
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-23-2021 1:00 PM 

A Sense of Proportion: How humans process relative magnitudes A Sense of Proportion: How humans process relative magnitudes 

in space and time in space and time 

Rebekka Lagace-Cusiac, The University of Western Ontario 

Supervisor: Ansari, Daniel, The University of Western Ontario 

Co-Supervisor: Grahn, Jessica, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Psychology 

© Rebekka Lagace-Cusiac 2021 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Cognition and Perception Commons, and the Cognitive Psychology Commons 

Recommended Citation Recommended Citation 
Lagace-Cusiac, Rebekka, "A Sense of Proportion: How humans process relative magnitudes in space and 
time" (2021). Electronic Thesis and Dissertation Repository. 8039. 
https://ir.lib.uwo.ca/etd/8039 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/407?utm_source=ir.lib.uwo.ca%2Fetd%2F8039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/408?utm_source=ir.lib.uwo.ca%2Fetd%2F8039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8039?utm_source=ir.lib.uwo.ca%2Fetd%2F8039&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

i 

 

Abstract 

Humans perceive ratios for different spatial magnitudes such as length, area, and 

numerosity, and temporal magnitudes such as duration. Previous studies have shown that 

spatial ratios may be processed by a common ratio processing system. The aim of the 

current study was to determine whether ratios across spatial and temporal domains may 

also be processed by a common system. Two hundred and seventy-five participants 

completed a series of spatial and temporal ratio estimation and magnitude discrimination 

tasks. Structural equation modeling (SEM) was used to analyze the relationship between 

ratio processing across domains when controlling for absolute magnitude processing 

ability. Results showed a significant relationship between spatial and temporal ratio 

processing. Absolute magnitude processing was also shown to explain a large part of the 

variance in both spatial and temporal ratio processing factors. These results have 

implications for theories of general magnitude processing for both absolute and relative 

magnitudes.  

Keywords 

Non-symbolic proportions, proportional reasoning, divided interval durations, number 

line estimation, ATOM, ratio processing system (RPS) 
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Summary for lay audience 

Imagine a basket containing two green apples and two red apples. Now imagine another 

basket containing five green apples and five red apples. Although the total number of 

apples was different between the two baskets, you probably noticed that the proportion of 

red and green apples was the same. In both baskets, half of the apples are green while the 

other half are red. This ability to perceive relationships between quantities is called ratio 

processing. Interestingly, ratio processing can be done for different types of magnitudes 

like number, length, area, and duration. The aim of the current study was to examine 

whether spatial and temporal ratios are processing by a general ratio processing 

mechanism.  Two types of tasks were used: ratio estimation tasks, which measured ratio 

processing abilities, and magnitude discrimination, which measured absolute magnitude 

processing abilities. In ratio estimation tasks, participants were presented a ratio and 

asked to represent that ratio on a line. In magnitude discrimination tasks, participants 

were presented two magnitudes (e.g., two lengths) and asked which of the two 

magnitudes was the largest. Both types of tasks were done with length, area, numerosity 

(i.e., number of dots) and duration. Using structural equation modeling, performance on 

spatial ratio estimation tasks were correlated with performance on temporal ratio 

estimation tasks while controlling for participant’s performance on the magnitude 

discrimination tasks.  Our results showed a significant relation between people’s 

performance on spatial and temporal ratio estimation tasks. This indicates that spatial and 

temporal ratios may be processed by a common ratio processing system (RPS; Lewis, 

Matthews, & Hubbard, 2015). Additionally, participants’ ability to discriminate absolute 

magnitudes explained a large part of their performance on ratio estimation tasks. This 

suggests that, even though participants’ performance on ratio estimation tasks can in part 

be explained by a shared ratio processing mechanism across domains related, another part 

is also largely explained by absolute magnitude mechanisms associated with either the 

spatial and/or temporal domain. 
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Chapter 1 

Introduction 

Relative magnitudes, otherwise known as ratios or proportions, are an integral part of our 

everyday lives. Although we mostly associate them with mathematics, proportions are 

necessary to process information in many other domains. For example, artists use 

proportions as guidelines to draw realistic faces (e.g., the bottom of the nose is halfway 

between the eyes and the chin). Another example is the progress bar we often see on our 

screens when watching a video or completing a survey: the progress bar tells us what 

proportion of the task is done and what proportion is left until completion. These 

examples describe relationships between lengths, which are proportions in space. 

However, unbeknown to many, we also use proportions in time. Music is an example of 

widespread use of temporal proportions. In Western music, rhythms are commonly 

composed of notes with proportional durations, which is why we can recognize tunes 

despite tempo changes. When a tune is slowed down, all durations are lengthened such 

that the relative, or proportional, relationships are maintained. Similar to artists who learn 

to draw realistic art using proportions, musicians decode symbolic notation of rhythms 

that indicate how long a note should be played in relation to others.  

How do we process proportional relationships for such a wide range of domains? 

Previous research indicates that proportions may be processed by a general ratio 

processing system (RPS; Lewis, Matthews, & Hubbard, 2015). However, this field of 

research has mostly focused on proportions that are symbolic (e.g., fractions) and 

visuospatial non-symbolic (e.g., ratios in length). Therefore, little is known about ratio 

processing mechanisms in other domains such as time. This leaves unanswered the 

question of whether proportions are processed by the same mechanism across magnitudes 

in space (e.g., numerosity, length, area) and time (e.g., duration)? 

The aim of the current research project is to investigate the relation between ratio 

processing in space and time, and to test whether proportions in these two different 
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domains are processed by a common underlying ratio processing mechanism. More 

specifically, we aim to examine whether ratio processing is a domain general (i.e., 

proportions are processed the same way across different types of magnitudes) or a 

domain specific mechanism (i.e., proportions are processed differently depending on 

magnitude type).  

Ratios in space 

The concept of magnitude is ubiquitous: we are constantly confronted with magnitude 

related decisions. Some of these decisions are based on absolute magnitude, such as the 

number of objects (e.g., 5 apples) or an amount of something (e.g., 2L of milk). Other 

decisions are based on more abstract concepts such as relative magnitude (i.e., the 

relationship between two absolute magnitudes). For example, we can easily tell from the 

battery icon on electronic devices how much charge is left on our device by comparing 

the length of the filled bar to the length of the full battery icon, regardless of the overall 

size of the icon. Relative magnitudes, hereinafter ratios, can take two forms: symbolic 

and non-symbolic. While symbolic ratios are mostly represented using numbers (e.g., 

fractions such as 3/6), non-symbolic ratios can be depicted by different types of 

magnitudes. A set of dots in which half of the dots are black and the other half are gray 

(e.g., ) is an example of a non-symbolic ratio. The ratio between the lengths of two 

lines is another example of a non-symbolic ratio. Although some researchers make the 

distinction between discrete magnitudes such as a number of objects (i.e., numerical 

magnitudes) and continuous magnitudes such as length or area (i.e., non-numerical 

magnitudes), both discrete and continuous magnitudes will be grouped under the label of 

spatial non-symbolic magnitudes in the context of the current study. 

The study of non-symbolic ratios is a recent subject of interest in the field of numerical 

cognition. While the field has a large emerging literature on how absolute magnitudes are 

processed in the brain, the question of how relative magnitudes are represented in the 

brain is fairly recent. The first studies on non-symbolic ratio processing (otherwise 

known as proportional reasoning) were aimed at understanding how humans perceive 
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graphical elements such as bar graphs (Spence, 1990; Spence & Krizel, 1995). More 

recent studies have focused on questions such as whether our ability to process ratios is 

innate, just as absolute magnitude processing is posited to be an innate and evolutionary 

ancient ability (Nieder, Freedman, & Miller, 2002; Tudusciuc & Nieder, 2007a; Vallentin 

& Nieder, 2010). Similar to absolute magnitude processing, results from both behavioral 

and neuroimaging studies on ratio processing in infants and animals provide preliminary 

evidence for an innate ratio processing system (Denison, Reed, & Xu, 2013; McCrink & 

Wynn, 2007; Vallentin & Nieder, 2008, 2010).  

For instance, Vallentin & Nieder (2008) showed that rhesus monkeys can discriminate 

non-symbolic proportions in a spatial proportion-discrimination task. In this task, 

monkeys were shown a pair of lines representing a specific ratio followed by a second 

pair of lines representing either the same or a different ratio. The task was to indicate 

whether the ratio of the second stimulus matched the ratio of the first stimulus. The 

monkeys performed well above chance and showed performance similar to human on all 

trained ratios as well as novel, untrained ratios, indicating that they had generalized the 

concept of proportionality (Vallentin & Nieder, 2008). In addition to this behavioral 

evidence, single-cell recordings suggested the presence of ratio selective neurons in the 

prefrontal cortex (PFC; Vallentin & Nieder, 2008). The authors later replicated these 

findings and found that similar ratio-tuned neurons were also present in the posterior 

parietal cortex, a brain region often associated with numerical processing (Vallentin & 

Nieder, 2010). Altogether, this indicates that ratio processing is an innate ability that 

humans share with other primates. However, these results are hard to generalize to other 

types of magnitude given that ratios were depicted using only line length. 

Other neuroimaging studies in humans support the findings previously described and 

extend this literature by investigating ratio processing in various other formats. Using an 

fMRI adaptation paradigm, Jacob & Nieder (2009b) found that humans encode relative 

magnitudes in the same areas known to encode absolute magnitudes (i.e., the intraparietal 

sulcus (IPS) and PFC). In this study, the same ratio with varying overall sizes was 

repeatedly presented to participants causing the signal in brain areas involved in ratio 
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processing to decrease (a phenomenon often referred to as neural adaptation). Then, after 

multiple presentations of the same ratio, a deviant ratio was presented causing the signal 

in these areas to recover (i.e., increase). Participants showed this adaptation response for 

non-symbolic ratios depicted using both length and numerosity (i.e., sets of dots and 

triangles). More importantly, the brain activity showed the same adaptation pattern in the 

same brain areas for both formats (length and numerosity; Jacob & Nieder, 2009b). 

Another study using the same fMRI adaptation paradigm with number and word fractions 

(e.g., 3/6 and “a half”) uncovered the same pattern of activity, even when the number and 

word fractions were mixed across trials (Jacob & Nieder, 2009a). These results converge 

with evidence from previous studies indicating that relative magnitudes are processed by 

a higher order mechanism that is invariant to format. In other words, once magnitudes are 

encoded, whether they are symbolic ratios (e.g., number and word fractions) or non-

symbolic ratios (e.g., numerosity or length), quantifying the relationship between 

magnitudes might be done by a single higher order mechanism. Given this convergent 

body of neuronal and behavioral evidence, Lewis et al., 2015 have proposed the existence 

of a ratio processing system (RPS) defined as “a set of neurocognitive architectures that 

support the representation and processing of non-symbolic ratios” (Lewis et al., 2015, 

p.144). However, this body of literature has mainly focused on ratio processing in the 

visuo-spatial domain using magnitudes such length and numerosity, and little is known 

about how ratios are processed in other domains such as time. 

Ratios in Time 

Many parallels can be drawn between the spatial magnitudes described above and the 

temporal magnitudes (i.e., durations) that will be described in the following section. 

Similar to the distinction between absolute and relative spatial magnitudes, the timing 

literature describes two distinct types of timing: absolute timing and relative timing 

(Teki, Grube, & Griffiths, 2012). Absolute timing refers to the perception or production 

of one or multiple intervals based on their absolute duration. This type of timing allows 

us to determine how much time has passed, whether it is a few seconds, minutes or hours. 
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Relative timing refers to the perception or production of intervals relative to another 

interval, most often the beat (i.e., a regular pulse underlying a rhythmic sequence). 

Relative timing plays an important role in the perception of rhythmic sequences. For one, 

it is what allows us to rescale rhythmic sequences. For example, whether one sings 

“Happy Birthday” rapidly or slowly, the listener will likely recognize the same rhythmic 

pattern, regardless of the rate at which the song is sung. From a standpoint of production, 

this is also what allows a musician to learn how to play a new piece of music slowly and 

then gradually increase the playing speed to the true tempo (i.e., the rate at which a 

musical piece is played). Furthermore, music notation heavily relies on the concept of 

proportion (e.g., an eighth note is generally half the duration of a quarter note). 

Given the strong relationship between relative timing and rhythm perception, the 

perception and production of time ratios (i.e., “the relative duration between two 

intervals”; Lutz, 2003) have mostly been studied in the context of multi-interval rhythmic 

sequences such as sequences of 5 to 6 intervals or short melodies (Lutz, 2003). One 

recurring finding is humans’ proclivity towards integer ratios in rhythmic sequences. For 

example, sequences composed of simple integer ratios (e.g., 1:2:1) are often better 

remembered than sequences composed of non-integer ratios (e.g., 1:2.3:1.4; Collier & 

Logan, 2000). In terms of rhythmic production, humans can easily reproduce sequences 

composed of integer ratios but struggle to accurately reproduce sequences composed of 

non-integer ratios (Collier & Wright, 1995). Furthermore, multiple studies have shown 

how production errors in sequences composed of non-integer ratios gravitate towards 

integer ratios (Jacoby & McDermott, 2017; Povel, 1981).  

However, the advantage for integer ratios does not entirely inform us on how both integer 

and, more interestingly, non-integer time ratios are perceived or mentally represented. 

Some researchers have suggested that the bias towards integer ratios is an indicator that 

time ratios are perceived categorically (Clark, 1987; Schluze, 1989). On the other hand, 

evidence for categorical perception of time ratios is inconsistent and maybe even 

accentuated by the experimental design (Schluze, 1989). Furthermore, the bias towards 

integer ratios could be related in part to the presence of context (e.g., multi-interval 
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rhythmic sequences or an underlying metronome). Few studies have investigated the 

perception of time ratios in isolation using what are called divided intervals (i.e., a pair of 

serial intervals delimited by three tones). In one study, Lutz (2003) tested how well 

musicians could discriminate rescaled divided intervals (i.e., divided intervals with the 

same ratio but different overall durations) without the presence of context. Participants 

were presented with a divided interval followed by another divided interval with a 

different overall duration. The task was to indicate whether the third tone of the second 

divided interval was early or late compared to the third tone of the first divided interval. 

Given that the two divided intervals had different overall durations, participants had to 

rely on the ratio of each divided interval to complete the task. Results showed that 

participants were poorer for simple integer ratios (i.e., 1:1, and less consistently 1:2 and 

2:1) than non-simple integer ratios (e.g., 5:12), suggesting that certain integer ratios like 

1:1 may serve as perceptual prototypes (Lutz, 2003). In contrast, another study by 

Nakajima (1987) examined how adults represent time ratios, this time using an estimation 

task. Participants were presented divided intervals and their task was to represent on a 

bounded line when the second tone occurred in relation to the first and third tones. 

Participants’ estimations were mostly linear, indicating that they were fairly accurate in 

representing these ratios and that time ratios are not solely perceived in a categorical way. 

Though the aim of the study was to examine how absolute duration is perceived in the 

context of divided intervals, this study gives important insight into how individuals 

perceive and represent time ratios without a rhythmic context. These results were later 

replicated in another study in which participants estimated the ratio presented in the 

divided interval using symbolic notation (e.g., 1:2; Nakajima, Nishimura, & Teranishi, 

1988).  

In summary, perception of ratios in time have been studied mostly in the context of 

rhythmic sequences and beat perception. These studies show that humans are sensitive to 

ratios in time, but they do not explain how humans perceive relationships between 

durations. Furthermore, although there is some support for categorical or prototypical 

perception of time ratios, this evidence is inconsistent and does not converge with 
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evidence showing that humans can estimate both integer and non-integer interval ratios 

accurately in an isolated context. Therefore, the question remains: what mechanism 

allows us to quantify relationships between durations and whether these mechanisms are 

shared with other domains? 

Magnitudes in space and time 

The literature reviewed thus far has focused on spatial ratios and timing ratios 

independently. Ratio processing in space, mostly studied in the field of numerical 

cognition, appears to be notation invariant and similar across non-symbolic and symbolic 

proportions (Jacob & Nieder, 2009a, 2009b). In the timing literature, humans have been 

shown to be sensitive to certain types of ratios, though specific literature on how 

temporal ratios are mentally represented is limited. The following section will review 

what is known about the relation between spatial and temporal magnitudes. 

The idea that all magnitudes, whether they are numerical, spatial or temporal, are 

processed by the same “generalized magnitude system” is not new. One of the most 

popularized general magnitude processing theories is the ATOM theory, which stipulates 

that there are common neural correlates for magnitude processing in the fronto-parietal 

network (Bueti & Walsh, 2009; Walsh, 2003). This idea stems from linguistic 

associations as well as numerous behavioral, neuroimaging and lesion studies on the 

relation between spatial and temporal magnitudes (Marcos & Genovesio, 2017). For 

example, similar language is often used to describe magnitudes in time (e.g., an event that 

took a long time) and in space (e.g., a long road; Bottini, Crepaldi, Casasanto, Crollen, & 

Collignon, 2015; Marcos & Genovesio, 2017). Behaviorally, many studies show 

interference effects between the spatial and temporal domain (Cai & Connell, 2016; 

Fabbri, Cancellieri, & Natale, 2012; Ishihara et al., 2008; Srinivasan & Carey, 2010). For 

example, a study by Srinivasan & Carey (2010) examined how the perception of length 

was affected when tones of varying durations were presented at the same time. Other 

studies have directly measured the association between perception of spatial and temporal 

magnitudes (Mendez, Prado, Mendoza, & Merchant, 2011). Lastly, evidence from 
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neuroimaging and lesion studies also suggests a possible relation between how 

magnitudes in space and time are processed in the brain (Marcos & Genovesio, 2017). 

