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Abstract

In recent years, hyperpolarized noble gas magnetic resonance diffusion measurements 

have shown remarkable sensitivity for diagnosing emphysema. The apparent diffusion 

coefficient (ADC) of hyperpolarized gases has also been shown to behave anisotropically 

in the lung at short diffusion times. In this work, we investigate hyperpolarized Xe gas 

anisotropic ADCs of the Yablonskiy model in vivo in an elastase-instilled rat model of 

emphysema. Diffusion simulations in a budded cylinder model estimated that the 

transverse anisotropic ADC (Dr) may have optimal sensitivity at measuring airways 

enlargements, and that the optimal diffusion time to measure Dj with xenon is close to 5 

ms. Measurements in sham and elastase-instilled rats were performed for a range of 

diffusion times, and the only significant increase of ADC was observed for Dj at 6 ms (p 

< 0.005), and a strong correlation between Dj and the mean linear intercepts from lung 

histology was observed (r = 0.90).

Keywords

Emphysema, magnetic resonance imaging, anisotropic apparent diffusion coefficient,
129elastase, hyperpolarized Xe.



Co-Authorship Statement

Chapter 3 of this thesis was co-authored by M. Boudreau, X. Xu and G. E. Santyr and is 

being prepared for submission to Magnetic Resonance in Medicine (MRM).

IV



To my parents Joanne and Valeri Boudreau, for nurturing a curious mind when I  was 

young, and whose unconditional love and support have motivated me all these years.

To previous professors and mentors, Dr. Pandurang V. Ashrit, Dr. Georges Bader, Dr. 

Normand Beaudoin, Dr. Gisia Beydaghyan and Dr. Serge Gauvin, whom helped me

become the scientist I  am today.

To my girlfriend Gabrielle Lapointe, whose love, patience and encouragement during 

these two years made me thrive to succeed.



Acknowledgments

I would like to say thank you to the following individuals whose support made this thesis 

possible:

■ My supervisor, Dr. Giles Santyr, for offering me the opportunity to do research at 

the Robarts Research Insitute at the University of Western Ontario. His 

knowledge and expertise provided much appreciated guidance for completing my 

degree. Thank you for always being honest in our discussions, keeping me on 

track, and for encouraging me to become a better researcher.

■ The other members of my advisory committee, Dr. John de Bruyn and Dr. Terry 

Thompson, whom have provided me excellent guidance and support.

■ Current and past members of the Santyr group: Marcus Couch, Ozkan Doganay, 

William Dominguez-Viqueira, Adam Farag, Matthew Fox, Elaine Hegarty, 

Susannah Hickling, Ian Jesse, Ryan Kraayvanger, Alexei Ouriadov, Julie 

Tanguay, Kundan Thind and Xiaojun Xu. For guidance, technical support and 

assistance during many experiments.

■ Marcus Couch, who assisted every single one of my experiments with assistance 

running the animal ventilator, I offer my most sincere thank you for your help and 

your patience.

■ To previous colleagues: Vincent Basque, Marc Collette, Richard Cyr, Allison 

MacKay and Gabrielle Lapointe. For support provided by always questioning and 

criticizing my work with open minds, and for the expert knowledge that you 

shared with me when needed.

■ To my parents, Joanne and Valóri Boudreau, whose unconditional love and 

support have motivated me all these years.

■ To my girlfriend, Gabrielle Lapointe, whose love, patience and encouragement 

during these two years made me thrive to succeed.

■ Lastly I would like to thank the following organizations whom have made this 

work possible by providing financial support: the National Sciences and 

Engineering Research Council of Canada (NSERC), the Canadian Institutes of

VI



Health Research CIHR, and the Ontario Provincial Government for help provided 

through the Ontario Graduate Scholarships in Science and Technology (OGSST).

vii



Table of Contents

Certificate of Examination................................................................................................... ii

Abstract............................................................................................................................... iii

Co-Authorship Statement.................................................................................................... iv

Acknowledgments...............................................................................................................vi

Table of Contents............................................................................................................. viii

List of Tables......................................................................................................................xii

List of Figures...................................................................................................................xiii

List of Appendices........................................................................................................... xvii

List of Abbreviations...................................................................................................... xviii

Chapter 1............................................................................................................................... 1

1 Introduction..................................................................................................................... 1

1.1 Motivation................................................................................................................ 1

1.2 Pulmonary Physiology and Pathophysiology.......................................................... 1

1.2.1 Normal Lungs.............................................................................................. 1

1.2.2 Chronic Obstructive Pulmonary Disease.................................................... 3

1.2.3 Emphysema Disease Models in Animals....................................................3

1.3 Diagnostic Techniques.............................................................................................4

1.3.1 Pulmonary Function Tests...........................................................................4

1.3.2 Chest Radiography/Computed Tomography..............................................4

1.3.3 PET/SPECT................................................................................................. 5

1.3.4 Magnetic Resonance Imaging......................................................................5

1.4 Physics of Magnetic Resonance Imaging................................................................ 7

1.4.1 Nuclear Spin................................................................................................ 7

viii



1.4.2 Dynamics of Magnetic Moments in Magnetic Fields................................ 8

1.4.3 Rotating Frames of Reference.................................................................... 10

1.4.4 Radio Frequency Pulses.............................................................................11

1.4.5 Magnetization in Thermal Equilibrium.................................................... 13

1.4.6 Bloch Equations........................................................................................ 15

1.4.7 T\ Relaxation.............................................................................................. 16

1.4.8 72 Relaxation.............................................................................................. 17

1.4.9 Bloch-Torrey Equations............................................................................. 19

1.4.10 Signal Equation......................................................................................... 22

1.4.11 MR Imaging............................................................................................... 23

1.5 Hyperpolarized Noble Gases.................................................................................25

1.5.1 3He vs. 129X e..............................................................................................25

1.5.2 Spin Exchange Optical Pumping.............................................................. 26

1.5.2.1 Optically Pumping Rubidium.....................................................27

1.5.2.2 Spin Exchange of Rb and 129X e..................................................29

1.5.3 Practical Considerations with Hyperpolarized Gases...............................29

1.6 Low Field MRI...................................................................................................... 30

1.7 Restricted Diffusion Measurements.......................................................................31

1.7.1 Free Diffusion............................................................................................31

1.7.2 Restricted Diffusion................................................................................... 31

1.7.3 The Yablonskiy Model of Anisotropic Apparent Diffusion
Coefficients................................................................................................ 33

1.8 Hypothesis..............................................................................................................34

1.9 Thesis Outline........................................................................................................ 34

1.10 References..............................................................................................................36

Chapter 2 ............................................................................................................................42

IX



2 Finite Difference 129Xe Diffusion Simulations in the Budded Cylinder Airway
Model............................................................................................................................ 42

2.1 Introduction............................................................................................................42

2.2 Method...................................................................................................................43

2.2.1 Budded cylinder model............................................................................... 44

2.2.2 Finite Difference Method of Solving the Bloch-Torrey Equations...........45

2.2.3 Convergence...............................................................................................49

2.2.4 Boundary Wrapping.................................................................................. 49

2.2.5 Data Analysis.............................................................................................50

2.3 Results and Discussion...........................................................................................50

2.4 Conclusion..............................................................................................................51

2.5 References..............................................................................................................52

Chapter 3 .............................................................................................................................53

3 Measurement of 129Xe Gas Apparent Diffusion Coefficient Anisotropy in an
Elastase-Instilled Rat Model of Emphysema............................................................... 53

3.1 Introduction............................................................................................................53

3.2 Method................................................................................................................... 55

3.2.1 Numerical Simulations...............................................................................55

3.2.2 Hyperpolarized 129Xe Gas Preparation......................................................57

3.2.3 Animal Preparation.................................................................................... 58

3.2.3.1 Elastase Instillation......................................................................58

3.2.3.2 Surgical Procedure.......................................................................58

3.2.4 MR Acquisition..........................................................................................59

3.2.5 Morphological Analysis............................................................................. 60

3.2.6 Data Analysis.............................................................................................61

3.3 Results.................................................................................................................... 61



3.3.1 Simulations................................................................................................ 61

3.3.2 Phantom Experiments................................................................................ 62

3.3.3 In vivo Experiments................................................................................... 63

3.3.4 Morphology................................................................................................ 67

3.4 Discussion...............................................................................................................68

3.5 Conclusion..............................................................................................................71

3.6 References..............................................................................................................72

Chapter 4 ............................................................................................................................ 77

4 Discussion and Future Work........................................................................................ 77

4.1 Discussion...............................................................................................................77

4.1.1 Numerical Simulations.............................................................................. 77

4.1.2 In vivo 129Xe ADC in an Elastase Rat Model at 73.5 mT.........................77

4.1.3 Current Limitations...................................................................................78

4.2 Future Work.......................................................................................................... 79

4.2.1 ADC Mapping............................................................................................79

4.2.2 Echo Planar Imaging (EPI)........................................................................80

4.2.2.1 Rapid Acquisition with Relaxation Enhancement (RARE)....... 81

4.2.3 In vivo Morphometry with Hyperpolarized 129Xe MRI.............................83

4.3 Conclusion..............................................................................................................84

4.4 References..............................................................................................................84

Appendix A: Animal Protocol...........................................................................................86

Appendix B: Ventilator Setup............................................................................................ 88

Curriculum Vitae................................................................................................................89

XI



List of Tables

Table 1.1: Gyro magnetic ratio of three commonly used atoms in MRI (47).................. 7

Table 1.2: Physical properties of 3He and 129Xe, adapted from (37)................................25

Table 1.3: SNR dependence on field strength Bo, adapted from (57)............................... 30

Table 3.1: Correlation between Lm and anisotropic diffusion coefficients (Dl and Dj) for 

three diffusion times (6, 50, 100 ms)................................................................................. 66

Table 3.2: Mean linear intercept and D j (A=6 ms) values for sham-instilled (n = 4) and 

elastase-instilled rats (n = 4)1. Labels starting with “C” were the sham rats, whilel labels 

starting with “E” were the elastase-instilled rats............................................................... 66

xii



List of Figures

Figure 1.1. Conceptual drawing of the acinus of the lung...................................................2

Figure 1.2. Schematic diagram of the breathing process. Air moves into the lungs where 

O2 is extracted by diffusion through the capillary barrier into the circulatory system. CO2 

diffuses out of the blood that perfused to the capillaries, into the lung airspace and is then 

exhaled.................................................................................................................................. 2

Figure 1.3: Precession of a magnetic moment about a static and homogeneous field, for y

> 0 ..................................................................................................................................... 10

Figure 1.4: Example of a magnetic moment in a) the laboratory frame of reference and b) 

the rotating frame of reference............................................................................................11

Figure 1.5. Example of a 90x radio frequency pulse in a) the laboratory frame of reference 

and b) a rotating frame of reference...................................................................................12

Figure 1.6: Magnetization of a region of interest represented as the vector sum of 

magnetic moments.............................................................................................................. 13

Figure 1.7: Energy splitting of a magnetic moment due to a spin Vi particle in the 

presence of an external magnetic field...............................................................................14

Figure 1.8: The decay/regrowth of the longitudinal component of the magnetization due 

to T\ relaxation for three different initial conditions.......................................................... 17

Figure 1.9: The decay of the transverse component of the magnetization due to Ti 

relaxation for three different T2 values............................................................................... 18

Figure 1.10. Pulse gradient spin echo pulse sequence using trapezoidal gradients. Gm is 

the maximal gradient strength, t is the ramp up/down time, A is the diffusion time and 8 

is the gradient flat time + 2 t.............................................................................................. 21

xiii



Figure 1.11. Gradient echo imaging pulse sequence. Gz, Gy and Gx are called the slice 

select, the phase encode and the readout gradients, respectively. The amplitude of the Gy 

changes before each acquisition of a k-space line............................................................. 24

Figure 1.12. Cartesian k-space acquisition scheme. The grey dashed lines represent k- 

space trajectory of the gradients when before acquisition, and the black line represents the 

trajectory during acquisition...............................................................................................24

Figure 1.13. Experimental setup for spin exchange optical pumping. (1) Linearly 

polarized light. (2) Quarter wave plate. (3) Circularly polarizing the beam. (4) Source of 

homogeneous magnetic field. (5) Optical cell. (6) Glass trap immersed in a liquid N2 

bath......................................................................................................................................27

Figure 1.14. Schematic diagram of optical pumping Rb valence electrons into the 5S‘/2 

(m, = Vt) spin state.............................................................................................................. 28

Figure 1.15. A particle diffusing in an unrestricted environment (a) and a restricted 

environment restricted by a spherical boundary (b). Shown in (c) is the conceptual 

relationship between the root-mean-squared displacement and diffusion time for these 

two cases............................................................................................................................. 32

Figure 1.16. Cylinder model of the terminal airways. The ADC measured by applying a 

gradient along the principle axis of the cylinder (a) is called the longitudinal diffusion 

coefficient Di, while the ADC measured by applying a gradient perpendicular to the long 

axis (b) is called the transverse diffusion coefficient Dj. For an arbitrary angle 0 (c), ADC 

is given by Eqn. [1.52]....................................................................................................... 33

Figure 2.1. Budded cylinder model of the terminal airways, showing a side view (left) 

and end view (right)............................................................................................................45

Figure 2.2. Experimental in vivo spectra of hyperpolarized Xe at 73.5 mT for a rat
190during a static breath hold. Due to its relatively low abundance compared to Xe in the 

gas phase, the dissolved phase is ignored for these simulations........................................46

xiv



Figure 2.3. A two dimensional representation of the computational grid used to 

numerically calculate Eqn. [2.5], The blue line represents an impermeable barrier......... 48

Figure 2.4. Longitudinal (a) and transverse (b) diffusion coefficients extracted from 

diffusion simulations in a budded cylinder model of the terminal airways. “Healthy” 

corresponds to RD = 193 pm; “Diseased” to Rd = 280 pm. The difference in diffusion 

coefficients between “Diseased” and “Healthy” airways for longitudinal and transverse 

diffusion coefficients are shown in (c) and (d) respectively..............................................51

Figure 3.1 Pulse gradient spin echo pulse sequence using trapezoidal gradients. Gm is the 

maximal gradient strength, t is the ramp up/down time, A is the diffusion time and 8 is 

the gradient flat time + 2 t................................................................................................. 56

Figure 3.2 Calculated differences in longitudinal (a) and transverse (b) diffusion 

coefficients between normal and emphysematous terminal airways as a function diffusion 

times (A = 1 to 100 ms). Diffusion coefficients were extracted by fitting the Eqn. [3.3] to 

data simulated using the Bloch-Torrey equations describing anisotropic Xe diffusion in 

a budded cylinder model of the terminal airways..............................................................62

Figure 3.3. Measurement of the self diffusion coefficient of hyperpolarized natural 

abundance xenon (25.9% 129Xe) at 73.5 mT in a syringe for A = 6 ms. The self diffusion 

coefficient of extracted from the slope of a linear least-squares fit to these data was 

0.0559 cm2/s (R2=0.9986)..................................................................................................63

Figure 3.4. S/So as a function of b-value for a representative sham-instilled and elastase- 

instilled rat for A = 6ms. The longitudinal and transverse diffusion coefficients extracted 

from the sham-instilled rat were 0.1127 and 0.0018 cm /s respectively, while for the 

elastase-instilled rat were 0.0963 and 0.0060 cm /s respectively..................................... 64

Figure 3.5. -ln(S/So) as a function of b-value of all sham-instilled (n = 4) and elastase- 

instilled rats (n = 5) for A = 6ms. The points represent the mean values and the error bars 

reflect plus or minus one standard deviation for each cohort............................................65

XV



Figure 3.6. Experimental longitudinal (a) and transverse (b) diffusion coefficients for 

three diffusion times (6, 50 and 100 ms) measured in the whole lung of elastase-instilled 

(n=5) and sham-instilled rats (n=4). The points represent the mean values and the error 

bars reflect plus or minus one standard deviation from the two cohorts...........................65

Figure 3.7. . H&E stained histological slide images of sham-instilled (a) and elastase- 

instilled (b) rat lungs. Notice the enlarged airspaces in the elastase-instilled rat lungs. ...67

Figure 4.1. An example of a Cartesian spin-echo EPI pulse sequence.............................80

Figure 4.2. An example of a Cartesian RARE pulse sequence.........................................82

XVI



List of Appendices

Appendix A: Animal Protocol.......................................................................................... 86

Appendix B: Ventilator Setup.......................................................................................... 88

xvii

i



List of Abbreviations

ID, 2D, 3D One, two and three dimensional

ADC Apparent diffusion coefficient

COPD Chronic Obstructive Pulmonary Disease

CT Computed tomography

A Diffusion time

Dl Longitudinal anisotropic diffusion coefficient

DLco Diffusing capacity of carbon monoxide

Do Self-diffusion coefficient

Dr Transverse anisotropic diffusion coefficient

Eqn. Equation

FEV! Forced expiratory volume in 1 second

Fig. Figure

Gm Maximal gradient strength in a PGSE sequence

HNG Hyperpolarized noble gases

IU International units

Am Mean linear intercept

MR Magnetic resonance

MRI Magnetic resonance imaging

PET Positron emission tomography

xviii



PIP Peak inspiratory pressure

PGSE Pulse gradient spin echo

ppm Parts per million

PSI Pounds per square inch

Rb Rubidium

SAR Specific absorption rate

SEOP Spin exchange optical pumping

SNR Signal to noise ratio

SPECT Single photon emission computed tomography

Tx Longitudinal relaxation time

t2 Transverse relaxation time

XIX



1

Chapter 1

1 Introduction

1.1 Motivation

Chronic obstructive pulmonary disease (COPD) is projected to be the third natural 

leading cause of mortality worldwide by 2030 (1). While deaths from cardiovascular 

diseases and stroke has been steadily declining due to reduction in lifestyle risk factors 

and improvements in therapies (2,3), COPD deaths has been progressively increasing. 

