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At their most basic, graphs consist of a set of vertices and a set of edges. Graphs
can be directed (i.e. the edges point from one node to another), or undirected,
with no prescribed flow. This section concerns categorical aspects of graphs.
We introduce the category of directed graphs and then explore various subcat-
egories, considering graphswith different combinations of properties. Namely,
we discuss graphs which are directed, undirected, reflexive, simple, and com-
binations thereof.

1. The Category of Directed Graphs

Definition 1.1 (G). Define a category G to be the category

+ �
B

C

with two objects + and � and two non-identity morphisms.

Observe that a presheaf � on this category consists of two sets, whichwewill
call �+ and ��, together with two functions B�∗ , C�∗ : �� → �+ , noting that
contravariance necessitates reversing the arrows. This structure is precisely a
directed graph, where �+ is the set of vertices, �� the set of edges and B∗ and C∗
are the source and target functions, respectively. We may thus view a directed
graph as a presheaf � : Gop → Set, or equivalently an object in the presheaf
category SetGop.

Definition 1.2 (Category of Directed Graphs; DirGrph). Define the category of
directed graphs DirGrph to be the category SetGop. We have already established
objects in this category, but it remains to determine the morphisms. Evidently,
morphisms of graphs are natural transformations, since the graphs themselves
are functors. This means that a morphism 5 : �→ � of directed graphs

� = (�� , �+ , B�∗ , C�∗)

and
� = (�� , �+ , B�

∗ , C�
∗)

consists of functions 5+ : �+ → �+ and 5� : �� → �� such that

5+ ◦ B�∗ = B�
∗ ◦ 5�

and
5+ ◦ C�∗ = C� ∗ ◦ 5�

as illustrated by the commutative square below:
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�� ��

�+ �+

C�∗B�∗

5�

C�∗B�∗

5+

2. The Category of Simple Directed Graphs

Having developed the category of directed graphs, we now turn our atten-
tion to some of its subcategories, as well as some nice properties that these
subcategories have. We begin with the category of simple directed graphs.

Definition 2.1 (Simple Directed Graph). A simple directed graph is a directed
graph in which there is at most one edge between any pair of vertices.

Given some graph � ∈ DirGrph, there is an induced morphism

〈B�∗ , C�∗〉 : �� → �+ × �+

taking an edge 4 ∈ �� to the pair (B�∗(4), C�∗(4)). It is easy to see that� is simple
precisely when this map is a monomorphism, as each edge has a unique value
under 〈B�∗ , C�∗〉 in a simple directed graph.

As simple directed graphs form a subcategory ofDirGrph, there is an evident
inclusion functor * : SimpDirGrph ↩→ DirGrph. It is also possible to create a
simple directed graph from any directed graph by “collapsing” each edge to
one single edge. In fact, we claim that the functor realizing this process defines
a left adjoint to the inclusion functor.

Proposition 2.1. The inclusion functor * : SimpDirGrph ↩→ DirGrph admits a
left adjoint � : DirGrph → SimpDirGrph, and thus SimpDirGrph is a reflective
subcategory of DirGrph.

The proof relies on the following lemma.

Lemma 2.1.

(i) Given two graphs� and�with� simple, amap 5 : �→ � is completely
determined by 5+ : �+ → �+ .

(ii) A map ! : �+ → �+ is part of a graph map 5 = (!, !′) if and only if
for all E, E′ ∈ �+ , we have E ∼� E′ ⇒ !(E) ∼� !(E′). That is, adjacent
vertices are mapped to adjacent vertices.

Proof. The first part of the lemma is clear, as when a graph is simple one has
no choice of which edges to map to while respecting adjacency, since simple
graphs may have at most one edge between pairs of vertices.

Suppose now that ! : �+ → �+ is part of a graph map 5 = (!, !′), and
suppose that E ∼� E′ for vertices E, E′ ∈ �+ . Then there is an edge 4 ∈ �� such
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that B�∗(4) = E and C�
∗(4) = E′. Observe that by commutativity of ! and !′

with the source and target functions, we have that

B�
∗(!′(4)) = !(B�∗(4)) = !(E)

and
C�
∗(!′(4)) = !(C�∗(4)) = !(E′).

