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Abstract

In this thesis, we incorporate spatial structure into different ecological/epidemiological systems

by applying the patch model. Firstly, we consider two specific costs of dispersal: (i) the period

of time spent for migration; (ii) deaths during the dispersal process. Together with the delayed

logistic growth, we propose a two-patch model in terms of delay differential equation with two

constant time delays. The costs of dispersal, by themselves, only affect the population sizes at

equilibrium and may even drive the populations to extinction. With oscillations induced by the

delay in logistic growth, numerical examples are provided to illustrate the impact of loss by

dispersal.

Secondly, we study a predator-prey system in a two-patch environment with indirect effect

(fear) considered. When perceiving a risk from predators, a prey may respond by reducing

its reproduction and decreasing or increasing (depending on the species) its mobility. The

benefit of an anti-predation response is also included. We investigate the effect of anti-predation

response on population dynamics by analyzing the model with a fixed response level and study

the anti-predation strategies from an evolutionary perspective by applying adaptive dynamics.

Thirdly, we explore the short-term or transient dynamics of some SIR infectious disease

models over a patchy environment. Employing the measurements of reactivity of equilibrium

and amplification rates previously used in ecology to study the response of an ecological sys-

tem to perturbations to an equilibrium, we analyze the impact of the dispersals/travels between

patches and other disease-related parameters on short term dynamics of these spatially struc-

tured disease models. This contrasts with most existing works on modelling the dynamics of

infectious disease which are only interested in long-term disease dynamics in terms of the basic

reproduction number.

Keywords: dispersal, population dynamics, patch model, costs of dispersal, time delay,

predator-prey, anti-predation response, adaptive dynamics, SIR disease model, amplification

rate, transient dynamics
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Summary for Lay Audience

Population dynamics is an important subject that has wide applications in areas such as ecology,

microbiology, epidemiology, virology, and immunology. There are millions of species in the

real world, some of them interacting with each other. Among all types of interactions between

species, the predator-prey type is most interesting and complicated. Moreover and importantly,

the transmission mechanism of infectious diseases is also of this type, adding more weight to

its significance. On the other hand, many species including ourselves are mobile. It has been

widely agreed that spatial dispersion is one of the main factors responsible for biodiversity.

As for the spread of disease, dispersals/travels of infected individuals play a key role. This

thesis aims to address some issues on population dynamics with the above-mentioned two main

features: predator-prey type interaction and dispersal in spatially heterogeneous environments.

For the latter, we only deal with discrete spatial variation, meaning that we use patch models.

We start from the model of one species to study the impact of costs associated with dispersal. In

predator-prey systems, we consider some indirect effects in contrast to predation, including the

impact on the dispersal of prey. Finally, we investigate the transmission dynamics of infectious

diseases over a patchy environment.
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Chapter 1

Introduction

Population dynamics is an important subject which has wide applications in areas such as

ecology, microbiology, epidemiology, virology, immunology and so on. There are millions

of species in the real world. Some of them interact with each other, affecting the population

growth of every species involved. Among all types of interactions between species, predator-

prey type is most interesting and complicated. This is mainly because of its ubiquity and

richness on the practical side, and the challenges in mathematics it brings in. Moreover and

importantly, transmission mechanism of infectious diseases is also of this type, adding more

weight to its significance.

Among those species in the real world, some are very mobile, and it has been widely agreed

that the spatial dispersion is one of the main factors responsible for the biodiversity. As such,

it is of particular importance both in practice and mathematics to study population dynamics in

spatially heterogeneous environments, particularly the population dynamics of predator-prey

type interacting species including transmission dynamics of infectious diseases.

This thesis aims to address some issues on population dynamics with the above mentioned

two main features: predator-prey type interaction and dispersal in spatially heterogeneous envi-

ronments. For the latter, we only deals with discrete spatial variation, meaning that we will use

patch models. To help the readers better understand the contexts of the main body of the thesis,

in this Chapter, we first present some basic background and preparations in population dynam-

ics, transmission dynamics of infectious diseases, predator-prey interactions and the related

1



2 Chapter 1. Introduction

fear effect, and dispersals between patches, together with a brief summary of the mathematical

tools that will be used in this thesis.

1.1 Population dynamic

Assuming that the number of individuals N in a population varies continuously over time t, the

rate of change can be expressed as the derivative with respect to t,

dN
dt

= rates in − rates out.

For an isolated population, the changes are resulted from births and deaths. Let b > 0 be the

per capita reproduction rate and d > 0 be the per capita natural mortality rate. Then,

dN
dt

= bN − dN = rN. (1.1)

Given the initial population N(0) = N0, it has solution

N(t) = N0e(b−d)t = N0ert, (1.2)

which is called Malthusian growth since this approach was firstly proposed by Malthus in 1798.

When b > d, this exponential growth is unbounded and hence, is unrealistic.

To address this problem, Verhulst [52] modified this equation to

dN
dt

= rN(1 −
N
K

) (1.3)

by adding a quadratic term accounting for the intra-species competition. This is known as the

logistic equation. Now the net per capita growth rate, r(1−N/K), decreases with N, and K > 0

is the carrying capacity of the environment. If N(0) = N0, the solution of (1.3) is

N(t) =
KN0ert

K + N0(ert − 1)
(1.4)
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t
0

K

N
(t

)

Figure 1.1: The solutions of the logistic equation (1.3) for different initial populations.

and is illustrated in Figure 1.1. One can easily verify that limt→∞ N(t) = K.

1.1.1 Predator-prey systems

When species interact, the population dynamics of those species are affected. An important

type of interactions is predation, meaning that one of the species is a predator and the other

is its prey. The predator has an inhibitory effect on the prey, while the prey has a beneficial

effect on the predator. The earliest and probably the most well-known predator-prey model is

the Lotka-Volterra equations, 
dU
dt

= αU − βUV,

dV
dt

= −δV + cβUV,
(1.5)

which was proposed by Lotka [32, 33] and Volterra [53] respectively about a century ago. In

this model, U(t) is the population of prey and V(t) is that of the predator. Parameters α, β, δ

and c are positive constants. The assumptions made to the model are as follows.

• The population of prey is only limited by the predator, and in the absence of any predation

would grow unboundedly in a Malthusian way.

• The effect of predation on prey is to reduce its per capita growth rate by a term propor-

tional to predator population.

• In the absence of any prey for sustenance, the population of predator decays exponen-
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tially.

• The consumption of prey is the only contribution to the growth of the predator population

with c accounting for the conversion efficiency.

The Lotka-Volterra model helps to explain the oscillation phenomenon in nature but is

structurally unstable in mathematics. Since then, there have been numerous modifications/generalizations

to this model which can be represented by the following system:


dU
dt

= g1(U) − p(U,V)V,

dV
dt

= g2(V) + cp(U,V)V,
(1.6)

where g1(U) (g2(V)) represents the population dynamics of the prey (predator) in the absence

of the predator (prey). The predation term is p(U,V)V and p(U,V) is referred as the func-

tional response. One example of modifications is the Rosenzweig-MacArthur model [45]

where g1(U) = αU(1 − U/K) is chosen as the logistic growth and g2(V) = −δV is same as

that in (1.5).

In the two models with g2(V) = −δV , the predators are assumed to be specialist, whose diet

is limited to that prey species (which indeed can be a very small range of species but people

usually make this assumption for mathematical simplification). In the real world, there also

exists a large number of generalist predators such as most omnivores that live on a wide range

of food resources. Theoretical studies can be found, for examples, in [16, 48, 24] and the

references therein.

1.1.2 Transmission of infectious diseases

Another important application of population dynamics is to model the transmission of infec-

tious diseases, in order to explain the spread of a disease, to predict the future course of an

outbreak, and to examine the likely effect of controls. One of the earliest mathematical mod-

els was proposed by Bernoulli [4] in 1760 that considered the effect of cow-pox inoculation

against smallpox. However, there was little work had been done until the beginning of 20th
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century. A sequence of papers by Kermack and McKendrick published in 1927, 1932, and

1933 [25, 26, 27] laid the foundations of the entire approach based on compartmental models.

We start from the special case of the model proposed by Kermack and McKendrick in 1927

which is given by the following system of ordinary differential equations:



dS
dt

= −βS I,

dI
dt

= βS I − γI,

dR
dt

= γI.

(1.7)

In this model, population is assigned to three compartments: susceptible class S —individuals

who can catch the disease by contact with the infectives; infected class I—individuals who have

the disease and can transmit it; and removed class R—individuals who are either recovered and

immune or dead and hence play no further role in the disease. The assumptions are as follows.

• The population is closed so that immigration, emigration, births and disease-unrelated

deaths are omitted.

• The infection is reflected by the term −βS I (analogous to the predation term in the Lotka-

Volterra predator-prey system (1.5)) with the constant β > 0 denoting the transmission

rate.

• The transition rate from class I to class R is γI where 1/γ is the average of time individ-

uals spent in the infectious state.

Given the initial population in each class, S (0) = S 0 > 0, I(0) = I0 > 0 and R(0) = R0 > 0,

define R0 = βS 0/γ. If R0 > 1, then I(t) first increases up to a maximum value then decreases to

zero as t goes to infinity while S (t) monotonically decreases approaching to a positive limiting

value (see, e.g., [21]). This result corresponds to the scenario of an epidemic which is a sudden

outbreak of a disease such as a season of influenza and the outbreak of SARS in 2002. It has

also been proved that no epidemics are possible if R0 6 1.

Another situation to be concerned is endemic in which a disease is always present. Be-

cause of the long time period involved, the demographic effects of births and deaths should
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be incorporated into the SIR system. Consider a special case when per capital birth rates and

per capital natural death rates for all compartments are equal and there are no disease-related

deaths, model (1.7) is modified to



dS
dt

= bN − βS I − bS ,

dI
dt

= βS I − γI − bI,

dR
dt

= γI − bR,

(1.8)

with R indicating recovered individuals with life-long immunity. The total population size N

remains constant. This system has two possible steady-state solutions: disease-free equilibrium

(DFE), E0 = [N, 0, 0], and endemic equilibrium (EE), E+ = [S ∗, I∗, R∗] with

S ∗ =
γ + b
β

, I∗ =
bN
γ + b

−
b
β
, R∗ =

γN
γ + b

−
γ

β
.

Now defineR0 = βN/(γ+b). The DFE is locally asymptotically stable ifR0 < 1 and is unstable

if R0 > 1. The EE exists and is locally asymptotically stable as long as R0 > 1 (see, e.g., [7]).

In the extensive literature, there have been numerous variants of the SIR model regarding

to different transmission mechanisms, and the threshold theorems have been extended. The

threshold index R0, called the basic reproduction number or the basic reproduction ratio, is

defined as the expected number of secondary infections from a single infected individual during

his or her entire period of infectiousness in a completely susceptible population. When it

comes to mathematical modelling, the next generation method, which was initially introduced

by Diekmann et al. [11], has been widely used to calculate R0. Particularly in a compartmental

model formulated as a system of ordinary differential equations, R0 is the spectral radius of the

next generation matrix defined by Driessche and Watmough [13].

To summarize, this section gives a brief introduction to the basic mathematical models

applied in ecology and epidemiology which are related to our works. The literature about

mathematical modelling is now extensive and growing very fast. We refer to the book by

Murray [38] and the book by Britton [7] for more detailed and systematic introductions.
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1.2 Patch models

All the aforementioned models only treat the change of population over time despite variabil-

ity in the physical environment. In other words, the habitat is assumed to be homogeneous.

However, the ecological/epidemiological situation can be completely understood only if popu-

lations are considered in both time and space [41]. Spatial structure can be included in either a

continuous or discrete way. If continuous space is considered, models are formulated by partial

differential equations. In this work, we always assume space to be discrete and employ patch

models.

Suppose the species range consists of spatially isolated local habitats. Examples can be

found in nature such as coral-reefs fishes and birds living in islands. Human beings, ourselves,

also live in patchy environment where each patch can be a community, city or country. On

the other hand, habitat fragmentation is common nowadays for many species due to human

activities and constructions.

Following the tradition of Levin [28, 29] and Vance [51], the populations in different habi-

tats are functionally separate except through the interconnection provided by between-habitat

dispersal. Consider an n-patch environment (n > 2). Let Ni denote the population size in patch

i and fi(Ni) describe the population dynamics without dispersal for all i ∈ {1, 2, . . . , n}. The

local dynamics are coupled to each other by dispersal terms, yielding a large system of ordinary

differential equations,

dNi

dt
= fi(Ni) +

n∑
j=1

(
Di jN j − D jiNi

)
, 1 6 i 6 n, (1.9)

where Di j > 0 is the per capital dispersal rate from patch j to patch i and Dii is defined as zero.

More generally, written in vector notation, the model becomes

dN
dt

= F(N) + DN (1.10)

where F is a vector functions of growth rates and D = [di j]n×n is a matrix of dispersal rates.

Constant di j represents the immigration rate from patch j to patch i with i , j, and −dii repre-



8 Chapter 1. Introduction

sents the emigration rate of the population in patch i.

The theoretical study of dispersal took place after the work of Skellam [49] in which the

movement of organisms was modeled as molecular diffusion. In patch models, the simplest

case of dispersal is passive diffusion, in which the net exchange of the species between two

patches is proportional to the difference in populations [28, 29]. Hence, matrix D has the

following properties as summarized by Hastings [17]:

• D is symmetric, that is di j = d ji;

• all diagonal entries are negative, dii < 0, and all off-diagonal entries are non-negative,

di j > 0 for i , j;

• the column sums of D are all zeros, that is −dii =
∑

j,i d ji;

• D is irreducible (see, e.g., [35, 50]).

The first three assumptions are standard for passive diffusion. If the last one is met, the n

patches cannot be separated into subgroups such that no immigration is possible from one sub-

group to the other. This formulation also implies that: (i) the dispersal process is instantaneous;

(ii) neither births nor deaths occur during the process.

This continuous-time discrete-space model has been used in a vast literature on mathemat-

ical modelling of ecology and epidemiology. In predator-prey systems, the migration may be

density-dependent (see, e.g., [30, 15, 37, 20, 34] and the references therein). For transmission

of diseases, the local dynamics includes various types such as SI, SIS, SIR, SEIR and even

vector-borne diseases [54, 3, 55, 1, 23, 6, 14, 2, 9].

1.3 Thesis motivations and outlines

1.3.1 Cost of dispersal

The passive diffusion, though simple in modelling and mathematical analysis, is not realistic

for most cases. Bonte et al. [5] reviewed all possible costs associated with dispersal (see

references therein) and classified them into four different types:
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• energetic costs—metabolic energy lost in movements;

• time costs—the time invested in dispersal;

• risk costs—the mortality risks, for example, due to increased predation, and attrition

costs resulted from accumulated damage or physiological changes;

• opportunity costs—loss of advantages acquired in a familiar and adapted environment.

In Chapter 2, we consider two specific costs of dispersal: (i) the period of time spent

for migration; (ii) deaths during dispersal process. In a two-patch model, we assume that

individuals moving from one patch to the other need a fixed period of time and the per capita

dispersal-related mortality rate is a positive constant, which yields a system of delay differential

equations. In addition, we employ the delayed logistic growth, and explore the effect of two

delays in both separate and joint ways.

1.3.2 Fear effect

In most works on predator-prey system, the population of two species are affected by preda-

tion. However, some field observations and empirical results [47, 39, 42, 60] show that merely

the presence of predator can alter ecological behaviours of prey, and thereby, influences its

population size. Such effects are indirect and non-lethal compared with consumption but are

of equal significance [44].

Brown et al. [8] firstly modeled the ecology of fear by conjoining the Rosenzweig-MacArthur

model with a foraging theory as fear was represented by the level of vigilance. Based on the re-

sults of a field study [60], Wang et al. [57] considered fear as a cost to the prey equation which

reduced the reproduction rate. Wang and Zou [59] modified the model in [57] to incorporate

a benefit of the anti-predation response (reducing the chances of being caught and consumed

by predator) in addition to the cost. Sasmal and Takeuchi [46] also considered both cost and

benefit due to anti-predation strategies with a different functional response. The results of

these mathematical works also suggest the inclusion of such indirect effects into predator-prey

models.
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Taking dispersal into account, prey, when perceiving a predation risk, may change their

dispersal strategy to avoid encounters with the predator. In most cases, animals (such as mice)

are observed to reduce their activities since moving prey are more likely to be detected by

predators; usually this associates with the increased use of refuges [31]. Also, there are prey

species (such as birds) that have moving advantages, which may respond to the predation risk

by moving more frequently. For a spatially continuous habitat, Wang and Zou [58] presented

a reaction-diffusion model with predator-taxis for the prey accounting for its intention to move

away from the predator.

In Chapter 3, we consider the predator-prey interaction in a two-patch environment and

incorporate the fear effects in three factors: reproduction, predation, and dispersion. We as-

sume that the response functions depend on both the level of anti-predation response and the

population of local predators. In order to focus on the prey’s population and for mathemat-

ical simplicity, we assume the populations of predator in both patches to be constant, which

approximately corresponds to a generalist predator. We investigate the effect of anti-predation

response on population dynamics by analyzing the model with a fixed response level and study

the anti-predation strategies from evolutionary perspective by applying adaptive dynamics.

1.3.3 Short-term epidemicity

In the SIR epidemic patch model which is extended from the Kermack-McKendrick system

(1.7), the disease cannot persist. We are interested in the patterns by which the disease dies

out. Since the system does not admit a locally asymptotically stable disease-free equilibrium,

calculating the basic reproduction number R0 by the next generation matrix [13] is impossible.

In Chapter 4, we employ the measurement of amplification rate previously used in ecology,

denoted by Γ0, to study the transient or short term disease dynamics. We investigate its depen-

dence on different parameters and the effect of some common control measures. We continue to

study the SIR endemic patch model with vital dynamics (births and disease-unrelated deaths)

and explore the possible combinations of short-term response and long-term asymptotic be-

haviour in terms of the two threshold indices R0 and Γ0.



1.4. Mathematical theories and methodologies 11

The thesis ends up with a conclusion in Chapter 5, where I summarize the key points of

all projects, and propose some possible topics for future work.

1.4 Mathematical theories and methodologies

All the models presented in this work are formulated in terms of differential equations. For

them to be biologically well-posed, we first show the global existence of the unique solution

and make sure that the biologically meaningful state variables, such as populations, remain

non-negative and are bounded. For most dynamical systems, it is hard or even impossible to

obtain the solution explicitly. Thus, we apply dynamical system theory to explore the behaviour

qualitatively.

1.4.1 Stability analysis for equilibria

The time-independent solutions, called equilibria, expose the steady-state features of dynam-

ical systems. An equilibrium is locally asymptotically stable if solution trajectories starting

close to the equilibrium will eventually converge to it. The stability is global if the convergence

occurs regardless of initial points. An equilibrium is unstable if it repels solution trajectories.

For nonlinear systems, the dynamics near a hyperbolic equilibrium solution is equivalent to

that of its corresponding linearization by Hartman-Grobman Theorem [43]. Hence, the local

stability is determined by the eigenvalues of the Jacobian matrix evaluated at the equilibrium

under consideration. The equilibrium is locally asymptotically stable if all eigenvalues have

negative real part, while it is unstable if at least one eigenvalue has positive real part. Moreover,

with the change of parameter values, the final state of the dynamical system may switch. Such

a phenomenon is called bifurcation.

