mid-plane of the US beam, but rather inserting it such that the
shaft of the needle intercepts the entire US-beam [21]. The operator still selects the centroid of
the reflection produced by the needle, which provides a 3D ([X, Y, 0]) image coordinate that is
used as one of the inputs to the algorithm. The secondary algorithm input is the line formed by
the needle, which is defined using the stylus tip location as the origin, along with the direction
of the needle, which can be extracted from the needle’s transformation matrix delivered by the
tracker [21]. In both approaches, the needle is positioned in various locations (and poses for
the point-to-line approach) throughout the US image, forming corresponding sets of points or
points and lines which can be used to iteratively solve the calibration.

The point-to-line US calibration approach is consistently employed throughout the work
presented in this thesis. For an optimal calibration, two scans of the needle are collected in
each corner of the image, one with the far end of the needle tilted to the left and the other tilted
to the right, with respect to the needle tip [21]. Next, the number of scans with the needle in
varying locations and orientations throughout the centre portion of the image are collected. The
pixel location, the line formed by the needle, and the location of the tracker on the US probe are
input to the closest-point Procrustean point-to-line registration algorithm that iteratively solves
for the transformation matrix [21]. In this iterative process, for each new measurement, the
algorithm solves for a new transformation matrix that builds upon the previous solution [21].
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This approach provides the relationship between the US image and the sensor fixed to the US
Probe which is represented as a 4x4 transformation matrix comprised of translation, rotation,
and anisotropic scaling. The use of anisotropic scaling is necessary for calibration as it allows
for the calibrated US image to be accurately scaled to the imaging depth being used. The
number of pixels that comprise an US image differs in the axial and lateral directions. The
lateral pixel scaling is related to the number of transducer elements, whereas the axial spacing
is related to the speed of sound. For example, if the estimated speed of sound is 1540 m s−1 but
the true speed of sound through the medium is 1450 m s−1, it takes longer for the US wave to
reach the same distance. To compensate for this difference the image can be scaled such that
the same number of pixels can represent the actual depth of the image. However, due to the
difference in how the lateral and axial pixel spacing is obtained, errors occur if the scaling is
isotropic particularly for deep images.

1.5.1 Free-hand Tracked Ultrasound

US probe calibration enables the use of free-hand tracked US, where the position of the US
image is tracked and updated in real-time. Tracked free-hand US allows for the US image to
be visualized in a common coordinate with surgical tools, such that the virtual model of the tool
is aligned with the reflection of the tool within the US image [63], as depicted in Fig. 1.15 b).
Due to this capability, tracked free-hand US forms the foundation for many US-guided surgical
navigation systems [30]. Free-hand tracked US also enables free-hand US reconstructions, as
the pose of the US image is known in 3D. Free-hand US reconstruction is described in more
detail in Section 1.8. Last, as free-hand tracked US scans are scaled to the true FoV of the US
beam, the pixel spacing can be related to real units of measurements, which allows for clinical
measurements and could assist with diagnosis.

1.5.2 Temporal Calibration

Temporal calibration solves for the time offset between data streams acquired by different de-
vices, such as the US and tracking streams. Temporal misalignment between the US and track-
ing streams affects the accuracy of the calibration if any of the components are moving during
data collection, as the reflections produced by the calibration phantom are not representative
of the pose of the tool at the same point in time. The method used in this thesis to solve the
temporal calibration is a feature in the Plus Toolkit [77]. This method aims to collect the same
signal from both data streams. In the case of performing temporal calibration between the US
and tracking streams, the US probe outfitted with a tracking sensor is used to image the bot-
tom of a water bath. The user attempts to move the probe in a sinusoidal fashion by smoothly
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moving the transducer face closer and farther from the bottom of the water basin. Imaging
the bottom of a water basin under US produces a straight line within the US image, where the
line is closer to the top of the US image the closer the transducer is to the bottom of the basin.
The Plus Toolkit automatically segments this line from the US image and maps the position
over time in a plot that resembles a sinusoidal curve. The pose of the tracking sensor fixed
to probe is also plotted against time, and also resembles a sinusoidal curve. The two curves
have the same appearance but are shifted from one another by some time delay. Performing
cross-correlation on the two signals solves for the time offset (lag) that maximally aligns the
plots. This offset is the temporal calibration, which can be used to ensure the data streams are
synchronous.

1.6 Registration Errors and Ultrasound Calibration Evalu-
ation

1.6.1 Sources of Error in Fiducial-based Registrations

All US-based registrations, whether they are performed with an external tracking system or
a secondary image or volume, have some associated errors. For landmark-based registration,
the corresponding landmark coordinates must be localized with respect to the US image and
the coordinate system to which it is being registered. Fiducial localization error (FLE) is de-
fined as the error associated with localizing the fiducial or landmark, which is an important
consideration in fiducial-based registrations as the accuracy of localizing US fiducials can be
affected by many sources of error [30]. First, US image generation requires an assumption for
the speed of sound, and typically fiducials used for image registration are considerably denser
than tissue, and thus the assumed sound speed is far lower than its true velocity when travel-
ling through the fiducial material. This phenomenon may displace the fiducial within the US
image [30]. Moreover, most US probe calibration methods require the calibration phantom to
be submerged in water, which results in less attenuation of the US beam compared to human
tissue [30]. The misalignment with the true and assumed speeds of sound may result in reflec-
tions being erroneously mapped within the US image [63]. Additionally, US systems produce
a 2D image using a beam that has a 3D profile. Therefore, if the user is attempting to local-
ize the centroid of the fiducial they need to position it in the mid-plane of the US beam [63].
This process is difficult and there is no method to verify that the image was collected with the
fiducial optimally placed with respect to the beam geometry. Once the fiducial has been cap-
tured in the US image, it must be localized, either manually or automatically [63]. Typically,
a single-pixel representing the centroid of the fiducial is selected. The ability to accurately
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interpret and localize the fiducial in the US image directly relates to the resolution and point
spread function (PSF) of the US image [3]. The PSF is the response of a system when imaging
a single point target, and measures the degree of blur or spread of the point in the image [3].
The PSF can be used to characterize the spatial resolution at the location of the point fiducial.
PSF in US images can extend by several pixels in both the axial and lateral dimensions but
are typically anisotropic with a larger spread in the lateral dimension. The PSF and resolution
in the axial dimension differs throughout the image due to US beam characteristics [3]. Thus,
selecting the pixel that represents the centroid of a fiducial in US images can be difficult and
often localizations are erroneous by a few pixels, as the fiducial’s appearance in the US image
is anisotropically blurred with varying degrees based on the axial position of the fiducial [3].
Accurate fiducial segmentation can also be related to the operator’s knowledge of US physics
and imaging, as more experience results in easier interpretation of reflections in US images.

For US calibration, the fiducials must be localized (or digitized) with respect to the tracker’s
coordinate system. External tracking systems have an inherent error associated with them.
While tracking systems used for clinical tasks require sub-millimetre and sub-degree accuracy,
these small errors affect the ability to accurately digitize fiducials, which propagate into the
FLE. Many calibration phantoms require a phantom calibration step such that the position of
the landmarks are known with respect to the phantom sensor and thus the tracker’s coordinate
system, as described in Section 1.4.2. Any errors in the calibration of this phantom will er-
roneous position the landmark in the tracker’s coordinate system, resulting in FLE [30, 96].
Moreover, if the tracking and image streams are not temporally calibrated, the recorded track-
ing data may have differences between the true location of the tracking data and the recorded
location for its corresponding image containing the reflection produced by the calibration phan-
tom. Any errors associated with localizing the fiducial propagate into fiducial registration er-
ror (FRE). FRE is the error between the corresponding landmarks after registration. Target
registration error (TRE) is defined as the error between two sets of non-fiducial points after
registration [30] and is potentially the most meaningful registration error. This metric is mean-
ingful as the FRE over or underestimates the accuracy of the registration [30]. The relationship
between FLE and TRE has been quantified by equation 1.7, where n is the number of collected
fiducials [96]. This model works under the assumptions that the FLEs are isotropic and are
independent and identically distributed randomly with a zero-mean Gaussian distribution [96].
The relationship between FLE and TRE is defined by equation 1.8, where p is the point target
and d2

k and f 2
k are the squared distance between the target point and the fiducial points and the

kth principle axis of the fiducial configuration, respectively. Equation 1.8 follows the same
assumptions as equation 1.1.
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1.6.2 Calibration Quality Assessment

The accuracy of an US calibration is difficult to quantify, as there is no way to produce a
ground truth relationship between the probe tracking sensor and the US image [63]. Thus,
there is no standard for assessing calibration quality. However, there are common methods
used to measure the precision and trueness to validate the calibration [63]. Precision is the
spread between repeated measurements or samples in some coordinate system, and trueness is
how close each sample is to some known ground truth [63]. Other important factors to consider
when assessing an US calibration approach are the equipment, space, and time required for the
calibration approach.

A common precision method used is calibration reproducibility, whereby a single-pixel [X,
Y, 0, 1] in image space is transformed by the calibration to a new coordinate [X

′

,Y
′

,Z
′

, 1] in
3D space [63]. This process is repeated using multiple calibrations obtained using the same
calibration approach [63]. The variation of this reconstructed point cloud represents the preci-
sion of the calibration. The selected pixel coordinate has an effect on the precision obtained,
as selecting points near the centre of the image may be less affected by rotational errors [63].
Thus, it is recommended to test the calibration reproducibility using multiple reconstruction
targets, such as all four corners as well as a few samples close to the centre of the image [63].
Calibration precision is also quantified by the variation across each DoF within the calibration
matrix (translation and rotation in the X, Y, and Z axes) using multiple calibrations obtained
using the same calibration method [63]. Both of these processes measure the consistency of
the calibration approach and can be used in junction to quantify the calibration precision.

It is near impossible to measure calibration accuracy as the ground-truth calibration is not
known, since if there was a method to obtain the optimal calibration this technique would
replace the need to perform US calibration [63]. As quantifying the accuracy of the compo-
nents within an image-guidance system is vital to their success many groups have attempted
to quantify the accuracy of their US calibration methods. Point reconstruction accuracy uses a
point-based phantom, where the point has a known position in the tracker or world coordinate
system to provide the ground-truth [63]. This phantom is imaged by the calibrated US probe
and the position of its reflection in the calibrated image is compared to the ground-truth loca-
tion [63]. This process is repeated many times such that a cloud of reconstructed points can
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be compared to the ground-truth [63]. Many groups have also performed point reconstruction
accuracy using phantoms with multiple point sources, typically produced using wire-crossings
in a Z or cube pattern [63]. These points can be reconstructed in 2D by extracting their position
from a 2D image or in 3D by extracting their locations from a reconstructed volume [63]. Sim-
ilar to the 3D point reconstruction accuracy, many groups employ 3D distance reconstruction
accuracy to assess their calibrations, where a phantom with multiple point sources is recon-
structed in 3D by the calibrated US probe [63]. The distances between the point sources are
compared to the known configuration of the phantom [63]. A common phantom used in this
approach is a 4 × 2 matrix of small spheres. However, phantoms with a large number of point
sources have also been used [63].

While point-reconstruction analysis provides a method to assess calibration accuracy, many
sources of error are introduced into the analysis. The centre location of the point source has
to be extracted by manual or automatic localization, which may affect the accuracy results
produced [63]. In the case of 2D point reconstruction, the point fiducial has to be imaged
at the mid-plane of the US beam. 3D point reconstruction resolves the issue of alignment in
the mid-plane. However, the accuracy of the 3D reconstruction depends on the sampling rate
and reconstruction approach, and artifacts can be introduced during this process [63]. Thus,
any errors within the reconstruction or fiducial localization affect the overall accuracy measure
obtained for the calibration [63]. Moreover, even comparing the same accuracy metric reported
from two independent groups, can be difficult as the accuracy of the calibration is affected by
the imaging depth, type of tracking device, quality of equipment, the experience of the operator,
and there may be additional factors depending on the calibration approach used [63].

1.7 Ultrasound segmentation

Medical image segmentation is the process of delineating or outlining structures present in
medical images such as relevant anatomy or surgical tools. For US-based applications, struc-
tures may be segmented to assist with diagnosis and treatment planning or to improve the
visualization of tools or targets for US-guided applications [109]. US images may be seg-
mented using traditional image-processing-based techniques, or machine learning-based ap-
proaches that require some form of training phase where the algorithm learns how to perform
the segmentation [112]. Many different image-processing and machine learning-based meth-
ods for US segmentation have been developed for applications within cardiology, oncology,
and vascular disease diagnosis [112]. Another common application of US image segmentation
is image-based tool tracking.
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1.7.1 Image processing-based segmentation

Traditional image processing-based segmentation relies on hand-crafted or known features,
such as intensity, intensity distributions, or edges [109]. Edge detectors are an example of a
known feature, as they are designed to detect abrupt changes in the intensities within an im-
age by applying some form of derivative across neighbouring pixel values to quantify rates of
change, where areas with high rates of change are edges [109]. Edge detection is typically
performed using a filter to detect horizontal, vertical, diagonal or all edges in the image. Some
common edge detection filters include Sobel, Canny, and Laplacian [112]. Segmentation based
on pixel similarities are also designed features, for example, pixels with similar intensities can
be grouped as the intensity of a pixel in an US image relates to the tissue properties. Some com-
monly used intensity-based segmentation approaches include threshold-based, region-based,
region growing [112]. It can be difficult to develop a robust image processing-based algo-
rithm that accurately segments structures across images collected from various patient groups,
different US scanners, and different sonographers.

1.7.2 Machine learning-based segmentation

Machine learning algorithms are commonly used for US segmentation applications, as they
are capable of performing segmentation on diverse data sets. Supervised learning algorithms
require both images and ground-truth segmentation examples as training inputs [33]. The goal
of a supervised machine learning algorithm is to try and develop a function that aims to repli-
cate the corresponding ground-truth labels when given a training input image [33]. Supervised
learning algorithms for segmentation are referred to as classification algorithms, as pixels are
grouped into classes such as disease or non-diseased, or some anatomy and background [33].
Unsupervised learning only requires images as the training examples with no training labels,
as pixels are grouped into classes based on statistical trends. Unsupervised learning algorithms
for segmentation are referred to as clustering algorithms that group pixels into classes based
on similar properties or features [112]. There are also semi-supervised approaches that com-
bine supervised and unsupervised learning [33]. As this thesis only implements supervised
machine learning methods, the following section focuses on this approach. One of the most
commonly used machine learning models is a convolutional neural network (CNN). CNNs
comprise several components such as convolutional layers, pooling layers, and fully connected
layers, where the architecture of the CNN depends on the order and frequency of these com-
ponents [162]. Convolution layers perform feature extraction using kernals or filters, which
are matrices of values usually significantly smaller than the image, such as a 3X3 grid, where
the depth of the image and the filter are the same [162]. The values within these filters are
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called weights, and determine what kind of feature the kernal is trying to detect [162]. The
convolution operator produces the sum between the element-wise kernal and the underlying
image matrix values [162]. The magnitude of the result is a measure of the similarity between
the elements of the kernal and the image at the position in the image matrix overlaid by the
kernal [162]. If the value of the convolution is high the feature is present in that portion of
the image, if the value is low the feature is not present [162]. A feature map is generated by
passing the filter across the entire image by shifting the kernal by some set stride amount and
performing the convolutions. The output convolution value is recorded at the pixel coordinate
at the centre of the kernal where the convolution was applied [162]. After the feature map is
produced it is summed with a bias term and then an activation function or transfer function is
applied that defines some consistent method of mapping of the values in the feature map to a
new value [162]. This altered feature map or activation map next undergoes a pooling step to
produce a pooled feature map [162]. One of the most common pooling steps is max-pooling,
which extracts sub-grids of pixels from the feature map finds the maximum value in the sub-
grid and discards the rest [162]. Depending on the architecture of the network, there may
be many consecutive convolution, activation, and pooling layers, these layers are typically re-
ferred to as hidden layers [162]. After the final pooling layer, the resultant pooled feature map
sized nXm is flattened or reshaped to a one-dimension feature vector of size 1Xn∗m [162]. The
flattened layer is then input into one or more fully connected layer(s) in which every input is
connected to every output by a learnable weight [162]. There are usually a few fully connected
layers, where each layer is followed by an activation function. The last fully connected layer
is input into an activation function that is usually different from the others used.

The softmax function is a commonly used activation function for multi-class classification
as it produces class probabilities in the range 0 to 1 [162]. The softmax function (σ) is a
normalized exponential function as defined in Eq. 1.9, where ~z is the input vector, ezi is the
standard exponential function for the input vector, K is the number of classes in the multi-
class classifier, and ez j is the standard exponential function for the output vector [162]. Two
other common activation functions used within machine learning architectures are the Rectified
Linear Unit (ReLU) and the leaky ReLU. The ReLU activation function is defined as y =

max(0, x), such that all x-values less than zero follow the function y = 0 and all x-values
greater than zero the follow the function y = x [86]. The leaky ReLU function is the same as
the traditional ReLU for x-values greater than zero, but all x-values less than zero are input to
the function y = αx where α is a small value such as 0.01 [86]. The leaky ReLU improves
upon the traditional ReLU as there are no zero-slope components, and typically converges
faster during training [86]. Numerous CNN architectures that have been applied to medical
image segmentation problems. Two pre-developed architectures that are used in this thesis



1.7. Ultrasound segmentation 33

include U-Net and Mask R-CNN.

σ(~Z)i =
eZi∑K

j=1 eK j
(1.9)

U-Net is one of the main architectures used for medical image segmentation [131]. The
U-Net algorithm has three phases, contraction, bottleneck, and expansion, and the model re-
sembles the shape of a U [131]. The contraction phase consists of multiple convolution blocks,
where one block performs two consecutive 3X3 convolutions. Each convolution block is fol-
lowed by the ReLU activation function and a single 2X2 max-pooling step with stride 2 [131].
The number of feature channels doubles for each convolution block [131]. The bottleneck
phase links the contraction and expansion portions by performing 2 3X3 convolutions followed
by an up-sampling convolution layer that performs the reverse operation of a max-pooling
layer [131]. The expansion phase also uses convolution blocks, where 2 3X3 convolutions
occur sequentially [131]. Each convolution block is followed by a ReLU and an up-sampling
layer. To maintain symmetry the number of feature channels is halved for each convolution
block in the expansion portion of the model [131]. There is also a crop and copy connection
between the output of each contraction layer and the corresponding expansion layer, to append
the input with the feature maps produced in the contraction phase [131]. There is one final 3X3
convolution in the expansion phase, where the number of feature maps is equal to the number
of desired segmentations [131]. The U-Net architecture has been successfully used to segment
nerves, breast lesions, arterial wall, cardiovascular structures, thyroid and other structures from
US images [138].

Mask R-CNN is another machine learning algorithm that has been applied to medical im-
age segmentation problems. Mask R-CNN was inspired by Faster R-CNN [58] for object
detection [129] and consists of two stages. In the first, a Region Proposal Network (RPN)
determines possible bounding boxes that may contain objects of interest. In the second, two
components execute in parallel, receiving the region proposals from the RPN as input. The
first component, inspired by Faster R-CNN, predicts object class and bounding box localiza-
tion, while the second predicts pixel segmentation (masks) for each RoI [58]. Mask R-CNN
has been successfully applied to US segmentation of breast tumors [29], femoral cartilage [74],
and other anatomy.

Once the architecture of the CNN has been developed, a model is trained using the train-
ing images and associated labels. During training, the algorithm runs for a set number of
epochs [162]. A small dataset (validation dataset), which is independent from the training
dataset, will be used during training to monitor the performance of the trained model [162].
A cost (i.e. loss) function quantifies the correctness of the algorithm’s predictions when com-
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pared to corresponding labels across the validation set [162]. Optimization algorithms, such
as gradient descent or the Adam Optimizer, search for the values of the model’s learnable pa-
rameters that minimize the cost function using back propagation [162]. Early stopping may be
applied based on the performance on the validation dataset to prevent over-fitting [162].

1.7.3 Image-based tracking

Image-based tracking can be used as an alternative to external tracking systems, where the
pose or location of a surgical tool is tracked solely based on information extracted from im-
ages. Tools can be tracked in image space, where the pixels representing the tool on the US
image are identified and labelled in real-time to improve the visualization for the user [136, 7].
Needle localization in US images is a common application, where the tip or entirety of the
needle is tracked in the US image to assist with needle identification and visualization for nav-
igation [136, 7]. When imaging a needle under US, it appears as a bright hypoechoic reflection
compared to the background. Thus, pixel characteristics can be used to separate pixels be-
longing to the needle and background tissue [136, 7]. The majority of needle-tip identification
algorithms rely on the assumption that the needle comprises the brightest pixels in the image
and that the needle is a linear structure [136, 7]. These assumptions allow for traditional image
processing-based algorithms to detect the needle, such as the Randon and Hough transforms,
to identify linear structures, and filters such as the Gabor filter to differentiate between light
and dark pixels [136, 7]. Advancements in machine learning algorithms have promoted the
development of needle detection algorithms based solely on machine learning, or some com-
bination of machine learning and image-processing, to localize the needle in US images. In
general, these machine learning algorithms are built upon and out-preform traditional image-
processing approaches for needle localization [56]. Classification is commonly used to label
all pixels as either background or needle [56]. Regardless of the method used to identify the
needle, post-processing steps are often used to obtain needle trajectory or identify the needle-
tip [55]. Various methods have been developed that can localize the needle with less than
0.5 mm of error [56, 55].

More advanced image-based tracking algorithms use the information within images to pro-
vide the pose of surgical tools or anatomy in 3D with respect to a world coordinate system.
This process differs from 2D US-based needle tracking where the needle pose is provided with
respect to the image coordinate system. 3D US images can be used to estimate the needle pose
in 3D, where the relationship between real and pixel spacing is already known. Both image
processing [34] and machine learning-based [117, 4] solutions have been developed for needle
tracking from 3D US with various approaches achieving sub-millimetre accuracy [34, 117, 4].
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While these approaches are highly promising, there are limitations to using 3D US volumes to
obtain the needle pose in 3D. The formation of 3D US volumes without specialized 3D array
transducers requires some form of tracking system, typically mechanical or magnetic tracking,
to accurately position each 2D slice within the 3D volume [40]. Due to the methods used to
obtain 3D US volumes, they cannot be updated in real-time. In the case of mechanical track-
ing the user no longer has free-hand control of the US probe. While estimating the pose of
tools or anatomy in 3D from 2D US images is a process that is more prone to error due to the
extrapolation of information to obtain the third dimension, the user can nevertheless maintain
free-hand control over the US probe and the US images can be updated in real-time.

Another common application of image-based tracked is US probe pose estimation for sen-
sorless free-hand US reconstruction. Sensorless 3D US reconstruction uses sequential US
images and feature detection, matching and tracking to estimate the pose of the US probe and
thus image in 3D [119]. While this is a major application of image-based tracking, it is more
relevant to US reconstruction and is expanded upon in Section 1.8.

1.8 Ultrasound Reconstruction Methods

The benefits of 3D imaging have motivated the development and use of 3D US volumes, which
are reconstructed using a series of sequential 2D US images [119]. In general, the pose of each
US slice within the scan is obtained using external tracking components or estimated using
image-based tracking. Using the spatial position of the 2D scans the 3D volume is populated
by either resampling and interpolating the information from the 2D images into a rectangular
volume or visualizing the information as sequential 2D slices across a 3D volume [119]. The
process of reconstructing the 3D volume by resampling the image data trades off an increased
time required to obtain the 3D volume with the improved visualization that closer resembles a
CT or MRI volume.

The commonly used methods for 3D US reconstruction include: specially designed 2D ar-
ray probes, mechanically sweeping the transducer, free-hand with external tracking, and free-
hand without external tracking [119]. An US probe with a 2D array of elements can obtain 3D
volumes by strategically timing the firing of pulses from the various elements. However, the re-
quirement to have a specific type of non-traditional US probe is a major limitation. For methods
that require a mechanically sweeping transducer, an US probe is outfitted with a mechanical
steering device that moves the probe in a known trajectory to collect 2D US scans covering a
predetermined 3D volume [119, 40]. 3D US reconstruction using a free-hand approach with
external tracking requires an US probe with a rigidly fixed tracking sensor, typically optical or
magnetic [119]. This US probe must be spatially calibrated such that the pose of the image is
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known with respect to the tacker’s coordinate system. The calibrated probe provides the pose
of each image in the scan such that they can be spatially positioned to form a 3D volume [119].
Free-hand US reconstruction can also be performed without the use of an external tracking
sensor. Some methods to produce freehand 3D reconstruction replace the external tracking
systems with other components, such as inertial sensors and cameras, that provide informa-
tion that can be used during the reconstruction [119, 123]. Alternatively, entirely image-based
tracking methods can be implemented that estimate the pose of each US slice without any
additional equipment.

The first sensorless freehand reconstruction algorithms relied on tracking the speckle com-
ponent of US images. Speckle is an inherent US artifact caused by the redirection of US waves
as they come in contact with small, rough or uneven surfaces resulting in the signals being
received by a different element than which the signal was produced. Speckle is always present
in US images and differs from noise as it is not random. Speckle tracking can be used to deter-
mine the velocity and direction of scanning by following speckle patterns between slices [119].
Speckle decorrelation techniques used the statistical similarity between the speckle in two im-
ages to determine the motion between them, it was observed that the higher the speckle cor-
relation the lower the distance between neighbouring slices [119]. Substantial research has
been performed to improve the accuracy of speckle-based approaches for reconstruction, with
the majority of work focused on speckle decorrelation methods [119]. While the relationship
between speckle and relative image motion has been well developed and quantified, the US re-
constructions produced using only speckle decorrelation have been found to not meet clinical
requirements [124]. Recently, machine learning methods have been developed to automati-
cally quantify the relationship between the speckle and the pose of the image with respect to
the other images in the scan using trained statistical models [119, 124].

Prevost et al. [124] were the first formulated US reconstruction as a machine learning prob-
lem and demonstrated that a convolutional neural network (CNN) can automatically estimate
motion between consecutive US frames with reasonable accuracy. This 2D CNN takes two se-
quential US frames and estimates the relative rotation and translation between slices using an
optical flow field [124]. Guo et al. [54] expanded upon this solution by developing a deep con-
textual learning network with a novel case-wise correlation loss that takes multiple consecutive
frames as input and focuses on speckle-rich portions of the images. These sensorless machine
learning approaches that provide are promising but they are much more prone to distance and
drift errors compared to approaches that use additional equipment and spatial information.
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1.9 US Visualization

The standard method used to visualize medical imaging and surgical navigation information is
via a 2D monitor [139]. A major advantage of this display is the ease of clinical integration,
as operating rooms and US machines are already equipped with monitors [139]. As monitors
are already used to transmit information in a clinical setting, clinicians do not have to adapt to
both a new system and a new display. However, displaying surgical navigation information on
a monitor results in disparities between clinician’s visual and motor fields, as clinicians focus
is on the screen, not the surgical site [139, 73]. 2D monitors can also contribute to perceptual
targeting issues when displaying 3D information on a 2D monitor [158]. Furthermore, systems
have been developed that promote the use of 3D volumes for surgical planning or diagnostic
measurements [158, 128].