For example, individuals with hemi-spatial neglect have been reported to also have 

timing deficits (Calabria et al., 2011).  

Though the relation between space and time has been studied in numerous ways, the 

theory of a generalized magnitude system is highly debated (Hamamouche & Cordes, 

2019). On a behavioral level, studies on interference between spatial and temporal 

magnitudes are often asymmetric and inconsistent (Cai & Connell, 2015; Casasanto & 

Boroditsky, 2008; Marcos & Genovesio, 2017). For example, some studies show a 

greater influence of duration on spatial judgements (Cai & Connell, 2015) while other 

studies show the opposite effect in which the spatial magnitude affects the duration 

judgements (Casasanto & Boroditsky, 2008). Other studies that have directly investigated 

the relationship between the perception of absolute temporal and spatial magnitudes show 

similar inconsistencies (Anobile et al., 2018). Mendez et al. (2011) examined this 

relationship by comparing performance on length and duration categorization tasks in 

humans and monkeys. If length and duration were indeed processed by a single 

mechanism, then human and monkey performance on the length categorization task 

would be expected to correlate with performance on the duration categorization task. 

However, results showed that length categorization was correlated to duration 

categorization only for specific lengths and durations (Mendez et al., 2011), a finding 

which does not provide strong support for a generalized magnitude system. Moreover, 

neurophysiological studies on the relation between magnitudes in space and time suggest 

that overlapping neural correlates may correspond to decision-making processes rather 

than actual magnitude encoding (Genovesio, Tsujimoto, & Wise, 2012; Marcos, 

Tsujimoto, & Genovesio, 2016). This suggests that neuronal populations encoding 

duration and length are independent, but the neuronal populations related to decision 

making (e.g., choosing which of two stimuli is larger) are the same in both the length and 

duration categorization tasks, making decision making a domain general process. Finally, 

recent timing neural networks studies (Bi & Zhou, 2020; Merchant & Pérez, 2020) show 
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the role of non-timing, domain general components such as decision making in duration 

discrimination and categorization tasks. 

Though the literature on the relation between time and space has mostly focused on 

absolute magnitudes, the findings described above leave open the question of how 

relative magnitudes are processed for different domains? As stated earlier, neuroimaging 

and single cell studies on ratio processing indicate that spatial ratios are likely processed 

in the fronto-parietal network. While some of those processes may be specific to 

processing of spatial magnitudes, ratio processing may also be a higher order process 

which occurs independently of absolute magnitude encoding. In other words, whether 

different types of magnitudes, such as length and duration, are encoded independently or 

by the same neural correlates, ratio processing could be responsible for approximately 

quantifying the relationship between magnitudes of any type. This would make ratio 

processing a domain general ability, much like decision making.  

Current study 

Most research on magnitude processing across domains has been conducted on absolute 

magnitudes and little is known regarding how relative magnitudes (i.e., ratios) are 

processed across domains. The aim of the current study was to bridge this gap in the 

literature by investigating the relation between spatial and temporal ratio processing. 

More specifically, is ratio processing a domain-specific (i.e., processed separately for 

each type of magnitude) or domain-general mechanism (i.e., processed by a unique 

mechanism independent of magnitude type)? 

To examine this question, we compared individuals’ performance on a battery of ratio 

estimation and magnitude discrimination tasks both in the visuospatial domain and 

temporal domain. Twelve tasks were used: three spatial ratio estimation tasks (e.g., 

estimating the ratio between two lengths), three temporal ratio estimation task (e.g., 

estimating the ratio between two durations), three spatial magnitude discrimination tasks 

(e.g., discriminating the longest of two lines) and three temporal magnitude 
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discrimination tasks (e.g., discriminating the longest of two durations). If spatial and 

temporal ratios are processed by the same underlying mechanism, then individuals’ 

temporal and spatial ratio estimation ability should be related even after controlling for 

absolute magnitude perception (i.e., how accurately individuals perceive absolute 

magnitude, such as length and duration). In other words, an individual who is more 

accurate at estimating spatial ratios, such as the relative length between two lines, would 

also be more accurate at estimating temporal ratios, such as the relative duration between 

two intervals, when controlling for their ability to perceive and process absolute 

magnitudes. We chose to control for absolute magnitude processing to eliminate the 

possibility that the relationship between ratio processing in space and time is explained 

by the precision with which people perceive absolute spatial and temporal magnitudes. 

To test this hypothesis, we used structural equation modeling (SEM), a useful 

multivariate technique which allows for the estimation of relationships between multiple 

latent factors. In contrast to other statistical approaches which assume error-free 

measures, SEM allows the researcher to separate the variance explain by a latent variable 

or common factor (e.g., spatial ratio processing) from error. This subsequently allows us 

to analyze of relationships between error-free variables (e.g., the relationship between 

spatial and temporal ratio processing). Analysis of SEM models yields two types of 

information: model fit (i.e., how well does the model fit the data) and parameter estimates 

(i.e., the magnitude of the relationships between variables). Although model fits were 

examined in order to evaluate the measurement model for each proposed model, the 

hypothesis was confirmed based on the magnitude of the parameter estimates.  

Four models were tested: a single factor model, a two-factor model, a four-factor model 

and a bifactor model. Since all tasks involve making judgements about quantity, the first 

model (i.e., single factor model) tested whether performance on all ratio and absolute 

magnitude tasks can be explained by a general magnitude processing factor (Figure1a). 

The residuals of analogous estimation and discrimination tasks were freely estimated to 

account for common variance due to similar methods (i.e., common shapes and types of 

auditory intervals). In other words, there may be common variance between some tasks 
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simply because the same type of stimulus is being used. For example, the residuals of the 

line length ratio estimation task may be correlated with the residuals of the line length 

magnitude discrimination task because the same shape was used. This single-factor 

model was not expected to fit the data well but was used to evaluate fit improvement of 

subsequent models.  

 

 

Figure 1a. 1-factor CFA model. The model assumes that performance on all tasks can be explain a single 

general factor (unidirectional arrows pointing from the latent factor to the observed variables). Curved 

double headed arrows represent residual correlations between analogous ratio estimation and magnitude 

discrimination tasks. 

The second model tested whether performance on the tasks could be explained by two 

factors: a general ratio processing factor and an absolute magnitude processing factor 

(Figure 1b). This model was included in our analyses to test the possibility that both ratio 

processing and absolute magnitude processing are single, separable constructs. This 

directly tested the theory of a generalized magnitude system (e.g., ATOM; Walsh, 2001) 

and a generalized ratio processing system (e.g., RPS; Lewis, Matthews, & Hubbard, 

2015). As in the previous model, residual correlations were included between analogous 

ratio estimation and magnitude discrimination tasks. This model is expected to improve 

fit significantly compared to the previous single factor model. However, it is not expected 

to fit the data well and should show poor convergent validity for both factors. This is 
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because previous literature has shown that although space and time have some common 

neural correlates, there are also many other distinct brain areas involved in processing 

temporal and spatial stimuli.  

 

 

Figure 1b. Two-factor CFA model. The model assumes that performance on all tasks can be explain by a 

general ratio processing latent factor and a general magnitude processing latent factor. The double headed 

arrow between ratio and magnitude processing factors represents the correlation between those two latent 

factors. Curved double headed arrows represent residual correlations between analogous ratio estimation 

and magnitude discrimination tasks. 

The third model was tested using a two-step procedure. The first step consisted of testing 

the measurement model by estimating a four-factor model using confirmatory factor 

analysis (CFA) with spatial ratio processing, temporal ratio processing, spatial magnitude 

processing and temporal magnitude processing as latent factors. This step allowed us to 

verify that the observed variables could be explained by a four-factor structure (i.e., 

formed appropriate grouping for each latent factor).  The second step tested the structure 

model of the previous CFA model (i.e., the relationships between the latent factors), and 

evaluated the strength of the relationship between spatial and temporal ratio processing 

when controlling for spatial and temporal magnitude processing (Figure 1c). In this 

model, the single headed arrows between spatial absolute magnitude processing and 

spatial ratio processing control for absolute magnitude processing abilities. The same 

rationale is used for the relationship between temporal magnitude and ratio processing. 
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Single headed arrows were chosen since we assume that absolute (first order) magnitudes 

are processed before ratios (second order) magnitudes. In addition to controlling for 

within domain absolute magnitude processing, we also added paths controlling for 

between domain absolute magnitude processing (dotted lines). Given that the literature is 

divided on the nature of the relationship between how different types of magnitudes are 

processed (generalized vs specific processes), we decided to include this path as it might 

control for additional absolute magnitude processing ability and general cognitive ability. 

Since we expect the coefficients for the dotted paths to be near zero, we estimated and 

compared two models, one with the dotted paths and one without the dotted paths, and 

retained the model with the best fit. Finally, a second-order factor (i.e., general ratio 

processing) was specified to provide an account for why spatial and temporal ratio 

processing may covary. If ratio processing is a domain general mechanism, a large 

coefficient is expected between the general ratio processing factor and the two domain-

specific ratio processing factors (spatial and temporal ratio processing).  

 

Figure 1c. Four-factor higher order SEM. The model assumes that performance on all tasks can be explain 

by four latent factors: spatial ratio processing, temporal ratio processing, spatial magnitude processing, 

temporal magnitude processing. Single headed arrows between magnitude and ratio processing factors 
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control for variance explained by absolute magnitude perception ability. Curved double headed arrows 

represent residual correlations between analogous ratio estimation and magnitude discrimination tasks. 

Finally, the fourth model tested whether the data could be described using a bifactor 

model. There are a few notable differences between the hierarchical and bifactor model. 

However, the main difference is in what each model specification implies theoretically. 

In the hierarchical model, the general ratio processing factor is what ‘explains’ the 

common variance between the spatial and temporal ratio processing factors. In contrast, 

the bifactor model estimates the variance in the ratio tasks that is due to a general factor 

(i.e., general ratio processing) separate from the variance that is due to specific factors 

(i.e., ratio processing specific to spatial or temporal magnitudes). In the other words, 

general and specific ratio processing factors are orthogonal in the bifactor model. The 

benefit of this model over the hierarchical model previously described is that it will 

provide us with a more nuanced view of how spatial and temporal ratio processing might 

be related. One could think of three possible outcomes. The first is that most of the 

common variance between spatial and temporal ratio processing tasks is explained by the 

general ratio processing factor, the second is that most of the common variance is 

explained by specific ratio processing factors, and the third is that the variance is 

explained by both general and specific ratio processing factors. In summary, the bifactor 

model allows us to quantify the variance explained by both a general ratio processing 

variable and two domain specific ratio processing variables (i.e., spatial and temporal 

ratio processing) when controlling for domain specific magnitude processing (Figure 1d). 

If ratio processing is a domain general mechanism, large factor loadings are expected 

between the domain general ratio processing factor and the different ratio estimation 

tasks, and small factor loadings are expected between the specific factors and the 

different ratio estimation tasks. 

Similar to the hierarchical model, the bifactor model was tested in two steps. The first 

step consisted of fitting and evaluating the measurement model. In the second step, paths 

controlling for absolute magnitude processing were added to the specific ratio processing 

factors as well as for the general ratio processing factor. Although the paths between the 



15 

 

 

 

general ratio processing factor and specific magnitude processing factor were not present 

in the hierarchical model (magnitude processing was indirectly controlled through the 

spatial and temporal ratio processing factor), they are necessary in this bifactor model 

since the general and specific ratio processing factors are orthogonal.  

 

Figure 1d. Bifactor model. The model assumes that performance on ratio estimation tasks can be explain by 

three orthogonal factors: two specific factors (spatial and temporal ratio processing) and a general ratio 

processing factor. The model also assumes that performance on magnitude discriminations task can be 

explained by two latent factors: spatial magnitude processing and temporal magnitude processing. Single 

headed arrows between magnitude and ratio processing factors control for variance explained by absolute 

magnitude perception ability. Residual correlations between analogous ratio estimation and magnitude 

discrimination tasks were also included in the model, though they are not depicted in this figure to avoid 

cluttering.  
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Chapter 2 

Materials and Methods 

Participants 

Three hundred twenty-seven participants were recruited from the online survey panel 

Prolific. Thirty-nine participants withdrew before the start of the study due to technical 

difficulties and 13 participants withdrew part-way through the study either due to 

technical difficulties or by choice. The final sample consisted of 275 participants (27.68 ± 

8.33 years old; 106 females, 166 males, 3 non-binary; 15.1 ± 3.5 years of education). 

Participants were residents from the United Kingdom (35.7%), Portugal (32.5%), United 

States (14.8%), Spain (5.8%), South Africa (4.0%) as well as Ireland, Belgium, Canada, 

France, Germany, and Sweden (7.2%). To be eligible, participants had to be minimum 18 

years old and self-reported normal hearing and normal or corrected to normal vision. 

Participants also required access to a laptop or desktop computer with a keyboard and 

sound. Sampling on Prolific was also restricted to adults who were fluent in English to 

limit cases in which the participants did not understand the instructions well enough to 

execute the tasks. Sampling was also restricted to adults between the ages of 18 and 50 to 

limit the potential developmental confounds associated to an older population. Data was 

collected from April 24th to May 13th, 2021. Participants were paid £7.50 for their 

participation. The study was approved by the Nonmedical REB at the University of 

Western Ontario. 

Study Design and Materials 

Participants completed six ratio estimation tasks and six magnitude discrimination tasks. 

Tasks were grouped by task type (e.g., they completed all ratio estimations tasks and then 

all magnitude discrimination tasks), and the task type order was counterbalanced across 

participants. Participants were permitted to take a 5-minute break between the two 

sections. The order of tasks within each task type (e.g., line length ratio estimation) was 
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randomized for each participant. The study design is depicted in Figure 2. Once 

participants had completed all 12 tasks, they completed a short demographics 

questionnaire. The entire study took approximately one hour to complete. The study was 

programmed using the free software PsychoPy (version 2020.2.10) and hosted on the 

platform Pavlovia. The auditory stimuli for the various auditory tasks were generated 

using MATLAB (version 2019a).  

 

Figure 2. Task counterbalance and randomization 

Ratio estimation tasks 

The ratio estimation task was a variation on the number line task commonly used in 

research on numerical cognition (Siegler & Opfer, 2003). There were three visuospatial, 

hereinafter spatial, ratio estimation tasks (i.e., ratio estimation between pairs of dot 

arrays, line lengths and circle areas) and three temporal ratio estimation tasks (i.e., ratio 

estimation of auditory and visual durations with ‘empty’ time intervals, and auditory 

duration with ‘filled’ intervals). Thus, all spatial ratio estimation tasks were visual tasks, 

and two temporal ratio estimation tasks were auditory and one was visual. 

Spatial ratio estimation tasks. For the spatial ratio estimation tasks, participants were 

presented with a pair of stimuli: one of the stimuli represented the part, while the other 

represented the whole (Figure 3). The participants’ task was to represent the part:whole 

ratio on a bounded line (adapted from Meert, Grégoire, Seron, & Noël (2012) & 
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Möhring, Newcombe, Levine, & Frick (2016)). For example, if the stimulus 

corresponding to the part was half the size of the stimulus corresponding to the whole, 

then the participant would respond by marking the middle of the line. At each end of the 

line was a figure showing either a ratio of 0:1 on the left and 1:1 on the right. In each 

trial, the visual stimuli were presented for 1500 ms. Participants were instructed to try to 

use the entire response line. In each trial, participants could click anywhere on the line 

and subsequently adjust their estimation if needed. Participants then pressed on the space 

bar to continue to the next trial.  

 

Figure 3. a) Spatial ratio estimation trial and b) stimuli for the dot array, line length and circle area tasks 

respectively. Note: The stimuli and response screens were presented sequentially (3a), and not shown in the 

same frame as depicted in figure (3b). 

Temporal ratio estimation tasks. For the temporal ratio estimation tasks, participants 

were presented a divided interval. These divided intervals were denoted either by three 

empty or filled tones, or three brief flashes (Figure 4). The task was to represent the ratio 

of the divided interval using the same bounded line as previously described (adapted 

from Nakajima, 1987). Participants were instructed to estimate the occurrence of the 

second tone/flash in relation to the first and third tone. For example, if the second 

tone/flash was presented halfway between the first and third tone/flash, then the 
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participant would respond by marking the middle of the line. Again, participants were 

instructed to try and use the entire response line.  

 

 

Figure 4. Temporal ratio estimation trials for a) empty visual intervals, b) empty auditory intervals and c) 

filled auditory intervals. Examples are for a ratio of 0.5 and a total duration of 960 ms. A blank screen 

lasting 750 ms immediately preceded and followed the first and last flash/tone respectively (not depicted in 

figure). 

Ratio estimation stimuli. Each “whole” stimulus in the part-whole pair had three total 

magnitude sizes. Table 1 lists the three magnitude sizes used for each type stimulus. The 

three sizes were randomized throughout the task. Each “part” in the part-whole pair was 
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created from 11 possible ratios (1/12 to 11/12). This resulted in a total of 33 trials (3 total 

magnitudes x 11 ratios) per task. All spatial stimuli were adapted from Matthews, Lewis, 

& Hubbard (2015), Park & Matthews (n.d.) & Park, Viegut, & Matthews (2021). 