Although the prevention of smoking induced COPD plays a key role in reducing the 

mortality rate, the development of clinical diagnostic modalities for the early stages of the 

disease are required to assess the risks to the patient at earlier stages and to develop 

treatments and therapies. Recent studies have shown (4,5) that emphysema is detectable 

by measuring diffusion of hyperpolarized noble gases (3He) in the lung with magnetic 

resonance imaging (MRI). This thesis will focus on investigating emphysema-like 

alveolar damage in a murine disease model with the use of another hyperpolarized noble 

gas (129Xe) with MRI diffusion measurements.

1.2 Pulmonary Physiology and Pathophysiology

1.2.1 Normal Lungs

The lung is the site of gas exchange between the atmosphere and the circulating blood of 

the body. Air flows into the trachea by contracting the diaphragm, and for humans 

branches out into approximately 23 fractal airway generations (6). The conducting zone 

consists of the first 16 generations (bronchi, bronchiole, terminal bronchioles), while gas 

exchange occurs progressively in the remaining generations, called the transitional and 

respiratory zones (respiratory bronchioles, terminal airways, alveolar sacs) (7), diffusing 

into the alveoli. Figure 1.1 shows the acinus of the lungs, which is composed of the 

terminal airways covered with alveoli.

Recent studies estimates that the human lung contains approximately 480 million alveoli 

with a mean diameter of 0.2 mm (8). The lung has a volume of about 4 liters at 60% of
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total lung capacity with an alveolar surface area of 130 m , which makes it extremely 

efficient for gas exchange (9). The alveoli are covered with a system of capillaries 

through which red blood cells flow, the diameter of a capillary being that of a single red 

blood cell. Inflowing blood excretes CO2 into the airspace and absorbs O2 from the 

airspace by diffusion through the lung parenchyma to balance the partial pressure 

gradients, with the oxygenated blood cells subsequently flowing into the pulmonary 

blood supply.

Figure 1.1. Conceptual drawing of the acinus of the lung.

Figure 1.2. Schematic diagram of the breathing process. Air moves into the lungs 

where O2 is extracted by diffusion through the capillary barrier into the circulatory 

system. CO2 diffuses out of the blood that perfused to the capillaries, into the lung 

airspace and is then exhaled.
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1.2.2 Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is the co-occurrence of two separate 

abnormal lung properties: emphysema and airway disease. Airway disease encompasses 

chronic bronchitis, which is the thickening of the bronchiole walls and mucus secretion 

causing obstruction, and asthma, which is a reversible chronic inflammatory disease of 

the airways causing bronchoconstriction. Emphysema is an irreversible enlargement and 

destruction of alveolar tissue (10). While chronic inhalation of cigarette smoke is the 

most common cause of COPD, other causes include environmental pollutants as well as 

ai-antitrypsin deficiency (11).

1.2.3 Emphysema Disease Models in Animals

Chronic inhalation of cigarette smoke is the most prominent cause of COPD. As such, 

chronic exposure of cigarette smoke to small animals has been established as an 

important disease model to study COPD (12). The standard protocol for this disease 

model in rats involves exposure to a small amount (~30 ml) of cigarette smoke every 60 

seconds for 1 hour a day and up to 34 weeks of exposure. This model induces both 

chronic bronchitis-like mucus secretion as well as emphysema-like alveolar destruction, 

which makes it an unfavorable disease model when only the emphysema component of 

COPD is to be investigated. Emphysema-like changes can also be induced by genetically 

modifying mice (13-15), but pulmonary imaging studies of mice require extreme 

precision of ventilator gas delivery, so rat studies are often preferred to lower research 

costs and because their larger lungs provides more signal per imaging voxel.

The model used for this work is an elastase induced enlargement and destruction of 

alveolar tissue in rats (16). The introduction of a porcine elastase enzyme mixed with 

saline into the lungs breaks down the elastin in the pulmonary tissue, which enlarges and 

destroys the alveoli over time. Typical doses of 10 to 300 IU of porcine elastase are 

administered six to eight weeks prior to the study. This model does not induce any 

chronic bronchitis-like symptoms and can be used to model emphysema in small animals 

such as mice and rats as well as larger animals such as canines.
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1.3 Diagnostic Techniques

1.3.1 Pulmonary Function Tests

Spirometry is the gold standard clinical test to assess lung function. It measures the 

volume of exhaled gas over time. The procedure consists of making a patient maximally 

inhale then exhale completely as fast as possible. The forced expiratory volume in 1 

second (FEVi) is the most common indicator of airway obstruction evident in mid and 

late stage COPD. A value of FEVi below 80% of that predicted for normal patients is 

considered to be a diagnostic criterion for COPD. Secondary indicators such as the 

diffusion capacity of carbon monoxide DLco can provide additional information for 

differentiation between diseases; DLco values have been shown to be normal to high in 

asthma patients but low for patients with emphysema (17-19).

Despite its common clinical use, spirometry has many disadvantages. It provides no 

regional information of disease heterogeneity and is also very patient effort dependent, 

which can lead to some demographics to be over diagnosed (i.e. the elderly).

1.3.2 Chest Radiography/Computed Tomography

The chest radiograph is the most common imaging modality for pulmonary diseases. 

Regardless of this fact, they can only provide indirect signs of mild COPD such as the 

flattening of the diaphragm and being abnormally low relative to the ribcage (20). 

Pulmonary bullaes are detectable in patients with severe emphysema, but symptoms are 

almost always present at this late stage of the disease.

Computed tomography (CT) has increasingly become the modality of choice for imaging 

clinical anatomical changes in the lungs when chest radiographies are inconclusive (21). 

Its high resolution (typically smaller than 1 mm3 when using multi-detectors CT) enables 

good lung parenchyma visualization and can accurately quantify lung volume. CT 

measures the radiodensity of tissue in the Hounsfield Unit (HU) scale, which compares 

the linear attenuation observed of tissue with that of water: the radiodensity for water is 0 

HU, air is -1000 HU. Emphysema can be estimated using the threshold cutoff (eg. lower 

than -960 HU) or percentile point analysis techniques (22). CT can also be used for
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functional pulmonary measurements, such as xenon-enhanced CT to quantify ventilation 

defects in asthmatics (23).

Despite this, CT has several limitations that do not make it an ideal imaging modality for 

pulmonary imaging. Emphysema quantification is can be sensitive to slice thickness due 

to noise, and there is a lack of agreement on the optimal Hounsfield unit threshold that 

describes emphysematous regions. High radiation dose inherent to CT scans (30 to 90 

mSv per study) also limit frequent studies for adults with a life expectancy greater than 

10 years (24).

1.3.3 PET/SPECT

Nuclear medicine imaging modalities have played a key role in functional imaging of the 

lung for many decades. Positron emission tomography (PET) detects a pair of gamma 

rays created by the annihilation of a positron emitted from a radionuclide (i.e. F, O), 

and this has provided excellent detection of single pulmonary nodules in high-risk 

smokers that are undetectable by chest radiography (25). Single photon emission 

computed tomography (SPECT) has also emerged in the pulmonary imaging field as an 

excellent tool to obtain ventilation/perfusion (V/Q) maps (26) in asthmatics (27) as well 

as detection of pulmonary embolisms (28,29), and has also shown sensitivity for 

quantifying emphysema (30,31). While nuclear imaging provides important functional 

pulmonary information, its use is limited by the radioactive dose the patient can safely 

receive as well as its low achievable resolution (26,32) (~l-2 cm).

1.3.4 Magnetic Resonance Imaging

Conventional magnetic resonance imaging (MRI) manipulates the orientation and 

precession of the magnetic moments of hydrogen in water molecules present in the body 

to provide spatial information on the hydrogen density and electromagnetic environment, 

without the use of ionizing radiation. Due to low hydrogen density in the lungs, clinicians 

do not typically chose MRI as their first choice of imaging modality for pulmonary 

diseases. Despite the low signal, some novel techniques aim at improving the MR signal 

and contrast of the lung. Oxygen-enhanced MRI acquires two images, one breathing 

normal air and the other introducing a high concentration of O2 in the lungs, reducing the
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regrowth time of the signal (Ti) of the parenchyma tissue, subtracting the one image 

relative to the other to provide a signal difference image weighted by ventilation (33). 

Low field MRIs reduce the air-tissue susceptibility differences which increase the signal 

decay time constant (T2*), allowing enough time to dynamically quantify ventilation 

defects by measuring change in tissue density during breathing cycles (34). Another 

novel technique recently developed is ventilation and perfusion mapping by Fourier 

decomposition analysis of the proton signal during the breathing cycle (35). The proton 

density in each voxel varies during a breathing cycle such that following inspiration, the 

alveoli is fully expanded and the proton density per voxel will be low, unlike following 

an expiration where the alveoli will have little gas and the proton density per voxel will 

be high. Fourier analysis of the signal in the time domain over several breathing cycles 

can separate signal varying at the breathing frequency and heart rate, and these 

measurements have been correlated to ventilation and perfusion.

Hyperpolarized noble gas (HNG) MRI is a recently developed technique that uses a 

contrast agent (3He, I29Xe) as the source of signal instead of protons (36). Unlike 

conventional MRI, where protons are collectively polarized by a strong magnetic field 

(thermal polarization, 1 to 10 ppm for clinical field strengths), HNG MRI pre-polarizes 

the contrast agent by spin-exchange optical pumping to polarization up to 104-105 larger 

than by thermal polarization prior to introducing it to the lungs (37). This enormous 

increase in collective magnetization compensates for the low density of the gas, 

producing signal densities similar to proton MRI in other regions of the body. This 

technique allows for both anatomical and functional information of the lung. In addition 

to measuring regional ventilation maps of asthmatics (38) and COPD patients (4), this 

technique can provide sub-voxel information such as alveolar dimensions by measuring 

the diffusion coefficients (4,39), as well as 129Xe alveolar gas uptake and tissue densities 

measurements as a possible diagnostic tool for asthma and COPD (40,41). Recent studies 

have also shown (4,5) that emphysema is detectable by measuring a quantity called the 

apparent diffusion coefficient (ADC) of hyperpolarized 3He, where there lies a 

correlation between ADC and alveolar airspace size. Most of the clinical research using 

HNG MRI until recently has mostly used 3He, as its larger gyromagnetic ratio naturally 

provide a larger signal than 129Xe having the same polarization, as well as because 3He is
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naturally easier to polarize than I29Xe (37). Due to recent increases in price of 3He due to 

its low natural abundance, the United States of America has been tightening exports of 

3He. As a consequence, there has been a recent surge of l29Xe studies (42,43) due to 

recent developments in large scale l29Xe polarizers (44,45). In addition, 129Xe has a self- 

diffusion coefficient approximately 30 times smaller than 3He (46), which means that 

ADC studies using 129Xe will likely need to employ considerably longer diffusion times 

than for 3He to probe similar alveolar dimensions. It is for these reasons that this noble 

gas (129Xe) that will be used for this work.

1.4 Physics of Magnetic Resonance Imaging

1.4.1 Nuclear Spin

An important property of nucleons and electrons is their intrinsic spin. Unlike the case of 

classical mechanics, the intrinsic spin I  of neutrons and protons cannot be understood as 

the movement of the particle about its own axis, but must be regarded as a quantum 

mechanical property of matter, like mass, energy and charge. Spin 7 has an inherent 

angular momentum J , and the relation between both is as follows:

J  = fd  t 11!

where h is the reduced Planck’s constant. The magnetic moment Ju due to the spin of the 

particle is proportional to the angular momentum:

[ 1.2]

where the gyromagnetic ratio y is a constant unique to each nucleus.

Table 1.1: Gyromagnetic ratio of three commonly used atoms in MRI (47)

Atom y (106 rad s'1 T 1)
'H 267.52 2128

3He -203.801587
l29Xe -74.52103
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1.4.2 Dynamics of Magnetic Moments in Magnetic Fields

The classical dynamics of magnetic moments in an external magnetic field B is 

described by the Biot-Savart law, where the force F  and torque N are as follows (48):

F = v(ji • è ) [1.3]

N  = f ix B . [1.4]

In the presence of a homogeneous magnetic field, the right side of Eqn. [1.3] is null and 

only a torque is applied to the magnetic moment. The general relationship between the 

torque and angular momentum is:

Thus, by combining Eqn. [1.2] with [1.5], and merging this into Eqn. [1.4], the time 

evolution of a magnetic moment in a homogeneous external magnetic field can be 

expressed as:

The solution for this type of differential equation is the behavior known as gyroscopic 

precession (49), as will now be demonstrated.

A common convention in nuclear magnetic resonance is to set the laboratory reference 

frame such that B  = B0z . Equation [1.6] can thus be decomposed in the three orthonormal 

Cartesian components x , y  andz :

[1.5]

d t

[ 1.6]

[1.7]



9

d/
= - y ^

[1.8]

d ^  = 0 [19]
d/

Equation [1.9] has n z~ m,o as a solution, where pz0is the initial magnetic moment

aligned with the external magnetic field ( p_0 cos[O), 9 is the angle between p and

the z  axis). Equations [1.7] and [1.8] are a pair of coupled first order differential 

equations, which can be solved by introducing a complex magnetic moment 

//+ = n x + i/uv. Multiplying Eqn. [1.8] by / and adding it to Eqn. [1.7] yields:

dM+ 
dt = -jy ^M +

[ 1. 10]

The solution of Eqn. [1.10] is well known to be:

K , ( l )  = [111]

where is the modulus of ju+ and <p is the initial phase. Knowing that equal complex 

vectors have equal real and imaginary parts, we get:

^ (0 = H x yco^YB0i + ̂  n i 2 ]

(') = -V-xy sin(YBô  + <p)y • t113!

