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Abstract

More than one sub-type of HIVs have been identified. This raises an issue of co-infections 

by multiple strains of HIVs. In this thesis, we propose two mathematical models, one ignoring 

intracellular delay and the other incorporating the delay, to describe the interactions of the 

populations of CD4+ cells and two HIV stains. By nature, the two strains compete for CD4+ 

cells to invade for their own replications. By analyzing the two models, we find that the models 

demonstrate threshold dynamics: if the overall basic reproduction number Ro < 1, then the 

infection free equilibrium is globally asymptotically stable; when R0 > 1, then the competition 

exclusion principle generically holds in the sense that, except for the critical case R\ = R2 > 1 

where /?, is the individual basic reproduction number for strain i, all biologically meaningful 

solutions will converge to the single infection equilibrium representing the winning of the 

strain that has greater individual basic reproduction number. Numerical simulations are also 

performed to illustrate the theoretical results. The results on the model with delay also show 

that the basic reproduction number will be over calculated if the cellular delay is ignored.

Keywords: HIV, basic reproduction number, global asymptotic stability, intracellular de

lays.
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Chapter 1

Introduction

Infectious diseases pose a complex and global threat to human populations. The numerous 

species of viruses, bacteria, and higher organisms that are able to infect humans have changed 

the course of history. Spread of the human immunodeficiency virus (HIV) has raised global 

concerns and a greater awareness of infectious diseases. Management of infection with HIV 

improved dramatically during the 1990s. The advent of high-performance quantitative HIV 

assay was one of the most important developments in HIV control. Understanding how the 

HIV works inside the human body will give scientists important clues about how to attack it. 

Mathematical models have been shown to be useful and helpful to the understanding of the 

complicated dynamics of the virus and immune cells. This chapter will provide some basic 

information about infection mechanism about how populations of viruses and populations of 

immune system cells interact in various circumstances.

1.1 Viruses

Viruses are of intense interest because they cause serious illness in humans or domestic ani

mals, and some even damage crop plants. Among the striking examples is the HIV that has

1



Chapter 1. Introduction 2

recently entered the human population and caused a plague of worldwide. As a consequence, 

AIDs killed 3 million people worldwide even in the single year of 2002 [6].

Viruses populate the world between the living and the non-living. The persistence of viruses 

is in part due to their ability to mutate rapidly and adapt to new situations. Viruses are sub- 

cellular and infectious agents that are obligate intracellular parasites. A mature, extracellular 

virus particle is called a virion. A virion contains a genome that may be DNA or RNA wrapped 

in a protein coat called a capsid or nucleocapsid. The nucleic acid genome of a virus contains 

the information needed by the virus to replicate and produce new virions after its introduction 

into a susceptible cell.

There are three broad classes of viruses recognized, which may have independent evo

lutionary origins. One class, which includes the poxviruses and herpesviruses among many 

others, contains DNA as the genome, with either a single stranded or double strandeds, and 

the DNA genome is replicated by direct DNA—» DNA copying. A second class of viruses con

tains RNA as their genome and the RNA is replicated by direct RNA—» RNA copying. The 

third class of viruses encodes the enzyme reverse transcriptase (RT), and these viruses have an 

RNA—» DNA step in their life cycle. The genetic information encoded by these viruses thus 

alternates between being present in RNA and being present in DNA. Retroviruses (e.g.,HIV, 

family Retroviridae) contain the RNA phase in the virion, and they have a single-stranded RNA 

genome that is present in the virus particles in two copies. Thus, the replication of their genome 

occurs through a DNA intermediate (RNA-» DNA-» RNA). The hepadnaviruses(e.g.,hepatitis 

B virus, family Hepadnaviridae) contain the DNA phase as their genome, which is circular and 

largely double stranded. Thus their genome replicates through an RNA intermediate (DNA-» 

RNA-» DNA).
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1.2 Human Immunodeficiency Virus

Human Immunodeficiency Virus (HIV) is currently grouped into two types: HIV-type 1 (HIV- 

1 ) and HIV-type2 (HIV-2), which are genetically related member of the lentiviruses genus of 

the Retroviridae family [6]. Both HIV-1 and HIV-2 may cause the well-known disease called 

AIDS (Acquired Immunodeficiency Syndrome), while HIV-2 is restricted to some regions of 

Western and Central Africa and is thus not as serious a pathogen as HIV-1. The latent period 

before disease develops is longer for HIV-2, the virus is not as easily transmissible, and it has 

not spread as extensively as has HIV-1. HIV-1 is responsible for the vast majority of AIDS in 

people.

The structure of HIV-1 is shown in 1.1. Each viral particle of HIV has a membrane similar 

in structure to that of the cell membrane. Inside, the viral particle there is nucléocapside, 

which contains two copies of HIV RNA combined with a nucleoprotein and enzymes reverse 

transcriptase, intergrase and protease [3].

There are three structural genes called gag, pol and env polyproteins [4]. The gag gene 

encodes for the protein p-24 and p-17. The pol gene encodes for the reverse transcriptase, the 

protease, and the integrase. The env proteins slices into two viral envelop protein called gp-41 

and gp-120. Gp-41 is embedded in the membrane of the HIV particle,whereas gp-120 sits on 

the outside of the viral membrane attached to gp-41. Gp-120 is essential for the virus to enter 

its host cell [2].

1.3 The Life Cycle of HIV Infection

The HIV life-cycle is the story of how a single HIV virus particle infiltrates a cell and uses 

it to produce new HIV particles. Viruses cannot reproduce without the aid of a living cell. 

HIV needs to proliferate inside its target cells. The main target is an immune cell called a
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Figure 1.1: Structure of HIV-1 particle source: [1 ]

lymphocyte, more sepecifically a CD4+ helper, a type of T-cell. T-cells are an important part 

of the immune system because they help facilitate the body’s response to many common but 

potentially fatal infections. Without enough T-cells, the body’s immune system is unable to 

defend itself against many infections. HIV’s replication directly or indirectly causes a reduction 

in the number of T-cells in the body, eventually resulting in an increased risk of infections.

The steps by which HIV enters target cells and reproduce is commonly divided into six 

stages: the binding and entry phase, the uncoating phase, the reverse transcription phase, the 

provirus intergration phase, the virus protein synthesis and assembly phase and the budding 

phase [1], which are explained below.

• Binding and entry: once HIV comes into contact with a T-cell, the viral envelope protein 

gp-120 and gp-41 bind to a CD4+ receptor and one of two co-receptors on the surface of 

a CD4+ positive T-lymphocyte. In addition to binding a CD4+ receptor, HIV must also 

bind either a CCR5 OR CXCR4 co-receptor protein to get into a cell. The virus then fuse
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with the host cell and inject its genetic material into it, which is a blueprint for making 

more HIV. Once this has occurred, the viral envelope and the cell membrane are brought 

into direct contact and essentially melt into each other.

• Uncoating: following membrane fusion, the virus genetic core is ready to release. The 

nucleocapsid needs to be partially dissolved since the viral RNA is protected in the nu- 

cleocapsid. The virus core uncoats into the cytoplasm of the target cell freeing the viral 

RNA.

• Reverse transcription: the single-stranded viral RNA is converted to a double-strand 

DNA because of the action of the reverse transcriptase enzyme. Reverse transcriptase 

uses nucleotides,building blocks of DNA, from the cell cytoplasm to make this process 

possible.

• Integration: the newly formed HIV DNA inserts itself into the cell nucleus and facilitates 

its integration into the host genome. The integrated HIV DNA is called provirus. After 

successful integration of the viral DNA, the host cell is now latently infected with HIV. 

The provirus may remain inactive for several years, producing few or no new copies of 

HIV.

• Protein synthesis and viral assembly: Upon cell activation, transcription of proviral DNA 

into a messenger RNA occurs. Viral mRNA coding for long fragments migrates into the 

cytoplasm, where structural proteins of new virons are synthesized. Once the various 

viral subunits have been produced and processed, they must be separated for the final 

assembly into new virus. This separation, or cleavage, is accomplished by the viral 

protease enzyme.

