
Searching for New Relations 
among the Eilenberg-Zilber maps

Owen Abma | USRI Summer 2021



Motivation

The primary goal of this research project was to write a computer 
program that would aid in the discovery of new mathematical relations 
among the Eilenberg-Zilber maps.



The Eilenberg-Zilber Maps

The Eilenberg-Zilber Maps 
relate the chain complex of the 
product of two simplicial sets 
with the the tensor product of 
the chain complexes.

The maps interact with one 
another as shown on this 
diagram, with some known 
relations below.

From Szczarba's twisting cochain and the Eilenberg-Zilber maps, by M. Franz



The Eilenberg-Zilber Maps
As more factors are added, these diagrams get more complex.

(this diagram 
doesn’t even 
include the swap 
maps 𝛵 and 𝜏 - 
the full sized 
diagram would 
have 6 of these 
quadrilateral 
structures)



The Program

The programming language being 
used for this project is Julia 1.6.1, a 
young yet powerful language that 
works very well in mathematical 
applications.

Julia has similar syntax to Python, 
which made it relatively easy to 
pick up and start using in a short 
amount of time.



The Program

The first version of the program was used to solve for new relations in two 
factors.

However, since solving for relations in two factors requires very little 
computation, it was unlikely that I would discover anything new.

The main point of this first version was to create a framework for how a larger 
program (for more than two factors) would work



The Program - Main Idea

The process of this program is as 
follows:

1. Generate all legal, nontrivial 
permutations of maps

2. Sort these permutations by domain, 
target, and dimension

3. For each category, put the resulting 
simplices into a matrix, and using 
basic linear algebra, solve for all 
linear dependencies



The Program - Step by Step

Step 1: Generate all legal, nontrivial permutations of maps

The “path” of a simplex (maps that have 
already been applied and their order) and 
the space it is in both affect which maps 
are allowed to be applied.



The Program - Step by Step

Step 1: Generate all legal, nontrivial permutations of maps

The program was written to avoid 
discovering 

a) Trivial relations (e.g. swapping twice 
is the identity) 

b) Illegal relations (e.g. AW cannot be 
applied twice in a row)

c) Known properties (e.g. applying H 
twice yields zero)



The Program - Step by Step

Step 2: Sort these permutations by domain, target, and dimension

By sorting these permutations of maps by:

a) Domain (initial space)
b) Target (final space)
c) Dimension (number of times H is 

applied)

The calculations in step 3 were much easier 
for Julia to handle.



The Program - Step by Step

Step 3: For each category, put the resulting simplices into a matrix, and using 

basic linear algebra, solve for all linear dependencies

This was initially performed with a linear 
algebra package that I had coded myself.

If the program found a linear dependency, it 
was able to return the relation that was 
implied by this dependency.



The Program - Moving Up

Though no new relations were discovered in 2 factors, the program worked as it was 
supposed to, so it was scaled up to do the same process with three factors.



The Program - Moving Up

Working in 3 factors is much more 
complex and took a significantly 
larger amount of work

As you can see, this process 
required many drafts until it was 
finally right.



Challenges

The largest challenges that came with 
this project were:

1. Avoiding trivial relations
2. Locating and fixing inefficient 

code
3. Lack of computing power



Challenges

Avoiding trivial relations

Due to the complex definition of the Eilenberg-Zilber maps, it 
was very difficult to completely avoid trivial consequences, and 
often required a lot of tweaking to fix.



Challenges

Locating and fixing inefficient code

Although I was able to quickly pick up Julia’s basic syntax, there 
were still many instances where I was writing inefficient code, 
resulting in a very slow program.

Over the course of the summer, I was able to improve greatly and 
quickly recognize any poor programming errors made.



Challenges

Lack of computing power

Unfortunately since I am using a laptop for this project, I am 
limited by the amount of power and memory it contains.

This became an issue towards the end of the summer, when the 
length of the permutations that I could generate developed a cap 
around 7.



Results

Over the course of the summer, I have discovered two new relations, shown below.

(H𝑌×𝑍,𝑋 ∘ 𝜏𝑋,𝑍 ∘ 𝜏𝑋,𝑌 ∘ H𝑋×𝑌,𝑍 ∘ H𝑋,𝑌×𝑍) + (H𝑌×𝑍,𝑋 ∘ H𝑌,𝑍×𝑋 ∘ 𝜏𝑋,𝑍 ∘ 𝜏𝑋,𝑌 ∘ H𝑋×𝑌,𝑍)
=

(H𝑌,𝑍×𝑋 ∘ 𝜏𝑋,𝑍 ∘ 𝜏𝑋,𝑌 ∘ 𝐻𝑋×𝑌,𝑍 ∘ H𝑋,𝑌×𝑍) + (H𝑌×𝑍,𝑋 ∘ H𝑌,𝑍×𝑋 ∘ 𝜏𝑋,𝑍 ∘ 𝜏𝑋,𝑌 ∘ H𝑋,𝑌×𝑍)

AW𝑌×𝑍,𝑋 ∘ 𝜏𝑋,𝑍 ∘ 𝜏𝑋,𝑌 ∘ H𝑋×𝑌,𝑍 ∘ H𝑋,𝑌×𝑍
=

(AW𝑌×𝑍,𝑋 ∘ 𝜏𝑋,𝑍 ∘ H𝑌×𝑋,𝑍 ∘ H𝑌,𝑋×𝑍 ∘ 𝜏𝑋,𝑌) + (AW𝑌×𝑍,𝑋 ∘ H𝑌,𝑍×𝑋 ∘ 𝜏𝑋,𝑍 ∘ 𝜏𝑋,𝑌 ∘ H𝑋,𝑌×𝑍)

From Szczarba's twisting cochain and the Eilenberg-Zilber maps, by M. Franz

As you can see, these are much more complex than some of the known relations.



Conclusion

This project was a fantastic opportunity for me to learn about programming and 

high-level mathematics and I am satisfied with my results, though I do believe that 

there are more relations that can be found with enough time and computing 

power.

Thank you for reading/listening!