Dimensions for the various spatial stimuli can be found in Table 1. The center of the left 

line was aligned with the center of the right line ± 15 pixels on every trial. For temporal 

stimuli, durations were measured from the onset of one flash or tone to the onset of the 

subsequent flash or tone (inter-onset interval). For visual stimuli, flash duration was 2 

frames with a refresh rate of 60 Hz (~32 ms). For auditory stimuli, the tone duration for 

empty intervals was matched to the flash duration (~32 ms). For filled tones, the duration 

of each tone was equal to the length of the specified duration followed by a silence of 32 

ms (to demarcate the onset of the next tone). Thus, inter-onset intervals were matched 

across stimuli. Tones of 500 Hz were used in both the empty and filled tasks and had 10 

ms linear onset/offset ramps.  

Magnitude discrimination tasks 

To account for absolute magnitude processing ability for both spatial and temporal 

magnitudes, participants completed six magnitude discrimination tasks, each created to 

be analogous to the six ratio estimation tasks. For all tasks, participants were presented 

two stimuli and indicated which of the two was the largest/longest. They were instructed 

to press the ‘f’ key if the first/stimulus on the left was larger/longer, or the ‘j’ key if the 

second/stimulus on the right was larger/longer. They were also instructed to respond as 

quickly as possible. 

Spatial magnitude discrimination task. In spatial discrimination tasks, participants 

were presented a pair of visual stimuli and asked to indicate which of the two was the 

largest (i.e., circle area), longest (i.e., line length) or had the greatest quantity (i.e., 

number of dots). For example, in the line length discrimination task, two lines were 

presented, and the participant indicated which of the two lines was the longest (Figure 5). 

The pair of stimuli were presented simultaneously for 1000 ms. Participants’ response 

immediately triggered the start of the next trial. 
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Figure 5. a) Magnitude discrimination trial and b) stimuli for the dot array, line length and circle area tasks. 

Temporal magnitude discrimination task. In a temporal discrimination task, two 

intervals were presented, and participants indicated which of the two intervals lasted the 

longest (Figure 6). The interval pair were presented serially, separated by an interval of 

approximately 2400 ± 150 ms (700 ±150 ms blank screen + 1000 ms message + 700 ms 

blank screen). Participants’ responses immediately triggered the start of the next trial.  
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Figure 6. Temporal ratio estimation trials for a) empty visual, b) empty auditory and c) filled auditory 

intervals. Examples are for a deviant ratio of 1.25 and a total duration of 960 ms. A blank screen lasting 

750 ms immediately preceded and followed the first and last interval respectively (not depicted in figure). 

Discrimination task stimuli. Stimuli for the discrimination task were created using eight 

standard magnitudes and five deviant (comparison) ratios for each standard. For example, 

in the discrimination task with empty time intervals, participants were presented a 

standard and a comparison interval (i.e., the product of the standard and deviant ratio). 

For instance, given a standard of 1 second and the five ratio bins 1:1.20, 1:1.25, 1:1.30, 

1:1.40 and 1:1.60, participants were presented the standard-comparison duration pairs 1 s 

and 1.20 s intervals, 1 s and 1.25 s intervals, etc. Deviant ratios were determined based on 

previous piloting. We chose deviant ratios on which participants were above chance on 

average without producing ceiling effects. Deviant ratios varied across tasks (e.g., they 

were different for the line length and the circle area discrimination tasks) but remained 

constant across participants. Standards and comparison magnitudes spanned the range of 
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the magnitudes presented in the ratio estimation tasks. The range of standards for each 

task is listed in Table 1. 

As a result, each task was composed of 40 trials (5 deviant ratios x 8 standards). The side 

on which the correct response was presented (or order in the case of temporal stimuli) 

was controlled so that an equal number of larger/longer trials were presented on both 

sides (or in both orders in the case of temporal tasks). The side/order of presentation of 

the stimulus pairs was also counterbalanced across participants. 

Lastly, stimuli for the discrimination tasks were modeled after the stimuli used in the 

ratio tasks, except for a few notable differences. Similar to the ratio estimation, the center 

of the left line was aligned with the center of the right line ±10 pixels on every trial. 

Contrary to the ratio task, dots and circles were presented side by side similarly to the 

line discrimination task. The enter of the circle on the left was aligned with position of 

the circle on the right ± 30 pixels on every trial. 

Table 1. Task parameters for ratio estimation and magnitude discrimination tasks. 

Ratio 

estimation 

tasks 

Tasks (6) Ratios (11) Total magnitudes (3) 

6 tasks x  

11 ratios x 

3 total 

magnitudes 

= 198 trials 

Dot number 

11 ratios (1/12, 

2/12, 3/12, etc.) 

75, 100, 125 dots 

Line length 75, 100, 125 px 

Circle area 50, 75, 100 px (radius) 

Empty 

auditory 

intervals 480, 960, 1440 ms 

Filled auditory 

intervals  

Empty visual 

intervals  
960, 1200, 1440 ms 

Magnitude 

discrim-

ination 

tasks 

Tasks (6) Deviant ratios (5) Standards (8) 

6 tasks x 

5 ratio bins 

x 

8 total 

magnitudes 

= 240 trials 

Dot number 1.09(12:11), 

1.10(11:10), 

1.12(9:8), 

1.14(8:7), 

1.25(5:4) 

Range: 48 – 133 dots 

Line length 1.01, 1.02, 1.03, 

1.06, 1.12 

Range: 75 – 125 px 

Circle area 1.02, 1.04, 1.06, 

1.08, 1.18 

Range: 50 – 100 px 

(radius) 
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Empty 

auditory 

intervals  

1.20, 1.25, 1.3 1.4, 

1.6 

Range: 200 – 900ms 

Filled auditory 

intervals  

1.20 1.25,1.3, 1.4, 

1.6 

Empty visual 

intervals  

1.20, 1.25, 1.3, 

1.4, 1.6 

Range: 400 – 900ms 

Practice trials 

Participants completed 3 practice trials for each ratio estimation task. In these practice 

trials, participants were shown a stimulus pair and asked to estimate the ratio for that pair 

using the response line. After they responded, a green line appeared on the response line 

indicating the correct answer. The same three ratios were given for every practice trial set 

(i.e., 0.25, 0.5, 0.75). Practice trials were done on the same total magnitude across 

participants. 

Participants also completed 3 practice trials at the beginning of each magnitude 

discrimination task. In these practice trials, participants were shown a pair of stimuli (i.e., 

the standard and a comparison) and indicated which was the largest/longest. After they 

responded, feedback was given indicating correctness (i.e., “Correct” or “Incorrect”). 

Attention checks 

Given that the study was conducted online, each task included one attention trial to verify 

that participants were not simply clicking through, instead of paying attention to the task. 

For all attention trials, participants saw a screen after the stimulus presentation displaying 

“Attention check!” which lasted 1 second. For ratio estimation tasks, participants were 

then instructed to either place their cursor to the extreme left or right of the response line. 

The attention trial stimulus ratio for ratio tasks was always 0.5 so that the attention check 

response would not be confounded by actual estimations. The side of the correct response 

(i.e., left or right) was decided randomly for each trial. 
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For all magnitude discrimination task attention checks, participants were instructed to 

press either the ‘f’ or ‘j’ key, regardless of the stimulus presented for that trial. The 

attention trial stimulus for the magnitude discrimination tasks were drawn from the 

easiest ratio bin, for which the difference between the stimulus pair was the largest and 

easiest to identify. The specific key participants were instructed to respond (i.e., ‘f’ or ‘j’) 

corresponded to the incorrect answer for the stimulus pair presented. 

Demographics 

Once participants completed all ratio estimation and discrimination tasks, they completed 

a demographics questionnaire. Information such as gender, age, years of education, 

hearing and music experience (e.g., years of formal music training and years of music 

practice) were collected. Participants were also asked whether they understood how to 

perform the tasks, how difficult they perceived the tasks to be using a 3-point Likert scale 

(easy, neutral, or difficult) and whether they experienced any technical difficulties with 

either the auditory or visual stimuli during the experiment. This information was 

collected to support decisions regarding data exclusion during data preprocessing.  

A priori power analyses 

Using Mplus, simulations were conducted for all four proposed models. However, sample 

size was decided based on the results of the power analysis for the third model (Figure 

1c). Results from the simulations showed that a sample size of 275 was appropriate to 

detect a medium effect size for the relationship between spatial and temporal ratio 

processing with a power of .8 at the standard .05 alpha error probability. As there was no 

previous literature on the relationship between spatial and temporal ratio processing, we 

set the value to the smallest effect size of interest (i.e., a correlation of 0.25 between the 

residuals of the spatial and temporal ratio latent factors). Other relationships, such as 

spatial ratio-magnitude processing and spatial-temporal magnitude processing, were 

estimated based on previous literature (see Appendix A). Power analyses for this model 

can be found at https://osf.io/374zu/ . 

https://osf.io/374zu/
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Preprocessing 

In the following section, the term response will refer to the set of trials for a given task 

for a participant (i.e., 275 participants x 12 tasks = 3300 responses). First, ratio estimation 

trials with reaction times greater than 30 seconds and discrimination trials with reaction 

times greater than 10 seconds were identified and excluded. This resulted in the exclusion 

of 1 to 5 trials in 132/3300 responses. This also resulted in the exclusion of 12/40 trials in 

one discrimination task response for one participant. Because multiple trials in the 

participant’s response for that specific task were above 50 seconds, the participant’s 

response for that specific task was excluded from the analysis. We then identified and 

excluded ratio estimation trials that were statistical outliers relative to the participant’s 

overall response. To do this, a linear regression was fit to each ratio response. The 

stimulus ratio, which ranged from 1/12 to 11/12, was set as an independent variable 

(plotted on the x-axis of Figure 7a), and the estimated ratio, which ranged range from 0 to 

1, was set as a dependent variable (plotted on the y-axis in Figure 7a). Using the 

regression coefficients, we calculated the residuals for each trial by subtracting the real 

estimation from the predicted estimation. Statistical outliers were identified as trials with 

a residual greater than ± 3 SD (dotted line on Figure 7a). 

Once trials with long reaction times and statistical outliers were excluded, we identified 

non-typical response patterns for ratio estimation tasks. A typical response for the ratio 

estimation task is expected to have a slope of 1 and an intercept of 0 (Figure 7b). Using 

the regression coefficients obtained in the previous step, we first identified and visually 

inspected responses with a negative slope which is an indicator of systematic response 

line inversion (Figure 7c and e). Out of 30 responses with negative slopes, a total of 14 

responses (0.4% of all responses) were identified as showing evidence of systematic scale 

inversion. These were corrected by subtracting the estimated ratio from 1. 

Next, half slope response patterns were identified. Half slope response patterns are 

responses in which participants used the line mid-point as a reference (i.e., representing a 

ratio of 1:1) instead of the right end of the line (Figure 7d and e). A typical half slope 
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response pattern would have all (or almost all) ratio estimations at or below 0.5, a slope 

close to 0.5 and an intercept close to 0. In practice, these response patterns were 

identified using the following criteria: (i) a response with a slope between 0.45 and 0.55 

as well as an intercept below 0.1 (or above 0.9 in the case of systematic scale inversion), 

or (ii) a slope greater than 0.2 and the maximum estimation is inferior to 0.65 for ratios 

greater than 0.5. A total of 39 responses across 31 participants were identified as having a 

half slope response pattern. These were corrected by dividing the estimations across all 

trials by the maximum estimation used to identify these responses. The mean maximum 

estimation was 0.52 ± 0.04. 

 

Figure 7. Examples of ratio estimation responses. Each dot represents a ratio estimation. 

Next, responses with low accuracy for both ratio estimation and magnitude 

discrimination were identified and visually inspected for any potential errors. Low 
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accuracy for ratio estimation tasks was identified as responses with a slope inferior to 0.6. 

For discrimination tasks, low accuracy was identified as responses with a proportion 

correct of less than 0.55 (i.e., near chance performance). Once low accuracy responses 

had been identified, these were excluded if participants indicated they did not understand 

the task, had technical difficulties (e.g., did not hear all tones) or if participants failed the 

attention check. This resulted in the exclusion of 20 responses across 14 participants. 

Excluded tasks were treated as missing data.  

Ratio estimation responses with low slopes were also visually inspected for other non-

typical response patterns causing a low slope. From this inspection, 12 responses were 

identified as exhibiting a half slope response pattern, though they did not fit the criteria 

described above due to non-statistical outliers. These responses were corrected by 

dividing all the estimations by the maximum estimation. For three participants, this 

maximum estimation excluded visual outliers (i.e., 1-3 estimations above .70 that were 

not visually part of the response trend). Estimations greater than 1 after half slope 

correction were excluded from the analysis. Another three responses were identified as 

exhibiting non-systematic scale inversion. In other words, part of the data points showed 

a clear downward trend while another group of datapoints showed a clear upwards trend. 

These responses were excluded from the analysis. Two responses were excluded because 

participants estimated values were similar/constant across trials or limited to values 0 and 

1. Finally, three participants were entirely excluded from the analysis: one participant did 

not execute any of the ratio estimation tasks properly (i.e., only estimated values of 0, 0.5 

and 1, but none in between), two participants performed with low accuracy on most tasks 

and provided questionnaire responses suggesting that they were not invested in the study. 

One of the two latter participants also had extremely long reaction times for multiple 

tasks. 

Once all non-typical response patterns were identified and corrected, the error (stimulus 

ratio – estimated ratio) was calculated for each ratio estimation trial. For ratio estimation 

tasks, responses with reaction times between 15 and 30 seconds with an error greater than 

± 0.2 were excluded. This cut-off was decided based on previous piloting in order to 
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remove trials in which participants might have been distracted without excluding data 

points from trials in which participants might have used a time-consuming strategy like 

reproduction (e.g., tapping) to make an estimation. We then excluded ratio estimations 

with an error greater than ± 3 SD away from the mean error for a given response, and 

ratio estimations greater than 0.9 for ratios smaller than 0.5 and vice versa (i.e., responses 

smaller than 0.1 for ratios greater than 0.5). These were excluded as they might have been 

caused by inattention (e.g., lack of attention on a particular trial), spontaneous scale 

inversion (e.g., responding 0.9 when the target ratio was actually 0.1) or software error 

(e.g., not perceiving all three tones or flashes in the empty interval temporal ratio 

estimation tasks). Finally, the average absolute error (average |error|) across trials for 

each response was calculated. For discrimination tasks, the proportion of correct trials in 

given response was calculated. This score was then reversed prior to conducting the CFA 

and SEM analyses so that both aggregate scores would have the same direction (i.e., 

lower indicate better performance). All visualizations from the preprocessing steps 

described above as well as a summary of trial and response exclusions are available at 

(https://osf.io/ur6a4/). 

Univariate and multivariate outliers. After the implementing the preprocessing steps 

described above, we proceeded to inspecting the data for univariate and multivariate 

outliers. In the this study’s preregistered report, we had planned to treat univariate 

outliers as missing and exclude multivariate outliers, in part to handle problems related to 

multivariate non-normality. However, Aguinis, Gottfredson, & Joo (2013) provide 

alternative ways of handling outliers instead of completely excluding them from the 

analysis (which could bias results). Therefore, the analyses described in the next section 

follow the best-practices recommendations listed in Aguinis, Gottfredson, & Joo (2013). 

In the aim of transparency, results from the original analysis plan are also available at this 

link: (https://osf.io/ekzm8/). 

Once the aggregate score for each response was calculated, univariate outliers were 

identified as responses with aggregate scores ± 3 median absolute deviations (MAD) for 

a given task. We identified between 3 and 22 univariate outliers for each task (total of 

https://osf.io/ur6a4/
https://osf.io/ekzm8/
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137). Each of these univariate outliers were inspected for potential errors (e.g., 

illegitimate observations due to technical issues or coding errors), though none were 

found. Multivariate outliers were identified using the Mahalanobis distance test using a 

threshold of p < 0.001 (Kline, 2015). Fifteen outliers were identified and visually 

inspected for potential errors. After this inspection, one participant was excluded as 4/12 

tasks had already been excluded because the participant did not understand the 

instructions, and five out of the remaining eight tasks had low accuracy. This resulted in a 

final sample of 271 participants. Of these 271 participants, 258 participants had complete 

datasets. Visualizations of responses identified as univariate and multivariate outliers are 

also available in the preprocessing document mentioned above (https://osf.io/ur6a4/). 

Visualizations of responses for the retained sample are available at (https://osf.io/dftgh/). 

The remaining univariate and multivariate outliers were retained in the main analyses and 

considered as “interesting outliers”, data points that are identified as statistical outliers 

but that cannot be confirmed as errors (Aguinis et al., 2013). Sensitivity analyses were 

later conducted on the final model to (i) assess the stability of the model fit and parameter 

estimates, (ii) identify “influential outliers” (i.e., data points that significantly alter model 

fit or parameter estimates), and (iii) assess the influence of “interesting outliers” on the 

model fit and parameter (Aguinis et al., 2013; Pek & MacCallum, 2011). The influence of 

individual data points was measured on three aspects of the model: global model fit using 

the 2 difference (Δ2
i), global parameter estimates using generalized Cook’s distance 

(gCDi), and specific parameter estimates using the single parameter influence (Δ𝜃ji). All 

three influence measures involve the same procedure: (1) each data point is deleted, (2) 

the model is refit to the remaining data, and (3) the parameters before and after the 

deletion are compared. Sensitivity analyses were conducted using the R package 

influence.SEM version 2.2 (Pastore & Altoe, 2018). 

https://osf.io/ur6a4/
https://osf.io/dftgh/
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Main analyses 

Model specification and identification 

The first step in SEM analyses consisted of specifying the models to be estimated and 

verifying that the models were identified. A model is identified if it has a unique solution. 