• Budding: The genetic material enclosed in the nucleocapsid merges and migrates to

wards the cell surface. During the budding process, the virus acquire part of the cell’s 

outer envelope as its new envelope, which is studded with protein/sugar combinations 

called HIV glycoproteins. The newly assembled virus pushes out from the host cell and
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move on to infect other cells.

The following figure 1.2 shows the HIV infection life cycle.

Infecting HIV New HIV particle

Figure 1.2: The life cycle of HIV infection, source: [1 ]

1.4 Epidemiology

In the begnning of the fourth decade of the AIDs epidemics, there are estimated 33.3 million 

people living with HIV worldwide. In 2009, there was an estimated 2.6 million people who 

became newly infected with HIV according to UNAIDS. The number of annual AIDS-related 

deaths worldwides is estimated 1.8 million in 2009. In North America, the HIV incidences 

increased from 1.2 million to 1.5 million and the newly infected with HIV rised from 66000 to 

70000 between 2001 and 2009 [7].

HIV infection can be transmitted in the following ways: [3]
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Figure 1.3: Global Prevalence of HIV,2009 source:UNAIDS

• Sexual transmission:

-  heterosexual transmission

-  homosexual transmission:

* man-to-man transmission

* woman-to-woman transmission

• Vertical transmission

• Blood transmission:

-  sharing infected injection equipment

-  infected blood products

-  needle-stick injuries
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1.5 Treatment of HIV/AIDS

The aim of antiretroviral treatment is to keep the amount of HIV in the body at a low level. 

This stops any weakening of the immune system and allows it to recover from any damage that 

HIV might have caused already. Taking two or more antiretroviral drugs at a time is called 

combination therapy. Taking a combination of three or more anti-HIV drugs is sometimes 

referred to as Highly Active Antiretroviral Therapy (HAART). If only one drug was taken, 

HIV would quickly become resistant to it and the drug would stop working. Taking two or 

more antiretrovirals at the same time vastly reduces the rate at which resistance would develop, 

making treatment more effective in the long term. The following table shows that there are five 

groups of antiretroviral drugs. Each of these groups attacks HIV in a different way.

1.6 This thesis

The application of mathematical models to infectious disease has consisted of describing their 

spread throug human populations. Mathematical models present clear concepts and guideline 

for collection and analysis of data [5]. In Chapter 2, our 5-dimensional nonlinear ODEs model 

is introduced to describe the interation of the two competitive strains of viruses within host 

cells and global stability analysis is performed. Based on reality, intracellular delays are added 

to our previous mathematical model in Chapter 3. We investigate the global properties of 

our modified mathematical model which is determinded with similar consequences found for 

the model in Chapter 2. In chapter 4, we obtain our conclusion that the dynamics of both 

differential mathematical models are determined by the basic reproductive number and disccuss 

our future work.
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Antiretroviral 

drug class

Abbreviation First approach 

to treat HIV

How they 

attack HIV

Nucleoside/Nucleotide 

Reverse Transcriptase 

Inhibitors

NRTIs,

nucleoside

analogues,

nukes

1987

NRTIs interfere with the 

action of an HIV protein 

called reverse transcriptase, 

which the virus needs to make 

new copies of itself.

Non-Nucleoside Reverse 

Transcriptase Inhibitors

NNRTIs,

non

nucleosides,

non-nukes

1997

NNRTIs also stop HIV from 

replicating within cells by 

inhibiting the reverse 

transcriptase protein.

Protease Inhibitors Pis 1995

Pis inhibit protease, which is 

another protein involved in the 

HIV replication process.

Fusion or Entry Inhibitors 2003

Fusion or entry inhibitors 

prevent HIV from binding to or 

entering human immune cells.

Integrase Inhibitors 2007

Integrase inhibitors interfere 

with the integrase enzyme, 

which HIV needs to insert its 

genetic material into human cells.

Table 1.1: Antiretroviral drug table
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Chapter 2

Global Properties of the HIV Infection 

Model with two competitive viruses

2.1 Introduction

Infection with human immunodeficiency virus (HIV) results in a chronic infection with ulti

mate fatal outcome. Studies on HIV virology and pathogenesis address the complex mech

anisms that lead to the HIV infection of the cell and destruction of the immune system. A 

detailed understanding of HIV dynamics and how it establishes infection and causes AIDS 

are crucial for refining strategies for scientists to attack AIDS and control HIV spreading in 

population.

When HIV enters the body, it invades CD4+ T-cells, the main driver of the immune re

sponse. Through infection and eventual killing of these cells, HIV weakens the body’s im

mune function and may cause Acquired Immune Deficiency Syndrome(AIDS), making the 

body susceptible to opportunistic infections.

Many epidemic models about multiple infections with different diseases have been inves

11
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tigated. For example, coinfection with AIDS and tuberculosis are studied in [17, 22], and 

coninfection with Hepatitis C and HIV is explored in [23]. Recent studies have demonstrated 

that multiple infections of cells by different strains of a pathogen occur far more frequently 

than single infection in vivo [6], which is significant shift from the prevalent paradigm of HIV 

infection that individual target cells are generally infected by a single strain HIV virions [14]. 

Therefore, considering two types of HIV virus which are competitive within host cells is more 

accurate than considering one type HIV only invading host cells models. Even there are lots of 

drug resistance [18, 19] and general in-host models with the single strain infection [8, 14] in 

theliterature, but the global properties of the two strains HIV infection models with loose con

ditions are not well studied. Of great interest, therefore, are investigating the mechanisms that 

underlie the high incidenc of two-strain competitive infection of cells by HIV and understand

ing their implication for HIV evolution and therapy. Studying such properties is important for 

understanding the associated characteristics of the HIV dynamics, and helps to determine the 

suitable drug dosages required to stabilize the system around the desired steady state [4, 20].

Our primary goal in this chapter is to investigate analytically the mechanisms underlying 

the emergence of two-strain viral loads during HIV infection. We calculate the basic reproduc

tion number and analyze global properties of the two-strain HIV model. Our two-strain model 

is a 5-dimensional system of nonlinear ODEs that describes the interation of the two competi

tive viruses within host cells. The global stability of these equilibria is analyzed by constructing 

Lyapunov functions, which are extensions and modifications of the Lyapunov function given 

by Korobeinikov [8]. We prove that the global dynamics of our model is determined by the ba

sic reproduction number R0. If Rq < 1, the infection-free equilibrium is globally asymptotically 

stable, and both strains of viruses are cleared. If R0 > 1, the infection-free equilibrium loss 

its stability and the single-infection by the virus that has the greater basic reproduction num

ber persists and the single-infection equilibrium is globally asymptotically stable. We provide 

numerical results of the model which support our analytical results.
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2.2 A Two-Strain HIV Model

Most existing mathematical models for HIV virus dynamics are by systems of ordinary differ

ential equations . A standard and classic differential equation model for HIV infection is the 

following system of ODEs [14, 13, 15]:

T  = A -  d T -  kTV,

T* = k T V - p T \  (2.1)

V = p T  -  cV,

where T{t),T*{t) and V{t) are the population sizes of uninfected target cells, infected cells 

and the free virus particles, respectively, at time t. The assumption is that uninfected cells 

are generated at a constant rate, A, and die at a rate d. Free virus particles infect uninfected 

target cells at a rate proportional to the product of their abundances, kTV. The rate constant, 

k, describes the efficacy of this process. Infected cells produce free virus particles at a rate 

proportional to their abundance, pT*. Infected cells die at a rate pT* either due to the natural 

death or the action of the virus and free virus particles are removed from the system at rate cV 

by the immune system or natural decay. Therefore, the average life-time of an infected cell, a 

free virus particle and an uninfected cell are jj, £ and  ̂ respectively. The model well predicts 

the primary phase of HIV infection, showing that during the first weeks of infection there is a 

peak in viral load with a subsequent decline to a relatively stable steady-state.