Thus, the overall behavior of pit) is a precession about B (Fig. 1.3):

= [x0 sir^6*)[co^yB0/+ ^ )x -s ir(y B 0/+^?)j)]+p0 cos(#)z [114]

where //0 is the magnitude of Pi, which is constant. The angular frequency of precession 

is called the Larmor frequency (0^  and is:
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For a 3.0 T magnetic field and a gyromagnetic ratio of 267.52 106 rad s'1 T '1 (proton), the 

angular frequency of precession is 802.6 1 06 rad/s or a linear frequency v of 127.7 MHz.

coIF =yB0. [1.15]

Figure 1.3: Precession of a magnetic moment about a static and homogeneous field, 

for y > 0.

1.4.3 Rotating Frames of Reference

A helpful tool to conceptualize nuclear magnetic resonance experiments is that of a 

rotating frame of reference, indicated in equations and variables with the prime symbol. 

The rotating frame of reference is centered at the center of the laboratory frame of 

reference, but with the x’ and y’ rotating about the z’ axis in the same direction as the 

precessing magnetic moment. Consider a rotating frame of reference that has an angular 

frequency (o^- < (aLF relative to the laboratory. In the rotating frame, the magnetic 

moment will be precessing slower than <0^  such that, in accordance to the previous 

section, we can state that it experiences an effective field Beff < B0 in the rotating frame
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of reference. It is simple to show that the effective field can be described by the following 

equation if there is only the static B0 field in the laboratory frame of reference:

[1.16]

Thus, the dynamics of the magnetic moment in this reference frame is described by:

[1.17]

where f t  is the magnetic moment vector in the rotating reference frame. Note that

MH/^but B A  < \B, (as long as oj]{F <2coLF).

a)

Figure 1.4: Example of a magnetic moment in a) the laboratory frame of reference 

and b) the rotating frame of reference.

1.4.4 Radio Frequency Pulses

A magnetic moment initially aligned along the static external magnetic field will not 

precess (see Eqn. [1.14]). A radiofrequency electromagnetic pulse can be used to 

manipulate the magnetic moment orientation. By applying a circularly polarized 

electromagnetic pulse at the frequency of the rotating frame of reference described in the
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previous section, a static B] field will be experience by the magnetic moment in the 

rotating reference frame:

2?, = 2?, [cos(<yw /)jc -  an = A*' [ 1

The effective magnetic field experienced by the nuclei is:

/
= B S+ B,

[1.19]

If the radio frequency field (and rotating frame of reference) is on resonance with the 

Larmor frequency (<%■ = = yB0 ), the effective field is simply = Blx , and the

magnetic moment will precess about the x’ axis for as long as the radiofrequency field is 

applied (Fig. 1.5). The flip angle 0 o f the pulse is defined as the angle between the initial 

and final magnetic moment vectors. Two common flip angles used in MRI are 90 and 

180 degree RF pulses. For an initial magnetic moment aligned with the z ’ axis and RF 

pulse along the x’ axis, a 90 degree pulse will align the magnetic moment with the +y’ 

axis, while a 180 degree pulse will align it with the -z’ axis. A common convention that 

will be followed in this work is to indicate the B\ direction in the rotating frame of 

reference in the subscript of the flip angle (i.e. 90x, 180y).

Figure 1.5. Example of a 90* radiofrequency pulse in a) the laboratory frame of 

reference and b) a rotating frame of reference.
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1.4.5 Magnetization in Thermal Equilibrium

Magnetization is the magnetic moment per unit volume of a system of particles [1.20]. As 

magnetic moments are a vector quantity, the net magnetization of a randomly oriented set 

of particles is zero. Thus, for a non-zero magnetization to be present there must be some 

mechanism that gives the particles an excess of population of a certain state (Fig. 1.6).

Figure 1.6: Magnetization of a region of interest represented as the vector sum of 

magnetic moments.

In an external magnetic field, there exists an excess of magnetic moments aligned with 

the field due to the energy difference in the different alignment states (Fig. 1.7, for spin Vi 

particles). The potential energy U of magnetic moments interacting with an applied 

magnetic field is classically described as:

[1.20]

Z

X
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[1.21]

Therefore the potential energy for spin Zi particles is:

where (-) is for the aligned state and (+) is for magnetic moment states anti-parallel to the 

field (Figure 7).

Figure 1.7: Energy splitting of a magnetic moment due to a spin Vi particle in the 

presence of an external magnetic field.

The magnetization in thermal equilibrium Mo can be expressed as the following product:

Mo
/Volume densityf (  Magnitude of a particle's

=  I . . . I ( m aan p t ir  m n m p n f  in tnp
V of particles / 1magnetic moment in the 

z" direction

Net probability of alignment  ̂
with the external field '

[1.23]
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The first two terms are simply p 0 and , while the third can be expressed as the

difference between the Boltzmann distribution for both states. This term is commonly 

called the polarization P  of the material. Mo can thus be written as:

M 0 = p 0 ^ - P
[1.24]

Using Boltzman statistics, the thermal polarization of magnetic moments in an external 

magnetic field is:

P =
nt + « |

tr/B tr/B
e 2kT - e 2VT

frfB tryB
e 2kT + e 2kT

[1.25]

where T is the temperature and k is the Boltzmann constant. At room temperature and 

relatively strong fields (k r  »  pB), the polarization term simplifies and magnetization in 

thermal equilibrium can be expressed as:

K  ~ Po ' 2
tiy  (  TryB

2kT
[1.26]

For physiological temperatures, and at 3.0 Tesla, the polarization of protons in the 

magnetic field is approximately 10'5 or 10 ppm

1.4.6 Bloch Equations

The mathematical formulation of the dynamics of magnetic moments in an external 

magnetic field described by Eqn. [1.6] can be extended to the magnetization of a sample 

with macroscopic environmental considerations of interacting nuclei. Bloch generalized 

Eqn. [1.6] to the following equation, called the Bloch Equations (50), which is valid for 

liquid-like matter and gases:

dM  
d t

M x  + M vy  
—i-------+

t2 Tx

[1.27]
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where the effects of the T\ term is called T\ relaxation (also called longitudinal or spin- 

lattice relaxation) and that of the T2 term is called T2 relaxation (also called transverse or 

spin-spin relaxation). The reference frame of Eqn. [1.27] has the static magnetic field B0

aligned with z  , but B is not limited to B  = B0z (i.e. B can have time-dependence term, 

see Section 1.4.4).

1.4.7 7i Relaxation

T\ relaxation is the mechanism that recovers the longitudinal magnetization to its thermal 

equilibrium value, Mo. To gain a better understanding of the behavior of the T\ relaxation 

term in [1.27], this equation can be solved by neglecting the T2 terms, as well as the

precession term (valid for an on-resonance rotating frame of reference and for B  = B0z ). 

This simplifies to:

dM, _ (M0 - M j  [1.28]
d t ~ r,

The solution of this equation is:

M z(t)= M l0e T' +M C l - e
[1.29]

where Mao is the initial longitudinal magnetization at the time of observation. The 

behavior of M.(t) for three different initial conditions is shown in Fig. 1.8.
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Figure 1.8: The decay/regrowth of the longitudinal component of the magnetization 

due to T\ relaxation for three different initial conditions.

The source of T\ decay results from the need of the spin system to establish its thermal 

equilibrium state magnetization (Eqn. [1.26]) after being perturbed from its equilibrium 

state. When the longitudinal magnetization is below or above Mo, rapidly oscillating 

transverse magnetic fields (in the x-y plane) near the Larmor frequency induces a 

transition of spin states, regrowing or decaying the total magnetization to its equilibrium 

magnitude. A wide variety of sources of oscillating fields occur in materials which will 

shorten T\, including other magnetic moments in the medium (lattice) and paramagnetic 

molecules (i.e. O2, Fe+2).

1.4.8 T2 Relaxation

72 relaxation is the mechanism that decays the transverse magnetization to its thermal 

equilibrium value, which is zero. As shown in the previous section, Eqn. [1.27] can be 

solved by neglecting the T\ terms. Also, as Mx and My exhibit a similar but coupled 

behavior in the transverse plane, a common mathematical trick to simplify the analysis is 

to define a complex quantity M+ = Mx + iMy. This complex vector can be easily analyzed 

as the behavior of magnetization in the transverse plane, with the real part of M+ as the x
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axis and the imaginary part as the y axis. The x and y components of Eqn. [1.27] can be 

rewritten by multiplying the y component by i and adding it to the x component, yielding:

dM + 
d/

= -iyM +B0

The solution is simply:

[1.30]

-/
M +(t) = M +0e-‘̂ ‘eT>

[1.31]

where M+0 is the initial transverse magnetization resulting from a 0 flip angle RF pulse. 

The complex exponential term in Eqn. [1.31] is simply the precession behavior of the 

magnetization about B0. The magnitude of the transverse magnetization decays 

exponentially, as can be seen in Fig. 1.9.

2 3
Time (s)

Figure 1.9: The decay of the transverse component of the magnetization due to Ti 

relaxation for three different T2 values.
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The source of Tz decay comes from the dephasing of precessing magnetic moments when 

there are longitudinal (z-direction) magnetic field inhomogeneities in the volume of 

interest. Spatial variations of Bz due to the proximity and orientation of neighboring 

nuclei creating dipolar magnetic fields cause spins to precess at different frequencies, 

creating an overall decoherence and dephasing of spins. The vector sum of this collection 

or dephasing spins will reduce the magnitude of the overall precessing magnetization 

vector as seen in Eqn. [1.31].

A correction to Tz accounting for static field inhomogeneities (i.e. static Bo field 

inhomogeneities) is called Tz, and is expressed as:

J _  = J _  J_  [1.32]
t;  t2 + t '

where T2 is the transverse relaxation due to static field inhomogeneities. Often, 

attenuation due to diffusion through inhomogeneous fields is also included in Eqn. [1.32], 

but as will be seen in Section 1.4.9, the exponential attenuation due to diffusion is

proportional to P and not t, so it is omitted here. For a measure of T2 and not T2 , T2 

contribution can be corrected for with the use of a 90x-180y pulse sequence (spin-echo).

1.4.9 Bloch-Torrey Equations

A more generalized form of the Bloch equations, introduced by Torrey (51), can be 

developed by taking into account diffusion of the nuclei. Fick’s Law applied to 

magnetization is stated below:

J m = -D V 'M  H-33]

where D is the diffusion coefficient and Jm is the diffusion flux of magnetization at a 

certain point in space. Another useful relation is the continuity equation applied to 

magnetization (assuming no T\ or Tz relaxation):
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dM
dt

Combining these two equations yields:

[1.34]

— = v (d v -m )
[1.35]

The precession and relaxation terms developed previously can now be added to give the 

Bloch-Torrey equations:

dM
dt

M xx  + M yy  

T2 +
(Mo ~ M .-)g

Tx

[1.36]

Note that the time-derivative is a partial derivative due to the fact that this is valid for a 

single point in space, a condition stemming from Eqn. [1.33] and [1.34].

An important solution of Eqn. [1.36] occurs when a constant linear field gradient G is 

applied. For this case, Torrey showed that the transverse magnetization M + (which is 

related to signal, see section 1.4.10) is:

M +(t) = M ^ e - la,Lf,e T>
[1.37]

where b, commonly referred to as the b-value (which is a measure of the diffusion 

sensitivity of the pulse sequence) and without explicitly stating its dependence on time, 

is a function of gradient strength and time. For a constant background gradient Go, Torrey 

showed that the b-value is:

,  1 [1-38]

b-values can also be determined for externally applied time-dependant gradients in pulse 

sequences, such that the decay in signal can provide a measure of the diffusion 

coefficient.
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Diffusion coefficient measurements using MR can be commonly extracted from a two 

echo acquisition experiment, one signal echo acquisition S  with an external gradient 

applied and one acquisition So without any external gradients applied (to compensate for 

Ti or T2* effects), yielding the following relationship:

S  = S0e~bD t1-39]

The diffusing sensitizing pulse sequence used in this work is called the pulse gradient 

spin echo (PGSE) sequence with trapezoidal gradients, and is shown in Fig. 1.10. PGSE 

sequences have the advantage of having a well-defined diffusion time sensitivity related 

to the pulse sequence, and the signal from the echo is Ti weighted due to the use of a 

spin-echo.

RF cT 1
ON 1 00 0 y

A A *

Gradient

Figure 1.10. Pulse gradient spin echo pulse sequence using trapezoidal gradients. Gm 

is the maximal gradient strength, t is the ramp up/down time, A is the diffusion time 

and 5 is the gradient flat time + 2 t.

The b-value associated with this sequence is (52):
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b = b G j s2M 3 J r [ V - 2A 8 + A t -  — St + —  t2 
6 15

[1.40]

where Gm is the maximal gradient strength, t is the ramp up/down time, A is the diffusion 

time and 5 is the gradient flat time + 2t.

1.4.10 Signal Equation

Precessing magnetization cause a flux of magnetic field that can be detected by the 

electromotive force {e.m.f.) induced through a conducting wire, a consequence of 

Faraday’s Law:

,  d f 5 „  [1.41]e.m.f = -----I B ’ ds
dt J

Coil area

where d s  is a surface element. It can be shown (53) that the signal S {e.m.f, volts) 

induced in a coil due to a time varying magnetization present in space is:

S = ~ —  fi*"^(r)* .A /(r,/)dV  [1'421
d/ J

Sample

where 5 rocave is the field that would be produced by the coil when one ampere of 

electrical current is applied, and dV is a volume element. It is a measure of the sensitivity 

of the receive coil through the Principle of Reciprocity, and depends on coil geometry 

and its physical properties. Receive coils are generally constructed to have a 

homogeneous sensitivity over the sample region, such that Brcoave should ideally be 

spatially independent.

Since only time varying magnetization will contribute to the signal from the coils, we can 

ignore induction through T\ regrowth/decay of the longitudinal magnetization (a variation 

much slower than the precession frequency) and simply implement the solution to the 

Bloch equations for precessing transverse magnetization into Eqn. [1.42], which yields 

the following signal equation:



23

S = A ^-P (oLFe-iaLF-'eT̂ 
2 *

j p 0( ? y ,MpJÏ‘dV
[1.43]

where A is a constant that contains | Braave | and other electronic factors. The term 

Aco(f,t) is the local precessing frequency offset that may depend on position and time,

•rcoove

and manipulating this phase term in the integral can be used for acquiring images of the 

sample.

1.4.11 MR Imaging

Spatial images weighted by nuclei density, T\ and Ti can be acquired by nuclear 

magnetic resonance with the addition of spatial magnetic field gradients. For the sake of 

simplicity, the signal equation above can be demodulated and 7i* can be neglected such 

that:

signal is simply proportional to the overall quantity of nuclei in the sample, independent

[1.44]

Sample

where all the constants in Eqn. [1.43] can be combined into one, p eff{r), which is the 

effective spatial nuclei density. In the absence of inhomogeneous fields, A*y(r)=0, the

of time (in reality, T2* decay would exponentially attenuate the signal). In the presence of 

linear magnetic field gradients G = VB: , the magnetic field offset from B0 will be 

AB - G  r and the phase in Eqn. [ 1.44] is given by:

[1.45]
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The signal equation can now be transformed into a three-dimensional Fourier transform 

of the effective spatial nuclei density by defining an angular wave number (also 

sometimes referred to as a spatial frequency) as:

[1.46]

Thus:

s =
Sample

[1.47]

Equation [1.47] can be interpreted as the Fourier transform of the effective nuclei density 

of the sample, what is commonly known as k-space. By controlling gradients prior and 

during acquisition, k-space can be discretely acquired and applying the inverse Fourier 

transform produces an image of the sample. Figure 1.11 shows an example of an imaging 

pulse sequence, while Fig. 1.12 shows an example Cartesian k-space acquisition scheme.