1.4.2 Adaptive dynamics

In order to study the long-term evolution of phenotypes in a population, adaptive dynamics has

been developed. The trait is represented by a continuous variable. Assume that the resident

population is in a dynamical equilibrium which is monomorphic exhibiting trait value x and a
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rare mutant with different trait value y invades. The idea of invasibility analysis [12] is to find

out whether the population of mutant will grow or decay once introduced. This is associated

with the local instability/stability of the boundary equilibrium of the corresponding resident-

mutant competition system.

Define the invasion exponent [12] as a function of both the resident trait x and the mutant

trait y, say θ(x, y), which measures the relative fitness of mutant in the environmental condition

mediated by the resident. The sign of the selection gradient

∂θ(x, y)
∂y

∣∣∣∣∣
y=x

(1.11)

shows the direction of evolution. A higher/lower value of trait is favored when it is posi-

tive/negative. An evolutionary singular strategy x∗ is a trait value at which the selection gradi-

ent vanishes. According to the criteria presented in [10, 12], if

∂2θ(x, y)
∂y2

∣∣∣∣∣∣
y=x=x∗

< 0, (1.12)

then x∗ is an evolutionary stable strategy (ESS), that is, the resident using strategy x∗ can not

be invaded by any mutant using other strategies. If

∂2θ(x, y)
∂x2

∣∣∣∣∣∣
y=x=x∗

>
∂2θ(x, y)
∂y2

∣∣∣∣∣∣
y=x=x∗

, (1.13)

then x∗ is a convergence stable strategy (CSS), that is, among any pair of strategies near x∗, the

one closer to x∗ is always the winning strategy.

In reality, evolution dynamics is typically much slower than the population dynamics. Fur-

ther assume time scale separation, in particular that the duration of the inter-strain (or inter-

species) competitive interaction is much shorter than that of the mutation process. Thus, the

population has always reached a steady state before the appearance of a new mutant. The pop-

ulation remains monomorphic if a successful invasion always ends up with the replacement of

the resident strain. Repeating the trait substitution generates a sequence of trait values which

converges to an optimal strategy. In addition, the pairwise invasibility plot is an important tool
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which graphically illustrates the information concerning the adaptive dynamics of traits.

Without time scale separation, we assume that trait α evolves continuously with time toward

the direction of increasing the fitness Φ. Then, the evolution of α is governed by

dα
dt

= σα
∂Φ

∂α
, (1.14)

where σ > 0 represents the speed of evolution. This approach, though less realistic, is more

tractable in mathematics.

1.4.3 Reactivity

Most studies of ecological models focus on asymptotic behaviour, such as finding steady states

and examining their stability. The transient dynamics may differ significantly from the long-

term behaviour and is also crucial for understanding ecological systems [18, 19]. Given a

linear system of ordinary differential equations (or the linearization of a nonlinear system near

the equilibrium under consideration) with initial conditions,

dx
dt

= Ax, x(0) = x0, (1.15)

Neubert and Caswell [40] defined reactivity as the maximum initial amplification rate over all

possible (small) perturbations,

reactivity := max
x0,0

[(
1
‖x‖

d‖x‖
dt

)∣∣∣∣∣∣
t=0

]
, (1.16)

where ‖ · ‖ denotes the Euclidean norm,

‖x‖ :=
√

x2
1(t) + x2

2(t) + · · · + x2
n(t).

If some perturbations initially grow (amplify), the equilibrium is called reactive. When all

perturbations initially decay (attenuate), the equilibrium is called non-reactive.
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By direct calculation, the authors found that,

(
1
‖x‖

d‖x‖
dt

)∣∣∣∣∣∣
t=0

=
x0

T H(A)x0

x0
T x0

. (1.17)

The matrix H(A) = (A + AT )/2 is called the symmetric part or Hermitian part of A. The right

hand side of (1.17) is in the form known as the Rayleigh quotient (or the Rayleigh-Ritz ratio).

By Rayleigh’s principle (see, e.g., [22]), its maximum value is the largest eigenvalue of H(A)

obtained at the corresponding eigenvectors. Hence,

reactivity = λmax(H(A)). (1.18)

This definition has been generalized by Mari et al. [36] to λmax(H(CT CA)) correspond-

ing to a system output y with an ecologically motivated linear transformation y = Cx. One

application is to epidemiological models when infection-related variables are of interest. On

the other hand, Wang et al. [56] has extended this concept to reaction-diffusion systems with

spatial heterogeneity taken into account.
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Chapter 2

A Single Species Model with Delay and

Dispersal

2.1 Introduction

In the classical population models, for example, the logistic equation [15],

u′(t) = ru(t)
[
1 −

u(t)
K

]
, (2.1)

all the changes are assumed to be instantaneous. However, most biological activities take

time. Hutchinson [6] suggested a finite time lag τ > 0 to be considered in the self-regulatory

mechanism (2.1), yielding the delayed logistic equation,

u′(t) = ru(t)
[
1 −

u(t − τ)
K

]
. (2.2)

An equivalent form of (2.2) is known as the Wright equation, so (2.2) is also referred as the

Hutchinson-Wright equation. It has been well studied, and the following theorem concludes

some well-known results (see, e.g., [5, 11] for proofs):

Theorem 2.1.1 The trivial solution of (2.2) is always unstable. The positive equilibrium u = K

is locally asymptotically stable for rτ < π/2 and is unstable for rτ > π/2. When rτ > π/2,

periodic solution occurs via Hopf bifurcation.

21



22 Chapter 2. A Single SpeciesModel with Delay and Dispersal

In such a simple equation, the introduced time delay generates oscillated solutions. There

has followed a vast body of work studying the effect of delay in different systems. Considering

the variability in environment and the ability of animals to move, it becomes an increasing

interest to investigate the effect of time delay on population dynamics in a spatially structured

model incorporated with dispersal. In this work, we use patch model following the tradition of

Levin [7, 8] and Vance [14]: assume that the species lives in discrete habitats and the popula-

tions are connected by between-habitat dispersal. To make it simple, we restrict our model to

two patches. Together with the delayed logistic growth, we have the following system of delay

differential equations,

u′1(t) = r1u1(t)
[
1 −

u1(t − τ)
K1

]
+ [d21u2(t) − d12u1(t)] ,

u′2(t) = r2u2(t)
[
1 −

u2(t − τ)
K2

]
+ [d12u1(t) − d21u2(t)] ,

(2.3)

where ui denotes the population in patch i and di j > 0 is the per capita dispersal rate from

patch i to patch j. This model allows spatial heterogeneity in the two patches in resources so

that intrinsic growth rate ri > 0 and the carrying capacity Ki > 0 are patch-specific. If there

is no time delay and the dispersal rates between two patches are equal, the following result is

obtained in Smith’s book:

Theorem 2.1.2 (Proposition 4.4.1 in [10]) For any d12 = d21 = d > 0, system (2.3) with

τ = 0 possesses a unique positive equilibrium u∗ which attracts all non-trivial and non-negative

solutions.

When time delay is considered, Liao and Lou [9] has analyzed the following system,

u′1(t) = µu1(t) [K1 − u1(t − τ)] + d[u2(t) − u1(t)],

u′2(t) = µu2(t) [K2 − u2(t − τ)] + d[u1(t) − u2(t)].
(2.4)

which is a special case of model (2.3) when r1/K1 = r2/K2 = µ > 0 and d12 = d21 = d > 0.

This system has a unique positive equilibrium u∗ same as that of the corresponding system

without time delay. If K1 = K2 = K, for any d > 0, the equilibrium u∗ is locally asymptotically

stable for τ ∈ [0, τc) and is unstable for all τ > τc, where τc = π/(2Kµ). When τ > τc,
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periodic solutions may occur via Hopf bifurcation. It is not surprising to see that this result is

equivalent to Theorem 2.1.1 since the two patches are identical and hence, the two populations

can be treated as a whole. For non-homogeneous environment, K1 , K2, the authors provided

a sufficient condition d >
µ

2

√
K2

1 + K2
2 then obtained similar results. (For more details, see

Theorems 1.4 and 1.5 in [9].)

In patch models with movement, random dispersal is usually presupposed, assuming that

the process is instantaneous and lossless, which, however, is not realistic. Based on exten-

sive literatures, Bonte et al. ([2]) summarized all possible costs associated with dispersal and

classified them into four different types: energetic costs, time costs, risk costs and opportunity

costs. In this work, we consider two specific costs of dispersal: (i) the period of time spent for

migration; (ii) deaths during dispersal process. Assuming that individuals moving from one

patch to the other need a fixed period τ2 > 0 and the per capita death rate during dispersal

process is m > 0, we propose the following two-patch model for a single species with delayed

logistic growth and dispersal time delay,

u′1(t) = r1u1(t)
[
1 −

u1(t − τ1)
K1

]
+

[
d21e−mτ2u2(t − τ2) − d12u1(t)

]
,

u′2(t) = r2u2(t)
[
1 −

u2(t − τ1)
K2

]
+

[
d12e−mτ2u1(t − τ2) − d21u2(t)

]
.

(2.5)

In next section, we verify the well-posedness of model (2.5), then find the equilibrium

solutions and analyze the stability. Some numerical simulations are provided in Section 3 to

illustrate our theoretical results and further explore the effects of two time delays. A brief

conclusion is given in the last section.

2.2 Mathematical analysis

As far as mathematical analysis is concerned, initial conditions need to be clarified at first.

Let C = C([−τ, 0], R2), which contains all continuous functions mapping [−τ, 0] into R2, and

C+ = {ϕ ∈ C, ϕ(θ) > 0, θ ∈ [−τ, 0]}, where τ = τ1 + τ2. The initial condition is given as below:

(u1(θ), u2(θ)) = (ϕ1(θ), ϕ2(θ)) := ϕ(θ) ∈ C+, θ ∈ [−τ, 0], (2.6)
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where non-negativity is based on biological consideration. By using the method of steps pre-

sented in [1], we can show that system (2.5) with initial condition (2.6) has a unique solution

which exists globally. To confirm this model is biologically well-posed, we need to verify the

non-negativity and boundedness of its solution.

Theorem 2.2.1 For any ϕ ∈ C+, the solution of the initial value problem (2.5)–(2.6) remains

non-negative for t > 0 and is bounded.

To prove the theorem, we use the following lemma.

Lemma 2.2.2 (Theorem 6.3.1 in [1]) Consider the equation,

x′(t) = f (t, xt), (2.7)

where f : R × D → Rn is continuous and D ⊂ C = C([−τ, 0], Rn). Let C+ = {ϕ ∈ C, ϕ(θ) >

0, θ ∈ [−τ, 0]}. Assume that, whenever ϕ ∈ D ∩ C+ with ϕi(0) = 0 for some i ∈ {1, 2, . . . , n},

there holds fi(t, ϕ) > 0. Then, for any ϕ ∈ D ∩C+, the solution of (2.7),

x(t, t0, ϕ) > 0, for all t > t0.

Proof The non-negativity of solution to (2.5)–(2.6) directly follows the above lemma. For any

non-negative solution (u1(t), u2(t)), define U(t) = u1(t) + u2(t). Then, we have

U′(t) = (r1 − d12)u1(t) + (r2 − d21)u2(t) −
2∑

i=1

ri

Ki
ui(t)ui(t − τ1) + e−mτ2[d12u1(t − τ2) + d21u2(t − τ2)],

6 AU(t) − B
2∑

i=1

ui(t)ui(t − τ1) + DU(t − τ2),

where

A = max{r1 − d12, r2 − d21}, B = min
i=1,2
{ri/Ki}, D = max{d12, d21}e−mτ2 .

For positive constants p and q > 1, if pU(t) 6 U(t + θ) 6 qU(t) for θ ∈ [−τ, 0], then

U′(t) 6 (A + qD)U(t) −
pB
2

U2(t).
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Choosing a sufficiently large H > 0, there exists a positive constant ω such that

U′(t) 6 −ωU2(t) 6 0 for U(t) > H.

Therefore, U(t) is bounded and hence, u1(t) and u2(t) are bounded since they are non-negative.

2.2.1 Equilibria

Model (2.5) admits two equilibria, E0 = (0, 0) and E∗ = (u∗1, u∗2) with u∗1 and u∗2 satisfying:

u∗2 =
emτ2u∗1

d21

(
r1u∗1
K1
− r1 + d12

)
=: Π1(u∗1),

u∗1 =
emτ2u∗2

d12

(
r2u∗2
K2
− r2 + d21

)
=: Π2(u∗2).

Notice that the positive equilibrium E∗ depends on τ2 but is not affected by τ1. The first

quadratic function has two roots u1 = 0 and u1 = û1 := K1

(
1 − d12

r1

)
, and the second one has

two roots u2 = 0 and u2 = û2 := K2

(
1 − d21

r2

)
. These two parabolas intersect at the origin.

When û1 > 0 or û2 > 0, the two curves always have a unique intersection in the interior of the

first quadrant. When both û1 and û2 are negative, the interior intersection in the first quadrant

exists if and only if the slopes of two curves at the origin satisfy Π′1(0) · Π′2(0) < 1, that is,

e2mτ2(r1 − d12)(r2 − d21) < d12d21. Hence, we have the necessary and sufficient condition for the

existence of positive equilibrium E∗:

Theorem 2.2.3 The system (2.5) has a unique positive equilibrium if and only if one of the

following conditions holds:

(i) r1 > d12, or r2 > d21,

(ii) r1 < d12, r2 < d21 and e2mτ2(r1 − d12)(r2 − d21) < d12d21.

This can be seen more directly in Figure 2.1 in the r1-r2 plane. Condition in Theorem 2.2.3

describes the region above the solid curve, which is the graph of e2mτ2(r1−d12)(r2−d21) < d12d21

for r1 < d12. This curve intersects the coordinate axes at (0, d21(1 − e−2mτ2)) and (d12(1 −

e−2mτ2), 0). If no individuals die during dispersal process, i.e. m = 0, the positive equilibrium
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exists for all r1 > 0 and r2 > 0. However, when such loss is considered, i.e. m > 0, the existence

region for E∗ shrinks. The species requires higher growth rates to make up the loss.

Figure 2.1: The area above the curve is where the positive equilibrium E∗ exists. If there is no
loss during dispersal process, i.e. m = 0, then E∗ always exists.

2.2.2 Stability

Now we examine the stability of two equilibria.

Case I: τ1 = 0, τ2 = 0. We start our analysis from the associated ODE system without time

delays,

u′1(t) = r1u1(t)
[
1 −

u1(t)
K1

]
+ [d21u2(t) − d12u1(t)] ,

u′2(t) = r2u2(t)
[
1 −

u2(t)
K2

]
+ [d12u1(t) − d21u2(t)] .

(2.8)

The following result can be obtained in a similar way as that in [10] for Proposition 4.4.1.

Theorem 2.2.4 For any d21, d12 > 0, system (2.8) possesses a unique positive equilibrium E∗

which attracts all non-trivial and non-negative solutions.

Proof From Figure 2.1, system (2.8) always has two equilibrium solutions, trivial equilibrium

E0 = (0, 0) and a unique positive equilibrium E∗. The Jacobian matrix of system (2.8) at E0 is
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given by

J(E0) =

r1 − d12 d21

d12 r2 − d21

 .
Let s(A) denote the maximum real part of all eigenvalues from A. Then s(J(E0)) must be

positive since the trace of J(E0) is always positive when the determinant of J(E0) is negative.

So E0 is unstable. On the other hand, since the ODE system (2.8) is positive invariant, bounded

and cooperative, the unique positive equilibrium E∗ attracts all non-trivial and non-negative

orbits according to Theorem 4.3.3 in [10].

Case II: τ1 = 0, τ2 , 0. Next, we look at the cases when one of the time delay is vanished.

First, we consider τ1 = 0. The system (2.5) is reduced to

u′1(t) = r1u1(t)
[
1 −

u1(t)
K1

]
+

[
d21e−mτ2u2(t − τ2) − d12u1(t)

]
,

u′2(t) = r2u2(t)
[
1 −

u2(t)
K2

]
+

[
d12e−mτ2u1(t − τ2) − d21u2(t)

]
,

(2.9)

which has been well studied by Takeuchi et al. [13] in details.

Theorem 2.2.5 The global dynamics of system (2.9) can be concluded as follow:

(i) When r1 < d12, r2 < d21 and τ2 >
1

2m ln
(

d12d21
(r1−d12)(r2−d21)

)
, system (2.9) only has a trivial

equilibrium E0 = (0, 0) and it is globally asymptotically stable.

(ii) Otherwise, the trivial equilibrium E0 = (0, 0) is unstable. There exists a unique positive

equilibrium E∗ and it is globally asymptotically stable.

Proof Define

M(0) =

r1 − d12 d21e−mτ2

d12e−mτ2 r2 − d21

 .
By Theorem 2.1 in [13], when s(M(0)) < 0, the population goes extinct in each patch. There-

fore, E0 is globally asymptotically stable if and only if the trace of M(0) is negative and the

determinant of M(0) is positive. That is,

r1 − d12 + r2 − d21 < 0 and (r1 − d12)(r2 − d21) − d12d21e−2mτ2 > 0,
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which is equivalent to

r1 < d12, r2 < d21 and τ2 >
1

2m
ln

(
d12d21

(r1 − d12)(r2 − d21)

)
.

In addition, from Theorem 2.2.3, there is no positive equilibrium solution under this condition.

Otherwise, s(M(0)) > 0, by Takeuchi et al. [13] and Zhao and Jing [16], system (2.9) has a

unique positive equilibrium and it is globally asymptotically stable.

This result shows that when the growth rates in each patch is relatively less than the dis-

persal rates, extinction of population may occur in both patches when the time delay due to

dispersal is large (or the dispersal-related death rate is high). We also notice that if the growth

rate is relatively greater than the dispersal rate in at least one patch, then any dispersal-induced

delay will not change the stability of the equilibrium solution comparing to the ODE sys-

tem (2.8), in which case the costs of dispersal only affect the population sizes in the steady

state.

Case III: τ1 , 0, τ2 = 0. Now we consider another case when τ2 = 0. The system (2.5) is

reduced to

u′1(t) = r1u1(t)
[
1 −

u1(t − τ1)
K1

]
+ [d21u2(t) − d12u1(t)] ,

u′2(t) = r2u2(t)
[
1 −

u2(t − τ1)
K2

]
+ [d12u1(t) − d21u2(t)] .

(2.10)

As we mentioned in the introduction, a special case of this system has been investigated in [9]

when random dispersal is considered (i.e., symmetric dispersal rates between patches). In

system (2.10), the time delay does not affect the equilibrium solutions. Therefore, same as

in system (2.8), we have a trivial equilibrium E0 = (0, 0) and a unique positive equilibrium

E∗ = (u∗1, u∗2). By linearization, we find the Jacobian matrix at E0 is given by

J(E0) =

r1 − d12 d21

d12 r2 − d21

 .
From Theorem 2.2.4, the trivial equilibrium solution E0 is unstable for all d21, d12 > 0.
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Then, we study the stability of the unique positive equilibrium E∗ = (u∗1, u∗2). By using the

transformation ũ1 = u1 − u∗1 and ũ2 = u2 − u∗2, we obtain a translated system with the positive

equilibrium being moved to the origin point. For mathematical simplicity, we drop ũ1, ũ2 to u1,

u2 respectively. The system becomes

u′1(t) = r1u1(t)
[
1 −

u1(t − τ1)
K1

]
−

r1

K1
u∗1 (u1(t) + u1(t − τ1)) + [d21u2(t) − d12u1(t)] ,

u′2(t) = r2u2(t)
[
1 −

u2(t − τ1)
K2

]
−

r2

K2
u∗2 (u2(t) + u2(t − τ1)) + [d12u1(t) − d21u2(t)] .