The model presented in this chapter adopts a similar structure as that in (2.1). We introduce 

another subtype of virus which competes with the original virus for host cell resource, but 

we ignore super infection. As the main purpose of this model is to look at the interaction 

between two subtype viruses, we propose our two-strain model given by the following system 

of ordinary differential equations:
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T = A -  dT -  kxTV x -  k2TV2,

T\ = k\TV\ -  H\T\,

t 2 = k2TV2 - n 2T2, (2.2)

V\ = P\T\ -  c\V\,

V2 = PjT2 -  c2V2,

where T\(t) denotes the population size of cells productively infected by strain-1 virus, whereas 

T2(t) denotes the population size of cells productively infected by strain-2 virus at time t; V) (?) 

and V2(t) represent the respective population sizes of subtype-1 and subtype-2 viruses; k\ and 

k2 represent the rate constants at which uninfected target cells are infected by subtype-1 and 

subtype-2 viruses, respectively. The two subtypes of infected cells are assumed to have two 

different death rate p\ and p2. Once uninfected target cells are infected by subtype-1 (subtype- 

2) viruses, new subtype- 1 (subtype-2) virus particles are produced with constant rate p\ (p2). 

The new subtypes of virus have the respective clearance rate c\ and c2. All the parameters of 

the model are assumed to be positive. Here we omit the super-infection in host cells.

2.2.1 Well-posedness

The system (2.2) is biologically acceptable in the sense that no population goes negative. One 

expects that starting from non-negative initial values, all variables in the corresponding solution 

remain non-negative.

Theorem 2.2.1 The compact set Y = [(T, Tu T2, Vlt V2) e %5 : 0 < T < 0 < T + Tx + T2 <

j ,  0 < V\ < ^ 4 ,0  < V2 < is positively invariant.

Proof First, we prove that T(t) is positive for all t > 0. Assuming the opposite, let t\ > 0 be 

the first time such that T(t\) = 0, which means T(t) > 0 as t e [0, t\). Since
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T = A - d T - k xTVx - k 2TV2t

we get T(t\) = A > 0, and hence T(t) < 0 for ( 6  (f, -  e ,t\) where e > 0 is sufficiently small. 

This contradicts 7 (0  > 0 for t e [0, r,). It follows that 7 (0  > 0 for t > 0.

Next, we show V\ (t) > 0 for all t > 0. Assume the opposite, and let t2 > 0 be the first time 

such that V\(t2) = 0. Since

V\ = p\T\ -  c\V\,

we have V\(t2) = p\T \(t2). On the other hand,solving T\(t) by the second equation of (2.2) 

gives

T\(h) = (7,(0) + f 2 k]T (e )V m e fi'ede)e~ti'12 > 0.
Jo

Hence V\{t2) = p\T \(t2) > 0, implying V,(t) is positive for all t > 0.

The positiveness of T(t) and V,(r) and the following formula

T\{t) = (7,(0) + f  kxT{e)Vx( e ) ^ ede)e-^t
Jo

in turn leads to the positiveness of 7,(t) for ail t > 0. Similarly, we can show that V2(t) and 

72(0 are positive for t > 0 under positive initial conditions.

From the first equation of (2.2), we obtain T < A - d T .  Hence l im su p i^T it)  < ~d. Adding 

the first three equations of (2 .2), it follows

(7(0  + 7 ,(0  + 72(0)' = A -  dT{t) -  p \T \(t) -  p 2T2(t)

< A -  r(T{t) + 7 ,(0  + 72(0),

where r = m in{d,p\,p2}. Thus, limsupt̂ 00(T(t) + 7 ,(0  + 72(0) < 4. For any e > 0 ,3 7  > 0, 

such that 7 (0  + 7 ,(0  + 72(0 < 4 + e for all t > t*. The fourth equation of (2.2) implies
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V\ = P\T] - c i V  1 < P \ ( - + e)~ C\Vx(t), t>t '

This implies limsup,^00V\ < f[(f+ e ). Since e > 0 is arbitrary, we attain limsup,-,„Vi(t) < fjy 

Similarly, we can obtain l im su p t^V j < The above have also shown that the set

T =  {(Tt Tu T i,V u  V2) e %5 : 0 <  T < ^ ,0  < T + T x + T2 < r , 0  < V, < ^ 4 , 0  < V2 <a r cxr c2r

is positively invariant and it also attracts all non-negative solution. The proof is completed.

2.2.2 Equilibria and basic reproduction numbers

A crucial mathematical threshold parameter for model (2.2) is the basic reproduction number 

R0, which is defined as the number of newly infected cells that arise from any one infected cell 

when almost all cells are uninfected [2], We apply the technique from [3] to calculate the basic 

reproduction number R0 by using the next generation matrix.

The model always has the infection free equilibrium E0 = 0 ,0 ,0 ,0 ,0 ) . The next genera

tion matrix of (2.2) denoted by F V ~\ is related to the linearization of (2.2) at E0. Following 

[3], we can calculate F and V as

(
0 0 ir. à. Al d 0

f
Pi 0 0

\
0

F =
0 0 0 M , and V =

0 Pi 0 0

0 0 0 0 -P i 0 Ci 0

, 0 0 0 0 , , 0 -P i 0 c2 ,

giving the next generation matrix
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M a 0 k \A 0d n \c \ dc\

0 k2A p 2
à p ic i

0 k2A
dC2

0 0 0 0

0 0 0 0  .

The basic reproduction number is given by the spectrum radius of FV  \  which is

n / r’T 7 — 1 \ [M P i  k2Ap2\R0 = p{FV  ) = max < - ----- , ------- >.
\dp\C\ dp2c2)

(2.3)

We define the respective basic reprodution number for subtype-1 virus strain and subtype-2 

virus strain by

dp\C\

From (2.3), we obtain R0 = m ax{R\,R2).

D M P i k2Ap2R\ — ——— yCiïid R2 —
dp2c2

(2.4)

There are two possible single-infection equilibria E\ = (t , T \, 0, V\, 0  ̂and E2 = (t , 0, T2, 0, V^j, 

where

f  = f i  = ^ - ( R i  ~ 1), V, = U r x -  1). (2.5)dR \ k\p\ k\

and

T = 7*2 = ^ ( ^ 2  -  1), v2 = ^ ( /? 2 -  1). (2.6)
d R2 k2p2 k2

It turns out that the values of R\ and R2 determine the existence of the single-infection equilib

ria: E\ exists if and only if R\ > 1, and E2 exists if and only if R2 > 1. Obviously, E\ and E2 

are biologically meaningful under the conditions.

It is also possible for our model (2.2) to have a double infection equilibrium which is 

an equilibrium with all components being positive. Denote such a possible equilibrium by 

£"3 = (t *, 77,77, Vj*, V*). Then calculation shows that the components in E2 must satisfy
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(2.7)

d(R{ -  Ì) = k{v ; + k2V*,

d(R2 - \ )  = kxV \+ k 2V*2.

By the last two equation in (2.7), it is clear that £3 exists if and only if

R\ — R2 > 1. (2.8)

If (2.8) holds, there are actually infinitely many co-existence equilibria.

Summerizing the above results, we have the following conclusion. When £ 0 < 1, £0 is the 

only equilibrium; when £ t > \,R 2 < 1, there are £0 and £1; when R2 > l ,£ i  < 1, there are Eq 

and £ 2; when R] > 1, £ 2 > 1, in addition to Eq, E\ and E2, there are infinitely many co-exitence 

equilibria if £1 = R2 > 1. Considering the fact that there are ten model parameters in £1 and 

£2, the identity £1 = £ 2 is unlikely to hold in reality (or infeasible), and thus, this case will not 

be disscussed.

In this section we study the global stability of equilibria by using the Lyapunov functions.

