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Abstract

In this thesis, we compute the homotopy type of the group of equivariant symplecto-
morphisms of S? x S? and CP?#CP? under the presence of Hamiltonian group actions
of either S! or finite cyclic groups. For Hamiltonian circle actions, we prove that the
centralizers are homotopy equivalent to either a torus, or to the homotopy pushout of
two tori depending on whether the circle action extends to a single toric action or to
exactly two non-equivalent toric actions. We can show that the same holds for the cen-
tralizers of most finite cyclic groups in the Hamiltonian group Ham(M). Our results rely
on J-holomorphic techniques, on Delzant’s classification of toric actions, on Karshon’s
classification of Hamiltonian circle actions on 4-manifolds, and on the Chen-Wilczynski

smooth classification of Z,-actions on Hirzebruch surfaces.

Keywords: Homotopy type of Symplectomorphism group, pseudo-holomorphic
curves, symplectic rational ruled manifolds, centraliser, abelian Hamiltonian

actions.



Summary for lay audience

The study of symplectic manifolds is motivated by classical mechanics. Consider a phys-
ical system such as a simple pendulum, or a spring with a mass attached. Associated to
such a system is a space called the phase space which encapsulates every possible state
that the system can attain. Such a space comes naturally equipped with a non-degenerate
two form called a symplectic form and the time evolution of a particle corresponds to

flowing along the symplectic gradient of the Hamiltonian of the system.

By Darboux’s theorem all symplectic manifolds are locally alike and hence there are
no local invariants to distinguish symplectic manifolds. Global invariants of symplectic
manifolds can be obtained by investigating the homotopy type of mapping spaces (such
as symplectomorphism groups or symplectic embedding spaces) related to the symplectic
structure. In his seminal paper [21I], M. Gromov provided one such invariant called the
Gromov width. This paper also shows that studying the topology of mapping spaces such
as the space of symplectic embeddings of a ball into a symplectic manifold, or similarly,
the group of self maps that preserve the symplectic structure, gives us key symplectic

insights about the symplectic manifold.

In general, investigating symplectomorphism groups or embedding spaces are very
hard problems. However, in dimension 4, due to certain special features of J-holomorphic

curves we have more tools at our disposal to understand such questions of a global nature.

It is very natural for physical systems to have symmetries. These symmetries of a
system correspond to Hamiltonian groups actions on the phase spaces. In this setting,
we are interested in the time evolution of particles that preserve these symmetries (or
group actions). The maps that preserve these symmetries are called equivariant symplec-
tomorphims. These symmetries can be continuous symmetries like the action of circle S*

or discrete symmetries like the n-th roots of unity.
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In this thesis we combine the theory of holomorphic curves as in [3], [4] and [36]
together with moment map techniques as in [25] to study the topology of spaces of all
equivariant symplectomorphisms of CP?#CP? and S? x S? endowed with Hamiltonian

actions of either the circle or a finite cyclic group.
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Chapter 1

Introduction

In the works of [2], [3], [4], [36], [5] the homotopical properties of the group of sym-
plectomorphisms of CP?, S? x S? and their symplectic blow-ups were studied. Given
any Hamiltonian group action of a group G, it is very natural to ask what the homotopi-

cal properties of the centralizer of GG inside the Hamiltonian group of these manifolds are.

In Proposition 3.21 in [35] it was shown that

Theorem 1.0.1. Let (M,w) be a compact symplectic manifold. Given an effective toric
action p : T™ < Symp (M?",w) with moment map p: M — t ~ R". Let Symp" (M,w)
denote the centralizer of T™ in Symp(M,w). Then the centralizer Symp” (M, w) is equal
to the group of all symplectomorphisms ¢ that preserve the moment map, that is, such

that po ¢ = p. Moreover, Symp" (M, w) is connected and Symp” (M,w) < Ham(M,w).

Using this and the fact that for toric actions, the level sets of the momentum map
are orbits for the toric action, one can derive that Syman(M ,w) is homotopic to T".
Further for the manifolds (S? x S?,w,) and (CP?#CP?,w,), where \ is a parameter
that determines the symplectic form, it is possible to obtain the same result using the
pseudo-holomorphic curve techniques. A key point to notice is that the homotopy type

of the centraliser for a toric action is independent of the action.
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The next most natural case is of S'-actions on (S? x 5% wy) and (CP?#CP?, w)).
The situation becomes more complex than in the toric case, primarily because the level
sets of the momentum map are no longer single orbits but rather unions of orbits: an S*

equivariant symplectomorphism can swap orbits whilst preserving the level sets.

In this thesis we use both pseudo-holomorphic curve techniques and moment map
techniques to determine the homotopy type of equivariant symplectomorphisms of S? x S?
and CP?#CP? under the presence of circle actions. The advantage of using pseudo-
holomorphic curve techniques is the that the proofs generalise under the presence of any

compact abelian group actions.
The thesis is structures as follows:

In Chapter 2, we present the background material for both moment map techniques

and pseudo-holomorphic curves techniques that we use in the thesis.

The crux of the thesis lies in Chapters 3, 4 and 5. We adapt the framework of [4]
to study symplectomorphism groups in the presence of an S' action. In particular we
show that the space of invariant almost complex structures jui " decomposes into disjoint
strata, each of them being homotopy equivalent to an orbit of the equivariant symplec-

tomorphism group with stabilizer being homotopy equivalent to S equivariant Kahler

isometries (Theorems|3.3.15{and [3.3.23)). In Chapter 3, we use Karshon’s classification of

circle action on 4-manifolds [25] to investigate into how many invariant strata the space
of invariant almost complex structures j“i " decomposes. We prove that ij " decomposes

into either one or two strata, and that the later case occurs only for an exceptional family

of circle actions on S? x S? (Theorems [3.1.9 and [3.1.5)).

In Chapter 4, using techniques similar to the ones developed in [5] we obtain the ho-



motopy type of SympSI(S2 x 5% wy) for all Hamiltonian circle actions on (S? x S?,wy).
We notice that in most cases the homotopy type of Symp” 1(52 x S% wy) is the same as
that of the space of S* equivariant Kihler isometries. But for the exceptional family circle
of actions on S? x S? for which jf; has two invariant strata, we see that the homotopy
type of Symp,fl(S2 x S% wy) undergoes a “phase transition” for a particular value of \.
The homotopy types changes from being one of a finite dimensional Lie group to one of

an infinite-dimensional space (Theorem [4.3.1]).

In Chapter 5, we prove S* equivariant analogues of some key lemmas involving defor-
mation theory as in [3]. We use these techniques to prove that for the exceptional family
of circle actions, the stratum with positive codimension in j“i " is always of codimension

two.

In Chapter 6, we carry out a similar analysis on the manifold CP?#CP? and ob-
tain the homotopy type of Symp® 1((CP27%EC]32, wy) for all Hamiltonian circle actions on
(CP?#CP2% wy).