Thus there is an edge between !(E) and !(E′), so !(E) ∼� !(E′). Conversely,
suppose that for all E, E′ ∈ �+ we have E ∼� E′⇒ !(E) ∼� !(E′). Take an edge
4 ∈ �� and define E := B�

∗(4) and E′ := C�
∗(4). Thus E ∼� E′, so by assumption

we have !(E) ∼� !(E′). We then have an edge 4 ∈ �� between !(E) and !(E′)
with B� ∗(4) = !(E) and C�

∗(4) = !(E′). Now, define !′(4) = 4. To check the
required commutativity, observe that

B�
∗(!′(4)) = !(E) = !(B�∗(4))

as required, and a similar calculation is made to check commutativity with the
target. Thus 5 := (!, !′) forms a graph map. �

Proof of Proposition 2.1. We begin by defining the action of � on the vertex
and edge sets of graphs. For � ∈ DirGrph, define (��)+ = �+ , and define
(��)� = Im(〈B�∗ , C�∗〉). We claim that � is left adjoint to * ; that is, we have the
isomorphism

DirGrph(�,*�) � SimpDirGrph(��, �).
Consider some graph map 5 : � → *�. As *� = � by definition, we have
a map 5 : � → �. By the first part of Lemma 2.1, 5 is completely determined
by 5+ : �+ → �+ . Because (��)+ = �+ , we have 5+ : (��)+ → �+ . By
Lemma 2.3(ii), 5+ extends to a graph map if E ∼�� E′ ⇒ 5+ (E) ∼� 5+ (E′) for all
E, E′ ∈ ��. Since E ∼�� E′ if and only if E ∼� E′, the result follows by 5 being
a graph map. Thus we obtain a graph map 6 : �� → �, giving the desired
isomorphism. �

We have now established a reflective subcategory of DirGrph, but similar
adjunctions exist between subcategories with different graph properties. Next,
we turn our focus to reflexive directed graphs.

3. The Category of Reflexive Directed Graphs

We have not yet explored the case in which graphs have loops on each vertex. It
turns out that graphs with this property form another subcategory of DirGrph,
which also admits some nice properties that we investigate further in this
section. Graphs with loops on vertices are called reflexive graphs.

Definition 3.1 (Reflexive Directed Graph). A reflexive directed graph is a di-
rected graph in which each vertex has a distinguished loop on it. Equivalently,
for each vertex in the graph, there exists a distinguished edge from that vertex
to itself.
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We build the category of reflexive directed graphs as a presheaf category,
but with some additional structure.

Definition 3.2 (G+). Define a category G+ to be the category

+ �

B

C

A

with two objects and three non-identity morphisms subject to the condition
AB = id+ = AC.

In the same spirit as Definition 1.2, we define the category of reflexive di-
rected graphs, RelfDirGrph, to be the category SetG

op
+ . This category is quite

similar to the category of directed graphs, with the addedmorphism A witness-
ing the loops on each vertex.

Note that there is the evident inclusion functor 8 : G ↩→ G+ which induces
a functor 8∗ : SetG

op
+ → SetGop by precomposition:

Gop G
op
+ Set8op �

That is, 8∗� = � ◦ 8op. We claim that this functor has a right adjoint, which takes
a directed graph and freely adds loops to each vertex.

Proposition 3.1. The functor 8∗ : SetG
op
+ → SetGop has a right adjoint 8∗ :

SetGop → SetG
op
+ .

Proof. Define (8∗�)+ = �+ and (8∗�)� = �+ t �� for a graph � ∈ DirGrph. We
define the action of 8∗ on morphisms as follows. For the source map

B(8∗�)
∗ : �+ t �� → �+

define for all 4 ∈ �+ t ��

B(8∗�)
∗ =

{
B�
∗ if 4 ∈ ��

4 if 4 ∈ �+

and similarly for the target map. The map A(8∗�)∗ : �+ → �+ t �� is simply
defined by the coproduct inclusion. We wish to establish the isomorphism

ReflDirGrph(�, 8∗�) � DirGrph(8∗�, �).

Observe that amap 5 : �→ 8∗� of reflexive graphs consists of maps 5+ : �+ →
�+ and 5� : �+ → �+ t ��. Conversely, a map 6 : 8∗�→ � consists of maps

6+ : �+ → �+

and
6� : �� → �� .
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It is clear that the vertex maps are in one-to-one correspondence. Notice,
however, that the graph � lives in ReflDirGrph, so � is in fact a reflexive graph.
Thus amap 6� : �� → �� is precisely amap 5� : �� → �+t�� after forgetting
about the loops on each vertex. This gives the correspondence between edge
maps, completing the isomorphism. �

Wecontinue our study of reflexive directed graphs in the next section, where
we investigate simple reflexive directed graphs.

4. The Category of Simple Reflexive Directed Graphs

The final subcategory of DirGrph to investigate is the category of simple re-
flexive directed graphs, which we denote SimpReflDirGrph. First, observe that
SimpReflDirGrph ⊆ SimpDirGrph, and we have the same pre-composition func-
tor 8∗ : SimpReflDirGrph → SimpDirGrph as defined in Section 3. It is natural
to ask again what kinds of adjunctions this functor admits when we restrict
ourselves to simple graphs. If we wish to “reflexify” a graph while keeping
it simple, we ultimately have two choices. We may simply remove all vertices
which do not have loops, or we may add a loop wherever there was not one,
and preserve all other edges. It turns out that these two processes assemble
neatly into left and right adjoints to the functor 8∗. We first examine the right
adjoint, which removes those vertices which do not have loops.