This can be verified in two ways: using matrix algebra or identification rules. In this case, 

measurement models (i.e., 1-factor, 2-factor, and 4-factor CFA models) were identified 

according to the t-rule, the 3-indicator rule (Kline, 2015). The structural part of 4-factor 

SEM model was identified according to the recursive rule (Kline, 2015). All models were 

scaled by fixing the variance to 1. 

Although a model may be theoretically identified, there are situations in which a model 

may be empirically underidentified, meaning that the maximum likelihood (ML) 

estimation cannot arrive at a single solution due to the sample characteristic. To verify 

this, we conducted an empirical identification check for each final model by estimating 

the model on the model implied covariance matrix (T. Jorgensen, personal 

communication, June 13, 2021). If the analysis produces the same estimates, this 

indicates that the model is likely identified (though it does not exclude the possibility that 

it is not). If, however, the analysis produces different estimates, this indicates that the 

model is empirically underidentified and parameter estimates are not admissible.  

Model estimation 

All analyses were conducted using the free software R (version 1.4.1106), and the lavaan 

R package version 0.6.8 (Rosseel, 2012). Models were estimated using a robust 

maximum likelihood (MLR) estimator. This method provides robust standard errors 

(Huber-White) and scaled fit statistics for data with slight deviations from multivariate 

normality (Savalei, 2014; Savalei & Falk, 2014; Yuan, Tong, & Zhang, 2015). Once 

models were estimated, we verified that solutions were admissible (e.g., all standardized 

covariances were below 1, no negative variances). Missing data was managed by using 

full information maximum likelihood (FIML). This method has been shown to give 
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unbiased estimates when missing data is either missing completely at random (MCAR, 

i.e., there is no link between missing data and any other variable) or missing at random 

(MAR, i.e., missing data is related to an auxiliary variable; Enders, 2001). In the case of 

this study, missing data were due to technical issues, non-compliance or 

misunderstanding of the tasks. We do not believe these missing data to be related to any 

other auxiliary variable, thereby satisfying the MCAR/MAR assumption. 

Model evaluation 

Each model was fit and assessed individually using global and local fit indices. Four 

global fit indices were considered: chi-squared test, CFI, RMSEA and SRMR.  The chi-

squared test of independence evaluates whether the data covariance matrix significantly 

differs from the model implied covariance matrix. A significant result (p<0.05) indicates 

that the model significantly differs from the data, and therefore fits the data poorly. Given 

that this statistical test is sensitive to sample size, large samples can result in rejecting the 

model for small discrepancies between the model and data. That is why we considered 

the chi-squared statistic in combination with three other fit indices. CFI is a relative 

goodness of fit index which evaluates the improvement of the tested model over the 

baseline model (model in which none of the variables are correlated). RMSEA is an 

absolute fit index which measures model misfit while taking model parsimony into 

account. Finally, SRMR is an absolute fit index which is the sum of the residual 

correlations that cannot be explained by the model. CFI values greater than 0.95, RMSEA 

values lower than 0.10 and SRMR values lower than 0.08 were used as thresholds 

indicating a model with reasonable fit (Kline, 2015). Local fit was analyzed by looking at 

the residual correlation matrix (i.e., the difference between model correlation matrix and 

the data correlation matrix). As a rule of thumb, absolute residual correlations greater 

than 0.10 may indicate poor local fit (Kline, 2015).   



33 

 

 

 

Chapter 3 

Results 

Descriptive statistics 

Before estimating the various models, we inspected the data for evidence of multivariate 

non-normality. Although the assumption of multivariate normality of the residuals cannot 

be directly tested, univariate and bivariate non-normality can be taken as indirect 

indicators of multivariate non-normality (Kline, 2015). Descriptive statistics for each task 

are listed in Table 2. Empty visual ratio estimation had a skewness greater than ± 2 and a 

kurtosis greater than 4. Four other tasks, empty auditory ratio estimation and duration 

discrimination as well as circle and line ratio estimation, had a skewness lesser than ± 2 

but a kurtosis greater than 4. These indices indicate that scores on these five tasks deviate 

substantially from univariate normality. In addition to inspecting univariate normality, we 

visually inspecting the bivariate scatterplots and QQ plots for all task pairs for evidence 

of bivariate normality, linearity, and homoscedasticity of the residuals. Whereas all 

scatterplots supported bivariate linearity and homoscedasticity of the residuals, residuals 

were not normally distributed for approximately half of the task pairs. Altogether, these 

substantial deviations from univariate and bivariate normality indicate that the 

assumption of multivariate normality is likely violated. To address the violation of this 

assumption, a robust maximum likelihood estimator was used to fit the various models. 

Robust maximum likelihood corrects standard errors and model fit statistics in the case of 

deviation from multivariate normality even in the presence of missing data (Savalei, 

2014). Although it does not correct parameter estimates, simulation studies have shown 

that non-normality produces little bias in the parameter estimates (Finch, 1992; Lei & 

Lomax, 2005).  

Table 2. Descriptive statistics for average absolute error (ratio estimation tasks) and 

proportion incorrect (magnitude discrimination tasks). 

Tasks N Mean (SD) Median Range  

(min-max) 

Skewness Kurtosis VIF 
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Spatial ratio estimation   

Circle-R 270  .116 (.035)  .112  .052 - .249  0.93 4.15 1.28 

Dot-R 270  .126 (.038)  .118  .055 - .265  0.91 3.98 1.55 

Line-R 267  .098 (.04)  .089  .034 - .314  1.39 6.44 2.06 
 

Temporal ratio estimation  

 

EA-R 266  .09 (.037)  .080  .042 - .281  2.00 8.31 2.22 

FA-R  269  .115 (.052)  .103  .038 - .294  1.20 3.93 1.91 

EV-R  269  .094 (.047)  .081  .036 - .344  2.32 9.75 1.94 
 

Spatial magnitude discrimination  
 

Circle-M 271  .164 (.071)  .150  .025 - .425  0.62 3.87 1.28 

Dot-M 271  .158 (.071)  .150  0 - .4  0.68 3.44 1.17 

Line-M 271  .162 (.071)  .150  .025 - .375  0.50 2.88 1.17 
 

Temporal magnitude discrimination  
 

EA-M 269  .177 (.11)  .150  0 - .575  1.06 4.29 1.89 

FA-M  269  .138 (.081)  .125  0 - .4  0.74  3.25  1.55 

EV-M  270  .18 (.107)  .150  0 - .575  1.02 3.81 1.66 
Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation; VIF = variance inflation factor. The mean score for 

discrimination tasks refers to the proportion of incorrect responses. These means were transformed from the 

proportion of correct responses to make the direction of scores constant across the ratio estimation tasks 

and the magnitude discrimination tasks (lower is better). The mean score for ratio estimation tasks refers to 

the averaged absolute error. 

In addition to verifying the assumption of multivariate normality, the data were screened 

for extreme bivariate and multivariate collinearity. Table 3 displays the zero-order 

correlation matrix for all 12 tasks. All tasks had low to moderate correlation coefficients 

(range: .143 - .628). There was neither evidence of extreme bivariate collinearity (all 

correlations were below .85; Brown, 2006), nor multivariate collinearity (all variance 

inflation factors (VIF) were below 10; Kline, 2015).  

Table 3. Zero-order correlations for all tasks from the FIML observed covariance matrix. 

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 

Spatial ratio estimation  

1. Circle-R 1             

2. Line-R .405  1            

3. Dots-R .336  .564  1           

Temporal ratio estimation  

4. EA-R .311  .568  .388  1          

5. FA-R .245  .462  .353 .606  1         

6. EV-R .270  .482  .434  .628 .586  1        
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Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation. All correlations were statistically significant at p < .001, 

except for the correlations between FA - R and Dot - M (p < .01), Line - M and Circle - R (p < .01), and 

Line - M and Dot - M (p < .01). These exceptions are underlined in the table. Colors do not have a gradient 

scale but were included to help visualize correlation clusters (darker shade indicates a higher correlation). 

Higher-Order Model 

Measurement Model Fit 

Table 4 summarizes goodness-of-fit statistics for each model estimated. Though the 4-

factor model was the model of interest, we also tested three alternative models. All CFA 

and SEM related to the higher-order model were shown to be empirically identified. Fully 

standardized parameter estimates are reported in the path diagrams and can therefore be 

interpreted as correlations. Complete standardized and unstandardized solutions for all 

models can be found in Appendix B.  

Table 4. Goodness-of-fit statistics for all models 

Models 2 (df)  rRMSEA  

(90% CIs)  

rCFI  rSRMR  AIC  BIC  

1-Factor CFA  127.61 (48)  

p < .001  

0.087  

(0.071 - 0.103)  

0.909  0.047  -10094.55  -9943.257  

2-Factor CFA 

(Magnitude-

Ratio) 

82.41 (47)  

p = .001  

0.061  

(0.043 - 0.079)  

0.956  0.039  -10143.92  -9989.025  

2-Factor CFA 

(Spatial -

Temporal)   

93.64 (47)  

p < .001  

0.068  

(0.051 - 0.086)  

0.945  0.040  -10132.16  -9977.264  

4-Factor CFA 

and SEM  

40.77 (42)  

p = .525  

0.022  

(0 - 0.048)  

0.995  0.027  -10181.19  -10008.284  

4-Factor SEM 

(trimmed) 

41.51 (44) 

p = .579  

0.017  

(0 - 0.045)  

0.997  0.027  -10184.94  -10019.247  

Spatial magnitude discrimination  

7. Circle-M .255 .377 .250 .270  .225 .268  1       

8. Line-M .143  .280 .223 .269 .265 .266 .274 1      

9. Dots-M .243 .206 .247 .281 .162 .232 .225 .148 1     

Temporal magnitude discrimination  

10. EA-M .314 .433  .334 .582 .506 .454 .331 .350 .282 1    

11. FA-M .252 .388 .356 .425 .431 .481 .295 .272 .231 .594 1   

12. EV-M .269 .383 .397 .487 .487 .561 .311 .301 .272 .548 .497 1  
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Note: r = robust; Bolded values are fit statistic values indicating good fit according the criteria described in 

the methods sections. The chi-squared statistic was corrected using the Mplus variant of the Yuan-Bentler 

correction factor. Chi-squared scaling factors were between 1.136 and 1.162. 

1-factor CFA. We first tested the theory that all tasks are explained by a single general 

magnitude processing factor (Figure 8). This model yielded a poor fit according to the 

chi-squared statistic and CFI index. The chi-squared test was significant indicating that 

the model-implied covariance matrix significantly differed from the observed covariance 

matrix. RMSEA and SRMR were at the limit of what is considered reasonable fit 

(Hancock & Mueller, 2008). Finally, local fit testing showed several instances of poor 

local fit in which the residual correlation was greater than ± .10. Thus, the 1-factor model 

could not adequately explain the participants’ performance on the various tasks.  

 

Figure 8. 1-factor CFA model. EA = empty auditory interval; FA = filled auditory interval; EV = empty 

visual interval; M = magnitude discrimination; R = ratio estimation. Parameter estimates are fully 

standardized. 

2-Factor CFA. The second model tested whether the data could be explained by two 

underlying factors: a general ratio processing factor and a general (absolute) magnitude 

processing factor (Figure 9a). Like for the previous model, this 2-factor model showed 

poor fit according to the chi-squared statistic. RMSE, CFI and SRMR all indicated 

adequate fit. In terms of local fit, there were again multiple instances of poor local fit. 

Finally, when compared to the previous 1-factor model, the nested chi-squared difference 
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test indicated that the 2-factor model fit the data significantly better than the 1-factor 

model (2 (1) = 54.34, p < .001).  

Although it was not planned in the original analysis plan, we also tested whether the data 

could be modeled using two different factors: general spatial and general temporal 

processing (Figure 9b). In this case, the model assumes that performance on the set of 

tasks can be explained by domain related factors. This model yielded slightly worse 

model fit than the previous 2-factor model. However, it still fit the data significantly 

better than the 1 factor model (2 (1) = 26.108, p < .001).  

 

 

Figure 9. 2-factor CFA models with a) ratio and absolute magnitude factors and b) spatial and temporal 

factors. EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation. Parameter estimates are fully standardized. 
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4-Factor CFA. Contrary to previous models, the 4-factor model showed adequate model 

fit according to all fit indices. The 4-factor model also had significantly better fit than 

both 2-factor models (ratio and magnitude factors: 2 (5) = 45.75, p < .001; spatial and 

temporal factors: 2 (5) = 62.25, p < .001). Residual correlations indicate good local fit 

except for one task pair, circle ratio estimation and dot magnitude discrimination, which 

had a residual correlation of .10. Figure 10 shows the parameter estimates for this model.  

All factor loadings were significantly different than 0 (p < 0.001), meaning that all latent 

factors explained a significant amount of variance in their respective indicator variables 

(i.e., the tasks). Loadings on temporal ratio and magnitude factors were high (.747-.809 

and .711-.799 respectively) indicating that the factor indicators (i.e., temporal ratio 

estimation and discrimination tasks) were reliable measures of temporal ratio and 

magnitude processing. Construct reliability scores were greater than 0.7 (0.821 and 0.788 

for the temporal ratio and magnitude factors respectively) indicating that these indicators 

were reliable measures of the latent construct (Morrison, Morrison, & McCutcheon, 

2017). Next, we evaluated convergent validity of the temporal factors by computing the 

average variance explained (AVE) of each factor. AVE scores greater than 0.5 (i.e., latent 

factors that explain on average more than 50% of indicator variance) are considered to 

have adequate convergent validity (Morrison et al., 2017). Temporal ratio and magnitude 

factors showed adequate convergent validity as their AVE were 0.605 and 0.554 

respectively.  

In contrast, loadings on the spatial factors were lower and more variable (.485-.845 for 

spatial ratio processing and .383-.524 for spatial magnitude). Whereas the spatial ratio 

factor showed adequate construct reliability (0.782), the spatial magnitude factor showed 

poor construct reliability (0.472). Accordingly, both spatial factors showed poor 

convergent validity (AVE = 0.464 for spatial ratio and AVE = 0.225 for spatial 

magnitude). The model also revealed several large correlations between the latent factors 

(all statistically significant, p < 0.001) which may indicate low divergent validity. To 

verify divergent validity, we squared the correlation coefficient for each latent variable 
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pair and verified whether the AVE of either variable in the pair was lower than the 

squared correlation coefficient (Morrison et al., 2017). Adequate divergent validity was 

only shown between spatial ratio and temporal magnitude latent factors. 

Finally, tolerance and VIF values for both independent latent variables, spatial magnitude 

and temporal magnitude, revealed potential collinearity issues (Tolerance = 0.1279, VIF 

= 7.8168; Hair, Sarstedt, Ringle, & Mena, 2012). Despite this potential issue, we decided 

to keep the current specification for theoretical reasons and because the collinear 

independent variables are control variables (Allison, 2012). In the end, the 4-factor 

measurement model was retained for the structural analyses. 

 

 

Figure 10. 4-factor CFA model. EA = empty auditory interval; FA = filled auditory interval; EV = empty 

visual interval; M = magnitude discrimination; R = ratio estimation. Parameter estimates are fully 

standardized. 

Structural Model Fit 

After determining that the 4-factor model was an appropriate measurement model, we 

added the regression paths between the latent variables and estimated the structural 

model. Given that this 4-factor SEM had the same number of paths between the latent 
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variables as the measurement model, the model fit is the same between the CFA and 

SEM. We then tested the significance of the paths going across domains and magnitude 

type (i.e., from temporal magnitude to spatial ratio processing, and spatial magnitude to 

temporal ratio processing). To do this, we estimated a trimmed model in which these 

paths were constrained to zero. The resulting model had equivalent fit to the previous 4-

factor SEM; the fit of the trimmed model was not significantly worse than the model with 

all paths included (2 (2) = 0.288, p = .866). Other fit indices such as SRMR showed 

equivalent fit or, in the case of CFI and RMSEA, slightly better fit for the trimmed 

model. In addition, all residual correlations for the trimmed model were below .10, 

indicating good local fit. Because the fit indices indicate that these two models are 

equivalent and the two independent variables (i.e., spatial and temporal magnitude) were 

determined to be colinear, we retained the most parsimonious model. Figure 11 depicts 

the parameter estimates for the retained structure model. 