From Theorem 2 of [3], it follows that the DFE, £0, is locally asymptotically stable if 

£ 0 < 1 and unstable if £ 0 > 1. Before we prove the global stability of £0, we introduce a useful 

function used recently by [8, 9, 5, 16]:

2.3 Global Stability of Equilibria

g(x) -  x -  ln(jt) -  1.
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This function attains the global minimum at x  = 1 with g (l) = 0, and remains positive for all 

other postitive values of x. Our Lyapunov function takes advantage of these properties of g(x).

Theorem 2.3.1 I f  Rq < 1, the infection free-equilibrium Eq is globally asymptotically stable.

Proof Let T0 -  j- and consider the Lyapunov function

V(T, T u T2, V,,V,) = T0g(T /T0) + T] + T2 + — Vi + —  V2.
P l Pi

From our previous disscusion, V(T, T \,T 2,V \,V \)  is non-negative in the positive cone R5+ and 

attains zero at Eq. We will show that the derivative of V along the trajectories of our model 

(2.2) is negatively definite. Indeed,

V = T - - ^ T  + t l + T2 + — Vi + — V2
T Pi p2

= A -  dT  -  k\TV\ -  k2TV2 -  y ( A  -  dT -  kxTV x -  k2TV2)

+k\TV\ — p\T \ + k2T \ 2 — p 2T2

+— (P\Ti ~ Ci VO + — {p2T2 -  c2V2).
P\ Pi

Some terms in the above can cancel out. After cancelling terms, using T0 = -. and rearranging 

terms, we obtain

V = A

(kiTo

dT  -  y ~A + dT0

^T/ / 7  rp,)V] + (k2T0 -------- )V2
P l Pi

A(2 ~ ^ ~ y )

+ ^ l ( R 1- l ) V 1+ ^ ( R 2 - l ) V 2l
Pi Pi
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Since the arithmetic mean is greater than or equal to the geometric mean and R0 = max {Rx, R2] 

1, each of the three terms on the right hand side is non-positive. Hence V(T,T\, T2, V\, Vi) < 0 

with the equality holding only at E0. By the Lyapunov-LaSalle Theorem [10], E0 is globally 

asymptotically stable if Ro < 1.

When R0 > 1, then E0 becomes unstable and at least one of the E\ and E2 exists. We now 

investigate the global stability of these two possible single-strain equilibria.

Theorem 2.3.2 Assume that E\ exists (i.e. R\ > \). I fR 2 < R\, then, E\ is globally asymptoti

cally stable.

Proof Consider the following Lyapunov function

V(T, Tu T2, Vu V,) = t g i )  + Txg & )  + T2 + ^ - V xg &  + ^ V 2.
T T] pi Vx p2

By the properties of g(x), the Lyapunov function V {T ,T \,T2,V \,V \)  is non-negative in the 

positive cone R \ and attains zero at E \. In order to show V is negatively definite, we differetiate 

V(T, T \,T 2,V \yVi) along the trajectories of (2.2) to get

V = (1 -  h i t  + (1 -  p - ) f ,  + f 2 + ^-(1 -  % V i  + ^ V 2
T T I pi Vi p2

= (1 -  ^ )(d  -  dT -  kiTVi -  k2TV2) + (1 -  )(kiTVi - p i T x)
L 1 1

+k2TV2 - p 2T2 + ^-(1 -  % (p iT i  -CiVi )
Pi Vi

+— (PjT2  -  c2V2).

Expanding the above equation, using the value of (2.5) and rearranging the terms, we obtain
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V = { A - d T -  k\TV\ -  k2TV2) -  —A + d f  + kxTVx + k2TV2

(kxTVx - p xTx) - ^ { k xT V x - p xTx) + k2TV2 - p 2T2 
* 1

+ - { p i T x -  cxVx) -  - j y - ( P\T x -  cxVx) + p2T2 -  c2V2 
P  i P l Vi

A - d T - ^ A  + d f  + k2TV2 -  p - kxTVx + T xp x 
i 1 1

Vx p \c xVx p 2c2v2 
~P\T\ —  + ---------------------

Vi /?l P2
, ^  ^ ^  . fc2Cj>Ui t, ^ /CiTV,A - d T  -  - A  + dT + - ------V2 - p xTx— —

T k xp x p xTx
r r T XVX - p 2C2V2

- P \T x t —  + p xTx ------—-
Tx Vx p2

j f n  T fn f  T V j f i  m
T T ^  1 T TVXTX TXV,

+(^ £ l£ i _ ^ ) V 2
P2

j ’f'i'f T T T TVXTX TXVX
T T ) Pi  l( J, T y xTx f xy )

4 4 ,  -  k v >-

Again by the relation of geometric mean and arithmetical mean as well as the assumption 

R2 < R x, we obtain that V < 0. The equlity holds only at the equilibrium E x. By the Lyapunov- 

LaSalle Theorem [10], we conclude that E x is globally stable in R5+.

Parallel to Theorem 2.3.2, we have the following theorem for E2

Theorem 2.3.3 Assume that E2 exists (i.e. R2 > 1). I f R x < R2, then E2 is globally asymptoti

cally stable.

Proof The proof of this theorem is symmetric to that of Theorem 2.3.2, by considering the 

Lyapunov function
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V(T, Tu T2, Vu Vl) = t g i )  + r ,  + f 2g & )  + -  V, + - v 2g & .
T T2 P1 P 2 V2

We omit the details of proof.

From the biological perspective, when Rq > 1 and R\ i  R2, the viral strain that has the 

greater reproductive number will dominate the virus population. That is, competition exclusion 

generically holds in this case. The diagram in Figure 2.1 summarizes the results in Theorems 

2.3.1 - 2.3.3 in the R\ - R 2 plane, where the equilibria in bold font is stable in that region, while 

the rest are unstable.

Figure 2.1: Global Stability of Equilibria

Remark A more general model with n strains was proposed and analysed in [ 11 ]. Competition 

exclusion result was also established for that model under the condition 1 < Rn < Rn_\ < ... < 

R2 < R\. Our results for n = 2 case give a bit more information as explained below.

By [11], for n = 2, if 1 < R2 < R\, then E\ is globally asymptotically stable; if 1 < R\ < R2, 

then E2 is globally asymptotically stable. By our results, if R2 < R\ and R\ > 1, then E\ is
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globally asymptotically stable, regardless of whether R2 < 1 or R2 > 1. Similarly if R\ < R2 

and R2 > 1, then E2 is globally asymptotically stable, regardless of whether R\ < 1 or R\ > 1. 

Moreover, for case R\ = R2 > 1, there is no information on the dynamics of the model in [11], 

However we have shown that in this critical case, there are infinitely many positive equilibria. 

And numerical simulations show that every positive solution converges to one of these positive 

equilibria.

2.4 Numerical Simulations

In this section, we present some numeric simulations to confirm and illustrate the theoretic 

results obtained in Section 2.3.

First, we chose the following values for the model parameters: A = 4, d = l,&i = 2, pi = 

1, ci = 3,p, = 10, k2 = 3 ,p2 = 2, c2 = 2.5,p 2 = 15. This give the values two individual basic 

reproduction numbers R i = 0.267 and R2 = 0.64. Three sets of initial values are used: (I) 

7X0) = 20,7,(0) = 0 ,T 2(0) = 0,V,(0) = 10,V2(0) = 15; (II) T(0) = 10,T,(0) = 0 ,T 2(0) = 

0,V,(0) = 8, V2(0) = 20; (III) 7(0) = 15,7,(0) = 0 ,7 2(0) = 0, V,(0) = 20, V2(0) = 9. The 

corresponding solutions are presented in Figure 2.2.

Secondly, we chose the following values for the model parameters: A = 4 ,d  = \,k \ = 

5, pi = 6, ci = 4 ,pi = 3, k2 = 1 ,p 2 = 4 ,c2 = 3,p 2 = 4. This give the values two individual 

basic reproduction numbers R\ = 10 and R2 = 1.33. Three sets of initial values are used: (I) 

7(0) = 20,7,(0) = 0 ,72(0) = 0, V,(0) = 6, V2(0) = 18; (II) 7(0) = 10,7,(0) = 0 ,7 2(0) = 

0, F,(0) = 10, V2(0) = 15; (III) 7(0) = 15,7,(0) = 0 ,72(0) = 0, V,(0) = 20, V2(0) = 10. The 

corresponding solutions are presented in Figure 2.3.