We explore the homotopy type of the equivariant symplectomorphisms under the
presence of a finite cyclic group in Chapter 7 of the thesis. We define a Hamiltonian
action of a finite group G on (M, w) to be a morphism of G into the group of Hamiltonian
diffeomorphisms Ham (M, w). The list of all finite groups that admit a Hamiltonian action
on (52 x 52, wy) or (CP?#CP?,w,) is given in [9]. In particular, they prove the following

two theorems.

Theorem 1.0.2. Let F' be a finite group that acts effectively and symplectically on the

product (S?x S? wy).

o If A # 1, F isisomorphic to a subgroup of Gy x G for some finite subgroups G, G
of SO(3).
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o [f\ =1, F isisomorphic to a subgroup of G x Gy for some finite subgroups G, G

of SO(3), or F belongs to an exact sequence
1 >HxH>F 721
for some finite subgroup H of SO(3).
For the non-trivial bundle CP?#CP?, the list is even simpler.

Theorem 1.0.3. A finite group F acts effectively and symplectically on the non-trivial
bundle (CP*#CP2?,w)) if and only if F is isomorphic to a finite subgroup of U(2).

Hence the only finite abelian groups with Hamiltonian actions on (S? x S? wy) with
A > 1 are of the form Z, or Z, x Z.,. In Chapter 7, we explore the homotopy type of
the equivariant symplectomorphism groups of (S? x S2,w,) and (CP?#CP?,w,) under
the presence of Hamiltonian Z, actions. Unlike the S' case, Hamiltonian finite group
actions do not admit momentum maps. Hence, we extract information about the equiv-
ariant symplectomorphism group by using pseudo-holomorphic curve techniques. Most
of the techniques we use in the S! case go through mutatis mutandis in the Z, case
as well, but unlike in the S! case, we do not have a classification of Z, actions on
5? x S? (and CP?#CP?) up to Z, equivariant symplectomorphisms. We can still use
the Chen-Wilczynski classification of Z,-actions up to oriented diffeomorphisms given
in [I2] and [40] to obtain the homotopy type of Z, equivariant symplectomorphisms of

(52 x S?,wy) and (CP?*#CP?,w,) for a large class of Hamiltonian Z, actions.

Finally, in chapter 8 we outline potential research directions that emerge from the

thesis.



Chapter 2

Preliminaries

2.1 Hamiltonian actions

Definition 2.1.1. Let G be a Lie group acting symplectically on the symplectic manifold
(M,w). Let g denote the Lie algebra of G and g* be it’s dual. Given'Y € g, we denote by
Y the fundamental vector field associated to Y. We say that the action is Hamiltonian

if it satisfies the following conditions

1. There exists a moment map p: M — g* such that du,(X,)(Y) = w(X,Y) for all
XeT,M andY € g.

2. This map p is equivariant with respect to the G action on M and the coadjoint

action on g*

Definition 2.1.2. A smooth action of a finite group G on (M,w) is called Hamiltonian,
if there exists a group homomorphism p : G — Ham(M,w) where Ham(M,w) denotes

the group of Hamiltonian diffeomorphisms of (M,w).
We then have the following theorems

Theorem 2.1.3. (Atiyah-Guillemin-Sternberg) Let (M,w) be a symplectic manifold with
a Hamiltonian action of a torus T¢ on M. Then the image of the moment map 1 is a

convex polytope of t* whose vertices are images of the fixed points of the torus action.
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We call a Hamiltonian torus action toric if the torus acting is half the dimension of

the manifold M. When a manifold admits a toric action we have the following theorem.

Theorem 2.1.4. (Delzant [15]) Let T" x M** — M?" be a toric action on a 2n-
dimensional symplectic manifold (M*",w), with momentum map u. Then the moment
polytope p(M) determines the Hamiltonian space up to T™-equivariant symplectomor-

phisms.

Y. Karshon proved in [25] an analogous equivariant classification for S! action on
4-dimensional symplectic manifolds (M, w) in which the moment map image is replaced
by labelled graphs. More precisely, given any Hamiltonian S! action on a 4-manifold M,

one can associate a labelled graph to the action as follows:

e Each component of the fixed point set corresponds to a unique vertex of the graph.

e Each vertex is labeled by the value of the moment map on the corresponding fixed
point component. If an extremal vertex corresponds to a symplectic surface S,
two additional labels are attached: the genus of that surface, and its normalized

symplectic area.

e Two vertices are connected by an edge if and only if the corresponding isolated
fixed points are connected by a Zj-sphere i.e by a S! invariant sphere on which the

St acts by a global stabilizer Z.

e Each edge is labelled by the isotropy weight k of the corresponding Z; sphere.

Just as Delzant polytopes classify toric actions up to symplectomorphisms, labelled

graphs classify Hamiltonian S! actions.

Theorem 2.1.5. (Karshon [25]) The labelled graph determines the Hamiltonian circle

action and the manifold M up to S'-equivariant symplectomorphisms.

In particular, the classification tells that that it is not important to keep track of
the spheres with trivial isotropy and hence, these spheres do not appear in the labelled

graphs.
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2.1.1 Torus actions on S? x S? and CP?#C P2

We would like to use the above theorems to understand all the possible Hamiltonian
circle actions on S? x S% and CP2#CP? and their relations to toric actions. To this
end, we first recall the Lalonde-McDuff classification of symplectic forms on S? x S? and
CP2#CP2. We equip S? x 5? with the product symplectic form wy = Ao@®o, where A > 0
and o is the standard area form on S? normalized such that o(S?) = 1. If we think of
S? x S? as a trivial fiber bundle, wy gives area 1 to the fibers, while the area of horizontal
sections is A. Similarly, if we view CP2#CP? as the non-trivial S? bundle over S2, we
define an analogous form wy which gives area 1 to the fibers and area A — 1 to symplectic
sections of self-intersection —1, that is, to sections homologous to the exceptional divisor.
From an homological point of view, if F' denotes the homology class of a fiber in either
52 x §% or CP24CP?, if B denotes the class of a section of self-intersection 0 in S? x S2,
if E denotes the class of the exceptional divisor in CP?#CP?, and if L denotes the class
of a line in CP?#CP2, then [w\]F = 1, [wA]B = A, [wa]L = X and [wy]E = X — 1. We

can now state the Lalonde-McDuff classification theorem.

Theorem 2.1.6 (Lalonde-McDuff [29], Theorem 1.1). Any symplectic form on S? x S?
or CP?#CP? is diffeomorphic to a constant multiple of wy with X = 1. Moreover, any

two cohomologous forms are diffeomorphic.

If we consider any Hamiltonian circle action on S? x S? or CP2#CP?, the first

important result is an extension theorem due to Y. Karshon:

Theorem 2.1.7 (Karshon [26], Theorem 1). Any symplectic S* action on (S? x S? w))

and (CP?*#CP?,w)) extends to an Hamiltonian toric action.