 

Figure 11. Retained structure model. EA = empty auditory interval; FA = filled auditory interval; EV = 

empty visual interval; M = magnitude discrimination; R = ratio estimation. All parameter shown in the 

figure are significant (p < .001), except for the loading between circle ratio and spatial ratio processing (p = 

0.001). Values in circles are indicators residual variance. 
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Model Evaluation and Sensitivity Analyses 

Overall, the model explains 85% of the variance for the spatial ratio processing and 87% 

of the variance for temporal ratio processing. Spatial magnitude processing significantly 

predicted spatial ratio processing (β=0.774, SE=0.053, p < .001, 95% CI [0.670, 0.878], 

99% CI [0.637, 0.911]). This means a 1-unit standard deviation change in spatial 

magnitude processing was related to a 0.774 standard deviation unit change in spatial 

ratio processing. Temporal magnitude significantly predicted temporal ratio processing 

(β=0.811, SE=0.044, p < .001, 95% CI [0.725, 0.897], 99% CI [0.698, 0.924]). This 

means a 1-unit standard deviation change in temporal magnitude processing was related 

to a 0.811 standard deviation unit change in temporal ratio processing. Spatial and 

temporal magnitude processing were significantly correlated (.852, p < .001). Spatial and 

temporal ratio processing were significantly related by the general ratio processing factor 

(β=0.497, SE=0.061, p < .001, 95% CI [0.378, 0.616], 99% CI [0.340, 0.653], and 

β=0.459, SE=.070, p < 0.001, 95% CI [0.322, 0.597], 99% CI [0.278, 0.640], 

respectively). Given that these factor loadings were constrained to equality for model 

identification purposes, another way to look at the relationship between the two ratio 

processing factors is by looking at the correlation between the factors after controlling for 

absolute magnitude latent variables. This correlation is high (.615, p < .001), indicating 

that there is a significant correlation between spatial and temporal ratio processing once 

we control for absolute magnitude processing (see Figure B1 for model diagram with the 

relationship specified as a correlation instead of higher-order factor). 

Sensitivity analyses were conducted on the 4-factor CFA model to investigate the 

influence of individual data points. Figure 12 shows index plots of the influence each 

participant exerted on the model fit and global parameter estimates. One participant was 

found to have a lot of influence on the global model (Figure 12a). This participant was 

not a previously detected outlier. Two participants, which were previously identified as 

multivariate outliers, had extreme influence on global parameter estimates (Figure 12b). 

Another 10 participants previously identified as multivariate outliers had moderate 
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influence on global parameter estimates. We also analyzed each participant’s influence 

on all factor loadings as well as the relationship of interest.  

 

 

Figure 12. Index plots showing the influence individual participants on a) model fit and b) global parameter 

estimates. Dashed lines in the top plot indicate a significant difference in chi-square model fit (df = 1, p = 

0.05). Each point represents a participant. Multivariate outliers are depicted in red. 

Put together, 18 participants were identified as influential outliers, 14 of which were 

previously identified as multivariate outliers. These outliers were identified as 

participants causing a significant difference in model chi-square (Δ2
i >3.84), a gCDi > 2 

and data points exerting influence on most parameter estimates analyzed (more than 8/12 

of the factor loadings). We refitted the retained 4-factor SEM model to the data without 

these influential outliers to verify that the previous findings were not driven by these 
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outliers. Model fit remained adequate (2(44) = 52.268, p = 0.18, CFI = 0.989, RMSEA = 

0.027 90% CI [0.00 – 0.051], SRMR = 0.034, AIC = -10054.813, BIC = -9891.377).  

Parameter estimates from the refitted model did not substantially change the conclusions 

of the previous analysis (see Appendix C for full solutions). In summary, these analyses 

indicate that the model is stable despite the presence of some influential data points and 

that these influential data points do not alter the conclusions drawn in the previous 

analysis. Full outputs from the sensitivity analyses are available at (https://osf.io/hw7kq/), 

including index plots showing the influence of each data point on individual parameter 

estimates. 

Bifactor Model 

The aim of estimating the bifactor model was to examine the amount of variance 

explained by a general ratio processing factor separately from specific ratio processing 

factors. Similar to the analysis of the higher-order 4-factor model, the bifactor model was 

fitted in two stages. The first stage consisted in fitting a bifactor CFA model in which the 

three ratio processing variables are orthogonal, and each ratio processing variable is 

correlated to both spatial and temporal ratio processing. The resulting model showed 

adequate fit (2 (41) = 50.37, p = 0.15, CFI = 0.990, RMSEA = 0.031 90% CI [0.00 – 

0.057], SRMR = 0.026, AIC = -10168.65, BIC = -10147.51). Unfortunately, the model 

did not pass the empirical identification check, indicating that the model is not identified 

(i.e. there is not a unique solution). Sensitivity analyses confirmed the instability of the 

bifactor model. Given that the solution is inadmissible, results for this analysis will not be 

presented to avoid erroneous interpretation.  

Exploratory analyses 

Reliability of the discrimination tasks 

In the previous section on reliability and validity of the measures, indicators of the spatial 

magnitude factor were shown to have poor reliability. As a first set of exploratory 

https://osf.io/hw7kq/
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analyses, we explored whether this poor reliability could be explained by the deviant 

ratios used in this study. When designing the study, we chose sets of deviant ratios on 

which participants performed above chance, but difficult enough to avoid ceiling effects. 

However, we did not verify that these deviant ratios had adequate reliability. Therefore, 

we used confirmatory factor analyses to examine the reliability of the deviant ratios. 

Descriptive statistics for the deviant ratios are shown in Table 5. Participants were above 

chance on all deviant ratios (p < 0.001).  

Table 5. Descriptive statistics on proportion correct for the deviant ratios used in each 

discrimination tasks. 

Discrimination  

Task 

Deviant 

ratio 

N  Mean (SD)  Range (min-

max)  

Skewness  Kurtosis  

Empty auditory 

interval (EA-M) 
1.20  269  .744 (.178)  0.167 - 1  -0.567  2.881  

1.25  269  .782 (.156)  0.375 - 1  -0.661  2.988  

1.30  269  .811 (.164)  0.25 - 1  -0.765  3.126  

1.40  269  .863 (.149)  0.25 - 1  -1.321  4.700  

1.60  269  .913 (.136)  0.25 - 1  -2.224  9.368  

       

Filled auditory 

interval (FA-M) 
1.20  269  .781 (.152)  0.25 - 1  -0.673  3.256  

1.25  269  .818 (.143)  0.125 - 1  -0.911  4.530  

1.30  269  .862 (.126)  0.375 - 1  -0.952  3.960  

1.40  269  .903 (.117)  0.375 - 1  -1.323  4.924  

1.60  269  .946 (.092)  0.5 - 1  -2.086  8.014  

       
Empty visual 

interval (EV-M) 
1.20  270  .744 (.167)  0.143 - 1  -0.647  3.262  

1.25  270  .779 (.167)  0.125 - 1  -0.862  3.977  

1.30  270  .81 (.164)  0.286 - 1  -0.770  3.099  

1.40  270  .857 (.152)  0.375 - 1  -1.128  3.800  

1.60  270  .908 (.135)  0.25 - 1  -1.968  7.389  

       

Circle area 

(Circle-M) 
1.02  271  .663 (.156)  0.25 - 1  -0.202  2.860  

1.04  271  .768 (.16)  0.375 - 1  -0.296  2.271  

1.06  271  .851 (.15)  0.375 - 1  -1.021  3.545  

1.08  271  .912 (.107)  0.5 - 1  -1.078  3.758  

1.18  271  .987 (.054)  0.5 - 1  -5.355  37.930  

        

Dot number 

(Dots-M) 
1.09  271  .78 (.149)  0.375 - 1  -0.467  2.831  

1.10  271  .764 (.144)  0.25 - 1  -0.569  3.129  
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1.12  271  .858 (.122)  0.5 - 1  -0.399  2.219  

1.14  271  .852 (.123)  0.375 - 1  -0.913  3.951  

1.25  271  .959 (.077)  0.625 - 1  -1.887  6.028  

        

Line length 

(Line-M) 
1.01  271  .695 (.163)  0.125 - 1  -0.181  2.828  

1.02  271  .721 (.155)  0.375 - 1  -0.228  2.485  

1.03  271  .837 (.147)  0.375 - 1  -0.683  2.814  

1.06  271  .947 (.091)  0.5 - 1  -1.885  6.589  

1.12  271  .988 (.052)  0.5 - 1  -5.736  42.218  

       

We then estimated a 2-factor model with spatial magnitude and temporal magnitude as 

latent variables. Each factor was composed of three latent subfactors (i.e., the tasks): line 

length, circle area and dot number discrimination for the spatial magnitude factor, and 

empty auditory, full auditory and empty visual interval discrimination for the temporal 

magnitude factor. Each subfactor was composed five indicators corresponding to the 

deviant ratios. The model was estimated using full information maximum likelihood to 

handle missing data and robust maximum likelihood to handle the non-normality of the 

factor indicators. The model yielded adequate fit (2 (398) = 399.828, p = 0.47, CFI = 

0.998, RMSEA = 0.004 90% CI [0.00 – 0.023], SRMR = 0.047, AIC = -10168.65, BIC = 

-10147.51). The model along with fully standardized parameter estimates are shown in 

Figure 13. From this figure, we observed two deviant ratios that are potentially 

problematic, that is the hardest deviant ratio for both the line and circle discrimination 

task. These two loadings were not significantly different from zero (β=0.110, SE=0.072, 

p = 0.123, 95% CI [-0.030, 0.250], 99% CI [-0.074, 0.295], and (β=0.112, SE=0.064, p 

=0.08, 95% CI [-0.013, 0.238], 99% CI [-0.053, 0.277]), respectively). This indicates that 

these deviant ratios might not be appropriate or reliable measures of magnitude 

discrimination even though participants are, on average, above chance.  
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Figure 13. Deviant ratio CFA model. EA = empty auditory interval; FA = filled auditory interval; EV = 

empty visual interval; M = magnitude discrimination. Parameter estimates are fully standardized. Dashed 

lines indicate that the parameter estimate was not significantly different from 0 (p >0.05). 

We then wanted to investigate whether these poor deviant ratios impacted the results 

found in the previous SEM analysis. We recalculated the aggregate scores excluding the 

problematic deviant ratios (Line 1.01 and Circle 1.02) and re-estimated the high-order 

model. Model fit remained adequate (2(44) = 39.896, p = 0.648, CFI = 1.000, RMSEA = 

<0.001 90% CI [0.00 – 0.037], SRMR = 0.026, AIC = -10145.147, BIC = -10125.302) 

and most parameter estimates showed little change, qualitatively speaking. The factor 

loading for line discrimination indicator improved slightly (β = 0.473 to β = 0.530) and 

the correlation between spatial and temporal ratio slightly decreased (.615 to .564). 

However, these changes did not impact our conclusions. Full solutions can be found in 

Appendix D. 

Number line estimation response bias 

One possible explanation for the correlation between the spatial and temporal ratio 

factors is that participants have a similar response bias that is unrelated to their ratio 
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processing ability. For example, a person might have a bias away from the response line 

extremities thereby causing them to have a lower slope while being highly precise 

(Figure 14 b). This leads to a worse average absolute error score even though they are 

just as precise as an individual with a slope near 1 (Figure 14a). If people have consistent 

biases, the use of the number line for all ratio tasks may inflate correlations between the 

two ratio processing factors. To test whether the results found in the previous sections 

may be influenced by response bias, we refit the final model using R2 as an accuracy 

measure instead of average absolute error. R2 was extracted from a linear model fit to 

each participant’s response in every task following data cleaning. The advantage of using 

R2 as a measure of ratio estimation accuracy is that it measures precision relative to the 

slope for each task and participant and it is also robust to problems created to non-typical 

response patterns. The disadvantage is that this measure might not capture the accuracy 

of individual’s ratio estimation relative to the true stimulus ratio. Also, R2, like average 

absolute error, does not differentiate response biases when the participant as has low 

precision (Figure 14 c and d).  

 

Figure 14. Examples of response bias influencing average absolute error (AAE). a) Perfect slope with high 

precision. b) Low slope with high precision. c) Near perfect slope with low precision. d) Low slope with 

low precision. 
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Model fit remained adequate (2(44) = 53.013, p = 0.166, CFI = 0.990, RMSEA = 0.031 

90% CI [0.00 – 0.058], SRMR = 0.031, AIC = -5518.733, BIC = -5353.036). Parameter 

estimates were similar to the ones previously reported, with two notable exceptions. First, 

the loading for the circle ratio estimation task went from  = .485 (SE = .078) to  = .727 

(SE = .078). The spatial ratio factor now showed adequate construct reliability (.844) and 

convergent validity (.594), but divergent validity did not change compared to the original 

model. Second, the residual correlation between spatial and temporal ratio processing 

went from .615 (SE = .120) to .723 (.116). Complete unstandardized and standardized 

solutions can be found in Appendix E. 

Effect of education and music experience 

Finally, we tested whether task performance was related to previous experience. For 

example, musicians have been shown to perform better on certain temporal tasks (Banai, 

Fisher, & Ganot, 2012; Rammsayer & Altenmuller, 2006; Vibell, Lim, & Sinnett, 2021). 

If populations with different prior experience perform differently on the tasks used in this 

study, a deeper study of measurement invariance, that is, how measures vary across 

different populations, would be warranted. To examine the effect of prior experience, we 

analyzed the correlations between each task, and years of education, years of music 

training and years of music playing experience. None of the correlations were statistically 

significant (range -0.081 to .118), except for one marginally significant negative 

correlation between education and dot discrimination (-.139, p = 0.02; see Appendix F for 

correlation matrix). This correlation was not found to be significant when multiple 

comparisons corrections were applied.  
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Chapter 4 

Discussion 

The aim of the current study was to examine whether ratios across spatial and temporal 

domains are processed by a common ratio processing system (RPS). If ratios in space and 

time are processed by a common mechanism, then individuals’ ability to process ratios in 

space (either in length, area or numerosity) should correlate with their ability to process 

ratios in time. To test this hypothesis, we measured people’s ability to reproduce spatial 

and temporal ratios on a bounded line and modeled their relationships using SEM. In the 

first analysis, our higher-order model revealed a significant relationship between spatial 

and temporal ratio processing abilities when controlling for absolute magnitude 

processing, indicating that spatial and temporal ratios might be processed by a common 

mechanism. Whereas previous studies have shown that spatial ratios are processed by 

similar mechanisms across different symbolic formats (Jacob & Nieder, 2009a) as well as 

different non-symbolic magnitudes, such as length and numerosity (Jacob & Nieder, 

2009b; Matthews et al., 2015), this is the first study to show a relationship between ratio 

processing across spatial and temporal domains. The findings in the current study 

therefore support the existence of the RPS proposed by Matthews et al. (2015) and extend 

the theory beyond symbolic and non-symbolic (spatial) ratios to spatial and temporal 

ratios.  

Our model also revealed that people’s ability to discriminate absolute magnitudes is an 

important predictor of their ability to process ratios in both the spatial and temporal 

domain. This finding replicates the relationship found in a secondary analysis on data 

from Park et al. (2021; see Appendix A) in the spatial domain, and aligns with findings 

by Jacob & Nieder (2009b) who showed that  absolute magnitude and ratio processing 

have overlapping neural correlates. The strong relationship between absolute magnitude 

and ratio processing factors was also extended to the magnitudes and ratios in the 

temporal domain which is a novel finding.  
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Finally, spatial discrimination tasks were found to load poorly on the spatial magnitude 

factor. This suggests that absolute magnitude processing between different spatial 

magnitudes only partially overlap. However, we also found a strong relationship between 

spatial and temporal magnitude factors, which supports the existence of a common 

magnitude system. We therefore suggest that the mechanism associated to the partial 

overlap between the spatial magnitude tasks is the same mechanism responsible for 

magnitude discrimination in the temporal domain. More specifically, the common 

magnitude system might be, as other authors have suggested, a higher-order mechanism 

responsible for magnitude comparison that operates only after magnitudes have been 

encoded by neuronal populations tuned to those specific types of magnitude (Cohen 

Kadosh, Lammertyn, & Izard, 2008; Holloway & Ansari, 2008; Pinel et al., 2004). This 

would align with previous single cell studies showing that separate but overlapping 

neuronal populations encode information for different types of visual magnitudes, while 

other neuronal populations, possibly part of larger fronto-parietal network responsible for 

general magnitude processing, encode magnitude information across different types of 

visual magnitudes (Eiselt & Nieder, 2013; Nieder, Diester, & Tudusciuc, 2006; 

Tudusciuc & Nieder, 2007b). 

In our second analysis, we attempted to estimate a bifactor model to examine how much 

variance in each task was common across all the ratio tasks (domain general), or common 

to only the spatial or temporal ratio tasks (domain specific). Unfortunately, the bifactor 

model did not yield an admissible solution. Therefore, although we showed in the first 

analysis that there is a relationship between spatial and temporal latent factors, we cannot 

make any specific conclusions about how much of the performance in ratio estimation 

tasks is explained by a domain general ratio processing factor vs domain specific ratio 

processing factors. 

The measurement models 

In the first part of the analysis, four measurement models were estimated. The 1-factor 

model tested the hypothesis that all tasks could be explained by a single general factor. 



51 

 

 

 

This model showed the worst fit out of the four models. Next, two 2-factor models tested 

whether the data could be modeled using either a spatial and temporal factor, or a 

magnitude and ratio factor. Although these two models fit the data better than the 

previous 1-factor, other model indices, such as CFI and the chi-squared test statistic, 

indicated that both 2-factor models poorly fitted to the data. Out of all the measurement 

models estimated, the 4-factor CFA model had the best fit according to all fit indices 

used, indicating that the performance on the tasks can be modeled by four separable 

constructs: spatial magnitude, spatial ratio, temporal magnitude, and temporal ratio 

processing. 