(2.11)

The linearization of (2.11) at the origin point is given by

u′1(t) = r1u1(t) −
r1

K1
u∗1 (u1(t) + u1(t − τ1)) + [d21u2(t) − d12u1(t)] ,

u′2(t) = r2u2(t) −
r2

K2
u∗2 (u2(t) + u2(t − τ1)) + [d12u1(t) − d21u2(t)] .

Therefore, the characteristic equation can be obtained by substituting in (u1(t), u2(t)) = eλt(v1, v2),

D(τ1, λ) = det

λ − (r1 −
r1
K1

u∗1 − d12) + r1
K1

u∗1e−λτ1 −d21

−d12 λ − (r2 −
r2
K2

u∗2 − d21) + r2
K2

u∗2e−λτ1


= det

λ + d21
u∗2
u∗1

+ r1
K1

u∗1e−λτ1 −d21

−d12 λ + d12
u∗1
u∗2

+ r2
K2

u∗2e−λτ1


= λ2 + aλ + (cλ + d)e−λτ1 + he−2λτ1

= 0,

where

a =
d21u∗1

u∗2
+

d12u∗2
u∗1

, c =
r2u∗2
K2

+
r1u∗1
K1

, d =
d12(u∗1)2r1

K1u∗2
+

d21(u∗2)2r2

K2u∗1
and h =

r1r2u∗1u∗2
K1K2

.

This kind of characteristic equation has been studied by Chen et al. [4] and Liao and Lou [9].

By the framework in [4], we can find the stability of the positive equilibrium.

Case IV: τ1 , 0, τ2 , 0. Finally, we move to the system (2.5) where both τ1 and τ2 are

nonzero. There is always a trivial equilibrium E0 = (0, 0) and a unique positive equilibrium
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exists when the parameters satisfy one of the conditions in Theorem 2.2.3.

We first look at the stability of the trivial equilibrium. The linearization at E0 = (0, 0) is,

u′1(t) = (r1 − d12)u1(t) + d21e−mτ2u2(t − τ2),

u′2(t) = (r2 − d21)u2(t) + d12e−mτ2u1(t − τ2).
(2.12)

This linear system has been studied by Takeuchi et al. [13]. Using Theorem 2.1 from [13], the

origin point is globally asymptotically stable when

r1 < d12, r2 < d21 and τ2 >
1

2m
ln

(
d12d21

(r1 − d12)(r2 − d21)

)
. (2.13)

Otherwise, it is unstable. Therefore, for system (2.5), the trivial equilibrium solution is locally

asymptotically stable when condition (2.13) holds. Otherwise, the trivial equilibrium is unsta-

ble and there exists a unique positive equilibrium solution. Note that condition (2.13) is exactly

same as that in Theorem 2.2.5 for the case when τ1 = 0. The time delay τ1 in growth rate has

no impact on the stability of the trivial equilibrium E0. In other words, the extinction of the

species is totally caused by the costs of dispersal.

To find the stability for the positive equilibrium E∗ = (u∗1, u∗2), similar to what we have done

in case III, we apply the transformation ũ1 = u1 − u∗1 and ũ2 = u2 − u∗2 to move the positive

equilibrium to the origin point. Again, we drop ũ1, ũ2 to u1, u2 respectively for simplification.

Then the system can be written as

u′1(t) = r1u1(t)
[
1 −

u1(t − τ1)
K1

]
−

r1

K1
u∗1 (u1(t) + u1(t − τ1)) +

[
d21e−mτ2u2(t − τ2) − d12u1(t)

]
,

u′2(t) = r2u2(t)
[
1 −

u2(t − τ1)
K2

]
−

r2

K2
u∗2 (u2(t) + u2(t − τ1)) +

[
d12e−mτ2u1(t − τ2) − d21u2(t)

]
.

The linearization at the origin point now become

u′1(t) = r1u1(t) −
r1

K1
u∗1 (u1(t) + u1(t − τ1)) +

[
d21e−mτ2u2(t − τ2) − d12u1(t)

]
,

u′2(t) = r2u2(t) −
r2

K2
u∗2 (u2(t) + u2(t − τ1)) +

[
d12e−mτ2u1(t − τ2) − d21u2(t)

]
.
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Therefore, the characteristic equation can be obtained by substituting in (u1(t), u2(t)) = eλt(v1, v2),

D(τ1, τ2, λ) = det

λ − (r1 −
r1
K1

u∗1 − d12) + r1
K1

u∗1e−λτ1 −d21e−mτ2e−λτ2

−d12e−mτ2e−λτ2 λ − (r2 −
r2
K2

u∗2 − d21) + r2
K2

u∗2e−λτ1


= λ2 + aλ + b + (cλ + d)e−λτ1 + he−2λτ1 + ke−2(λ+m)τ2

= 0,

where 

a = −r1 − r2 + d12 + d21 +
r1

K1
u∗1 +

r2

K2
u∗2,

b = (r1 −
r1

K1
u∗1 − d12)(r2 −

r2

K2
u∗2 − d21),

c =
r1

K1
u∗1 +

r2

K2
u∗2,

d = −(r1 −
r1

K1
u∗1 − d12)

r1

K1
u∗1 − (r2 −

r2

K2
u∗2 − d21)

r2

K2
u∗2,

h =
r1r2u∗1u∗2

K1K2
,

k = −d12d21.

Mathematical analysis for this characteristic equation is less tractable so we use some numer-

ical simulations to show the existence of periodic orbits bifurcated from the positive equilib-

rium.

2.3 Numerical simulations

In this section, we provide some numerical examples for system (2.5) to exhibit (i) the occur-

rence of periodic orbits via Hopf bifurcation; (ii) how time delays and dispersal costs influence

the population dynamics. We fix the parameter values as follow,

r1 = 2, r2 = 4,K1 = 40, K2 = 20, d12 = 5, d21 = 5, m = 0.5. (2.14)

Based on the results of theoretical analysis, oscillations can only be induced into this system

by the delay in logistic growth τ1. Without dispersal, i.e. d12 = d21 = 0, the population

dynamics on each patch follows the delayed logistic equation as described in Theorem 2.1.1:
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the solutions converge to the positive equilibrium for riτ1 < π/2 and periodic orbits occur when

riτ1 > π/2 for i = 1, 2. When the two patches are connected by dispersal with related costs

ignored, i.e. τ2 = 0 and m = 0, Figure 2.2 presents the solutions of the coupled system (2.10)

with different local dynamics. If r1τ1 < π/2 and r2τ1 < π/2, the local dynamics in both patches

represent the stability of positive equilibria, which is still true for the coupled system, as is

shown in Figure 2.2(a). If one patch allows oscillations while the other does not, the coupled

system may have stable positive equilibrium (as in Figure 2.2(b)) or stable periodic orbits (as

in Figure 2.2(c)). When r1τ1 > π/2 and r2τ1 > π/2, oscillations are presented as in Figure

2.2(d).

(a) r1τ1 < π/2, r2τ1 < π/2 (b) r1τ1 < π/2, r2τ1 > π/2

(c) r1τ1 < π/2, r2τ1 > π/2 (d) r1τ1 > π/2, r2τ1 > π/2

Figure 2.2: The oscillations induced by time delay τ1 of system (2.10) which is coupled by
dispersal with related costs ignored, i.e. τ2 = 0 and m = 0. Values of τ1 are chosen as: (a)
τ1 = 0.3; (b) τ1 = 0.5; (c) τ1 = 0.6; (d) τ1 = 1;
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Next, we explore the impact of dispersal-induced delay τ2. Figure 2.2 suggests that system

(2.5) does not admit periodic solutions when τ1 is small. As displayed in Figure 2.3, equi-

librium solutions are stable. When there are no time delays, as in Figure 2.3(a), the positive

equilibrium is globally asymptotically stable by Theorem 2.2.4. When τ1 = 0 and τ2 , 0,

this corresponds to system (2.9) with the global dynamics presented by Theorem 2.2.5. With

the fixed parameter values, we have r1 < d12 and r2 < d21. Thus, the positive equilibrium

attracts all non-trivial and non-negative solutions for small τ2 (as in Figure 2.3(c)), while the

populations in both patches go to extinction for large τ2 (as in Figure 2.3(e)). We also do the

simulations with a small τ1. Comparing the plots from different lines in Figure 2.3, it is clear

that the loss due to dispersal leads to the reduction in population sizes.

Figure 2.4 exhibits some periodic solutions of system (2.5). Under the joint effects of

two time delays, the oscillations vary in amplitude and period. We have also observed stable

equilibrium solutions when some particular combinations of delay values are chosen.

2.4 Conclusion

In this project, we proposed and studied a two-patch model for a single species with dispersal,

assuming that the movement takes time and deaths occur during the process. Together with

the delayed logistic growth, the model is given by a system of delay differential equations with

two constant time delays. Our model admits asymmetric dispersal and spacial heterogeneity,

by letting d12 and d21, r1 and r2, K1 and K2 be distinct.

We have investigated the impact of two time delays on the dynamics of population. The

results reveal that the delay in logistic growth induces oscillations as it does in an isolated

population; and the dispersal delay that related to a loss affects the population sizes. If there

is no delay in local dynamics, i.e τ1 = 0, the positive equilibrium of system (2.5) is globally

asymptotically stable when τ2 = 0. With costs of dispersal considered, i.e τ2 > 0 and m > 0,

extinction becomes possible for this species when such a loss is relatively large.

Even though we have already known the separate effect of two time delays, their joint

impact on population dynamics is much more complex, as is demonstrated by some numer-
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(a) τ1 = 0, τ2 = 0 (b) τ1 = 0.5, τ2 = 0

(c) τ1 = 0, τ2 = 0.8 (d) τ1 = 0.5, τ2 = 0.8

(e) τ1 = 0, τ2 = 3 (f) τ1 = 0.5, τ2 = 3

Figure 2.3: The impact of time delay τ2 due to dispersal in the case when equilibrium solutions
are stable.
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(a) τ1 = 0.6, τ2 = 0 (b) τ1 = 0.8, τ2 = 0

(c) τ1 = 0.6, τ2 = 0.8 (d) τ1 = 0.8, τ2 = 0.8

Figure 2.4: The periodic solutions of system (2.5) with different combinations of time delays.
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ical examples. When periodic solutions occur via Hopf bifurcation, the oscillations vary in

amplitude and frequency which is not only caused by τ1 but also affected by τ2. Due to the

complexity of our model, it is hard to do mathematical analysis for Hopf bifurcation. We leave

this for future works.
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Chapter 3

Modelling Anti-predation Response of

Prey in a Two-patchy Environment

3.1 Introduction

Interactions between predator and prey species are typically very complicated, in comparison

with competitions and mutualism. This is mainly because a dynamical system model that

describes predator-prey interaction is non-monotone, and hence, can allow very rich dynamics.

The most classic predator-prey system was proposed by Lotka and Volterra respectively in

1920s, and is of the following form:


du
dt

= αu − βuv,

dv
dt

= −δv + γuv,
(3.1)

where u(t) and v(t) are the populations of the prey and predator respectively at time t. This

model allows a family of periodic orbits and is structurally unstable. Since then, there have

been numerous modifications/generalizations on (3.1), which can be represented by the fol-

lowing more general form: 
du
dt

= g1(u) − p(u, v)v,

dv
dt

= g2(v) + cp(u, v)v,
(3.2)

39
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where g1(u) (g2(v)) represents the population dynamics of the prey (predator) in the absence of

the predator (prey). Here the predation term p(u, v)v accounts for catching/consumption rate of

prey by predator, and is a direct effect of the predator on prey. The positive constant c explains

the efficiency of biomass transfer from prey to predator after catching and consumption, and the

function p(u, v) is referred to as the functional response. To the authors’ knowledge, almost all

efforts in modifying and generalizing (3.1) lie in proposing various forms for p(u, v) depending

on the nature of predation which is species specific. For example, for p(u, v) depending on u

only, there are Holling types I, II and III; for p(u, v) truly depending on both u and v, there are

Beddingtong-DeAngelis functional response p(u, v) = au
1+bu+cv and ratio dependent functional

response p(u, v) =
a (u/v)

c+b (u/v) = au
bu+cv . Therefore, such efforts are all along the line of the direct

effect.

On the other hand, recent field observations and empirical results show that merely the

presence of predator can alter ecological behaviours of prey, and thereby, influence its pop-

ulation size. For feeding animals, they may change their foraging periods and locations to

avoid hunting predators ([15]). Such effects are indirect and non-lethal as they are not through

predation and consumption. Usually, defensive actions, including avoidance, vigilance, alarm

calls, grouping and even defences against predators ([5]) can diminish direct mortality from

predation temporally, but will decrease lifetime fitness as well through, for example, reduced

growth rate and fecundity due to less intake and mating opportunities.

To study how significant such a fear effect can be, some experiments have been designed

and conducted by limiting lethal consumption. For example, Nelson et al. ([17]) surgically

shortened the mouthparts of damsel bugs, so that they were unable to consume pea aphids

but could still disturb them. The growth of aphid population was reduced by 30%. Zanette

et al. ([29]) conducted a field experiment on song sparrows. They protected the birds from

direct predation by using electric fences and broadcasted playbacks of the calls and sounds of

their predators. They found that number of the bird’s offspring per year was reduced by 40%.

Preisser et al. ([19]) estimated the sizes of direct and indirect effects in 166 studies from 49

published works, and their result showed that the indirect effect size on average was similar to

(more precisely it was only slightly weaker than) the direct effect size.

The aforementioned field experimental results clearly indicate that fear effect is indeed
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an important factor in predator-prey interactions. As far as mathematically modelling fear

effect is concerned, Brown et al. ([3]) firstly modelled the ecology of fear by conjoining the

Rosenzweig-MacArthur model ([20]):


du
dt

= ru
(
1 −

u
K

)
− g(u)v,

dv
dt

= −mv + eg(u)v,
(3.3)

with a foraging theory in 1999, where fear was represented by the level of vigilance. In a

recent work, based on the field study in [29], Wang et al. ([25]) incorporated the fear effect on

reducing the reproduction rate of the prey in the Rosenzweig-MacArthur model with Holling

Types I and II functional responses. In [26], Wang and Zou further discussed different effects

of fear on juvenile and adult stages of the prey by a model with age structure, in the form of

a system of delayed differential equations. Note that in [25], only a cost of the anti-predation

response was considered. More recently, Wang and Zou ([28]) modified the model in [25] by (i)

incorporating both cost (reducing reproduction rate) and benefit (reducing the chances of being

caught and consumed by predator) to the prey equation, and (ii) introducing a time lag that

accounts for the time needed for the transfer of prey biomass to predator biomass. The analysis

in [28] has not only shown that there is a critical response level, but also revealed how such a

critical level is affected by the digestion delay. Sasmal and Takeuchi [22] also considered both

cost and benefit due to anti-predation response with the functional response g(u) being Holling

Type IV, and explored the rich dynamics of the resulting ODE system. Sasmal [21] explored

multiple Allee effect induced by fear effect. From the aforementioned works, it seems that the

fear effect had been largely neglected in predator-prey models, and the recent results mentioned

above suggests that many existing models deserve a revisit by incorporating the fear effect and

various factors induced by such an indirect effect in predator-prey interactions.

Besides the factors mentioned above (age structure, types of the functional responses, di-

gestion delay), there is also the important factor of spatial structure. Considering the ability of

species moving around, many works have already been done for both discrete and continuum

habitats by using random dispersal or diffusion to model the movement of individuals (for ex-

ample, see [10], [14], [12], [18] and the references therein). In most existing works, dispersal
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rates were postulated to be constants, independent of time, location and population densities.

However, in predator-prey interactions, some prey perceiving a predation risk from the the

predator may accordingly change their dispersal strategy to avoid encounters with predators.

In most cases, animals (such as mice) are observed to reduce their activities because moving

prey are more likely to be detected by predators; usually this corresponds to the increased

use of refuges ([15]). There are also biological species, such as birds which, upon perceiving

a risk from the predators, in addition to reducing the reproduction rate, may respond to the

risk by moving more frequently and in more advantageous direction(s). For a spatially con-

tinuum habitat, Wang and Zou proposed and analyzed a reaction-diffusion model in [27] with

predator-taxis for the prey accounting for the prey’s intention of moving away from the preda-

tor. Through the model, the role of fear effect in pattern formation is explored in conjunction

with various types of functional responses.

Compared to partial differential equation models for populations in a spatially continuous

habitat, patch models for discrete habitats are sometimes more practical since habitat fragmen-

tation is common. For human beings, we live in cities and towns; for animals, the land is often

separated by geographical factors and human constructions. With the above considerations,

it is interesting and desirable to explore how the fear effect reflected not only in reproduction

rate but also in dispersal rate of the prey will affect the population dynamics in predator-prey

interactions. To this end, parallel to [27], we propose in this work a predator-prey model in

the form of system of ordinary differential equations over two patches. In Section 3.2, we will

formulate and explain our model; and in subsequent sections 3.3 and 3.4, we will analyze the

model to gain some biological insights on the role of fear effect in conjunction with the disper-

sals. We begin in Section 3.3 by considering the case without dispersal; this will allow us to

obtain some preliminary results on the fear effect on local population dynamics and the evolu-

tion of anti-predation response level. Then in Section 3.4, we further explore the case when the

two patches are connected through dispersals with dispersal rates also affected by fear. Some

numerical simulations are presented. We complete the paper by Section 3.5, summarizing the

main results and discussing the biological implications and significance of the results, as well

as some possible related future research projects.
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3.2 Model formulation

The logistic growth of prey population in the Rosenzweig-MacArthur model (3.3) is a result

of constant per capita birth rate b0 together with a density independent per capita death rate

(nature death rate) d1 and a density dependent death rate d2u: u′(t) = b0u − d1u − (d2u)u =

(b0 − d1)u[1 − u
(b0−d1)/d2

]. Based on this and the field experiment of [29] where predation was

artificially prevented, Wang et al. ([25]) proposed the following predator-prey model:


du
dt

= b0 f (α, v)u − d1u − d2u2 − g(u)v,

dv
dt

= −mu + cg(u)v,
(3.4)

where a specialist predator was considered and Holling Types I and II for the functional re-

sponse function g(u) were adopted in respective analysis. Here v denotes the population of

predators reflecting the level of risk, and α is a non-negative parameter reflecting the anti-

predation response level of the prey and hence, the decreasing properties of f (α, v) in α and v

posed in [25] account for the effect of the prey’s fear on reducing the prey’s reproduction rate.