Visualization techniques can be used to improve the clinician’s ability to interpret 3D infor-
mation on a 2D monitor. One way to simplify the visual information is using the multi-planar
reformatting (MPR) approach [39]. In the MPR method, the volume is resliced and used to
render three intersecting and orthogonal planes. Alternatively, volume rendering can be used
to display the entire 3D volume or to project the 3D volume onto a 2D plane [39]. While
texture mapping by means of transfer functions can be applied to US volumes or MPR im-
ages to make features of interest stand out, transfer functions can be difficult to optimize and
developing a generalizable function that works across various systems as clinical cases is a
non-trivial task [39]. Segmentation is one method that is commonly used to extract informa-
tion that is pertinent to the clinical application and improve visualization, by automatically or
manually delineating structures of interest [39]. Anatomical reconstruction can be obtained
by first performing a 3D US reconstruction, and then segmenting each slice within the vol-
ume or segmenting the entire 3D volume to extract the anatomy in 3D [39]. Alternatively, 2D
US images can be segmented first and the resulting label maps can be positioned within a 3D
volume if the pose of the US slices is known [151, 133]. 3D anatomical segmentations are typ-
ically collected using a mechanically sweeping transducer or a free-hand transducer calibrated
to an external spatial tracking system [39]. After segmentation, opacity, Z-buffering, colour,
and other proprieties can be manipulated to enhance and augment medical image visualization.
Typically, these segmented structures are visualized with respect to a resliced image that in-
tercepts the 3D models. The two main applications for US-derived anatomical reconstructions
include diagnosis and guidance [153]. Performing reconstruction using an external tracking
system and a calibrated US probe allows the 3D anatomy and the surgical tools tracked by
the spatial tracking system to be in a common coordinate system. This provides a method to
visualize virtual models of the surgical tools, the anatomy and the interactions between them.
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US-based anatomical reconstruction has been applied to scoliosis measurements [151], prostate
brachytherapy [39], and plaque detection and quantification [133].

1.9.1 Image Fusion

Image fusion is the combination of information from two or more image sources into a single
image or displaying the co-registered images side by side [37]. This process requires regis-
tration between the images or volumes, followed by resampling to optimally co-register the
images or volumes [37]. US image fusion can be performed using static and real-time images.
Static US image fusion is the combination of unchanging US images or volumes with other
static image volumes such as pre-operative MRI or CT [37]. Real-time US image fusion is the
combination of real-time streaming US with other static or real-time images [37]. This process
allows for pre-operative images to be related to or overlaid on the true anatomy of the patient
during the surgical intervention as captured by the streaming US [37]. Real-time image fusion
requires real-time and continuous registration between volumes. US image fusion with CT or
MRI has been successfully applied to brain [118, 76] and prostate [83, 142] interventions. A
secondary application of real-time US image fusion is the combination of US images and video
feeds from one or more camera(s) [26]. US images can be fused with surgical video feeds, with
the most common application being the fusion of stereoscopic and US feeds (surface or laparo-
scopic) to provide more optimal visualization to the clinician [27, 26]. Additionally, US video
feeds can be fused with stereo video feeds from VPT-HMDs such that the US and real world
information can be simultaneously visualized.

(a) (b) (c) (d)

Figure 1.16: Various visualizations of prostate imaging are presented in this Figure. Image a)
depicts an US slice from a 3D volume registered and overlaid on an MRI from the same patient,
Image b) shows a prostate segmentation from the US overlaid onto the MRI image, figure c)
shows a MPR visualization with three MRI slices intersecting the prostate segmentation, and
figure d) shows a MPR visualization where a front-facing US image and two slices from the
MRI are intersecting the segmentation.

An example of various US visualizations and image fusion are depicted in Fig. 1.16. The
data used to make these images were downloaded from the Sample Data Module that is a part
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of the 3D Slicer Platform [70]. This figure depicts an MRI image with prostate segmentation,
the US image registered and overlaid on the MRI with the segmentation and two MPR views
one using three slices from the MRI and the other using two MRI views and one US view that
intersect the prostate segmentation.

1.10 Display Technology

US images are traditionally displayed on the 2D monitor affiliated with the US console, but
advancements in 3D visualization methods to display US-derived information have motivated
the integration of advanced displays into US-based surgical navigation systems. These displays
include 2D monitors with advanced visualizations, handheld devices with a screen (phone or
tablet), 3D monitors or 3D capable monitors, and wearable technology. These various displays
span the mixed-reality (MR) spectrum.

1.10.1 Mixed-reality Spectrum

MR is the overarching term used to describe an environment with any combination of real and
virtual information [97], as depicted in Fig. 1.17. The MR spectrum ranges from physical real-
ity to digital reality [97]. Terms such as augmented- and virtual-reality are used to describe spe-
cific combinations of physical and digital reality [97]. Augmented-reality (AR) is the inclusion
of some computer-generated graphics overlaid on to information from physical reality [97].
Virtual-reality (VR) exists at the other end of the spectrum and represents an environment that
is comprised only of computer-generated graphics [97]. MR systems are commonly developed
for image-guided surgical navigation or assistance with clinical diagnoses [30].

Figure 1.17: The MR spectrum, where the green portion on the left represents AR, yellow
represents VR on the right end and blue indicates MR. Below the MR spectrum is the spectrum
of MR devices, with optical see-through head-mounted displays on the left, video pass head-
mounted displays through in the middle, and VR head-mounted displays on the right.
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1.10.2 Ergonomic displays

Ergonomic displays such as high-resolution monitors, hand-held or mobile screens such as
a tablet, and 3D capable displays, can provide visual information spanning the MR spectrum.
High-resolution monitors can visualize US images and other information such as virtual models
of tracked tools or anatomy in a common coordinate system. 2D external monitors allow
for more control over the visualization compared to the monitors fixed to US consoles, as
many US systems only allow for images rendered by the company’s proprietary software to be
rendered on the screen. These displays can be mobile to provide a more ergonomic viewing
position without the limitation of the length of the US probe cable or the limited mobility of
the display fixed to the console. A high-resolution monitor trivially enables VR scenes to be
rendered, as monitors are designed to render computer-generated graphics. AR-based systems
can display their output on a 2D monitor, and by incorporating a calibrated video camera into
the system, the real world information can be visualized on the monitor by rendering some or all
of the video-feed from this camera [97]. High-resolution monitors can be limited for guidance
or navigation as they divide the user’s attention between the visual and motor fields as the
procedure is performed in one location, while the information about the procedure is provided
in another location. The user is required to mentally transform the information being visualized
on the monitor to the site of the procedure, resulting in a high cognitive load. Moreover, the user
is provided information on a 2D monitor to perform a 3D procedure. While the information
presented on the monitor can be three-dimensional, the ability of the human visual system to
perceive 3D information from a 2D context can be limited [146]. This may require systems to
be designed with 3D visualizations that are easy for the user to interpret in 3D. Mobile or hand-
held devices have similar capabilities to high-resolution monitors but have the added benefit of
being able to be positioned closer to the patient to mitigate the visual and motor field disparities.
Many mobile handheld devices include a camera, making it easier to develop AR systems as
the visualization can comprise computer graphics and real world information from the camera’s
video feed, which can ultimately be overlaid on the patient [146]. Tablet displays share the
same 2D perceptual limitations as monitors. The last type of ergonomic display is a 3D capable
monitor such as a 3D TV. These displays maintain the visual and motor disparities but attempt
to improve perception issues by visualizing the graphics in 3D [146]. Commercially available
3D-capable or stereoscopic displays simultaneously provide two slightly different views of
a scene. Various solutions have been implemented such that each eye only receives one of
the two images [91]. The majority of the commercially available stereoscopic displays have
associated glasses that use mechanisms such as shutters, polarizing filters, or colour filters to
separate the information going into each eye [91]. The human eye can fuse the information
obtained by each eye, where the disparities between the images obtained by the left and right



1.10. Display Technology 41

eye enable 3D perception. Stereoscopic displays have been successful used for laparoscopic
surgery and to visualize 3D US images for diagnostic purposes [61], but there is little to no
research pertaining to the use of stereoscopic displays for US-guidance.

1.10.3 Wearable Technology

Head-mounted displays (HMDs) have been proposed for use in surgical navigation systems to
improve 3D perception. An HMD is a wearable technology that allows users to visualize in-
formation directly in their FoV in 3D [115, 139]. Monocular HMDs contain one screen that is
simultaneously viewed by both eyes. Binocular HMDs have two separate screens one for each
eye. Binocular HMDs are the focus of this section as they provide superior perception com-
pared to monocular devices [113]. There are three main types of HMDs, which include: optical
see-through head-mounted display (OST-HMD), video pass-through head-mounted displays
(VPT-HMD), and virtual-reality head-mounted display (VR-HMD) [115, 139]. OST-HMDs
are the most common HMD used for surgical navigation systems, as the translucent display
allows the clinician to maintain the line of sight with the patient [125, 68, 23]. OST displays
are inherently AR environments as computer-generated graphics are projected onto the real
world by means of the transparent display. While the ability to visualize the real world is ben-
eficial for surgical navigation, OST-HMDs have limitations. These HMDs utilize inside-out
tracking that does not require external tracking components. Inside-out tracking suffers from
lower accuracy compared to its outside-in counterpart that makes use of external tracking com-
ponents [115]. Furthermore, OST-HMDs have a smaller FoV compared to VPT and V-HMDs,
which can affect the user’s sense of immersion [115]. Additionally, OST-HMDs are prone to
perceptual issues as the semi-translucent nature of the holographic projections affects the user’s
depth perception, resulting in projections that appear to be floating in the foreground [139].

VPT-HMDs are outfitted with stereo cameras, which allows real world information to be vi-
sualized in the HMD. VPT-HMDs are capable of spanning the entire MR spectrum as they can
render an entirely virtual scene or include increasing amounts of real world information by inte-
grating the video stream from the stereo cameras. The video feeds from the current commercial
VPT-HMDs are low resolution and are not perfectly spatially calibrated to the tracking of the
HMD. These factors result in registration errors between and surgical navigation information
and the real world video stream. VPT-HMDs more often employ outside-in tracking, which
requires external tracking components but results in more accurate tracking [115]. VPT-HMDs
have large FOVs and address the depth perception issue associated with OST-HMDs [115].

The last class of HMDs is VR-HMDs, which were the precursor to VPT-HMDs. While
these HMDs have all the same benefits as VPT systems, they are only capable of render-
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ing scenes generated entirely from computer graphics [92]. VR-HMDs can be classified as
computer- or phone-dependent [92]. Computer-dependent VR-HMDs rely on connections to
an external system such as a desktop computer to render the graphics and stream the data to
the HMD [92]. Computer-dependent HMDs are more technologically advanced, provide soft-
ware, have superior tracking, and have more realistic rendering compared to phone-dependent
systems [92]. The trade-off of computer-dependent HMDs is the increased cost and hardware
required. Lower-cost phone-dependent HMDs have been developed to provide a low-cost al-
ternative to computer-dependent systems [104]. These companies typically offer kits that can
be self-assembled to form a light weight HMD with a place to secure your phone. The phone
acts as a VR display. Most of these companies provide development platforms and packages
such that the user can design their own software and visualize it using their phone. These sys-
tems are the lowest cost, but require the most development by the user [104]. Phone-dependent
systems may be limited by the phone being used and may not be suitable for medical-based
interventions.

HMDs have been used for a variety of clinical scenarios, and have been successfully applied
to surgical navigation for pedicle screw navigation and spinal needle insertions [80, 24, 60].
They have also been used to view 3D images for surgical planning and diagnostic measure-
ments [158, 128]. There are now many commercially available HMDs, which has enabled
more rapid development of HMD-based surgical navigation systems.

1.10.4 Overview of Current Devices

Various commercially available HMDs have been developed for the entertainment industry.
These HMDs fall under the three categories: OST-, VR-, and VPT-HMDs as outlined above.
This section covers the most popular commercially available HMDs. The technical specifica-
tions of a large portion of the commercially available HMDs are summarized in Table 1.1

The Microsoft Hololens (Mircosoft, USA), is a commonly used HMD for medical applica-
tions and both the Hololens 1 and 2 are commercially available. Both models of the Hololens
are OST-HMDs are untethered and do not require connections to power, a computer, or external
tracking components. All tracking is performed using simultaneous localization and mapping
(SLAM) and inertial measurement units (IMU), where the tracking coordinate system is de-
fined with respect to the HMD. The Hololens 2 is the current state-of-the-art OST-HMD and
the technical specifications are summarized in Tab. 1.1. The major differences between the
Hololens 1 and 2 are the increased FoV, improved resolution, implementation of eye-tracking
and two hand tracking (Hololens 1 only tracked one hand), rendering using eye-tracking, im-
proved processor unit, Bluetooth capabilities, more memory, a USB connection, and a larger
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gesture recognition library. One additional feature that is clinically useful is the Hololens 2
has a display that can flip up to allow the user to choose when the display is needed. The
Hololens 1 was used to develop an FDA-approved AR surgical planning system called Open-
Sight (Novorad Corporation, USA). The Hololens has been successfully used for pre-operative
planning [137, 114], surgical navigation [80, 43, 121], and training [79, 149]. The Hololens is
the most expensive commercial HMD due to its untethered nature and see-through display.

The HTC VIVE (HTC, Taiwan ROC) and HTC VIVE Pro (HTC, Taiwan ROC) (second
edition) are commercially available and commonly used for gaming and entertainment. Both
models of the VIVE are VPT-HMDs and can render an entirely virtual scene or include in-
put from video streams from the camera(s) fixed to the outside of the HMD. The VIVE Pro
has two stereo cameras used to stream the video input which improves the visualization com-
pared to the VIVE that has one camera centred on the display. The VIVE Pro can display
the input from the stereo camera in the form of coloured video with varying opacity or edge
mapping. Both models come with two associated controllers, the controller’s design remained
consistent between the VIVE and VIVE Pro and can be used with either system. The VIVE
Pro also has an audio input, a larger FoV, improved tracking accuracy, and better resolution
compared to the first edition, the technical specifications for the VIVE Pro are summarized in
Tab. 1.1. The VIVE tracking system uses Lighthouse technology, where two base stations send
out alternating sweeps of infrared (IR) light that span 120° in both the horizontal and vertical
directions [107]. Photodiodes on the surfaces of the HMD and controllers detect the IR light
and calculate the position and orientation (pose) by comparing the time differences between the
detected and the known locations of each photodiode on the HMD [107]. This tracking is also
supplemented with inertial measurement units to add additional tracking information [107].
Both the VIVE and VIVE Pro can also be used as VR-HMDs by not using the data from the
camera(s).

Strictly VR-HMDs are the most common commercially available system, due to the in-
creased control over the environment, VR-HMDs are typically easier to design. Some com-
mercially available VR-HMDS include the Occulus Rift (Facebook, USA), Playstation VR
(Playstation, USA), FOVE (FOVE, Japan), and the Avegant Glyph (Avegant, USA). These
HMDs allow for only virtual graphics to be displayed to the user. The major differences in
these various VR-HMDs are the resolution and FoV. As all of these products are developed
by different companies they differ in the development platform and what developers can and
cannot do. Both the HMD design and development capabilities are important to consider when
selecting an HMD for clinical applications. VR-HMDs have a lower price point compared to
VPT- and OST-HMDs. Commercially available phone-dependent HMDs have been released
at an even lower price point. The first phone-dependent HMD was the Google Cardboard
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(Google, USA), but since other companies have released similar phone-dependent systems
such as Zeiss VR One (Zeiss, Germany), GearVR (Samsung, Japan and Facebook, USA), and
Immerse VR (Thumbs Up!, USA).

A summary of all the aforementioned HMDs and their respective technical specifications
can be seen below in Tab. 1.1.

Table 1.1: Summary of technical specifications for current commercially available HMDs.
Parameter Display Video Diagonal Max Refresh Weight

Resolution Resolution FoV Rate (g)
OST-HMDs
Hololens 1 1280*720 HD video 34° 60 Hz 579
Hololens 2 2048*1080 1080p30 52° 60 Hz 566
Google Glass 2 640*360 720p 30° N/A 46
Magic Leap 1 1280*960 1080p 50° 60 Hz 316
VPT-HMDs
VIVE Pro 1440*1600 640*480 110° 90 Hz 470
Valve Index 1440*1600 960*960 130° 144Hz 809
VR-HMDs
Occulus Quest 2 1832*1920 N/A 100° 90Hz 503
PlayStation VR 1920*1080 N/A 100° 120 Hz 600
FOVE 2560*1440 N/A 90° 70 Hz 520
Parameter Tracking Tracking Controllers Untethered Price

method DoF capabilities for Dev (USD)
OST-HMDs
Hololens 1 Inside-out 6 Dof N Y 3000
Hololens 2 Inside-out 6 Dof N Y 3500
Google Glass 2 Inside-out 6 Dof N Y 999
Magic Leap 1 Inside-out 6 Dof Y Y 2300
VPT-HMDs
VIVE Pro Outside-in 6 Dof Y Y 799
Valve Index Outside-in 6 Dof Y N 999
VR-HMDs
Occulus Quest 2 Inside-out 6 Dof Y Y 500
PlayStation VR Inside-out 6 Dof Y N 300
FOVE Inside-out 6 Dof N Y 600
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1.10.5 Psychophysical aspects

Psychophysical aspects of HMDs describe the relationship between the physical stimuli pro-
duced by the HMD and its environment and the sensation and perception experienced by the
user. These psychophysical effects are a product of the difference between how we normally
perceive the real world and how the HMD simulates the 3D environment. The human visual
perception system uses various methods and relies on cues to orient oneself and objects in 3D.
These cues must be effectively simulated in the HMD such that the user can accurately deter-
mine the size, depth, and speed of an object in the virtual scene. The human visual system
relies on binocular-, monocular-, eye-motion-, and object-motion-based depth cues to interpret
how far objects are positioned in space [10]. The user’s perception in the HMD is dependent
on how accurately the system can simulate these cues. Patterson et al. summarized the var-
ious perceptual issues associated with HMDs such as binocular rivalry, restricted FoVs, and
accommodation-vergence mismatch in their overview [113].

The FoV of the human eye is the area in which we can detect objects and movement. Hu-
mans have a slightly larger than 210° forward-facing horizontal arch-shaped FoV, where 120°
of this field is binocular vision, where the eyes simultaneously obtain information from an
overlapping FoV [10]. The remainder of the visual field is monocular, where the information
from this region of each eye is not combined with information from the other eye [10]. HMDs
typically have independent inputs into each eye, which disrupts the binocular processing that
assumes an overlapping FoV and results in binocular rivalry where the eyes are in competition
and one eye inhibits the visual processing of the other. Binocular rivalry results in optical mis-
alignment, image distortion, unstable visual processing, and object or change blindness [113].
Binocular rivalry is less common in OST-HMDs and can be mitigated by implementing features
that encourage binocular fusion. The restricted FoV common in HMDs typically only covers
the binocular region, meaning little monocular information is processed resulting in a reduc-
tion in the processing of spatial information. Tab. 1.1 illustrates how the various commercial
HMDs have a range of FOVs, which are typically less than 210°, especially for OST-HMDs.
The larger the FoV the more natural the 3D scene seems to the user, as users have a greater
sense of immersion and adequate visual function. Larger FoVs result in increased accuracy
during simulated tasks, improved interpretation of object’s spatial orientations, improved time
per task, and less simulator sickness[113].

3D virtual scenes are rendered within the HMD by emitting light on flat surfaces (screens)
at fixed distances. Accommodation is the process where the lens of the eye changes shape to
alter the focal length and allow the eye to focus on objects at varied distances. Vergence is
the change in pupil location to optimize binocular vision, when focusing on a close object the
pupils rotate towards each other resulting in convergence, and when focusing on a far object
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they rotate away from each other resulting in divergence. These two mechanisms typically
work in junction to focus the eyes on an object. For VR-HMDs these screens are positioned
very close to the eyes, resulting in a distance conflict between where the light is generated and
where it intends to be simulated. This is known as the vergence-accommodation or distance
conflict as the eyes accommodate to the screen distance while converging to the distance of the
simulated object, which can affect the user’s ability to perceive the size, depth, and distance of
an object [113].

1.10.6 Surgical Navigation Systems

The use of HMDs to render surgical navigation information is not a novel idea and dates back
to the 1960s. With the increased availability of commercially available HMDs (Tab. 1.1) it
is more trivial than ever to develop systems that display the surgical navigation information
into the HMD. The Hololens OST-HMD has been used to visualize systems that guide both
percutaneous sacroiliac[155] and pedicle [44] screw insertions. The Hololens was also used
to render the US-guidance information for fine-needle aspiration [68] and central line inser-
tions [67] in the neck by displaying the US image just above the patient. Displaying the US
image in the OST-HMD did not result in any significant differences as compared to traditional
US-guidance [67]. Various other surgical applications of HMD-based systems are summarized
in the review paper by Rahman et al. [127].

1.11 Limitations of current systems

As mentioned earlier in this chapter the current clinical standard for central line insertions is 2D
US guidance. As this method maintains high rates of arterial punctures, more advanced surgical
navigation systems have been developed. Ameri et al. [2] developed an augmented-virtuality
(AV) monitor-based surgical navigation system for needle guidance. This system employed
magnetic tracking to render tracked virtual models of the US probe, needle and needle trajec-
tory, onto a front-facing US image. This system did not demonstrate significant improvement
in the complications associated with the needle insertion compared to the US-only technique
for expert users [2]. Chew et al. implemented a similar system, in which a magnetically
tracked needle was used to superimpose the trajectory of the needle and marker’s representing
the actual needle position onto the front-facing 2D US image [28]. This system was com-
pared to US-only guidance with 50 clinical insertions obtained using each approach [28]. The
system developed by Chew et al. achieved the same success rates as the US-only system but
had slower insertion times [28]. Two potential factors that may have influenced the success of
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these systems were the fixed face-on 2D perspective provided to the user and the discrepancy
between the visual and motor fields, as the user had to rely on a monitor exterior to the visual
field of the phantom [2]. However, 3D US-based environments have been successful for other
needle navigation procedures such as biopsy and aspiration [132, 68, 116]. Therefore, this the-
sis investigates the use of 3D US environments for the application of vascular access at the site
of the IJV.

1.12 Thesis Outline

This thesis investigates the general research question “Do 3D ultrasound-based environments
improve IJV needle insertion accuracy compare to the clinical standard of US-guidance?”. One
focus of this work is the development and evaluation of components used within advanced 3D
US-based environments for needle navigation. The second focus of this research is to validate
the use of 3D advanced US-based surgical navigation systems for needle insertions at the IJV.
A short summary of each chapter is provided.

1.12.1 Point-to-Line Ultrasound Probe Calibration with automatic fidu-
cial localization

In this chapter, we developed and evaluated a point-to-line US probe calibration that used a
CNN to localize the calibration fiducials (needle reflections) required for this calibration ap-
proach. The needle localization algorithm is capable of selecting the needle centroid within
0.25 mm of the manually labelled ground truth for a single US probe across 4-8 cm imaging
depths. The point-to-line approach with automatic localization and the original manual formu-
lations were found to have an average normalized point reconstruction absolute distance error
less than 1.5 mm. The point-to-line calibration with both manual and automatic localizations
were both found to be precise and accurate, with 1.18±0.45 mm and 1.23±0.47 mm being the
largest normalized point reconstruction absolute distance errors, for the manual and automatic
approaches respectively. The point-to-line calibration with automatic localizations produces
calibrations with the same precision and trueness as the manual localization equivalent. This
work improves the usability of the point-to-line calibration approach and provides the ability to
visualize calibration US images in a common coordinate system with virtual models of tracked
tools or anatomy.
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1.12.2 Accuracy Assessment for the Co-registration Between Optical and
VIVE Head-Mounted Display Tracking

The second chapter of this thesis focuses on the development and evaluation of a method to co-
calibrate an OTS and the HTC VIVE Pro HMD. This chapter establishes and validates the co-
calibration required to use the HTC VIVE Pro as the platform to visualize surgical navigation
information. The goal is to develop and validate a method to register tracked surgical tools
into an HMD with clinically acceptable accuracy. This co-calibration provides the ability for
advanced surgical navigation systems to utilize this type of HMD as a visualization platform. It
is shown that by using a co-calibration apparatus that is simultaneously tracked by the optical
spatial tracker and controller associated with the HMD system, we can register spatially tracked
tools into the HMD with sub-millimetre (0.3±0.25 mm) and sub-degree (0.06±0.11°) accuracy.

1.12.3 First-Person Perspective Ultrasound-Guided Central Line Inser-
tions

The third chapter investigates how the disparity between the clinician’s visual and motor fields
during the central line insertion affects complication rates. A surgical navigation system was
developed for this chapter, comprising a calibrated US image and models of the tracked sur-
gical needle, needle trajectory and US probe. This system was displayed on a monitor in a
3D perspective, and in a first-person perspective in the HTC VIVE Pro HMD by means of
the co-calibration developed in Chapter 3. The purpose of this chapter is to investigate if vi-
sualizing surgical navigation information in a first-person perspective during the central line
needle insertion process provides superior targeting to the traditional US-guided insertion and
an advanced monitor-based system. The HMD system provided superior targeting accuracy
compared to the US-only approach for both expert users and medical students and produced
insertions with higher success rates (94 %) than the US-guidance alternative (70 %.

1.12.4 Accuracy Assessment for the 3D Reconstruction of the Neck Vas-
culature from Transverse 2D Ultrasound Images

The objective of the fourth chapter is to develop and validate a method to obtain surface re-
constructions of the IJV and CA in 3D. The purpose of this chapter is to verify the accuracy of
the reconstruction, such that the 3D vasculature can be used in a clinical context. Our machine
learning algorithm can delineate the CA and IJV from transverse US scans with a Dice Score
of 0.88 and 0.90, respectively. Machine learning and tracking information are used to obtain a
surface reconstruction of the neck from 2D US.
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1.12.5 Effect of Using 3D Anatomical Information on a 2D Monitor on
Complication Rates During Central Line Insertions

The objective of the fifth chapter is to develop and evaluate an advanced surgical navigation
system that comprises the US-based vascular reconstructions and spatially tracked tools in a
common coordinate system. The IJV is visualized using a Z-buffer to provide a more intuitive
3D navigation. The purpose of this work is to understand if proving this 3D visualization of
the anatomy promotes superior navigation compared to the US-only approach while maintain-
ing the display technology. It was shown that the advanced US reconstruction-based surgical
navigation system had superior targeting accuracy and success rates compared to the US-only
approach with a clinically feasible system.