For temporal processing, auditory and visual tasks related to both ratio and magnitude 

processing loaded highly on their respective factors. They also had adequate construct 

reliability and convergent validity, indicating that the tasks were tapping into general 

timing ability, rather than modality specific timing ability. This is consistent with 

previous literature showing that, although individuals tend to have a higher temporal 

resolution in the auditory modality than the visual modality, both use the same underlying 

timing mechanism when longer stimuli (near the 1-second range) are used (Rammsayer, 

Borter, & Troche, 2015; Stauffer, Haldemann, Troche, & Rammsayer, 2012). 

Tasks related to spatial ratio processing had more variable loadings. Although they 

showed adequate construct reliability, we failed to show convergent validity because one 

of the tasks, circle ratio estimation, loaded poorly on the spatial ratio factor. These 

loadings are similar, though lower, to loadings obtained in a secondary analysis 

conducted on existing data from Park et al. (2021). This secondary analysis had initially 

been conducted in order to do the a-priori power analysis for the current project. One 

important difference between the current study and the one conducted by Park and 

colleagues is that the current study used ratio estimation tasks while Park et al. used ratio 

discrimination tasks. In ratio discrimination tasks, participants are shown two pairs of 

stimuli, and must determine which has the largest ratio. The difference between the ratio 

task loadings found in previous studies and the current study could therefore be explained 

by the type of the ratio task used. More specifically, the Park et al. ratio discrimination 
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tasks measure ratio perception and comparison whereas the current ratio estimation tasks 

measure ratio perception combined with ratio estimation. 

Tasks related to spatial magnitude had low loadings and did not have adequate construct 

reliability or convergent validity. This is surprising because the secondary analysis from 

Park et al. (2021), which used similar discrimination tasks, yielded factor loadings 

between .74 and .81, which is far greater than the loadings found in the current study. 

Though the tasks were closely modeled after the ones used in Park et al. (2021) as well as 

other studies by that research group (Matthews et al., 2015; Park & Matthews, n.d.), the 

difference in factor loadings could be partially explained by the difference in sample 

populations. The sample used by Park et al. consisted of 2nd graders, 5th graders and 

undergraduate students whereas the sample of the current study consisted of adults in the 

general population.  

Another possible explanation for low loadings is that some of the task parameters chosen 

were not themselves reliable, thereby introducing noise into the measures. For example, 

the smallest deviant ratio (i.e., the ratio between the standard and comparison stimuli) 

might have been too small for participants to discriminate the difference without partially 

guessing. To test this hypothesis, we estimated a CFA using the deviant ratios as 

indicators and examined how well each deviant ratio loaded onto its respective task. This 

analysis showed that the smallest deviant ratio in the line and circle discrimination tasks 

loaded poorly, indicating that they are perhaps not reliable measures of line length and 

circle area discrimination, even though participants performed above chance on average 

on these deviant ratios. To further examine the influence of these unreliable deviant 

ratios, we estimated the final structural model without the problematic deviant ratios and 

examined the change in parameter estimates. Although the reliability of line 

discrimination task slightly improved, other parameter estimates remained stable, 

suggesting that the reliability of the deviant ratios did not have an important effect on the 

final higher order model.  
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As discussed above, low factor loadings for the spatial magnitude factor could also 

indicate that the mechanisms related to length, number and area discrimination only 

partially overlap. The low correlations between the spatial magnitude tasks align with 

other studies that have investigated relationships between different non-symbolic (spatial) 

discrimination tasks. Although these tasks are assumed to measure non-symbolic 

magnitude ability, they were often shown to correlate poorly (Clayton, Gilmore, & Inglis, 

2015; DeWind & Brannon, 2016; Gilmore, Attridge, & Inglis, 2011). 

In addition to testing construct reliability and convergent validity, we examined the 

divergent validity of the latent variables. Divergent validity gives insight into whether the 

latent factors are truly different constructs given their reliability. Although we consider 

latent factors to be theoretically divergent (e.g., spatial magnitude discrimination tasks 

are assumed to measure a different construct from temporal magnitude discrimination 

tasks), we could only show divergent validity between the spatial ratio and temporal 

magnitude factors, but not between any of the other pairs of factors. Although this seems 

to contradict our earlier statement that the data can be modeled by four separable factors, 

neither of the other measurement models with one or two factors showed adequate model 

fit. Therefore, we suggest that the data can be modeled by four separable constructs that 

are also highly related. 

Relationships between spatial and temporal ratio and magnitude latent factors 

After showing that the 4-factor model was the best measurement model, two 4-factor 

structural models were estimated and compared. The first model controlled for within 

domain magnitude factors (e.g., spatial magnitude and spatial ratio) as well as between 

domain magnitude factors (e.g., temporal magnitude and spatial ratio). The between 

domain paths (i.e., temporal magnitude and spatial ratio, and spatial magnitude and 

temporal ratio) were included to control for leftover variance related to general cognitive 

ability. Conversely, we had little theoretical reason to believe that these paths would be 

significantly different from zero. The second model tested this hypothesis by removing 

the between domain paths and controlling only for within domain magnitude factors. 
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Although the second model had two paths less than the first model, it was retained as it fit 

the data equally well to the first model and was the most parsimonious. This suggests 

there is no evidence for additional mechanisms that are involved in linking magnitude 

and ratio factors across domains other than the common mechanisms relate to absolute 

magnitude perception and ratio processing. Additionally, the second model eliminated a 

collinearity issue present in the first model due to the high correlation between the two 

magnitude factors. 

The retained model revealed a significant relationship between people’s ability to 

estimate spatial and temporal ratios when controlling for people’s ability to discriminate 

absolute magnitudes. This supports the hypothesis that ratio processing in the spatial and 

temporal domain are related. These results do not, however, answer the question as to 

how they are related. More specifically, each ratio processing factor has two sources of 

common variance: the ability to perceive the stimulus ratio and the ability to estimate a 

given ratio. The current analysis does not allow us to determine whether the common 

variance is related to ratio perception ability across different types of magnitude, or both 

ratio perception and estimation abilities (though the latter option seems the most likely). 

It also seems unlikely that results are solely a product of task demands as the precision of 

ratio estimation is limited by the precision of ratio perception by principle of precedence.  

In addition to finding a significant relation between spatial and temporal ratio processing, 

magnitude processing factors were also found to be significant predictors of ratio 

processing factors. This finding indirectly replicates the relationship found in the 

secondary analyses conducted on data by Park et al. (2021). Though the replication is 

indirect because Park et al. (2021) used ratio discrimination tasks instead of estimation 

tasks, it also provides some validity to the relationships between latent factors found in 

the current study despite the poor measurement qualities of the spatial magnitude factor. 

Our results also extend the ratio-magnitude relationship found in the spatial domain to 

temporal domain. Lastly, these significant relations between magnitude and ratio 

processing factors are interesting in themselves because it means that most of the 

variance in ratio processing factors is explained by participants’ ability to discriminate 
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absolute magnitudes. For example, the spatial magnitude factor explained 60% of the 

variance in spatial ratio processing factor, while the general ratio processing factor only 

explained 25% of the variance in the same factor. Similarly, the temporal magnitude 

factor explained 66% of the variance on the temporal ratio processing factor, while the 

general ratio processing factor only explained 21% of the variance in the same factor. 

This strong relationship between within-domain magnitude and ratio factors may indicate 

a source of domain specific processes. Namely, individuals’ performance on ratio 

estimation tasks is largely explained by absolute magnitude processes that are related to 

the magnitude type, and thereby are specific to either the spatial or temporal domain. 

These findings align with previous neuroimaging studies on ratio processing and absolute 

magnitude processing in both humans and monkeys. Jacob & Nieder (2009b) found that 

neural correlates associated with non-symbolic (spatial) ratio processing were similar to 

the correlates associated with non-symbolic absolute magnitude processing in the 

prefrontal and parietal cortices in both humans and monkeys (Jacob & Nieder, 2009b; 

Vallentin, Jacob, & Nieder, 2012; Vallentin & Nieder, 2010).  

Conversely, our ability to make conclusions about domain-specific mechanism is limited. 

The high correlation between the two magnitude factors indicates that they are 

controlling for much of the same variance in each ratio factor. Therefore, we cannot say 

with certainty that the variance explained by the magnitude factors is purely domain 

specific. Statistically, this is a problem of collinearity and can be illustrated using a 

multiple regression framework. Imagine a regression with two independent variables and 

one dependent variable. If the independent variables are uncorrelated, then each 

independent variable will account for unique variance. However, the closer the 

correlation between the two independent variables is to 1, the more the independent 

variables account for the same variance, and the two independent variables can be seen as 

indicators of the same underlying construct. In the context of the current results, both 

magnitude factors could be indicators of a general magnitude system and therefore 

control for general magnitude processing in addition to some within domain magnitude 

processing (specific to temporal or spatial magnitudes). 
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Finally, the high correlation between spatial and temporal magnitude factors was 

unexpected. We can think of two plausible explanations for this relationship. The first is 

that the spatial magnitude factor, which was shown to have low convergent validity, is 

measuring general processes (e.g., working memory and decision making) needed to 

successfully complete the discrimination task rather than (or in addition to) spatial 

magnitude acuity. This explanation would align with findings by Marcos et al. (2016) 

showing that discrimination for different type of magnitudes might share neuronal 

populations related to decision making, but not magnitude processing. However, to obtain 

a high correlation of 0.85 between spatial and temporal magnitude factors, the temporal 

magnitude factor would also have to be measuring general cognitive processes related to 

magnitude comparison rather than temporal magnitude acuity. This seems unlikely given 

that the correlations between domains (i.e., spatial magnitude with temporal ratio, and 

temporal magnitude with spatial ratio) were lower than the correlations within domains 

(i.e., spatial magnitude with spatial ratio, and temporal magnitude with temporal ratio), 

indicating that there is some domain specificity to the magnitude factors (i.e., they are not 

solely measuring domain general processes).  

Another possibility is that spatial and temporal magnitudes are processed by a common 

magnitude system, as suggested by the ATOM theory (Bueti & Walsh, 2009; Walsh, 

2003). In contrast to the possibility outlined in the previous paragraph, this domain 

general process would be specific to magnitude encoding (e.g., magnitude comparison) 

rather than unrelated to magnitude (e.g., general decision making). As stated previously, 

discrete and continuous spatial magnitudes such as numerosity and length have been 

shown to be encoded by distinct but overlapping neuronal populations as well as by 

neurons encoding both types of magnitudes (Tudusciuc & Nieder, 2007a). Cona, Wiener, 

& Scarpazza (2020) have also shown in a meta-analysis that neuronal populations 

encoding spatial and temporal magnitudes might be organized in a gradient like way in 

the same brain areas, such as the insula, (pre-) supplementary motor area (SMA) and the 

intraparietal sulci (Cona et al., 2020). Therefore, spatial and temporal magnitudes may be 

processed similarly to how different types of spatial magnitudes are processed: although 
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neurons encoding spatial and temporal magnitude partially overlap, there may be distinct 

populations encoding spatial and temporal magnitudes as well as neuronal populations 

processing higher order magnitude information across the two domains.  

Model robustness and effect of prior experience 

Multiple exploratory analyses were conducted to determine the robustness of the results 

obtained in the higher order model. First, sensitivity analyses were conducted to test 

whether the current results were due to the presence of influential outliers or to the 

violation of the assumption of multivariate normality.  Though we did detect the presence 

of some influential outliers, exclusion of the outliers did not cause a qualitatively 

significant change in the model parameter estimates. This indicates that results were not 

due to influential outliers or the violation of the multivariate normality assumption.  

Second, we examined the effect of unreliable deviant ratios in the spatial magnitude tasks 

on the model parameter estimates. Removing unreliable deviant ratios in two of the three 

spatial discrimination tasks resulted in the slight increase of one of the spatial 

discrimination tasks. However, the other model parameter estimates remained 

qualitatively similar to the original model parameter estimates.  

Finally, we refit the model using an alternative measure of ratio processing accuracy (R2). 

Whereas average absolute error is based on the absolute difference between the stimulus 

ratio and the estimated ratio, R2 is based on how linearly precise estimations are across 

stimulus ratios. Using R2 over average absolute error has an advantage in that it is less 

vulnerable to individuals’ estimation bias, such as avoiding extremities, which would 

lead to a worse average absolute error despite having precise estimations. R2 also has a 

disadvantage as it is not a measure of ratio estimation accuracy per se (i.e., how far away 

is an individual estimation to the true ratio), but a measure of relative precision (i.e., how 

consistent is an individual in their estimation of one ratio relative to other ratios, 

regardless of the true stimulus ratio).Though most parameter estimates did not vary from 

the original model fit using average absolute error, the factor loading for the circle ratio 
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task greatly improved leading to increased construct reliability and convergent validity of 

the spatial ratio factor but same lack of divergent validity. This also led to a higher 

correlation between spatial and temporal ratio processing factors. Taken together, this 

indicates that findings are robust to the accuracy measure used and somewhat robust to 

linear response biases, though the impact of non-linear response biases remains unknown. 

Furthermore, this suggests R2 might also be a more reliable measure of ratio processing 

than average absolute error given that it is less vulnerable to certain types of response 

bias.  

In addition to assessing the robustness of the higher-order model, we tested whether there 

was a relationship between prior experience such as number of years of education, music 

experience or music training and any of the tasks used in the current study. Neither music 

experience or training, nor years of education were correlated with any of the spatial or 

temporal tasks. These findings suggest that performance on these tasks is little or not 

affected by prior experience, perhaps due to their perceptual nature. While there has been 

little literature on the relationship between temporal ratio estimation and music 

experience, the current results do not align with other studies that have found musicians 

to be better at duration discrimination than non-musicians (Banai et al., 2012; Ehrlé & 

Samson, 2005; Rammsayer & Altenmuller, 2006).  

Strengths and Limitations 

The current study has strengths and limitations. First, the use of a ratio estimation task is 

considered a strength, but also presents some limitations. The advantage of using a ratio 

estimation task with the same response line across all spatial and temporal tasks is that 

participants are doing the same operation in all tasks: they are transforming a ratio from 

one (spatial or temporal) format to a representation of that ratio on a line. This limits 

differences between domains that may be induced by a discrimination task. For example, 

a temporal discrimination task in which two divided intervals are presented sequentially 

is probably more demanding on working memory than a spatial ratio discrimination task 

in which two ratios are presented side by side simultaneously. However, this might also 
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induce elevated correlations between the two domains because the response format is the 

same (i.e., the common method is contributing to the shared variance). We provide two 

counter arguments. First, though the common method may be problematic for studies in 

which the method is orthogonal to the subject of interest, the response format (ratio 

estimation) is directly related to the subject of interest in the current study (ratio 

processing). Second, one might argue that, even though the response format is directly 

related to the subject of interest, participants may still have response biases unrelated to 

their ratio processing ability (e.g., avoiding making estimations at either end of the 

response line). We acknowledge this limitation, but simultaneously show that using 

another measure of estimation accuracy less susceptible to linear biases (R2) leads to the 

similar results and conclusions. 

Second, one strength of the study is that the sample consisted of a wide range of 

individuals across 11 countries with varying levels of education, making results more 

representative of the general population than is typically the case. However, there might 

still be some self-selection bias which limits generalizability. For example, participants 

who choose to do hour long studies instead of multiple short studies might have a longer 

attention span. Participants who chose to participate in this study might also be more 

interested in doing numerical tasks than participants who chose not to participate in this 

study.  

Third, the study was conducted online which may have impacted data quality. Although 

most participants performed well on all tasks, some participants may have performed 

poorly for various reasons such as fatigue or interruptions. For example, some 

participants performed very well on all but one task, but we were unable to determine 

with certainty whether the poor performance was a true reflection of their ability or 

caused by an unrelated external factor. Some participants might have also benefited from 

going over instructions with an experimenter or from having more practice trials to 

understand and perform well on the tasks.   
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Finally, the low reliability and convergent validity associated to the spatial magnitude 

tasks is problematic. As mentioned before, this might indicate that the tasks lacked 

reliability. Despite the low factor loadings, the spatial magnitude factor still showed 

strong relationships with the other more reliable latent variables and replicated findings 

from a secondary analysis on similar tasks (Park et al., 2021). Given that the correlations 

between the latent variables seem reasonable, we think we are measuring absolute 

magnitude processing to some degree, along with domain general processes related to 

magnitude comparison.  

In a related issue, the strength SEM, which is the ability to estimate the true measures of 

latent constructs, also has limitations. SEM allows the researcher to parse the “true score” 

of an underlying construct from the error variance. Assuming observed measures are 

reliable and valid, this makes relations between constructs more generalizable as they are 

less vulnerable to the measurement error associated to specific tasks. However, the 

common variance (i.e., true score) estimated by the factor analysis is data driven and 

might not be a pure measure of the hypothesized construct.  

Future directions 

We propose three avenues for future research. First, future directions should include 

replicating the current findings as well as extending them to other populations. For 

example, studying individuals with either numerical, spatial or temporal deficits might 

give insight as to how absolute vs relative magnitude processing are related across 

different types of magnitude. Studying the developmental trajectories related to ratio 

processing might also give insight into the underlying mechanisms related to absolute and 

relative magnitude processing (Park et al., 2021). Given that all the factors are highly 

correlated with each other, it could be interesting to see if absolute magnitude and 

relative magnitude processing diverge, converge, or develop in parallel throughout 

development. This might give on insight on how different or similar magnitude 

comparison mechanisms are to relative magnitude mechanisms (i.e., mechanisms that 

allow us to quantify relationships between magnitudes). Lastly, future studies could also 
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extend the current findings by including ratio discrimination tasks to parse out the 

mechanisms related to ratio perception vs. ratio estimation.   