Figure 1.11. Gradient echo imaging 

pulse sequence. Gz, Gy and Gx are 

called the slice select, the phase encode 

and the readout gradients, respectively. 

The amplitude of Gy changes before 

each acquisition of a k-space line.

Figure 1.12. Cartesian k-space 

acquisition scheme. The grey dashed 

lines represent k-space trajectory of the 

gradients before acquisition, and the 

black line represents the trajectory 

during acquisition.
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1.5 Hyperpolarized Noble Gases

Hyperpolarized noble gases have been used as an MRI contrast agent for almost 20 years 

(36). Though initially conceived as brain activation contrast agent, they have been mostly 

used for pulmonary imaging due to the practical administration of the gas into the lungs, 

as well as the wide breadth of anatomical and functional investigational uses, as 

described in Section 1.3.4. The gas is pre-polarized outside of the main magnet by a spin 

exchange optical pumping (SEOP) process that takes tens of minutes to a few hours, 

resulting in polarization levels of up to 64% (44), thus 104 to 105 times higher than 

achievable by thermal polarization at clinical field strengths. As a consequence, after the 

SEOP process, T\ relaxation results in the decay of the longitudinal magnetization to 

thermal equilibrium Mo (Fig. 1.8). Thus, proper handling of the gas prior to imaging is 

critical, as well as the use of appropriate pulse sequence technique to use the 

magnetization in the most effective manner possible. The magnetization from 

hyperpolarized gases can be described by the following equation for spin Vi particles, 

where Php is the polarization of the gas and is independent of the imaging magnetic field:

MHP —  Po '  -  '

[1.48]

1.5.1 3Hevs. 129Xe

Shown in Table 1.2 are physical properties of 3He and 129Xe that are pertinent to HNG 

MRI experiments. 3He and 129Xe are both spin Vi particles and are chemically inert, which 

is why they are the most widely used gases in hyperpolarized gas MRI.

Table 1.2: Physical properties of 3He and 129Xe, adapted from (37).

Parameter JHe ™Xe
Nuclear spin, I 1/2 1/2

Gyro magnetic ratio, y (106 rad s'1 T '1) -203.781587 -74.52103
Natural abundance of the isotope (%) 1.37 x lO'4 26.4
Self diffusion coefficient, Do (cm s’ ) 2.05 0.061
Diffusion coefficient in air, D (cm s' ) 0.86 0.14

Ostwald solubility in blood, L 0.0085 0.17
Chemical shift range (ppm) ~0.8 -250
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If hyperpolarized to the same polarization (Php), 3He will provide a signal 7.5 larger than 

l29Xe due to their difference in gyromagnetic ratios, as the magnitude of the signal from 

hyperpolarized gases can be described as:

n\y\
SHP = coap 0 ■ — —  •  Pj

[1.49]

For this reason, 3He has been studied more intensively in the past 15 years. 

Unfortunately, as can be seen by their natural abundances, 3He is a lot scarcer than 129Xe, 

making it a very expensive research agent. Also, some countries have recently banned 

exports of 3He, making it very difficult to purchase 3He at a reasonable price from other 

countries. 129Xe has an advantage over 3He due to its higher solubility in the blood and 

larger chemical shift, providing a significantly larger signal from dissolved gas into the 

blood, which is a useful tool for investigating various diseases affecting the lung 

parenchyma.

The self diffusion coefficients of 129Xe and 3He are drastically different, 3He having a self 

diffusion coefficient over 30 times larger than 129Xe, which implies that hyperpolarized 

MRI diffusion experiments using 129Xe need a much longer time than 3He to probe the 

same microstructure dimensions. One solution to alleviate this difference (if this is not a 

desired feature), would be to mix the hyperpolarized gas with medical air or nitrogen as it 

is being inhaled. As can be seen from Table 1.2, mixing 50% air with the gas increase Do 

for 3He but decreases Do for 129Xe, reducing the ratio Do.wJDo.xt to 6.

1.5.2 Spin Exchange Optical Pumping

The most common hyperpolarization technique used for 129Xe and 3He is called Spin 

Exchange Optical Pumping (SEOP). An overview of this SEOP for 129Xe will be 

described below. For a more in depth explanation of this technique, the reader is referred 

to Walker and Happer’s excellent review on the subject (54).

A simplified diagram of the SEOP setup used in this thesis for 129Xe is shown in Fig. 

1.13. A gas mixture of 129Xe, N2, 4He and an alkali metal (typically Rb) flows through a 

glass cell contained in a small but homogeneous magnetic field. A laser at the electron
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transition wavelength of the alkali metal (794.5 nm for Rb) is pumped through a quarter- 

wave plate to circularly polarize the beam, and is then transmitted through the optical cell 

(containing the gas mixture) in the direction parallel to the magnetic field. The photons 

polarize the Rb atoms valence electron collectively to a 100% aligned spin state, and then 

exchange its spin state with the l29Xe atoms. The gas then flows through a glass trap 

submerged in liquid N2 which quickly freezes the xenon atoms allowing the buffer gases 

to flow into the atmosphere. The xenon is then quickly thawed into a bag for delivery.

Figure 1.13. Experimental setup for spin exchange optical pumping. (1) Linearly 

polarized light. (2) Quarter wave plate. (3) Circularly polarizing the beam. (4) 

Source of homogeneous magnetic field. (5) Optical cell. (6) Glass trap immersed in a 

liquid N2 bath.

1.5.2.1 Optically Pumping Rubidium

An overview of the mechanism of optically pumping rubidium is shown in Fig. 1.14. In 

equilibrium, the valence electron of Rb is in its ground state (5S‘A). When a small 

external magnetic field is present, the ground state is split into two states (mj = ± Vi), with
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approximately equal probability of being in either state. Incident laser light (794.5 nm) 

that is circularly polarized with positive helicity a+ will transition the electron state of a 

Rb in state 5 S J 4  ( n i j  = - lA) to the excited state 5P‘/2 (m, = + lA); the transition between the 

ground (5S) and excited (5P) state is due to absorption of the photon at the transition 

wavelength (794.5 nm); the transition from the spin orientation mj = - A  to + A occurs as 

a consequence of the conservation of angular momentum due to the circular polarization 

of the photon.

Collisional mixing (4He)

J — W
5P'/2

- f
I r. (  I .C ollisional

I  relaxation (N2)

794.5 nm («^transition I
■  50%

m- = - Vi

5S Vi

m  s =  +  14

Figure 1.14. Schematic diagram of optical pumping Rb valence electrons into the 

5S/4 (mj = 'A) spin state.

Collisions with 4He will change the spin orientation of the electron while keeping it in its 

excited state, such that after a short time the electron will have a 50% probability of being 

in either spin state. Energy exchange during collisions with N2 atoms then causes 

transitions of the electron from the excited to the ground state without any emission of 

photons, and the spin orientation is conserved during this interaction. This whole process 

repeats until the collection of Rb atoms all have their 5S‘/2 (mj = - lA) state depleted. The
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photon is only absorbed by Rb electrons in the 5S%( mj = - Vi) state due to its circular 

polarization, and every Rb valence electron is in the 5S54 (mj = + V2) state (100% aligned 

electron polarization).

1.5.2.2 Spin Exchange of Rb and 129Xe

Once the Rb atoms have their valence electron fully polarized to the 5S% (mj = + /2) 

state, a spin exchange will occur between the Rb electron and the Xe nucleus. A Fermi 

contact interaction may occur once the wave functions of the Rb electron and Xe 

nucleus overlap, and spin will exchange as follows:

S|tb(f ) + IXe(^)--- ► SRh( j )  + Ixe(f )

where SRb is the electron spin of the Rb valence electron, and Ixe is the nuclear spin of the 

129Xe nucleus. After this process, the Rb will return to being optically pumped into the 

5S!/2 (mj = + Vi) state as described in Section 1.5.2.1. The characteristic spin exchange 

time between 129Xe and Rb is between tens of seconds to minutes, much shorter than 3He 

which takes hours, such that 129Xe can be polarized in a continuous flow. 129Xe 

polarizations of up to 80% are theoretically achievable by spin exchange optical 

pumping, while experimental limitations (wall relaxation, freeze-thaw process) 

practically limit achievable polarizations to about 50% (44).

1.5.3 Practical Considerations with Hyperpolarized Gases

Several practical considerations must be taken when using hyperpolarized gases in MRI 

(55). The most restrictive feature of hyperpolarize gases is that the longitudinal 

magnetization is non-renewable. Once depleted, the magnetization will only regrow to 

the thermal equilibrium value Mo, which cannot be used for imaging due to the low 

density of gases. As such, efforts must be made to minimize any environmental 

contributions that can increase T\ decay (wall collision relaxation, oxygen). The pulse 

sequences can also be optimized to use the longitudinal magnetization most effectively 

during a series of RF pulse by applying variable flip angle (VFA) pulses (56). VFA 

provides a constant signal, compensating Mz losses due to previous RF pulses and T\
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decay by gradually increasing the flip angle of the RF pulses. Also, due to the high 

diffusivity of the gases, signal attenuation due to the imaging gradients must be 

accounted for in the data analysis by calculating the associated b-value for the pulse 

sequences.

1.6 Low Field MRI

Researchers and medical professionals using proton MRI have traditionally wanted to 

operate at high field strengths (3.0 -  9.4 T) to achieve much higher thermal polarization 

(Eqn. [1.26]) and signal (Eqn. [1.43]). Though higher field strengths provide various 

contrast advantages, great care must be taken in the development of MRI hardware, 

especially to reduce the specific absorption rate (SAR) in the subject due to RF pulses. 

For hyperpolarized gases, high field strengths are not typically necessary as the main 

magnetic field strength is not the source of the sample polarization, and the relationship 

between the signal to noise ratio (SNR) and field strengths is shown in Table 1.3.

Table 1.3: SNR dependence on field strength Bo, adapted from (57).

Patient
dominated noise

Noise oc B0

Receive coil 
dominated noise

Noise oc B ll 4
Thermal polarization

Signal oc Bo SNR oc B0 SNR oc B 7q/4

Hyperpolarization
Signal oc B0 SNR oc B0° 

(Field-independent)
SNR oc Bo/4

This lack of field dependence of hyperpolarized gas SNR in patient dominated noise 

suggests the possibility of imaging hyperpolarized gases at lower field strengths than 

clinical MRIs (< 1.0 T) without SNR penalties. Although patient-dominated noise is most 

commonly observed at high field strengths (~3.0 T for large chest coils), careful coil 

design can push the noise to the patient-dominated regime at field strengths as low as 

73.5 mT (58).

Low field MRIs have the potential to be very useful for clinical lung imaging. Reduced 

hardware costs (resistive or permanent magnets, RF and gradient hardware), reduced
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SAR and variable position MRI systems are all great advantages of going to lower field 

strength. In addition, studies have shown that T2* of hyperpolarized gases in the lung 

increases at lower field strengths due to reduced susceptibility differences at the air-tissue 

interfaces of the airways (59). Optimal SNR at field strengths of approximately 0.1 T has 

been theoretically predicted for hyperpolarized gas MRI of the lungs (60). Long T2 are 

advantageous for long diffusion times studied in this work due to a longer signal lifetime.

1.7 Restricted Diffusion Measurements

1.7.1 Free Diffusion

The random movement exhibited by particles and molecules in thermal equilibrium is 

called Brownian motion. Though this process exists for all molecular environments (i.e. a 

single species of atoms or molecules, as well as a mixture), this mechanism explains the 

dispersion of molecules from high concentration regions into regions of low 

concentration, increasing the entropy o f the entire system (Example: perfume diffusing 

throughout a room). In an unrestricted environment, the root-mean-square distance rrms 

travelled by a particle over some time A in a particular molecular environment, having a 

self-diffusion coefficient Do, has been shown in 3D to be (61):

D0-A [1-50]

where the diffusion coefficient Do is a function of pressure, temperature and the 

atomic/molecular species present. Molecules of a gas with a diffusion coefficient of 2.05 

cm s' ( He) diffuses a root-mean-square distance of 7.84 mm in 50 ms, while molecules 

of another gas with Do of 0.061 cm s' ( Xe) would diffuse of 1.35 mm after this 

diffusion time.

1.7.2 Restricted Diffusion

In a restricted environment (i.e. a box, an alveolus), the distance a molecule can diffuse is 

limited by the geometrical dimensions of the boundaries and this restricts the achievable 

diffused distances (Fig. 1.15).
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As can be seen in Fig. 1.14 c), Eqn. [1.50] is only valid for very short diffusion times 

where Trms« the size of the container. The diffusion coefficient measured in a restricted 

environment is called the apparent diffusion coefficient (ADC), and is a function of 

diffusion time and the geometry of the environment in addition to the self-diffusion 

coefficient.

Figure 1.15. A particle diffusing in an unrestricted environment (a) and a restricted 

environment restricted by a spherical boundary (b). Shown in (c) is the conceptual 

relationship between the root-mean-squared displacement and diffusion time for 

these two cases.

In the context of MRI, ADCs can be measured in a similar way to that described in 

Section 1.4.9, yielding the following relationship for the case of an isotropically restricted 

environment:

S = S0e~MDC [1-51]

In anisotropic environments, ADC will depend on the orientation of the applied gradients 

and as such ADC may be better described as a tensor. A complete description of diffusion 

tensor imaging is beyond the scope of this work (62,63), but a pertinent case for 

hyperpolarized gas MRI anisotropic diffusion measurements of the lung is discussed in 

the following section.
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1.7.3 The Yablonskiy Model of Anisotropic Apparent Diffusion 
Coefficients

For the case of gas diffusion in the lungs, the terminal airways can be approximated as 

infinite cylinders, neglecting the presence of alveoli. Due to the symmetry of the cylinder, 

the anisotropic ADC can be interpreted as having two orthogonal components (52); D l, 

the diffusion coefficient measured by applying a gradient along the longitudinal axis of 

the cylinder and Dr, the diffusion coefficient measured by applying a gradient transverse 

to the axis of the cylinder.

Figure 1.16. Cylinder model of the terminal airways. The ADC measured by 

applying a gradient along the principle axis of the cylinder (a) is called the 

longitudinal diffusion coefficient Dl, while the ADC measured by applying a 

gradient perpendicular to the long axis (b) is called the transverse diffusion 

coefficient D t. For an arbitrary angle 0 (c), ADC is given by Eqn. [1.52].

In the general case where the gradient is applied along some angle 9 relative to the 

longitudinal axis of the cylinder, ADC is given by:

ADC(0) = D l co i  {0)+ D t sin2 (o ) [1.52]
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When acquiring hyperpolarized gas images of the lungs, a single voxel could contain 

thousands of randomly oriented terminal airways so that Eqn. [1.52] cannot simply be 

introduced into Eqn. [1.50]. To simulate the effect of random orientation of the terminal 

airways on the signal, Eqn. [1.52] is introduced into Eqn. [1.50] and this term, weighted 

by sin(0), is integrated from 0 to a: to yield:

So
-bDr n

4b{DL - D t )
/2^ l b ( D L - D T)P

[1.53]

where 4> is the error function. Since the longitudinal and transverse diffusion coefficients 

probe different geometrical dimensions, their dependence on the diffusion time will 

differ, and changes in DL and Dt for larger dimensions (i.e. emphysema) will generally 

be optimal (larger) at different diffusion times for both.