To characterise all possible ST action on (S? x S wy) and (CP?*#CP?,w)), we need
to first understand what the possible inequivalent toric actions on these spaces are. In

order to determine this we recall how Hirzebruch surfaces are defined.
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We define the Hirzebruch surface W,, as the complex submanifold of CP! x CP?

satisfying the equation
Wi = {([z1,22] , [y1, Y2, ys]) € CP' x CP? | 27"y, — a5'yy = 0}

The projection map CP! x CP? — CP! gives W,, the structure of a CP! bundle over
CP! which is diffeomorphic to S? x S? if m is even and diffeomorphic to the non-trivial
S? bundle over S? i.e CP?#CP? if m is odd. Thus, for each m we have an integrable
complex structure J,, induced on S? x S? or CP?#CP2. We can endow CP! x CP?
with the symplectic form (\ — %)01 @ o9, where 01 and oy are the standard Fubini-Study
forms on CP! and CP? respectively and restricting this symplectic form to W,, makes it
a symplectic manifold. We can analogously define the form (A — mTH)al @ oy when m is

odd. With these choices of symplectic forms, W, is symplectomorphic to (S? x S? w))
if m is even and (CP?#CP?, wy) when m is odd.

The torus T? acts on CP* x CP? by setting

(U,U) ’ ([mhx?] ) [yla y27y3]) = ([uxlv IQ] ’ [umylay% Uy3]>

This action leaves W,, invariant and preserves both the complex and the symplectic
structures. Its restriction to W, defines a toric action that we denote T?,. Its momentum

map is

A—m 2 2 2
A=l 1] ) ) )

s 5, M
w1 ? + ol P+ (g2l + sl ) il + Tyel® + ysl?

[y, 22 [y, 42, 9s])) = <(

When m is even, the image of the moment map is the polytope of Figure [2.1

By
Q= (0. R=(A-5%.1)
F F
P =(0,0 S=(\+120
(0,0 5oEr (A+%.0)

Figure 2.1: Even Hirzebruch surface
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The labels above the edges in the above picture refer to the homology classes of the T?
invariant spheres in 5% x 52, With our normalization, we have wy(B) = X and wy(F) = 1.

Also the vertices P,Q),R,S are the fixed points for the torus action.

Similarly, when m is odd, we have the following momentum map image

B-milp
Q=1(0,1) R=(\—-"31)
a
P =(0,0) S=(\+22,0)
B+ mlp 2

Figure 2.2: Odd Hirzebruch surface

where B now refers to the homology class of a line L in CP?#CP? and F refers to the

class L — E where L is the class of the line and F is the class of the exceptional divisor.

We define the zero-section sy to be
so: CPt > W,
[21; 2] = {[21, 22], [0; 0; 1]}
and the section at infinity s, to be
S : CPY > W,
[21; 22] = {[21, 2], [27" 25" 0]}

The curve sy has homology class B—2 in §% x S? and B — - in CP?#CP?. Similarly,
the section s, has homology class B + ZF in S? x S? and B — mTHF in CP?*#CP2.

Finally, the homology class F' can be represented by a fixed fibre such as {[1, 0], [y1, 0, y3]}

Since the action of T?, is holomorphic with respect to the complex structure J,,,, there

always exists holomorphic curves coming from the sections sy and s in class B — %5 and
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B+ 2F in 52 x 52 (and analogously in classes B — ™ and B — ™ F in CP*#CP?).

It follows from Delzant’s classification that any toric action on S? x S? and CP2#C P2

is an action of the above form. In particular, we have the following lemma.

Lemma 2.1.8. Up to equivalence, the toric action T?, is characterised by the existence
of an invariant, embedded, symplectic sphere Cy, in class B — 5 F with self intersection

—m. L]

Lemma 2.1.9. Write A\ > 1 as A = { + 6 with £ an integer and 0 < d < 1. Then, up to

symplectomorphisms and reparametrizations,

e there are exactly { + 1 inequivalent toric actions on (S? x S% wy) given by the even

Hirzebruch actions T3, with 0 < k < ¢, and

e there are exactly { inequivalent toric actions on (CP?*#CP? wy) given by the odd

Hirzebruch actions T3, with 0 <k < ¢ —1.

Proof. Write m = 2k or m = 2k + 1 with £ > 0. As seen above, it follows from
Delzant’s classification that any toric action on S? x S? and CP2#CP? is T2-equivariantly
symplectomorphic to one of the actions T?. As there always exists a J,,,-holomorphic
curve C,, in the class B — kF on S? x S? which is T}, invariant (or equivalently a curve
C,, in the class L — (k + 1)F in CP?>#CP?), and as this curve must always have positive

area, that is,
0 <wy(B=kF) =X~k =/(0+6—k or O0<uw\(L—(k+1)F)=A=(k+1)F = {(+0—(k+1)
the result follows. []

By Theorem we know that every symplectic S! action on S? x S? and CP?#CP?
extends to an action of a torus T?,. Equivalently, circle actions are given by embeddings
St T2

t (7, 1°)
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Consequently, any such Hamiltonian circle action corresponds to a unique triple of num-
bers (a,b;m) € Z x 7 x Z=q. Since we are only interested in effective actions (i.e actions
with no global stabilizer), this translates numerically into the condition ged(a,b) = 1.

We shall always assume this unless otherwise stated.

Definition 2.1.10. We shall say a circle action S*(a,b;m) extends to a toric action T?,

if it is S*-equivariantly symplectomorphic to a circle action of the form S*(a’,0';m/').

Note that Theorem does not give us how many tori a given symplectic circle

action on S% x S? or CP?#CP? extends to. We explore this question in the next chapter.

We shall now explore how the graphs for the circle actions S*(a,b;m) on W, look

like. But before we do that we need to recall a few facts.

By the slice theorem applied to the fixed points, there exists a neighbourhood of
p which is equivariantly diffeomorphic with a neighbourhood of the origin in R* with
the torus acting on R* via real linear transformations. Fixing a T? invariant compatible
almost complex structure J, the torus action on the tangent space at p acts as a subgroup
of the standard U(2) action on C?. By Schur’s Lemma, any unitary T?-representation
splits into a sum of 1-dimensional representations. Hence in a local model the action

looks like

(u,v) - 21 = U0z

(u,v) - 29 = T 24

where u,v € S and 21,2, € C? are eigen vectors. The vector ((af,a?), (ad,a3)) in
7% x 72 are called the weights of the action at the fixed point. Note that the weights
are only well defined up to change in order of the tuples. To see that the weights up to

change in order of tuples are independent of the choice of T? invariant almost complex
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structure J, we note that the weights define a continuous map from the space of T?
invariant compatible almost complex structures to the space of unordered integer tuples

((Z x Z) x (Z x Z)) |Zy where Zy acts on the (Z x Z) x (Z x Z) as follows:

Lo x (ZXZ)x (ZxZ)— (ZxZL)x (Zx17)

(-1, (a1, a1). (a3,03))) — ((a}.a1), (a3,03))

As the space of T? invariant compatible almost complex structures is contractible, the
weights up to change in order of tuples are independent of the choice of J. If the point
p had weights (al,ad) and (a2, a3) for the Ty, action, then for the restricted S'(a,b;m)

action the weights up to change in order of the tuples are given by
(ao& + bay, aai + ba%)

We would now like to understand how the weight at a fixed point transforms under

the action of an equivariant symplectomorphism.