Note that the demographic equation in (3.4) for the prey population assumes a constant per

capita birth rate, which has neglected the Allee effect for the prey species. Allee effect reflects

the fact that for some two-sex species, the per capita birth rate is also density dependent due to

the need in group defense and/or mating opportunities. A simple dependence is b(u) = b0 +b1u,

reflecting the scenario that larger the population size is, more mating opportunities there will

be and hence, more births there will be. This simple b(u) will also lead to a logistic growth for

the prey in the absence of the predator, with the carrying capacity modified accordingly. There

have been many research on modelling Allee effect using various density dependent birth rate

function; see Terry [24] and the references therein for more details on this topic. We also point

out that there are also two-sex species for which a matured individual only mates with a fixed

partner. Considering this fact and in order to avoid making things too complicated, we will not

consider Allee effect but just follow the line of (3.4).

With the same consideration for the prey population as in (3.4), we consider a prey species

that lives on two patches and is able to move between the two patches. Let ui and vi denote

the populations of prey and predators on patch i (i = 1, 2), respectively. We then propose the
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following model system:


du1

dt
= b1(α, v1)u1 − d1u1 − au2

1 − c(α, v1)u1v1 + m(α, v2)u2 − m(α, v1)u1,

du2

dt
= b2(α, v2)u2 − d2u2 − au2

2 − c(α, v2)u2v2 + m(α, v1)u1 − m(α, v2)u2.

(3.5)

Here the Holling Type I functional response is adopted for predation interactions, and

the birth rate functions bi(α, vi), predation rate functions c(α, vi) and dispersal rate functions

m(α, vi) are assumed to depend on the perceived predation risk (represented by the quantity of

predators vi) and vigilance level α ∈ (0,∞) (considered as an anti-predation strategy) of the

prey, for i = 1, 2. We allow spatial heterogeneity in the two patches in resources and this leads

to the adoption of patch specific birth rate functions. On the other hand, considering that we

are dealing with the same prey species living in two different patches predated by the same

predator species, we have assumed the same predation rate function and dispersal rate func-

tion in the two patches, both depending on predator population in the patch though. In order to

focus on the prey’s population and for simplicity, we assume that the predator has a constant

population on each patch, meaning that v1 and v2 are positive constants. This approximately

corresponds to a scenario that the predator is a generalist species living on a wide range of food

resources and only having this prey species as a minor food resource.

According to the discussion in the introduction, prey reduce reproduction in response to the

perceived predation risk, and being more alert gives them higher chances to survive through

predation. To capture these biological meanings, functions bi(α, vi) and c(α, vi) are assumed to

satisfy the following properties which are similar to those in [25]:



bi(0, vi) = bi(α, 0) = b0i, lim
α→∞

bi(α, vi) = lim
vi→∞

bi(α, vi) = 0,

c(0, vi) = c(α, 0) = c0, lim
α→∞

c(α, vi) = lim
vi→∞

c(α, vi) = 0,

∂bi(α, vi)
∂α

6 0,
∂bi(α, vi)
∂vi

6 0,
∂c(α, vi)
∂α

6 0,
∂c(α, vi)
∂vi

6 0,

i = 1, 2. (3.6)

In [25], the authors presented three examples of such function satistying the above conditions:

h1(α, v) = a1e−b1αv, h2(α, v) =
a2

1 + b2αv
and h3(α, v) =

a3

1 + b3αv + c3(αv)2 .



3.2. Model formulation 45

As for the dispersal rate function m(α, vi), it is species specific: when perceiving predation

risk, some species may tend to move more frequently (e.g., birds), while the others may reduce

their movement to avoid being captured (e.g., mice which typically have refuges). We consider

the latter in this work by assuming that the dispersal rate function is decreasing with respect to

α and vi: 
m(0, vi) = m(α, 0) = m0, lim

α→∞
m(α, vi) = lim

vi→∞
m(α, vi) = 0,

∂m(α, vi)
∂α

6 0,
∂m(α, vi)
∂vi

6 0.
(3.7)

Let Fi(α, vi) = bi(α, vi) − di − c(α, vi)vi for i = 1, 2. Note that Fi(α, vi) can be used as a

measure of fitness for the species on patch i. Then the model (3.5) is rewritten as:


du1

dt
= u1 [F1(α, v1) − au1] + m(α, v2)u2 − m(α, v1)u1,

du2

dt
= u2 [F2(α, v2) − au2] + m(α, v1)u1 − m(α, v2)u2.

(3.8)

According to the basic theory of ordinary differential equations, there exists a unique solution

to system (3.8) for any given initial values u1(0) and u2(0). Using the proposition given by

Chepyzhov and Vishik in their book [4, proposition 1.1], one can easily check that R2
+ is in-

variant for (3.8). Moreover, setting F̄ = max{F1(α, v1), F2(α, v2) : α > 0, v1 > 0, v2 > 0}, we

have
d
dt

(u1 + u2) 6 (u1 + u2)
[
F̄ −

a
2

(u1 + u2)
]
.

By a comparison argument, we then conclude that

lim sup
t→∞

(u1 + u2) 6
2F̄
a
,

indicating that the total population (u1 + u2) is bounded. By the non-negativity of u1 and u2,

both of them must be bounded. Furthermore, if F̄ is non-positive, then the total population

(u1 + u2) converges to zero.

Summarizing the above, we have obtained the following result of well-posedness for the

model.

Lemma 3.2.1 For any initial point [u1(0), u2(0)] ∈ R2
+, there exists a unique solution to sys-
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tem (3.8) which is non-negative and bounded.

3.3 Model analysis: without dispersal

We begin our analysis of the model for local population dynamics by considering the case

without dispersal: m(α, v1) = m(α, v2) = 0. Then the model (3.8) reduces to a decoupled pair

of ordinary differential equations (ODEs) with each having the same form of

du
dt

= u [F(α, v) − au] , (3.9)

where F(α, v) := b(α, v) − d − c(α, v)v. This is a scalar logistic ODE in terms of the variable u

and its dynamics is completely well known:

Lemma 3.3.1 If F(α, v) 6 0, then every solution of (3.9) with u(0) > 0 converges to 0; if

F(α, v) > 0, then every solution of (3.9) with u(0) > 0 satisfies

lim
t→∞

u(t) =
F(α, v)

a

Before moving on to the patch model with dispersal, we want to gain some insights on the

anti-predation strategy of prey from evolutionary perspective by using the method of adaptive

dynamics. To this end, we take the vigilance level parameter α as the trait. Assume that a

resident prey with population size u uses the strategy αu and a mutant (or invading) prey with

relatively small population size w (w � u) adopts a different strategy αw , αu, and the resident

and mutant strains are ecologically equivalent in all other aspects. Then model (3.9) is naturally

extended to the following system of equations:


du
dt

= u[F(αu, v) − a(u + w)] =: gu(u,w),

dw
dt

= w[F(αw, v) − a(u + w)] =: gw(u,w).
(3.10)

Suppose that the population of resident prey has already settled at the steady state u∗(αu, v) =

F(αu,v)
a =: P(αu, v) (assuming F(αu, v) > 0) if there is no invading (mutant) prey competing with
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it. The idea of invasibility analysis (see [8] for more details) is to find out whether the pop-

ulation of mutant prey will grow or decay once introduced. This corresponds to the local

instability/stability of the boundary equilibrium (P(αu, v), 0) of (3.10). Notice that (3.10) is a

Lotka-Volterra competition model with the equal competition weight, and hence, the competi-

tion exclusion is the generic consequence in the following sense:

(i) if F(αw, v) > F(αu, v), then equilibrium Ew := (0, P(αw, v)) is globally asymptotically

stable for (3.10);

(ii) if F(αw, v) < F(αu, v), then equilibrium Eu := (P(αu, v), 0) is globally asymptotically

stable for (3.10).

Following [8], we introduce the invasion exponent θ(αu, αw) for the mutant prey by

θ(αu, αw) =
∂gw(u,w)

∂w

∣∣∣∣∣
w=0

= F(αw, v) − au∗(αu, v) = F(αw, v) − F(αu, v),

which is the relative fitness of the mutant in the environmental condition mediated by the

residents. Then the above competition exclusion results can be restated in terms of the sign of

this invasion exponent θ(αu, αw): the mutant prey will invade and replace the resident prey if

θ(αu, αw) > 0; and the mutant prey can not invade (establish) if θ(αu, αw) < 0.

Next we explore the existence of evolutionary stable strategy (ESS) and convergence stable

strategy (CSS) with respect to the fitness function F(α, v). An evolutionary singular strategy

αu = α∗ is a trait value at which the selection gradient vanishes,

∂θ(αu, αw)
∂αw

∣∣∣∣∣
αw=αu

=
∂F(αw, v)
∂αw

∣∣∣∣∣
αw=α∗

= 0. (3.11)

If the resident prey using strategy α∗ can not be invaded by any mutant prey using other strate-

gies, then α∗ is an ESS. By [6, 8], this is implied by

∂2θ(αu, αw)
∂α2

w

∣∣∣∣∣∣
αw=αu=α∗

=
∂2F(αw, v)

∂α2
w

∣∣∣∣∣∣
αw=α∗

< 0. (3.12)

The singular point α∗ is a CSS if among any pair of strategies near α∗, the one closer to α∗ is
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always the winning strategy. By [6, 8], this is implied by

d
dαu

[
∂θ(αu, αw)

∂αw

∣∣∣∣∣
αw=αu

]
αu=α∗

=
∂2F(αw, v)

∂α2
w

∣∣∣∣∣∣
αw=α∗

< 0. (3.13)

By condition (3.12), a local maximum of function F(αw, v) is a local ESS. Moreover, condi-

tions (3.12) and (3.13) are equivalent for model (3.10), implying that the ESS must be conver-

gence stable when exists.

For a general discussion on definition and biological meanings of ESS and CSS, readers

are referred to [8, 9]. Here in this paper, the abbreviation CSS is used to denote a convergence

stable strategy, but in some works it denotes a continuously stable strategy, which is by defi-

nition a convergence stable ESS. For convenience of associating the notions of ESS and CSS

with the stability/instability, we adopt the definitions of ESS and CSS used by De Leenheer et

al. in [7] for a setting without dispersal as below.

Definition 3.3.1 (Definition 3.1 in [7]) The anti-predation strategy α∗ ∈ [0,∞) is an ESS if

the boundary equilibrium (u∗(α∗, v), 0) of system (3.10) is locally asymptotically stable for all

αw , α
∗ in some neighbourhood of α∗.

Definition 3.3.2 (Definition 3.2 in [7]) The anti-predation strategy α∗ ∈ [0,∞) is a CSS if

there is a neighbourhood N of α∗ such that the boundary equilibrium (u∗(αu, v), 0) of sys-

tem (3.10) is locally asymptotically stable for all αu, αw ∈ N that satisfy αw < αu < α∗ or

αw > αu > α
∗ but is not locally asymptotically stable when αu < αw < α

∗ or αu > αw > α
∗.

To proceed further to explore the possible ESS and CSS, we choose some particular forms

for the functions b(α, v) and c(α, v) as below:

b(α, v) = b0e−s̃αv; c(α, v) = c0e− p̃αv. (3.14)

Absorbing the positive constant v by letting s = s̃v and p = p̃v, the fitness function F(α, v) is a

single variable function,

F(α, v) = F(α) = b0e−sα − d − c0ve−pα. (3.15)
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Analysis on F(α) distinguishes two cases: (i) p > s; and (ii) p < s, with their respective

consequences summarized below.

(i) Assume p/s > 1, then

(i)-1 if p
s <

b0
c0v , then F′(α) < 0 for all α > 0 and there is no critical point for F(α);

(i)-2 if p
s > b0

c0v , then F(α) has a unique critical point α∗ > 0 at which F(α) attains a

maximum;

(ii) Assume p/s < 1, then

(ii)-1 if p
s < b0

c0v , then F(α) has a unique critical point α∗ > 0 at which F(α) attains a

minimum;

(ii)-2 if p
s >

b0
c0v , then F′(α) > 0 for all α > 0 (hence, F(0) < F(α) < F(∞) = −d < 0 for

all α > 0, which should be excluded).

From the above, we can see that only (i)-2 (i.e., p/s > max{b0/(c0v), 1}) offers the scenario

of local interior value α∗ given by

α∗ =
1

p − s
ln

(
pc0v
sb0

)
(3.16)

at which the fitness function F(α) attains its global maximum. By the definition of ESS and

CSS, it is easy to see that such strategy α∗ is an ESS which is convergence stable. One can

also check that both conditions (3.12) and (3.13) are satisfied. Lemma 3.3.1 implies that the

persistence of prey’s population requires F(α) to be positive. If F(0) = b0 − d − c0v > 0, then

the maximum F(α∗) > 0; and even if F(0) = b0 − d − c0v < 0 meaning that the prey will go to

extinction without any anti-predation response, it is possible to have F(α∗) > 0 which shows

that an anti-predation response can help the prey survive. See the figures in Figure 3.1(a) and

3.1(b) for a demonstration.

We can interpret the above mathematical results from biological point of view. Note that the

ratio p/s measures the relative effect of the anti-predation response on surviving the predation

(benefit) as opposed to that on reducing the reproduction (cost). Thus, when p/s is small (large

s and small p), the effect of reducing the predation is not as significant as the effect of reducing
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(a) (b)

Figure 3.1: Function F(α) has a global maximum if and only if p/s > max{b0/(c0v), 1}: (a)
F(0) > 0; (b) F(0) < 0 but F(α∗) > 0

the reproduction, and hence, it seems to be preferable for the prey to take less response; this

corresponds to the cases (i)-1 and (ii)-1 in which the maximum of F(α) is attained at α = 0.

When p/s is sufficiently large (i.e., p/s > max{b0/(c0v), 1}), the effect of reducing the predation

is more significant than the effect of reducing the reproduction, and hence, a positive and

relatively larger response level should be favoured, and this corresponds to the cases (i)-2 and

(ii)-2. Moreover, when the population grows to the steady state F(α∗)/a after the prey strain

with the ESS/CSS α∗ having occupied the patch, it is also the maximal population size the

species can reach.

Apparently, the value b0/(c0v) plays an important role in determining the population dy-

namics of prey, which is the ratio of per capita birth rate to per capita death rate due to pre-

dation without anti-predation response. When the ratio is smaller than one, the existence of

positive convergence stable ESS only requires p/s > 1. When the ratio is greater than one,

the condition becomes p/s > b0/(c0v) > 1. If a species population is able to produce more

offspring (meaning larger b0), anti-predation behaviours are less likely to be developed. More-

over, the ratio b0/(c0v) depends on the population of predator, while p/s = ( p̃v)/(s̃v) = p̃/s̃ is

only related to the prey species. When the number of predators is sufficiently small, indicating

that the existence of predators does not threaten the survival of prey, such fear will not change

the behaviours of prey. If there are too many predators meaning that predation risk is relatively

high, the prey species will be driven/forced to develop some anti-predation strategies.
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In this model, co-existence is impossible since θ(αw, αu) and θ(αu, αw) can not be positive

simultaneously. A successful invasion of mutant prey always leads to the extinction of resident

prey and the mutant prey becomes new resident prey. This means that trait substitution occurs.

In reality, evolution dynamics is typically much slower than the population dynamics. Thus,

we further assume that the duration of the inter-strain (or inter-species) competitive interaction

is much shorter than the mutation process, so that the population has approached a steady state

before the appearance of new mutant. Repeating the trait substitution generates a sequence of

trait values which converges to the ESS/CSS. Biologically speaking, an optimal anti-predation

strategy is developed by mutation and natural selection.

Figure 3.2: Pairwise invasibility plot for model (3.10) with trait α. Function F(α, v) is in the
form of (3.15) and b0 = 5, d = 0.5, c0v = 3.5, s = 1, p = 3. The mutant can invade in the
blue regions but the invader fails in the white regions. The intersection of two curves gives a
convergence stable ESS α∗ = 0.37.

The information concerning the adaptive dynamics of anti-predation strategy α can be il-

lustrated graphically in the pairwise invasibility plot (PIP). See Figure 3.2 for an example

when a positive convergence stable ESS exists with the chosen parameter values satisfying

p/s > b0/(c0v) > 1. The αu − αw plane is divided by the curves where θ(αu, αw) = 0. In

the blue regions θ(αu, αw) is positive, corresponding to successful invasion by mutant, whereas

in the white regions the invader fails since θ(αu, αw) is negative. The point where two curves

intersect is consistent with the value given by (3.16). Such a strategy is both an ESS and a CSS.
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3.4 Model analysis: with dispersal

In this section, we consider the full model (3.8) with dispersals which are also affected by fear.

3.4.1 Equilibria and stability

Firstly, we consider the trait α as a constant. System (3.8) admits only two equilibria: E0 =

(0, 0) and E+ = (u∗1, u
∗
2), with u∗1 and u∗2 satisfying:

u∗1 =
au∗2

m(α, v1)

[
u∗2 −

F2(α, v2) − m(α, v2)
a

]
=: Π1(u∗2),

u∗2 =
au∗1

m(α, v2)

[
u∗1 −

F1(α, v1) − m(α, v1)
a

]
=: Π2(u∗1).

(3.17)

The first quadratic function Π1 has two roots

u2 = 0 and u2 =
F2(α, v2) − m(α, v2)

a
=: û2,

and the second function Π2 also has two roots

u1 = 0 and u1 =
F1(α, v1) − m(α, v1)

a
=: û1.

These two parabolas intersect at the origin. Moreover, when û1 > 0 or û2 > 0, the two

curves always have a unique intersection in the interior of the first quadrant. When û1 < 0

and û2 < 0, there is an interior intersection in the first quadrant if and only if the slopes of

two curves at the origin satisfy Π′1(0) · Π′2(0) < 1, which is equivalent to F1(α, v1)F2(α, v2) <

F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1). Hence, we have the following result on the existence of

co-persistence equilibrium.

Theorem 3.4.1 The system (3.8) has a unique positive equilibrium if and only if one of the

following conditions holds:

(i) F1(α, v1) > m(α, v1),

(ii) F2(α, v2) > m(α, v2),
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(iii) F1(α, v1) < m(α, v1), F2(α, v2) < m(α, v2), and F1(α, v1)F2(α, v2) < F1(α, v1)m(α, v2) +

F2(α, v2)m(α, v1).

The Jacobian matrix for system (3.8) is given by

J =

F1(α, v1) − m(α, v1) − 2au1 m(α, v2)

m(α, v1) F2(α, v2) − m(α, v2) − 2au2

 . (3.18)

At the trivial equilibrium E0, it becomes

J(E0) =

F1(α, v1) − m(α, v1) m(α, v2)

m(α, v1) F2(α, v2) − m(α, v2)

 . (3.19)

Thus, the trivial equilibrium E0 is locally asymptotically stable if

tr(J(E0)) = F1(α, v1) − m(α, v1) + F2(α, v2) − m(α, v2) < 0,

det(J(E0)) = F1(α, v1)F2(α, v2) − F1(α, v1)m(α, v2) − F2(α, v2)m(α, v1) > 0.
(3.20)

As is shown graphically in Figure 3.3, this condition represents the region under the solid curve

defined by the equation

F1(α, v1)F2(α, v2) = F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1), (3.21)

or written in the explicit form,

F2(α, v2) =
m(α, v1)m(α, v2)

F1(α, v1) − m(α, v1)
+ m(α, v2), (3.22)

for F1(α, v1) < m(α, v1) on the F1-F2 plane. It is not difficult to observe that conditions in (3.20)

is precisely the conditions that exclude the existence of a positive equilibrium.

