DEVELOPMENT OF A LOW FIELD MRI-BASED APPROACH FOR OBSERVATION OF WATER PENETRATION INTO CLAY: PRELIMINARY RESULTS

By Shivam Gupta

INTRODUCTION

Magnetic resonance imaging (MRI) are considered one of the most efficient and non-invasive methods of observing water content in permeable substances.^{1,3} MRI can visualize and quantify the movement of water in real time.³ In this study, MRI was used to observe the water penetration through clay. Furthermore, MRI can acquire three-dimensional data due to its radio-frequency signals from any orientation.^{2,4} The contrast of the images produced by MRI is a display of the fluid concentration.⁴ As such, any change in the contrast intensity is interpreted as a regional change in the concentration of fluid.^{1,4} This report summarizes the preliminary results from a series of experiments performed with an MRI. The primary goal of the study is to provide a non-destructive method to quantify the permeation of clay using different amounts of water to determine if the low-field MRI approach can be viable option when evaluating the development of storage containers. This investigation is motivated with the intent to develop better and more environmentally friendly containers used to store radioactive waste.

BULK RELAXATION

Bulk Relaxation Measurements including the T₂*, T₂ and T₁ relaxation time constants for a different Water Content:

Water Content $< T_2 * > \pm SD ms$ $< T_1 > ms$ $< T_2 > \pm SD ms$ 3.6 ± 0.08 5.5 7.3 ± 1.4 baseline 4.1 ± 0.10 14.5 ± 2.4 +1ml5.5 4.7 ± 0.12 12.7 ± 2.5 +1ml5.5 5.1 ± 0.13 +1ml5.5 N/A 5.5 16.4 ± 0.4 5.4 ± 0.15 +1ml

Table 1. Relaxation Constants vs Volume of water

As the volume of water increases, the values of the relaxation time constants T_{2}^{*} and T_{2} increases whereas the value of T_{1} remains constant.

2D X-CENTRIC PULSE

2D of the Water Content Distribution Imaging with the X-Centric Pulse Sequence

Figure 5. Representative unweighted (TE=0ms) & weighted Images of the Water Content Distribution. The signal degradation of weighted Images reflects the short T₂* value role.

Figure 6. T₂*-map obtained using the xcentric pulse sequence at nine different echo-times. The map was generated from the images shown in Figure 5.

The map showing a non-uniform T₂* distribution reflecting a difference in the water content.

FUTURE WORK

Side View Top View

3D Imaging of the Water Content Distribution with the X-Centric Pulse Sequence

Figure 7. Representative 3D high-resolution image of the water content inside clay obtained at the time-zero. Images was squired with the 3D X-Centric pulse sequence. Image showing the water on top of the clay at the very beginning of the water penetration.

CONCLUSION

Using the low-field MRI we have successfully developed a two-dimensional imaging technique called xcentric for visualizing the water distribution along with T_2^* -mapping. We were also able to acquire threedimensional images of the water content using 3Dx-centric. Based on the successful imaging results, it is determined that the low-field MRI approach was indeed a successful non-invasive method to quantify the permeation of clay using different amounts of water.

REFERENCES

- 1. Brown, R. W., Haacke, E. M., Cheng, Y. N., Thompson, M. R., & Venkatesan, R. (2014). *Magnetic resonance imaging: Physical principles and sequence design*. John Wiley & Sons.
- Dvinskikh, S. V., & Furo, I. (2009). Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems. Industrial NMR Centre and Division of Physical Chemistry Department of Chemistry, Royal Institute of Technology.
- Kishi, T., Yokoyama, Y., Sakai, Y., & Institute of Industrial Science, The University of Tokyo. (2017, July 20). Non-destructive imaging of water permeation through cementitious materials using MRI. SCIRP Open Access. https://www.scirp.org/journal/paperinformation.aspx?paperid=78463
- Ouriadov, A. (2020). The Use of 1H MRI for the Static and Dynamic Visualization and Quantification of the Distribution of Water in Clay: Preliminary Results. University of Western Ontario/LHRI. https://file:///C:/Users/shiva/Desktop/AOuriadov_Initial_Clay_Report_May11_2020. pdf

APPENDIX

		Table 1. T_2 * Pa	irameters				
AppendixObs. Freq.	3.129924	pw	186u	Z 2	100	Zx	100
Acq. Points	256	rd	300u	Z 3	100	Zy	100
Point 1D	256	ad	50u	Z 4	120	-	
SW +/-	10000.0Hz	Acq. Time	12.8				
Filter	10000.0	Last Delay	200m	Gx	589		
Dwell Time	50u	f1 amp	100	Gy	203		
Acq. Time	12.8m	f1 attn	13	Gz	-150		
Last Delay	200m	C13_pw90	12u				
Obs. Freq.	3.129924	pw	186u	\mathbf{Z}_2	100	Zx	100
Acq. Points	256	rd	300u	Z 3	100	Zy	100
Point 1D	256	ad	50u	Z 4	120		
SW +/-	10000.0Hz	Acq. Time	12.8				
Filter	10000.0	Last Delay	200m	Gx	589		
Dwell Time	50u	f1 amp	100	Gy	203		
Acq. Time	12.8m	f1 attn	13	Gz	-150		
Last Delay	200m	C13_pw90	12u				

Table 2. T₁ Parameters

Obs. Freq.	3.129924	pw	186u	\mathbf{Z}_2	100	Zx	100
Acq. Points	64	tramp	500u	Z 3	100	Zy	100
Point 1D	64	rd	1m	\mathbb{Z}_4	120		
SW +/-	10000.0Hz	ad	1u				
Filter	10000.0	Acq. Time	3.2m	Gx	589		
Dwell Time	50u	Last Delay	5s	Gy	203		
Acq. Time	3.2m	F1 Ampl	100	Gz	-150		
Last Delay	58	F1 Attn	13				

Table 3. T₂ Parameters

Obs. Freq.	3.129924	pw	168u	\mathbf{Z}_2	100	Zx	100
Acq. Points	40	ad	50u	Z 3	100	Zy	100
Point 1D	1000	Tacq/2	1.31072m	Z 4	120		
SW +/-	10000.0Hz	pw2	350u				
Filter	10000.0	Acq. Time	2m	Gx	600		
Dwell Time	50u	Last Delay	1s	Gy	200		
Acq. Time	2m	f1 amp	100	Gz	-200		
Last Delay	1s	f1 attn	13				