Lemma 2.1.11. Let (M,w) be a symplectic manifold with a S* Hamiltonian action with

momentum map p. Then ¢ € Symp® (52 x S2,w,) iff po ¢ = p and ¢ € Symp(M,w).

Proof. (<) Let X € R (where we think of R as the lie algebra of S) and let X denote
the fundamental vector field associated to X. Since ¢ is a symplectomorphism preserving
p, we have w(d¢™(X),Y) = ¢*w(X,do(Y)) = w(X,do(Y)) = du(dp(Y)) = du(Y) =
w(X,Y) for any vector field Y, which implies d¢(X) = X for all X € R. Consequently,

¢ commutes with the action.

(=) Let p : S' — Symp(M,w) denote the action. Then ¢! opo ¢ = p for all
Q€ Sympsl(S2 x S% wy). But if the action p is generated by a Hamiltonian H; and has
momentum map j then ¢~! o po ¢ is generated by H, o ¢! and has momentum map
(o ¢l But as the two actions are the same implies p o ¢~! = pu + C for some constant

C. As S? x S? is compact we can choose this constant to be 0. O]
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Corollary 2.1.12. Let ¢ be an S*-equivariant symplectomorphism. Then ¢ acts on the
fixed point set preserving the weights of the fized points up to change of order of each

tuple.

Proof. Firstly we note that as the space of S'-invariant compatible almost structures jui '
is contractible, the weights at a fixed point are independent of the choice of invariant
almost complex structure used to calculate them. Let pg be a fixed point of the St action,
and choose an arbitrary J € .75’; ' to calculate the weights of the S! action at py. Choose
¢4J to calculate the weights at ¢(pg). As ¢ is by definition holomorphic with respect to
the chosen almost complex structures, ¢ preserves the weights of the fixed points up to

change of order of each tuple ]

Remark 2.1.13. One can also prove the above theorem using Lemma|2.1.11] as follows.
Any St equivariant symplectomorphism ¢ takes one fized point to another and, by Lemma
preserves the momentum map. By the local normal form theorem (Proposition
L2.1 in [6]), the momentum map is determined by the weights in a neighbourhood of a
fixed point. If the weights at p are wy and ws, then the momentum map is locally given
by wi |21 | + wa|20|%. This implies that the weights at a fized point p and ¢(p) have to be

the same up to change of order of each tuple.

From this and Table , we can construct the graphs of all S*(a,b;m) action on
(S? x S?,wy). We present a few of them below. The following graphs are for circles of
the form S*(a,b;m) with a > 0, b > 0 and m is even. The other cases are similar. When
the value for one of the labels on the edge is 1, then invariant sphere is free and we omit

that edge in the graphs.



14 CHAPTER 2. PRELIMINARIES

3

=X+
S

m

Rpu=rA-%

p=0am A=\+7%
A=1a =0
(a) When (a,b) = (0,1)
(b) When (a,b) = (1,0)

Figure 2.3: Graphs for circle actions with embedded surfaces in the fixed points set

3)

(a) When b > am and a(A + F) > b (b) When am > b

3

p=>b+aA-7%)

b—am

p=a(A+12)

(c) When b > am and a(A + %) < b (d) When b > am and a(A + %) = b

Figure 2.4: Graphs for circle actions with no fixed surfaces
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Here the labels u represents the value of the momentum map and A the area of
the fixed surface. All fixed surfaces have genus 0. For the above torus action on the

Hirzebruch surfaces, the isotropy weights at the fixed points are given in the following

table:
Weights at vertices
Vertex Weights for T2, action | Weights for the S'(a, b;m) action
p ((1,0),(0,1)) (a,b)
Q ((1,0),(0,-1)) (a, —b)
R ((=1,m),(0,-1)) (—a,am —b)
S ((=1,—m),(0,1)) (—a, —am +b)

In turns, the weights at fixed points put strong restrictions on the graphs associated to

the circle actions.

Remark 2.1.14. The graph for the circle action S*(—1,—m;m) is given by

mw=A

w3

+
P
m
Qu=A—-%

A=1a» =0

Figure 2.5: When (a,b) = (=1, —m)

From the above graphs we notice that the action S'(1,0;m) is S'-equivariantly sym-
plectomorphic to SY(—1,—m;m). Similarly S*(—1,0;m) is S*-equivariantly symplecto-

morphic to S'(1,m;m).

2.2 J-Holomorphic Preliminaries

In order to investigate the homotopy type of the group of equivariant symplectomor-

phisms we shall use the theory of J-holomorphic curves. Before we begin, we shall
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recall a few facts about holomorphic curves and the space of compatible almost com-
plex structures in (5% x S% wy) and (CP?#CP?,w,). We present most of our results for

(52 x S?,wy), the case for (CP?#CP? wy) is analogous.

Definition 2.2.1 (Compatible almost complex structures). An almost complex structure
J on a symplectic manifold (M,w) is said to be compatible with w if w(u, Ju) > 0 and

w(Ju, Jv) = w(u,v) for all non-zero u,v € TyM.

Lemma 2.2.2. The space J, = J(M,w) of all compatible almost complex structures on

a symplectic manifold (M,w) is non-empty and contractible.

Definition 2.2.3. J-holomorphic spheres: Let (M,w) be a symplectic manifold endowed
with a compatible almost complex structure J. A rational J-holomorphic map, also called

a parametrized J-holomorphic sphere, is a C* map
w: (8%5) — (M,w,J)
satisfying the Cauchy-Riemann equation
1 :
0y(u) = §(du0j —Jodu)=0

where 7 is the usual complex structure on the sphere. The image of a J-holomorphic

rational map 1s called a rational J-holomorphic curve or simply a J-curve.

Remark 2.2.4. A J-holomorphic map defines an integral homology class [u] := u.[S?] €
Hy (M, Z).

Definition 2.2.5 (Multi-covered and simple maps). We say that a J-holomorphic map
u: CPY — (M, J) is multi-covered if u = u’o f, where f : CP' — CP' is a holomorphic
map of degree greater than 1 and where u' : CP* — (M, J) is a J-holomorphic map. We

call a J-holomorphic map simple if it is not multi-covered.

Remark 2.2.6. We usually assume that a J-holomorphic map is somewhere injective,
meaning that 3z € S? such that du, # 0 and u'u(z) = z. In particular, somewhere

injective maps do not factor through multiple covers h : S* — S2.
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Definition 2.2.7 (Moduli spaces of J-holomorphic maps or curves). Let (M,w) be a
symplectic manifold and let J € J,. Given A € Hy(M,Z) we denote by ./\7(A, J) the
space of all J-holomorphic, somewhere injective maps representing the homology class A.
The Mobius group G = PSL(2,C) acts freely on this space by reparametrization and the

quotient space M(A,J) := M(A,J)/G is called the moduli space of (unparametrised)

J-curves in class A.