1.8 Hypothesis

A recent study using an elastase-induced rat model of emphysema has shown that Dt for 

3He correlates strongly with histological measurements of alveolar damage, and is more 

sensitive than Dl for quantifying alveolar destruction at sub-millisecond diffusion times 

(5). This suggests that Dr measurements may be a sensitive indicator of emphysema- 

induced alveolar destruction. We hypothesized that anisotropic diffusion coefficients for 

I29Xe can be as sensitive as 3He to changes in alveolar airspace induced in an elastase- 

instilled rat model, and that significant increases in ADCs between sham and elastase- 

instilled lungs will be observed at considerably larger diffusion times (on the order of 

milliseconds) due to the inherently small self-diffusion coefficient of l29Xe compared to 

3He.

1.9 Thesis Outline

The work presented in this thesis was completed by me in the Imaging Research 

Laboratories of the Robarts Research Institute under the supervision of Dr. Giles Santyr 

as an MSc student in the Department of Physics and Astronomy at the University of 

Western Ontario. This thesis is a collaborative work between me, Dr. Santyr and
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colleagues under the supervision of Dr. Santyr who assisted on occasion. The outline of 

my thesis and the explicit account of my contributions are as follows.

Chapter 2 uses a finite difference approach of numerically simulating the Bloch-Torrey 

equations for 129Xe restricted diffusion in a 3-D budded cylinder model of the acinus and 

emphysematous morphological changes were modeled to identify the optimal diffusion 

times and Yablonskiy anisotropic diffusion coefficients to quantify emphysema. The 

simulations were written in C and the numerical fitting was done in Matlab. The code for 

this work was adapted from Xiaojun Xu’s work with Dr. Santyr for her MSc project on 

3He diffusion (3). The code was changed to perform 129Xe diffusion over a larger range of 

diffusion times, the geometrical parameters of the model were adjusted to model the 

airways of healthy and diseased lungs more appropriately, and various code optimizations 

were applied prior to performing my own simulations.

In Chapter 3, whole-lung Dl and Dt were measured in vivo at diffusion times of 6, 50 and 

100 ms for 4 elastase-instilled rats and 5 sham-instilled rats at 73.5 mT. Elastase was 

instilled in the rat lungs six to eight weeks prior to the experiments to model 

emphysematous alveolar destruction and enlargement. This work is being prepared for 

submission to Magnetic Resonance in Medicine. I am solely responsible for the pulse 

sequence preparation and calibration, in vitro experiments, elastase and sham instillation, 

most of the animal preparation prior to the experiments, data analysis as well as 

histological measurements. Colleagues under the supervision of Dr. Santyr assisted with 

operating the ventilator, collecting l29Xe, and a few animal preparations during the in 

vivo experiments. Dr. Santyr provided consultations and assistance with the manuscript 

preparation.

Chapter 4 summarizes the work of this thesis and provides ideas for future work using 

hyperpolarized 129Xe diffusion, particularly to extend this work to include imaging to 

provide regional ADC maps, and application of anisotropic ADC maps for the purpose of 

in vivo morphology measurements. The ideas described in the chapter came from me in 

consultation with Dr. Santyr.
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Chapter 2

2 Finite Difference 129Xe Diffusion Simulations in the 

Budded Cylinder Airway Model

2.1 Introduction

Numerical models of the lung provide an invaluable tool for predicting behaviour of 

hyperpolarized noble gases prior to implementing in vivo MRI experiments. Over the past 

decade, several airway models have been developed for diffusion MRI experiments, 

typically aiming to predict behavior either at short (1-3) or long (4,5) range diffusion 

time scales, corresponding to a mean path of a few alveoli or several bronchiole 

generations, respectively. For short diffusion times, the terminal airways have been 

modeled as an infinite cylinder (1), and a mathematical analysis of this simple model 

yields an analytical equation for anisotropic diffusion involving two orthogonal diffusion 

coefficients: Z \, the diffusion coefficient along the axis of the cylinder, and Dj, the 

diffusion coefficient perpendicular to this axis. Numerical simulations of gas diffusion in 

the terminal airways have since been extended to a wide range of structural models (2,3). 

The budded cylinder model, in which partial spheres representing alveoli are joined to a 

cylinder representing the terminal airways to model the acinus, has recently emerged as a 

promising tool for modeling emphysema-like airspace expansion (3) and will be used 

throughout this chapter.

Most numerical simulations until now have been performed with 3He as it the most used 

hyperpolarized gas for in vivo experiments, due to its signal advantages. Due to a recent 

surge in the use of 129Xe for hyperpolarized MRI experiments, it is of interest to re­

evaluate 3He diffusion techniques for 129Xe, specifically to optimize pulse sequence 

parameters. In particular, the smaller self-diffusion coefficient of l29Xe compared to 3He 

implies that optimal diffusion times (where the greatest difference of ADCs between 

normal and disease is observed) will be much larger for 129Xe experiments than for 3He.
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This chapter was motivated by the recent success of 3He numerical diffusion simulations 

at predicting optimal diffusion times to quantify alveolar damage in an elastase-instilled 

rat model of emphysema using the Yablonskiy anisotropic diffusion model (6). This 

study suggested that Dj provides the best sensitivity to measure alveolar damage in an 

animal model at ultra-short diffusion times (Aopt, He = 360 ps). A rough estimation using 

the results of Ref. (6) for 3He and the ratio of diffusion coefficients (Dne/Dxe -  30) yields 

an optimal diffusion time on the order of 10 ms for 129Xe. The optimal diffusion times for 

the measurement of A . and Dr can be more precisely estimated with finite difference 

diffusion simulations using the budded-cylinder model, which is the subject of this 

chapter.

2.2 Method

A finite difference method of solving the Bloch-Torrey equations (Eqn. [2.1], Section 

2.2.2) was used to simulate diffusion of transverse magnetization on a spatial grid in the 

presence of magnetic field gradients (2). The code was written in the C programming 

language, and run using an Intel® Core™ i7 2.80 GHz QuadCore CPU and 8 GB RAM. 

The pulsed gradient spin echo experiment with trapezoidal gradients was used for these 

simulations (Fig. 1.10 of Section 1.4.9). In this figure, Gm is the maximal gradient 

strength, t is the ramp up/down time, A is the diffusion time and 8 is the gradient flat time 

+ 2t. To simplify the code and to provide consistent pulse sequences for all diffusion 

times, it is assumed that RF pulses are applied instantaneously and A = 8.

A 92 x 72 x 92 array (x,y,z) was used to simulate a spatial grid with 8.75 pm isotropic 

spatial step sizes (Ax = Ay = Az). The budded cylinder model of the terminal airways 

determined the boundary conditions that restricted diffusion (3), and a phase wrapping 

technique was used to simulate an infinite cylinder by diffusing magnetization from one 

end of the cylinder to the other. The xenon self-diffusion coefficient was set at 6.1 10-6 

m /s (7). The diffusion times (A) simulated were 1, 2, 5, 10, 20 and 100 ms, ranging from 

when the diffusion coefficient converged to the self diffusion coefficient at low diffusion 

times to when the mean diffused distance exceeded several alveoli and the model would 

require a branching structure that better reflects lung anatomy. The b-values (Eqn. [1.40]



44

in Section 1.4.9 for the pulse sequence shown in Fig. 1.10) ranged from 3 to 24 s/cm2 at 3 

s/cm2 intervals, and were limited to this range due to constraints in computation time due 

to convergence conditions on the maximal gradient strength applicable for set spatial step 

sizes (Section 2.2.3).

2.2.1 Budded cylinder model

The budded cylinder model used for these simulations was introduced by Fichele et al 

(3), and is shown in Fig. 2.1. Two sets of four spheres representing alveoli are attached to 

a cylinder for a more realistic model of the acinus than the simple cylinder model. The 

spheres from each set were separated by 90° relative to the center of the cylinder, and one 

set of four spheres was rotated by 45° degrees relative to the other set. Both sets of 

spheres were separated by a distance 2La = 320 pm. The radius of the spheres (Ra) was 

set at 140 pm and the relative distance between the center of the cylinder and the center 

of the spheres (R) was set at 210 pm. To model airspace expansion characteristic of 

emphysema, the radius of the cylinder Rd was varied depending on disease severity to 

simulate erosion of the airways. The severity of the disease was interpreted using the 

ratio Rd/(R+Ra), where a ratio of 0.55 has previously been shown to simulate normal 

airways (3), and Rd/(R+Ra) = 0.8 represents emphysema-like destruction. In accordance 

to these values, “Healthy” tissue was represented by a cylinder radius Rd of 193 pm, and 

“Diseased” tissue by a value of 280 pm. Although Fichele et al. modeled these airway 

sizes as a model based on emphysematous changes observed in human terminal airways, 

a recent study (6) has shown that these parameters provided a good prediction of changes 

in 3He anisotropic ADC at different diffusion times for damage induced by 75 IU of 

elastase in rats, six to eight weeks post-instillation. As such, this work assumes that these 

parameters are a good approximation for the purpose of Xe ADC measurements in this

same animal model.
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Figure 2.1. Budded cylinder model of the terminal airways, showing a side view 

(left) and end view (right).

2.2.2 Finite Difference Method of Solving the Bloch-Torrey 

Equations

A finite difference approach was used to numerically solve the Bloch-Torrey differential 

equations for transverse magnetization (2,3) for a pulsed gradient spin echo (PGSE) 

experiment (Fig. 1.10, Section 1.4.9). In order to simplify the calculations, several 

assumptions were made for these simulations. No signal decay was present in the absence 

of magnetic gradients, reflecting that T\ relaxation was ignored by simulating only the 

transverse magnetization and assuming that perfect 90° and 180° pulses were applied. 

This also reflects that T2 relaxation effects were ignored, as experimentally, T2 relaxation 

is accounted for in a two acquisition experiment: (i) an experiment with applied gradients 

(b-value + T2 decay) and (ii) an experiment without applied pulsed gradients (T2 decay). 

The echo measured with applied gradients on is thus normalized by the echo measured 

without. No bulk flow of gas was present in these simulations, which is equivalent to 

assuming a static breath hold,. Magnetic field inhomogeneities (other than the applied 

gradients) were also ignored. Prior to applying the gradients, the magnitude and phase of 

the transverse magnetization was homogeneous. Boundary permeability of the budded
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cylinder model was ignored by assuming experimentally that xenon already saturated the 

blood during the breath hold before applying the pulse sequence, and that the contribution 

of the signal in the dissolved phase was small relative to the gas signal. This assumption 

is confirmed by the spectrum shown in Fig. 2.2, where an in vivo spectrum of 

hyperpolarized 129Xe was acquired for a rat during a static breath hold at 73.5 mT, and it 

is clear that the contribution from dissolved l29Xe is very small relative to the gas 

contribution.

D em odulated frequency (Hz)

Figure 2.2. Experimental in vivo spectra of hyperpolarized 129Xe at 73.5 mT for a rat 

during a static breath hold. Due to its relatively low abundance compared to 129Xe in 

the gas phase, the dissolved phase is ignored for these simulations.

The differential equation for transverse magnetization of particles diffusing in an external 

magnetic field gradient can be expressed by the following modified Bloch-Torrey 

equations (8):
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P ) \ / f
= -iyM +G • F + Z)V2A/+ 

dt
[2.1]

In Eqn. [2.1], F is the spatial position, y is the gyromagnetic ratio of the nucleus, D is 

the diffusion coefficient, M  + is the complex transverse magnetization and G is the 

magnetic field gradient, where M  + and G are given by Eqn. [2.2] and [2.3]:

M + — M x +iMy [2.2]

0 = S B ,+3B, +BB, [2.3]
dx dy dz ■

Precession about the main magnetic field Bo is ignored in Eqn. [2.1] as Bo is 

homogeneous and will have no effect on the attenuation of the signal due to diffusion. 

The solution of the left side and the first term on the right side of Eqn. [2.1] can be 

approximated by a Taylor expansion of M+(t) (using the differential equation as the time 

derivative of A/+(t) in the expansion) to provide the change in phase of M +(t,r) 

following a discrete time A t.

M +(t + At,r) = M + (/, F) exp(-i)G ■ FA/) [2-4]

As a convention, a certain time t can be replaced by a discrete index n, and it is 

understood that t = n At where At is the finite temporal step duration. Similarly, the spatial 

coordinates (x,y,z) can be replaced by the discrete indices (i,j,k) such that (x,y,z) = (i Ax, 

j Ay, k Az), where Ax, Ay and Az are the finite spatial step sizes of the computation. Using 

this convention, the second term of Eqn. [2.1] was calculated by a finite difference 

approximation of the temporal and spatial derivative which yielded the following 

recursive equation, and added to Eqn. 2.4 (not shown below):
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[2.5]

where D . is the diffusion coefficient between the i and i-1 grid positions. Signal was

then defined as magnitude of the complex sum of the magnetization of each grid position: 

So being the initial signal and S being the signal after the second gradient is applied. The 

diffusion coefficients are used to set the boundary conditions described in Section 2.2.1 

by setting them zero at the airway and alveolar walls, and defining them to be the self­

diffusion coefficient of the nuclei everywhere inside the airway (Fig. 2.3).

^¡,¡-1 ~  D 0 D \+i ,\+2 ~  0I I

^¡-l,j+l

—t-------If

1«f
¡̂+l,j+l

—t-------11«1
jM ¡+2J+1111

H i,,

»

! H i

1

M\+2j

H b ^¡+l,j-l ^i+2j-l

Figure 2.3. A two dimensional representation of the computational grid used to 

numerically calculate Eqn. [2.5]. The blue line represents an impermeable barrier.

For in vivo MRI experiments, each imaging voxel contains hundreds of randomly 

oriented alveoli. To simulate random orientation of airways in a voxel, the pulsed 

trapezoidal gradients were applied in 30 different orientations (Bm = nra/30 radians where
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m=l, 2, 3, ... , 30) relative to the cylinder (Eqn. [2.6]) and reconstructed during the data 

analysis:

G = Gsin(£?m)x+Gcos(#m)y

2.2.3 Convergence

The spatial steps sizes (Ax, Ay and Az) satisfied the Nyquist criterion to ensure the 

convergence of the simulations. Specifically, to achieve less than 1% error, the following 

condition was always satisfied (2):

Ax < n
To)G~S.

[2.7]

In addition, the temporal step size (At) satisfied the following condition to ensure stability 

o f the simulations:

D - ^ j<  0.2
Ax2

[2.8]

2.2.4 Boundary Wrapping

To minimize computation time and to prevent edge effects at the ends of the cylinder, a 

phase wrapping technique was used to simulate an infinite cylinder. Due to the history of 

the applied spatial magnetic field gradients during diffusion, there exists a phase 

discontinuity between magnetization at both ends of the cylinder which must be 

accounted for. For this simulation, magnetization diffusing through one end of the 

cylinder was reintroduced through the other end of the cylinder. The phase difference:

[2.9]

was added to magnetization diffusing out of elements where Gyy  < 0 , and subtracted 

from magnetization diffusing out of elements where Gyy  > 0.
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2.2.5 Data Analysis

For each diffusion time (A), echo signals (5) were normalized to the initial signal (So) for 

each gradient orientation 6m. Assuming that the budded cylinders are isotropically 

distributed (in three dimensions) in every voxel, normalized echoes for each gradient 

orientations are weighted by the distribution function sin(<9m) and the mean normalized 

signal (for a certain diffusion time and b-value) is:

_ X - ^ ( 0 sin( 0

S0 l> in (0 m)
m

[2. 10]

Normalized echoes were calculated for each b-value, and the Yablonskiy anisotropic 

diffusion equation (Eqn. [1.53], (1) was fitted to the data for each diffusion time using a 

non-linear least squares Matlab function (lsqcurvefit.m, The Mathworks, Natick, MA) to 

extract the longitudinal and transverse diffusion coefficients ( A  and A )-

2.3 Results and Discussion

Figures 2.4 a) and b) show the simulated dependence of anisotropic diffusion coefficients 

( A  and A )  on A for the budded cylinder models of healthy and diseased airways. 