Proposition 4.1. The functor 8∗ : SimpReflDirGrph → SimpDirGrph admits a
right adjoint 8∗ : SimpDirGrph→ SimpReflDirGrph.

Proof. Define (8∗�)+ = {E ∈ �+ | ��(E, E) ≠ ∅}. That is, we define (8∗�)+ to
be the set of vertices in �+ which have a loop. Now, define (8∗�)�(E, E′) =
��(E, E′) for all E, E′ ∈ �+ . The unit of the proposed adjunction is a natural
transformation � : idSimpReflDirGrph ⇒ 8∗8∗. Components are morphisms �� :
� → 8∗8∗�, and since 8∗� = �, components are morphisms �� : � → 8∗�. But,
since G is reflexive already, 8∗� = �, andwemay thus define �� = id�. Turning
to the counit & : 8∗8∗ ⇒ idSimpDirGrph, observe that components are morphisms
&� : 8∗(8∗�) → �, or equivalently morphisms &� : 8∗�→ �. Thus, we define &�
to be the embedding of 8∗� into �. It is straightforward to check that the unit
and counit satisfy the required triangle identities. �

This completes one half of the promise we made at the beginning of the
section. We now turn our focus to the left adjoint to 8∗, which adds loops rather
than removing vertices which do not have them.
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Proposition 4.2. The functor 8∗ : SimpReflDirGrph→ SimpDirGrph admits a left
adjoint 8! : SimpDirGrph→ SimpReflDirGrph.

Proof. We define (8!�)+ = �+ and

(8!�)�(E, E′) =
{
{∗} if E = E′ or ��(E, E′) ≠ ∅
∅ if ��(E, E′) = ∅ and E ≠ E′.

That is, we preserve existing edges and add loops where there were not loops
before. The unit of the intended adjunction is a natural transformation � :
idSimpDirGrph ⇒ 8∗8! with components �� : �→ 8∗8!�, but since 8∗(8!�) = 8!�, we
have components �� : � → 8!�. We define �� to be the embedding of � into
8!�. The counit is a natural transformation & : 8!8

∗ ⇒ idSimpReflDirGrph, and has
components which are morphisms &� : 8!8

∗(�) → �. Similarly, since 8∗� = �,
we have morphisms &� : 8!� → �. Since � was already a simple reflexive
graph, 8!� = �. Thus we may define &� : �→ � to be the identity on �. As in
Proposition 4.1, the triangle identities are easily checked. �

Having built our two adjunctions, we have completed our survey of directed
graphs. The last uncharted territory is an investigation of undirected graphs,
and how our constructions on directed graphs may translate to graphs without
direction. The final section will explore these constructions.

5. The Category of Undirected Graphs and Properties

The first question to ask is how to formalize the notion of an undirected graph
from a categorical standpoint. Consider the category

+ �
B

C

�

which is the same category we used to build DirGrph, but equipped with an in-
volution � : �→ � such that �B = C, �C = B and � ◦ � = id�. In this way, we can
view � as a “swapper”whichmakes direction ambiguous - applying � conflates
sources and targets, and witnesses our graph becoming “non-directional”. Un-
surpringly, the category of undirected graphs, Grph, is the presheaf category
on this category. Note that we can still use the source and target functions
as we did before. For example, the notion of being simple is the same: an
undirected graph � is simple when the map 〈B�∗ , C�∗〉 : �� → �+ × �+ is a
monomorphism. Observe that there is an inclusion of G into this category.
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Another question to ask is how to build reflexive undirected graphs. Con-
sider the category

+ �

B

C

A
�

subject to the requirements AB = id+ and AC = id+ . This is precisely the
category G+ equipped with the involution � making our graph undirected. As
expected, reflexive undirected graphs are presheaves on this category. It is
worth observing that this category is actually a full subcategory of Set: there
is a fully faithful functor ( sending + to the set {1}, � to the set {1, 2}, B to the
function 1 : {1} → {1, 2} which picks out 1, and sends C to a similar function
2 : {1} → {1, 2}. The morphism A is sent to the unique map {1, 2} → {1}, and
� is sent to the function on {1, 2}which swaps the argument. There is precisely
the same adjunction between SimpReflGrph and SimpGrph as therewas between
SimpReflDirGrph and SimpDirGrph, as is easily verified by using the same adjoint
functors we defined in Section 4.
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