1.12.6 Conclusions

The conclusions chapter summarizes the contributions of this thesis. This chapter also dis-
cusses future research directions relating to the various areas explored in this thesis and the
field as a whole. matintai



Chapter 2

Point-to-Line Ultrasound Probe
Calibration with automatic fiducial
localization

This chapter is adapted from the following manuscript:

• Groves, L. A., VanBerlo, B., Peters, T. M., & Chen, E. C. (2019). Deep learning approach
for automatic out-of-plane needle localisation for semi-automatic ultrasound probe cali-
bration. Healthcare technology letters, 6(6), 204.

2.1 Introduction

Ultrasound (US) imaging is commonly used to guide procedures such as percutaneous needle
insertions [30] as it is a portable imaging modality that provides non-invasive real-time imag-
ing with the capability to depict deep tissues without using ionizing radiation. Spatial tracking
systems have been used to enhance 2D US-guidance by integrating visual representations of
tracked surgical instruments into the US environment [30]. Spatial tracking systems can also
be used to obtain 3D US volume reconstructions to assist with surgical navigation [30]. Gener-
ating 3D US reconstructions and integrating externally tracked tools into US environments rely
on accurate US probe calibration to establish the spatial relationship between the US image and
a tracking sensor fixed to the transducer [63]. A calibrated US probe registers the US image
to the tracker’s coordinate system positioned and scaled to the true field of view of the US
beam [63]. In general, US calibrations are modelled using a homogeneous 4 × 4 rigid or affine
transformation matrix that comprise of any combination of scaling, rotation and translation in
up to three directions (X, Y, and Z) [63]. Assuming the 2D US image lies on the X-Y plane (i.e.

50
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Z=0) in its local coordinate system, this matrix can be applied to each pixel within the image,
[X,Y, 0] to produce a new location [X

′

,Y
′

,Z
′

] within the tracker’s coordinate system. US probe
calibration relates US images and other tracked tools in a common frame of reference [63].

The majority of US calibrations rely on fiducial-based methods and some common ap-
proaches use point-target, cross-wire, multiple-wire, or needle-based phantoms as summarized
in Section 1.5. These phantoms are equipped with a tracking pose sensor and require phantom
calibration such that the position(s) of the calibration fiducial(s) are known with respect to the
phantom sensor [63]. This phantom calibration is typically achieved using a fiducial-based ap-
proach that requires the extraction of homologous fiducial marker pairs from a phantom CAD
model or CT volume and from the physical phantom using a tracked stylus to digitize the mark-
ers with respect to the phantom sensor, such that the paired fiducials can be used to achieve a
fiducial-based registration that provides the relationship between the phantom sensor and the
phantom geometry [63]. The output of the phantom calibration process is the transform Phan-
tomModelToPhantom, which can be concatenated with the transform phantomToProbe, such
that the phantom geometry can be directly tracked with respect to the probe sensor (phantom-
ModelToProbe), as depicted in Fig. 2.1 a). To perform the US calibration, the fiducials within
the calibration phantom are imaged by the US probe. The positions of the fiducials are known
with respect to the US probe sensor via the phantom calibration process described above, and
the reflections of the fiducials are extracted from the US image resulting in corresponding point
pairs. A second fiducial-based registration is applied to solve the calibration and provide the
relationship between the US probe sensor and US image [63].

(a) (b)

Figure 2.1: The transformations required for two US calibration methods, where a) depicts
the required transforms for a cross-wire calibration that requires phantom-calibration and b)
illustrated the transforms required for the point-to-line calibration demonstrating the reduction
in transforms that may propagate error.
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The fiducial-based registrations required to calibrate the phantom and perform the US cal-
ibration have associated errors that affect the accuracy of the US calibration. Fiducial-based
registrations are affected by fiducial localization error (FLE), which is defined as the error as-
sociated with localizing a fiducial or landmark in the tracker or US coordinate systems [30].
Fiducial registration error (FRE) is a consequence of FLE and is defined as the error between
the corresponding landmarks after fiducial-registration [30]. Within the phantom calibration,
the FLE is quantified by the difference between the localized fiducial coordinates extracted
from the phantom model and digitized with respect to the phantom sensor and the true posi-
tions of these fiducials, which affects the accuracy of the fiducial-based phantom calibration
and results in FRE. The FRE affects how accurately the phantom calibration fiducials are po-
sitioned in the tracker’s coordinate system, and thus the positions of these fiducials have an
associated FLE. The fiducial reflections within the US image are also localized, either automat-
ically or manually, and FLE in the X and Y directions are calculated based on the differences
between the selected and true pixel coordinates representing the centre of the landmark [63].
Since the US beam also varies in thickness in the Z-direction as depicted in Fig. 2.2, the FLE
can also have a Z component. Calibration fiducials are often small targets, and to accurately
capture their positions in the US image, they must be imaged at the mid-plane of the Z-axis
of the 3D beam [22]. The elevation resolution associated with US images is low relative to
the axial and lateral directions, and thus US images have a fairly large point spread function in
the Z-direction, as discussed in Section 1.6. When an object enters the Z-plane of the 3D US
beam it may appear in the image despite not being at the mid-plane [22]. Thus, any difference
between the true position of the object and the position of the mid-plane of the US image in-
troduces FLE in the Z-direction. To achieve an accurate US calibration all sources of error that
propagate into the calibration should be minimized.

Chen et al. [21] developed a point-to-line US probe calibration approach that aimed to min-
imize the accumulation of errors that affect the final calibration accuracy, by using a tracked
needle as the calibration phantom, as depicted in Fig. 2.1 b). The 18-Gauge tracked needles
(NDI, Canada) employed here incorporates a tracking sensor into the tool-tip by design, and
thus does not require a phantom calibration, minimizing the FLE associated with the position
of the calibration fiducials collected with respect to the probe sensor. The tracked needle is in-
serted into the US-beam such that it intercepts the entire US-beam, eliminating the requirement
for precise placement of the phantom in the mid-plane, and improving the FLE in the Z-axis
(Fig. 2.2). The centroids of the reflections produced from the needle are manually segmented,
which provides a 3D image coordinate (point) which is used as one of the inputs to the regis-
tration algorithm [21]. The second input is the line formed by the needle, defined using the tip
location as the origin and the direction of the needle which can be extracted from the needle’s
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transformation matrix from the tracker [21]. The pixel locations and the lines obtained from
the needle tracking with respect to the tracker on the US probe are input to the Anisotropic Or-
thogonal Procrustean Analysis (AOPA) formulation developed by Chen et al.. [21] to solve the
point-to-line registration. AOPA is an iterative solution, where for each measurement (point
and line pair) input to the algorithm, a new transformation matrix built upon the previous solu-
tion is obtained [21]. The output of this approach is a calibration represented as a 4x4 transfor-
mation matrix comprised of anisotropic scaling, rotation, and translation [21]. Chen et al. [21]
found that this method converges to a consistent solution after collecting 12 to 15 measure-
ments, with the majority of data collected in the four corners of the image. The point-to-line
registration further minimizes the FRE by solving for anisotropic scaling, as for US images
the pixel scaling in the X and Y directions are independent of each other. The accuracy of
the point-to-line calibration approach has been validated using a theoretical estimate of target
registration error (TRE). The requirement for users to manually localize the fiducials in the US
image results in the propagation of FLE into the US calibration. Due to the effort to minimize
the remainder of errors associated with the calibration, the accuracy of the calibration is highly
dependent on the user’s ability to localize the needle reflections in the US image.

Figure 2.2: This figure depicts how the point-to-line calibration approach mitigates issues
with mid-plane alignment, and the FLE in the Z direction and the mid-plane are labelled on the
diagram.

The precision of the AOPA point-to-line calibration approach was assessed across 30 novice
users and an expert for a single linear US probe at 6 cm depth [51]. A novice user was defined
as someone without any experience in US calibration as they performed their first US cali-
bration during this study. The expert user was someone who performed over 100 calibrations
using this approach. The novice users obtained 3 calibrations each and the expert obtained
30 calibrations [51]. On average the novice users completed their point-to-line calibrations in
3.2 ± 0.9 minutes [51]. Each calibration obtained by the novice user’s on their third attempt
and the repeated calibrations obtained by the expert were applied to a plane the size of the
US image to transform it in 3D space. These calibrated planes were overlaid with the other
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calibrations obtained by the same group (novice and expert) to provide a visual example of
the precision of the point-to-line calibration, as depicted in Fig. 2.3 a) and b), respectively.
In this graphic a larger spread between image planes indicates less precision between calibra-
tion matrices, illustrating that the expert user produces more precise calibrations compared to
the novice cohort [51]. The increased variation across the novice user calibration results is
likely a product of an increased FLE compared to the expert, as the point-to-line calibration
was designed to minimize the propagation of the other errors that affect the calibration. The
requirement for users to manually select the calibration fiducial produced by the needle is a
limitation and one of the remaining sources of error that can be minimized in this point-to-line
calibration approach.

(a) (b)

Figure 2.3: Both graphics depict 30 calibrated image planes where sub-figure a) shows the
variation in calibrations obtained by 30 first-time users, and sub-figure b) depicts the variation
in the 30 calibrations obtained by an expert user. Less variations between the calibrated image
planes represents more precise calibrations.

To further improve the accuracy of the point-to-line calibration approach, the first objective
of this work is to develop a machine learning algorithm to automatically localize the centroids
of the needle reflections used within the calibration, while the second is to integrate the auto-
matic fiducial localization algorithm into the point-to-line US calibration approach. The final
objective is to validate the trueness and precision of the point-to-line calibration, with both
manual and automatic fiducial localizations, using real data rather than theoretical estimates.

2.2 Methods

Towards providing a consistent and automatic fiducial segmentation for the point-to-line US
probe calibration we developed a convolutional neural network (CNN) to automatically local-
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ize the needle reflections used for this calibration approach for a single linear US probe. We
validated this algorithm using test and validation sets partitioned from the data collected for
training, as well as on images used to obtain US calibrations using the point-to-line approach.
The point-to-line US calibrations obtained using both the manual and automatic fiducial local-
izations were analyzed for trueness and precision.

2.2.1 Equipment and Data Collection

The equipment used for this work included the Ultrasonix scanner (BK Ultrasound, US) with
the L14-5 probe, the NDI Aurora Desktop magnetic tracking system (Northern Digital Inc.,
CA), one NDI Aurora 6 degree-of-freedom (DoF) flat disk reference sensor, and an NDI Aurora
5 DoF 18-gauge needle. The 6 DoF reference sensor was affixed to the US probe. The sensor
of the tracked needle was embedded directly into the tool-tip and the needle-tip was tracked
with respect to this 6 DoF reference sensor fixed to the US probe (NeedleToProbe), as depicted
in Fig. 2.1 b). For all data collection, a mechanical arm with a clamp was used to stabilize the
tracked US probe within a water bath, as depicted in Fig. 6.6. The Plus Server [78] was used
to stream the tracking and image information into 3D Slicer [70] at 60 frames per second.

(a) (b)

Figure 2.4: Figure a) illustrates the configuration used for calibration, where the tracked US
probe is clamped and submerged in water and the tracked pre-calibrated needle is inserted at an
oblique angle into the US beam stabalized with a mechanical arm. Figure b) is a representative
image of the needle reflections produced using this set-up.

The data used to train this algorithm were derived from 10 tracked recordings in total, with
2 tracked recordings collected for each imaging depth in the 4 cm to 8 cm range. For each
recording, the needle was inserted into the US beam at an oblique angle with respect to the US
image plane using a mechanical arm as depicted in Fig. 2.4. The user traversed the mechanical
arm horizontally and the clamp maintained the angle of the needle. Once the needle reached
a horizontal image boundary, the user shifted the needle down to produce a reflection deeper
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within the image and traversed the needle in the opposite horizontal direction (Fig. 2.5 a). The
user repeated this process until they reached the bottom of the image and then repeated the
process moving the needle from the bottom of the image back to the top. The entire process
was then repeated with the needle inserted at the opposite oblique angle (Fig. 2.5 b).

(a) (b)

(c) (d)

Figure 2.5: This figure depicts the needle path used for data collection, with graphic a) illustrat-
ing the path from the top to bottom of the image with the initial needle orientation, graphic b)
shows the needle at a similar angle to the needle graphic a) with a bottom to top outlined path,
graphic c) has a similar path to the needle in graphic a) but the needle is inserted at the opposite
angle, and graphic d) shows the needle path from the bottom to top of the image maintaining a
similar angle to the needle in graphic c).

For each image, the pixel coordinate that represented the centroid of the needle reflection
was manually localized by an expert. The data sets were cleaned up to remove any images
that did not contain the needle, such that there were 1800 images along with their respective
centroid positions for each depth (9000 in total). All of the images within the array were
normalized such that the pixel intensities were represented on a continuous [0, 1] range, by
dividing each image by the largest grey level within the image. The centroid locations were
also normalized such that they were on a continuous [0, 1] range.
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2.2.2 Machine learning-based needle segmentation

Automatically localizing the centroid of the US needle reflections used for the point-to-line
calibration (Fig. 2.4 b) is a type of key-point localization problem. A facial key-point detection
algorithm [84] motivated the architecture presented in this paper. A CNN was designed to
receive an US image as input and predict coordinates over a continuous [0, 1] range. An
iterative training and testing process was implemented to assess which architecture worked
best for the required task. The final network consists of 5 alternating convolutional and max-
pooling layers, followed by 5 fully connected layers. The output layer is a fully-connected
layer with 2 units, which outputs the regressed coordinates of the centroid of the US needle on
the range [0, 1]. The depth of the convolutional layers increases with each successive layer.
The number of filters in the first layer is 16, and this number doubles with each successive
convolutional layer. All convolutional layers use filters of size 3×3 and a stride of 1. The initial
parameters of the convolutional layer were determined using Glorot uniform initialization [48].
All max-pooling layers use a pool size of 2×2 and a stride of 1. The activation function used
in all pre-output layers is the Leaky Rectified Linear Unit (ReLU) function with an alpha of
0.1, which was chosen over ReLU because it converges faster during training [86]. The output
layer predicts the centroid of the needle in the image, whose values are bounded by [0, 1].
The output values ([X, Y]) are reconverted to pixel units by scaling the first and second output
values by the number of pixels in the X and Y dimensions, respectively. A diagram of the
model’s specific architecture is depicted in Fig. 2.6.

Figure 2.6: Architecture of the neural network model used to predict the coordinates of the
centroid of an US needle reflection.
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To validate this machine learning model, a 4-fold cross-validation analysis was performed.
We collected 9000 images across imaging depths 4 cm to 8 cm at 1 cm increments, such that
there were 1800 images for each depth. Manual localization of the needle reflections were
performed by an expert for every image in the set 1. The imaging depth set for the scan has
a direct effect on the image size, and therefore all images were reshaped to 256 × 256 for
consistency. To form the test set, 900 randomly sampled images were extracted from the whole
data set. These images and their centroid pixel coordinates were set aside and not used within
any training or validation sets. From the 8100 remaining data points, 900 were randomly
selected to form the validation set. The remaining 7200 images were used as the training set.
This process was repeated 4 times to obtain four training sets with entirely unique validation
sets, as once an image was used within a validation set it was not allocated to another. After
obtaining the unique training, test, and validation sets, all images were reflected about the
horizontal centre of the image, which doubled the number of images in all of the sets. The
training sets, denoted A, B, C, and D, were used to obtain 4 trained networks using the four
unique training sets to obtain a four-fold cross validation analysis. For all training, the batch
size was 32 and the model was trained for 150 epochs to minimize the mean absolute error loss
function. We employed the Adam optimization algorithm [72], with α = 1 × 10−4 To reduce
overfitting, L2 regularization with λ = 1 × 10−5 was applied in all convolutional layers. These
hyperparameters were determined in an iterative heuristic manner. One hyperparameter was
varied at a time while all others were held constant.

The output of the algorithm produces two values [X, Y] on a continuous [0, 1] range, which
provides the X and Y locations of the centroids following re-scaling to the image dimensions.
After training, the validation set that corresponded to the trained model and the test set which
is consistent for all folds were evaluated using the mean and standard deviation of the absolute
error, where the absolute error is the absolute distance between the manual and automatic
centroid positions. The absolute error in the X and Y directions for each test and validation
set and the average value across the tests and validation sets produced from all four-folds are
summarized in Table. 2.2.

2.2.3 US calibration with automatic fiducial localization

The trained CNN automatically localizes the centroid of the needle reflection given an US
image, and this algorithm replaced the manual needle segmentation required for the original
point-to-line calibration [21]. The trained CNN model that was integrated into the point-to-line
calibration algorithm, was the model trained on set C as this set produced the best accuracy

1An expert user in this calibration approach was defined as someone who had performed over one hundred
point-to-line US calibrations
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from the four-fold analysis. Thus, we refer to our approach as point-to-line calibration with
automatic localization, and the manual approach is referred to as point-to-line calibration with
manual localization. The point-to-line calibration approach requires a recorded or live tracked
US scan of a tracked needle in a water bath. The user selects the input image, which also
provides the associated needle tracking transform, by pausing the US stream. The user then
clicks a button to apply the trained CNN to the US image to obtain the centroid. The centroid
coordinates obtained from the CNN, a 3 × 1 vector representing the origin of the needle, and a
3 × 1 vector representing the direction of the needle extracted are input to the AOPA point-to-
line registration algorithm developed by Chen et al. [21]. The user repeats this process 12 to
15 times to obtain the calibration, and can visually validate their calibration by assessing the
alignment between the needle model and the needle reflection in the calibrated US image.

2.2.4 Quality Assessment

To assess the quality of the original point-to-line calibration method with both manual and
automatic localizations, three separate tracked US recordings were collected for 4,6 and 8 cm
depths (9 scans in total), using the same data collection approach outlined in Fig. 2.5. These
imaging depths were selected to show the results across 3 of the 5 depths used for training.
These recordings were not used to train the needle detection algorithm. Prior to collecting
the quality assessment recordings, the US stream and tracking data were temporally calibrated
using the temporal calibration feature available through the Plus Toolkit [78], as described in
Section. 1.5.2. The following methods were performed for all three imaging depths. For each
collected scan, 5 calibrations were obtained using the point-to-line calibration approach with
both manual and automatic localizations.

Chen et al. recommends that the majority of the US calibration fiducials used within the
point-to-line calibration are collected in the four corners of the image. For each calibration,
the expert user selected eight images that contain needle reflections close to the corners, and
for each corner two images were selected with the needle at opposite oblique angles. The
remaining images were collected with the needle reflection positioned throughout the centre of
the image. Once an image was used within a calibration, the time stamp was recorded and that
image was not used within the other calibrations obtained from the same scan, such that the
15 calibrations obtained for each imaging depth use 15 unique images. For each calibration,
the same 15 images and their respective tracking transforms were used to obtain calibrations
with manual and automatic localizations. For each image, the expert user manually selected
the centroid of the needle reflection and in the background, the CNN automatically selected the
centroid for the same image. Thus, the only difference in the calibration process was centroid
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positions obtained by manual or automatic localization. The automatic and manual centroid
positions and the final transformation matrix obtained using the manual and automatic centroid
positions were recorded. This process allowed for the centroid positions and transformation
matrices to be directly compared between calibrations obtained with automatic and manual
localizations.

The manual and automatic centroid positions obtained during the calibrations resulted in
225 point pairs per depth. The mean, standard deviation, 95 % confidence interval, maximum,
and minimum values for the absolute distance between the manual and automatic centroid
coordinates were calculated and are summarized in Table. 2.3. The manual and automatic cen-
troid positions were obtained in pixel coordinates and were converted to millimetres. To obtain
the scaling values to perform this conversion, the X and Y scaling parameters were extracted
from the 30 calibrations (manual and automatic) obtained for each imaging depth. From each
calibration matrix, the inner 3 × 3 rotation and scaling matrix was isolated by removing the
fourth row and column. The scaling factors were extracted by applying singular value decom-
position to this 3 × 3 matrix, where the singular values are the anisotropic scaling factors. The
average X and Y scaling values were calculated across all the scaling factors extracted from
the 30 calibrations obtained for each imaging depth, and the mean and standard deviations for
the scaling values from each imaging depth are summarized in Tab. 2.1. These scaling values
were applied to the pixel-based coordinates to convert them to millimetre units.

The precision of the point-to-line calibration algorithm was quantified using calibration re-
producibility, which is a standard method for measuring calibration precision [63]. Calibration
reproducibility is measured by applying N calibrations obtained using the same calibration
method to one or more pixel coordinates, and it is recommended to use multiple pixel loca-
tions such as the four corners of the image as targets [63]. The calibration reproducibility was
measured independently for calibrations obtained using the manual and automatic localizations
across the three imaging depths. All calibrations obtained using the same localization method
and imaging depth were applied to the pixel coordinates that represent the four corners and the
centre of the images produced for that particular imaging depth. The image shapes in pixels are
provided for these imaging depths for the X and Y axes independently in Table 2.1. Applying
the 4 × 4 homogeneous calibration matrix to a pixel coordinate represented as [X,Y, 0, 1] pro-
duced a new coordinate [X′,Y ′,Z′, 1], and repeating this process for the 5 pixel targets across
the 15 calibrations obtained for each imaging depth and localization approach produced 5 3D
point clouds, where the spread of the point cloud represents the precision of the calibration
approach [63]. To right-hand the spread across all points, the 5 point clouds were shifted by
their means, such that all points are centred about the [0, 0, 0] origin. This process produced
point clouds with 75 samples for both the automatic and manual localization methods for each
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imaging depth. The standard deviations across the 75 mean shifted points for each approach
were calculated to measure the calibration reproducibility. A two-sided F-test was applied
to compare the variances across the 75 mean shifted points centred about [0,0,0] that were
obtained using the manual and automatic localization methods to right-hand if the automatic
localization was capable of producing calibrations with the same precision as expert manual
localization. The standard deviation of the reconstructed point clouds and the p-value asso-
ciated with the F-test are summarized in Table 2.5. The 3D mean shifted point clouds were
also plotted graphically in Fig. 2.11, these plots also include the 95 % prediction interval repre-
sented as an ellipsoid. Additionally, a visual representation of the precision is also depicted in
Fig. 2.10, the graphics in this figure are produced by applying all the calibrations obtained for
each approach and each imaging depth to a plane the size of the US image produced for that
imaging depth. The output of this process is 15 calibrated image planes that provide a visual
representation of the variation of point-to-line calibrations, where a greater spread amongst
planes indicates lower precision in the calibration approach.

Table 2.1: The number of pixels that comprise the X and Y axes of the US image for 4, 6
and 8 cm, as well as the mean and standard deviation for the scaling factors extracted from all
calibrations produced for 4, 6 and 8 cm.

Depth Pixel # X-axis Pixel # Y-axis Scaling X-axis Scaling Y-axis
4 cm 568 598 0.068 ± 9.43 × 10−4 0.066 ± 5.44 × 10−4

6 cm 374 589 0.10 ± 8.52 × 10−4 0.10 ± 7.50 × 10−4

8 cm 280 589 0.14 ± 2.40 × 10−3 0.13 ± 1.10 × 10−3

(a) (b)

Figure 2.7: The cross-wire phantom used within the point reconstruction analysis with a)
illustrating the CAD model of the phantom overlaid with the wires and point target, and b)
depicting the real phantom with the cross-wire and tracking sensor.
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The calibration quality was assessed using point reconstruction accuracy, such that trueness
and precision were quantified independently across the 15 calibration matrices obtained by the
two localization approaches for each imaging depth. Proper quantification of the accuracy of
a calibration approach requires a known ground-truth, yet there can never be a ground-truth
for calibration, as if we knew there was a method to obtain an accurate calibration, all other
methods would be obsolete, and that method would be used for calibration. One commonly
used method to assess calibration accuracy is point reconstruction in 2D and 3D, which is
used to quantify the target localization error (TLE) [63]. Point reconstruction accuracy analy-
sis requires imaging one or more point-source(s) with known positions in the spatial tracker’s
coordinate system, such that the point fiducial is the target. When the point source is recon-
structed using a calibrated US probe, the difference between the reconstructed location and the
known location in the tracker’s coordinate system can be used to quantify the TLE associated
with the calibration. To validate the accuracy of the calibration approach, a cross-wire phantom
was used as the point source, the CAD model and the real phantom are depicted in Figure. 2.7.
The cross-wire phantom contained 8 carefully milled 6.35 mm divots that were digitized with
respect to the sensor fixed to the phantom using a pivot calibrated stylus [163] with a conform-
ing 6.35 mm diameter tip. The positions of the divots were extracted from the CAD design, and
the error was minimized by carefully milling the divots to mitigate any errors within the 3D
printing process. A fiducial-registration was applied to solve for the relationship between the
phantom’s and the tracker’s coordinate systems using a least-squares solution [5]. This process
achieved an RMS error (FRE) of 0.35 mm, and can consistently demonstrate errors less than
0.5 mm. The position of the cross-wire junction is known within the phantom space by the
construction of the phantom. The cross-wire point target position was transformed to tracker
space by applying the phantom calibration to provide the ground truth.

The cross-wire phantom was imaged under US using the following scanning protocol for
the 4, 6 and 8 cm imaging depths. First, the phantom was clamped vertically in a water bath,
such that the tracking sensor was not submerged. The US images, and tracking transforms for
the probe and phantom, were streamed and recorded at 60 frames per second using the Plus
Server [78]. The cross-wire was imaged by aligning the probe with the location where the
wires were anchored to the phantom, such that they appear as distinct and separate reflections.
The US probe was slowly traversed across the wires, such that the reflections of the wire
become progressively closer, overlap at the junction, and then become progressively wider
(Fig. 2.8). To extract the cross-wire position from the US images, each recording was replayed
frame-by-frame until the frame where two wires overlap was identified. The pixel coordinate
representing the cross-wire centroid was manually extracted from the 2D US image from that
frame. This scanning protocol and manual segmentation process were repeated three times per
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imaging depth.