Remark Notice that the tangent line of the curve at (F1(α, v1), F2(α, v2)) = (0, 0) is F1(α, v1)m(α, v2)+

F2(α, v2)m(α, v1) = 0, shown as the thick solid straight line in Figure 3.3. Hence, the condition
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Figure 3.3: The solid curve is implicitly defined by F1(α, v1)F2(α, v2) = F1(α, v1)m(α, v2) +

F2(α, v2)m(α, v1) for F1(α, v1) < m(α, v1), below which E0 is asymptotically stable. The region
above this curve is where the trivial equilibrium E0 is unstable which is the same region for
(F1, F2) where the positive equilibrium E+ exists.

in Theorem 3.4.1 for the existence of positive equilibrium can be equivalently stated as

either (A) F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1) > 0,

or (B) 0 > F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1) > F1(α, v1)F2(α, v2),
(3.23)

The advantage of these equivalent statements is that they are expressed in terms of the

weighted total fitness F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1), which is the total of the two local

fitness functions mediated by the dispersal strengths. Such a weighted total obviously combines

the local fitness and the dispersal effect, and is thus a biologically meaningful measure for the

total fitness of the prey on the two patches.

As for the positive equilibrium E+ = (u∗1, u
∗
2), recall that u∗1 and u∗2 satisfy (3.17) which can

be written as
m(α, v1)u∗1

u∗2
= au∗2 − (F2(α, v2) − m(α, v2)),

m(α, v2)u∗2
u∗1

= au∗1 − (F1(α, v1) − m(α, v1)).
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Using these to rewrite the diagonal entries of J(E+), we have

J(E+) =


−

m(α, v2)u∗2
u∗1

− au∗1 m(α, v2)

m(α, v1) −
m(α, v1)u∗1

u∗2
− au∗2

 (3.24)

with

tr(J(E+)) = −
m(α, v2)u∗2

u∗1
− au∗1 −

m(α, v1)u∗1
u∗2

− au∗2 < 0,

det(J(E+)) =
am(α, v2)(u∗2)2

u∗1
+

am(α, v1)(u∗1)2

u∗2
+ a2u∗1u∗2 > 0.

Hence, the positive equilibrium is always locally asymptotically stable as long as it exists.

Indeed, we can prove that for this model system (3.8), the local asymptotic stability of an

equilibrium also implies the global asymptotic stability. To this end, we just need to show

that there is no periodic solution of system (3.8) by using the Dulac criterion. Set B(u1, u2) =

1/(u1u2), then we have

G1(u1, u2) := B(u1, u2)
du1

dt
=

F1(α, v1) − m(α, v1) − au1

u2
+

m(α, v2)
u1

,

G2(u1, u2) := B(u1, u2)
du2

dt
=

F2(α, v2) − m(α, v2) − au2

u1
+

m(α, v1)
u2

.

Since
∂G1

∂u1
+
∂G2

∂u2
= −

a
u2
−

m(α, v2)
u2

1

−
a
u1
−

m(α, v1)
u2

2

is not identically zero and does not change sign in R2
+, there is no periodic orbit. Hence, by

the Poincaré-Bendixson theory of planar dynamical systems, a locally asymptotically stable

equilibrium is also globally asymptotically stable.

Summarizing the above analysis, we have obtained the following global threshold result.

Theorem 3.4.2 The following statements hold:

(i) If condition (3.20) holds, then for any initial point [u1(0), u2(0)] ∈ R2
+, the corresponding

solution of (3.8) satisfies limt→∞ u1(t) = limt→∞ u2(t) = 0.

(ii) If condition (3.20) is violated (i.e., (3.23) holds), then the trivial equilibrium becomes
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unstable, and there is a unique positive equilibrium E+ (representing the prey’s co-

persistence on both patches) which is globally asymptotically stable.

Recall that in the absence of dispersal, the species survives in both patches if and only

if F1(α, v1) > 0 and F2(α, v2) > 0. However, with the dispersal, the range of F1(α, v1) and

F2(α, v2) for co-persistence of the species in both patches has obviously been enlarged, as is

shown in Figure 3.3. Particularly, co-existence in both patches is also possible even if one

of the fitness functions is negative, and this clearly and explicitly shows the positive role of

dispersal on maintaining the population persistence.

Although dispersal can enhance the chance to survive, it does not necessarily mean that

higher dispersal rate is always better. When the dispersal rates are greater than the correspond-

ing linear net growth rates (i.e., when m(α, vi) > Fi(α, vi) for i = 1, 2), there are ranges for

parameters within which the species will be driven to extinction. See the region under the solid

curve and located in the two stripes F1(α, v1) ∈ (0,m(α, v1)) and F2(α, v2) ∈ (0,m(α, v2)) in

the F1-F2 plane as shown in Figure 3.3. Or to be more explicit, we consider a special case

where dispersal rate is independent of the populations of predator, denoted as m(α). Then the

conditions in (3.23) for the persistence of prey on both patches are simplified to

either (A*) F1(α, v1) + F2(α, v2) > 0,

or (B*) F1(α, v1) + F2(α, v2) < 0 and 0 < m(α) <
F1(α, v1)F2(α, v2)

F1(α, v1) + F2(α, v2)
.

(3.25)

In Case (B*), there is an explicit upper bound for the dispersal strength m(α). Therefore, in

such a special case, when the total fitness is positive, the species always persists on both patches

even if one local fitness is negative (patch quality is very poor), as long as there is dispersal

(m(α) > 0) regardless of how small and how large it is. However, if the total fitness is negative,

the species will eventually die out on both patches if the dispersal rate exceeds the threshold

given in (3.25), but will persist if the prey maintains a mild dispersal rate.

Combining the above results with the dependence of Fi(α, vi) and m(α, vi) on α for i = 1, 2,

one then can explore the effect of the anti-predation response level α on the prey’s population
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dynamics. To illustrate possible outcomes, we choose the following particular functions,

Fi(α, vi) = b0ie−s̃αvi − di − c0vie− p̃αvi , i = 1, 2, (3.26)

m(α, vi) = m0e−q̃αvi , i = 1, 2, (3.27)

which satisfy all those assumptions proposed in Section 3.2. Figure 3.4(a) shows the variation

of curve defined by (3.22) with respect to anti-predation strategy α. Recall that this curve

separates the stability region of the trivial equilibrium E0 from the region where the positive

equilibrium E+ is globally asymptotically stable. When α increases, the stability region of the

positive equilibrium is enlarged, and the pair of values [F1(α, v1), F2(α, v2)] moves along the

red curve from the stability region of E+ into the stability region of E0. Consequently, the

population on two patches converges to a positive steady state for small α, but prey on both

patches go to extinction when α exceeds some critical point. The stable population sizes are

plotted in Figure 3.4(b), marked with the strategy values when populations reach their maxima.

Enhancing anti-predation response level is beneficial to population size when α is small, then

it becomes detrimental. Such effect is not synchronous on the two patches.

(a) (b)

Figure 3.4: The effect of anti-predation response level α on the prey’s population dynamics.
(a) The curves defined by (3.22) with different values of α, which separate the stability region
of the positive equilibrium E+ from that of the trivial equilibrium E0. The red curve with
arrow represents the trajectory of [F1(α, v1), F2(α, v2)] when α increases from 0 to 3.5. (b)
The dependence of stable population sizes on α, marked with the strategy values at which the
populations are maximized. Other parameter values are: b01 = 10, b02 = 5, d1 = 1, d2 = 2,
c0 = 0.04, v1 = 100, v2 = 200, s̃ = 0.01, p̃ = 0.03, m0 = 2, q̃ = 0.02, and a = 1.
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3.4.2 Evolution of anti-predation strategy

In this subsection, we move on to study the evolution of anti-predation strategy α.

Invasion analysis

Due to the presence of dispersal between the patches, adopting the same invasibility analysis

as in Section 3 leads to a four-dimensional ODE system,



du1

dt
= u1 [F1(αu, v1) − a(u1 + w1)] + m(αu, v2)u2 − m(αu, v1)u1

du2

dt
= u2 [F2(αu, v2) − a(u2 + w2)] + m(αu, v1)u1 − m(αu, v2)u2

dw1

dt
= w1 [F1(αw, v1) − a(u1 + w1)] + m(αw, v2)w2 − m(αw, v1)w1,

dw2

dt
= w2 [F2(αw, v2) − a(u2 + w2)] + m(αw, v1)w1 − m(αw, v2)w2.

(3.28)

The ability of the mutant to invade can be determined from the eigenvalues of the Jacobian

matrix of the augmented system at boundary equilibrium (u∗1, u
∗
2, 0, 0) with u∗1 and u∗2 being

solved from (3.17):

J =

J11 J12

0 J22

 (3.29)

This is an upper triangular matrix, so the eigenvalues are simply those of the two 2 × 2 block-

diagonal elements J11 and J22. The matrix J11 is identical to the Jacobian matrix J(E+) given

by (3.24). Since we are only interested in resident prey populations that are at a stable positive

equilibrium, the two eigenvalues of J11 must have negative real parts. Thus, the local stability

fully depends on the dominant eigenvalue of matrix J22 =

A B

C D

,
λ =

1
2

(
A + D +

√
(A − D)2 + 4BC

)
, (3.30)

where

A = F1(αw, v1) − m(αw, v1) − au∗1, B = m(αw, v2),

C = m(αw, v1), D = F2(αw, v2) − m(αw, v2) − au∗2.
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A mutant prey with strategy αw can invade the resident population with strategy αu provided

that λ > 0. Hence, we choose λ as the invasion exponent because it directly determines whether

the mutant strain, when being rare, will grow or decay (invade or not). An evolutionary singular

strategy αu = α∗ is a solution to the equation

∂λ(αu, αw)
∂αw

∣∣∣∣∣
αw=αu

= 0. (3.31)

This strategy is an ESS if
∂2λ(αu, αw)

∂α2
w

∣∣∣∣∣∣
αw=αu=α∗

< 0; (3.32)

and α∗ is convergence stable if

∂2λ(αu, αw)
∂α2

u

∣∣∣∣∣∣
αw=αu=α∗

>
∂2λ(αu, αw)

∂α2
w

∣∣∣∣∣∣
αw=αu=α∗

. (3.33)

See [8] for details. It is not easy to explore further explicitly by applying these criteria. This is

because of the complexity of λ(αu, αw) — it depends on u∗1(αu) and u∗2(αu) which are determined

by but cannot be explicitly solved from (3.17).

However, we can still gain some information about the adaptive dynamics of anti-predation

strategy α by sketching the pairwise invasibility plot numerically. An example is illustrated in

Figure 3.5 using the particular functions Fi(α, vi) and m(α, vi) given by (3.26) and (3.27) and

the same parameter values as in Figure 3.4. The αu − αw plane is partitioned according to the

signs of invasion exponent λ defined by (3.30). We can easily tell that the singular point at

which the two curves of neutrality intersect is an ESS. Even though the condition for mutual

invasibility ([8]),
∂2λ(αu, αw)

∂α2
u

∣∣∣∣∣∣
αw=αu=α∗

> −
∂2λ(αu, αw)

∂α2
w

∣∣∣∣∣∣
αw=αu=α∗

, (3.34)

is hard to check, it seems to be impossible since the plot in Figure 3.5 is symmetric about the

line αw = αu. One may expect the dynamics to be monomorphic.

We have seen there are some shortcomings of invasibility analysis. This motivates us to

employ an alternative method, that is, considering an augmented system with the anti-predation

response level α being another variable. We explore this method in the next subsection.
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Figure 3.5: Pairwise invasibility plot for model (3.28) with trait α. The blue areas correspond
to λ > 0 when the mutant can invade, and in the white areas λ < 0 implying that the mutant
dies out.

Adaptive dynamics without time scale separation

Assume that the prey has complete knowledge about the surrounding environment and always

adapts its behaviour to increase fitness. Thus the evolution of α = α(t) with respect to time

should be toward the direction of increasing the fitness of the prey species. This can be reflected

by assuming that the relative change rate of α is proportional to the gradient of the fitness with

respect to α, that is,
dα
dt

= σα
∂Φ

∂α
(3.35)

where Φ accounts for some measure of fitness for the prey and σ > 0 represents the speed

of evolution. It is easy to see that the solution to (3.35) remains positive, given any positive

initial value. We point out that here our trait variable α is within [0,∞) in comparison to some

previous used replicator equations of the form α′(t) = σα(1 − α)∂Φ
∂α

where α is confined to

[0, 1]. See, e.g. [23, 25] and some references therein.

To gain some motivation for the fitness function Φ, let us revisit the case without dispersal

discussed in Section 3, using this alternative idea of evolving strategy α (rather than comparing

two different constant values for α as done in Section 3). Then, instead of the model (3.10)
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that describes the competition between resident prey and mutants with different anti-predation

response levels, we may consider following new system consisting of equation (3.9) for the

population and equation (3.35) for strategy:


du
dt

= u [F(α, v) − au] ,

dα
dt

= σα
∂Φ

∂α
,

(3.36)

where σ should be relatively small since speed of evolution is much slower than the demo-

graphic process. As discussed in Section, 3, F(α, v) is a measure of fitness for the species and

hence, is a natural candidate for Φ. With this choice of Φ = F(α, v), the second equation in

(3.36) is decoupled from the first equation, and hence can be dealt with independently. Besides

α = 0, all singular points of Φ such that ∂Φ
∂α

= 0 are fixed points of the strategy equation. When

α(t) starting from any initial value eventually converges to one fixed point α∗, the population

approaches to its steady state accordingly based on the sign of F(α∗, v). If F(α, v) is in the

form of (3.15) for p/s > max{b0/(c0v), 1} which is a one-hump function, then α∗ is the point at

which F(α, v) attains its maximum. This result is consistent with what we obtained in Section

3.

Now we combine the strategy equation (3.35) with the two-patch population model (3.8)

with dispersals. The first and most important thing is to determine what function is appropriate

to be the fitness Φ. From the discussion in Remark 4.1, we have seen that total fitness mediated

by the dispersals, that is F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1), is of both mathematical and

biological significance. Thus, similar to the choice of Φ = F(α, v) for model (3.36), we may

use the above quantity as a measure of fitness for the prey in two-patch environment. Then, we

are led to consider the system given below:



du1

dt
= u1 [F1(α, v1) − au1] + m(α, v2)u2 − m(α, v1)u1,

du2

dt
= u2 [F2(α, v2) − au2] + m(α, v1)u1 − m(α, v2)u2,

dα
dt

= σα
∂

∂α
[F1(α, v1)m(α, v2) + F2(α, v2)m(α, v1)]

(3.37)

The strategy equation is also decoupled from the population equations, and its dynamics
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depends on the choices of Fi(α, vi) and m(α, vi), i = 1, 2. Without specifying these functions,

one can hardly obtain any conclusive results. Thus, in order to illustrate how the anti-predation

response level α evolves along time, we use the functions (3.26) and (3.27) again and conduct

some numeric investigations with the same parameter values as those used in Section 4.1 and

σ = 0.01.

If the two patches are not connected by dispersals, the prey evolves separately on each patch

according to system (3.36) with different parameter values. The fitness functions F1(α, v1) and

F2(α, v2) are of the same form as (3.15), and hence, their behaviours are also as demonstrated

in Figure 3.1 with the given parameter values satisfying p̃/s̃ > max{b0i/(c0vi), 1} for i = 1, 2.

Their maximal values are reached at different critical points α∗1 and α∗2. As is shown in Fig-

ure 3.6, the anti-predation response level α in each patch evolves toward the corresponding

critical points α∗1 and α∗2.

(a) Fitness function (b) Anti-predation response level α

Figure 3.6: The fitness function F1(α, v1) and F2(α, v2) and convergent dynamics of anti-
predation response level α(t) on the two patches which are not connected by dispersals.

In the presence of dispersals, the weighted total fitness with the same parameter values also

has a global maximum attained at point α1∗, as plotted in Figure 3.7(a), which is in between

of α∗1 and α∗2. The convergence of α(t) to α1∗ for some initial values near α1∗ is numerically

demonstrated in Figure 3.7(b), indicating that α1∗ at least is a local attractor.

Besides the total fitness mediated by dispersals, there are other choices for the fitness func-

tion Φ. In principle, any thing that captures that biological meaning and in the mean time, is

mathematically tractable can be used to measure the fitness. For example, as was used in [26],
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(a) Fitness function (b) Anti-predation response level α

Figure 3.7: The fitness function is taken as the total fitness mediated by dispersals. The anti-
predation response level α(t) converges to the point that maximizes this fitness function.

the instant growth rate of the total population of the prey species,

Φ =
du1

dt
+

du2

dt

= u1 [F1(α, v1) − au1] + u2 [F2(α, v2) − au2] .
(3.38)

Accordingly, the equation governing the strategy’s evolution becomes

dα
dt

= σα

[
u1
∂F1(α, v1)

∂α
+ u2

∂F2(α, v2)
∂α

]
. (3.39)

Unlike in the above two examples, now we have a coupled system for the strategy and the

populations. It becomes impossible to plot the fitness function since it also varies with time.

But we can still explore the dynamics of α(t) numerically. With the same function forms in

(3.26) and (3.27) and the same values of the parameters involved, the adaptive dynamics of

α(t) are illustrated in Figure 3.8(b). We can see that the variable α(t) beginning within the

same range for initial values used in Figure 3.7 converges to a value α2∗ which is different from

α1∗. Additionally, α2∗ maximizes the limit fitness function when the populations reach steady

state, as is shown in Figure 3.8(a). We also observe that the convergence of α(t) is faster than

that in previous example.

From the above numerical explorations, we have seen that for both choices of Φ, the trait

variable α(t) demonstrates convergent dynamics. However, the convergence speed and the
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(a) Fitness function (b) Anti-predation response level α

Figure 3.8: The fitness function is taken as the instant total growth rate of the prey on two
patches given by (3.38) which also varies with time. The anti-predation response level α(t)
converges to a different value from that in Figure 3.7(b), which maximizes the limit fitness
function when populations reach steady state as shown in the left graph.

destination values α1∗ and α2∗ can be different for different Φ. This is because those fitness

functions have different emphases and hence, may not be maximized uniformly. Moreover,

none of the critical points matches the ESS obtained from the pairwise invasibility plot shown

in Figure 3.5. We point out that the numerical results on the convergence of α(t) to a critical

value αi∗ demonstrated in Figure 3.7(b) and Figure 3.8(b) respectively does not depend on the

initial populations.

We are also interested to the final populations of prey on both patches when optimal strat-

egy αi∗ is reached. With the same parameter values used for Figures 3.6, 3.7 and 3.8, numerical

results for the populations are displayed in Figure 3.9 which corresponds to the scenarios il-

lustrated above: (a) no dispersals (Figure 3.6), (b) dispersal considered with total fitness medi-

ated by dispersals (Figure 3.7), and (c) dispersal considered with fitness being the instant total

growth rate (Figure 3.8). From the numerical results given in Figure 3.9, we see that when

dispersals between the two patches are not allowed, the prey’s population can only persist in

patch 1 since F1(α∗1, v1) > 0 and F2(α∗2, v2) < 0; but if the individuals of prey are free to move

between the two patches, the prey coexists on both patches with the population size in patch 1

being higher than that in patch 2. Moreover, in the presence of dispersal, the total population in

the steady state is larger than that in the case without dispersals, no matter which fitness func-

tion is adopted. Comparing with the results obtained in Figure 3.4, we observe that none of the
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optimal strategies maximizes the population of prey. Such a phenomenon that an optimal strat-

egy does not necessarily maximize the total population was also observed in previous studies.