Thirdly, we chose the following values for the model parameters: A = 10,d = l.fc, = 

4, pi = 8, ci = 8,pi = 5 ,k 2 = 3,p 2 = 10, c2 = 5,p 2 = 4. This give the values two individual 

basic reproduction numbers R i = 8 and R2 = 15. Three sets of initial values are used: (I)
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7\0) = 10,7,(0) = 0 , r 2(0) = 0, V](0) = 4,V2(0) = 6; (II) 7(0) = 20 ,r,(0 ) = 0,T2(0) = 

0, V,(0) = 7, V2(0) = 15; (III) T(0) = 15, 7,00) = 0, 72(0) = 0, V,(0) = 20, V2(0) = 10. The 

corresponding solutions are presented in Figure 2.4.

We mentioned that the case R] = R2 > 1 is too sensitive in reality and thus, is practically 

not feassible. But mathematically, in this case there are infinitely many co-infection equilibria 

whose V\ and V2 component are given by the following linear equation with the non-negative 

restriction:

*iV, +k2V2 = d ( R -  1),
i

V, > 0, V2 > 0.
<

In such a case, no particular equilibrium can be globally stable. However, the simulations 

show that every biologically meaningful solution will converge to one equilibrium. To demon

strate this, we choose A = 4, d = l,k] -  2, p\ = 3,Ci = 1,/q = 4, k2 = 4, p2 = 1.5,c2 = 2,/i2 = 

2, giving R\ = R2 = 6 > 1. For two different set of initial values, the simulation results are 

presented in Figure 2.5 where the plottings are on the V\ -  V2 plane, which clearly show that 

the convergence depends on initial values.
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Target Uninfected Cells

time time

gure 2.2: R\ < 1 and R2 < 1: viruses of both strains all die out.
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Figure 2.3: R i > 1 and/?2 < R\ - subtype-1 wins the competition.
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Target Uninfected Cells

Subtype Virus-2 Cells

time

gure 2.4: R2 > 1 and R < R2: subtype-2 wins the competition.

Figure 2.5: R\ = R2 > 1: co-infection occurs.
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Chapter 3

Global Dynamics of A two-strain HIV 

Infection Model with Intracellular Delay

3.1 Introduction

It has been realized that mathematical modelling can provide valuable insight into HIV-1 patho

genesis. These mathematical models are formulated by using differential equations to explore 

the mechanisms and dynamical behaviors of the viral infection process [3, 8, 17, 18, 19]. Such 

understanding may offer guidance for developing efficient anti-viral drug therapies [14, 15, 10].

In the previous chapter, we studied the two-strain viruses competition for host resources 

during HIV infection by the following systems of ordinary differential equations:

T = A -  dT  -  k\TV\ -  k2TV2,

T\ -  k\TV\ -  ¡u\T\,

T2 = k2TV2 - ^ 2T2, (3.1)

30



V’l = P\T\ - c \V i ,

Vi = P2 T2  -  C2 V2 ,

where T(t) is the population size of uninfected target cells, whereas T\(t) denotes the popu

lation size of cells productively infected by subtype-1 virus and 72(f) denotes the population 

size of cells productively infected by subtype-2 virus at time t. Vi(0 and V2 (0 represent the 

respective population sizes of subtype-1 and subtype-2 viruses. The positive constant A is the 

rate at which new target cells are generated, d is their specific death rate, k\ and k2 represent the 

rate constants at which uninfected target cells are infected by subtype-1 and subtype-2 virus, 

respectively. The two subtypes of infected cells are assumed to have different death rate p\ 

and n2. Once uninfected target cells are infected either by subtype-1 (subtype-2) virus, new 

subtype-1 (subtype-2) virus particles are produced with constant rate p\ (p2), the two types 

have the respective clearance rate c\ and c2. An underlying assumption in such an ODE model 

is that infection of cells by virions is instantaneous and the production of new virions by in

fected cells is instantaneous as well.

However, in reality, there is a lag between the time target cells are contacted by virus 

particles and the time the contacted cells become actively affected meaning that the virions 

have enter cells and started producing new virions [23]. This can be explained by the initial 

phase of the virus life cycle, which include all stages from viral attachment until the time 

that the host cell contains the infectious viral particles in its cytoplasm. To account for this 

lag, models that include time delays have been developed and investigated [8, 15, 23]. One 

distinct feature of delay differential equation models is that a delay typically destabilize an 

stable equilibrium and cause sustained oscillation through Hopf bifurctions. By rigorously 

establishing the global dynamics of the two-strain competitive viral model with intracellular 

delays, we show that no sustained oscillations are possible in our model.

To incorporate the intracellular phase of the virus life-cycle, we assume that subtype-1 virus 

and subtype-2 virus production occur in average, Ti and T2 time units later, after the respective 

virus enter the host cells. The recruitment of subtype-1 virus producing cells at time t is given

Chapter 3. The DDE System 31
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by the number of cells that were newly infected by strain-1 at time t -  T\ and are still alive at 

time t. In the same way, the recruitment of subtype-2 virus producing cells at time t is given by 

the number of cells that were newly infected by strain-2 at time t -  T2 and are still alive at time 

t. If we assume two constant death rates si and S2  for infected but not yet virus-producing cells 

for subtype-1 and subtype-2, the probability of subtype-1 surviving the time period from t -  T\ 

to t is e~s,T', the probability of subtype-2 surviving the time period from t -  T2  to Ms e~S2T2. 

The transfer diagram for the transmission of viral infection under such a scenario is shown in 

Figure 3.1. Thus the following delay differential equations model is proposed:

T = A -  dT(t) -  k\T{t)V\{t) -  k2m v 2(t),

T\ = k\T(t -  T\)V\{t -  T\)e~s'J'

f 2 = k2T(t -  T2)V2(t -  T2)e~S2T2 -  n2T2(t), (3.2)

Vi = p\T\(t) -  c\V\(t),

V2 = p2T2(t) -  C2V2{t),

Delays have been incorporated into virus dynamics models in [8, 23, 12], but only for sin

gle strain models. Here we consider two strains. Many previous in-host models also considered 

the effects of anti-viral drug therapies such as HAART [15, 1, 21], but only local stability were 

analysed in these works. We note that by renaming the coefficients due to the effect of reverse 

transcriptase inhibitors and protease inhibitors, the model in [15, 1, 21] can be transformed 

into the form of (3.2). Our results on the global dynamics of model (3.2) can apply to these 

models with anti-viral therapies, and hence can rule out the exitence of periodic solutions. This 

shows novelty of this work and should benefit other researchers working on similar models.

In the present chapter we analyse model (3.2) including intracellular delays. We establish 

global asymptotic stability of the infected-free, and single-infected by constructing Lyapunov 

functionals. To this end, we first establishes the well-posedness of (3.2) in section 3.2. Then 

we discuss the existence of equilibria in the feasible region and derive the basic reproductive



Chapter 3. T he DDE System 33

Uninfected cells

0

Cl

Free subtype-1 virus

1 - e 's,T> ft

Infected cells that can

Infected cells by subtype-1 produce subtype-1

*1 J ( • )

w

■fcj— ► (■ )
Free subtype-2 virus Infected cells by subtype-2 Infected cells that can 

produce subtŷe-2
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Figure 3.1: Transfer diagram for model (3.2)

number R0. It turns out that R\ is a decreasing function of the delay T\ and R2 is a decreasing 

function of the delay t2. These imply that ignoring the intracellular delays will overestimate 

the basic reproduction number. We show that the basic reproductive number R0 generically 

determines the global dynamics of model (3.2). More specifically, if R0 < 1, the infection-free 

equilibrium E0 is globally asymptotically stable, and two subtype viruses will be cleared; if 

R0 > 1 and R\ ^  R2, the single-infected equilibrium arising from the greater basic reproduction 

number is globally asymptotically stable. The proof utilizes a global Lyapunov functional that 

is motivated by the work in [11, 12]. The global stability of single-infected equlibira rule out 

any possibility of sustained oscillations. In addition, numerical simulations are also conducted 

to demonstrate global dynamics of system (3.2).
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3.2 Well-posedness

In the same way as in the previous chapter, the system (3.2) is biologically acceptable in the 

sense that no population goes negative. We expect that starting from non-negative initial val

ues, the corresponding solution remains non-negative. To proceed, we follow the convention 

to denote by C\ = C ([-T |,0],R ) and C2 = C ([- r2,0],R ) the Banach spaces of continuous 

functions mapping the interval [ - r„ 0 ]  into R, i = 1,2, with norm ||0,-|| = sup-Ti<g<o |O,(0)I for 

O, e Cj. Let r  = max[T\ ,T2), denote by C = C ([-r, 0],R) the Banach space of continuous 

functions mapping the interval [ - r , 0] into R, with norm ||<E>|| = sup-T<g<o |®(0)| for 6 e C. 