(a) (b) (c)

Figure 2.8: Sample images from the scanning protocol, where figure a) shows the US image
with the two wire reflections prior to the cross-wire junction, figure b) shows the cross-wire
junction, and figure c) shows the two wire reflections subsequent to the cross-wire junction.

The phantom target is known with respect to the tracker’s coordinate system. The pixel
coordinates representing the cross-wire junction were transformed to obtain their 3D position
with respect to the tracker’s coordinate system by concatenating the pixel coordinate, an US
calibration transform, and the tracking transform that provides the position of the US probe
with respect to the tracker’s coordinate system. Thus, the US reconstructed point and phan-
tom point target are registered to a common coordinate system. For each imaging depth, the
cross-wire was imaged so that the reflection appeared in three different vertical locations (top,
middle and bottom of the US image) with all of the reflections obtained near the lateral cen-
tre. For each image of the cross-wire, the pixel representing the centre of the cross-wire in the
US image was extracted, along with the associated probe to tracker transform. The cross-wire
pixel coordinates were transformed using each of the 15 US calibrations obtained for the cor-
responding imaging depth using both the manual and automatic localization methods and their
associated probe to tracker transforms. For each pixel coordinate, the probe tracking transform
was held constant such that only the US calibration changed. For each pixel coordinate 15 US
reconstructed points were obtained for both calibration approaches (manual and automatic lo-
calization), producing 45 reconstructed points per imaging depth per calibration method. The
absolute distance between each US reconstructed point and the corresponding ground-truth
phantom coordinate were calculated. The mean and standard deviation for the X, Y, and Z
axes, and the normalized distance (

√
(X2 + Y2 + Z2)), as well as the maximum and minimum

normalized distances for the manual and automatic calibration methods, were calculated in-
dependently to quantify the TLE. A two-sample paired T-test was used to compare the mean
absolute error values for the point reconstruction error distributions obtained using the point-
to-line calibration with manual and automatic localization. These metrics were confirmed to
be normally distributed using the Anderson-Darling test. The 45 absolute error values obtained
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for both the manual and automatic localizations were plotted in 3D along with the 95 % pre-
diction interval represented as an ellipsoid for each imaging depth are depicted in Fig. 2.13.
Fig. 2.12 provides a sample graphic illustrating the alignment between the cross-wire phantom
and calibrated US images for the three imaging depths.

2.3 Results

2.3.1 Automatic Needle Localization Accuracy

Tables 2.2 and 2.3 contain the accuracy results for the CNN developed to automatically local-
ize the needle centroid. Table 2.2 contains the results from the four-fold analysis and provides
the mean and standard deviation for the absolute distance error between the automatic and
manual pixel coordinates, for the X and Y axes independently. Table 2.3 presents the absolute
difference between the manual and automatic pixel coordinates obtained during the 15 calibra-
tions obtained per imaging depth, resulting in 225 point sets per imaging depth. This provides
an assessment of how accurate the automatic centroid localization is on new scans collected
for calibration independently for 4, 6 and 8 cm imaging depths. Sample centroid localizations
obtained using the CNN are depicted in Fig. 2.9.

Table 2.2: The absolute pixel distance between the manual and automatically localized needle
centroids obtained from the four trained networks for the X- and Y-axis, respectively. This table
reports the mean and standard deviation, for the absolute error across the test and validation
sets for each fold and the average across the four-folds.

Validation Set Validation Set Test Set Test Set
Absolute Error X-axis Y-axis X-axis Y-axis

(pixels) Mean ± std Mean ± std Mean ± std Mean ± std
Set A 1.7 ± 1.9 1.2 ± 1.9 1.8 ± 1.4 1.2 ± 1.3
Set B 1.6 ± 2.1 1.7 ± 2.2 1.7 ± 1.7 1.7 ± 1.3
Set C 1.3 ± 1.7 1.1 ± 2.2 1.2 ± 2.1 1.1 ± 2.4
Set D 1.4 ± 1.9 1.6 ± 2.1 1.7 ± 1.5 1.6 ± 1.6

Average 1.5 ± 1.9 1.4 ± 2.1 1.6 ± 1.7 1.3 ± 1.7
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Table 2.3: The absolute distance between manual and automatically localized centroid co-
ordinates obtained during calibration. For each imaging depth, the mean, standard deviation,
95 % confidence interval, and the maximum and minimum absolute distances were calculated
in millimetres across the 225 point pairs.

X-axis Absolute Error (mm) Mean± std CI (95 %) Maximum Minimum
4 cm 0.10 ± 0.06 [0.08, 0.10] 0.2 >0.1
6 cm 0.15 ± 0.08 [0.13, 0.18] 0.3 >0.1
8 cm 0.21 ± 0.12 [0.18, 0.23] 0.4 >0.1

Y-axis Absolute Error (mm) Mean± std CI (95 %) Maximum Minimum
4 cm 0.10 ± 0.06 [0.11, 0.13] 0.2 >0.1
6 cm 0.15 ± 0.09 [0.12, 0.17] 0.3 >0.1
8 cm 0.22 ± 0.11 [0.18,0.25] 0.4 >0.1

(a) (b) (c) (d)

Figure 2.9: Four sample US images overlaid with the automatically localized centroid posi-
tions obtained from our CNN trained on set C.

2.3.2 Quality Assessment

Precision Analysis

Calibration reproducibility was used to quantify the precision, where the 15 calibrations ob-
tained using the point-to-line calibration method with both automatic and manual localization
were applied to the five pixel coordinates representing the four corners and centre for each
imaging depth, as described in Section. 2.2.4. The standard deviation across the mean shifted
point cloud and the Z-test results that compared the variance of the manual and automatic point
clouds are summarized in Table 2.4. These results are also provided graphically in Fig. 2.11
using a 3D scatter plot along with the 95 % prediction interval represented as an ellipsoid. The
prediction interval was calculated for the X, Y and Z axes independently. The bounds of the
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ellipse are defined by the resulting prediction intervals. It should be noted that the ellipse over-
laid on the graphic is a statistical measure of the range in which future samples are likely to
be within and not a model that fits the data. A visual representation of the precision is also
provided in Fig. 2.10, where the resultant calibrations were applied to a plane with the same
dimensions as the US image produced for the specific imaging depths to show the spread of
calibrated image planes.

Figure 2.10: Visual representation of the calibration precision by applying all transformations
obtained during calibrations with both manual and automatic calibrations to a plane the size of
the US image and overlaying them in space.

Table 2.4: The standard deviations are reported for the 75 mean shifted reconstructed pixel
locations obtained for each imaging depth and both calibration approaches. The p-value from
the Z-test that was performed to compare variances between the two distributions produced
using manual and automatic localizations are also included.
Std X-axis (mm) Y-axis (mm) Z-axis (mm) Norm (mm)
Depth Man Auto p-val Man Auto p-val Man Auto p-val Man Auto p-val
4 cm 0.57 0.52 0.87 0.48 0.52 0.47 0.90 0.91 0.85 0.56 0.59 0.65
6 cm 0.32 0.29 0.45 0.36 0.38 0.61 0.84 0.88 0.69 0.51 0.53 0.81
8 cm 0.44 0.47 0.53 0.87 0.80 0.48 1.18 1.17 0.95 0.85 0.93 0.48
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(a) (b) (c)

Figure 2.11: The calibration reproducibility across the 75 mean shifted reconstructed pixel
locations obtained for both calibration approaches, where a larger spread between samples
indicates less precision. The 95 % prediction interval bounds are provided for the X, Y, and Z
axes as an ellipsoid.

Point Reconstruction Accuracy

Calibration accuracy was analyzed using a cross-wire point reconstruction approach as de-
scribed in Section 2.2.4, where three points were compared per calibration. The absolute dis-
tance between the ground-truth point and the reconstructed point obtained using the calibration
were calculated. The mean, standard deviation were calculated for the absolute distance in
the X, Y and Z directions, and the mean, standard deviation, maximum and minimum were
calculated for the normalized absolute distance, these results are summarized in Table 2.5.
These results are also presented graphically in Fig. 2.13, where the absolute errors were plot-
ted along with the 95 % predictions interval represented as an ellipsoid. Fig. 2.12 provides
visual representations of the point reconstruction analysis for all three imaging depths, show-
ing the phantom target overlaid on the US images, the calibrated US images in a common
coordinate system with the cross-wire and aligned with the point target, and the calibrated US
images in a common coordinate system aligned with the two cross-wires.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.12: Visual representation of the cross-wire accuracy analysis for one calibration per
imaging depth. Each row of images arises from the same imaging depth. The first column (a,
d, e) shows the phantom target overlaid on the US image, while the second (b, e, h) shows
the calibrated US image in a common coordinate system, with the cross-wire phantom aligned
with the target point, and the third column (c, f, i) shows the calibrated US image in a common
coordinate system with the cross-wire phantom aligned with the two cross-wires.
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Table 2.5: The mean and standard deviation for the absolute distance between the ground-
truth cross-wire position and the US reconstructed position calculated using the 15 calibrations
obtained per imaging depth across the 3 point targets. The absolute error for X, Y, and Z axes,
as well as the normalized absolute distance, are summarized below.

Absolute Error (mm) Manual Automatic p-value
4 cm X-axis 0.59 ± 0.46 0.50 ± 0.38 0.21
4 cm Y-axis 0.60 ± 0.23 0.59 ± 0.20 0.96
4 cm Z-axis 0.82 ± 0.56 0.79 ± 0.55 0.77
4 cm Normalized 0.72 ± 0.58 0.70 ± 0.53 0.75
6 cm X-axis 0.70 ± 0.37 0.74 ± 0.36 0.43
6 cm Y-axis 0.24 ± 0.27 0.29 ± 0.21 0.72
6 cm Z-axis 0.61 ± 0.53 0.60 ± 0.44 0.92
6 cm Normalized 0.72 ± 0.55 0.63 ± 0.42 0.36
8 cm X-axis 0.56 ± 0.63 0.49 ± 0.46 0.57
8 cm Y-axis 0.19 ± 0.13 0.22 ± 0.14 0.42
8 cm Z-axis 1.15 ± 0.59 1.28 ± 0.57 0.31
8 cm Normalized 1.18 ± 0.45 1.23 ± 0.47 0.60

(a) (b) (c)

Figure 2.13: The absolute error between the three ground-truth targets and US reconstructed
positions of the cross-wire target plotted across the 15 calibrations obtained per imaging depth,
with the 95 % prediction interval provided as an ellipsoid.

2.4 Discussion

The objectives of this work are three-fold. First, we aimed to develop an algorithm capable of
localizing the US fiducials required for the point-to-line US calibration method with accuracy
equivalent to expert manual localization. The second objective was to integrate the trained
machine learning model into the point-to-line calibration approach to enable automatic fiducial
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localization, while the third goal was to validate the trueness and precision of the point-to-
line calibration, with both manual and automatic fiducial localization approaches, using real
data rather than theoretical estimates. Overall, we demonstrate that the point-to-line US probe
calibration algorithm is capable of achieving high-quality calibration for both the manual and
automatic fiducial localization variations for a single US probe across 4-8 cm imaging depths.

We developed a machine learning algorithm capable of localizing the centroid of the needle
reflection (fiducial) within 2 pixels or 0.25 mm of an expert manual segmentation. All test and
validation sets had a mean absolute error of less than 2 pixels and a standard deviation of
less than 2.5 pixels. As pixels are a unit-less measurement, the error results from the 225 point
pairs obtained during calibrations were obtained in millimetres by applying the average scaling
factors obtained from all calibrations for each imaging depth, as summarized in Tab. 2.1. The
largest absolute error obtained was 0.4 mm, and on average the absolute error was less than
0.25 mm between the automatic and manually localized fiducials. Thus, for a single linear
US probe, we developed a machine learning algorithm capable of accurately localizing the US
fiducials required for the point-to-line US calibration. While this algorithm produces accurate
localizations for the US probe and imaging depths provided during training, it would unlikely
provide the same level of accuracy if applied to images captured from a different US system or
a different type of US probe from the same system. Using a known probe calibration obtained
with careful manual localization, the coordinates representing the centroid of the needle can be
automatically obtained to provide ground-truth centroid positions removing the need for time-
consuming manual segmentation. This allows for this network to be easily trained for other
US probes and US manufacturers. Additionally, this machine learning architecture could be
retrained to localize fiducials for different US calibration methods, such as the Z-bar method.
This automatic fiducial localization algorithm was integrated into the point-to-line calibration,
removing one of the last required manual components. Thus, through the development of an
algorithm to select the best images for the calibration, the automatic localization could enable
a video-based fully automatic US probe calibration algorithm.

The precision results presented in Table 2.4, demonstrate that the point-to-line calibration
approach is precise with both manual and automatic fiducial localizations. For each imag-
ing depth, our analysis produced two point clouds with 75 points centred about [0, 0, 0], one
for calibrations obtained with manual localizations and one for the automatic equivalent. The
standard deviation was calculated across the 75 samples in each distribution to quantify the pre-
cision of both calibration approaches for each imaging depth. On average all of the standard
deviations were less than 1 mm regardless of imaging depth or localization approach, illus-
trating that the point-to-line calibration method is capable of producing precise calibrations.
The results of the Z-test applied to compare variances between the two groups demonstrates
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that there are no significant differences between the variance of the calibrations obtained using
the automatic or manual localizations. Therefore, the point-to-line calibration with automatic
fiducial localization is capable of producing calibrations with the same precision as an expert
user. The precision is also presented graphically in Fig. 2.11 and a visual representation of the
differences in output calibrations is provided in Fig. 2.10 such that the variation between the
calibrations obtained using each approach can be understood in a qualitative context.

The accuracy (trueness and precision) of the system was quantified using a point recon-
struction approach, where the point target was a cross-wire phantom. The point target is known
by the construction of the phantom and is transformed into the tracker’s coordinate system by
applying the fiducial-based registration between the phantom and tracker space. For each imag-
ing depth, the phantom was imaged under US such that the cross-wire reflection appeared in
three distinct positions in the US image. The pixel coordinates representing the centres of
the cross-wire junction in the US image were manually localized. The target position is re-
constructed by applying the US calibration transformation matrices to the manually localized
pixel coordinates. The difference in the ground-truth and US reconstructed positions represents
the trueness and the spread of the values quantifies precision. For all imaging depths, the aver-
age normalized absolute errors were less than 1.5 mm and all standard deviations were less than
1 mm, as summarized in Tab. 2.5. For each imaging depth, the mean absolute error between the
ground truth and reconstructed points obtained using the automatic and manual localizations
were analyzed using T-tests. The results of these tests show that there is no significant dif-
ference between the mean absolute error produced by the manual and automatic calibrations.
Indicating that the point-to-line calibration with automatic fiducial localization is capable of
producing calibrations with the same level of precision and trueness as the manual localization
equivalent. These results are also presented graphically in Fig. 2.13. The Z-axis has the largest
error values compared to the X and Y axes for the same imaging depth as presented in Tab. 2.5.
Fig. 2.13 provides a clear visual that the error is largest in the Z-direction. This is an expected
result as US calibration is the least accurate in the Z-direction as the calibration fiducials ex-
tracted from US images do not contain any information about the Z-dimension. There error
in the Z-axis increases as the imaging depth increases, which likely has to do with changes in
the US beam profile as depth increases. As seen in Fig. 2.9 the reflections produced deeper in
the image have a lower resolution compared to the reflections produced close to the transducer
face, which could result in increased FLE as the imaging depth increases. Additionally, 15 cal-
ibration fiducials were used to obtain the calibrations regardless of imaging depth. The Z-axis
error could be improved by collecting more calibration fiducials and collecting data with more
variation in the needle angles for larger imaging depths.

It should be noted that the point-reconstruction method used to analyze the accuracy has
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many limitations as many sources of error could affect the accuracy of the analysis. The phan-
tom calibration required to position the cross-wire target in tracker space has many sources
of error, including i) the error associated with the pivot calibration required for the stylus used
for the cross-wire phantom registration affected how accurately the divots on the phantom were
digitized and resulted in FLE, ii) the error associated with the fiducials extracted from the CAD
model of the cross-wire phantom also produced FLE, and iii) the fiducial-registration between
the phantom divot coordinates and the digitized coordinates also has an associated FRE which
is a product of the FLE resulting from the first two sources of error. Thus, there is an error
associated with the 3D coordinate that represents the position of the cross-wire with respect to
the tracker’s coordinate system. The US coordinate that represents the centroid of the cross-
wire reflection is also manually selected, which resulted in additional TLE. To minimize these
sources of error every aspect of the accuracy analysis was performed carefully by an experi-
enced user. Despite the various sources of error, both the point-to-line calibration method with
both manual and automatic localization was found to be accurate and achieved a normalized
absolute error less than 2 mm compared to the ground-truth phantom position. We expect this
value may be slightly larger than the true error associated with the calibration, due to the ac-
cumulation of errors within the phantom calibration process required for the cross-wire valida-
tion. The methods used to compare the accuracy of the point-to-line calibration with automatic
and manual localizations provides more insight on if the automatic localization introduces any
bias into the calibrations compared to the manual equivalent, rather than the true accuracy of
the calibration approach. As the only information that changed during the accuracy analysis
was the calibrations obtained using the manual and automatic localizations, the errors intro-
duced into the analysis are consistent across both methods allowing for them to be compared
against one another. The reported accuracy values indicate the system accuracy rather than the
calibration accuracy. Additionally, the cross-wire reflection was also only captured in three
positions throughout the US image, which may not adequately capture the rotational errors as-
sociated with the calibration. To properly quantify the accuracy of the point-to-line calibration
a more comprehensive point reconstruction analysis should be performed with samples evenly
spaced out throughout the US image.

The point-to-line calibration with automatic fiducial localization has the ability to improve
the usability and robustness of the calibration approach. Removing the required manual local-
ization could improve the time associated with the calibration approach, especially if a fully
automatic solution is developed. The automatic localizations can enable novice users to obtain
calibrations with the same level of accuracy as an expert, and would likely improve the cali-
bration reproducibility across a group of novice users by decreasing the FLE associated with
manual localization. Additionally, a novice user no longer has to learn how to perform accurate
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manual localization, which is a time-consuming learning process that requires some form of
teaching phase. The increased usability of this calibration approach could have large implica-
tions on the translation of this method between research groups. The ability for a novice user to
obtain an accurate calibration with limited manual intervention could also encourage clinical
implementation of this method.

2.5 Conclusions

Overall, this work presented and validates a point-to-line US calibration approach with ma-
chine learning-enabled automatic fiducial localization. A CNN was trained to localized the
needle reflections (fiducials) required for the point-to-line calibration and was capable of se-
lecting the centroid pixel coordinate within less than 0.25 mm from the manually localized
ground-truth. The trained CNN was integrated into the calibration algorithm to replace the
manual localization required for the original implementation, which is the last manual portion
of the calibration process. The point-to-line calibrations produced average normalized absolute
distance errors of less than 1.5 mm±1 mm from the ground-truth point target for calibrations
obtained using both the automatic and manual fiducial localization methods. The inclusion of
the automatic localization did not have any effect on the trueness or precision of the calibra-
tions compared to the manual equivalent. Both the manual and automatic fiducial localization
approaches are capable of achieving accurate calibrations. The integration of the automatic
fiducial localization into this point-to-line calibration improves the usability and ease of trans-
lation of this approach.



Chapter 3

Accuracy Assessment for the
Co-registration Between Optical and
VIVE Head Mounted Display Tracking

This chapter is adapted from the following manuscript:

• Groves, L. A., Carnahan, P., Allen, D. R., Rankin, Adam., Peters, T. M., & Chen, E.
C. S. (2019). Accuracy assessment for the co-registration between optical and VIVE
head-mounted display tracking. International journal of computer assisted radiology and
surgery, 14(7), 1207-1215.

3.1 Introduction

Computer-assisted surgical navigation systems aim to improve the visual information provided
to the surgeon through the inclusion of computer-generated graphics [36, 30]. Early-stage
augmented- and mixed-reality (MR) surgical navigation systems typically employed a mon-
itor to visualize the surgical information [88, 87], with these screen-based systems showing
success in areas such as percutaneous interventions [100], forensic medicine [71], tumour re-
section [18], and a variety of other surgical interventions. While using a monitor to present
advanced surgical navigation information improves guidance compared to standard image-
guidance methods, these systems divide the clinician’s attention between the patient and the
screen that displays the information. Advances in wearable technology such as head-mounted
displays (HMDs) have permitted augmented-reality (AR) environments to render surgical in-
formation directly in the user's visual field. While the concept of using an HMD for sur-
gical navigation is not novel, the technological advancements and increased accessibility to

74
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consumer-grade HMD systems have caused a resurgence of research in this area. The three
most common types of HMDs include virtual-reality head-mounted displays (VR-HMD) pro-
viding entirely computer-generated scenes; video pass-through head-mounted displays (VPT-
HMD) that can render entirely virtual scenes with or without superimposing information from
one or more camera(s) fixed to the HMD, and optical see-through head-mounted display (OST-
HMD) where the screen itself is transparent allowing for computer graphics to be superim-
posed onto the real world. Many systems have been proposed that integrate medical images
into optical OST-HMDs, which can be registered with and potentially anchored to the real
patient anatomy [101, 68, 12, 43]. This technology allows the user to see the real world
through a translucent display, while virtual computer-generated graphics are superimposed on
the scene [101].

With the majority of HMD research focused on OST-HMDs there is a gap in the literature
surrounding surgical navigation systems that utilize VPT- and VR-HMDs. Although there
are many clear benefits of OST-HMD AR environments, VPT- and VR-HMDs offer different
benefits. Rendering either an entirely virtual scene or a scene consisting of mostly virtual
components with some real input (augmented-virtuality or AV) provides more control over
the input presented to the user. Furthermore, VPT-HMD or VR-HMDs have fewer perceptual
issues, can render black (as distinct from an OST system where “black” implied a lack of
illumination of a surface, rendering it as transparent), and have larger fields of view [130].
Additionally, the intrinsic tracking of OST-HMDs and VPT- or VR-HMD systems use very
different mechanisms. OST-HMDs typically do not require extrinsic devices to track their
position as they employ simultaneous localization and mapping (SLAM) to orient the HMD
in space [130]. As these systems have no external tracking components the HMD coordinate
system is defined with respect to the HMD itself. VPT- and VR-HMDs often use a combination
of external tracking components and SLAM to localize the HMD and commonly two associated
hand-held controllers in space [130]. The use of extrinsic tracking components allows for
improved tracking accuracy which is an additional benefit to VPT- and VR-HMDs [130]. For
these systems, the pose of the HMD is known with respect to the coordinate system defined
by the external tracking components. Regardless of the method to track the HMD, each HMD
system defines a coordinate system that is specific to the HMD.

Chen et al. [23] developed a method to register an external optical-tracking system (OTS)
and the tracking system associated with an OST-HMD to develop an AR surgical navigation
system. This system was successfully used to insert percutaneous sacroiliac screws [155]. The
integration of an external tracking system into an HMD requires calibration to solve for the
registration between the external tracking system and the tracking system associated with the
HMD, allowing for models of externally tracked surgical instruments to be accurately posi-
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tioned and visualized in the HMD. The research conducted using OST-HMD's and OTS jus-
tifies developing surgical navigation systems for VPT- or VR-HMDs. However, due to the
inherent differences in technology between these systems, many of the methods developed
for OST-HMDs cannot be applied to VR or VPT-HMDs. In this work, a method is proposed
to co-register the Polaris Spectra OTS (NDI, Canada) and the HTC VIVE Pro (HTC VIVE
Pro, HTC, Taiwan, ROC) VPT-HMD, such that optically tracked spatial information can be
integrated into the HMD. The system combines industry-standard tracking technology with
relatively inexpensive AV or VR equipment and forms the foundations required to develop
MR VPT- and VR-HMD surgical training or planning systems that require tracked surgical
instruments.

3.2 Materials and Methods

3.2.1 Equipment

The HTC VIVE Pro VPT-HMD was selected to be used within this work as it has a high-
resolution display, two stereo cameras, 6 DoF HMD and controller tracking, a wide FoV of
110°, the ability to be un-tethered from the computer, and developers can access the tracking
information for the HMD and controllers 1. The VIVE and VIVE Pro are tracked using ex-
ternal tracking components called lighthouse base stations. These base stations emit infrared
(IR) light, which is detected by the IR sensors that cover the surface of the HMD and con-
trollers. The difference in detection time between the sensors is used to localize the HMD
and controllers within the tracking area. The external tracking is supplemented with inertial
measurement units (IMU). Niehorster et al. assessed the original VIVE's tracking technology
for accuracy and precision, and the authors found that the tracking technology is unsuitable for
scientific research [107]. However, the VIVE Pro HMD uses the VIVE base station 2.0 and due
to the unreported differences between the first- and second-generation lighthouse technology
the tracking accuracy associated with the VIVE Pro must be re-validated.

A computer equipped with an Intel 7820x processor, 32GB of RAM, and an Nvidia GTX1070Ti
graphics card was used for this research, as it can support the real-time computation and ren-
dering requirements of the hybrid system. The VIVE Pro HMD, the associated controllers, and
the VIVE tracking system were used within this research. The spatial tracking system used for
this research is the Polaris Spectra (NDI, Canada) OTS with passive markers. This tracking
system was selected as it is the most common system used for commercial surgical naviga-
tion [41]. The Polaris Spectra and VIVE tracking systems were arranged such that their FoV's

1https://www.vive.com/ca/product/vive-pro/

https://www.vive.com/ca/product/vive-pro/
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were optimally overlapped during the calibration and evaluation processes (Fig. 3.1). The Plus
Toolkit [77] was used to obtain tracking information from the Spectra OTS and SlicerVR 2

was used to obtain tracking information from the HTC VIVE Pro through SteamVR (Valve
Corporation, USA).

Figure 3.1: Schematic of the experimental setup. The black and blue region indicates the
optimal tracking volume of the optical/VIVE Pro's tracking systems, respectively. A grid of lo-
cations was programmed in CNC coordinate system and is located in the overlapping, optimal,
tracking volume of both systems.