For example, in Hastings [11], it was shown that the ESS dispersal strategy does not maximize

the total population of the species on two patches; and in Lundberg [16], it was also observed

that the maximal population deviates from the solution with an ESS migration probability.

(a) No dispersal (b) Φ is the total fitness mediated by dispersals

(c) Φ is the instant total growth rate

Figure 3.9: The dynamics of prey’s population for systems (3.36), (3.37) and (3.8)-(3.39). The
initial values are [u1(0), u2(0), α(0)] = [5, 5, 0.8].

3.5 Conclusion and Discussion

Motivated by some recent works about indirect effect on predator-prey systems, we have pro-

posed a mathematical model to examine the impact of fear on the population dynamics of prey.

Unlike in [25] where only the cost of the anti-predation response (reducing reproduction) was
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considered, here we have also considered the benefit of such a response for surviving the pre-

dation. Both the cost and benefit functions depend on the anti-predation response level and the

population of predator. However, in other works concerning about the evolution of predator-

prey interactions, the responses are only density independent (see [1, 2, 13, 30] for examples).

In addition, we also have considered the fear effect on the dispersal strategy of prey under pre-

dation risk. In other words, we have incorporated the fear effects in three factor: reproduction,

predation and dispersion. To this end, we have considered a two-patch environment by assum-

ing that the habitat of a prey consists of two discrete regions with individuals being able to

disperse between the two regions. The unaffected dispersal rates are assumed to be symmetric

since we are focused on the effect of fear and the anti-predation trait.

We start from a special case when there is no dispersal between the patches. Our results

show that the optimal anti-predation response level α depends on whether its effect on reducing

the predation is more or less significant than its effect on reducing the reproduction. For the

former, there is a continuously stable strategy (which is both an ESS and a CSS) α∗ > 0 (see

Figure 3.1 and 3.2), while for the latter, no response α = 0 should be favoured. See Section 3

for detailed discussion. For the case when the patches are connected through dispersal of the

prey, our results indicate that the dispersal can enhance the co-persistence of the prey in the

two patches. This is clearly and visually demonstrated in Figure 3.3 and is also discussed in

details after Theorem 3.4.2 in Section 4. If a particular form of the dispersal function m(α, v)

is given (e.g., by (3.27) or some other functions satisfying (3.7) ), one may further explore to

obtain more detailed results on how α affects the co-persistence region in the F1-F2 plane. The

numerical simulation displayed in Figure 3.4 is provided as an example.

We continued to study the evolution of anti-predation response level α by invasibility anal-

ysis in Section 4.2.1. The criteria, however, are not practically useful. Alternatively, we let the

trait α be another variable evolving with respect to time, which leads to a model given by a

system of three ordinary differential equations. The replicator equation governing the direction

of evolution depends on a fitness function Φ. We have considered two particular forms of this

Φ: (i) the total fitness mediated by dispersals which comes up in our analysis for the popula-

tion system (see Section 4.1); (ii) the instant growth rate of the total population on both patches

(motivated by [26]). However, we have only numerically explored the model to see how the
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response level (as a trait variable) evolves with time, and the results at least indicate local

convergence to a positive equilibrium of the full model with the response level α(t) evolving

toward a positive value. This implies the existence of an optimal anti-predation response level.

More rigorous and thorough analysis is still needed in order to obtain more detailed (explicit)

qualitative and quantitative results.

As we pointed out in the numerical examples, there are many choices for the fitness func-

tions in the extensive literatures of adaptive dynamics and evolutionary dynamics, and we just

tried two. Other quantities, like the basic reproduction ratio, life span and basic depression

ratio, are also often considered by researchers. When choosing functions to measure fitness,

besides the main biological feature(s), mathematical convenience is often a main consideration.

We believe that the biological species as well as the biological problem under consideration

should also make some difference(s). It would not be surprising to see that the strategy vari-

able α(t) would evolve to different positive values when different fitness functions are chosen.

In this paper, we have studied the evolutionary dynamics in two ways: adaptive dynamics

with time scale separation (in Sections 3 and 4.2.1) and adaptive dynamics without time scale

separation (in Section 4.2.2). By the former approach, the changes of trait are from mutation

and natural selection and the process is graphically demonstrated by the pairwise invasibility

plot. The critical strategies ESS and CSS are defined based on invasibility, associating with

the stability/instability of corresponding competition system. The conditions for ESS and CSS

have been proposed in previous works, but direct application may hardly provide any infor-

mation due to the complexity of our model. The latter approach, however, clearly shows the

direction of evolution, and the resulted system is more tractable in mathematics. Even though

our results derived from the two methods are not quantitatively equivalent, we believe that

there exists such a fitness function leading to the same evolutionary destination as the invasion

method.

We have assumed in this paper that the fear effect decreases the mobility of the prey, re-

flected by the assumption (3.7) for the dispersal function m(α, vi), and this assumption has those

species that have refuges as prototypes of the prey species. On the other hand, there are prey

species that have moving advantages (such as birds), for which, perceived predation risk would

increase their dispersal rates (actively escaping from predators, or predator-taxis). For such
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species, in contrast to (3.7), the dispersal function m(α, vi) would be an increasing function of

both α and vi. We will explore this case in another work. For the spatially continuum case, a

predator-taxis diffusion mechanism has been discussed in [27].

Finally, we remark that in our model in this paper, the population of predators is assumed

to remain constant. Although there are numerous situations that fit in such a scenario (e.g.,

when the predator is a generalist), a case where the predator population is not a constant may

intrigue further extensions. This will increase the dimension of the model system and con-

sequently, increase the difficulty level of analysis. In the meanwhile, the model may present

richer dynamics. Considering a specialist predator living in both patches, its populations decay

exponentially in the absence of prey, governed by the following equations,


dv1

dt
= ξc(αu, v1)u1v1 + ξc(αw, v1)w1v1 − dvv1,

dv2

dt
= ξc(αu, v2)u2v2 + ξc(αw, v2)w2v2 − dvv2,

(3.40)

where ξ > 0 denotes ingestion efficiency and dv > 0 is the natural death rate. Assume that

predators are not able to move between the patches. Combining these two predator equations

with model system (3.28) and using the particular functions (3.26) and (3.27), numerical exam-

ples of population dynamics are shown in Figures 3.10 and 3.11, corresponding to one-patch

and two-patch environment respectively. Unlike models (3.10) and (3.28) with constant preda-

tor populations showing monomorphic dynamics, co-existence of prey using different strategies

is observed in the augmented model. Hence, evolutionary branching is possible. We leave this

for future research projects.
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Figure 3.10: Population dynamics in an isolated patch for the case of a specialist predator. The
parameter values are a = 1, b0 = 5, d = 0.5, c0 = 0.35, s̃ = 0.1, p̃ = 0.3, αu = 0.1, αw = 0.7,
dv = 0.3, ξ = 0.2; and the initial point is [u(0),w(0), v(0)] = [5, 5, 5].

(a) Patch 1 (b) Patch 2

Figure 3.11: Population dynamics in a two-patch environment for the case of a specialist preda-
tor. The parameter values are a = 1, b01 = 10, b02 = 5, d1 = 0.5, d2 = 0.3, c0 = 0.4, s̃ = 0.1,
p̃ = 0.3, m0 = 2, q̃ = 0.02, αu = 0.1, αw = 0.3, dv = 0.2, ξ = 0.2; and the initial point is
[u1(0), u2(0),w1(0),w2(0), v1(0), v2(0)] = [5, 5, 5, 5, 5, 5].
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Chapter 4

Transient Dynamics of SIR Models over

Patchy Environment

4.1 Introduction

Mathematical modelling of transmission dynamics of infectious disease is an important tool

that has been used to investigate the mechanism of how a disease spreads, to predict the fu-

ture course of an outbreak, and to examine the likely outcomes of public health interventions.

Among the questions one would like to explore by mathematical modelling are the following

two important ones. (Q1) Long term disease dynamics: will an infectious disease eventually

die out or become endemic? (Q2) Short term disease dynamics: at a given time, is the epidemic

of an infectious disease getting worse/breaking out, or is it getting mitigated? To better explain

these two questions, let us first look at the simplest Kermack-McKendrick model proposed and

studied in [15], which is given by the following set of ordinary differential equations:



dS
dt

= −βS I,

dI
dt

= βS I − γI,

dR
dt

= γI.

(4.1)

73
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Here the host population is divided into three compartments: susceptible class, infected class

and removed class, with the respective subpopulations denoted by S (t), I(t) and R(t). This

model is reasonable for infectious diseases that are transmitted from human to human with

β > 0 denoting the transmission rate. Individuals leave the infected class due to recovery

or death. The transition rate is proportional to the infectious population where γ > 0 is the

removal rate. Note that in (4.1), neither demography nor disease-caused deaths are considered,

and hence, it is suitable only for mild infectious diseases that has relatively short epidemics

(comparing to human’s lifespan). This model has been well studied, and the following results

have been obtained (see, e.g., [22]).

I. Given S (0) = S 0 > 0, I(0) = I0 > 0 and R(0) = R0 ≥ 0, the following conclusions hold:

(I-1) if R0 := βS 0/γ < 1, then I(t) decreases to zero as t → +∞;

(I-2) if R0 > 1, then I(t) first increases up to a maximum value Imax then decreases to zero as

t → +∞;

(I-3) S (t) is a decreasing function approaching to the limiting value S∞ := limt→+∞ S (t);

(I-4) both Imax and S∞ depend on the initial populations, S 0 and I0, and the value of parameters,

β and γ.

The numberR0 = βS 0 ·
1
γ

above is called the basic reproduction number for the model (4.1).

Noting that
1
γ

is the average infection time for infected individuals and β is the transmission

rate, it is clear that R0 actually measures the average number of new infections that an infected

individual causes when the susceptible population is S 0. From (I-1) and (I-2), one can easily

see that the value of R0 determines whether or not there will be an outbreak for the disease

when initially I0 > 0 and S 0 > 0: there will be no outbreak if R0 < 1, and there will be an

outbreak if R0 > 1. This dichotomy can also be obtained by looking at

I′(0) = βS (0)I(0) − γI(0) = [βS 0 − γ]I0 =: Γ0I0 (4.2)

with S 0 > 0 and I0 > 0: there will be no outbreak if Γ0 := βS 0 − γ < 0 (i.e., I′(0) < 0); and

there will be an outbreak if Γ0 > 0 (i.e., I′(0) > 0). Note that Γ0 = βS 0−γ is the related change
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rate of the subpopulation I(t) at the initial time t = 0, which measures the amplification rate of

I(t) at t = 0. Here we have two different notions: the basic reproduction number R0 which is of

long time nature (during infection period), and the initial amplification rate Γ0 which is of short

time nature (at a particular time t = 0). The former is supposed to predict the long time disease

dynamics while the latter is supposed to predict the short time disease dynamics. However,

they amazingly agree to each other in predicting the disease dynamics of (4.1), because the

long term and short term disease dynamics in terms of outbreak coincide.

The SIR model (4.1) has numerous variants when different transmission mechanisms and

demographies are taken into account, and the threshold theorems have been extended. Denote

N as the total population, N(t) = S (t) + I(t) + R(t). For example, if the demographic equation

is N′(t) = B(N) − dN and a disease-related death rate ε > 0 is assumed, then (4.1) is naturally

extended to 

dS
dt

= B(N) − βS I − dS ,

dI
dt

= βS I − (γ + d + ε)I,

dR
dt

= γI − dR.

(4.3)

Assuming N′(t) = B(N) − dN has a unique positive equilibrium N+ > 0 which is globally

stable; and before the disease appears, the host population have settled at (or is close to) N+.

This implies that (4.3) has a unique disease-free equilibrium E0 = [N+, 0, 0] (as opposed to

(4.1) for which there are infinitely many disease-free equilibria). By standard dynamical system

approach, one can easily show that (4.3) also has the long term threshold dynamics in terms

of its basic reproduction number R̂0 = βN+/(γ + d + ε): if R̂0 < 1, then E0 is asymptotically

stable meaning that the disease will eventually die out provided that initial infection is not too

big (i.e., 0 < I(0) � N+); if R̂0 > 1, E0 becomes unstable and the disease becomes endemic

(i.e., I(t) is uniformly persistent). In the mean time, from

I′(0) = [βS (0) − (γ + d + ε)]I(0) =: Γ̂0I(0), (4.4)

one knows that if Γ̂0 < 0, then there will be no outbreak at t = 0; if Γ̂0 > 0, then there will be

an outbreak at t = 0. Observe that generally R(0) = 0, N(0) = N+ (or N(0) is close to N+)
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and I(0) is very small in reality when a disease appears. Hence, Γ̂0 = βS (0) − (γ + d + ε) ≈

βN(0)−(γ+d+ε) = βN+−(γ+d+ε). This implies that generically, R̂0−1 and Γ̂0 have the same

sign. Therefore, generically R̂0 also determines whether or not an initial small infection I(0)

will result in an outbreak in the coming short period of time after t = 0, the same conclusion as

for (4.1).

The above results for (4.3) are for the initial time t = 0 when an epidemic occurs. If,

at some given time t0 > 0 during an epidemic, one wants to predict whether or not there

will be an outbreak in the coming short period after this time t0, one would have to look at

I′(t0) = Γ̂(t0)I(t0) for (4.3), where Γ̂(t0) = βS (t0) − (γ + d + ε). Unfortunately, S (t0) can now

be far away from S (0) (hence N(0)), and hence, the sign of R̂0 − 1 (independent of t0) may

not agree with the sign of Γ̂(t0). Thus, the value of the long term characteristics quantity R̂0

generally cannot predict whether or not there will be an outbreak in the coming short period

of time after t0. That is, even if R̂0 < 1 (hence eventually I(t) → 0), there can be an outbreak

at some t0 > 0; and even if R̂0 > 1, there may be some time t0 > 0 such that I′(t0) < 0, which

can easily mislead the publics. Therefore, for a general model of infectious disease dynamics,

the long term and short term behaviours often do not imply each other, and they both deserve

careful analysis.

For long term disease dynamics, there have been a very rich literature with publications on

various models. Typically the long term dynamics of a disease model is of threshold type in

terms of the basic reproduction number R0. For a model that has a unique disease-free equi-

librium (DFE), the basic reproduction number R0 is still biologically defined as the expected

number of secondary infections from a single infected individual during his or her entire period

of infectiousness in a completely susceptible population. Mathematically, R0 is identified by

the next generation method, which was initially introduced by Diekmann et al. [12]. In this

method, R0 is defined as the spectral radius of the next generation operator. For compartmental

models formulated as systems of ordinary differential equations (ODEs), van den Driessche

and Watmough [13] derived an expression for the next generation matrix. The authors further

demonstrated the threshold long term dynamics by showing that: if R0 < 1 then the DFE of the

model is locally asymptotically stable meaning that the disease eventually dies out; if R0 > 1
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then the DFE is unstable and the disease becomes endemic.

In contrast, there are only very few works in literature (see Section 2) that analytically in-

vestigate short term or transient disease dynamics by mathematical models, and this is mainly

due to the lack of effective tools and methods. For simple models like (4.1) and (4.3), the

equation governing the change rate of the infected subpopulation is conveniently related to its

amplification rate that has an explicit formula. When there is some heterogeneity, for example,

spatial heterogeneity as we will discuss next, analyzing short term or transient disease dynam-

ics becomes much more difficult, if not impossible. On the other hand, just like short term

or transient population dynamics is important in ecology as emphasized by Hastings [17, 18],

short term disease dynamics is also very important because it may affect the health decisions

on implementing some interventions for controlling the epidemics of an infectious disease.

Nowadays the world is highly connected, and such a high connectivity has obviously en-

hanced the spread of infectious diseases. The pandemic of COVID-19 is such an example.

Thus, when modelling the transmission dynamics of an infectious disease, we need to consider

spatial structure. Typically, patch models are used with each patch representing a country, city

or some other geographic area. The dynamics of each patch is coupled by spatial dispersals or

travels reflecting movement of the host population. Such couplings bring challenge to the anal-

ysis of the resulting model. Taking the Kermack-McKendrick SIR system (4.1) as an example

and considering n > 2 patches, the coupled SIR system corresponding to (4.1) is



dS i

dt
=

∑
j∈Ω, j,i

dS
jiS j −

∑
j∈Ω, j,i

dS
i jS i − βiS iIi,

dIi

dt
=

∑
j∈Ω, j,i

dI
jiI j −

∑
j∈Ω, j,i

dI
i jIi + βiS iIi − γiIi,

dRi

dt
=

∑
j∈Ω, j,i

dR
jiR j −

∑
j∈Ω, j,i

dR
i jRi + γiIi,

for i ∈ Ω. (4.5)

Here Ω = {1, . . . , n}. Parameters βi > 0 and γi > 0 have the same meanings as in (4.1)

but for patch i, and the constant dX
i j > 0 is a per capita rate at which individuals in class X

move from patch i to patch j for X ∈ {S , I, R}, i, j ∈ {1, . . . , n}, and i , j. Now due to

the coupling, obtaining results similar to (I-1)-(I-4) for the non-spatial model (4.1) becomes

very difficult, if not impossible. This is because (A) the computation of the basic reproduction
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number R0 is harder; and (B) there may be some time moments at which I′i (t), i = 1, . . . , n,

have different signs, and hence the measurement of outbreak should consider all patches. To

our best knowledge, there are only two studies [29, 30] that have considered the short time

transient dynamics of disease transmission over patchy environment. For this type of disease

models over patches, even when a model has a unique DFE at which the next generation method

is applicable to establish the threshold long term dynamics, it is hard (if not impossible) to

obtain an explicit expression for R0 as the spectral radius of a large matrix. See, e.g., [5, 6, 35,

7, 1, 21, 14, 2, 10] and the references within.

This paper is stimulated by the aforementioned need for approaches to explore short term

dynamics of infectious diseases over connected patches. To this end, we borrow the notion

of reactivity used in ecology and take advantage of the developed mathematical results for

reactivity in mathematical ecology. By applying this idea to some patch models of disease

transmission, we wish to provide a framework and an approach that can be used for more

disease models with spatial structure.

The rest of the paper is organized as below. In Section 2, we provide the mathematical

background for some related notions in mathematical ecology, including reactivity, amplifi-

cation rate and resilience. We then move on to apply these notions and ideas behind them

to some disease models over patches to examine the short term dynamics presented by each

system. This will allow us to explore how the spatial dispersals/travels and other model param-

eters as well as initial values affect the short term disease dynamics at a given time during an

epidemic. Two types of patch models will be examined: Section 3 deals with models without

demography, and Section 4 focuses on models with demographic structure. Some numerical

simulations will also be exhibited to more visually demonstrate our results. We end the paper

by Section 5 in which we summarize our main conclusions and present some discussions.

4.2 Amplification rates and reactivity

The notion of reactivity in ecology was first introduced by Neubert and Caswell [31], as a

description of the short-term response to perturbations. Specifically, it is defined as the max-

imum initial amplification rate over all possible small perturbations to an equilibrium. An
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equilibrium with positive reactivity is said to be reactive, corresponding to the case when some

perturbations can grow initially.