In dimension 4, the geometric properties of J-holomorphic curves are, to a large
extend, controlled by homological data. As a result, many properties of complex algebraic
curves in complex algebraic surfaces extend to J-holomorphic curves in 4-dimensional
symplectic manifolds. Below we list some key properties of J-holomorphic curves we will

be relying on.

Theorem 2.2.8 (Positivity). Let (M,w) be a 4-dimensional symplectic manifold. If a
homology class A € Ho(M,7Z) is represented by a nonconstant J-curves for some J € J,

then w(A) > 0.

The following facts rely on well-known results about J-holomorphic curves in sym-
plectic 4-manifolds that we briefly recall for convenience. The proofs can be found in

311, [24] and [21].

Theorem 2.2.9 (Fredholm property and automatic regularity). .Let (M,w) be a 4-
dimensional symplectic manifold. Then the universal moduli space
M(A7 jw) = U M(A7 ‘])
JeJw

with C'-topology (1 = 2) is a smooth Banach manifold and the projection map
Tt M(A T — T

is a Fredholm map of index 2(c1(A) + 2) where ¢ € H*(M,Z) is the first chern class
of (TM,J) (note that the Chern class is independent of choice of J € J,). An almost

complex structure is said to be regqular for the class A if it is a reqular value for the
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projection mwa. If this is the case then the moduli spaces /\7(/1, J) and M(A,J) are
smooth manifolds of dimensions 2(c1(A) + 2) and 2(c1(A) — 1) respectively. The set of
reqular values J € J,, is a subset of second category and is denoted by J!¥(A). If J € J,
1s integrable and S is an embedded J-holomorphic sphere with self-intersection number
[S]-[S] = —1, then J is regqular for the class [S]. In dimension 4, the same conclusion

holds without the integrability assumption.

Definition 2.2.10 (Cusp Curves). Let (M,w) be a symplectic manifold. Let J € J,. A

J-holomorphic cusp curve C is a connected finite union of J-holomorphic curves
C=C,uly...uC}

where C; = u;(CP') and u; : CP* — (M, J) is a (possibly multi-covered) J-holomorphic

map.

Theorem 2.2.11 (Gromov’s compactness theorem). Let (M,w) be a compact symplectic
manifold. Let J, € J, be a sequence converging to J in the C'® topology and let S; be
Ji-holomorphic spheres of bounded symplectic area w(S;). Then there is a subsequence of
the S; which converges weakly to a J-holomorphic curve or cusp-curve S. In particular
if all the S;’s belong to the class A, then S also belongs the class A, and any cusp curve
defines a homological decomposition of A =Y. A; such that w(A;) > 0.

Theorem 2.2.12 (Positivity of intersections). Let J € J,, and A, B be two distinct
J-holomorphic curves in a 4-dimensional manifold. Then they intersect at only finitely
many points and each point contributes positively to the intersection multiplicity [A]-[B].

Moreover, [A] - [B] = 1 iff the curves intersect transversally at exactly one point, while

[A] - [B] = 0 iff the curves are disjoint.

As a corollary of Positivity of intersections we have the following result under the

presence of a group action.

Corollary 2.2.13. Let (M,w) be a symplectic 4-manifold and let G be a compact Lie

group acting symplectically on M. Suppose that G acts trivially on homology. Let Jg
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denote the space of w tame (or compatible) almost complex structures and let C' be a J

holomorphic curve for some J e J¢. Then,
1. if C has negative self intersection, then g-C = C for all g € G.
2. If C has zero self intersection, then g-C' =C org-CnC = forallge G.

Theorem 2.2.14 (Adjunction formula). Let u : (S?,j) — (M*,J) be a somewhere
injective J-holomorphic map representing the homology class A in a 4-dimensional man-

ifold. Define the virtual genus of A as

gu(A) = 1+ 5[] [4] - 1 (4))

where ¢1(A) = {c1(T'M, J),A). Then g,(A) = 0 with equality if, and only if, the map u

1s an embedding.

2.3 J-holomorphic spheres in S? x S? and CP*#CP?

For most symplectic 4-manifolds equipped with a generic compatible almost complex
structure J, there are relatively few J-holomorphic spheres. But for symplectic 4-
manifolds with b5 = 1, like CP?, S? x S? and their k-fold blow-ups, the spaces of
J-holomorphic spheres have a very rich structure. For S? x S? and CP?4#CP? it is pos-
sible to study the J-holomorphic spheres in detail. We will show how the existence of
certain J-holomorphic spheres induces a natural partition of the space [J,. We present
the analysis for (5% x S? wy). Using similar techniques as outlined below we can prove
analogous results for (sz#@, wy) as well. Hence we present the theorems without

any proof in the case of (CP?#CP?, w)).

Recall that we defined the homology classes B = [S? x {+}] and F' = [{*} x S?]. With
our normalization, we have wy(B) = X and wy(F) = 1. For S% x 5% it is easily seen that

the class [B] and [F']| generate the homology.
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Proposition 2.3.1. Let A = a|B]+b[F] € H*(S*x S?,7Z) be represented by a somewhere
injective J-holomorphic sphere for some J € [J,. Then exactly one of the following is

true
1. a,b > 2,
2.a=1andb> —M\,
3. b=1anda=>0.

Proof. By the adjunction formula we have that
1 1
0<g,(A) = 1+§(A'A—01(A)) = 1+§(2ab—a—b) =(a—1)(b-1)

Also, as A is J-holomorphic, we must have § 4w = Aa+b> 0. Putting these conditions

together yields the required result. O
Corollary 2.3.2. Let A =1+ 6 wherel e N and 0 <6 < 1. Then we have
1. Any J-holomorphic representative of the class F' is a simple curve.

2. The only J-holomorphic decomposition of the class B are of the form B = (B —
kF)+EkF, where0 < k < (. In this decomposition, the J-holomorphic representative
of the class (B — kF) is an embedded sphere, while the class kF' may be represented
by a collection of (possibly multiply covered) spheres representing multiples of the

class F'.

Proof. Suppose [F'| decomposes as »,. m;|C;] where C; are somewhere injective J-curves.
Let [C;] = a;[B] + b;[F]. Suppose there exists i such that a; # 0, Without loss of gener-
ality, we can assume a; > 0 and hence we must have a j # 4 such that a; < 0. But that

is impossible due to positivity as in Proposition [2.3.1

Suppose [B] = >,. m;[C;] where C; are somewhere injective J-curves and let [C;] =

a;| B]+b;[ F'] as above. Suppose there exists ¢ such that b; # 0, Without loss of generality,
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we can assume b; > 0 and hence we must have a j # ¢ such that b; < 0. By proposi-
tion , we have that 0 > b; > —\. So we have [B] = [B — b;F/| + >, m;[Ci]. But
then >, ; m;[C;] must be equal to b;[F]. But as [F] is indecomposable we have that the
only decomposition for b;[F| = Y, ¢;[F'] where Y}, ¢; = b;. Thus the only J-holomorphic
decompositions of the class B are of the form B = (B—kF)+kF. Finally, the adjunction
formula implies that the (B — kF) representative must be embedded. O

Proposition 2.3.3. Let F be the class of a fiber. Then the moduli space of J-holomorphic
maps ./\7(F, J) is either empty or a smooth manifold of dimension 8. The moduli space
M(F, J) of J-holomorphic curves is always compact.