A 3D printed apparatus was developed to co-register the VIVE and OTS as seen in Fig. 3.2.
This apparatus was designed using SpaceClaim (SpaceClaim Corporation, USA) and con-
structed using the Ultimaker 3D printer (Ultimaker, NL) with 0.35 mm resolution. A reference
optical dynamic reference frame (DRF) is rigidly fixed to the apparatus by a support post and
the pose of the DRF is known with respect to the OTS. The VIVE controller has a contact
fit with the apparatus through a negative imprint of the controller. Six hemispherical divots
in known locations with respect to the origin of the VIVE controller were embedded into the
surface of the apparatus. The divots were carefully milled to have a 6.35 mm diameter. An
optically tracked pointer tool with a 6.35 mm diameter ball tip was used to digitize these div-
ots within the co-calibration process. The optically tracked pointer tool was “pivot and spin”
calibrated to provide the relationship between the ball tip and the optical DRF fixed to the tool,
such that the pose of the stylus tip was tracked with respect to the optical tracker’s coordinate
system. Pivot calibration is the process of pivoting the tool around its tip such that the motion
of the tracking sensor forms the surface of a sphere about the stylus tip [25]. Sphere fitting was
used to solve for the relationship between the collected data points and the centre of the sphere

2https://github.com/KitwareMedical/SlicerVirtualReality

https://github.com/KitwareMedical/SlicerVirtualReality
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using a least-squares approach [163]. Following pivot calibration spin calibration is required
to provide the correct axis of rotation [152]. This pointer tool calibration resulted in a reported
root-mean-square-error of 0.24 mm, an error of approximately 0.25 mm can be consistently
achieved using this approach.

Figure 3.2: calibration device with optical DRF and hemispherical divots.

3.2.2 Co-calibration Process

The calibrated stylus was used to digitize each of the hemispherical divots on the co-calibration
apparatus to obtain the 3D coordinate associated with each divot with respect to the reference
optical DRF on the co-calibration apparatus, as seen in Fig. 3.3 a). The divot locations were
collected in the VIVE tracker's coordinate system through extracting their locations with re-
spect to the VIVE controller's origin from the CAD files of the co-calibration apparatus and
the VIVE controller. This produced two corresponding sets of point locations: one in the opti-
cal tracker’s coordinate system and one in the VIVE's coordinate system, that were registered
to each other using closed-form fiducial-registration with singular value decomposition least-
squares regression approach [5]. The registration process resulted in a 4×4 rigid transformation
matrix that provided the fixed relationship between the reference optical DRF origin and the
VIVE controller origin with a root mean squared error of 0.41 mm as seen in Fig. 3.3a). A
typical error achieved with this co-calibration process is less than 0.50 mm.

Although this registration does not directly align the optical and VIVE coordinate systems,
the hybrid system is defined by the concatenation of three matrices representing the pose of
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the optically tracked tool, the registration between the optical DRF and the controller's ori-
gin, and the pose of the VIVE's controller with respect to the VIVE’s coordinate system. The
pose of the optically tracked tool was provided with respect to the optical DRF on the appa-
ratus. Therefore, the aforementioned transformation chain can be applied such that the spatial
tracking information can be used to visualize tracked surgical tools within the HMD. A visual
depiction of this process can be seen in Fig. 3.3b).

(a) (b)

Figure 3.3: (a) Visual depiction of the point-based registration, (b) Visual depiction of the
transformation chain used for the hybrid system.

3.2.3 Accuracy Analysis

To evaluate the accuracy of the hybrid system, the OTS and the VIVE's tracking system, a val-
idation tool was 3D printed with a negative imprint of the VIVE controller and an opening for
an optical DRF. The front of this tool has a cylindrical opening in which a 9.53±0.01 mm diam-
eter carbon fibre stylus with a 6.35 mm diameter ball tip was inserted and fixed to create a dual
tracked stylus. The validation tool can be seen in Fig. 3.4. The validation tool was pivot [25]
and spin [152] calibrated twice to solve for the pose of the stylus tip with respect to both the
optical DRF origin and the VIVE controller origin fixed to this tool. The associated calibration
errors were 0.29 mm and 0.71 mm for the optical and VIVE tracking systems, respectively. On
average these processes can consistently achieve errors less than 1 mm. This validation tool
was used within the position and rotation accuracy assessments.

3.2.4 Positional accuracy assessment

A Computer Numerical Control (CNC) machine outfitted with the ACU-RITE SENC 150 lin-
ear encoder (ACU-RITE, US) can position the centre of a vice used to hold the apparatus
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within 2.54 µm. This system was employed to serve as the ground truth for the evaluation of
the positional accuracy of the OTS, the hybrid system, and the VIVE Pro tracking system. The
validation tool was mounted in the vice attached to the CNC machine at the centre of the com-
bined tracking FoV. The reference apparatus was positioned such that it was centred in the area
that data was collected highlighted by the red arrows in Fig. 3.4.

(a) (b)

Figure 3.4: (a) Dual tracked validation tool outfitted with a stylus, (b) Position accuracy vali-
dation set-up with arrows to highlight the data collection path.

The CNC machine was programmed to collect a grid of 48 points spanning 350 mm by
250 mm with 50 mm spacing in both directions. The CNC machine mechanically moved the
vice to each location, where 25 samples were collected for the spatially tracked positions re-
ported by the optical DRF, the calibrated optical DRF, and the VIVE controller. The reported
CNC location was recorded to be used as a ground truth.

Prior to analysis, the singular value decomposition least-squares regression approach was
used to register all point grids to a common coordinate system for comparison [5]. The col-
lected data resulted in 48 point clouds with 25 samples each for each point in the grid (1200
samples in total per system). For all three tracking systems the same approach was used to
evaluate the positional accuracy. The absolute distance from each collected sample to its cor-
responding CNC ground truth position was calculated, resulting in 1200 distance values. The
average absolute distance is indicative of the trueness of the tracking system, while the stan-
dard deviation between distance values represents the precision. These values along with the
95 % confidence interval (CI) are summarized in Table 3.1.

Rotational accuracy assessment

To assess the rotational accuracy of the tracking systems a hemispherical phantom with 13
cylindrical openings at a variety of angles was manufactured using the Ultimaker 3 3D printer.



3.2. Materials andMethods 81

To eliminate issues associated with the rough finish of 3D printed components and to ensure the
stylus on the validation tool had a snug fit, tubing with an outer diameter of 12.70± 0.25 mm
and inner diameter of 9.53±0.25 mm was selected to fit precisely with both the cylindrical
openings in the hemispherical phantom and the stylus. The final device is shown in Fig. 3.5
(a). A CT scan of the hemispherical phantom was taken using a GE Lightspeed VCT (Gen-
eral Electric, USA), and the cylindrical openings were segmented to extract the ground truth
rotations. The hemispherical phantom was secured by clamping the rectangular base affixed
to the phantom using two mechanical arms fixed to a stationary table. The Polaris Spectra
tracking FoV was situated such that it maximized the ability to capture the optical DRF while
maintaining maximum overlap with the VIVE tracker's FoV.

(a) (b)

Figure 3.5: Hemisphere phantom for rotation validation. Image a) depicts the 3D printed
hemispehere phantom with cylindrical openings and Image b) shows the CT scan of the hemi-
sphere phantom and the rotation vectors for each cylindrical opening.

The calibrated stylus on the validation tool was inserted into each of the 13 cylindrical
openings in the hemisphere. For each insertion, tracking information consisting of 25 rotation
values stored as quaternions were collected for the OTS, the VIVE, and the hybrid system,
respectively. To produce gold standard rotation values, the cylindrical openings were manually
segmented from the CT volume of the hemisphere. For each opening, a cylinder was fitted to
the manual segmentation using an M-estimator SAmple Consensus algorithm [147]. The result
of this process can be seen in Fig. 3.5 b).

The orientations collected with respect to each tracking system were rotated to the co-
ordinate system of the gold standard values measured from the CT scan using a least-squares
absolute orientation procedure [62]. The absolute angular difference between the gold standard
orientation and the angle reported by each tracking system was calculated for each sample. The
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average, standard deviation, and 95 % CI for the absolute angular error of each tracking system
is presented in Table 3.2.

3.3 Results

The positional and rotational accuracy presented as mean, standard deviation and 95 % CI for
the OTS, VIVE tracking system, and hybrid tracking system are presented in Tabs. 3.1 and 3.2,
respectively. These results are also summarized as box plots in Fig. 3.6. The reported values
are compared to ground-truth positions and rotations, and therefore the smaller the value the
more accurate the system is.

(a) (b)

Figure 3.6: Positional (a) and rotational (b) accuracy summarized in box plots

Table 3.1: The average, standard deviation, and 95 % CI calculated using the absolute dis-
tances between each collected sample and its corresponding CNC location.

Positional Accuracy

Tracking Method Mean ± std 95% CI

Optical 0.026 ± 0.02 mm [0.03 mm, 0.03 mm]
VIVE 1.52 ± 1.76 mm [1.42 mm, 1.62 mm]
Hybrid 0.30 ± 0.25 mm [0.29 mm, 0.32 mm]
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Table 3.2: The average, standard deviation, and 95 % CI calculated using absolute angular
differences between each collected sample and its corresponding ground truth angle extracted
from the cylindrical phantom CT scan.

Rotational Accuracy

Tracking Method Mean± std 95% CI

Optical 0.057 ± 0.11° [0.04°, 0.07°]
VIVE 0.035 ± 0.09° [0.02°, 0.05°]
Hybrid 0.060 ± 0.11° [0.05°, 0.07°]

3.4 Discussion

This work has established the positional and rotational accuracy for the Polaris OTS, the VIVE
PRO tracking system, and the proposed hybrid tracking system that registers optically tracked
tools to the VIVE tracker’s coordinate system. The resultant positional accuracy was sub-
millimetre for the OTS and the hybrid system, and on the order of a millimetre for the HTC
VIVE tracking system. The rotational accuracy values were less than one degree for all three
systems. The hybrid system has better positional tracking accuracy than the HTC VIVE system
despite the fact that the controller's pose is used within the calibration process. The results
suggest that the HTC tracking system has a global trueness bias which is likely due to the
IMUs used to track the VIVE controller. The proposed method of co-registration is unaffected
by the lower positional accuracy of the VIVE system since the VIVE controller is stationary
within the co-calibration apparatus, which results in a larger reliance on the precision of the
system. However, the hybrid system is highly dependent on the tracking accuracy of the OTS,
as any error associated with the tracking of an optical DRF would propagate and affect the
ability to render the accurate pose of the virtual representation of the surgical tool.

As the accuracy required for surgical navigation is highly dependent on the application,
there is no definite threshold to judge accuracy values. However, since the Polaris Spectra is
a commonly used commercial tracking system for medical imaging and surgical navigation
research [136], the accuracy values achieved by this system can provide a benchmark to com-
pare the hybrid tracking system’s accuracy against. The hybrid system achieved positional and
rotational accuracy of 0.30 mm ± 0.25 mm and 0.06° ± 0.11°, respectively. The 95% confi-
dence interval indicates that there is a high probability that the positional and rotational error
values will be consistently less than 0.50 mm and 0.50°. The accuracy of the hybrid system
is slightly inferior to the OTS due to the propagation of error during the calibration process.
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However, the differences in trueness values between the two systems were only 0.28 mm and
0.00°, for the position and rotation respectively. The positional and rotational accuracy pro-
mote the continued use of the hybrid tracking approach to integrate tracked tools into the VIVE
Pro.

The work published by Niehorster et al. [107] established the accuracy and precision of
the original HTC VIVE system. While the results presented in that paper cannot directly be
compared to our results due to differences in the reported metrics, broader comparisons can
be drawn. They concluded that there was a systemic drift in the direction perpendicular to
the direction in which they collected their grid of samples [107]. Their conclusion was not
consistent with our work, as the displacement of samples was only in the direction parallel to
the data collection. Updates to the software, or changes between the original HTC VIVE and
the HTC VIVE Pro have potentially mitigated these issues. Furthermore, Niehorster et al. [107]
concluded that the tracking of the HTC VIVE is not suitable for the medical field. However,
the results obtained from our work counters this as we achieved millimetre and sub-degree
accuracy for the HTC VIVE Pro, which is further improved with the hybrid system.

(a) (b)

(c) (d)

Figure 3.7: Examples of first-person Point-of-View MR visualization for surgery: (a) a VR
system for spine needle intervention where streaming ultrasound and real-time needle advance-
ments are visualized using HMD, b) VR representation of this procedure as viewed within the
HMD, c) AV scene with streaming ultrasound and the edge mapping feature for the stereo
camera video input, d) AV scene with streaming ultrasound and the translucent feature for the
stereo camera video input
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The ability to integrate spatial tracking information into the HMD allows for VR training or
surgical practice systems to be trivially developed. One application of the system as it currently
stands is training or practicing US-guided needle navigation. A training system for US-guided
needle insertions can be simply implemented in this framework through the inclusion of a
tracked and calibrated surgical needle, ultrasound image and virtual anatomical model as seen
in Fig.3.7. Further, any surgical navigation system that presents spatial tracking information
and image data in a 2D VR environment can use the hybrid tracking system to display the
information directly into the user’s line of sight to a substantially improved accuracy compared
to the VIVE's tracking capabilities.

As the mathematical foundation of the hybrid tracking system is based on the concatenation
of transforms, each component of this transformation chain introduces sources of error. The
error associated with the co-registration was a product of cumulative errors throughout the cali-
bration process. The requirement of pivot calibrating the stylus prior to collecting the landmark
locations resulted in a registration error of 0.24 mm propagating into the point-based registra-
tion. This error could be improved through performing pivot calibration with a three-point
ball contact instead of a single conforming surface for a more accurate implementation [85].
Furthermore, the locations of the divots within the VIVE controller coordinate system were
extracted from the CAD model. The 3D printing manufacturing process may introduce errors
in this fiducial localization. However, extracting fiducial locations from a CT scan of the co-
calibration apparatus is not feasible as there is no means to relate the CT coordinate system
to the VIVE’s controller coordinate system directly. We suggest that this co-calibration appa-
ratus be manufactured using an alternative, more precise method, such as a better 3D printer
or CNC milling. In this study, the fiducial localization error was minimized through precisely
milling each divot on the calibration apparatus, and the cumulative effects of these sources of
error resulted in a fiducial registration error of 0.41 mm. The position accuracy could be further
influenced by tracking errors, despite the fact that the validation set-up was optimized to en-
sure that the majority of data were collected in the centre of the overlapping tracking FoV. The
locations at the extremes of the data collection grid may have been too close or too far from
the base stations resulting in a less accurate controller pose decreasing the VIVE positional
accuracy. The rotational accuracy results were affected by the propagation of error from pivot
and spin calibrating the stylus fixed to the validation tool.

Looking forward, continued development on the usability and logistics of the system is
required to promote more clinical usability. The function of the hardware can be improved
through the inclusion of the wireless adapter for the HTC HMD and the additional base stations
to increase the size of the tracking area and reduce line-of-sight issues. This would promote a
more clinically applicable system, as the user would be less restricted through the un-tethered
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HMD and an increased tracking FoV to room-scale tracking. The usability of the system can
be expanded through the use of the varying views provided by the HMD’s stereo cameras,
allowing for various implementations that span across the MR spectrum as seen in Fig. 3.7. In
the future, the effects of including opaque video, colour video, and edge mapping need to be
studied to gain an understanding of what is most useful in a surgical context. Alternatively,
accessing the video feed from the stereo cameras such that the developer has more control
over how to integrate the real world video input into the system could allow for interesting AV
environments to be developed. The inclusion of real world information would allow the system
to be expanded from surgical training and planning to clinical surgical navigation applications.

Our approach could be trivially extended to a hybrid tracking system between any spa-
tial tracking system and other similar HMD systems. For example, to address line of sight
issues associated with optical tracking, a version of the system could be developed through
co-registration of a magnetic tracking system (e.g. the NDI Aurora) and the VIVE's tracking
system. A three-way hybrid tracking system the registers optical, magnetic, and VIVE coordi-
nate systems could also be trivially developed. Furthermore, these methods could be replicated
for other similar VR- or VPT-HMD systems that utilize controllers or some form of extrinsic
tracking components. As the co-calibration apparatus is tracked simultaneously by multiple
tracking systems, a data-fusion scheme (such as the Unscented Kalman Filter [154]) could be
implemented to further improve tracking accuracy.

3.5 Conclusions

This work developed and evaluated a co-registration technique that accurately integrates opti-
cal tracking information into a commercially available cost-effective VPT-HMD. The hybrid
tracking system uses a calibration apparatus that is simultaneously tracked by the OTS and
the VIVE tracking system, such that spatial tracking information can be used within the HMD
with surgically acceptable accuracy. The positional and rotation accuracy of the hybrid track-
ing system were 0.30 mm±0.25 mm and 0.06°±0.11°, respectively. Thus, this hybrid tracking
system has the potential to be used in the clinical environment as it achieves submillimetre
and subdegree accuracy tracking surgical tools within a consumer-grade HMD system. The
use of our co-calibration apparatus allows for a single calibration to be used repeatedly within
any overlapping tracking region between the OTS and the VIVE. This work validated the use
of a co-calibration apparatus to integrate spatially tracked instruments into a VPT-HMD and
sets the foundations for the development of an AV or VR immersive first-person point of view
tracked surgical navigation system.



Chapter 4

Towards a mixed-reality first-person point
of view needle navigation system for
central line insertions

This chapter is adapted from the following manuscript:

• Groves, L., Li, N., Peters, T. M., & Chen, E. C. (2019, October). Towards a mixed-reality
first-person point of view needle navigation system. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention (pp. 245-253). Springer,
Cham.

4.1 Introduction

Central venous catheterizations (CVCs) are performed over 6 million times annually between
the United States and Europe [126, 90, 13], with the internal jugular vein (IJV) being the most
utilized insertion site [17]. Ultrasound-(US)-guided CVC is becoming the preferred technique
as it has the potential to reduce complications including accidental punctures to structures
such as the carotid artery (CA) [134, 141]. The US-guided approach relies on real-time US
video, depicting cross-sections of the anatomy on a 2D monitor, to guide the needle insertion
(Fig. 4.1b). Despite US-guidance improving complication rates, clinical studies have found
rates of CA puncture to be approximately 7 % for US-guided cases [93]. The high rate of
arterial puncture under US-guidance may be a product of the inability to visualize all relevant
anatomy and the needle tip within the limited 2D US FoV. US-guidance also requires the user
to focus on the surgical navigation information being visualized on a monitor, while performing
the insertion on the patient resulting in an uncoupling of the user’s visual and motor fields.

87
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(a) (b) (c)

Figure 4.1: Comparison of guidance techniques for CVC a) landmark guidance b) US-only
guidance and c) AV guidance.

To address the aforementioned limitations of US-guided CVC, Ameriet al. [2] developed
an augmented-virtuality (AV) monitor-based surgical navigation system for needle guidance.
This system employed magnetic tracking to render tracked virtual models of the US probe,
needle and needle trajectory, overlaid on a front-facing US image on a traditional 2D monitor
(Fig. 4.1c), such that the user can simultaneously visualize the CA, IJV and needle tip. The
tracking information was used to update the position of the needle and trajectory throughout
the insertion. The pose of the US image and probe were held constant throughout the in-
sertions, maintaining the front-facing visualization that is typical of US-guidance as seen in
Fig. 4.1c). This system supplemented the US-guidance visualization with the inclusion of the
tracked needle and needle trajectory but did not demonstrate significant improvement in the
complications associated with the needle insertion compared to the US-only technique for ex-
pert users [2]. The success of this system may have been influenced by the fixed front-facing
US visualization, as the user was still reliant on a 2D environment to perform a 3D procedure,
which may have resulted in difficulties interpreting the 3D relationship between the tools and
the anatomy. Additionally, the outcomes of this experiment may have been affected by the
maintained visual and motor disparity produced by using a monitor exterior to the visual field
of the phantom where they are performing the insertion. Despite the inconclusive results, this
promising work has motivated the development of advanced surgical navigation environments
to reduce complications associated with CVC.

Here we investigate the efficacy of a first-person immersive mixed-reality (MR) system
for CVC needle navigation. Toward the long-term goal of clinical deployment, we first aim
to understand how the visualization paradigm associated with surgical information affects the
rate of complication during US-guided CVC. We developed a surgical navigation system that
comprises tracked models of the US probe, needle, and needle trajectory in a common coor-
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dinate system with the tracked free-hand streaming US. Our implementation did not constrain
the US image to a single view but allowed for the movement of the US probe and image to be
updated in real-time. For this work, we compare US-only guidance to our MR guidance sys-
tem displayed on a 2D monitor, and within an HMD. We hypothesize that the use of the HMD
for visualization will improve the success of needle insertions compared to those that employ
US-only guidance, or display the US image and needle trajectory on a 2D monitor. This work
aims to highlight the importance of coherent visual and motor fields for surgical applications
through a comprehensive user study involving 33 clinicians and 20 medical students.

4.2 Materials and Methods

A phantom comprising two hollow (wall-less) vascular structures representative of the CA
and IJV, embedded in polymerized Poly (vinyl alcohol) cryogel (PVAc) [145], was constructed
(Fig. 6.1a). This phantom was constructed using the same methods as those used by Ameri et al.

for their central line surgical navigation study [2]. The positive models of both the CA and IJV
were manufactured using 3D printer based on the manual segmentation of a patient computed
tomography (CT) provided from the work performed by Ameri et al. [2] and reused for this
phantom development.

To create realistic vascular impressions in the PVAc, the phantom mould used CA and IJV
3D-printed models based on the manual segmentation of a patient computed-tomography (CT)
neck vasculature scan (Fig. 4.2a) [2, 50]. The mould was filled with non-polymerized PVA
gel and underwent two freeze-thaw cycles for the PVA gel to polymerize into PVAc [2, 50].
The 3D printed vessels were then removed from the phantom after polymerization to produce
hollow vessels [2, 50]. The phantom was housed in a plastic container with 8 hemispherical
fiducial markers and a 6 Dof NDI reference Disk sensor and scanned with a cone-beam CT
(O-Arm, Medtronic, USA). The positions of these fiducials were digitized with respect to the
reference sensor fixed to the phantom using a pivot calibrated ball tip stylus [163] with a con-
forming 6.35 mm diameter. These fiducials were also manually extracted from the CT scan,
such that the fiducial pairs can be used to solve for the relationship between the phantom’s and
the tracker’s coordinate systems using a least-squares solution [5]. This phantom serves as a
surrogate for patient anatomy, producing US images where the CA and IJV can be trivially
interpreted by the user. An US image of the phantom is depicted in Fig. 4.2b), which can be
compared to those obtained from healthy volunteers in Fig. 4.2c) and d).

The surgical guidance system comprises a monitor or mixed-reality (MR) HMD (HTC
VIVE Pro, HTC, Taiwan ROC), a magnetic tracking system (Aurora, NDI, Canada), a clinical
US scanner (SonixTouch, BK Medical, USA), and a surgical hypodermic needle (7 cm with
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(a) (b) (c) (d)

Figure 4.2: a) Phantom development, b) Phantom under US, c) and d) health human neck
vasculature under US. Images c) and d) courtesy of healthy volunteers.

10 ml syringe, Fig. 4.3b). A linear transducer (L14-5, BK Medical, USA) was used to acquire
real-time images of the phantom (depth of 6 cm with a gain of 42 %). The US transducer, neck
phantom, and surgical needle were magnetically tracked, spatially calibrated, and registered
into a common coordinate system. As the HTC VIVE Pro has its own tracking system, it
is co-registered with the magnetic tracking through a simultaneously-tracked apparatus that
registers the magnetically tracked tools into the HMD coordinate space(Fig. 4.3a)), which is a
magnetically tracked variation of the system developed in Chapter 3 [52]. This co-calibration
method was validated using a Computerized Numerical Control machine with reported trueness
and precision values less than 1 mm and 1°, for position and rotation respectively [52]. The
magnetically tracked US transducer was calibrated using a point-to-line calibration approach
solved using an Anisotropic Orthogonal Procrustean Analysis [35] with manual localization as
described in Chapter 2. To track a surgical hypodermic needle, a 6-DoF magnetic pose sensor
was integrated into a 3-way Lure-lock connector, used to connect the metallic needle with the
plastic syringe. A tracked “template” with the exact negative imprint of the needle assembly
was used to calibrate the spatial pose of the needle assembly with respect to its magnetic pose
sensor (Figure 4.3b). A visual assessment of the system accuracy, consisting of tracker co-
calibration, tool calibration, and patient registration is shown in Fig. 4.3c).

Three modes of visualization were implemented and evaluated: 1) the traditional US-
guidance technique with a 2D front-facing US image displayed on the US scanner, 2) an MR
system displayed on a 2D monitor, 3) an MR system displayed in a first-person perspective in
the HMD, as depicted in Fig. 4.4. The MR system comprised calibrated streaming US video,
a virtual representation of the tracked probe and needle, and a needle trajectory represented
as a 10 cm blue extension from the needle tip, all registered in a common coordinate system.
This system was displayed in a first-person front-facing perspective in the HMD as shown in
Fig. 4.4 c). The surgical navigation system displayed on the monitor provides the information
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(a) (b) (c)

Figure 4.3: a) The co-calibration apparatus tracked by the VIVE controller and magnetic pose
sensor b) the calibration apparatus for the syringe, and c) Visual representation of an example
of tracked tools registered in the HMD’s coordinate system, where the alignment between the
models of the spine and needle and their reflections in the US image indicated the total system
accuracy

(a) (b) (c)

Figure 4.4: Visual representation of each mode of visualization where a) is the US-only
system, b) is the monitor system, and c) is the HMD system. Images b) and c) comprise
models of the US probe, needle, needle trajectory and the calibrated US image.

on an oblique angle such that the user has a 3D perspective, as depicted in Fig. 4.4 b).

Two groups were recruited for this study. The expert group comprised 31 clinicians, who
have been trained in US-guided central line insertions and have performed over 15 clinical
insertions as it has been shown that a user becomes proficient in US-guided CVC after 8 clinical
insertions [105]. The expert cohort have performed 319 ± 359 clinical US-guided insertions
with an average of 5.5 ± 3.3 years of experience. The second group consisted of 20 medical
students, who did not have training or experience with US-guided CVC but are knowledgeable
in neck vascular anatomy. All participants were recruited with consent according to the local
REB regulation (Western University REB 107254). Each user was assigned a randomized order
of the systems that was counter-balanced such that there was an equal number of users assigned
to the same order. Prior to the experiment, each participant was briefed on and introduced to the
needle insertion required for CVC using the neck phantom. The vasculature on the left side of
the neck phantom was used to train the users on all of the systems. The participants were given
time to perform needle insertions using the US-only, MR on a monitor, and MR in the HMD
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system, in their assigned order, until they felt they were comfortable with all of the modes of
visualization. The study was conducted using the vessels on the right-hand side of the phantom.
The participant was required to perform one insertion into the vessel on the right-hand side of
the phantom for each of the modes of visualization in their assigned order. Sufficient time was
provided in between switching modes of visualization to allow the participant to rest and adapt
to the new mode, such that the recorded data is not skewed by the clinician’s memory of the
spatial orientation of the phantom. The streaming US video, time, and tracked trajectories for
the entire simulated procedure were recorded for post-analysis. After the experiment, the users
filled out a questionnaire which is included in Appendix A Fig. A.1.