Consider the initial value problem of a linear system of ODEs:

dx
dt

= Ax, x(0) = x0 (4.6)

where x ∈ Rn and A =
[
ai j

]
n×n

is a real matrix. Equation (4.6) can be the linearization of

a population dynamics for n interacting species at an equilibrium, with x being the deviation

from the equilibrium. Thus, the Euclidean norm of x(t), i.e.,

‖x(t)‖ :=
√

x2
1(t) + x2

2(t) + · · · + x2
n(t),

measures the size of vector x(t), and it also measures the distance of x(t) to the origin, or

equivalently measures how far away of the population vector at time t from the equilibrium.

Denote by Γ(t) the relative rate of change of ‖x(t)‖, that is,

Γ(t) :=
1
‖x‖

d‖x‖
dt

. (4.7)

Obviously, Γ(t) measures the amplification rate for ‖x(t)‖ at time t. Particularly, Γ0 := Γ(0) is

called the initial amplification rate. If x(t) is a solution to (4.6), then direct calculation gives

(see [31])

Γ(t) =
xT (t)H(A)x(t)
‖x(t)‖2

where H(A) =
A + AT

2
. (4.8)

By the definition, Γ(t) > 0 (Γ(t) < 0) means that the size of the solution ‖x(t)‖ to (4.6) is

growing (decaying) at t. Particularly, the sign of the initial amplification rate,

Γ0 =
x0

T H(A)x0

x0
T x0

, (4.9)

predicts whether the solution with x0 will initially grow or decay. Note that Γ0 = Γ(x0) depends

on the initial value x0 ( so does Γ(t)).

Let λ1(A) denote the eigenvalue of A that has the largest real part. Then −λ1(A) is called
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the resilience of (4.6), which is independent of the initial value x0 and reflects the long term

dynamics of (4.6). On the other hand, H(A) is a real symmetric matrix and hence all its

eigenvalues are real. Let λmin and λmax denote the smallest and largest eigenvalues of H(A)

respectively. Since Γ0(x0) given by (4.9) is in the form called the Rayleigh quotient or the

Rayleigh-Ritz ratio, it is known (see, e.g., [20]) that

λmin 6 Γ0(x0) =
xT

0 H(A)x0

xT
0 x0

6 sup
x0,0

xT
0 H(A)x0

xT
0 x0

= max
‖x0‖=1

xT
0 H(A)x0

xT
0 x0

= λmax. (4.10)

The reactivity of (4.6) is defined in [31] as the largest initial amplification rate over all initial

values, that is,

reactivity = sup
x0,0

(
1
‖x‖

d‖x‖
dt

∣∣∣∣∣
t=0

)
= sup

x0,0

xT
0 H(A)x0

xT
0 x0

= λmax. (4.11)

Apparently, the reactivity measures the maximal possible initial growth for (4.6) which is of

short term nature. Moreover,

• if the reactivity λmax of (4.6) is negative, then for any initial value x0, the solution will

initially decay in size (norm) since Γ0 = Γ(x0) < 0;

• if λmin > 0, then for any initial value x0, the solution will initially grow in size since

Γ0 = Γ(x0) > 0;

• if λmin < 0 < λmax, then there will be initial values x0 for which Γ0 = Γ(x0) < 0 and there

will also be x0 for which Γ0 = Γ(x0) > 0.

We remark that there have been some extensions/generalizations of the above notions of re-

activity and amplification rates in ecology. For example, Mari et al. [27] generalized reactivity

to λmax(H(CT CA)) corresponding to a system output y = Cx where matrix C reflects the inter-

est in a set of state variables. Wang et al. [36] recently extended the measurements of reactivity

and amplification rates to some reaction-diffusion models to explore how spatial heterogeneity

affects transient dynamics. In a more recent work, Lutscher and Wang [24] explored the reac-

tivity of periodic orbits. The results reveal some differences between the reactivity of a stable
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equilibrium and that of a stable periodic orbit. In the context of disease dynamics models (a

type of population models with predator-prey type interactions), reactivity has been applied to

study short term disease dynamics in [37, 32]. Also, parallel to R0 for long-term endemicity,

Hosack et al. [23] derived a threshold index for short-term epidemicity by using the concept

of reactivity at the disease-free equilibrium (DFE). The more general definition of reactivity

proposed in aforementioned reference, Mari et al. [27], allows the authors to measure the initial

growth rates of infection-related variables; and such a generalized reactivity has been used to

some infectious disease models in [28, 29, 30], including a most recent work for the outbreak

of COVID-19.

Among the above works on transient dynamics, only [29, 30] are works on short term

disease dynamics considering discrete spatial variation, which is the focus of this paper. In the

subsequent sections, we will use the notion of amplification rate (closely related to the notion

of reactivity) to explore short term or transient dynamics represented by two types of SIR

model over patchy environment, of which one type ignores demography and the other includes

a simple demographic structure, as has been demonstrated in the introduction for a single patch

case.
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4.3 SIR epidemic patch model

4.3.1 Two patches

We start from the SIR system without demography and consider a simple case of two patches.

Then model (4.5) reduces to



dS 1

dt
= dS

21S 2 − dS
12S 1 − β1S 1I1,

dS 2

dt
= dS

12S 1 − dS
21S 2 − β2S 2I2,

dI1

dt
= dI

21I2 − dI
12I1 + β1S 1I1 − γ1I1,

dI2

dt
= dI

12I1 − dI
21I2 + β2S 2I2 − γ2I2,

dR1

dt
= dR

21R2 − dR
12R1 + γ1I1,

dR2

dt
= dR

12R1 − dR
21R2 + γ2I2.

(4.12)

It is easy to verify that the total population of two patches is of constant size since there

are no births and natural deaths. By Proposition 1.1 in [11], all solutions to model (4.12) with

non-negative initial conditions remain non-negative for all t > 0. Let M(t) = S 1(t) + S 2(t) +

I1(t) + I2(t). Then,

M′(t) = −γ1I1 − γ2I2 6 0,

and hence, M(t) is a decreasing function. In addition, M(t) is non-negative, leading to the

conclusion that its limit, lim
t→∞

M(t), exists and thus, lim
t→∞

M′(t) = 0. Together with the non-

negativity of Ii(t) for i ∈ {1, 2}, we have

I1(t)→ 0 and I2(t)→ 0 as t → ∞.

Similar to the simplest Kermack-McKendrick model (4.1), this system has infinitely many

disease-free equilibria. Hence, the next generation matrix method [13] fails to find the basic

reproduction number, and the reactivity [31] or its generalization [27] can not be used in this

model.
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In the rest of this paper, we study the amplification rate Γ(t0) where t0 can be any time

during an epidemic. Thus, we are not restricted to the initial populations at an equilibrium. For

simplification, we use the notation Γ0 instead of Γ(t0) and call it the initial amplification rate.

Focusing on the infected compartments, let x(t) = [I1(t), I2(t)]. Given that

[S 1(0), S 2(0), I1(0), I2(0), R1(0), R2(0)] = [S 10, S 20, I10, I20, R10, R20] ∈ R>0, (4.13)

the linearized system for x(t) near the initial point is

dx
dt

= A0x with A0 =

β1S 10 − γ1 − dI
12 dI

21

dI
12 β2S 20 − γ2 − dI

21

 . (4.14)

Substituting A0 and initial condition (4.13) into (4.9) yields

Γ0 =
(β1S 10 − γ1 − dI

12)I2
10 + (β2S 20 − γ2 − dI

21)I2
20 + (dI

12 + dI
21)I10I20

I2
10 + I2

20

. (4.15)

The initial amplification rate is linearly dependent on parameters dI
12, dI

21, β1, β2, γ1, and γ2.

Moreover, Γ0 is increasing with respect to β1 and β2 since

∂Γ0

∂β1
=

S 10I2
10

I2
10 + I2

20

> 0 and
∂Γ0

∂β2
=

S 20I2
20

I2
10 + I2

20

> 0,

and it is decreasing with respect to γ1 and γ2 since

∂Γ0

∂γ1
= −

I2
10

I2
10 + I2

20

< 0 and
∂Γ0

∂γ2
= −

I2
20

I2
10 + I2

20

< 0.

Suppose that different interventions are implemented to control the spread of an infectious

disease and therefore to mitigate the outbreak. Wearing a mask in public areas and practicing

social distance, for instance, result in a lower transmission rate and thus a smaller initial am-

plification rate. Some numerical examples are provided in Figure 4.1. As we already known,

Γ0 is a linear increasing function of β1, the transmission rate in patch 1. Positive/negative Γ0

indicates an initial amplification/attenuation in the magnitude of solution ‖x(t)‖. A decrease in

β1, yielding a lower Γ0, leads to a better control of the epidemic, as is shown in Figure 4.1(b).
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Figure 4.1(c) gives an example when ‖[I1(t), I2(t)]‖ initially decreases but the outbreak will

continue after a short period of time. In this case, the basic reproduction number in two patches

without dispersal satisfying R(1)
0 > 1 > R(2)

0 .

0 1 2

1 10
-4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0

(i)

(ii)

(iii)

(a)

0 2 4 6 8

t

2000

4000

6000

8000

10000

12000

||
x
||

(i)

(ii)

(iii)

(b)

0 0.2 0.4 0.6 0.8

t

5350

5400

5450

5500

5550

||
x
||

(ii)

(c)

Figure 4.1: Three sample points of β1 are taken as: (i) 0.2 × 10−4, (ii) 0.8 × 10−4, and (iii)
1.5 × 10−4. (a) The initial amplification rate Γ0 is negative for (i) and (ii), while it is positive
for (iii). (b) The outbreak is mitigated with β1 decreasing from (iii) to (ii), and is completely
under control when β1 further reduces to (i). (c) For the chosen value (ii), the magnitude of
solution initially experiences a short-period reduction then grows to its maximal value. Set
β2 = 2 × 10−5, γ1 = 0.2, γ2 = 0.4, dS

12 = 0.08, dS
21 = 0.1, dI

12 = 0.02, dI
21 = 0.05 and

[S 10, S 20, I10, I20] = [10000, 15000, 2000, 5000].

Vaccination, as the most effective method of preventing infectious diseases, can be simply

considered as a reduction in susceptible populations, yielding a smaller Γ0 since

∂Γ0

∂S 10
=

β1I2
10

I2
10 + I2

20

> 0 and
∂Γ0

∂S 20
=

β2I2
20

I2
10 + I2

20

> 0.

Assume that only the number of susceptible individuals in patch 2 changes while all other initial

conditions and parameter values are fixed. The numerical examples given in Figure 4.2(b) show

that the outbreak is better controlled with the decrease in S 20. The linear dynamics of solutions

near the initial point, as is displayed in Figure 4.2(c), are consistent with the corresponding

value of Γ0.

Note that Γ
(i)
0 = βiS i0 − γi is the initial amplification rate of patch i ∈ {1, 2} in isolation (i.e.,
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Figure 4.2: Three sample points of S 20 are taken as: (i) 5000, (ii) 17000, and (iii) 30000. (a)
The initial amplification rate Γ0 is a linear increasing function of S 20, whose value is negative
for (i) and (ii) and is positive for (iii). (b) The dynamics of ‖x(t)‖ = ‖[I1(t), I2(t)]‖ for different
initial conditions. (c) The linear dynamics of ‖x(t)‖ near the initial point. Set β1 = 5 × 10−5,
β2 = 2 × 10−5, γ1 = 0.2, γ2 = 0.4, dS

12 = 0.08, dS
21 = 0.1, dI

12 = 0.02, dI
21 = 0.05 and

[S 10, I10, I20] = [10000, 2000, 5000].

no dispersals/travels are allowed as di j = 0). Then Γ0 that given by (4.15) can be rewritten as

Γ0 =
Γ

(1)
0 I2

10 + Γ
(2)
0 I2

20 + (I10 − I20)(dI
21I20 − dI

12I10)

I2
10 + I2

20

. (4.16)

If I10 > I20, then Γ0 is decreasing in dI
12 and increasing in dI

21; if I10 < I20, then Γ0 is increasing

in dI
12 and decreasing in dI

21. Such dependence is illustrated by Figures 4.3(a) to 4.3(d). That is

to say, if the infected population in one patch is larger than the other, then accumulating more

infected individuals in that patch (lower leaving rate and higher entering rate) will make the

global outbreak worse (larger Γ0). For the special case when I10 = I20 or dI
21I20 = dI

12I10, that is

the infected populations in two patches are of equal size or the net movement of infectives is

zero, we can see that

min
i∈{1,2}

Γ
(i)
0 6 Γ0 6 max

i∈{1,2}
Γ

(i)
0 .

Otherwise, Γ0 may exceed such bounds due to the population flow.

Comparing Figures 4.3(a) and 4.3(c), 4.3(b) and 4.3(d), the results demonstrate that a higher

local (when isolated) initial amplification rate produces a greater Γ0, which is consistent with

expression (4.16). The dynamics of ‖x(t)‖ for the sample sets of travel rates are shown in

Figures 4.3(e) and 4.3(f), where the solutions (i)-1 and (iii)-1, (ii)-1 and (iv)-1, (i)-2 and (iii)-2,
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(ii)-2 and (iv)-2 share the same Γ0. We observe that the system presents various behaviours

when different parameter values are chosen, even if the calculated Γ0 and initial conditions are

the same. This is because such linear approximation is only valid in a small neighbourhood

close to the initial point, then the effect of nonlinearities becomes dominant.

4.3.2 Estimate Γ0 in early stage

In practice, the initial data is not always available. In the early stage of an outbreak, especially

of a newly emerging infectious disease, it takes time to identify the patients and conduct large-

scale tests. Let N10 and N20 denote the total population at t = 0 in each of the two patches. Since

the number of infection cases is relatively small during the initial phase, we can approximate

the linearized system (4.14) by letting

S 10 = N10 and S 20 = N20.

According to (4.10), we are able to predict the best and worst situations that the epidemic may

develop by the upper and lower bounds of Γ0 which are the largest and smallest eigenvalues of

H(A0),

λmax =
1
2

[
m1 + m2 +

√
(m1 − m2)2 + D2

]
,

λmin =
1
2

[
m1 + m2 −

√
(m1 − m2)2 + D2

]
,

(4.17)

where

m1 = Γ
(1)
0 − dI

12, m2 = Γ
(2)
0 − dI

21, and D = dI
12 + dI

21. (4.18)

Analysis on matrix H(A0) leads to the following results:

(S1) when 4m1m2 − D2 > 0, then

(S1-a) if m1 + m2 > 0, then λmin > 0 and hence, Γ0 > 0 for all x0 > 0;

(S1-b) if m1 + m2 < 0, then λmax < 0 and hence, Γ0 < 0 for all x0 > 0;

(S2) when 4m1m2 − D2 < 0, then λmin < 0 < λmax and hence, the sign of Γ0 depends on initial

conditions.
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Figure 4.3: (a–d) The contour graphs of Γ0 for dispersal rates of infectives. (e, f) The dynamics
of ‖x(t)‖ for the sample sets. The choices, (i)-1 and (iii)-1, (ii)-1 and (iv)-1, (i)-2 and (iii)-2,
(ii)-2 and (iv)-2, yield the same Γ0. Set β1 = 5 × 10−5, β2 = 2 × 10−5, γ1 = 0.2, dS

12 = 0.4,
dS

21 = 0.6, and γ2 = (a, b) 0.4; (c, d) 0.2. The initial conditions for [S 10, S 20, I10, I20] are: (a, c,
e) [10000, 15000, 5000, 2000]; (b, d, f) [10000, 15000, 2000, 5000].
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Moreover, if Γ
(i)
0 > 2 max{dI

12, dI
21} for i ∈ {1, 2}, then conditions for (S1-a) are satisfied and

hence, ‖x(t)‖ will always grow at the initial time; if Γ
(i)
0 < min{dI

12, dI
21} − max{dI

12, dI
21} for

i ∈ {1, 2}, then conditions for (S1-b) are satisfied and hence, ‖x(t)‖ will never grow at the initial

time.

In addition, the two bounds, λmax and λmin, are independent of initial infected populations,

and their dependence on other parameter values are no longer linear like that of Γ0. Analyzing

the expressions given by (4.17), we obtain that (see Appendix A)

• λmax and λmin are increasing with respect to Γ
(i)
0 (hence, they are increasing in βi and

decreasing in γi) for i ∈ {1, 2};

• λmax is decreasing in dI
12 and increasing in dI

21 if m1 > m2, while it is increasing in dI
12

and decreasing in dI
21 if m1 < m2;

• λmin is always decreasing with respect to dI
12 and dI

21.

4.3.3 n patches

Now we consider the general model when the number of patches is n > 2 which has been

presented in the introduction as equation (4.5) with Ω = {1, . . . , n}:



dS i

dt
=

∑
j∈Ω, j,i

dS
jiS j −

∑
j∈Ω, j,i

dS
i jS i − βiS iIi,

dIi

dt
=

∑
j∈Ω, j,i

dI
jiI j −

∑
j∈Ω, j,i

dI
i jIi + βiS iIi − γiIi,

dRi

dt
=

∑
j∈Ω, j,i

dR
jiR j −

∑
j∈Ω, j,i

dR
i jRi + γiIi,

for i ∈ Ω. (4.19)

Given that

[S i(0), Ii(0), Ri(0)] = [S i0, Ii0, Ri0] ∈ R>0, i ∈ Ω, (4.20)

the dynamics of this system is of the same nature as that of the two-patch case. At the initial

point, we obtain the linearized system for infected compartments, x(t) = [I1(t), . . . , In(t)],
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where
A0 =

[
ai j

]
n×n

: aii = βiS i0 − γi −
∑

j∈Ω, j,i

dI
i j, i ∈ Ω,

ai j = dI
ji, i, j ∈ Ω, i , j.

(4.21)

Thus, the initial amplification rate is

Γ0 =

∑
i∈Ω

(
βiS i0 − γi −

∑
j∈Ω, j,i dI

i j

)
I2
i0 +

∑
i, j∈Ω, j>i(dI

i j + dI
ji)Ii0I j0∑

i∈Ω I2
i0

, (4.22)

which is linearly increasing with respect to transmission rates βi and initial susceptible popu-

lation sizes S i0, and is linearly decreasing with respect to removal rates γi. Its dependence on

travel rate dI
i j is determined by the difference in infected populations between two patches, Ii0

and I j0,
∂Γ0

∂dI
i j

= Ii0(I j0 − Ii0). (4.23)

Similarly, we can find the upper and lower bounds of Γ0 by calculating the largest and

smallest eigenvalues of H(A0). However, it is not always possible to obtain explicit expressions

for the eigenvalues when matrix is of large size.

4.4 SIR endemic patch model

In this section, we incorporate a simple demographic structure into the SIR patch model (4.19).