The nonnegative cone of C, C\ and C2 are defined as C+ = C ([-r, 0], R+), Cf = C([-Ti, 0], R+) 

and C2 = C ([ - r2,0],R+). The initial conditions for system (3.2) are chosen at t = 0 as 

ip 6 C+ x R+ x R+ x Cf x C\. The well-posedness for our delay differential equation model 

(3.2) is established by the following theorem.

Theorem 3.2.1 Under the above initial conditions, all solutions o f system (3.2) are positive 

and ultimately bounded i « C x l x l x C |  x C2

Proof First, we prove that T(t) is positive for all t > 0. Assuming the opposite, let t\ > 0 be 

the first time such that T(t\) = 0, which means T{t) > 0 as t e [0, t]). Since

we get T(ti) = A > 0,and hence T{t) < 0 for t e (t\ -  e, t\) where e > 0 is sufficiently small. 

This contradicts T(t) > 0 for t e [0, t\). It follows that T(t) > 0 for t > 0. Next, we show 

V\(t) > 0 for all t > 0. Assume the opposite and let t2 > 0 be the first time such that V\(t2) = 0. 

Since

we have V\(t2) = p\T\{t2). On the other hand, solving T\(t) by the second equation of (3.2) 

gives

T = A -  d m  -  k\T(f)V\{t) -  k2T(t)V2(t),

Vi(t) = P iT ft)  -  C]V ft),

k\T{6 -  T\)V\(6 -  r x)e~s'T'd1'ede)e-tl'h > 0
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Hence V\ (t2) = p\T\{t2) > 0 implying V\(t) is positive for all t > 0.

The positiveness of T(t) and V\(t) and the following formula

T\(t) = (T\(0) + f k tT(0 -  1 - ^ ( 0  -  >0.
Jo

in turn leads to the positiveness of T x(t) for all t > 0. Similarly, we can show that V2(t) and 

T2(t) are positive for t > 0 under positive initial conditions.

From the first equation of (3.2), we obtain T(t) < A -  dT(t). Hence lim su p t^T it)  < j. 

Adding the first three equations of (3.2), it follows

(T(t) + T\(t + Ti) + T2(t + t2))' = A -  dT(t) - P\T\(t + Ti) -  p 2T2{t + t2)

+ k xT ( t ) V \m ~ s'T' -  1) + k2T(t)V2m ~ sm -  1)

< A -  r{T{t) + T\{t +  Ti) + T2{t + t 2))

where r = m in{d,p\,p2). Thus, lim su p t^ iT it)  + Tx{t + t x) + T2(t + t2)) < j .  For any 

e > 0 ,3t* > 0, such that T(t) + Tx(t + t x) + T2(t + r 2) < 4 + e for all t > t*. Thus, T(t), T\{t) 

and T2(t) are all ultimately bounded by j .  The fourth equation of (3.2) implies

Vi = PiTi(t) -  c1V1(t) < p i ( r  + e ) - c xV i(t),t>  t*
r

This implies lim su p t^V i < + e). Since e > 0 is arbitrary, we attain l im su p t^ V ^ t)  < —4.C1 r C\r

Similarly, we can obtain l im s u p ^ V ^ t )  < Therefore, T(t), T\{t), T2(t), V\(t) and V2(t) areC2»
ultimately bounded in C x R x R x C\ x C 2.

3.3 Equilibria and basic reproduction numbers

In system (3.2), without infection (T x, T2, V\, V2) = (0,0,0,0), uninfected target cells stabilizes 

at the equilibrium T = j .  The basic reproductive number R x for in-host models [17, 12, 16] 

measures the average number virus-producing target cells produced by an single subtype-1



Chapter 3. The DDE System 36

virus-producing target cell during its entire infectious period in an entirely uninfected target

cell population. As illustrated in Figure 3.2, the basic reproduction number Rx for strain-1 is 

given by

R _  P i m k\e S'T1 A 
' Pi cx d

(3.3)

Similarly, the basic reproduction number R2 for strain-2 which is the average number virus- 

producing target cells produced by an single subtype-2 virus producing target cell during its 

entire infectious period in an entirely uninfected target-cell population is obtained by

P2  he~S2T2 
P2 C2

A
d'

(3.4)

When no intracellular delay is considered, Ti = t 2 = 0, our Rx and R2 reduce to the 

respective basic reproduction number for our previous model (3.1) (i.e. (2.21)). If s > 0, Rx 

and R2 is the decreasing functions of the delay ri and r 2. It shows that the intracellular delays 

decrease R\ and R2 if cells die during the delay periods. Thus, ignoring the intracellular delay 

in a viral model will overestimate the basic reproduction number.

From our system (3.2) and our result (3.3) (3.4), we define the system basic reproduction 

number R0 -  max[Rx,R2}-

Model system (3.2) always has the infection-free equilibrium Eq = (4 ,0 ,0 ,0 ,0 ). There are 

two possible single-infection equilibria Ex = ( f ,T x ,  0, Vx, 0) and E2 = ( f ,  0, T2, 0, V2), where

T = f ,  = ^ - { R x  ~ 1), ^  = U R x  -  1). (3.5)d R  i k\p\ k\

and

T = 11T ' f 2 = P - (R2 -  D. ^2 = U r 2 -  1). (3.6)d R2 K2 P2  k2

It turns out that the values of R\ and R2 determine the existence of the single-infection equilib

ria: Ex exists if and only if /fj > 1 and E2 exists if and only if R2 > 1. Obviously, E\ and E2
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Burst size Basic reproduction number

P i £  A P i
Mi 1 d d Hi

Figure 3.2: An illustration of the basic reproduction number in model(3.2)

are biologically meaningful under the conditions.

It is also possible for our model (3.2) to obtain the double-infection equilibrium which 

means a equilibrium with all components being positive. Denote such a possible equilibrium 

by Et, = (T*, 7,*, Tj, Vp V^j, Then calculation shows that the components in E3 must satisfy

H\C\es'T' d p2 c2eS2T\ .  d
= — ,------- 0-e-TF“) = —,--------(Le-TE~ik\p\ /t/ii k2p2 AR2

ci vr '* _ 1 1
1 ~ ........*

d(Rx -  1) = k iV ;+ k 2v;,

d(R2 - 1) = kxv ;  + k2v*.

By the last two equation in (3.7), it is clear that E2 exists if and only if

R \= R 2 > \ .  (3.8)

If (3.8) holds, there are actually infinitely many co-existence equilibria.

Summarizing the above results, we have the following conclusion. When R0 < 1, E0 is the 

only equilibrium; when R\ > 1 ,R 2 < 1, there are E0 and E\\ when R2 > 1,/?! < 1, there are 

E0 and E2, when R] > 1 and R2 > 1, in addition to E0, E\ and E2, there are infinitely many
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co-exitence equilibria if R x -  R2 > 1. Considering the fact that there are ten model parameters 

in R\ and R2, the identity R\ = R2 is unlikely to hold in practice (or infeasible), and hence, £ 3 

will not be considered here in this thesis.