Proof. As ¢;(F) = 2 > 1, automatic regularity in dimension 4 (Theorem implies
that, for all J € J,, M(F, J) is a (possibly empty) smooth manifold. The expected
dimension can then be calculated using the index theorem. In general the dimension of
the moduli space M(A, J) for generic J is given by the formula (n — 3)2 + 2¢,(A) + 6,
where n is half the dimension of the ambient manifold. Plugging in the numbers in our

case we get dim M (F,J) = 8 whenever it is non-empty. Thus we only need to show that

~

M(F,J) = M(F,J)/G is compact.

Let u, € M (F,J) be a sequence of curves. By Gromov compactness we know that
there is a subsequence of u,, (which we again denote by wu,, itself for brevity) that either
converges to a cusp curve or to a C'®J-curve. Suppose it converges to a cusp curve.
Then the class F' would decompose as F' = A; + ... A,, n = 2, which is impossible
by Theorem m Hence the sequence w,, converges to an honest J-curve in M(F, J),
proving compactness. Note that the curve that w, converges to is only defined up to

reparametrization and hence is a well defined element of M(F, .J). O

Proposition 2.3.4. Given a point p € (5% x S?,wy) and any almost complex structure
J € J,, such that M(F, J) # , there exists a unique unparametrised J-curve in the

class F passing through p.
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Proof. We will show that the the evaluation map

eV(ET) - -’W(F, J) Xpspc) 57— 5% x 5

(u, 2) = u(2)

is a diffeomorphism.

The evaluation map is injective: Suppose ev (g s (u, 2) = ev(p,y (v, ) then the images
of u and v’ intersect at a point.As both u and v’ represent the class F', and as F'- F' = 0,
by Positivity of intersections (Theorem the images of u and «' must coincide i.e

there exists an element ¢ € PSL(2, C) such that u/ = u o ¢.

Further it can be shown through explicit calculations (see page 312 in [31]) that Dev
is surjective at all points and that ev; is a proper map.

Also we note that the

e dimension of M(F,J) = 8 (As M(F,J) # &)
e dimension of PSL(2,C) =6

e dimension of S? = 2

Thus we have /\7(F, J) XpsL(2:0) 5% = 842—6 = 4 = dimension of S? x S?. Hence we
have that ev; is smooth proper submersion between 2 manifolds of the same dimension.
By Ehresmann’s fibration theorem we have that ev; is a diffeomorphism, which concludes

the proof of the proposition. n

Proposition 2.3.5. The moduli space /W(F, J) # & for all J € J,. In particular,
for every compatible almost complex structure J € J,,, and for any given point p €
S? x S?, there is a unique embedded J-holomorphic sphere representing the class F passing

through p.

Proof. Let Jy = jo x jo be the standard split complex structure on S? x S? and let

J1 € J,, be an arbitrary compatible almost structure. Consider a path J; from Jy to Jj.
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Let S = {t € [0,1] | M(F,J,) # &}. To show S is open in [0, 1], we proceed as follows.
Suppose there exist to such that J;, € S. By automatic regularity (Theorem [2.2.9)), as
F-F =0> —1 we can conclude that there exists a open neighbourhood N around ¢,

such that for all t € N, M(F, J,) # &.

Next we show S is a closed set in [0, 1]. Consider a sequence t, —> t, t,, € S. This
implies that there exist J;-holomorphic curves wu; representing the homology class F'. As
Ji,, converges to J; Gromov compactness theorem (Theorem implies that there is
a subsequence(which we denote again by w,, for brevity) that converges either to a cusp
curve or to an honest J-holomorphic curve which we denote by u. However, by Theorem
we conclude that it cannot converge to a cusp curve. Consequently the limit curve
w is an honest J; holomorphic curve showing that M(F, J;) is non-empty and hence S is

closed.

As [0, 1] is connected and as 0 € S we conclude that S = [0, 1], thus proving the
theorem. The uniqueness follows from Positivity of intersection (Theorem [2.2.8]). O

We also have an analogous result for (CP?#CP?, w).

Theorem 2.3.6. Given any point p € CP*#CP2, and any J € jf:, there is a J-

holomorphic curve in the class F' passing through p.

The following Theorem due to Abreu and McDuff [4] tells us about the decomposition
of the space of compatible almost complex structures on (S? x S?, w,) into finitely many

strata.

Theorem 2.3.7. Let J,, denote the space of all compatible almost complex structures
(not necessarily invariant) for the form wy, on S* x S* then the space J,,, admits a finite

decomposition into disjoint Fréchet manifolds of finite codimensions

ijIU[)I_IUQI_IUZL...I_IUQn
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where 2n = [2X\] — 1 and [\] is the unique integer | such that | < X\ <1+ 1 and where

k
U, := {J € Ju, | (B - §F> e Hy(S? x S*,7Z) is represented by a J-holomorphic sphere}

A completely analogous description holds true for CP?#CP2.

Theorem 2.3.8. Let J,,, denote the space of all compatible almost complex structures
(not necessarily invariant) for the form wy, then the space J,, admits a finite decompo-

sition into disjoint Fréchet manifolds of finite codimensions
jw)\ :Ul I_IU3I_IU5...I_IU2n_1

where 2n = [2\] — 1, and [\] is the unique integer | such that | < X\ <1+ 1 and where

kE+1
Uy := {J € Ju, | (B — %F) € Hy(S? x S?,7Z) is represented by a J-holomorphic sphere}

Remark 2.3.9. We label the strata in S* x S? and CP*#CP2, by the homological self-
intersection of the classes B — kF or L — (k+ 1)F.

Remark 2.3.10. We note that for both S? x S? and CP?*4#CP2, there is a canonical
integrable almost complex structure J,, in the strata U,, coming from realizing S* x
S? and CP?*#CP? as the m'- Hirzebruch surface W, of section 1.2. Further recall
that associated to each J,, we have a unique J,,-holomorphic Hamiltonian toric action
T,.. Thus the set of possible equivalence classes of toric actions (up to T? equivariant
symplectomorphisms) on S? x S? and CP2#CP? are in one-to-one correspondence with
the strata in the decomposition of J,,. This fact will be crucial in our later analysis of

centralizer subgroups.