Let Ni(t) = S i(t) + Ii(t) + Ri(t) for i ∈ Ω. Assume that there are no deaths caused by the disease,

and the birth rate and the natural death rate in each patch are set to be equal. Hence, the total

population size of two patches, N = N1(t) + N2(t), remains constant. The population dynamics

in patch i now becomes



dS i

dt
=

∑
j∈Ω, j,i

dS
jiS j −

∑
j∈Ω, j,i

dS
i jS i + biNi − βiS iIi − biS i,

dIi

dt
=

∑
j∈Ω, j,i

dI
jiI j −

∑
j∈Ω, j,i

dI
i jIi + βiS iIi − γiIi − biIi,

dRi

dt
=

∑
j∈Ω, j,i

dR
jiR j −

∑
j∈Ω, j,i

dR
i jRi + γiIi − biRi,

for i ∈ Ω. (4.24)
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Using the same Proposition (1.1 in [11]) as to the epidemic patch model, one can easily verify

that all solutions to the initial value problem remain non-negative for all t > 0. A disease-free

equilibrium (DFE) for model (4.24) is given by

E0 = [S (0)
1 , . . . , S (0)

n , 0, . . . , 0, R(0)
1 , . . . , R(0)

n ].

According to the R-equation in (4.24), we have R(0)
i = 0 for all i ∈ Ω. Then, S(0) = [S (0)

1 , . . . , S (0)
n ]

is a solution to the linear system,


∑

j∈Ω, j,i

dS
jiS j −

∑
j∈Ω, j,i

dS
i jS i = 0, i ∈ Ω,

∑
i∈Ω

S i = N.
(4.25)

4.4.1 Measures of dynamics

The basic reproduction number. Based on the concept of next generation matrix presented

in [13], we define

F :=



β1S (0)
1 0 . . . 0

0 β2S (0)
2 . . . 0

. . . . . . . . . . . .

0 0 . . . βnS (0)
n


and

V :=



γ1 + b1 +
∑

j,1 dI
1 j −dI

21 . . . −dI
n1

−dI
12 γ2 + b2 +

∑
j,2 dI

2 j . . . −dI
n2

. . . . . . . . . . . .

−dI
1n −dI

2n . . . γn + bn +
∑

j,n dI
n j


.

Then, the next generation matrix is FV−1 and the basic reproduction number is defined as its

spectral radius, R0 = ρ(FV−1). By Theorem 2 in [13], the DFE is locally asymptotically stable

if R0 < 1 but is unstable if R0 > 1.



4.4. SIR endemic patch model 91

Reactivity. Considering merely the infection-related variables (i.e., I1(t), . . . , In(t)), the Ja-

cobian matrix of model (4.24) is

J =
[
Ji j

]
n×n

: Jii = βiS i − γi − bi −
∑
j,i

dI
i j, i ∈ Ω,

Ji j = dI
ji, i, j ∈ Ω, i , j.

Evaluated at the DFE, E0, the Jacobian matrix becomes J0 = F − V. One can obtain the same

linearization according to [27] by letting C = [0 I 0] (each block matrix is of the size n × n).

Then, the generalized reactivity of E0 is given by Λ0 = λmax(H(J0)). The threshold index for

epidemicity as defined by Hosack et al. [23] is

E0 = ρ(H(F)H(V)−1) = ρ(F · H(V)−1), (4.26)

since F is diagonal. According to [23], if E0 < 1, then Λ0 < 0 and E0 is non-reactive, and if

E0 > 1, then Λ0 > 0 and E0 is reactive.

The initial amplification rate. Evaluating the Jacobian matrix, J, at the initial point, we

acquire the expression of Γ0,

Γ0 =

∑
i∈Ω

(
βiS i0 − γi − bi −

∑
j∈Ω, j,i dI

i j

)
I2
i0 +

∑
i, j∈Ω, j>i(dI

i j + dI
ji)Ii0I j0∑

i∈Ω I2
i0

, (4.27)

which is similar to that of the SIR epidemic patch model given by (4.22). Based on the defi-

nition of Γ0, the size of solution, ‖[I1(t), . . . , In(t)]‖, will initially attenuate if Γ0 < 0, while it

will initially amplify if Γ0 > 0.



92 Chapter 4. Transient Dynamics of SIR Models over Patchy Environment

4.4.2 Application to two patches

In the case where the patch number is n = 2, system (4.24) reduces to



dS 1

dt
= dS

21S 2 − dS
12S 1 + b1N1 − β1S 1I1 − b1S 1,

dS 2

dt
= dS

12S 1 − dS
21S 2 + b2N2 − β2S 2I2 − b2S 2,

dI1

dt
= dI

21I2 − dI
12I1 + β1S 1I1 − γ1I1 − b1I1,

dI2

dt
= dI

12I1 − dI
21I2 + β2S 2I2 − γ2I2 − b2I2,

dR1

dt
= dR

21R2 − dR
12R1 + γ1I1 − b1R1,

dR2

dt
= dR

12R1 − dR
21R2 + γ2I2 − b2R2,

(4.28)

which has a unique DFE,

E0 =

[
dS

21N

dS
12 + dS

21

,
dS

12N

dS
12 + dS

21

, 0, 0, 0, 0
]
. (4.29)

The basic reproduction number R0 is an index for long-term asymptotic behaviour and the

initial amplification rate Γ0 is an index for short-term transitory behaviour. Figure 4.4 displays

the two indices as functions of infection-related parameters, transmission rate βi and recovery

rate γi for i ∈ {1, 2}. Within the range of values presented, both of them are increasing in βi

and decreasing in γi. But the critical points at which Γ0 and R0 − 1 switch signs are different in

values. Therefore, the dynamics of disease has four possibilities:

(II-1) when R0 < 1,

(II-1a) if Γ0 > 0, then ‖[I1(t), I2(t)]‖ initially grows but eventually converges to zero;

(II-1b) if Γ0 < 0, then ‖[I1(t), I2(t)]‖ initially decays and converges to zero in the long run;

(II-2) when R0 > 1,

(II-2a) if Γ0 > 0, then ‖[I1(t), I2(t)]‖ initially grows and ultimately approaches a positive

steady state;

(II-2b) if Γ0 < 0, then ‖[I1(t), I2(t)]‖ initially decays before reaching a positive steady state.
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Figure 4.4: Indices Γ0 (solid line) and R0 (dotted line) as functions of infection-related param-
eters. Except chosen to be a variable, parameter values are b1 = b2 = 0.2, β1 = 2 × 10−5,
β2 = 4 × 10−5, γ1 = 0.3, γ2 = 0.2, dS

12 = 0.4, dS
21 = 0.6, dI

12 = 0.1 and dI
21 = 0.3. Set

[S 10, S 20, I10, I20] = [10000, 15000, 1000, 3000].
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We are interested in two scenarios: (II-1a) the disease dies out in the long run but there

exists at least a transitory epidemic; (II-2b) the disease persists for all t > 0 but initially the

infection size drops. See the figures in Figure 4.5 for a demonstration. The two cases are of

particular importance in disease controlling. The effect of a control measure may be misunder-

stood without knowing its effect on both long-term and short-term dynamical behaviours. If R0

is the only index to be examined, the unanticipated epidemic in (II-1a) may have very serious

consequences. If (II-2b) happens, people may be misled by the initial decrease in the size of

infections when the disease is indeed an endemic.
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(a) R0 < 1 and Γ0 > 0
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(b) R0 > 1 and Γ0 < 0

Figure 4.5: Long-term and short-term dynamics of ‖[I1(t), I2(t)]‖. (a) is an example of (II-1a)
with β1 = 10−5 and β2 = 6 × 10−5. (b) is an example of (II-2b) with β1 = 6 × 10−5 and β2 = 2 ×
10−5. Set dR

12 = 0.4, dR
21 = 0.6 and [S 10, S 20, I10, I20,R10,R20] = [10000, 15000, 100, 300, 0, 0].

Other parameter values are same as those used in Figure 4.4.

The impact of dispersal on long-term asymptotic dynamics and transitory amplification/attenuation

in infection size is demonstrated by Figures 4.6 and 4.7. According to the definitions given in

Section 4.1, both of Γ0 and R0 depend on the dispersal rates of infectives. An example is shown

in Figure 4.6 where the contours give the values of Γ0 and R0 for combinations of dI
12 and dI

21.

With the chosen parameter values and initial conditions, Γ0 and R0 are increasing in dI
12 and

decreasing in dI
21. Besides, there exists an area on the dI

12–dI
21 plane within which transitory

epidemic is possible before the disease dying out (Γ0 > 0 but R0 < 1).

As for the dispersal rates of susceptibles, they have no effect on Γ0 but change the value of

R0 via the population sizes in DFE. Figure 4.7 shows the contour graphs of R0 on the dS
12–dS

21

plane, which includes the four possible combinations of short-term and long-term behaviours.
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Figure 4.6: The contour graphs of Γ0 and R0 for dispersal rates of infectives. Other parameter
values and initial conditions are same as those used in Figure 4.4.

It seems to suggest that a disease is more likely to develop an endemic when Γ0 > 0. In

addition, we point out that the dispersal of recovered individuals has no impact on Γ0 and R0.
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Figure 4.7: The contour graphs of R0 for dispersal rates of susceptibles. Set (a) dI
12 = 0.2 and

dI
21 = 0.8 so that Γ0 < 0; (b) dI

12 = 0.9 and dI
21 = 0.1 so that Γ0 > 0. Other parameter values

and initial conditions are same as those used in Figure 4.4.

4.5 Conclusion and discussion

In this work, we studied the short term disease dynamics in addition to long term disease

dynamics. We firstly reviewed some related notions in mathematical ecology, then employed

the measurement of amplification rates which is closely related to reactivity [31]. The initial
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amplification rate, denoted by Γ0, is defined as the instant rate at which the initial size of

infected population amplifies or attenuates. It is derived from the linearization of a nonlinear

system at the initial point, as in a particular form known as the Rayleigh quotient. We point

out that the initial time of our model (t = 0) is not necessary to denote the beginning of an

outbreak. Indeed, it can be set as any point of time during the course of a disease.

We firstly applied Γ0 to the SIR epidemic patch model, which was extended from the sim-

plest Kermack-McKendrick model. We have assumed that the environment consists of discrete

patches which are connected in the sense that individuals can travel or migrate from one patch

to another. The local dynamics of each patch is coupled to that of other patches by the disper-

sal terms. We have shown that this extended system (4.12) also does not allow the disease to

persist. The calculation of Γ0 helps us to explore the patterns by which the disease dies out.

We have obtained an expression of Γ0 for a general n-patch model and analyzed its dependence

on the involved parameter values and initial conditions. Numerical examples have been given

for a special case of two patches. The results show how different interventions affect Γ0 and

transient behaviours of the system. See more details in Section 3.1. Based on the upper and

lower bounds of the Rayleigh quotient, we have also estimated Γ0 with t = 0 indicating the

onset of an epidemic when the system is at an (approximate) disease-free equilibrium.

We continued to study the SIR endemic patch model with a simple demographic structure

(4.24). Unlike the above one, this system admits a locally asymptotically stable DFE. There-

fore, we are able to obtain R0 by the next generation matrix method [13] and calculate the

(generalized) reactivity according to [31, 27]. The expression for Γ0 is similar to that of the

SIR epidemic patch model. While R0 determines the long-term asymptotic behaviour, both

reactivity and Γ0 measure the short-term transitory dynamics. In addition, Γ0 is the instant am-

plification/attenuation rate evaluated at the initial point, meaning that it depends on the initial

condition; reactivity, however, is defined as the maximal amplification rate over all possible

(small) perturbations, corresponding to a particular equilibrium. We have further numerically

compared Γ0 and R0 as functions of infection-related parameters and dispersal rates of differ-

ent compartments. The results suggest four possible combinations of transitory and asymptotic

behaviours. Two of the scenarios are of particular interests in disease controlling: (II-1a) the
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disease eventually dies out but transitory epidemics are possible; (II-2b) the size of infected

populations initially decreases but the disease will persist.

By the definition of Γ0, we quantify the transitory behaviour for infected compartments as a

whole instead of examining the specific dynamics in each patch. Euclidean norm has been used

to measure the size of a vector. Thus, the value of Γ0 and its sign are not always consistent with

I′1(0), I′2(0) or I′1(0) + I′2(0) (in the case of two patches for an example), and the results will be

different if other norms are applied. Our idea that solely consider the infection-related variables

is a special case of the generalization proposed by Mari et al. [27]. Indeed, the measure can

be evaluated based on unequally weighted state variables. We refer to that paper for a detailed

discussion.

We need to point out that the initial amplification rate merely characterizes the linear dy-

namics near a given point. Nonlinearities, however, can produce longer and more complex

transients, as observed in Figures 4.1(c), 4.2(b) and 4(e, f). In addition to reactivity, ampli-

fication envelop has also been proposed by Neubert and Caswell [31] as another measure of

transient dynamics, which is not included in this work. On the other hand, Hastings and Hig-

gins [19] stressed the importance of transients in spatially structured ecological systems. For

discrete-space models, there are some works that have explored the transient behaviours by

numerical simulations. See, e.g., [33, 34] for one-species models and [16] for predator-prey

systems. However, only a few studies have theoretically analyzed the effect of spatial hetero-

geneity on transient dynamics. The notions of reactivity and amplification envelop have been

extended to advective systems by Anderson et al. [3] and to reaction-diffusion systems by

Wang et al. [36]. As for the patch model, we will leave this for future works.

4.6 Appendix

4.6.1 The dependence of λmax and λmin for SIR epidemic patch model

Taking partial derivatives of (4.17) with respect to Γ
(i)
0 for i ∈ {1, 2}, we have

∂λmax

∂Γ
(1)
0

=
∂λmin

∂Γ
(2)
0

=
M +

√
M2 + D2

2
√

M2 + D2
and

∂λmax

∂Γ
(2)
0

=
∂λmin

∂Γ
(1)
0

=
−M +

√
M2 + D2

2
√

M2 + D2
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where M := m1 − m2 = Γ
(1)
0 − dI

12 − Γ
(2)
0 + dI

21 and D = dI
12 + dI

21 > 0. All of these partial

derivatives are positive since
√

M2 + D2 > |M|. (4.30)

With respect to travel rates, the partial derivative of λmax,

∂λmax

∂dI
12

=
D − M −

√
M2 + D2

2
√

M2 + D2
,

is positive if M < 0 and is negative if M > 0, and,

∂λmax

∂dI
21

=
D + M −

√
M2 + D2

2
√

M2 + D2
,

is positive if M > 0 and is negative if M < 0. As for λmin, the partial derivatives are

∂λmax

∂dI
12

=
−D + M −

√
M2 + D2

2
√

M2 + D2
and

∂λmax

∂dI
12

=
−D − M −

√
M2 + D2

2
√

M2 + D2
,

which are both negative by the inequality (4.30).
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, we incorporated spatial structure into different ecological systems in a discrete

way by using patch models. Consider an environment consisting of spatially isolated habitats.

The populations on different patches are functionally separate yet connected through between-

patch dispersal. The coupled local dynamics yields a large system of differential equations.

This model allows spatial heterogeneity, that is, the equations for local population dynamics

can be patch-specific. For simplicity, they are same in forms but different in parameter values.

The simplest case of dispersal is passive diffusion, as introduced in Chapter 1, which how-

ever, is not realistic. In Chapter 2, we considered two specific costs associated with dispersal:

(i) the period of time spent for migration; (ii) deaths during dispersal process. A two-patch

model was proposed with the assumptions that individuals moving from one patch to the other

need a fixed period of time τ2 and the per capita dispersal-related mortality rate is a positive

constant. Together with another time lag τ1 in the logistic growth, this model is given by a

system of delay differential equations with two constant delays. The associated ODE system

without time delays has a unique positive equilibrium which is globally asymptotically stable.

By letting τ1 = 0, only the delay due to dispersal is considered, in which case no oscillations

occur. The loss by dispersal only affects the population size at equilibrium and may even drive

the populations to extinction. As is known, the delayed logistic growth generates periodic
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orbits. We numerically explored the impact of dispersal costs on the oscillations.

In Chapter 3, we studied a predator-prey system in a two-patch environment with indirect

effect (fear) considered. The anti-predation strategies adopted by the prey lead to a higher

chance of survival from predation at the cost of reduced reproduction rate. Both the cost and

benefit functions depend on the anti-predation response level and the local population of preda-

tor. To make it simple, we assumed a generalist predator that has a constant population on each

patch. We started from the local dynamics of prey without dispersal. Applying adaptive dynam-

ics with time scale separation, the results show that the existence of an optimal anti-predation

strategy α∗ > 0, which is a convergence stable ESS, depends on its relative strength on reduc-

ing the predation to that on reducing the reproduction. When two patches are connected by

dispersal which is also mediated by fear (to be specific, the dispersal rate becomes lower due to

predation risk), we investigated how anti-predation strategy α affects the persistence of prey on

both patches. We also numerically explored the evolution of trait α in two ways: (i) with time

scale separation by presenting the pairwise invasibility plot; (ii) without time scale separation

by adopting two biologically meaningful fitness functions. The results of two approaches both

indicate the existence of an optimal anti-predation response level.

In Chapter 4, our interest shifted to epidemiological models. We first extended the sim-

plest Kermack-McKendrick SIR epidemic model to patchy environment and showed that the

coupled system still does not allow the disease to persist. To explore the patterns by which

the disease dies out, we employed the measurement of amplification rates previously used in

ecology which captures the short term dynamics. Denote by Γ0 the initial amplification rate.

According to the definition, the infection size (measured by the Euclidean norm as a whole)

initially amplifies if Γ0 > 0, while it initially attenuates if Γ0 < 0. We obtained an explicit

expression of Γ0 for a general n-patch model and analyzed its dependence on the involved pa-

rameter values and initial conditions. Numerical examples were given for a special case of two

patches illustrating the effects of different public health interventions on transient dynamics.

We continued to study the SIR endemic patch model with vital dynamics (births and disease-

unrelated deaths). This system admits a locally asymptotically stable disease-free equilibrium

so that we are able to calculate the basic reproduction number R0 by the next generation ma-
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trix [1]. We numerically compared Γ0 and R0 as functions of infection-related parameters and

dispersal rates of different compartments. The results suggest four possible combinations of

short-term response and long-term asymptotic behaviour. Two of the scenarios are of particular

interests in disease controlling: (i) the disease eventually dies out but transitory epidemics are

possible; (ii) the infection size initially decreases but the disease will persist.

5.2 Future work

A possible extension of the model studied in Chapter 3 is to consider a predator whose popu-

lation also changes with time. This introduces richer dynamics and makes it more difficult for

mathematical analysis duo to the increased dimension of the system. The example given at the

end of Chapter 2 presents dimorphism that prey with different trait values can co-exist. Hence,

evolutionary branching is possible.

As we pointed out in Chapter 3, the choice of fitness function plays a decisive role in

adaptive dynamics without time scale separation. On the other hand, there are many fitness

functions presented in the extensive literatures. Usually, the function is chosen based on the

main biological feature(s) and mathematical convenience. We tried two fitness functions in

this work, but their results do not quantitatively match that obtained from the method assuming

time scale separation. It is an interesting future work to compare different fitness functions in

details and find the particular one which links the two approaches.

The initial amplification rate presented in Chapter 4 merely characterizes the linear dy-

namics near the initial point. Nonlinearities, however, can produce longer and more complex

transients. Thus, other measures are needed to complete the picture. Besides, the results of

numerical experiments displayed in [3, 5, 6, 2] and the theoretical analysis given by Wang et

al. [7] for reaction-diffusion systems all suggest the significant impact of spatial structure on

the transient dynamics. We leave these as our future directions of work.
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