Figures 2 c) and d) show the differences in the diffusion coefficients (AA and AA) 

between diseased and healthy airways for A  and A  respectively.

For the simulated diffusion times, the largest increase of A  between the healthy and 

disease model occurs at A = 5 ms (159% increase), and the largest increase of A  occurs 

at A = 50 ms (53% increase). These results show that A  is predicted to have greater 

sensitivity than A  for measuring emphysema with xenon in this model, agreeing with 

what was observed in a previous study (6) for 3He, both theoretically and experimentally. 

As expected, both A  and A  converge toward the self-diffusion coefficient of xenon at 

short diffusion times, and A  follows the same general trend previously observed for 3He 

ADC in the cylinder model (Fig. 4 of (2)).
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As a result of these simulations, the in vivo experiments described in Chapter 3 used A 

6, 50 and 100 ms (the use of 6 ms instead of 5 ms was due to hardware limitations).
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Figure 2.4. Longitudinal (a) and transverse (b) diffusion coefficients extracted from 

diffusion simulations in a budded cylinder model of the terminal airways. “Healthy” 

corresponds to Rd = 193 pm; “Diseased” to RD = 280 pm. The difference in diffusion 

coefficients between “Diseased” and “Healthy” airways for longitudinal and 

transverse diffusion coefficients are shown in (c) and (d) respectively.

2.4 Conclusion

This chapter provided an estimation of the optimal diffusion time A to investigate 

alveolar enlargement and destruction with anisotropic diffusion coefficients Dl and Dj by
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simulating xenon gas diffusion in the budded cylinder model. A  and A  are predicted for 

xenon to have optimal sensitivity to destructive alveolar diseases near A = 50 ms and 5 

ms respectively. The transverse diffusion coefficient A  is predicted to have better 

sensitivity than A  for xenon in the budded cylinder model, agreeing with previous 

numerical and in vivo results with 3He.
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Chapter 3

3 Measurement of 129Xe Gas Apparent Diffusion 
Coefficient Anisotropy in an Elastase-lnstilled Rat 
Model of Emphysema

3.1 Introduction

Hyperpolarized magnetic resonance imaging (MRI) is an emerging modality for 

quantifying anatomical and functional characteristics of the lung in vivo (1). 

Hyperpolarized MRI studies have to date focused mainly on 3He due to its large 

gyromagnetic ratio, maximizing the signal achievable per volume of gas compared to 

other nuclei which can be hyperpolarized (eg. 129Xe, l3C). 3He ventilation maps have 

proven to be a useful tool for investigating asthma (2,3) and chronic obstructive disease 

(4,5). In addition, by measuring the T\ and Ti relaxation of hyperpolarized gases in the 

lungs, regional alveolar oxygen partial pressure can be quantified (6-8). Microstructural 

changes in the terminal airways can be detected by measuring the apparent diffusion 

coefficient (ADC) of 3He (9), which is smaller than the self diffusion coefficient of 3He 

due to restrictive diffusion in the lung. An increase in 3He ADC is observable in chronic 

obstructive lung disease (COPD) (4,10-12) due to airway tissue expansion and alveolar 

destruction (ie. emphysema), and correlates well with histological measurements, such as 

mean linear intercept; an indication of alveolar destruction (11,13). Furthermore, 3He 

ADC due to emphysema can be anisotropic (14), and depends on the duration of 

observation during which the nuclei diffuse in the restricted environment (ie. the 

diffusion time) (15).

Recently, the hyperpolarized MRI research community has shifted towards Xe (16) 

due to its higher natural abundance than 3He, as well as recent improvements in 

hyperpolarization and delivery of 129Xe (17,18). Recent clinical studies (19,20) have 

shown that 129Xe MRI can provide similar diagnostic information compared to 3He 

techniques, particularly ventilation defects and ADC. However, more work is needed in 

order to identify the key differences in studying both nuclei and how to adapt and 

optimize established 3He techniques to I29Xe. One important difference is that I29Xe is
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much more soluble in blood than 3He (21), leading to the possibility of investigating 

xenon gas exchange in vivo (22-24). In addition, Xe has a self diffusion coefficient 

approximately 30 times smaller than 3He (9), which implies that ADC studies using ,29Xe 

will likely need to employ considerably longer diffusion times than for 3He to probe 

similar alveolar dimensions.

The root mean square rrms distance that a particle diffuses to due to Brownian motion 

over time in an unrestricted environment is:

rrms=V6D~A [3.1]

where Do is the self diffusion coefficient and A is the diffusion time. The effects of long 

diffusion times (greater than 5 ms) on ADC in lungs have been studied with clinical MRI 

systems using 3He, but special pulse sequence approaches such as stimulated echoes 

(25,26) and magnetization tagging (27) are often required due to low Tz in the airspaces, 

and significant signal penalties are associated with these techniques. An emerging 

approach to this problem is to use low field magnetic fields (28,29), since hyperpolarized 

magnetization is independent of the field strength of the MRI system. The SNR of 

hyperpolarized MRI in lungs has been predicted to be optimal at magnetic field strengths 

of about 0.1 T (30). This approach potentially makes better use of the available signal 

since a pulsed-gradient spin echo (PGSE) technique may be used to investigate a wider 

range of diffusion times, by taking advantage of a much longer Tz and Tz due to reduced 

air-tissue susceptibility differences at low magnetic field strength (31,32).

Diffusion at short length scales (on the order of a few alveoli) has been shown 

analytically (14) and numerically (33,34) to have an anisotropic behavior due to the 

cylinder-like morphology of the terminal airways. Anisotropic ADC in a cylindrical 

geometry can be described by two components (35): A ,  the longitudinal diffusion 

coefficient along the main axis of the cylinder, and A ,  the transverse diffusion 

coefficient perpendicular to this axis. Diffusion studies at these length scales have the 

potential for detecting early onset of emphysema as well as quantifying sub-voxel 

terminal airway dimensions, such as the airway radius and alveolar diameters (14,36,37).
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A recent study has shown in an elastase-induced rat model of emphysema that 3He Z>r at 

sub-millisecond diffusion times was more sensitive than Dl for quantifying alveolar 

destruction (15), suggesting that D j measurements may be an important indicator of 

emphysema-induced alveolar destruction.

The aims of this study were to investigate theoretically the dependence of Xe 

anisotropy (Dl and D j) on diffusion time in a budded cylinder model and to validate 

using whole lung Dl and D j measurements obtained with a PGSE approach at a magnetic 

field strength of 73.5 mT (29) in sham-instilled rats and an elastase-instilled rat model of 

emphysema (11). The results are correlated with mean linear intercept measurements 

obtained from lung histology. The optimal diffusion times and choice of Dl or Z>r 

required to best distinguish elastase-instilled changes in this rat model of emphysema 

with xenon and implications for clinical applications are discussed.

3.2 Method

3.2.1 Numerical Simulations

A finite difference approach implemented in the C programming language was used to 

numerically solve the Bloch-Torrey equations for transverse magnetization (33,34).

A 92x72x92 grid was constructed using 8.75 pm isotropic spatial step sizes. Pulsed 

trapezoidal gradients separated by a 180 degree pulse (Fig. 3.1, A=8) were applied in 30 

different orientations relative to the cylinder (tc/30 to n rad) to simulate random 

orientation of airways in a voxel. A phase wrapping boundary technique was used to 

simulate an infinite cylinder.
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Figure 3.1 Pulse gradient spin echo pulse sequence using trapezoidal gradients. G m 

is the maximal gradient strength, t  is the ramp up/down time, A is the diffusion time 

and 8  is the gradient flat time + 2 t .

The xenon self-diffusion coefficient was set to 6.1 x 10 m /s (9). Diffusion times (A) 

from 1 to 100 ms were used, ranging from when the diffusion coefficient converged to 

the self diffusion coefficient at low diffusion times to when the mean diffused distance 

exceeded several alveoli, where the model would require a branching structure to better 

model the airways, b-values (for the pulse sequence shown in Fig. 3.1) were calculated 

using the following equation and ranged from 3 to 24 s/cm2, and were limited to this 

range due to constraints in computation time due to convergence conditions on the 

maximal gradient strength useable for set spatial step sizes (34):

-2A  S  + A t -  — ¿h + —  t 
6 15

[3.2]

where y is the gyromagnetic ratio, Gm is the maximal gradient strength, t  is the ramp 

up/down time, A is the diffusion time and 8 is the gradient flat time + 2t. The budded
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cylinder boundary geometry has been previously described (33). The radius of the 

spheres ( R a )  was set at 140 pm, the distance between the two sets of spheres (L b )  was set 

at 160 pm and the distance from the center of the cylinder (R) was set at 210 pm. The 

radius of the cylinder RD was varied depending on disease severity (“Healthy’ - 193 pm 

and “Diseased”=280 pm). The severity of the disease was interpreted from the 

R d/ ( R + R a)  ratio values, as explained in Ref. (33).

3.2.2 Hyperpolarized 129Xe Gas Preparation

A custom-built continuous flow 129Xe polarizer (29) was used to hyperpolarize natural 

abundance xenon gas (25.9% 129Xe) for in vivo experiments. The gas mixture introduced 

in the polarizer consisted of 0.986% Xe, 9.86% N2 and 89.154% 4He (Air Liquide, 

Burlington, Ontario, Canada). Polarizations up to 25% were achievable in the continuous 

flow state, with 16 to 18 % polarization available following the freeze-thaw process for 

extracting xenon from the gas mixture.

The gas flowed through the gas lines at a rate of 0.40 ± 0.03 L/min and at a pressure of 

30.0 ±1 .0  PSI. Water (Supelco, Bellefonte, USA) and O2 (Chromatography Research 

Supplies, Louisville, USA) filters are used to remove any residual O2 from the lines 

before contact with the rubidium. Rubidium atoms were vaporized from a glass trap 

heated to 330 ± 30 °C and flowed into an optical cell (220 ± 10 °C). A 60 W dual beam, 

circularly polarized 795 nm laser beam (Coherent Inc., Santa Clara, CA, USA) was 

focused on the center of the optical cell, which rests in the center of a 50 Gauss solenoid 

coil. At the exit of the polarizer, rubidium atoms were removed with a glass wool filter.

Xenon was extracted from the gas by freezing it in a glass trap using liquid N2 while the 

residual gases flowed through, and was thawed after the required quantity of xenon was 

collected. A 5-tum linear horizontal glass trap was used to accumulate the frozen xenon. 

The trap was placed in an insulated foam liquid nitrogen bath. The liquid nitrogen level 

was raised at equal time intervals to cover each layer of the trap sequentially, ensuring 

thin xenon layers. The trap was then vacuumed to remove any residual gases and placed 

in a bath of boiling water, thawing the xenon into a Tedlar bag (Jensen Inert, Coral
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Springs, USA). Typical collection times of 1 hour yielded 220-240 ml of hyperpolarized 

xenon.

3.2.3 Animal Preparation

This study was approved by the University of Western Ontario Council on Animal Care. 

(Appendix A)

3.2.3.1 Elastase Instillation

Nine male Wistar rats (264 ± 30 g, Charles River Laboratories, Saint-Constant, Canada) 

were initially anesthetized with 5.0% Isoflurane (Abbott Laboratories, Saint-Laurent, 

Canada) through a nose cone with a vaporizer (VetEquip, Pleasanton, CA). Lacrilube® 

(Allergan Inc, Marckham, Canada) was applied gently to both eyes to reduce the effects 

of dehydration. Intraperitoneal injections were performed at doses of 1 mL/kg of 4:2 

Ketamine (Bioniche Animal Healthy, Belleville, Canada) and Xylazine (Rompun®, 

Bayer Healthcare, Toronto, Canada). Two drops of Lidocaine (Alveda, Toronto, Canada) 

were placed on the larynx two minutes before insertion o f a 16 G endotracheal tube 

(Becton Dickinson, Franklin Lakes, NJ). Four rats were instilled with 75 IU of porcine 

elastase stock (Elastin Products Company, Owensville, MO) mixed at a concentration of 

175 IU/ml in saline (11). The remaining rats were sham-instilled with 0.43 ml of saline. 

The rats were gently rotated to evenly distribute the instilled liquid in the lungs. 

Physiological and behavioral characteristics of the rats, such as respiratory rate, colour 

and posture, were monitored for 48 hours following this procedure, and no adverse 

reactions were observed. Experiments are performed 6-8 weeks post-instillation to allow 

sufficient alveolar damage to occur due to the breakdown of down elastin by the 

elastase-instillation (15).

3.2.3.2 Surgical Procedure

Nine male Wistar rats (479 ± 32 g, Charles River Laboratories, Saint-Constant, Canada) 

were initially anesthetized with 5.0 % Isofluorane (Baxter Corporation, Mississauga, 

Canada) through a nosecone using a vaporizer (VetEquip, Pleasanton, CA), reduced to 

3.0 % once the animal was stable. Lacrilube (Allergan Inc, Marckham, Canada) was
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applied gently to both eyes to reduce the effect of dehydration, and 5 IU of glycopyrrolate 

(Sandoz, Quebec, Canada) was injected subcutaneously to reduce tracheobronchial 

secretions. Rats remained anesthetized by intravenous administration of a 10:1 Propofol 

(AstraZeneca, Mississauga, Canada) and Ketamine (Bioniche Animal Health, Belleville, 

Canada) mix intravenously at a rate of 45-60 mg/g/h. Two drops of Lidocaine (Alveda, 

Toronto, Canada) were placed on the larynx and, after two minutes, the rat was intubated 

with an 18 G endotracheal tube (Becton Dickinson, Franklin Lakes, NJ). 5 IU of 

Sensorcaine® (AstraZeneca, Mississauga, Canada) was injected subcutaneously in the 

neck, and the trachea was then exposed through a 2 cm incision. The trachea was tied 

tightly around the endotracheal tube using 3 loops of 0-silk suture (Johnson & Johnson, 

Ethicon, New Brunswick, NJ), ensuring an air-tight seal, and the skin was sutured closed. 

A custom ventilator (GEHC, Malmo, Sweden) was used to ventilate the animals with 

medical air at a rate of 60 breaths per minute in the supine position, as well as providing 

breaths and breath holds of hyperpolarized xenon (Appendix B, (38)). The peak 

inspiratory pressure (PIP) was maintained at 12 cm H2O for every breath hold with the 

use of a flow restrictor in order to avoid the low PIP region where ADC is strongly 

dependent on lung compliance (39). Animals were sacrificed at the end of the experiment 

by intravenous injection of Euthanyl Forte (Bimeda-MTC, Cambridge, Canada).

3.2.4 MR Acquisition

A 73.5 mT custom-built resistive MRI system (29) with maximal gradients of 180 mT/m 

was used to quantify whole lung diffusion coefficients. A custom-built transmit- 

only/receive-only saddle coil tuned to 0.866 MHz was used for these studies; the receive 

coil was built using Litz wire (Kerrigan Lewis Wire Products, Chicago, IL) to reduce coil 

dominated noise at these low frequencies (~1 MHz) (40). Acquisition of the data was 

performed with an APOLLO MRI console using the accompanying NTNMR software 

(Tecmag Inc., Houston, TX). The 90° and 180° RF pulse was calibrated with 

continuously flowing hyperpolarized l29Xe in a syringe placed within an annular cylinder 

of water to properly load the coil. For the 180° RF pulse calibration, the pulse width of a 

single square pulse was varied until the minimum free induction decay (FID) signal was
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observed, and an inversion in phase of the FID was seen. The 90° RF pulse was calibrated 

in a similar manner.