Theorem 2.3.11 (see [31]). Consider M = (S* x S?,wy) and the classes B = S? x pt
and F = pt x S%. Then for any J € Uy the map

U : M(B,J)/PSL(2,C) x M(F,.J)/PSL(2,C) — $° x §°

([u], [v]) — im[u] A im[v]

1s a diffeomorphism.
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Proof. By proposition [2.3.5, we know that for every J € Uy, and for any point p € S? x S,
there exist a unique J-holomorphic sphere passing through p in each of the classes B and

F'. Hence, the map W is bijective and its inverse can be written as
U = (mp x 7)o (ev(p,y) X ev(ry)) ' 0 A

where

w5t M(B,J) xpsLc) S — M(B, J)/ PSL(2;C)

is the usual projection map (and similarly for 7r), and where A : M — M x M is
the diagonal inclusion. We can compute the differential explicitly to conclude, using the

inverse function theorem, that the map W is indeed a diffeomorphism. O

Remark 2.3.12. For J € Uy, let u,, denote the J-curve in the class B through (0,w) €
(S? x S?,wy) and v, denote the J-curve in the class F through (2,0) and let G =
PSL(2,C). It can be shown that the map

5% — M(B,J)/G

W > Uy
is a diffeomorphism (and similarly for /W(F, J)/G). Thus we can show that the map

U:S%2x8% 82 x 62

(z,w) —> Uy NV,

1s a diffeomorphism.



Chapter 3

1

Action of Symps (52 X SZ;W}\) on jail

In this chapter we show that the space jui ' can be decomposed into strata each of which
being homotopy equivalent to a homogeneous space under the action of the equivariant
symplectomorphism group. In the following sections, apart from a few general observa-
tions, we shall only deal with the case of the product (S? x S?,wy). The case of the
non-trivial bundle (CP?#CP2?, w,) is postponed to Chapter @

3.1 Intersection of jail with the strata

In this section we fix a circle action on (S? x S? wy), and use Karshon’s classification
of circle actions to determine which strata that the space of invariant almost complex

1.
structures joi intersects.

In what follows, we will use the following simple observation several times. Let (M, w)

be a simply connected symplectic 4-manifold. There is a left-exact sequence
1 - Symph(M7 w) - Symp<M7 (U) - Autcl,w (H2(M> Z)) (31)

where Symp,, (M, w) is the subgroup of symplectomorphisms acting trivially on homology,
and where Aut,, ., (H2(M,Z)) is the group of automorphisms of Hy(M,Z) that preserve

the intersection product and the Poincaré duals of the cohomology classes ¢1(T'M) and

26
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[wa]. This later group is the identity for (CP?#CP?,w,) with A = 1 and for (52 x S?,w))
with A > 1. In the case of (5% x 5% w,) with A\ = 1, the group Aut,, ., (H2(M,Z)) is
equal to Z, and is generated by the symplectomorphism that swaps the two S? factors.
Consequently, for any symplectically ruled rational surface, the above sequence is also

right-exact and splits.

Lemma 3.1.1. We have the following equalities among symplectomorphism groups:
e Symp(S? x 52, wy) = Symp,, (5% x S%,wy) x Zy when \ =1,
e Symp(S? x S? wy) = Symp, (5% x S% wy) when A > 1, and

o Symp, (CP?#CP? wy) = Symp(CP?#CP2 wy) for all A > 1.

3.1.1 The case jail intersects only one strata

Proposition 3.1.2. Suppose A = 1. Then the space J,, of compatible, almost-complex
structures on (S? x S?%,wy) is made of only one stratum. In particular, any Hamiltonian
circle action extends to the toric action T3 and the subspace jf: of S* invariant almost-

complex structures is contractible.
Proof. This follows directly from Theorem [2.3.7| and Remark [2.3.10] [

We use the following lemmas in order to calculate the self intersection and area of

invariant spheres for a given S! action.

Lemma 3.1.3 (Lemma 5.4 in [25]). Let S' act on S* by rotating it k times while fizing
the north and south poles. Suppose that the action lifts to a complex line bundle E over
S2. Then S' acts linearly on the fibers over the north and south poles; let m and n be
the weights for these actions. Then

m—n = —ek

where e is the self intersection of the zero section.
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Lemma 3.1.4. Let S* act on S? by rotating it k times while fizing the north and south
poles. Let u(n) denote the value of the momentum map at the north pole and pu(s) the
value of the momentum map at the south pole. Then the symplectic area of the S? is

; (n)—p(s)
given by B2

Hence given the weights of the circle action S'(a,b;m) we can calculate the self-
intersection and symplectic area of the invariant spheres that appear in the graph as-

sociated to the action. As any homology class in (S? x S? w)y) and (CP?#CP? w,) is

determined by their self intersection and area the formulae in Lemmas [3.1.3] and [3.1.4]

determine the homology class of the invariant curve.

Theorem 3.1.5. Suppose A > 1. Consider an S*(a,b;m) action. Under the following

numerical conditions on a,b, m, X\, the space jf; intersects only the stratum U, :
e when a # +1;
e when a = +1 and be {0, +m};
e when a = +1 and 2)\ < |2b— m)|.

Proof. As A\ > 1, given an S'(a, b; m) action, it suffices to understand the self intersection
and symplectic area — hence the homology class — of the S! invariant symplectic spheres
in order to characterise which strata j‘i " intersects. There are two subcases to consider.

Casel: The circle action has no fixed surfaces: Under the condition that there are no

fixed surfaces, the three families of circle actions considered in the theorem correspond to
the graphs in Figure . If the action has only isolated fixed points, then any S! invariant
sphere passes through two of the four fixed points P,Q,R,S. Thus from the calculation
of weights at the 4 fixed points given in Table and the formula in Lemma |3.1.3| we
can determine the self intersection of all possible S invariant curves. In particular, when
m # 0, we conclude that the above S' actions admit a unique invariant sphere C' with
negative self-intersection —m. Also, if m # 0, by the same reasoning we can see that it

is not possible to have an invariant curve in the homology class B in these graphs, thus
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showing that juil doesn’t intersect the stratum to Uy. Finally, if m = 0, we see that
there is no invariant curve with negative self intersection. Therefore, the only stratum
jws; intersects is U,,.

Case2: If the circle action has a fixed surface: This corresponds to the circle actions

with graphs in Figure 2.3 As the action is effective, the weights at any point on the
fixed surface are (0,+1). Thus we can argue as in case 1 to conclude the proof of the

theorem. O

3.1.2 The case when jf; intersects two strata

The only cases left to investigate are the circle actions of type S'(a,b;m) where the

parameters a, b, and A\ satisfy
e (i)a=1,b+#{0,m}, and 2\ > |2b — m|; or
o (ii) a=—1,b# {0,—m}, and 2\ > |2b+ m]|.