The recorded data was post-processed to extract procedure time and needle insertion ac-
curacy to evaluate user performance. We defined procedure time as the time from the needle
on the surface of the phantom until the user completed their insertion. Three separate metrics
were used to analyze the needle insertion accuracy. Insertion success was defined as a binary
metric where an insertion was denoted as successful if the final needle tip position was within
the bounds of the target IJV mesh. Two continuous success metrics were obtained by measur-
ing the distance from the final needle tip position to the central line of the vessel and the closes
point on the vessel wall. The distance to the vessel was signed as it was denoted as negative
if the final needle tip position was outside of the target IJV. The questionnaire responses were
in the form of a continuous scale where the centre and two ends were anchored with written
descriptions. If the user agreed with one of the given responses they could mark that part of the
scale or anywhere along the scale. The questionnaire responses were converted into a numeric
10.0 scale, as the physical scales are 10 cm in length, and summarized in Tab. 4.5.

4.2.1 Statistical Analysis

The continuous results, such as time, distance to the central line and vessel wall, were con-
firmed to be normally distributed using the Anderson-Darling test. These continuous metrics
were individually compared across the three conditions: US-only, MR system on a 2D monitor,
and MR system in the HMD, using a repeated-measures ANOVA. The metrics that returned
a p-value less than 0.05 from the ANOVA analysis underwent a least squared distance multi-
comparison post-test with the Bonferroni correction to compare between each pair of condi-
tions. This test returns the six possible comparisons between the metric being analyzed for the
US-only, monitor, and HMD results with an associated p-value. For this test, a p-value less than
0.05 indicates that there is strong evidence that the means of the two groups are significantly
different. Metrics that produced significantly different means are summarized in the graphs in
Fig. 4.5. While, the time and number of CA punctures were not found to have any significant
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difference between systems they are summarized in Tab. 4.4 as they are relevant. A chi-squared
test was performed to compare the success rates between groups as the success rate is a dis-
crete metric. For this test, a p-value less than 0.05 indicates that there is strong evidence that
the frequency rates in the contingency table are significantly different across the groups. The
success rates and p-values less than 0.05 are denoted in Tab. 4.3. The user questionnaire results
were converted from the continuous scale to numerical values and summarized in Tab. 4.5.

4.3 Results

a) b)

c) d)

Figure 4.5: Distance metrics presented with respect to system where a) and c) summarize the
distances from the final needle tip position to the closest point on the centre line of the vessel for
experts and novices respectively and b) and d) summarize the distances from the final needle
tip position to the closest point on the vessel wall for experts and novices respectively
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Table 4.1: Post Hoc test results following repeated-measures ANOVA analysis for the distance
from the final needle tip position to the closest point on the centre line of the vessel for both
experts and novices.

Experts 95% CI for Mean Difference
Mean Difference Lower Upper t pbon f

US Only Monitor -0.457 -2.538 1.623 -0.541 1.00
HMD 2.652 0.571 4.732 3.136 0.008**

Monitor HMD 3.109 1.028 5.189 3.677 0.001**
Novices 95% CI for Mean Difference

Mean Difference Lower Upper t pbon f

US Only Monitor 0.488 -3.593 4.569 0.300 1.00
HMD 6.439 2.358 10.520 3.962 0.001**

Monitor HMD 5.951 1.870 10.032 3.662 0.002**

** p < .01
Note. P-value and confidence intervals adjusted for comparing a family of 3 estimates (confi-
dence intervals corrected using the bonferroni method).

Table 4.2: Post Hoc test results following repeated-measures ANOVA analysis for the distance
from the final needle tip position to the closest point on the vessel wall for both experts and
novices

95% CI for Mean Difference
Mean Difference Lower Upper t pbon f

US Only Monitor 0.235 -1.756 2.227 0.291 1.00
HMD -2.035 -4.026 -0.043 -2.514 0.044*

Monitor HMD -2.270 -4.261 -0.279 -2.805 0.020*
95% CI for Mean Difference

Mean Difference Lower Upper t pbon f

US Only Monitor -0.067 -3.786 3.652 -0.045 1.00
HMD -5.001 -8.720 -1.282 -3.377 0.005**

Monitor HMD -4.934 -8.653 -1.215 -3.331 0.006**

* p < .05
Note. P-value and confidence intervals adjusted for comparing a family of 3 estimates (confi-
dence intervals corrected using the bonferroni method).

Table 4.3: Summary of the success rates by system and the associated statistics
Success Rate (%) US-only Monitor HMD χ2 P-value
Experts 67.7%* 64.5% 93.5%* 8.034 0.018*
Medical Students 25%* 25% 70%* 13.71 0.001*
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Table 4.4: Summary of insertion time and number of users who punctured the CA under each
mode of visualization.

System

Insertion Time US-Only Monitor HMD

Experts 11.46 ± 6.42 9.94 ± 10.45 7.82 ± 4.41
Novices 11.48 ± 7.45 12.23 ± 7.26 11.49 ± 6.47

CA punctures US-Only Monitor HMD

Experts 1 0 0
Novices 2 0 0

Table 4.5: User questionnaire results
Question Average Score

How viable is the HMD to use in the OR? 4.35
If the system was clinically available how often would you use it? 4.75
How useful do you think the HMD system would be for training
US-guided CVC?

7.04

How was the comfort associated with using the HMD? 7.64

4.4 Discussion

The experimental results demonstrate that the use of the HMD system to provide a first-person
MR visualization significantly improved the accuracy of the IJV needle insertion required for
CVC compared to the US-only system, for both expert users and medical students. Ninety-four
percent (93.50 % or 29/31) of expert clinicians performed successful IJV insertions using the
HMD system, an improvement from the US-guidance case where only 68 % (21/31) of expert
clinicians performed successful insertions (p=0.018). Seventy percent (14/20) of medical stu-
dents performed successful insertions when using the HMD system, compared to a 25 % (5/20)
success rate for the same cohort using the US-only system (Tab. 4.3).

The HMD system also enabled these participants to perform more consistent targeting of
the centre of the IJV compared to the US-only mode of visualization, for both expert users and
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medical students. The study results showed that the average distance between the final needle
position and the centre line of the IJV decreased from 7.9±4.50 mm to 5.4±2.30 mm (p=0.008)
when the expert users performed the insertion with the HMD-system instead of US-guidance.
The same trend was observed for novice medical students, where the average distance from the
vessel wall decreased from 14.5±7.10 mm under US-guidance to 8.0±4.20 mm under HMD-
guidance. Targeting the centre of the vessel is an ideal outcome for IJV cannulation as posi-
tioning the needle at the centre of the IJV decreases the risk of accidental punctures during the
guidewire insertion [9].

Between the US-only and the MR system displayed on the monitor, our data showed that
there was no significant improvement for either clinicians or novice medical students in terms
of targeting accuracy. In our monitor-based MR system, the virtual representations of a tracked
needle, needle trajectory, and US probe were visualized in a common coordinate system with
the calibrated free-hand US image. The pose of the US video was un-constrained, and par-
ticipants could adjust the vantage point freely, with most participants preferring an oblique
viewing angle for an improved 3D perception. These findings are consistent with the work
of Ameri et al. [2], who also found no significant improvements in the expert cohort when
monitor-based MR guidance was used compared to the US-only mode of visualization. Their
system maintained a stationary front-facing US image throughout the insertion to retain the
familiar view of US images on an US console [2], whereas in our system the user can select
an arbitrary 3D vintage point. In both systems, virtual representations of the tracked needle
and its trajectory supplemented the 3D view of the surgical scene, with the intention to provide
improved needle navigation. The lack of improvement in our monitor-based system and that
proposed by Ameri et al. is likely due to the decoupling between the clinician’s motor and
visual field the US console or a monitor was used as visualization devices.

In contrast, the use of HMD, delivering an MR guidance system using a first-perform
immersion vantage point, significantly improved the outcome of CVC insertion. The CVC
insertion success rate and accuracy (measured as the distance between the final tip location
to the centre line of the vessel and from the vessel wall) were improved when compared to
US-only guidance. These results emphasized the importance of using an HMD to ensure a
coherent visual and motor field during needle guidance. In the HMD, this is achieved by bring-
ing the needle guidance information directly into the line of sight of the clinician. While the
monitor-based system would be more readily be integrated into a clinical workflow, our results
suggested there are benefits for using an HMD for needle guidance, promoting the continued
pursuit of research related to the use of HMDs in similar clinical scenarios.

In terms of complication rates, there was no significant difference in the rates of CA punc-
ture between these 3 modes of visualization implemented for our experiment, as the overall
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rates of CA puncture were low. Despite the lack of significant differences we reported the
CA punctures for relevance. One expert and two novices punctured the CA and all punctures
occurred under US-guidance. The observed low rates of CA puncture are likely due to the sim-
plicity of our anthropomorphic neck phantom, as the IJV and CA had a simple orientation with
limited overlap as it is laterally positioned to the IJV (Figure 6.1). An additional experiment
designed to test the system on a more realistic and representative anthropomorphic neck phan-
tom is planned for future work. As depicted in Figure 6.1, the appearance and configuration
of the neck vasculature are variable. The utilization of US to guide needle insertion using has
the inherent inability to track the position of the needle tip once it is traversed beyond the US
image plane. In a realistic clinical scenario, the inadvertent posterior IJV wall punctures could
result in damage to a critical anatomical structure adjacent to the IJV, including CA, but it is not
observed often using our phantom. While our study did not show that the first-person immer-
sive MR system had a significant effect on the rates of CA puncture, the HMD system resulted
in a higher rate of successful insertions, as the participants positioned the needle closer to the
centre of the vessel with less posterior wall punctures when compared to US-only guidance.

The feasibility of using an HMD in a clinical setting is a critical concern for using the
first-person immersive MR for needle guidance. Results of the questionnaire responses sug-
gested that the first-perform immersive MR HMD system may be more impactful when used
for training rather than for clinical deployment, as on average these clinicians ranked the clin-
ical viability of the system a 4.35/10 compared to a 7.04/10 for usefulness for training. Most
clinicians indicated that they would consider using advanced visual guidance on a case-by-case
basis, as more complicated cases would benefit from a higher level of visual guidance. We are
currently utilizing the HTC VIVE Pro as a virtual reality display device even though it has
stereo cameras and can be used as an augmented-reality video-pass-through display. Incorpo-
ration of the stereo camera feeds for visual guidance may facilitate the clinical acceptability
of this first-person immersive technology, as the clinical would be able to visualize the guid-
ance information while maintaining direct views of the reality simultaneously. However, such
an approach is not feasible with current devices, as the stereo camera image resolution and
fidelity are low. Alternatively, hologram-based optical-see-through HMD devices such as the
Microsoft Hololens can be used, but extensive evaluation on accuracy tracking (camera hand-
eye calibration) and careful integration with optical- or magnetic- tracking systems would be
required.

Our results, in conjunction with those presented by Ameri et al., suggest that visualizing
the 3D spatial relationship of the surgical tools in a common coordinate system with a 2D
US image does not provide sufficient information for a user to perceive the 3D context of the
surgical scene, regardless of the viewing perspective of the US image. In contrast, screen-
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based systems that use 3D US information, have been developed and successfully applied to
focal liver tumour ablation [45], prostate brachytherapy [39], and breast biopsy [38] suggesting
there is a potential pathway to implement a clinical-feasible monitor-based guidance system for
CVC insertion. Developing and incorporating advanced 3D visualization technique to improve
3D perception using 2D monitor is one of the future projects. Alternatively, a tablet-based
display that could be situated closer to the surgical site could facilitate a more coherent visual
and motor field coordination.

4.5 Conclusion

This chapter describes the development of an advanced needle guidance system that renders
tracked tools such as the US probe, needle, and needle trajectory as well as the calibrated US
image on a 2D monitor or within an HMD. This research aimed to compare needle insertion
performance using US-only guidance, the advanced guidance system on a monitor, and the
advanced guidance system in the HMD. Thirty-one expert clinicians and 20 medical students
were trained on all three systems and then used each system to perform a needle insertion on the
phantom. The HMD system significantly improved the number of successful needle insertions,
as 94% clinicians and 70% of medical students had a final needle tip position within the vessel’s
lumen compared to 68% and 25% for US-only guidance, for clinicians and medical student’s
respectively. The HMD system also significantly improved the distance from the final needle
tip position to the central line of the vessel. Clinicians using the HMD system had an average
distance 5.40±2.29 mm compared to 7.90±4.51 mm using the US-only system, meaning that
they were consistently closer to the centre of the lumen of the vessel compared to the US-
only approach. The monitor system did not show any significant improvements compared to
the US-only system for either group, as it was limited by the 2D US information. The user’s
ability to interpret the relationship between the tools and anatomy is imperative to successful
needle navigation and can be achieved by using an HMD to align the visual and motor fields to
provide a 3D perspective.



Chapter 5

Automatic segmentation of the carotid
artery and internal jugular vein from 2D
ultrasound images for 3D vascular
reconstruction

This chapter is adapted from the following manuscript:

• Groves, L. A., VanBerlo, B., Veinberg, N., Alboog, A., Peters, T. M., & Chen, E. C.
S.(2020). Automatic segmentation of the carotid artery and internal jugular vein from
2D ultrasound images for 3D vascular reconstruction. International Journal of Computer
Assisted Radiology and Surgery, 15(11), 1835-1846.

5.1 Introduction

Percutaneous internal jugular vein (IJV) needle insertions are used to access the central venous
system [17], with carotid artery (CA) punctures being one of the most common and severe
complications that can occur during IJV cannulation [17]. Ultrasound-(US)-guided needle
insertions have the potential to reduce complications by providing clinicians with a real-time
cross-sectional view of the neck anatomy to visualize the relationship between the IJV and
CA in 2D [49, 134]. The high variability in human neck vascular morphology across the
patient population [49, 148] has motivated research efforts in the development of advanced US-
based surgical navigation systems [2, 50], along with the characterization of neck vasculature
morphology to further assist and improve central venous catheterization (CVC) [49, 148].

US imaging has been employed to analyze the effect of the anatomical relationship between

99
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the IJV and CA on CVC [49, 148] and the relationship between head rotation and diameter
of the vessels [95, 156]. For these applications, anatomical structures must be segmented
from the US images. Manual segmentation by an expert is the gold standard, but the process
is labour-intensive and susceptible to human error [108]. Patient data derived from 2D US
alone has limitations, as a single cross-sectional slice cannot adequately represent the entire
structure. One example of a measurement that requires 3D information, is the assessment of
the variability of the location of the CA bifurcation, which to date has been performed using
excised vessels from cadavers [82, 160]. Vascular dissection is a time-consuming process
that sacrifices the structural integrity and normal physiological properties found in vivo. The
preferred situation would be the use of 3D automatic segmentation of the vessels from US to
reflect patient positioning at the time of intervention.

The degree of manual analysis required to quantify trends in vascular anatomy has prompted
work such as automatic segmentation of the media-adventitia and lumen-intima boundaries
of the CA from 3D US images [164], the inner lumen of the CA in a longitudinal orienta-
tion [161], and CA plaques [150]. As far as we are aware, there is no method in the current
literature to simultaneously and automatically delineate both the IJV and CA within a 2D trans-
verse US image. Such a procedure would allow for the automatic analysis of the morphology
and anatomical relationships of these vessels, and to enable accurate reconstruction of 3D vol-
umes of the neck vasculature without exposing the patient to radiation, removing barriers for
further research on the morphology of neck vasculature. Other applications of these vascular
reconstructions include, but are not limited to, real-time intra-operative use or during preopera-
tive planning to augment guidance for CVC. Therefore, the secondary motivation of this work
is the development of 3D models of the vasculature, which could be used to develop a more
clinically relevant navigation system, while maintaining 3D information.

The U-Net Convolutional Neural Network (CNN) architecture has been applied to auto-
matically segment regions of interest associated with the CA [164, 150]. U-Net is a semantic
segmentation architecture, meaning the goal is to label each pixel in the image with a corre-
sponding class that was provided in training examples to obtain pixel-wise label maps [131].
Each pixel is classified as either belonging to the background or to one of the foreground classes
that were provided during training [131]. For certain U-Net applications, false segmentations
occur due to the inability of the network to differentiate between regions that contain pixels of
a specific class and regions that contain pixels with similar features to the class of interest. Two
methods to compensate for this issue of false segmentation include i) post-processing steps to
retain the largest segmentation [161], or ii) cropping the input to a region of interest (RoI) that
contains only the anatomy of interest [150]. Mask R-CNN is an alternative to U-net for au-
tomatic segmentation and was inspired by Faster R-CNN [58] for object detection [129]. The
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Mask R-CNN algorithm is capable of producing highly accurate segmentations as the archi-
tecture includes a Region Proposal Network (RPN) that determines possible bounding boxes
or regions of interest (RoI) and probabilities of the occurrence of each object class within
the bounding box [58]. The remainder of the algorithm predicts pixel segmentations within
each RoI [58]. Thus, the Mask R-CNN algorithm can automatically predict objects without
pre-processing to crop the image to a RoI. Mask R-CNN has recently been applied to med-
ical image processing tasks including the detection and segmentation of meniscus tears [31]
and segmentation of the prostate gland and prostatic lesions in MRI images [32]. Other ap-
plications include a modified Mask R-CNN for breast tumour detection and segmentation in
US images [81]. These successes have motivated the investigation of a Mask R-CNN deep
learning solution to automatically segment the CA and IJV from tracked 2D US images and to
reconstruct the 3D vessels’ surfaces for guiding intra-operative interventions.

The objectives of this chapter are twofold. First, we aim to develop an automatic segmen-
tation framework capable of delineating both the CA and IJV from transverse US images, with
an accuracy comparable to that obtained by manual segmentation. We then aim to formulate
a vessel reconstruction pipeline to utilize these automatic vascular segmentations and spatial
tracking to reconstruct the 3D geometries of the CA and IJV, with an accuracy comparable to
that provided by reconstructions from CT angiography. These capabilities have the potential to
automate vascular measurements in 2D and 3D and to improve US-guided needle interventions
by applying the algorithm during or after the scan.

5.2 Materials and Methods

5.2.1 Data Collection

All images were collected using an Ultrasonix US scanner (SonixTouch, BK Medical, USA)
with the L-14-5 Linear US transducer. As vascular structures can be as deep as 5.50 cm [49], an
imaging depth of 6 cm was used to acquire neck vascular US images to enable the inclusion of
all human vascular configurations. This US probe was spatially calibrated [20] and tracked us-
ing a magnetic tracking system (Aurora Tabletop, NDI, Canada). The US calibration provides
the spatial pose of the US image with respect to the magnetic tracker’s coordinate system.

The scanning protocol begins with the transducer placed between the two heads of the ster-
nocleidomastoid muscle just above the clavicle, and ends at the mandibular border, proceeding
in an inferior-to-superior direction. Nine normal control US scans of healthy volunteers were
performed by a medical student specifically trained in this procedure, with each subject being
imaged in two positions employed in clinical practice: supine on a horizontal table. A third-



102 Chapter 5. Automatic 3D US reconstruction of the CA and IJV

year anesthesia resident performed an additional 6 scans on patients in a local hospital, with
patients laying horizontally in a standard hospital bed. All data were collected with a sampling
rate of 60 frames per second. All participants were recruited with consent according to the
local REB regulation (Western University REB 114604). The CA and IJV were manually seg-
mented from these US images by a medical student with experience in US neck imaging using
3D Slicer, such that each image had a corresponding mask for the CA and IJV 1.

The complete data set comprises 2439 US images from 15 subjects containing cross-
sectional views of the neck vascular anatomy. The US images were stored as 8-bit bitmaps,
having pixel intensities in the range of [0, 255]. To validate our machine learning models a 4-
fold cross-validation approach was performed. First, this data set was partitioned into 4 unique
training, test and validation sets. Each training set comprised a unique combination of scans
and their masks from 11 subjects (70-78% of the data set). Each test and validation set con-
sisted of unique combinations of images from both a normal control and a patient, as well as
their respective labels. The test and validation sets comprise 15-23% and 5-7% of the data set,
respectively. The number of images included in each data set is summarized in Table 5.1. The
number of images within the sets differs for each fold as the number of images associated with
each scan varies due to differences in subject anatomy, as the scanning protocol was defined
based on anatomical landmarks rather than a specific scan length. The data sets were parti-
tioned such that all images from the same subject are isolated to the same set resulting in a
slightly different number of images in each set. All images included in either the test and or
validation sets were excluded from the sets used to train the network, as they were employed
solely for evaluation to avoid bias. Each of these training sets was augmented by randomly
scaling by a factor in the range 0.80 to 1.20 and rotating by an angle in the range of −15° to
15°, to produce images that represent possible variation that may occur during scanning. These
transformations were automatically applied during training. During this process, these test and
validation sets were used to evaluate the Dice Score of the trained model to form a baseline
accuracy across normal and patient data. However, for analysis, the images within the training
and test sets for each fold were reorganized based on whether they had been derived from a
normal control or patient subject. The images that comprise these control and patient data sets
were not used to train the fold that they would be evaluating. These control and patient im-
ages were analyzed using the Dice score, recall, and precision. This control patient split was
selected to provide a more in-depth analysis of the applications of these networks on control
and patient data independently, as well as on the overall accuracy across a mixed cohort.

1https://github.com/VASST/AIVascularSegmentation

https://github.com/VASST/AIVascularSegmentation
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Table 5.1: Summary of number of images allocated to each data set used to train and evaluate
the networks. The percentage of normal control images in the training, test and validation sets
are denoted in brackets. The number of normal and patient images for each fold are the images
that were used to evaluate the networks.
Dataset Fold A Fold B Fold C Fold D
Training Images 1717 (81%) 1799 (81%) 1902 (87%) 1819 (81%)
Test Images 552 (95%) 475 (88%) 352 (80%) 481 (83%)
Validation Images 170 (53%) 165 (47%) 185 (42%) 139 (53%)
Control Images 623 498 360 474
Patient Images 99 142 177 146

5.2.2 Deep Learning Segmentation

Computational hardware used for training the networks included an Intel® Xeon® E5-2683 v4
CPU workstation running at 2.10 GHz and 2 NVIDIA® Tesla® P100 GPUs, each with 12 GB
of memory. All code was written in Python and executed on SHARCNET (Compute Canada’s
high-performance computing network). We trained two neural network models: one with the
Mask R-CNN architecture, and one with U-Net CNN for automatic vessel segmentation [58].
Both networks were trained using identical data sets. Memory and computational requirements
during training and inference were decreased by resampling the images from 589 × 374 to
256 × 256 pixels with bilinear interpolation.

The implemented U-Net architecture was motivated by the standard U-Net encoder-decoder
architecture [131]. The encoder consisted of 3 blocks of 2 convolutions with a kernel size (k)
of 3, followed by a max-pooling layer with k = 2. The bottleneck comprised 2 consecutive
convolutions with k = 3, while the decoder used 3 blocks of up-convolutions and 2 subsequent
convolutions with k = 3. The decoder’s blocks also received residual connections from the
output of blocks in the encoder of the same shape. ReLU was used as the activation function
for all intermediate layers. The output layer was a single convolution with k = 1 that employed
the softmax activation function over the background and classes, producing an output with the
same dimensions as the input image. The network was trained to minimize the categorical
cross-entropy loss function. The learning rate (α) was set to 0.0001 at the start of training.
During training, if the validation loss did not decrease after the most recent 3 epochs, α was
multiplied by 0.50. To encourage regularization, early stopping was applied to halt training
when the validation loss did not decrease during the 10 most recent epochs [122]. Each fold
was trained over the following number of epochs: set A ran for 33 epochs, set B ran for
19 epochs, set C ran for 27 epochs, and set D ran for 19 epochs. As U-Net is susceptible to
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false segmentations, a connected-component post-processing algorithm was applied to keep the
largest connected segmentation for both the IJV and CA and remove all other segmentations,
as described in work by Xie. et al. [161].

Figure 5.1: The Mask R-CNN architecture depicting the CNN backbone, the Region Proposal
Network, and the RoIAlign Layer. The “box head” is a series of Fully Connected layers that
outputs the predicted class and bounding box for each object. The “mask head” outputs binary
segmentation masks for each object instance.

A Mask R-CNN model requires ground truth segmentation masks and bounding boxes for
training. The bounding boxes were generated automatically by calculating the smallest rect-
angle that would enclose an individual vessel segmentation, defined by a 4-tuple consisting
of two (x, y) coordinate pairs. The input to the Mask R-CNN model was the resized raw US
image. The output of the model was a series of 256 × 256 masks, bounding boxes, and classes
for each predicted vessel instance. In the rare case that there were more than two object masks
predicted by the network, we considered only the two predicted with the highest confidence.
The code to define and train the neural network model was adapted from Matterport’s Mask
R-CNN implementation, which was built using the Keras library with the TensorFlow back-
end [59]. No changes were made to the core Mask R-CNN architecture. Our model segments
objects of two classes: CA and IJV. Although the image background may be considered as
a third class, no background segmentation masks are predicted by the network. Matterport’s
implementation [59] offered the choice between ResNet-50 and ResNet-101 as the backbone
of the network. ResNet-50 was chosen here because it contains significantly fewer parame-
ters, lending itself to faster training and prediction time [57]. Multiple hyperparameters were
tuned by performing several training experiments and adjusting the value of one while keeping
others constant. The square anchor boxes used in the RPN had side lengths of 8, 16, 32, 64,
and 128 pixels. Sixty-four regions of interest (RoIs) were fed to mask and classifier heads of
the network for each image. The RPN non-max suppression threshold was set to 0.70, while
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the learning rate (α) was set to 0.001 at the start of training. During training, if the validation
loss did not decrease after the most recent 15 epochs, α was multiplied by 0.75. The batch
size was 16 and was spread equally across 2 GPUs during training. The model was trained for
100 epochs to minimize the Mask R-CNN loss function L = Lcls + Lbox + Lmask, where Lcls and
Lbox are defined as they were for Fast R-CNN [58], Lcls is the categorical cross-entropy loss for
object classification, and Lbox is the smooth L1 loss for bounding box localization [47]. Local-
ization is defined as a 4-tuple consisting of an (x, y) coordinate, width, and height. Lmask is the
mean per-pixel binary cross-entropy loss across segmentation masks for both classes [58]. The
neural network was trained to minimize the loss function, with the object segmentation with
the highest probability being selected for each class.