A trapezoidal gradient PGSE experiment (Fig. 3.1) was performed (41) during 4 second 

129Xe breath holds (one per b-value, for each A), preceded by three 129Xe wash-out 

breaths to remove residual air (eg. oxygen) in the lungs (8) thereby maximizing signal. 

The pulse sequence had the following parameters: gradient ramp up/down times (t) of 

600 ps and flat top times (S-2r ) of 800 ps, hard 90° and 180° pulses of 65 ps and 130 ps 

duration, N=16 acquisition points was used to acquire both the FID and echo (N=32 total) 

with a dwell time of 100 ps. Eight b-values ranging from 0 to 77 s/cm2 were used for 

each diffusion time by varying the gradient strength, and each b-value was acquired 

during separate breath holds The above experiments were repeated for A = 6, 50 and 100 

ms for all rats. These choices of diffusion times and b-values were based on the 

simulations as well as hardware limitations. A syringe phantom measurement of the self- 

diffusion coefficient of hyperpolarized natural abundance xenon gas (25.9% Xe) was 

performed to confirm that the prescribed PGSE sequence was properly calibrated. A 60 

ml medical syringe was connected to the xenon bag, the line between the bag and syringe 

was vacuumed and 10-20 ml of xenon was drawn into the syringe.

3.2.5 Morphological Analysis

Lungs were extracted post-mortem, filled with a 10% formalin solution and then placed 

in this same solution for 24 hours (42). The lungs were then embedded in paraffin, 

sectioned into eight slides covering four transverse regions of the lung and stained with 

hematoxylin and eosin. Five representative images from each slide were acquired at lOx 

magnification using an Axio Imager.Al microscope (Carl Zeiss Microimaging, 

Thomwood, NY), Retiga EXi 1294 camera (Qlmaging, Surrey, Canada) and Image-Pro 

Plus 7.0 software (MediaCybemetics, Bethesda, MD). The mean linear intercepts (Lm) 

were counted on a 4x3 grid for each of these images (13). Mean linear intercepts for five 

images at lOx magnification from eight slides for eight rats were calculated with a 4x3 

grid; a grand total of 30,950 intercepts were counted manually.
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3.2.6 Data Analysis

Normalized echoes were calculated for each b-value, and the following anisotropic 

diffusion equation was fit to the data using a non-linear least squares Matlab algorithm 

(lsqcurvefit.m, The Mathworks, Natick, MA) to extract whole-lung longitudinal and 

transverse diffusion coefficients ( D l and D r ):

S_

So
-bD j. 71

1 X2

4b(DL - D t )
o j  [b{DL - D T)]K

[3.3]

where S  is the normalized echo for each b-values, So is the normalized echo for b = 0 

s/cm2 and O is the error function.

Statistical analysis was performed using Prism® (GraphPad Software Inc., La Jolla, CA). 

An unpaired two-tailed Student’s t-test was implemented between the measured 

anisotropic ADCs in the normal and elastase-instilled rats as well as for Lm from 

histology between these two cohorts. A Pearson test was used to estimate the strength of 

correlations between increases in Lm and the measured anisotropic ADCs for sham and 

elastase-instilled rats.

3.3 Results

3.3.1 Simulations

Figures 3.2 a) and b) show the difference between diseased and healthy airways for 

simulated Dl and Dt diffusion coefficients for A ranging from 1 to 100 ms. The largest 

difference in Dr between the healthy and disease model occurred at A = 5 ms (159% 

increase), and the largest difference in Dl occurred at A = 50 ms (53% increase). As 

expected, both Dl and Dr converged towards the self-diffusion coefficient of xenon at 

short diffusion times, and Dl follows the same general trend previously observed for 3He 

ADC in the cylinder model (Fig. 4 of (34)).
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a) b)

Figure 3.2 Calculated differences in longitudinal (a) and transverse (b) diffusion 

coefficients between normal and emphysematous terminal airways as a function 

diffusion times (A = 1 to 100 ms). Diffusion coefficients were extracted by fitting the 

Eqn. [3.3] to data simulated using the Bloch-Torrey equations describing 

anisotropic 129Xe diffusion in a budded cylinder model of the terminal airways.

3.3.2 Phantom Experiments

Figure 3.3 shows the relationship between -ln(S/So) and b-value for hyperpolarized 

natural abundance xenon (25.9% l29Xe) in a syringe. The measurement was repeated five 

times for each b-value, the data points are the mean value for each b-value and the error 

bars represent one standard deviation of the data set. The self diffusion coefficient of 

natural abundance l29Xe extracted from the slope of a linear least-squares fit to these data 

was 0.0559 cm2/s (R2=0.9986), which agrees well with expected values (9,43), thereby 

validating this approach.
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Figure 3.3. Measurement of the self diffusion coefficient of hyperpolarized natural 

abundance xenon (25.9% ,29Xe) at 73.5 mT in a syringe for A = 6 ms. The self 

diffusion coefficient of extracted from the slope of a linear least-squares fit to these 

data was 0.0559 cm2/s (R2=0.9986).

3.3.3 In  v iv o  Experiments

Figure 3.4 shows signal as a function of b-value for one representative sham and one 

representative elastase-instilled rat; the dotted lines represent the best fit based on Eqn. 

[3.3]. Figure 3.5 shows-ln(S/So) as a function of b-value (A = 6 ms) for all sham and 

elastase-instilled rats. The data points represent the average value for all rats of the 

cohort, and the error bars represents one standard deviation. Figure 3.6 a) and b) show 

the measured whole lung A . and D j for the combined sham and elastase-instilled rat 

cohorts at the three diffusion times (A = 6, 50 and 100 ms). The data points represent the
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average values for all rats in each cohort, and the error bars represents plus or minus one 

standard deviation over each cohort.
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Figure 3.4. S/So as a function of b-value for a representative sham-instilled and 

elastase-instilled rat for A = 6ms. The longitudinal and transverse diffusion 

coefficients extracted from the sham-instilled rat were 0.1127 and 0.0018 cm2/s 

respectively, while for the elastase-instilled rat were 0.0963 and 0.0060 cm2/s 

respectively.
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Figure 3.5. -ln(S/So) as a function of b-value of all sham-instilled (n = 4) and 

elastase-instilled rats (n = 5) for A = 6ms. The points represent the mean values and 

the error bars reflect plus or minus one standard deviation for each cohort.
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Figure 3.6. Experimental longitudinal (a) and transverse (b) diffusion coefficients 

for three diffusion times (6, 50 and 100 ms) measured in the whole lung of elastase- 

instilled (n=5) and sham-instilled rats (n=4). The points represent the mean values 

and the error bars reflect plus or minus one standard deviation from the two 

cohorts.
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Table 3.1 shows the average values for Dr and D j for all rats in each cohort as well as 

one standard deviation of each data set. The values indicated are the mean of the values 

for all rats of each cohort and the ± values indicates one standard deviation of the mean. 

A statistically significant increase in anisotropic ADC between sham and elastase 

instilled cohorts was observed for Dr at A = 6 ms (p < 0.01). The whole lung Dr value 

measured for each rat for A = 6 ms are shown in Table 3.2. Some disagreement in the 

behavior of mean whole lung Dr at long diffusion times was observed between the 

simulations and measurements. Possible reasons for this disagreement will be discussed 

later.

Table 3.1: Correlation between Lm and anisotropic diffusion coefficients (Z>i and 

Dr) for three diffusion times (6, 50,100 ms).

Lm (pm )

Z>T
(cm 2/s)

Dl
(cm 2/s)

D iffusion tim e
(A) 6 ms 50 ms 100 ms 6 ms 50 ms 100 ms

Sham -instilled
(n=4)

73 ± 4
0.0021 

±  0.0005
0.002

± 0 .001
0.001 

±  0.003
0.11

± 0 .0 1
0.06

± 0 .0 3
0.07

± 0 .0 3
E lastase-instilled

(n=5) 122 ±  13
0.005

± 0 .0 0 1
0.002  

± 0.002
0.001 

± 0.003
0.099  

± 0.004
0.06

± 0 .0 2
0.05

± 0 .0 2
p-value 0.0003*** 0.0021** 0.9601 0.8585 0.2427 0.5967 0.2429

Pearson’s C orrelation  
C oefficient

0.90 0.04 0.08 -0.47 -0.32 -0.47

Table 3.2: Mean linear intercept and D j  (A=6 ms) values for sham-instilled (n = 4) 

and elastase-instilled rats (n = 4 )\ (Note: Labels starting with “C” were the sham 

rats, while labels starting with “E” were the elastase-instilled rats).

CIV-01 CIV-02 CIV-03 CV-01 EIV-01 EIV-02 EV-02 EV-03

D j (A =6 ms) 0.002 0.0021 0.0029 0.0016 0.0038 0.0059 0.0033 0.006

Lm (pm) 68±14 73±14 77±16 74±15 117±33 141±72 111±39 120±46
1 H istology data from  one elastase-instilled  rat w as unavailable as there w ere com plications in 

rem oving the lung.
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3.3.4 Morphology

Table 3.1 shows the p-values for increases in Lm as well as for Di and Dj between sham 

and elastase-instilled rats for all A values. Histological data from one rat was unavailable 

as there were complications in removing the lung. Table 3.1 also provides the Pearson 

Correlation Coefficient (r) between the changes in Lm and anisotropic diffusion 

coefficients for all A values for each rat cohort. The strongest correlation between Lm and 

the anisotropic ADCs was observed for Dy at A = 6 ms, and had a Pearson Correlation 

Coefficient r of 0.90.

Table 3.2 summarizes the mean linear intercept results for the sham (n = 4) and elastase 

(n = 4) as well as the whole-lung Z>r values for each rat for A = 6 ms. The Lm values 

represent the mean for each rat and the error bars represent plus or minus one standard 

deviation based on the sampling of each rat lung. Note that these standard deviations 

mainly represent the heterogeneity of mean linear intercept measurements throughout the 

lungs and are not substantially due to errors in the measurement method. Figure 3.7 

shows an example H&E stained sham a) and elastase-instilled histological slide b), where 

the damage due to the elastase is clearly visible as increase in airspace.

a) b)

Figure 3.7. H&E stained histological slide images of sham-instilled (a) and elastase- 

instilled (b) rat lungs. Notice the enlarged airspaces in the elastase-instilled rat 

lungs.
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3.4 Discussion

Results obtained from in vivo experiments at 73.5 mT show a significant increase in Z>r 

for A = 6 ms (p < 0.01) between sham and elastase-instilled cohorts (Table 3.1). As a 

result, a strong correlation between Lm and D j for A = 6 ms (r = 0.90) was also observed, 

suggesting that Z>r measured at A = 6 ms may be as effective as the mean linear intercept 

at quantifying damage due to instilled elastase in rat lungs. Considering that the diffusion 

coefficients are obtained from whole lung measurements, the observed increase of in vivo 

D j for A = 6 ms (138%) is in relatively good agreement with the numerically predicted 

value (159%).

No statistically significant differences were observed for Z>l at any of the A values. This 

is not consistent with the theoretical model which predicted a significant difference in Dl 

at A~50 ms, according to numerical predictions in Fig. 3.2. The possible sources of error 

in the Dl at long diffusion times deserve some discussion. Due to the use of natural 

abundance Xe and the achievable polarization levels, the normalized echoes with (S) 

and without (So) applied gradients were measured using separate breath holds. Although 

three wash-out breaths were applied for each acquisition to minimize residual 

atmospheric gases in the lung, any differences in the gas composition present in the lungs 

between the S and So measurement would introduce an undesired difference in T2 decay 

for the echo measurements, and T2 decay has been shown to behave bi-exponentially for 

129Xe in rats (8). With the use of enriched 129Xe, higher polarization levels, or both, S and 

So could both be acquired during the same breath hold, ensuring proper relaxation 

normalization. Whole lung measurements also pose other problems specific to this type 

of study, as the gas atoms present in the large airways behave approximately unrestricted 

for the range of diffusion times studied for Xe, and signal from these regions 

contribute uniquely to small b-values where Dl from the cylinder model fits are most 

sensitive. Positioning the lungs of each rat slightly differently may also vary the 

proportion of the contribution of signal between small and large airways due to Bi 

sensitivity variations. Both of these problems could potentially be solved by regional 

ADC mapping using fast imaging techniques. Future studies providing anisotropic Xe 

ADC coefficient maps of the lungs would also be beneficial for investigating regional
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structural information of the lungs and may be possible with the use of enriched Xe 

and high-performance polarizers (44). Ventilator induced lung injury may have also 

occurred, as most experiments lasted up to four hours due to the long xenon collection 

times. Future studies could employ shorter collection times to reduce the duration that the 

animal is mechanically ventilated, or multiple polarizers could be used simultaneously. 

One last contribution to discuss is an additional term to the b-value that can manifest 

when a background gradient from the non-uniformities in the static magnetic field (Go) 

couples with the applied diffusion gradient (Gm) (41). Though often neglected, the 

contribution of this term can be important when AGo is on the order of 5Gm, which may 

occur at the large A used in this study. This effect was confirmed in vitro by purposely 

manipulating Go over a range of static background gradients with the low field MRI 

system used in this study. However, in vivo, no significant changes were observed, 

possibly due to the smaller ADC from restricted diffusion and its effect on the signal vs. 

b-value slope. Field inhomogeneities due to air-tissue susceptibility differences should 

not contribute significantly to the coupling term of the b-value at long diffusion times, as

this term is proportional to Gm'Go, and would average close to zero due to the spherical 

nature of alveoli.

Some Dl values are observed to be greater than the self-diffusion coefficient of Xe. 

Closer investigation indicates that this may be an artefactual behavior of the Yablonskiy 

model fits to the whole lung data, possibly due to the fact that these measurements 

contain signal from gas in both restricted (terminal airways) and unrestricted (large 

airways) environments. Figure 3.5 shows the relationship between -ln(S/So) and b- 

values (A = 6 ms) for sham and elastase-instilled rats. The largest two point b-value ADC 

is measured between b = 0 and 11 s/cm to be 0.034 cm /s for both cohorts, almost half of 

the self-diffusion coefficient of Xe. This indicates that no signal attenuation measured 

due to diffusion sensitizing gradients were non-physical, and therefore the large Dl 

values may be a result of fitting the Yablonskiy model to this data set, possibly due to the 

use of whole lung measurements.

It has been recently reported that the analytical cylinder model of anisotropic ADC may 

not be an appropriate model as gases exhibit non-Gaussian diffusion in heterogeneous

129
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structures (45) when in the localized diffusion regime. Since then, the cylinder model has 

been updated through numerical simulations in an attempt to correct the model for non- 

Gaussian effects on Dy and Dy (36). This model was deemed inappropriate for this study 

as there has not been extensive in vivo 3He studies performed with this model to provide a 

thorough comparison for a 129Xe study. In addition, a recent study (46) suggests that the 

updated cylinder model may still be incomplete as there are significant deviations 

between the model and in vitro experiments for large gradient strengths. Furthermore, 

models that only account for the terminal airway microstructure are likely not sufficient 

to described anisotropic diffusion at longer diffusion times where diffusion lengths are on 

the order of 0.1 cm and exceed the terminal airway lengths (a few hundred microns). 