3.4 Global Stability of Equilibria

In this section we study the global stability of equilibria by using the Lyapunov functionals.

We apply Lyapunov functionals similar to those recently used by [11, 6, 20]. A useful 

function is used to construct our Lyapunov fuctionals:

g(.x) = x -  ln(x) -  1.

This function attains the global minimum at x = 1, g (l) = 0, and remains positive for all 

other postitive values of x. Our Lyapunov functionals take advantage of these properties of 

g(x). In the following theorems we show that the equilibria exhibit global stability under some 

threshold conditions.

Theorem 3.4.1 I f  Rq < 1, the infection free-equilibrium E0 is globally asymptotically stable.

Proof Let T0 = j  and consider the Lyapunov functional

V (T ,TX,T 2,V U VX) = T0g(T(t)/T0) + es'T'T x(t) + esm T2{t)

+— es'T'V x(t) + — eS2T2V2(t)
P\ Pi

T(t + e)Vl(t + d)d6 + k2 T{t + G)V2{t + Q)de.

Obviously, V (T ,T \,T 2, Vx, Vi) is non-negative in the positive cone C+ x R+ x R+ x C, x C\  

and attains zero at E0. We will show that the derivative of V along the trajectories of our model 

(3.2) is negatively defininte. Differentiation gives
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V = T(t) -  — T(t) + es'T'T\(t) + eS2T2T2(t) + — es'T' Vi(t) + ^ e S2T2V2{t)
T{t) p  i Pi

+k]T(t)V\(t) -  k\T(t -  T\)Vx{t -  r ,)  + k2T{t)V2(i) -  k2T(t -  r2)V2{t -  r 2)

= A -  dT(t) -  k\T{t)V\(t) -  k2T{t)V2{t) -  A -  dT -  * ,7 W i( 0  -  k2T(t)V2(t))

+es'T'(k]T(t -  r,)V,(/ -  r , )e~s,T> - p , Tx) + eS2T\ k 2T{t -  T2)V2(t -  r2)e~S2T2 - p 2T2)

+— eS]T'(P\T\(t) -  c, V,(0) + — e52T2(p2T2(t) -  c2V2{t))
P\ P2

+kiT(t)V\(t) -  kiT(t -  J\)V\(t -  Ti) + k2T(t)V2(t) -  k2T(t -  T2)V2(t -  t2)

After cancelling terms, using T0 = |  and rearranging terms, we get

V = A - d T ( t ) - j ^ A  + dT0

(kxT0 -  ^ V lTl)V,(0 + (k2T0 -  C- ^ e sm )V2(t)

= A(2 -

P1
m

p i

T{t)
+ £ ì Ì V m (^ ì£ ! Ìe*.T. _ !)Vl(r) + £ ^ ^ ^ £ 2 ^  *2r2 _ X)y2{t)

P1

= A( 2 -

'/iicid />2 PiCid
T(t)

m
+ ̂ l £ l ^ r , (/?] _  1)V](i) + W l eS2T2(R2 _ 1)V2(r)< 

P\ Pi

Since the arithmetic mean is greater than or equal to the geometric mean, if R0 = max {R\ , R2} 

1, each of the three terms on the right hand side is non-positive. Hence V(T, T \,T 2,V \,V \) <0, 

and V = 0 if and only if (T , T\, T2, V\, Vi) = ( j ,  0 ,0 ,0 ,0 ) = E0 Therefore, the globally asymp

totical stability of E0 follows from the Lyaunov-LaSalle invariance principle by [7],

When R0 > 1, then E0 becomes unstable and at least one of the E\ and E2 exists. We now 

investigate the global stability of these two possible single-strain equilibria.

Theorem 3.4.2 Assume that E\ exists (i.e. R\ > l ), ifR 2 < R\, then, E\ is globally asymptoti

cally stable.
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Proof Define a Lyapunov functional V : C x R x R x C i XC2 —> R by

V(T, TUT2,V U VX) = t g { + h e ^ 'g & P - )  + e™ T2(t) + t i y ^ g C ^ )  
T T, P  l Vi

+ ~ e S2T2V2(t) + kxf V x
P2 \J-T\£ ,T(t + 0)Vi(t + f f) ,Jn g(-------------— --------------)de

TV]

ryJ-T'y+k2 I T(t + 0)V2(t + 0)d0.
■T2

By the properties of g(x), the Lyapunov functional V(T, T \,T 2,V \,V \)  is non-negative in the 

positive cone C+ x R+ x R+ x  C | x C\ and attains zero at E \ . In order to show V is negatively 

definite, we differentiate V(T, T \,T 2,V \, V2) along the trajectories of (3.2) to get

V = 7X0 + 4 - f ( 0  + eS]TiT x(t) -  es'Tl - ^ - 7 \ ( 0  + eS2UT2(t)
m

+— es'T'V\(t) -  — es'Tl

T\ (0
Pi S i t i  t 7 / . \  Pi .Viri T 7 / . \  . P2 „Sï t 2

P i 

+k

Pi
1/ , fM t) + — e 1 V 2(t) V\(t) p2

> < £

,T(t + 0)vx(t + e)s jn  
g(-------------— --------------)  deTV,

+k2T(t)V2(t) -  k2T(t -  r2)V2{t -  t2). (3.9)

Note that
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:' " ' s £
J ( t  + e w d t  + e ) , jn

g(-----------------------)dd
TVi

kxTVx I -g(

r 1 * ' 1
d ,T(t + 6)Vx(t + 6)

)dd
T, ~ T V X

r°  d Ä
J_T1 dö5V r v i

, tt7 î ^ ( 0V ,(0 ,¿ i7^i (g(— — ) -  g(---------— ---------- ))
TVi TVx

, ^ , 7  J{t)V\{f) , T(t)Vx(t) T it  -  Tx)Vx(t -  Tx) , , T{ t-Tx )Vx{ t - T \ ) ) s= k \T V A — — ------- In— — ------------------ — -----------+ In------------— -----------)
V TV\ TVx TVx TV\

= kxT(t)V i(t)-kxTVxlnT(t)V i(t) + k x fV x ln fV x -k x T (t-T x )V x (t-T x )

+ k\fV \lnT{t -  Tx)V\(t -  Ti) -  k\T V \ln fV \

= kxT{t)Vx{t) -  k\T(t -  t \)Vx(t -  t \)

+k\TV\lnT{t -  Tx)Vx(t -  r ,)  -  kxfVxlnT(t)Vx(t) (3.10)

Plugging (3.10) and system of (3.2) into equation (3.9), we obtain

V = A - dT(t) -  k\ T(t)Vx (f) - k2T{t)V2{t) 

T A + d f  + kxfVxit) + k2f V 2(t)
T(t)

+kxT(t -  r\)Vx(t -  Tx) - iixes'TlTx(t)

- T S ™ - y - ^ + ^ W »1 nO
+ ¿ 2 ^  -  r 2)V2(i -  r 2) -  fi2esm T2(t)

+IUxes'T'Tx(t) - —  <?ilTlV,(0 
Pi

- P i ^ ' ^ i ^  + — eì,T'^ iVi(0 Pi
+H2esmT2{t) -  — eS2T2V2(t)

P i
+kxT(t)Vx(t)-kxT(t-Tx)Vx(t-rx)  

-kxfVxlnT(t)Vx(t) + kxTVxlnT{t -  r x)Vx(t -  r,) 

+k2T(t)V2(t) -  k2T(t -  T2)V2(t - t2)

(3.11)
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The components of E x are related by the equilibrium equation, i.e.,

À = d T  +  k xT V  1

k xf v x = ^ i f , e i|T1

P \ T X = c , V ,

k \ T  =
H \ f xe s'Tl

Vx
P x T xe S[T' c x

P \ T X

— W i g w

P\

Making use of these, we can rearrange and simplify the equation (3.11) as

Tt T  x kxT 2Vx
v =

+kxTV , + k2f V 2(t) -  k \T \—  ~ Tl)Vl(i ”  Tl)
7*1(0

kxf V x - T x(t)
+ k \T V \------=---MT7TT

Ti Vx{t)

+k\TV\ ~ — eS2T2V2(t) 
P2

-k\TV\lnT(t)V\(t) + kxfV\lnT(t -  T,)V,(i -  tj)
Tt T

dT{2 -  -=- -  —  )
T T(t)

, ,T\T{t ~ T\)V\{t - Tj) , f XT ( t - T X)VX(t~ TX)s
~klTVM— m m ) — )- ,n— W m — >

, •f’-ir / A T i ( t \  , v , r , ( o N-k\TV\(g{—------- ) -  In—------- )
T ,V ,(0  7 , ^ ( 0

- k xTVx{lnTW \{t) -  lnT(t -  r,)V ,(i -  r ,))

+(k2f  -  — eS2T2)V2(t) 
P2
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Therefore, by our assumptions, V < 0 with equality holding only at E\. From the Lyapunov- 

LaSalle inveriance principle [7], the equilibrium E\ is globally asymptotically stable. The 

proof is completed.