5.3 Vessel reconstruction

The automatically segmented label masks and the spatial tracking of the US probe were used
to reconstruct the vessels in 3D. The probe tracking data was adjusted using the probe calibra-
tion provided the pose of each image with respect to the 3D spatial tracker’s coordinate system,
such that the automatic segmentations are positioned with respect to the field of view of the im-
age from which it was captured. Three-dimensional binary morphological hole filling, with an
annulus-shaped kernel of size [30, 30, 30], was used to fill the gaps between the slices [140].
A 3D Gaussian blur filter with an α of 0.50 was applied to smooth the vessels, as visually
depicted in Fig. 5.2. The four trained Mask R-CNN algorithms were used to obtain surface
reconstructions on one of the patient left-side scans that was not used to train or evaluate any
of the folds. As the US scanning protocol consistently collected scans beginning just superior
to the clavicle, the CT segmentations started just superior to the clavicle and ended at approxi-
mately the same location as the most superior US image. The point data was extracted from the
US and CT reconstructed vessels and was used to solve a rigid surface-based registration using
an iterative closest point algorithm [8] to place the models in a common coordinate system for
comparison. The reconstruction algorithm was evaluated through surface-to-surface distance
comparisons between the US and CT reconstructed vessels after registration. The volume and
surface area (SA) of the reconstructed vessels from US and CT were calculated and expressed
as a ratio of the metric extracted from US to that extracted from CT, where the smaller value
of the two was used as the numerator such that the ratios would be less than 1 to not bias the
average.
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Figure 5.2: Visual depiction of the reconstruction process. The left-most figure shows a
calibrated US image positioned and scaled to the true field-of-view of the US beam. The
second graphic demonstrates a segmented and calibrated US image, where the CA and IJV have
been delineated. The third panel depicts a vascular skeleton where each image in the tracked
scan has been segmented and spatially positioned using the calibration to form a skeleton.
The final figure depicts the closed surface reconstructed vessels after the application of binary
morphological hole filling and Gaussian blur smoothing.

5.4 Results

Four-fold cross-validation was performed, whereby all 2439 collected and segmented images
were allocated into training, test, and validation sets in four unique combinations. During
training, the test and validation sets each comprised one patient and one normal control scan.
The images that were excluded from training were reorganized into patient and control data sets
for evaluation. The manual and automatic segmentations produced by the Mask R-CNN and
U-Net algorithms were compared by calculating the Dice Score, recall, and precision across
each class are summarized in Figures 5.3 and 5.4, for the CA and IJV respectively. The average
Dice, recall and precision values across all folds and all evaluation images are summarized in
Table. 5.2. Four sample images were selected to show the potential issues that occur with the
U-Net segmentation and post-processing are depicted in Fig. 5.5.
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Figure 5.3: Average Dice, Recall, and Precision for the CA from each of the four-folds. These
results are reported separately for normal and patient data.
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Figure 5.4: Average Dice, Recall, and Precision for the IJV from each of the four-folds. These
results are reported separately for normal and patient data.

Table 5.2: Summary of the Dice, Recall, and Precision averaged across the patient and control
data from all four-folds for the raw U-Net, post-processed U-Net, and Mask R-CNN. These
data are presented for the IJV and CA separately.

Metric U-Net Raw U-Net Processed Mask R-CNN
IJV

Average Dice Score 0.60 ± 0.26 0.71 ± 0.23 0.88 ± 0.14
Average Precision 0.59 ± 0.28 0.63 ± 0.25 0.85 ± 0.15

Average Recall 0.72 ± 0.25 0.92 ± 0.12 0.92 ± 0.14
CA

Average Dice Score 0.64 ± 0.23 0.81 ± 0.21 0.90 ± 0.08
Average Precision 0.74 ± 0.25 0.78 ± 0.23 0.88 ± 0.10

Average Recall 0.62 ± 0.24 0.89 ± 0.16 0.93 ± 0.09
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(a)

(b)

(c)

(d)

Figure 5.5: Four sample images with their respective outputs from the Mask R-CNN and U-
Net with and without processing. Row a) shows an example of a small cluster of misclassified
pixels from the U-Net. Row b) provides an example of a large group of pixels that have been
misclassified as CA when they should be IJV in the U-Net output. Row c) depicts a vessel-like
structure that has been misclassified as the IJV and the post-processing algorithm selecting
this false segment as the IJV. Row d) depicts an image that has accurate outputs across all 3
algorithms. Despite the U-Net output from images a-c containing erroneous segmentation, the
Mask R-CNN produced accurate segmentations across all sample images.

The surface-to-surface distance between the registered vessel models from all four-folds
are depicted in Fig. 5.6 and 5.7, where colours progress from blue (cool) to red (hot) as the
distance increases. The SA and volume ratios of the values extracted from the four Mask
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R-CNN reconstructions and the CT vessels and the average are summarized in Table 5.3.

Figure 5.6: IJV surface-to-surface distances between the reconstructed US and the ground truth
CT for all four-folds. The colour progresses to warm colours as distances increase.

Figure 5.7: CA surface-to-surface distances between the reconstructed US and the ground truth
CT. The colour progresses to warm colours as distances increase.
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Table 5.3: Summary of the SA and volume ratio between the metrics produced from the US
reconstructions from the four trained networks to the metrics extracted from the CT segmented
vasculature.
Fold Fold A Fold B Fold C Fold D Average
CA SA ratio 0.97 0.84 0.96 0.98 0.94
IJV SA ratio 0.94 0.85 0.81 0.93 0.88
CA volume ratio 0.87 0.70 0.94 0.93 0.86
IJV volume ratio 0.95 0.82 0.75 0.93 0.86

The four representative vasculature reconstructions are visualized with respect to the cal-
ibrated US image for reference in Fig. 5.8. These subjects did not have associated neck CT
scans and therefore a more comprehensive analysis could not be performed.

(a) (b) (c) (d)

Figure 5.8: Each letter (a, b, c, d) represents a unique human subject who was not used to train
the algorithm used to produce the segmentations.

5.5 Discussion

This work aimed to develop a pipeline that produces automatic vascular reconstructions for
the CA and IJV from tracked transverse US scans, for the purpose of vascular morphology
analysis or surgical navigation. In this work, we compare U-Net and Mask R-CNN algorithms,
both capable of automatically segmenting the CA and IJV from transverse US images. The
automatic segmentations produced eliminate the requirement for manual delineation of vessels
to obtain vascular measurements. The Mask R-CNN segmentation algorithm was used within
a vascular reconstruction pipeline that outputs closed 3D surface models of the vessels which
can be used for 3D vascular morphology analysis or surgical navigation.

U-Net is a semantic segmentation algorithm where each pixel is assigned to a class. Our
implementation produces a label map, where each pixel has been assigned to one of three
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classes: background, CA, or IJV. The raw output of the U-Net may produce multiple clusters
of pixels labelled as either the CA or the IJV, with some pixels being misclassified as seen in
Fig. 5.5. These erroneous segmentations motivated the use of a post-processing step to identify
one segmentation for each of the CA and IJV classes. A major factor that contributes to the
high number of false segmentations is the non-unique appearance of the neck vascular struc-
tures under US. The CA and IJV are vascular trunks with several branching vessels that have
similar features under US. The CA and IJV are the major vascular structures in the neck and
should be the largest vascular structures in the US images acquired. For this reason, similar
to the work of Xie. et al. [161], we applied a post-processing step that identifies the largest
connected component for each of the CA and IJV classes. The average dice score for the CA
and IJV for the post-processed U-Net are 0.71 ± 0.23 and 0.81 ± 0.21, respectively. Applying
this post-processing step to the U-Net segmentations improved the Dice Score by 0.11 and
0.17 compared to the raw U-Net output, for the IJV and CA respectively. This post-processing
algorithm fails in cases where an erroneous segmentation has the largest number of connected
components, and thus the post-processing selects the wrong cluster of pixels (Fig. 5.5c). More-
over, the U-Net output commonly misclassifies pixels between the CA and IJV (Fig. 5.5b), an
issue that would persist regardless of the post-processing algorithm applied. Both of these is-
sues contribute to the small change in Dice scores. As the accuracy of the post-processed U-Net
was still lower than desired, for this application we investigated the use of Mask R-CNN.

The Mask R-CNN contains a regional proposal sub-network that identifies bounding boxes
within the image where segmentations are most likely to occur. The algorithm then segments
these structures within the bounding box and returns a probability that they belong to the class
to which they have been assigned by the label. The output of our Mask R-CNN algorithm
selects the segmentation with the highest probability of belonging to the CA or IJV class.
Thus, our algorithm returns a single fully-connected segmentation for the CA and IJV based
on a trained statistical probability with a reduced number of misclassified pixels. The average
dice score for the IJV and CA for the Mask R-CNN are 0.88±0.14 and 0.90±0.08, respectively.
The Mask R-CNN improved the Dice Score by 0.17 and 0.09 compared to the post-processed
U-Net, for the IJV and CA, respectively. Mask R-CNN provides an alternative to U-Net and is
particularly beneficial for segmentation problems where there are many structures that contain
similar features to the objects that aim to be segmented. Mask R-CNN does not require any
pre- or post-processing steps, as the RPN selects the segmentation based on the statistical
probability associated with the bounding box and thus the entire object segmentation, rather
than a per-pixel basis. We note that while Mask R-CNN provides more accurate segmentations
compared to U-Net, it does so at a higher cost of computational requirements. With advances
in modern GPU hardware, the potential to execute Mask R-CNN for vascular reconstruction in
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real-time is high. Overall, the Mask R-CNN achieved average Dice Scores, recall and precision
of values above 0.85, which are sufficiently accurate to be used for vascular reconstruction and
measurements pertaining to the relationship between vessels.

We used all four trained Mask R-CNN networks to obtain vascular US surface reconstruc-
tions of the CA and IJV on a patient scan that was not part of the training or evaluation data sets.
Each reconstruction was compared to a manually segmented CT scan of the same patient’s vas-
culature, using a surface-to-surface distance analysis (Fig 5.6 and 5.7). The reconstruction of
the CA is slightly more accurate than the IJV, as the IJV is susceptible to deformation under the
pressure of the US probe during scanning, and thus is more representative of the true accuracy
of the reconstruction. We calculated the ratio of the SA and volume values extracted from the
US to the values from the CT reconstructed vessels, as summarized in Table. 5.3. On average,
the SA ratio was 0.94 and 0.88, for the CA and IJV respectively. The average volume ratio was
0.86 for both the CA and IJV. The errors present in the Mask R-CNN results are typically in the
form of a loss of detail at the border of the vessel lumen, details that have minor effects on the
ability to use these reconstructions for surgical navigation or vascular measurements. With the
majority of points being within 2 mm of the CT reconstructed vessels and with sub-millimetre
differences in resulting registration metrics, this algorithm is capable of producing accurate
vascular reconstructions.

The US-based vascular reconstruction pipeline using Mask R-CNN could be useful for
a variety of applications. We believe US-guided central line insertions may benefit from the
integration of 3D reconstructed vasculature into advanced surgical navigation systems. This al-
gorithm can also be used to quantify the relationship between the CA and IJV in 3D to expand
upon the 2D vascular morphology research previously performed [49, 148]. Additionally, the
multi-class segmentation using Mask R-CNN can trivially be extended to include additional
pathologies or reconstruct various anatomical structures. One possible extension is the seg-
mentation of calcified plaques which have a non-unique appearance in US images, and relying
on a network such as U-Net or algorithms based on feature detection would likely result in
many incorrect segmentations of plaques. As the size of plaques can vary drastically, a more
rigorous post-processing selection algorithm would be required. The Mask R-CNN is more
suitable than U-Net for this type of application, as it provides a statistical method for selecting
the appropriate segmentation, which is important for multi-class segmentation problems where
features are not inherently unique to the structure of interest.
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5.6 Conclusions

In this work, we compared Mask R-CNN and U-Net algorithms developed to automatically
segment the CA and IJV from transverse US images. The Mask R-CNN algorithm was more
accurate than the U-Net alternative and achieved average Dice scores of 0.88 ± 0.14 and
0.90± 0.08, for the IJV and CA respectively. The Mask R-CNN-based vascular reconstruction
pipeline was accurate compared to the CT equivalent, with the majority of measured distances
between the surfaces being less than 2 mm. These reconstructions were able to produce accu-
rate metrics with the average ratio of the volume produced by the US, to the volume produced
by the CT, being 0.86 for both the CA and IJV. This work can be used to analyze neck vascu-
lature morphology in both 2D and 3D. Furthermore, the 3D models can be used for surgical
planning or surgical navigation. Overall, we have developed and evaluated a highly accurate
Mask R-CNN algorithm for instance segmentation of the CA and IJV in transverse US images,
which can be used for vascular reconstruction.



Chapter 6

Improving central line needle insertions
using in-situ vascular reconstructions

This chapter is adapted from the following manuscript:

• Groves, L. A., Li, N., VanBerlo, B., Veinberg, N., Peters, T. M., & Chen, E. C. (2020).
Improving central line needle insertions using in-situ vascular reconstructions. Computer
Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 1-7.

6.1 Introduction

Central line insertions at the site of the internal jugular vein (IJV) are prone to high-risk com-
plications, such as carotid artery (CA) puncture, with clinical CA puncture rates around 7 %
for US-guided cases [93]. To address these high complication rates in Chapter4, an advanced
surgical navigation system was developed that visualized tracked models of the needle, needle
trajectory, and US probe in a common frame of reference with the tracked and calibrated US
image. This system was rendered in an HMD and on a screen, and a cohort of 31 clinicians
and 20 medical students tested the systems to evaluate if they provide more accurate targeting
compared to US-guidance for needle puncture into the IJV. The system displayed in the HMD
demonstrated significant improvements in the success rates and targeting accuracy compared to
US-only guidance [50]. However, when the system was displayed on the monitor in a 3D per-
spective, there was no significant difference in insertion accuracy compared to US-guidance. In
general, the clinical practitioners that evaluated our system believed that the use of an HMD is
not clinically viable, and has a preference for the screen-based system. The lack of significant
improvements with regard to targeting accuracy for our screen-based system, as well as a sim-
ilar screen-based system developed by Ameri et al. [2] compared to US-guidance, illustrated
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that the inclusion of spatially tracked models of the needle in a common coordinated system
with a tracked and calibrated 2D US image does not provide sufficient guidance for central line
insertions. While these systems provide additional visual information, human’s ability to per-
ceive 3D visual information rendered on a 2D monitor is extremely limited [10]. The human
visual perception system has to rely on monocular (2D) cues, such as occlusion, relative size,
and shadows, to interpret the 3D relationship between objects when viewing information on a
monitor [10]. When the system was rendered in the HMD the users were provided with a more
intuitive 3D understanding of the relationship between the anatomical targets and the surgi-
cal instruments resulting in higher success rates. Thus, to develop an advanced monitor-based
surgical navigation system for central line insertion the visualization must provide an intuitive
relationship between the needle and vessels in 3D.

We hypothesize that visualizing 3D Z-buffered models of the anatomy, along with tracked
models of surgical tools, will improve the targeting success of the needle insertion for CVC
compared to the standard US-only approach. The contributions of this work are the develop-
ment of an advanced needle guidance system for use in a clinical setting, which was evaluated
for feasibility by 20 expert clinical practitioners. In this chapter, I build on the work described
in Chapter 5 to develop an image-guidance platform that addressed the limitations outlined in
Chapter 4. This system provides a method to reconstruct the neck vasculature in 3D without
the use of ionizing radiation, which facilitates accurate needle guidance without causing harm
to patients. This system provides 3D reconstructed anatomy visualized in such a manner that
the position of the needle with respect to the vessel is obvious to the operator.

6.2 Materials and methods

6.2.1 System development

The equipment used to develop our 3D virtual-reality surgical guidance system comprises a
magnetic tracking system (Aurora, NDI, Canada), a clinical US scanner (IE-33, Philips, USA),
and a tracked surgical hypodermic 7 cm metallic needle with a 10 ml syringe. A linear trans-
ducer (L15-7io, Philips, USA) was used to acquire real-time images of the phantom at an
imaging depth of 6 cm. The magnetically tracked US transducer was calibrated using the Pro-
crustean point-to-line registration method [20] with manual localization described in Chap-
ter 2, and the surgical needle was calibrated using a template-based approach [25]. A phantom
comprising two hollow (wall-less) vascular structures representative of the CA and IJV, em-
bedded in polymerized Poly (vinyl alcohol) cryogel (PVAc) [145], was constructed (Fig. 6.1a).
The phantom construction process is outlined in the work performed by Ameri et al. [2], as
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well as in Chapter 4. In short, 3D printed models of the CA and IJV were embedded into
non-polymerized PVAc. These models were extracted from the phantom after it underwent
two freeze-thaw cycles to polymerize the PVAc. This phantom serves as a surrogate for patient
anatomy, producing US images where the CA and IJV can be interpreted by the user (Fig. 6.1a).
The phantom was housed in a container with eight 6.35 mm diameter hemispherical divot and
an NDI 6 Dof reference disk sensor fixed to the outside. This phantom was imaged with a CT
scanner and the vascular structures were segmented from the resulting images to provide CT
representations of the vessels, which were only used for part of the analysis of the targeting
task. The vascular structures from the CT scan were not used for guidance and were not visible
to the user at any point in the experiment. The positions of the hemispherical divots were man-
ually extracted from the CT scan. These hemispherical fiducials were also digitized such that
their position was known with respect to the reference sensor fixed to the phantom bin using
a magnetically tracked and pivot calibrated ball tip stylus [163] with a conforming 6.35 mm
diameter. A fiducial-registration was applied to the fiducial pairs to solve for the relationship
between the phantom’s and the tracker’s coordinate systems using a least-squares solution [5].
The US transducer, neck phantom, and surgical needle were magnetically tracked, spatially
calibrated, and registered into a common coordinate system as depicted in Fig. 6.4.

(a) (b) (c)

Figure 6.1: a) depicting the phantom mould, b) depicting an US scan of the phantom vascula-
ture and b) depicting an US of human vasculature

As presented in Chapter 5, we developed a Mask R-CNN algorithm to automatically seg-
ment the CA and IJV from 2D transverse US images [53]. This algorithm achieved an average
Dice score across a four-fold cross-validation on human data of 0.88 and 0.90, for the IJV and
CA segmentations respectively [53]. These data sets used to evaluate the network were not used
for training and contained images of healthy subjects and patients. The reconstruction pipeline
is as follows: each image in the tracked scan is segmented by the Mask R-CNN algorithm;
each segmentation is calibrated to its corresponding spatial location to form a skeleton of the
vessel; a binary morphological closing filter with an annulus kernel shape of size [30,30,30] is
used to fill the gaps between slices; a Gaussian blur with a 0.50 mm kernel is applied to smooth
the models. Examples of the automatic segmentation and its corresponding reconstruction on
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a healthy human subject are depicted in Fig. 6.2.

(a) (b) (c) (d)

Figure 6.2: a) and b) depict vascular reconstructions from human US, with a needle super-
imposed on the scene to provide an example of the system for human vasculature. c) and d)
provide example vascular segmentations, where image d) also contains a markup that is repre-
sentative of the needle tip pose from images a) and b).

To integrate the US reconstructed vasculature into our system, the vessels in the phan-
tom were reconstructed in 3D using our reconstruction pipeline developed in Chapter 5. The
phantom that was developed is a simplified version of the neck anatomy containing only rep-
resentative IJV and CA structures and none of the additional anatomy present in human scans.
Visually the appearance of the phantom under US provides representations of the human neck
vasculature that allow a user to perform US-guided insertions and this type of phantom has been
used previously for central line insertion studies [2, 50]. However, on a pixel level, the features
present in US scans of the phantom differ from human scans as PVAc produces slightly differ-
ent pixel intensities compared to human tissue. Additionally, human neck US images contain
other anatomies such as the neck muscles and other vessels that are not present in the phantom.
Thus, the Mask R-CNN algorithm trained on human data did not achieve the same accuracy
on the phantom. As this work aims to quantify the usability of 3D anatomy to guide US in-
sertions, and not the accuracy of the phantom segmentations or reconstructions compared to
human anatomy, the Mask R-CNN model was retrained on phantom images. A training set was
developed by scanning a phantom with US and manually segmenting the vessels. This process
resulted in 223 images and manually segmented labels that were used to train a phantom Mask
R-CNN algorithm. A second phantom was developed using the same protocol described above.
A scan of the new phantom produced a validation set of 215 images, which along with their
manual segmentations, were used to evaluate the phantom Mask R-CNN algorithm. The Mask
R-CNN achieved a Dice score of 0.99 for both the IJV and CA segmentations on the valida-
tion set. Since the methods used to develop the phantom were designed to be reproducible the
two phantoms are nearly identical resulting in high accuracy. Again as the goal of this paper
is not to analyze the accuracy of the Mask R-CNN phantom segmentation algorithm, as it is
only to be used to obtain the vascular reconstruction for this study, a more robust accuracy
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analysis was not performed. This network trained on phantom images was used in place of the
network trained on human data within the pipeline to produce reconstructions of the CA and
IJV. As these vascular models were produced using a calibrated US probe, they were obtained
with respect to the tracker’s coordinate system and thus are inherently registered to a common
coordinate system with the tracked models of the surgical tools and calibrated US images.

While the clinical deployment of this system would require the clinician to perform the ves-
sel reconstruction in situ just prior to the insertion of the needle, for this validation study, the
vascular reconstruction was performed before the experiment, to keep the evaluation environ-
ment consistent between users. This is justified as the neck phantom is static and anatomical
variations such as the effect of neck rotation were not simulated. The system comprising the
3D models of the IJV, CA, and the tracked tools were rendered on a 2D monitor. The CA was
displayed as a fully opaque surface in red, and the IJV was displayed as a blue wire-frame
model. Visualizing the IJV as a wire-frame model takes advantage of the standard computer
graphics rendering pipeline relating to the computation of Z-buffer values. The Z-buffer is also
known as the depth buffer as it improves depth perception of objects in simulated 3D environ-
ments by rendering overlapping virtual objects based on their depth (Z-value) with respect to
the particular perspective of the virtual observer (virtual camera) such that the relative depth
between objects can be interpreted. When objects are rendered in a simulated 3D environment
on a 2D screen, multiple objects may have overlapping [X,Y] pixel coordinates, such that they
occupy the same pixel location on the screen. However, as the scene is derived from 3D in-
formation these objects also have an associated Z or depth value. Z-buffering requires a depth
test where if two objects occupy the same [X,Y] pixel location their Z-values are compared
and the lowest Z-value is included in the Z-buffer. This process is repeated for all overlap-
ping objects in the scene, such that the scene can be rendered with intuitive depth perception
as closer objects occlude objects that are farther away from the virtual camera. The Z-buffer
enhances depth perception as occlusion is one of the major monocular cues used by the human
visual perception system to understand the relative depths of objects based on 2D information.
Fig. 6.3, illustrates how rendering our 3D scene using a Z-buffer improves the 3D perception
compared to rendering the scene with no depth culling. The appearance of the needle mesh
changes naturally when it is situated between, in front or behind the wire-frame of the vascula-
ture with respect to the viewing direction of the virtual camera, as seen in Fig. 6.4. This allows
the user to have an intuitive 3D perspective based on the Z-buffer rendering and relative occlu-
sion of the needle model, needle trajectory, and the IJV model. Rendering our VR scene using
Z-culling allows the user to position their needle and trajectory in the centre of the vessel based
on the relative colour change of the needle produced by the blending of the colours of the two
overlapping virtual objects. If the needle is on the periphery of the vessel model, as depicted in
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Fig. 6.4 a) and b), only a small portion of the needle appears blue. Performing the insertion at
the position where the needle trajectory is maximally blue ensures the needle is centred within
the vessel (Fig. 6.4 c). In addition to providing a more intuitive depth perception, Z-buffer
rendering does not incur any additional computation cost during the rendering process.

Figure 6.3: Visual comparison between using a wireframe and a solid but translucent model to
visualize the IJV. This figure compares visualizations with: the needle and trajectory in front
of the IJV, the trajectory intercepting the IJV, the needle and trajectory behind the IJV, and the
needle and trajectory intercepting the IJV.

Figure 6.4: Visual depiction of how to position the needle at the centre of the vessel, where
a) and b) depict the needle trajectory at the periphery and c) depicting the trajectory centred
about the vessel through optimizing the amount of needle trajectory that is rendered blue.
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During the experiment, the pose of the user’s vantage point with respect to the vasculature
remained consistent in a longitudinal orientation. This orientation replicated the vantage point
of the clinicians when performing clinical central venous catheterization. The US and CT re-
constructed surfaces were compared using a nearest neighbour Euclidean distance approach
(Fig. 6.5 [46]. The discrepancies between the CT and US derived vascular models are mainly
attributed to the pressure applied at the contact surface between the probe and phantom dur-
ing US scanning. In our phantom design, the IJV is positioned superior to the CA within the
phantom and is, therefore, more susceptible to deformation. The average diameter of the IJV
reconstruction is 4.20 mm and 3.30 mm, for the US and CT respectively. As the IJV is also
deformable in humans this system would require the patient to be imaged in the Trendelenburg
position, which is commonly employed for IJV puncture during central venous catheteriza-
tion [157]. Trendelenburg position requires the patient to be supine on the table with their
head declined below their feet at an angle of roughly 16°, which allows the vessel to distend
reducing the amount of deformation during scanning.

(a) (b)

Figure 6.5: Histogram of the surface distance between the CT and US reconstructions of the
phantom CA (a) and IJV (b)

6.2.2 Experimental Methods

Twenty clinicians with US-guided CVC training, who had performed over 15 clinical inser-
tions, were recruited for this study. On average our participants had performed 211.44±150.08
central line insertions with an average of 7.86 ± 4.93 years of experience. All participants
were recruited with consent according to the local REB regulation (Western University REB
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114734). Each participant was randomly assigned either the US-only or screen-based system
as their first experienced system in a counter-balanced design. Each participant was given oral
introductions relating to the system, and they were allowed a single training insertion using
the system to which they were initially assigned. The user then performed an experimental
insertion, in which the imaging and tracking data of the needle and probe were recorded. This
process was then repeated for the second system. The experimental configuration is depicted
in Fig. 6.6, where sub-figure a) is the tracked needle and its calibration block and sub-figure b)
is the tracked and calibrated US probe. To keep the environment consistent between the two
guidance methods being employed, a single monitor was used to display either the US image
or the 3D system depending on which system was being employed. Following the experiment,
each user completed a questionnaire pertaining to the 3D surgical navigation system, which is
included in Appendix A Fig. A.2. As the phantom model is deformable all users were required
to use the US probe to apply pressure to the phantom regardless of the navigation system being
used. The requirement to maintain the use of the US probe during the insertions performed
with the advanced navigation system allows for coordination between the tool and the probe to
be a factor in both insertions. The use of the US probe during navigation would be required in
a clinical scenario such that the portion of the vessel being imaged by the US probe would be
continuously segmented and updated in real-time and allows for the calibrated US image to be
integrated into the visualization.