Second, future research should investigate neural mechanisms associated with ratio 

processing. As previously mentioned, behavioural studies can help uncover associations 

based on the study of variance in performance. However, the ultimate goal is to 

understand the neural mechanisms responsible for ratio processing which requires going 

beyond behavioural paradigms. Although some neuroimaging studies of ratio processing 

have already been conducted, they are limited to numerical and spatial magnitudes. 

Therefore, future studies should investigate ratio processing using neuroimaging 

techniques to understand how ratios in different domains are processed in the brain.   

Third, future directions could involve studying the ratio estimation patterns themselves. 

Individuals may have different prototypical estimation patterns such as a categorical 

pattern, a bias against extremities, or patterns of bias predicted by the cyclical power 

model (Hollands & Dyre, 2000; Spence, 1990). Although this study found no relationship 

between demographic variables such as music training and performance on temporal task, 

the estimation patterns, rather than overall accuracy, may be related to certain 

demographic characteristic (e.g., music training) or deficits related to ratio perception or 

estimation. 

Conclusion 

From the progress bars on our screens to eighth notes in music, ratios are present 

everywhere: we cannot help but think in a relative way. The current study has important 

implications as it is the first, to our knowledge, to investigate how ratio processing in 

space and time are related, thereby extending the literature on ratio processing beyond the 

numerical and visuo-spatial domain. Results indicate that spatial and temporal ratio 

processing are related even when controlling for absolute magnitude processing ability, 

and that absolute magnitude processing is a significant predictor of ratio processing in 

both spatial and temporal domains. This supports the idea of a common ratio processing 
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system operating across different domains. We also show that spatial magnitude 

discrimination is highly related to temporal magnitude discrimination, which supports the 

idea absolute magnitudes might also be somewhat processed by a common magnitude 

system across domains. However, more research is needed to uncover the underlying 

neural mechanisms related to ratio processing across these two domains. Taken together, 

extending the scope of ratio processing ability from a domain specific ability associated 

with numerical cognition to a domain general framework has important implications as it 

may eventually allow us to understand more complex behavior such as how people make 

relative judgments on stimuli with no clear magnitude, a common practice in psychology 

research.  
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Appendices 

Appendix A: Secondary analysis on the relation between spatial magnitude and 

ratio processing and power analysis 

This appendix reports results of a secondary analyses conducted on data from Park, 

Viegut, & Matthews (2021). The goal of the analyses was to obtain plausible parameter 

estimates for the power analysis conducted when planning the current study. We also 

contrast results found in the current study to the results found in these secondary analyses 

(see discussion section).  

Secondary analyses consisted of a confirmatory factor analyses on the covariance matrix 

reported in the article using the default maximum likelihood estimator (CFA).Park, 

Viegut, & Matthews (2021) examined the developmental trajectories of non-symbolic 

ratio processing in preschoolers, 2nd graders, 5th graders and adults. Participants 

completed four ratio and four absolute magnitude comparison (discrimination) tasks: line 

length, circle area, blob area, and dot number. In the ratio comparison task, participants 

had to identify which of two stimulus pairs had the largest ratio. In the magnitude 

comparison task, participants had to identify which of two stimuli was the largest/longest. 

Table A1 shows the correlation matrix used in the analysis (N = 79, 22 2nd graders, 26 5th 

graders and 31 adults). Given that the sample is heterogeneous, results must be 

interpreted with caution as measurement invariance, how measures differ across different 

populations (e.g., across age), was not analyzed.  

Table A1. Bivariate correlation between variables. 

Tasks 2 3 4 5 6 7 8 9 

1.Age .34 .46 .29 .40 .50 .46 .63 .54 

 

Ratio comparison 

2. Line-R 1         

3. Circle-R .52  1        

4. Blob-R .38  .38  1       

5. Dot-R .35 50. .39 1     

 

Magnitude comparison 
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Note: All correlations were significant p < 0.01. M = magnitude comparison; R = ratio comparison. 

Model fit was adequate (2(19) = 11.311, p = 0.913, CFI = 1.000, RMSEA = 0.000 90% 

CI [0.00 – 0.038], SRMR = 0.042, AIC = -3800.136, BIC = -3759.855). Figure A1 shows 

the standardized solution along with the path diagram. All factor loadings were 

significantly greater than zero (p < 0.001).  

 

Figure A1. CFA on data from Park, Viegut & Matthews (2021). M = magnitude comparison; R = ratio 

comparison. Parameter estimates are fully standardized and are all significant (p < 0.001). 

Based on these values, a power analysis was conducted on the following model (Figure 

A2). 

6. Line-M .45 .49 .40 .41  1     

7. Circle-M .38  .41 .36 .28 .59 1   

8. Blob-M .37 .39 .37 .28 .60 .65 1  

9. Dots-M .39 .41 .42 .30 .51 .58 .62 1 
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Figure A2. Model used in power analysis. EA = empty auditory interval; FA = filled auditory interval; EV 

= empty visual interval; M = magnitude discrimination; R = ratio estimation. 
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Appendix B: Complete solutions for all measurement and structure models 

Table B1. Unstandardized and standardized parameter estimates for the 1-factor CFA 

model 

Parameter  b (SE)  (SE)  p R2 

General factor   

Circle-R  .015 (.003)  .427 (.061)  <.001  .183 

Line-R  .028 (.004)  .686 (.049)  <.001  .471 

Dots-R  .021 (.003)  .569 (.053)  <.001  .324 

EA-R  .029 (.004)  .767 (.043)  <.001  .589 

FA-R  .037 (.003)  .709 (.044)  <.001  .502 

EV-R  .035 (.004)  .738 (.045)  <.001  .544 

Circle-M  .030 (.005)  .422 (.064)  <.001  .178 

Line-M  .029 (.005)  .405 (.061)  <.001  .164 

Dots-M  .024 (.005)  .343 (.062)  <.001  .118 

EA-M  .08 (.008)  .725 (.045)  <.001  .526 

FA-M  .053 (.006)  .656 (.05)  <.001  .431 

EV-M  .074 (.007)  .680 (.044)  <.001  .463 

 

Residual covariances 

 

Circle-R ~~ Circle-M  0 (0)  .091 (.072)  .21   

Line-R ~~ Line-M  0 (0)  .006 (.074)  .94   

Dots-R ~~ Dots-M  0 (0)  .066 (.071)  .35   

EA-R ~~ EA-M  0 (0)  .057 (.086)  .50   

FA-R ~~ FA-M  0 (0)  -.078 (.099)  .43   

EV-R ~~ EV-M  0 (0)  .116 (.082)  .16   
Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation; b = unstandardized coefficients;  = standardized 

coefficients. Standardized covariances (~~) can be interpreted as correlations. 
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Table B2. Unstandardized and standardized parameter estimates for the 2-factor CFA 

model (Ratio and Magnitude Factors) 

Parameter  b (SE)  (SE)  p R2 

Ratio factor   

Circle-R  .015 (.003)  .429 (.06)  <.001  .184 

Line-R  .029 (.004)  .714 (.05)  <.001  .510 

Dots-R  .022 (.003)  .584 (.055)  <.001  .341 

EA-R  .030 (.004)  .792 (.042)  <.001  .628 

FA-R  .038 (.003)  .718 (.047)  <.001  .515 

EV-R  .036 (.004)  .755 (.046)  <.001  .569 

 

Magnitude factor  

 

Circle-M  .031 (.005)  .446 (.064)  <.001  .199 

Line-M  .030 (.005)  .432 (.062)  <.001  .187 

Dots-M  .026 (.005)  .362 (.060)  <.001  .131 

EA-M  .088 (.008)  .790 (.038)  <.001  .625 

FA-M  .057 (.005)  .711 (.045)  <.001  .505 

EV-M  .077 (.007)  .711 (.044)  <.001  .506 

 

Residual covariances 

 

Circle-R ~~ Circle-M  0 (0)  .101 (.071)  .16   

Line-R ~~ Line-M  0 (0)  .053 (.074)  .47   

Dots-R ~~ Dots-M  0 (0)  .086 (.07)  .22   

EA-R ~~ EA-M  0 (0)  .22 (.086)  .01   

FA-R ~~ FA-M  0 (0)  -.004 (.098)  .97   

EV-R ~~ EV-M  .001 (0)  .226 (.084)  .01   

 

Factor covariances 

 

Ratio factor ~~  

Magnitude factor  
.826 (.037)  .826 (.037)  <.001  

 

Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation; b = unstandardized coefficients;  = standardized 

coefficients. Standardized covariances (~~) can be interpreted as correlations. 
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Table B3. Unstandardized and standardized parameter estimates for the 2-factor CFA 

model (Spatial and Temporal Factors) 

Parameter  b (SE)  (SE)  p R2 

Spatial factor   

Circle-R  .017 (.003)  .490 (.063)  <.001  .240 

Line-R  .032 (.004)  .804 (.046)  <.001  .647 

Dots-R  .025 (.002)  .655 (.049)  <.001  .429 

Circle-M  .033 (.005)  .473 (.063)  <.001  .224 

Line-M  .030 (.005)  .433 (.068)  <.001  .187 

Dots-M  .024 (.006)  .343 (.071)  <.001  .118 

 

Temporal factor  

 

EA-M  .081 (.008)  .735 (.045)  <.001  .540 

FA-M  .054 (.006)  .667 (.050)  <.001  .446 

EV-M  .074 (.007)  .684 (.043)  <.001  .468 

EA-R  .029 (.004)  .775 (.044)  <.001  .601 

FA-R  .039 (.003)  .732 (.041)  <.001  .536 

EV-R  .036 (.004)  .747 (.044)  <.001  .558 

 

Residual covariances 

 

Circle-R ~~ Circle-M  0 (0)  .030 (.073)  .68   

Line-R ~~ Line-M  0 (0)  -.125 (.099)  .21   

Dots-R ~~ Dots-M  0 (0)  .031 (.079)  .70   

EA-M ~~ EA-R  0 (0)  .030 (.095)  .75   

FA-M ~~ FA-R  0 (0)  -.126 (.106)  .23   

EV-M ~~ EV-R  0 (0)  .098 (.084)  .25   

 

Factor covariances 

 

Spatial factor ~~  

Temporal factor  

.807 (.039)  .807 (.039)  <.001   

Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation; b = unstandardized coefficients;  = standardized 

coefficients. Standardized covariances (~~) can be interpreted as correlations. 
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Table B4. Unstandardized and standardized parameter estimates for the 4-factor CFA 

model 

Parameter  b (SE)  (SE)  p R2 

Spatial ratio (SR)  

Circle-R  0.017 (0.003)  0.486 (0.066)  <.001  .236 

Line-R  0.034 (0.004)  0.844 (0.048)  <.001  .713 

Dots-R  0.025 (0.003)  0.667 (0.052)  <.001  .445 

Temporal ratio (TR)  

EA-R  0.03 (0.004)  0.81 (0.048)  <.001  .655 

FA-R  0.04 (0.003)  0.747 (0.043)  <.001  .558 

EV-R  0.037 (0.004)  0.774 (0.042)  <.001  .599 

Spatial magnitude (SM)  

Circle-M  0.038 (0.006)  0.539 (0.067)  <.001  .290 

Line-M  0.034 (0.006)  0.483 (0.071)  <.001  .234 

Dots-M  0.028 (0.005)  0.39 (0.067)  <.001  .152 

Temporal magnitude (TM)  

EA-M  0.089 (0.008)  0.799 (0.038)  <.001  .638 

FA-M  0.058 (0.005)  0.719 (0.045)  <.001  .517 

EV-M  0.077 (0.007)  0.711 (0.044)  <.001  .506 

 

Residual covariances 

 

Circle-R ~~ Circle-M  0 (0)  0.052 (0.076)  0.49   

Line-R ~~ Line-M  0 (0)  -0.025 (0.113)  0.83   

Dots-R ~~ Dots-M  0 (0)  0.078 (0.078)  0.32   

EA-R ~~ EA-M  0 (0)  0.211 (0.108)  0.05   

FA-R ~~ FA-M  0 (0)  -0.033 (0.105)  0.75   

EV-R ~~ EV-M  0.001 (0)  0.22 (0.088)  0.01   

 

Factor covariances 

    

Spatial ratio ~~  

Temporal ratio  

0.766 (0.046)  0.766 (0.046)  <.001   

Spatial ratio ~~  

Spatial magnitude  

0.746 (0.07)  0.746 (0.07)  <.001   

Spatial ratio ~~  

Temporal magnitude  

0.665 (0.053)  0.665 (0.053)  <.001   

Temporal ratio ~~  

Spatial magnitude  

0.673 (0.084)  0.673 (0.084)  <.001   

Temporal ratio ~~  

Temporal magnitude  

0.811 (0.045)  0.811 (0.045)  <.001   

Spatial magnitude ~~  

Temporal magnitude  

0.822 (0.078)  0.822 (0.078)  <.001   

Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation; b = unstandardized coefficients;  = standardized 

coefficients. Standardized covariances (~~) can be interpreted as correlations.  
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Table B5. Unstandardized and standardized parameter estimates for the both 4-factor 

SEM model (all paths included and trimmed) 

 All paths  Trimmed 

Parameter  b (SE)  (SE)  p  b (SE)  (SE)  p 

Spatial Ratio (SR) 

Circle-R  0.011 (0.002)  0.486 (0.134)  <.001   0.011 (0.002)  0.485 (0.078)  <.001  

Line-R  0.022 (0.003)  0.844 (0.158)  <.001   0.022 (0.003)  0.845 (0.072)  <.001  

Dots-R  0.016 (0.002)  0.667 (0.147)  <.001   0.016 (0.002)  0.666 (0.072)  <.001  

Temporal Ratio (TR) 

EA-R  0.018 (0.003)  0.81 (0.173)  <.001   0.018 (0.003)  0.809 (0.076)  <.001  

FA-R  0.023 (0.003)  0.747 (0.087)  <.001   0.023 (0.003)  0.747 (0.05)  <.001  

EV-R  0.022 (0.003)  0.774 (0.107)  <.001   0.021 (0.003)  0.774 (0.053)  <.001  

Spatial Magnitude (SM) 

Circle-M  0.038 (0.006)  0.539 (0.072)  <.001   0.037 (0.006)  0.524 (0.065)  <.001  

Line-M  0.034 (0.006)  0.483 (0.075)  <.001   0.033 (0.005)  0.473 (0.067)  <.001  

Dots-M  0.028 (0.005)  0.39 (0.07)  <.001   0.027 (0.005)  0.383 (0.066)  <.001  

Temporal Magnitude (TM) 

EA-M  0.089 (0.008)  0.799 (0.039)  <.001   0.088 (0.008)  0.799 (0.038)  <.001  

FA-M  0.058 (0.005)  0.719 (0.053)  <.001   0.058 (0.005)  0.718 (0.045)  <.001  

EV-M  0.077 (0.007)  0.711 (0.044)  <.001   0.077 (0.007)  0.711 (0.044)  <.001  

Regression coefficients 

SR ~ SM 0.935 (0.451)  0.617 (0.252)  0.01   1.222 (0.209)  0.774 (0.053)  <.001  

TR ~ TM  1.356 (0.377)  0.794 (0.171)  <.001   1.385 (0.219)  0.811 (0.044)  <.001  

SR ~ TM  0.239 (0.369)  0.158 (0.251)  0.53   0 (0)  0 (0)  NA  

TR ~ SM  0.034 (0.324)  0.02 (0.19)  0.92   0 (0)  0 (0)  NA  

Residual covariances 

Circle-R ~~ 

Circle-M  

0 (0)  0.052 (0.33)  0.87   0 (0)  0.05 (0.134)  .71  

Line-R ~~  

Line-M  

0 (0)  -0.025 

(0.449)  

0.96   0 (0)  -0.03 (0.188)  .87  

Dots-R ~~  

Dots-M  

0 (0)  0.078 (0.328)  0.81   0 (0)  0.074 (0.133)  .58  

EA-R ~~  

EA-M  

0 (0)  0.211 (0.426)  0.62   0 (0)  0.209 (0.18)  .24  

FA-R ~~  

FA-M  

0 (0)  -0.033 

(0.303)  

0.91   0 (0)  -0.033 

(0.132)  

.80  

EV-R ~~  

EV-M  

0.001 (0)  0.22 (0.271)  0.42   0.001 (0)  0.22 (0.117)  .06  

Factor covariances  

SM ~~ TM  0.822 (0.078)  0.822 (0.078)  <.001   0.852 (0.05)  0.852 (0.05)  <.001  

SR ~~ TR 0.578 (0.136)  0.578 (0.136)  <.001   0.615 (0.12)  0.615 (0.12)  <.001  
Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation; b = unstandardized coefficients;  = standardized 
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coefficients. Standardized covariances (~~) can be interpreted as correlations. The relationship of interest 

SR ~~ TR (highlighted in grey) is specified as a correlation in this table to make the change in coefficient 

easier to interpret (see Figure B1 for path diagram). Paths that were fixed to zero in the trimmed model are 

framed by dotted lines.  