Models which incorporate the branching structure of the lung airway tree (47,48) will 

likely be more useful for predicting diffusion behaviour at diffusion times in excess of 

40-50 ms, and may explain the discrepancy observed between our theory and experiment 

at the long diffusion times used in this study.

These results can be compared to previous 3He work that investigated Dy or Dr changes 

due to elastase damage in the rat lung at sub-millisecond diffusion times (15). That study 

showed for the same animal model used in this paper that D j strongly correlated with Lm 

(r = 0.90) for a diffusion time of A = 360 ps. Our study using 129Xe showed the same 

strength of correlation (Table 3.2) occurs for Dj a diffusion time over 15 times larger (A 

= 6 ms) than that reported for 3He, suggesting that whole lung 129Xe studies may be as 

efficient at quantifying emphysema as 3He. In addition, there is a significant decrease in 

gradient strength required for Xe studies rat due to the longer diffusion times compared 

to 3He, which may make anisotropic l29Xe ADC studies a more viable choice compared 

to 3He ADC on clinical MR systems. Previous long range 3He diffusion studies using 

stimulated echoes (25,26) and magnetization tagging (27) have shown that 3He ADCs 

measured for diffusion times on the order of a few seconds have good sensitivity for 

detecting emphysema-like tissue destruction and COPD. Though the current study used 

diffusion times up to 100 ms and ADC sensitivity was observed at the long A, the 

diffusion length for l29Xe at A-100 ms would not considered long range as its diffusion 

coefficient is approximately 30 times smaller than that of 3He. Therefore it may be of
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interest to pursue even longer A values using 129Xe and this low field approach in future, 

providing Ti* is sufficiently long (A ~T2*).

One interesting observation can be seen in Fig. 3.5, where significant signal change 

between sham and elastase-instilled rats only occurs at b-values greater than 60 s/cm2 for 

A = 6 ms. For the PGSE pulse sequence and 6 ms diffusion times, this requires applying 

gradient strengths greater than 10 G/cm. As clinical MR systems typically only have 

gradient strengths up to 5 G/cm, high performance insert gradients (49) may be required 

to achieve optimal sensitivity in studying diffusion with rodent disease models using 

129Xe on clinical systems. As humans have larger alveoli, T-i decay of a pure 129Xe gas 

mixture is expected to be larger than for rodents, and the large b-values required for 

increased sensitivity of two b-value ADC measurement may be accessible with clinical 

gradient strength by using slightly larger diffusion times and slew rates available on high 

quality clinical scanners.

The correlation between Z>r and Lm may prove to be an efficient tool in the future for 

quantifying emphysema regionally in vivo using hyperpolarized 129Xe MRI. The 

diffusion times where anisotropic ADC was observed in this study are in the range that 

has typically been used for clinical 3He studies, suggesting that clinical studies 

transitioning into hyperpolarized l29Xe must take care when interpreting non-linear ADC 

measurements in the lung, particularly when only two b-values are used.

3.5 Conclusion

The results of this study demonstrate that whole-lung measurements of 129Xe transverse 

diffusion coefficients (Dr) for A = 6 ms correlate well with Lm in an elastase-instilled rat 

model of emphysema. These results are similar to previous 3He DT measurements 

obtained at sub-mill ¡second A values, consistent with the expected differences in self­

diffusion coefficient between the two gases. This study confirms that l29Xe anisotropic 

ADC measurements are as sensitive as 3He for quantifying elastase-instilled alveolar 

destruction in rats and could be a valuable tool for measuring regional microstructural 

changes associated with emphysema and COPD.
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Chapter 4

4  Discussion and Future Work

4.1 Discussion
The goal for this work was to measure and optimize sensitivity of Xe anisotropic 

ADCs (Dy, Dy) through the investigation of the MR diffusion sensitizing parameters for 

the purpose of detecting alveolar expansion and destruction. We numerically investigated 

the behavior of anisotropic diffusion coefficients in a budded cylinder model, and 

subsequently hypothesized that the transverse anisotropic diffusion coefficient Z>r may 

provide greater sensitivity than Dy for quantifying alveolar enlargement and that this 

would be measured near a 5 ms diffusion time (A). Confirmation of our hypothesis was 

provided by in vivo measurements at 73.5 mT in a rodent model of emphysema based on 

elastase-instillation, where the only significant increase of anisotropic ADC was observed 

for Dy  at A = 6  ms, and a significant correlation between Dr at A = 6 ms with histology 

was reported.

4.1.1 Numerical Simulations

Chapter 2 described finite difference numerical simulations (1) of Xe diffusion in a 

budded cylinder model (2) of the terminal airways to investigate the dependence of 

Yablonskiy anisotropic diffusion coefficients (3) on diffusion time. In agreement with 

previously reported results for 3He (4), the transverse diffusion coefficient Dy provided 

optimal sensitivity to alveolar destruction caused by the elastase. The largest percentage 

increase in Dy (159%) for the disease model occurred at A = 5 ms, while for Dy  the 

largest increase was only about one third the increase observed in Dy (53% for Dy).

4.1.2 In  v iv o  129Xe ADC in an Elastase Rat Model at 73.5 mT

This work hypothesized that Xe anisotropic diffusion coefficients can be sensitive to 

changes in alveolar airspace induced in an elastase-instilled rat model of emphysema by 

investigating the optimal diffusion time (A) and anisotropic ADCs (Dy or Dr) for 

quantifying disease using a 73.5 mT MRI system. The results in Chapter 3 supported this
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hypothesis, with a significant increase in anisotropic ADC following elastase-instillation 

measured for the transverse diffusion coefficient (Z>r) at A = 6 ms. Dj was measured for 

A = 6 ms in a sham-instilled cohort to be 0.0021 ± 0.0005 cm2/s, and for the elastase- 

instilled cohort D j increased by 138% to 0.005 ± 0.001 cm2/s, and the increase was 

determined to be statistically significant using an unpaired Student’s t-test (p = 0.0021). 

These results were compared with histological evidence of an increase of airspace in the 

elastase-instilled rats by measuring the mean linear intercepts (Z,m), and a significant 

increase in Lm was observed (p = 0.0003). A comparison between D-t for A = 6 ms with 

Lm yielded a strong correlation by measuring the Pearson’s Correlation Coefficient r (r = 

0.90). A previously published study of 3He anisotropic ADC measurements in this 

disease model (4) showed an equally strong correlation between Dr and Lm for A = 360 

ps, suggesting that whole lung Xe studies may be as efficient at quantifying 

emphysema as 3He.

4.1.3 Current Limitations

The numerical simulations used in this study are limited to short diffusion lengths/times 

due to the model used. Assuming that the model breaks down after unrestricted xenon 

would diffuse a mean path of two cylinder lengths (1.28 mm), this would imply that the 

model may only be a good approximation for diffusion times below 40 ms (Eqn. [1.50], 

Chapter 1). The budded cylinder has a role for short diffusion times where the gas 

diffuses through a few alveoli, but at long diffusion times the model lacks a branching 

structure to properly model airways. In addition, the disease model presented in this work 

is a simple approximation of the behavior of emphysema-like alveolar enlargement 

observed in COPD. In reality, the airways not only expand as a consequence of the 

elastase damage but severe tissue damage may larger create holes in tissue which were 

not accounted for in this model. Accounting for gas exchange between neighbouring 

acini may provide a better approximation of the signal dynamics observed in vivo.

The experimental portion of this study consisted of well controlled ventilation and breath- 

hold measurements in anaesthetized animals. For safety reasons, humans are typically not 

anaesthetized and mechanically ventilated for MRI studies, thus patient motion may limit
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the resolution of ADC maps. Also, due to the anaesthetic properties of xenon at high 

concentrations, buffer gases (N2, medical air) are generally mixed with xenon for safety 

reasons, which reduces the available signal per voxel. Thus, high b-value measurements 

as described in this work may require the use of enriched 129Xe concentrations instead of 

natural abundance xenon (25.9% 129Xe), and will increase the overall cost of 

measurements.

This work was limited to whole lung measurements as the polarization process of the 

home-built xenon polarizer was not refined enough to achieve polarizations needed for 

ADC mapping in rats for the strong b-values used. The signal-to-noise ratio is also 

limited by the hardware (eg. receive coil sensitivity, noise filters), even though 

considerable efforts were made to have the receive coils be in the sample noise 

dominated regime with the use of Litz wire (5). Due to the maturation period of the 

disease (six to eight weeks), the weight gain of the rats made them too large to use our 

most sensitive small xenon coils. In addition to using enriched 129Xe, high efficiency 

xenon polarizers have recently been developed (6) achieving polarizations of up to 64 %, 

thus hyperpolarized Xe anisotropic ADC mapping in humans or even rodents may be 

achievable with decent resolution.

4.2 Future Work

4.2.1 ADC Mapping

An important next step of this work will be to perform Xe ADC mapping in disease 

models. Emphysema is a heterogeneous disease which manifests in different regions of 

the lungs depending on the nature of the disease. Centriacinar emphysema is mostly 

present in smokers and occurs most commonly in the upper regions of the lung; panacinar 

emphysema is typically present in patients with al-antitiypsin deficiency and typically 

occurs in the lower regions of the lung. In addition to providing valuable regional 

information on disease, ADC mapping would likely provide a better a better measure of 

the Yablonskiy anisotropic ADCs ( A  and A )  as signal mixing between large airways 

and the terminal airways would be minimized compared to whole lung measurements.
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Due to the non-renewable nature of hyperpolarized gases and the presence of severe 

signal attenuation contributors in the lung (O2, air-tissue susceptibility differences), rapid 

k-space acquisition imaging pulse sequences should be used for ADC mapping. Two 

common fast imaging techniques that may be worth investigating for ADC mapping are 

Echo Planar imaging (EPI) and Rapid Acquisition with Relaxation Enhancement 

(RARE).

4.2.2 Echo Planar Imaging (EPI)

Echo planar imaging (7,8) is a gradient echo approach which acquires k-space extremely 

quickly, typically using a single 90° RF pulse followed by a train of gradient echoes 

which is called a “single-shot” sequence. Figure 4.1 shows an example of a single shot 

Cartesian spin echo EPI pulse sequence.

180v

i IRF -------■ -------------- ■ -------------------------------------------------------

ACQ-------------------------------------

Figure 4.1. An example of a Cartesian spin-echo EPI pulse sequence.

Following the applications of RF pulses along with compensating phase-encode and 

ffequency-encode gradients, bipolar ffequency-encode gradients are continuously applied 

in between small positive phase-encode gradients to continuously acquire k-space in a
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zig-zag pattern. EPI sequences acquire k-space faster than most other imaging pulse 

sequences (i.e. RARE), but they impose a considerable burden on the imaging gradients 

due to rapidly applying gradients with large slew rates. As the data is acquired through 

gradient echoes, k-space is weighted by Ti decay which can limit diffusion times 

achievable in diffusion imaging.

Diffusion coefficient mapping can be integrated with spin-echo EPI pulse sequence by 

applying balanced diffusion sensitizing gradients before and after the 180° pulse (7). 

Typically the center of k-space will be acquired first and the parameters are adjusted such 

that the diffusion time corresponds to half echo time of the 90x-180y pulse, and the spin 

echo from these pulses provides the best signal for the first few lines o f k-space which 

regulates the SNR of the image. Practically, if the polarization levels permit, two b-value 

weighted images can be acquired in a single breath hold by first applying a 45°-180° spin- 

echo EPI sequence (typically b = 0 cm /s) followed by a spoiler gradient and a diffusion 

sensitized 90x-180y spin-echo EPI sequence.

4.2.2.1 Rapid Acquisition with Relaxation Enhancement (RARE)

The Rapid Acquisition with Relaxation Enhancement pulse sequence is a spin-echo based 

fast imaging technique. An example o f a Cartesian RARE pulse sequence is shown in 

Fig. 4.2.
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ACQ

Figure 4.2. An example of a Cartesian RARE pulse sequence.

Following a 90° pulse, a train of spatially selective 180° RF pulses continually refocus the 

transverse magnetization, providing a Ti weighting to the acquired data. K-space is 

traversed by applying a phase-encoding gradient after each 180° pulse, and a line of k- 

space is acquired while a frequency encoding gradient is applied. A rewinding phase­

encoding gradient is applied prior to the following 180° refocusing pulse to ensure proper 

phase coherence throughout the echo train. Diffusion coefficient maps can be acquired in 

a similar method as was described in Section 4.2.1.1 for EPI pulse sequences.

Due to the use of an RF echo train and the many pulse sequence considerations necessary 

to ensure proper echo formation such as bipolar phase encoding/rewinding gradients and 

crusher gradient (not shown in Fig. 4.2), RARE generally a acquires k-space slower than 

EPI. RARE pulse sequences also have an increased specific absorption rate (SAR) than 

gradient echo imaging techniques due to the long train of RF pulses, and low field MRIs 

may provide an advantage at using RARE due to a reduction in energy deposition per 

pulses as the RF frequencies are much smaller than used than at high fields. Despite these 

disadvantages, RARE images are less sensitive to field inhomogeneities (Le. Bo
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inhomogeneity, air-tissue susceptibility differences) and the technique is capable to 

acquire longer diffusion times due to the increase signal available with T2 weighting of 

refocused echoes. This technique may be ideal for studies aiming at investigating long 

range diffusion times in hyperpolarized gas MRI studies.

4.2.3 In  v iv o  Morphometry with Hyperpolarized 129Xe MRI

Most hyperpolarized studies of disease models or clinical patients try to find a correlation 

between some imaging biomarker (i.e. apparent diffusion coefficients) with 

measurements already used in the clinical setting (i.e. spirometry and histological 

measurements). Increasingly, research has aimed to indirectly measure morphological 

tissue dimensions in vivo through the measured MRI biomarker. This could provide in 

vivo regional measurements of important physiological geometric parameters such as the 

lung parenchyma surface to volume ratio S/V, the mean airspace chord length Lm (known 

through histological measurements to be the mean linear intercept) and the volume 

density of alveoli NA.

Recent numerical studies have shown a relationship between the anisotropic diffusion 

coefficient and b-values (a result of non-Gaussian diffusion at large b-values in 

heterogeneous structures), and their relationship with geometric parameters of the 

terminal airways such as external and internal airway radii, R and r, and the alveolar size, 

L. Using these geometrical dimensions, physiological parameters S/V, Lm and NA can be 

estimated. A recent 3He anisotropic ADC study (9) has verified this model in ex vivo 

human lungs, and good agreement of the modeled parameters S/V, Lm and NA with 

histological measurements of the same geometric parameters was observed. If Xe can 

be polarized to high enough signal levels, this model could be investigated with 129Xe 

using the ADC mapping by applying a diffusion sensitized EPI or RARE sequence. As 

the 3He study used diffusion times of approximately 2 ms, diffusion times on the order of 

50-100 ms may be required due to the smaller diffusion coefficient of l29Xe, thus RARE 

may be the better choice of pulse sequences. Low field MRIs may prove to be a useful 

tool for this investigation due to the low air-tissue susceptibility differences at low field 

strengths.
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4.3 Conclusion

This thesis proposed a way of measuring pulmonary airway enlargement and destruction 

with the use of l29Xe diffusion MRI, and was successful at identifying key factors that 

characterize these measurements (diffusion anisotropy, optimal diffusion times). 

Although signal levels were not large enough to enable regional diffusion coefficient 

maps, recent advances in 129Xe hyperpolarizers may provide the high signal levels needed 

in the near future, and results from this study can provide important information on 

diffusion sensitivity behaviour for this transition. Overall, hyperpolarized 129Xe 

anisotropic ADC measurements could be a useful tool at regionally quantifying 

emphysema during the early stages of COPD.
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