(a) (b)

Figure 6.6: Experimental setup for a) the 3D system and b) US-only guidance. Where A is the
tracked syringe and its tracked calibration block, and B is the tracked and calibrated US probe.
This figure is drawn from the point of view of the user.

Several metrics were derived using the recorded tracking data for each insertion, these
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metrics are consistent with those used in Chapter 4. The selected metrics include the time from
the initial needle position on the surface of the phantom to their final needle placement; the
insertion success defined as the final needle tip position within the vessel wall with respect
to both the US and CT reconstructions; and the shortest distances from the final needle tip
position to the IJV centre line [65] and the IJV wall with respect to both the CT and US
reconstructions. The distance from the vessel wall was a signed result as was labelled as
negative if the needle was outside the vessel lumen, thus a large positive result represents an
insertion within the vessel, but far from the vessel wall. The results provided with respect to the
US reconstruction are more telling than those provided with respect to the CT, as the clinicians
were required to maintain pressure on the phantom with the US probe. The use of the CT
vascular models is to provide an additional metric for accuracy, the discrepancies between the
CT and US reconstructions should not have a major effect on our study as the CT information
is never visualized to the user. All of the continuous metrics (time and distance) were deemed
to be normally distributed following an Anderson-Darling test allowing statistical differences
between means to be analyzed using a paired t-test. Since the insertion success is a discrete
event, the McNemar Chi-squared test with Yate’s correction was employed.

6.3 Results

The results, including time, the distance from the centre line (DFCL) of the US and CT re-
constructions, the distance from the vessel wall (DFVW) of the US and CT reconstructions,
and the number of successful insertions (SI), are summarized in Table. 6.1. The questionnaire
results are summarized in Table. 6.2.

Table 6.1: Vessel targeting results for the US-only and 3D guidance systems across time,
distance from the centre line (smaller is better), distance from vessel wall (larger is better), and
number of successful insertions, all with respect to the US and CT reconstructions. Bold faced
values are considered the better result.

US-Only 3D System P-value
Metric Mean ± S td CI(95%) Mean ± S td CI(95%)

Time(sec) 20.5 ± 9.8 [15.9,25.0] 10.4 ± 5.5 [7.8,13.0] <0.001***
US DFCL(mm) 4.2 ± 2.9 [2.9,5.6] 1.8 ± 0.9 [1.3,2.2] 0.002**
CT DFCL(mm) 3.6 ± 2.0 [2.7,4.5] 2.1 ± 1.3 [1.5,2.7] 0.02*
US DFVW(mm) 0.7 ± 4.3 [-1.4,2.7] 4.4 ± 1.6 [3.6,5.2] <0.001***
CT DFVW(mm) 0.8 ± 4.5 [-1.2,2.9] 4.5 ± 1.5 [3.8,5.2] 0.001**

Metric Total Number Total Number of SI
US SI 14 20 0.041*
CT SI 14 20 0.041*



124 Chapter 6. Central line needle insertions using vascular reconstructions

Table 6.2: Summary of user questionnaire result (scored out of 10)
Question Average Response
If the advanced guidance system was available how often would you use it? 6.4
Do you think the advanced system could be useful for training US guided CVC? 8.0
Do you think the advanced guidance system would be viable to use in the OR? 6.9
Did you find the relationship between the needle and vessels to be intuitive? 7.9

6.4 Discussion

A guidance system for CVC that visualizes 3D US surface reconstructions of the CA and IJV
and tracked models of surgical tools was evaluated against traditional US-only guidance. As
summarized in Table. 6.1, the 3D system provided superior needle guidance compared to the
US-only method, with the use of the 3D system resulting in a successful insertion rate of 100 %
compared to 70 % for US-only guidance (p=0.04) among 20 trained medical practitioners. The
3D system also significantly improved users’ targeting accuracy, with distances from the centre
line of the US reconstructed IJV being 1.8±0.90 mm and 4.2±2.90 mm (p=0.00), for the 3D and
US-only systems respectively. The results indicate that the 3D system has distinct advantages
for needle guidance during CVC.

The two previously described CVC navigation systems employed a screen-based 2D per-
spective [2] and an HMD system with 2D imaging in a 3D context [50] respectively. The
HMD system (94 % success rate) and our 3D screen-system (100 % success rate) both signif-
icantly improved the insertion accuracy for expert users, as compared to the previously de-
scribed screen-based system (64 % success rate) [2]. We believe that our system is beneficial
for navigation, as it provides an intuitive 3D visualization of both the surgical tools and the
anatomy, as depicted in Figures 6.3 and 6.4. Rendering the IJV using a Z-buffer enhances
depth perception based on the colour changes and occlusions between models. If the needle or
its trajectory is in front of the vasculature, they are fully visible but become occluded if they
are behind it. If either is within the vasculature, the section intersecting the wire mesh turns
blue (Fig. 6.3). Aligning the trajectory of the needle with the IJV wire mesh allows the user to
fully comprehend the position and orientation of their needle with respect to the vasculature,
based on the colour change (Fig. 6.4). If only a small portion of the trajectory is blue, it is
close to the edge of the vessel, allowing users to intuitively position the needle until they maxi-
mize the blue component of trajectory, indicating they are aligned with the centre of the vessel
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(Fig. 6.4). By following this path, they can navigate the needle to the target. We believe the
success of the HMD and 3D system is a consequence of the user’s ability to comprehend the
spatial relationship between their tool and the vasculature in 3D, unlike the 2D screen-based
system.

The high success rate of insertions performed using our 3D system emphasizes the impor-
tance of providing surgical navigation information in a 3D context. The rapidly expanding
field of machine learning provides the potential for patient-specific 3D anatomical models to
be obtained in real-time without exposing the patient to radiation through the use of tracked or
3D US and high-quality GPUs. This work also highlights the importance of the visualization
properties used when designing the system. Small visualization decisions, such as using the
wireframe for the IJV, allow for 2D monitors to be used successfully for 3D navigation. De-
veloping 2D screen-based navigation systems decreases the barriers to clinical translation and
decreases the system footprint in the operating room (OR). In Chapter 4, clinicians on average
allocated a score of 4.35/10 in response to the clinical viability of the HMD system in the OR.
In contrast, our 3D surgical navigation system achieved an average score of 6.9/10 for clinical
viability. A screen-based system does not affect the line of sight with the patient and employs
a display that is familiar to the users. Screen-based systems can also be integrated into clinical
devices or systems, such as US machines or OR monitors, that are already present in the OR.
Therefore, surgical navigation systems must simultaneously optimize both the clinical useful-
ness and feasibility by employing iterative design practices, based on expert user feedback, to
increase the translation of successful advanced surgical navigation systems.

Despite our promising results, our study design has limitations and there are barriers to
clinical translation. The results show that the time for needle insertion is significantly lower
for the 3D system compared to the US-only approach. The reported time is associated with
inserting the needle, which indicates the ease with which a user is able to navigate to the target.
However, the process of obtaining patient-specific vascular reconstruction would increase the
overall time required for the CVC insertion as compared to the US-only approach, as it would
require additional time for the clinician to perform the surface scan and for the algorithm to
output the vascular reconstructions prior to performing the insertion. To move this system
towards clinical translation, the following aspects of the system must be evaluated. First, the
reconstruction accuracy and precision, and the time required for human vascular reconstruction
across a cohort of clinicians must be evaluated. This system should also be integrated into
an US machine to maximize clinical usability. Lastly, a more robust user study should be
performed to evaluate the system accuracy across repeated insertions on a variety of vascular
configurations. Another limitation to this approach is that US scanning results in pressure
applied to the contact surface which may distort the vasculature, as seen in Fig 6.5. For this
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reason, we aim to evaluate the effects of continued use of US imaging, with or without the
US image being visible in the scene when using the 3D system, to ensure that the pressure
applied when performing the insertion is consistent with that during the scan used for surface
reconstruction. Continued scanning would allow for the vessel models to be updated in real-
time during needle insertion. We believe that the pipeline of using machine learning to develop
patient-specific 3D models of anatomy for targeting could be useful for a number of other
needle targeting applications, such as femoral artery line insertions, biopsy, and nerve blocks.

Overall, this work aims to provide further insight into human perception during targeting
tasks, specifically emphasizing that when using a 2D monitor for targeting it is necessary to
provide the information in a 3D context. With the expansion of machine learning, 3D models
can be reconstructed and used for real-time navigation in 3D. This chapter forms a basis for the
development of systems that employ machine learning to form real-time 3D patient-specific
anatomical models that can be used for targeting tasks that are visualized via a monitor.

6.5 Conclusions

An advanced interventional navigation system comprising US surface reconstructions of the
IJV and CA in a common coordinate system, with a model of a tracked needle and its trajec-
tory on a 2D monitor for central line insertions on a phantom was developed and evaluated in
this work. A Z-buffer visualization was used for the IJV to improve depth perception and pro-
vide an intuitive 3D relationship between virtual models projected onto a 2D surface, as past
research illustrated limitations of 3D navigation on a 2D monitor. Twenty clinicians performed
insertions into the phantom using both this system and the traditional US-only approach and
demonstrated that the 3D guidance system provided superior guidance compared to the US-
only system. The success rate of the 3D system was 100 % compared to 70 % for the US-only
system. The 3D system provided more consistent targeting with the distance from the US
reconstructed IJV’s centre line being 1.8± 0.90 mm and 4.2±2.90 mm for the 3D system and
US-only guidance, respectively. Overall, this work highlights the importance of providing a
3D anatomical context for needle guidance. Providing users with sufficient 3D information by
selecting visualization methods that encourage the 3D perception through the use of monoc-
ular cues can be feasible for clinical integration and provide superior navigation compared to
standard image-guided alternatives while maintaining screen-based navigation.



Chapter 7

Conclusions and Future Directions

Ultrasound-(US)-guided insertions have become the routine method used for the needle inser-
tion required during central venous catheterization (CVC). This thesis was motivated by the
high prevalence of complication rates that result from 2D US-guided needle insertions for cen-
tral venous access at the site of the internal jugular vein (IJV). This thesis aimed to develop and
evaluate 3D US-based environments for needle guidance into the IJV, with the two main foci
being 1) the development and evaluation of methods that form the basis of 3D US environments
such as calibrations and machine learning algorithms and 2) the development and validation of
3D US-based needle navigation systems for central venous access at the IJV. The contributions
of this thesis in these two areas are summarized in the following section.

7.1 Contributions of the Thesis

Ultrasound probe calibration is a fundamental building block used within most advanced US-
guidance systems, as it provides the relationship between the US image and a spatial tracking
sensor fixed to the US probe enabling the use of free-hand tracked US. A common US calibra-
tion technique is a point-to-line method that previously required manual fiducial localization
and had only been theoretically validated. In Chapter 2, we developed a convolutional neural
network (CNN) that is capable of localizing the fiducials required for this algorithm (nee-
dle reflections) within 0.25 mm of manually localized ground truth coordinates across 4-8 cm
imaging depths from a single linear probe. This CNN was integrated into the point-to-line cal-
ibration approach to provide a formulation of the calibration approach with automatic fiducial
localization. The calibration approach with both manual and automatic fiducial localizations
was validated using point reconstruction accuracy, and found to have less than 1.50 mm of er-
ror for the normalized mean absolute distance from the ground-truth, with standard deviations
less than 0.50 mm. Thus, this work validates the use of the point-to-line calibration approach
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with manual and automatic fiducial localization for the development of advanced US-guided
surgical navigation systems. These calibration approaches accurately position the US image in
a common coordinate system with other tracked objects and enables free-hand tracked US, as
well as 3D US reconstructions. The automatic fiducial localization improves the usability of
this algorithm and allows novice users to obtain calibrations with a fiducial localization error
similar to an expert user.

Optimizing methods to visualize advanced US-guided surgical navigation systems has been
an ongoing research topic for years. Wearable technology or head-mounted displays (HMDs)
place visual information directly into the user’s field of view, and research on their use for
surgical navigation dates back to the 1960s. Currently, there are many commercially avail-
able head-mounted displays on the market, and devices such as the HTC VIVE Pro HMD
enable the development of surgical navigation systems rendered directly into the user’s field
of view. In order to use an HMD for surgical navigation systems that rely on spatial tracking
and US calibration, the spatial tracking system must be calibrated to the tracking system asso-
ciated with the HMD. In Chapter 3, we develop and evaluate a method to register an external
optical tracking system to the HTC VIVE’s tracking system, by means of a dual tracked co-
calibration apparatus. This co-calibration approach achieved sub-millimetre and sub-degree
accuracy compared to ground-truth values. Thus, it provides a method to accurately position
tracked tools and calibrated US images within the coordinate system of an HMD, such that
they can be visualized in a first-person perspective.

The point-to-line US calibration method and the co-calibration method used to register a
spatial tracking system with the HTC VIVE Pro HMD, developed in Chapters 2 and 3, provide
the backbone of a first-person needle navigation system rendered in the HTC VIVE Pro HMD
that was developed in Chapter 4. The US calibration accurately positions the US image in the
spatial tracker’s coordinate system, and the co-calibration accurately positions the calibrated
US image and the spatially tracked tools in the HMDs coordinate system, such that the in-
teractions between the tools and the US image can be visualized in the HMD. The system we
developed employing these principles renders the real-time tracked US in a common coordinate
system with tracked models of the needle, needle trajectory, and US probe. We demonstrated
the use of this advanced needle navigation system for the application of needle insertions at
the IJV, using a phantom containing replicas of the IJV and CA vasculature. We compared our
surgical navigation system, rendered on both a monitor and an HMD, to the US-only guidance
method used clinically. The HMD system enabled more accurate needle insertions compared
to both the monitor and US-only systems for the phantom experiment across 31 clinicians,
illustrating the importance of a 3D perspective for needle navigation. The HMD system also
significantly improved the needle insertion accuracy for 20 novice medical students, with no
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central line insertion experience. This research highlights the benefits of HMDs for needle
navigation research, and as technology advances and becomes more clinically usable, systems
similar to that developed in this work should be used for surgical navigation tasks. Despite the
success of the HMD system and the lack of significant improvements using the monitor-based
system, our clinical practitioners preferred the advanced navigation system visualized on the
monitor. Thus, the results from this chapter motivated investigating other advanced monitor-
based systems that allow the user to visualize all relevant tools and anatomy in 3D to further
investigate the ability to use a 2D display for surgical navigation.

In Chapter 3, the visual output of the advanced surgical navigation system displayed on the
monitor was the clinician’s preference but did not have any significant effect on the accuracy of
the needle insertion compared to the US-only case. This system rendered the tracked and cali-
brated free-hand US image at an oblique angle, in a common coordinate system with a tracked
model of the needle and needle trajectory. While this system provided a more advanced visual-
ization for the user, there were limitations with the user’s ability to accurately perceive the 3D
information on a 2D monitor. Despite the fact that 2D tracked US provides a 3D perspective,
in order to use a 2D display, the surgical navigation system must provide sufficient 3D context
of the tools and anatomy for successful guidance. To improve the 3D information provided to
the user, in Chapter 4 we developed a machine-learning-based vascular reconstruction pipeline
that given a tracked US recording produced 3D models of the CA and IJV. The machine learn-
ing algorithm was capable of delineating the CA and IJV with a Dice score of 0.92 and 0.93,
for the CA and IJV respectively. The US-derived vascular reconstructions were compared to
manually segmented vasculature from a CT scan of the same patient. The average surface area
ratio between the US and CT vascular models obtained was 0.94 and 0.88, for the CA and IJV
respectively. The average volume ratio between the US and CT vascular models was 0.86 for
both the CA and IJV. This vascular reconstruction pipeline is capable of accurately obtaining
models of the CA and IJV given a tracked US recording of the neck.

The vascular reconstruction pipeline developed in Chapter 5 was used to reconstruct the
vasculature in a phantom of the neck. These phantom reconstructions were used to develop
another screen-based surgical navigation system where the reconstructed vessels were rendered
in a common coordinate system with models of the tracked needle, needle tip, needle trajectory.
To improve the users’ ability to perceive the information in 3D, the IJV was rendered using a
Z-buffer, which allows for the relationship between the needle models and the vasculature to
be intuitively understood in 3D as the visualization of the needle changes based on its position
with respect to the vessel model. This surgical navigation system was tested on a cohort of
20 clinicians trained in US-guided central line insertions. Each user performed experimental
insertions using the advanced surgical navigation system and US-only guidance. The surgical
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navigation system significantly improved the needle insertion accuracy compared to the US-
only case and had an 100% success rate. Machine learning algorithms can be used to obtain
3D US reconstructions that have the capability to provide sufficient 3D information on a 2D
monitor to guide needle insertions. Anatomical US reconstructions should be integrated into or
supplement US-guided systems such that the user can understand the 3D context of their tools
with respect to patient-specific anatomy.

7.2 Future Directions

The development of surgical navigation systems for needle interventions should be shifting
towards the inclusion of 3D patient-specific environments with advanced visualizations. Future
research should focus on the integration of machine learning algorithms into advanced US
navigation and training systems and the continuous evaluation of novel display technologies.

Machine learning algorithms can be integrated into almost every component required for
the development of advanced US-based needle navigation systems, from calibration to anatom-
ical segmentation and reconstruction. machine learning methods applied to areas such as fidu-
cial localization for US calibration may increase the potential for clinical translation of surgical
navigation systems, as methods requiring manual intervention can be replaced with automatic
methods. Research should focus on the development of systems that require minimal to no
user intervention prior to the use of the system. Machine learning methods should be used
to automate any steps that require user intervention or manual inputs to lower the barrier to
translation and produce more robust and precise outputs. Machine learning algorithms can
also be integrated into surgical navigation systems by automatically producing patient-specific
anatomical reconstructions in a common coordinate system using tracked and calibrated US
images. Through the development of fully automatic reconstruction pipelines, a quick pre-
scan can provide 3D anatomical context for the clinician, which can be used to supplement the
US information. 3D US environments should be developed and evaluated for needle navigation
tasks with different targets such as biopsy, femoral vein central line insertions, or nerve blocks.
Additionally, the vascular reconstruction pipeline developed in this work could be expanded to
incorporate plaque segmentations to quantify and visualize plaque burden in real-time. In or-
der to develop machine learning algorithms that are capable of accurately segmenting anatomy
across a range of patients, US scanners, and sonographers, it is imperative that research groups
form long-term and ongoing relationships with clinical practitioners who perform US-guided
navigation. US-guidance information is typically not recorded or saved, meaning researchers
are losing out on a plethora of clinical scans that can be used to improve the robustness of
machine learning algorithms. These practices are highly encouraged for clinical applications
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requiring the manual segmentation of anatomical structures in US images, as researchers ben-
efit from high-quality gold-standard segmentations. The development of systems based upon
machine learning algorithms developed using large clinical data sets is another way to lower
the barrier of clinical translation of advanced surgical navigation systems. Machine learning
offers the ability to reduce equipment requirements through the development of image-based
tracked algorithms for needle tracking and sensor-less reconstruction pipelines. These meth-
ods do require a trade-off between aspects such as accurate real-time tracking of tools and US
for a reduction in required equipment and calibrations. The development of accurate image-
based tracking algorithms also requires large data set containing tracked patient scans. Overall,
the use of machine learning within the development of advanced US environments is highly
encouraged.

Another area that should be explored is the use of advanced surgical navigation systems,
particularly those that provide 3D context of the anatomy, for US-guidance training. For central
line insertions, the accuracy of the needle puncture is dependent on the experience of the oper-
ator. Systems that integrate US-derived anatomical reconstructions into a common coordinate
system with the calibrated US image and the tracked tools, may offer the ability to improve
the training of central line insertions. Novice users may benefit by gaining a more in-depth
understanding of the 3D context of the US image with respect to the anatomy and surgical
tools to advance their conceptual understanding of the procedure. Thus, these systems should
be properly evaluated for their usefulness for training.

Research on the various types of displays used to visualize surgical navigation informa-
tion has been ongoing for decades. As display technology and visualization approaches are
continually advancing, this area of research requires ongoing investigation. As technology in-
corporated into commercially available HMDs advances, their role in the development of sur-
gical navigation systems should be continuously re-evaluated. Specifically, video-pass through
HMDs with advanced video integration and lightweight displays will likely be the most bene-
ficial systems for surgical navigation as they offer the best trade-off between perceptual issues
and real-world information. The tracking associated with these HMD systems will need to be
evaluated as new HMDs or updated systems are released. The evaluation of various data fusion
methods may be required to optimize the combination of real-world video streams, medical
images, and surgical tool tracking within HMDs for surgical navigation. However, a realistic
assessment of the current state of commercially available HMDs, suggests that their integration
into surgical suites is a long-term goal. In the interim, screen-based surgical navigation systems
that provide information in a 3D context should be developed and evaluated. Sufficient 3D in-
formation rendered with the use of monocular depth cues allows for accurate needle targeting
on a monitor. The displays used for this type of navigation system should be large mobile mon-
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itors that can display multiple visualizations and be placed in optimal viewing locations should
first be implemented, as this most closely resembles practices clinicians are used to from CT
and MRI. Clinicians will likely be more receptive to changes in visualizations over changes
in displays, and research should focus on small steps that enable the clinical usability of ad-
vanced screen-based systems for surgical navigation, with the long-term goal of deployment in
an HMD. The ultimate goal is to provide a visualization system that provides the most intuitive
user interface between the clinician and the patient.

Overall, this work focused on the development of 3D US environments for needle naviga-
tion into the IJV. Machine learning can be integrated into methods required for the development
of advanced surgical navigation systems such as US calibration and anatomical reconstruction.
This thesis highlights the importance of providing users with systems that allow for the re-
lationship between the needle and anatomy to be intuitively understood. The use of both an
HMD to enable a first-person perspective, and a 3D reconstructed vasculature rendered with a
Z-buffer, improved the needle insertion accuracy compared to US-guidance used clinically.



Bibliography

[1] Fikri M Abu-Zidan, Ashraf F Hefny, and Peter Corr. Clinical ultrasound physics. Jour-

nal of Emergencies, Trauma and Shock, 4(4):501, 2011.

[2] Golafsoun Ameri, John S. H. Baxter, Daniel Bainbridge, Terry M. Peters, and Elvis
C. S. Chen. Mixed reality ultrasound guidance system: a case study in system develop-
ment and a cautionary tale. International Journal of Computer Assisted Radiology and

Surgery, 13(4):495–505, 2018.

[3] M. E. Anderson, M. S. McKeag, and G. E. Trahey. The impact of sound speed er-
rors on medical ultrasound imaging. The Journal of the Acoustical Society of America,
107(6):3540–3548, 2000.

[4] Muhammad Arif, Adriaan Moelker, and Theo van Walsum. Automatic needle detection
and real-time bi-planar needle visualization during 3D ultrasound scanning of the liver.
Medical image analysis, 53:104–110, 2019.

[5] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fitting of
two 3-D point sets. IEEE Transactions on pattern analysis and machine intelligence,
PAMI-9(5):698–700, 1987.

[6] Michael P. Bannon, Stephanie F. Heller, and Mariela Rivera. Anatomic considerations
for central venous cannulation. Risk Management and Healthcare Policy, 4:27–39, 2011.

[7] Parmida Beigi, Septimiu E Salcudean, Gary C Ng, and Robert Rohling. Enhancement of
needle visualization and localization in ultrasound. International Journal of Computer

Assisted Radiology and Surgery, pages 1–10, 2020.

[8] Paul J Besl and Neil D McKay. Method for registration of 3-D shapes. In Sensor fusion

IV: control paradigms and data structures, volume 1611, pages 586–606. International
Society for Optics and Photonics, 1992.

133



134 BIBLIOGRAPHY

[9] Michael Blaivas and Srikar Adhikari. An unseen danger: Frequency of posterior ves-
sel wall penetration by needles during attempts to place internal jugular vein central
catheters using ultrasound guidance. Critical Care Medicine, 37(8):2345–2349, 2009.

[10] Rositsa Bogdanova, Pierre Boulanger, and Bin Zheng. Depth perception of surgeons in
minimally invasive surgery. Surgical innovation, 23(5):515–524, 2016.

[11] Matias Bruzoni, Bethany J. Slater, James Wall, Shawn D. St Peter, and Sanjeev Dutta.
A Prospective Randomized Trial of Ultrasound- vs Landmark-Guided Central Venous
Access in the Pediatric Population. Journal of the American College of Surgeons,
216(5):939–943, 2013.
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Appendix A

Questionnaires

Appendix A includes the questionnaires A.1 and A.2 that were completed by the user’s of the
study in Chapters 4 and 6, respectively.
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Questionnaire  

1. How many years of central line insertion experience do you have? Approximately how many central 

line insertions have you performed? 

 

Years: _________________________    Number of insertions: ___________________________ 

2. How viable is the HMD to use in the OR? 

  

   

                    Not viable  Viable with proper assistance             Not viable 

3. If the system was clinically available how often would you use it? 

      

 
 

                           Never                               Case-by-case                                 Always 

4. How useful do you think the HMD system would be for training US-guided CVC?  

 

 

                              Not useful               Somewhat useful                        Very useful 

5. How was the comfort associated with using the HMD?  

 

 

                            Uncomfortable                  Neutral                                   Comfortable 

 

Other Comments: 

Figure A.1: User questionnaire used in Chapter 4, where each scale is 10 cm long and has three
anchors with written descriptions at 0, 5 and 10 cm



Questionnaire  

1. How many years of central line insertion experience do you have? Approximately how many central 

line insertions have you performed? 

 

Years: _________________________    Number of insertions: ___________________________ 

2. If the advanced guidance system was available how often would you use it? 

  

   

                    Never                  Occasionally                             Always 

3. Do you think the advanced system could be useful for training for ultrasound guided CVC? 

      

 
 

                           Not useful          Useful case-by-case                     Always useful  

4. Do you think the advanced guidance system would be a viable equipment to use in the OR?  

 

 

                              Not viable      Viable with proper assistance         Very viable 

5. Did you find the relationship between the needle and vessels to be intuitive?  

 

 

                            Not intuitive             somewhat intuitive     Very intuitive 

 

Other Comments: 

 

 

Figure A.2: User questionnaire used in Chapter 6, where each scale is 10 cm long and has
three anchors with written descriptions at 0, 5 and 10 cm
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