 

Figure B1. Equivalent trimmed 4-factor SEM model with correlated residuals between the two ratios 

factors instead of a general factor with regression paths. EA = empty auditory interval; FA = filled auditory 

interval; EV = empty visual interval; M = magnitude discrimination; R = ratio estimation. Parameter 

estimates are fully standardized. 
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Appendix C: Complete solutions for models with and without influential outliers 

Table C1. Unstandardized and standardized parameter estimates for the both 4-factor 

SEM models including and excluding influential outliers 
 

Including influential outliers  Excluding influential outliers 

Parameter  b (SE)  (SE)  p  b (SE)  (SE)  p 

Spatial Ratio (SR) factor 

Circle-R  0.011 

(0.002)  

0.485 (0.078)  <.001   0.011 

(0.002)  

0.51 (0.082)  <.001  

Line-R  0.022 

(0.003)  

0.845 (0.072)  <.001   0.019 

(0.003)  

0.849 (0.094)  <.001  

Dots-R  0.016 

(0.002)  

0.666 (0.072)  <.001   0.014 

(0.002)  

0.61 (0.082)  <.001  

Temporal Ratio (TR) factor 

EA-R  0.018 

(0.003)  

0.809 (0.076)  <.001   0.017 

(0.002)  

0.796 (0.106)  <.001  

FA-R  0.023 

(0.003)  

0.747 (0.05)  <.001   0.024 

(0.003)  

0.752 (0.057)  <.001  

EV-R  0.021 

(0.003)  

0.774 (0.053)  <.001   0.021 

(0.003)  

0.777 (0.069)  <.001  

Spatial Magnitude (SM) factor 

Circle-M  0.037 

(0.006)  

0.524 (0.065)  <.001   0.031 

(0.005)  

0.478 (0.066)  <.001  

Line-M  0.033 

(0.005)  

0.473 (0.067)  <.001   0.029 

(0.006)  

0.425 (0.077)  <.001  

Dots-M  0.027 

(0.005)  

0.383 (0.066)  <.001   0.022 

(0.004)  

0.328 (0.058)  <.001  

Temporal Magnitude (TM) factor 

EA-M  0.088 

(0.008)  

0.799 (0.038)  <.001   0.074 

(0.007)  

0.764 (0.047)  <.001  

FA-M  0.058 

(0.005)  

0.718 (0.045)  <.001   0.052 

(0.005)  

0.678 (0.05)  <.001  

EV-M  0.077 

(0.007)  

0.711 (0.044)  <.001   0.069 

(0.007)  

0.68 (0.045)  <.001  

Regression coefficients 

SR ~ SM  1.222 

(0.209)  

0.774 (0.053)  <.001   1.242 

(0.256)  

0.779 (0.063)  <.001  

TR ~ TM  1.385 

(0.219)  

0.811 (0.044)  <.001   1.178 

(0.197)  

0.762 (0.053)  <.001  

SR ~ TM  0 (0)  0 (0)  NA   0 (0)  0 (0)  NA  

TR ~ SM  0 (0)  0 (0)  NA   0 (0)  0 (0)  NA  

Residual covariances 
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Circle-R ~~  

Circle-M  

0 (0)  0.05 (0.134)  0.71   0 (0)  0.017 (0.161)  0.91  

Line-R ~~  

Line-M  

0 (0)  -0.03 (0.188)  0.87   0 (0)  -0.076 (0.235)  0.75  

Dots-R ~~  

Dots-M  

0 (0)  0.074 (0.133)  0.58   0 (0)  0.098 (0.151)  0.52  

EA-R ~~ 

EA-M  

0 (0)  0.209 (0.18)  0.24   0 (0)  0.107 (0.222)  0.63  

FA-R ~~ 

FA-M  

0 (0)  -0.033 

(0.132)  

0.80   0 (0)  -0.104 (0.156)  0.50  

EV-R ~~ 

EV-M  

0.001 

(0)  

0.22 (0.117)  0.06   0 (0)  0.243 (0.147)  0.10  

Factor covariances 

SM ~~ TM  0.852 

(0.050)  

0.852 (0.050)  <.001   0.764 

(0.067)  

0.764 (0.067)  <.001  

SR ~~ TR  0.615 

(0.120)  

0.615 (0.120)  <.001   0.608 

(0.118)  

0.608 (0.118)  <.001  

Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; R = ratio estimation; b = unstandardized coefficients;  = standardized 

coefficients. Standardized covariances (~~) can be interpreted as correlations. The relationship of interest 

SR ~~ TR (highlighted in grey) is specified as a correlation in this table to make the change in coefficient 

easier to interpret (see Figure B1 for path diagram).  
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Appendix D: Deviant ratio CFA 

Table D1. Unstandardized and standardized parameter estimates for the deviant ratio 

CFA model 

Parameter  b (SE)  (SE)  p 

Deviant ratio factor loadings    

Empty auditory (EA-M)    

1.2  0.025 (0.011)  0.475 (0.053)  <.001  

1.25  0.026 (0.011)  0.551 (0.057)  <.001  

1.3  0.029 (0.012)  0.599 (0.049)  <.001  

1.4  0.029 (0.011)  0.648 (0.05)  <.001  

1.6  0.032 (0.013)  0.781 (0.047)  <.001  

Filled auditory (FA-M)    

1.2  0.026 (0.011)  0.483 (0.066)  <.001  

1.25  0.023 (0.01)  0.452 (0.065)  <.001  

1.3  0.02 (0.007)  0.441 (0.062)  <.001  

1.4  0.022 (0.008)  0.516 (0.063)  <.001  

1.6  0.02 (0.008)  0.621 (0.082)  <.001  

Empty visual (EV-M)    

1.2  0.038 (0.009)  0.383 (0.072)  <.001  

1.25  0.057 (0.01)  0.579 (0.066)  <.001  

1.3  0.065 (0.011)  0.667 (0.048)  <.001  

1.4  0.061 (0.009)  0.674 (0.059)  <.001  

1.6  0.05 (0.009)  0.624 (0.062)  <.001  

Circle area (Circle-M)    

1.02  0.01 (0.007)  0.112 (0.064)  0.08  

1.04  0.024 (0.01)  0.27 (0.062)  <.001  

1.06  0.047 (0.022)  0.577 (0.085)  <.001  

1.08  0.026 (0.014)  0.445 (0.108)  <.001  

1.18  0.017 (0.006)  0.582 (0.173)  <.001  

Line length (Line-M)    

1.01  0.012 (0.008)  0.11 (0.072)  0.12  

1.02  0.044 (0.011)  0.437 (0.068)  <.001  

1.03  0.042 (0.011)  0.441 (0.102)  <.001  

1.06  0.031 (0.011)  0.515 (0.107)  <.001  

1.12  0.017 (0.006)  0.485 (0.166)  0  

Dot number (Dots-M)    

1.09  0.055 (0.011)  0.445 (0.075)  <.001  

1.1  0.039 (0.011)  0.328 (0.086)  <.001  

1.12  0.03 (0.009)  0.299 (0.091)  <.001  

1.14  0.043 (0.011)  0.427 (0.089)  <.001  

1.25  0.034 (0.007)  0.535 (0.112)  <.001  

 

Subfactor loadings 
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Temporal magnitude (TM)    

EA-M  3.175 (1.444)  0.954 (0.039)  <.001  

FA-M  2.611 (1.068)  0.934 (0.049)  <.001  

EV-M 1.363 (0.268)  0.806 (0.055)  <.001  

Spatial magnitude (SM)    

Circle-M 1.526 (0.77)  0.836 (0.127)  <.001  

Line -M 1.157 (0.381)  0.757 (0.107)  <.001  

Dots -M 0.669 (0.169)  0.556 (0.097)  <.001  

    

Factor covariance    

TM~~SM 0.852 (0.086)  0.852 (0.086)  <.001  
Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; b = unstandardized coefficients;  = standardized coefficients.  

 

Table D2. Unstandardized and standardized parameter estimates for the final 4-factor 

SEM models including all deviant ratios and excluding problematic deviant ratios 
 

Including all deviant ratios  Excluding problematic deviant ratios 

Parameter  b (SE)  (SE)  p  b (SE)  (SE)  p 

Spatial Ratio (SR) factor 

 Circle-R  0.011 (0.002)  0.485 (0.078)  <.001   0.011 (0.002)  0.486 (0.079)  <.001  

 Line-R  0.022 (0.003)  0.845 (0.072)  <.001   0.022 (0.003)  0.844 (0.074)  <.001  

 Dots-R  0.016 (0.002)  0.666 (0.072)  <.001   0.016 (0.002)  0.665 (0.073)  <.001  

Temporal Ratio (TR) factor  

 EA-R  0.018 (0.003)  0.809 (0.076)  <.001   0.017 (0.003)  0.809 (0.079)  <.001  

 FA-R  0.023 (0.003)  0.747 (0.05)  <.001   0.022 (0.003)  0.747 (0.05)  <.001  

 EV-R  0.021 (0.003)  0.774 (0.053)  <.001   0.021 (0.003)  0.777 (0.054)  <.001  

Spatial Magnitude (SM) factor  

 Circle-M  0.037 (0.006)  0.524 (0.065)  <.001   0.043 (0.006)  0.559 (0.062)  <.001  

 Line-M  0.033 (0.005)  0.473 (0.067)  <.001   0.039 (0.006)  0.53 (0.063)  <.001  

 Dots-M  0.027 (0.005)  0.383 (0.066)  <.001   0.027 (0.005)  0.378 (0.065)  <.001  

Temporal Magnitude (TM) factor  

 EA-M  0.088 (0.008)  0.799 (0.038)  <.001   0.087 (0.008)  0.789 (0.038)  <.001  

 FA-M  0.058 (0.005)  0.718 (0.045)  <.001   0.058 (0.005)  0.718 (0.045)  <.001  

 EV-M  0.077 (0.007)  0.711 (0.044)  <.001   0.077 (0.007)  0.713 (0.043)  <.001  

Regression coefficients 

SR ~ SM  1.222 (0.209)  0.774 (0.053)  <.001   1.192 (0.201)  0.766 (0.053)  <.001  

TR ~ TM  1.385 (0.219)  0.811 (0.044)  <.001   1.451 (0.236)  0.823 (0.043)  <.001  

SR ~ TM  0 (0)  0 (0)  NA   0 (0)  0 (0)  NA  

TR ~ SM  0 (0)  0 (0)  NA   0 (0)  0 (0)  NA  

Residual covariances 

Circle-R ~~  

Circle-M  

0 (0)  0.05 (0.134)  0.71   0 (0)  0.035 (0.133)  0.79  
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Line-R ~~  

Line-M  

0 (0)  -0.03 (0.188)  0.87   0 (0)  -0.019 

(0.196)  

0.92  

Dots-R ~~  

Dots-M  

0 (0)  0.074 (0.133)  0.58   0 (0)  0.081 (0.137)  0.56  

EA-R ~~ 

EA-M  

0 (0)  0.209 (0.18)  0.24   0 (0)  0.204 (0.181)  0.26  

FA-R ~~ 

FA-M  

0 (0)  -0.033 

(0.132)  

0.8   0 (0)  -0.033 

(0.136)  

0.81  

EV-R ~~ 

EV-M  

0.001 (0)  0.22 (0.117)  0.06   0 (0)  0.207 (0.121)  0.09  

Factor covariances 

SM ~~ TM  0.852 (0.05)  0.852 (0.05)  <.001   0.878 (0.048)  0.878 (0.048)  <.001  

SR ~~ TR  0.615 (0.12)  0.615 (0.12)  <.001   0.564 (0.12)  0.564 (0.12)  <.001  
Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; b = unstandardized coefficients;  = standardized coefficients. Standardized 

covariances (~~) can be interpreted as correlations. The relationship of interest SR ~~ TR (highlighted in 

grey) is specified as a correlation in this table to make the change in coefficient easier to interpret (see 

Figure B1 for path diagram). 
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Appendix E: Complete solutions for models with R2 as the ratio accuracy measure  

Table E 1. Unstandardized and standardized parameter estimates for the final 4-factor 

SEM model using R2 as ratio estimation accuracy measure 

 Using average absolute error  Using R2 

Parameter  b (SE)  (SE)  p  b (SE)  (SE)  p 

Spatial Ratio (SR) factor 

 Circle-R  0.011 

(0.002)  

0.485 

(0.078)  

<.001   0.067 

(0.013)  

0.727 

(0.057)  

<.001  

 Line-R  0.022 

(0.003)  

0.845 

(0.072)  

<.001   0.091 

(0.017)  

0.878 

(0.044)  

<.001  

 Dots-R  0.016 

(0.002)  

0.666 

(0.072)  

<.001   0.072 

(0.013)  

0.695 

(0.063)  

<.001  

Temporal Ratio (TR) factor  

 EA-R  0.018 

(0.003)  

0.809 

(0.076)  

<.001   0.089 

(0.013)  

0.839 

(0.04)  

<.001  

 FA-R  0.023 

(0.003)  

0.747 

(0.05)  

<.001   0.109 

(0.013)  

0.714 

(0.046)  

<.001  

 EV-R  0.021 

(0.003)  

0.774 

(0.053)  

<.001   0.095 

(0.012)  

0.731 

(0.052)  

<.001  

Spatial Magnitude (SM) factor  

 Circle-M  0.037 

(0.006)  

0.524 

(0.065)  

<.001   0.036 

(0.006)  

0.508 

(0.067)  

<.001  

 Line-M  0.033 

(0.005)  

0.473 

(0.067)  

<.001   0.033 

(0.005)  

0.469 

(0.066)  

<.001  

 Dots-M  0.027 

(0.005)  

0.383 

(0.066)  

<.001   0.027 

(0.005)  

0.385 

(0.067)  

<.001  

Temporal Magnitude (TM) factor  

 EA-M  0.088 

(0.008)  

0.799 

(0.038)  

<.001   0.09 

(0.008)  

0.809 

(0.037)  

<.001  

 FA-M  0.058 

(0.005)  

0.718 

(0.045)  

<.001   0.058 

(0.005)  

0.714 

(0.045)  

<.001  

 EV-M  0.077 

(0.007)  

0.711 

(0.044)  

<.001   0.076 

(0.008)  

0.703 

(0.045)  

<.001  

Regression coefficients 

SR ~ SM  1.222 

(0.209)  

0.774 

(0.053)  

<.001   1.118 

(0.21)  

0.745 

(0.062)  

<.001  

TR ~ TM  1.385 

(0.219)  

0.811 

(0.044)  

<.001   1.441 

(0.237)  

0.822 

(0.044)  

<.001  

SR ~ TM  0 (0)  0 (0)  NA   0 (0)  0 (0)  NA  

TR ~ SM  0 (0)  0 (0)  NA   0 (0)  0 (0)  NA  

Residual covariances 

Circle-R ~~  

Circle-M  

0 (0)  0.05 

(0.134)  

0.71   0 (0.001)  -0.029 

(0.089)  

0.75  
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Line-R ~~  

Line-M  

0 (0)  -0.03 

(0.188)  

0.87   0 (0)  0.02 

(0.099)  

0.84  

Dots-R ~~  

Dots-M  

0 (0)  0.074 

(0.133)  

0.58   0.001 

(0.001)  

0.076 

(0.073)  

0.29  

EA-R ~~ 

EA-M  

0 (0)  0.209 

(0.18)  

0.24   0.001 

(0.001)  

0.161 

(0.113)  

0.16  

FA-R ~~ 

FA-M  

0 (0)  -0.033 

(0.132)  

0.8   0 (0.001)  -0.033 

(0.099)  

0.74  

EV-R ~~ 

EV-M  

0.001 (0)  0.22 

(0.117)  

0.06   0.003 

(0.001)  

0.284 

(0.079)  

<.001  

Factor covariances 

SM ~~ TM  0.852 (0.05)  0.852 

(0.05)  

<.001   0.872 

(0.048)  

0.872 

(0.048)  

<.001  

SR ~~ TR  0.615 (0.12)  0.615 

(0.12)  

<.001   0.723 

(0.116)  

0.723 

(0.116)  

<.001  

 Note: EA = empty auditory interval; FA = filled auditory interval; EV = empty visual interval; M = 

magnitude discrimination; b = unstandardized coefficients;  = standardized coefficients. Standardized 

covariances (~~) can be interpreted as correlations. The relationship of interest SR ~~ TR (highlighted in 

grey) is specified as a correlation in this table to make the change in coefficient easier to interpret (see 

Figure B1 for path diagram). 
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Appendix F: Correlations between task performance and demographic variables 

Table F1. Bivariate correlations between tasks and demographic variables 
 

Education Music training Music playing 

Temporal tasks    

Empty auditory interval magnitude  -.056 -.012 .086 

Empty auditory interval ratio -.086 .102 .044 

Filled auditory interval magnitude  .081 .003 .094 

Filled auditory interval ratio  .010 .055 .110 

Empty visual interval magnitude  .024 -.037 .061 

Empty visual interval ratio  .005 .055 .068 

    

Spatial tasks    

Circle magnitude  -.045 .073 .118 

Circle ratio  -.078 -.001 .042 

Dots magnitude  -.139 * .018 .037 

Dots ratio  -.014 -.041 .068 

Line magnitude  .040 .094 .070 

Line ratio  -.018 .035 .118 
* p < .05 
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