Parallel to Theorem 3.4.2, we have the following theorem for E2

Theorem 3.4.3 Assume that E2 exists (i.e. R2 > 1), ifR \ < R2, then E2 is globally asymptoti

cally stable.

Proof The proof of this theorem is symmetric to that of Theorem 3.4.2 by considering the 

following Lyapunov functional :V : C x R x R x Ci XC2 - > 1

We omit the details of the proof.

The results of Theorem 3.4.1 - 3.4.3 can also be visualized by Figure 2.1 in chapter 2, 

except that R\ and R2 are now defined by 3.3 and 3.4, instead of 2.4.
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3.5 Numerical Simulations

In this section, we present some numeric simulations for the DDE model (3.2) to confirm and 

illustrate the theoretic results obtained in Section 3.4, which is not significantly different from 

those for the ODE model (2.2), except that some plottings are in logarithmic function for better 

and clearer displays.

First, we chose the following values for the model parameters: A = 6, d = \,k \ = 2, p\ = 

1, ci = 3,pi = 10, s, = 2 ,r i = 0.1, k2 = 3,/?2 = 2 ,c2 = 2.5,p2 = 15, s2 = 1.5, r 2 = 0.15. This 

give the values two individual basic reproduction numbers R\ = 0.327 and R2 -  0.767. Three 

sets of initial values are used: (I) 7 (0) = 80, 7,(0) = 50, 72(0) = 40, V,(0) = 45, F2(0) = 35; 

(II) 7(0) = 60,7,(0) = 70 ,72(0) = 50,V,(0) = 30, V2(0) = 20; (III) 7(0) = 50,7,(0) = 

60 ,72(0) = 30, V,(0) = 20, V2(0) = 45. We used a base 10 logarithmic scale for target cells 

population. The corresponding solutions are presented in Figure 3.3.

Secondly, we chose the following values for the model parameters: A = 6 ,d  = l,k \ = 

5, pi = 6, c, = 4 ,p\ = 3, Si = 2 ,r , = 0.1, k2 = 1 ,p 2 = 4 ,c2 = 3,p 2 = 4,s 2 = 1.5, r 2 = 

0.15. This give the values two individual basic reproduction numbers /?, = 12.28 and R2 = 

1.597. Three sets of initial values are used: (I) 7(0) = 80,7,(0) = 50 ,72(0) = 40, V,(0) = 

45, V2(0) = 35; (II) 7(0) = 60, 7,(0) = 70 ,72(0) = 50, V,(0) = 30, V2(0) = 20; (III) 7(0) = 

50,7,(0) = 60 ,72(0) = 30, F,(0) = 20, V2(0) = 45. A base 10 logarithmic scale for target cells 

population, subtype-1 infected cells and subtype-1 virus cells was employed in our figures. 

The corresponding solutions are presented in Figure 3.4.

Thirdly, we chose the following values for the model parameters: A = 6, d = 1, it, = 4, p, = 

8,c, = 8,pi = 5,5, = 2 ,r , = 0.1, k2 = 3,p 2 = 10, c2 = 5,p 2 = 4, , s 2 = 1.5, r 2 = 0.15. This 

give the values two individual basic reproduction numbers i?, = 3.93 and R2 = 7.19. Three sets 

of initial values are used: (I) 7(0) = 80,7,(0) = 50, 72(0) = 40, V,(0) = 45, F2(0) = 35; (II) 

7(0) = 60,7,(0) = 70 ,72(0) = 50, V,(0) = 30, F2(0) = 20; (III) 7(0) = 50,7,(0) = 60,72(0) =
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30, Vi(0) = 20, V2(0) = 45. A base 10 logarithmic scale for target cells population, subtype- 

2 infected cells and subtype-2 virus cells was employed in our figures. The corresponding 

solutions are presented in Figure 3.5.

Figure 3.3: R\ < 1 and R2 < 1: viruses of both strains all die out
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time time
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Figure 3.4: R i > 1 and R2 < R\: subtype-1 wins the competition
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time
Subtype Virus-1 Cells

time

Figure 3.5: /?2 > 1 and R\ < R2: subtype-2 wins the competition
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Chapter 4

Conclusion and discussion

In this thesis, we have considered two mathematical models that describe the interaction of 

CD4+ cells and the HIV virus of two different strains. The first one is a system of ordi

nary differential equations (ODE) and which is a result of ignoring the intracellular delays. 

The second one incorporate two intracellular delays resulting in a system of delay differen

tial equations (DDE) which is essentially an infinitely dimensional system. We have veri

fied the well-posedness of the two models. By analyzing the models, we have shown that 

both models demonstrate global threshold dynamics in terms of the individual and overall ba

sic reproduction numbers. Indeed, we have identified the overall basic reproduction number 

R0 = m ax{R\,R2) where R\ and R2 are the respective basic reproduction numbers for strain-1 

and strain-2. We have shown for both models that when Ro < 1, then the infection free equilib

rium is globally asymptotically stable meaning that the the virus of both strains will eventually 

be cleared out; when R0 > 1 but R\ =£ R2, then all positive solutions approach the single in

fection equilibrium that corresponds to winning of the strain having the larger individual basic 

reproduction number. In other words, when R0 > 1 but R\ + R2, the competition exclusion 

principle generically holds, implying that the co-infection can generically not be established. 

Even the more generous model was studied in [5] for ODE, we have to point out that our 

results came from looser conditions. The critical case R\ = R2 > 1 is too senstive to the pa
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rameters because this identity invloves more than ten model paramters and thus, can seldom 

be satisfied in reality. If this does happen, numerical simulations show that every solution does 

converge to a co-infection equilibrium, but the convergence depends on the initial values.

Although both the ODE model and the DDE model demonstrate the same threshold dynam

ics, the results on the DDE model does reveal something important which can be explained by 

the formulas (3.3) and (3.4). These two formulas show that the individual basic reproduction 

numbers depend on the corresponding delays and hence the overall basic reproduction number 

depends on the two delays. Indeed they are decreasing in T\ and r 2. An implication is that if 

the intracellular delays are ignored, the basic reproduction numbers will be overcalculated.

We pointed out that although we have only considered two strains, by the nature of compe

tition, and by the mathematical theory on competitive systems, we believe that the results also 

hold for similar models with more than two strains, either with delay or without delay.

We remark that we do not consider the immune response in the models in this thesis. It 

is known that the immune reponse is an important factor HIV virus enters a host, and thus, 

should be incorporated into models for more precise predictions. For a single strain, there have 

been some models with immune responses, see, e.g., [9, 1, 2, 3, 4, 6, 7, 8]. It is very natural
i

and interesting to extend those models to ones with two or more strains. We feel such models 

will be much harder to analyze since even the single strain ones are already harder than those 

without immune reponses. Very complicated dynamics can be expected, as has been shown in 

the single strain model in [8].
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