Let us first investigate the case (i) in the subcase b > m. Under these conditions on
a, b, m and ), the graph for the circle action S'(1,b;m) is given in Figure (A) in
which the edges labelled "a” are removed. Similarly, when b > m, we see that the
graph associated to the circle action S(1,b;2b —m) < T3, , is given in Figure (B),
with the two edges labelled ”a” removed. In both cases, we obtain the labelled graph of
Figure[3.1]below, proving that the actions S*(1,b;m) and S*(1, b; 2b—m) are equivariantly
symplectomorphic. Consequently, when a = 1, b # {0, m}, 2\ > |2b — m|, and b > m,

the circle action S*(a,b;m) admits two distinct toric extensions, namely T2 and T%, ..
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p=b+ -5
b—m
p=A+73
w=>0
N
w=0

Figure 3.1: Graph for the circle action S*(1,b;m) with b # {0, m}

In the two other subcases b < 0 or 0 < b < m, a similar argument can be used to
show the existence of two toric extensions in case (i). We summarise the results in the

following theorems.

Theorem 3.1.6. Consider the S' actions S'(1,b;m) on (S? x S% wy) and suppose 2\ >
lm — 2b|. Then under the following numerical conditions on b and m, the S'(1,b;m)
action extends to the toric action Tfm_2b| and s equivariantly symplectomorphic to the

following subcircle in Tfm_2b| :
1. ifb>0 and b > m, then S*(1,b;m) is equivalent to S*(1,b; |m — 2b|);
2. ifb> 0, m > b, and 2b—m < 0, then S*(1,b;m) is equivalent to S*(1, —b; |m —2b|);
3. ifb>0, m>b, and 2b —m > 0, then S*(1,b;m) is equivalent to S*(1,b; |m — 2b]);
4. finally, if b < 0, then SY(1,b;m) is equivalent to S*(1, —b; |m — 2b|).

A completely similar discussion applies in the case (ii), namely, when a = —1, b #

{0, —m}, and 2\ > |2b + m|. The details are left to the reader.

Theorem 3.1.7. Consider the S* actions S'(—1,b;m) on (S?xS% wy) and suppose 2\ >
Im + 2b|. Then under the following numerical conditions on b and m, the S*(—1,b;m)
action extends to the toric action ']T|2m+2b| and s equivariantly symplectomorphic to the

following subcircle in Tfm+2b| :
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1. if b <0 and m > —2b, then S*'(—1,b;m) is equivalent to S*(—1,—b; |m + 2b|);

2. ifb <0, m > —b, and —2b > m, then S*(—1,b;m) is equivalent to S*'(—1,b;|m +
2b});

3. if b <0 and —b > m, then S'(—1,b;m) is equivalent to ST(—1,b; |m + 20|);
4. if b> 0, then SY(—1,b;m) is equivalent to S*(—1,—b; |m + 2b|).
]

Example 3.1.8. Consider the circle actions of the form S*(1,b;m) with b > m. Under
these conditions, there are no surfaces fizred under the S' action. We shall try to see
the homology classes of the invariant spheres between the isolated fixed points P,QQ,R,S
in this case. The graph for the circle action S*(1,b;m) with b > m can be obtained by
setting the edges labelled "a” in Figure (A) As b > m is equivalent to the condition
2b—m > b, the graph of the circle action S*(1,b;2b—m) can be obtained by setting the the
edges labelled 7a” in in Figure (B ). In order to highlight the different configurations
of the invariant sphere for the two actions, we present the graphs along with the free

invariant spheres for the circle action S'(1,b;m) and S*(1,b;2b —m) respectively below.

p=A+ (&) =b+r-2

(a) SY(1,b;m) with b > m (b) S1(1,b;2b — m) with b > m

and the weights at the four fized points are given by
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Vertex| Weights for the S'(1,b;m) action
P (1,0)

o |-

R (—1,m —b)

S (—1,—m +b)

By Theorem [3.1.6) we know that the two actions are equivariantly symplectomorphic.
Let us denote the symplectomorphism by ¢. By Corollary[2.1.19 and the above table we
see that the equivariant symplectomorphism ¢ satisfies p(P) = P, ¢(Q) = Q , ¢(R) = S
and ¢(S) = R. Hence the invariant sphere between @ and R in Figure 15 taken to

an invariant sphere between (Q and S in Figure|3.2a.

Using the formulae in Theorems|3.1.5 and|53.1.4), we can calculate the homology class

of invariant curves that pass through the fixed points P, ), R and S.

In particular we have

Pair of vertices | Self intersection of | Area of the | Homology class of
the curve that passes | curve curve
through — the  given
vertices

(P.Q) 0 1 F

(Q.R) m vom o |pomr

(R,S) 0 1 F

(5:P) m A+ B+uF

(P.R) —(2b—m) A Zom B— (Zzm)F

(Q.5) 2b—m N Zom | gy (2em) p

We shall now use the above theorems to understand how many strata the space of
S*(+1,b,m) compatible almost complex structures joil intersects.
Fix an action of the form S'(£1,b;m). Assume 2\ > |2b — m| if the action is of

the form S*(1,b;m) or 2\ > [2b + m| if the action is of the form S1(—1,b;m). We
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know by Theorem that the S'(1,b,m) action is equivariantly symplectomorphic

to SY(1,0/,m’) (where b’ = &b and m’ € {|20 — m|, |2b + m|} depending on the numer-

ical condition as given in Theorems [3.1.6| and [3.1.7)). Let J,, and J, be the standard

integrable complex structures on S? x S? (as introduced in Chapter 1) which are equiv-
ariant under the S*(1,b;m) and S*(1,¥;m’) action. Let (S? x S?),, denote S? x S?
endowed with the action S(1,b;m) and similarly let (S? x 5?),, denote S? x S? endowed
with the action S*(1,8,m’). Then Theorem tell us that there is a S! equivariant

symplectomorphism ¢ : ((S? x S?),,,wy) — ((5% x S%),, w)).

Theorem 3.1.9. Consider the S*(£1,b,m) action on (S* x S%,w)), then jf; intersects

exactly two strata. More precisely,

1. ifa=1,b+# {0,m}, A > 1, and 2\ > |2b — m|, then the space of S*(1,b;m)-

equivariant almost complex structures joil intersects the two strata Uy, and Ujy,_op.

2. Ifa=—1,b%# {0,—m}, A\ > 1, and 2)\ > |20 + m|, then the space of S*(—1,b;m)-

equivariant almost complex structures jf: intersects the two strata Uy, and Uy, yop)-

Proof. We shall present the proof only in case one, the proof in the second case being
similar. Consider the almost complex structure ¢*Jop_p = ¢s © Jjgp—rm| © ¢, ', where
¢ ((S? x S?)p,wi) = ((S? x S?)j2p—m|, wx) is the equivariant symplectomorphism as de-

fined above. We can check that ¢*.Joy_,, is invariant with respect to the S*(1,b;m) action.

Let E‘%_m‘ be the standard Jj,_,-holomorphic curve in the class B — MF which
is invariant under the S*(1,b';]2b — m|) action. By Lemma [3.1.1] when A > 1, the
group Symp,,(S? x 52, w,) is equal to Symp(S? x S? wy). Thus the symplectomorphism
¢ preserves homology. In particular we have that gzﬁ_l(ﬁ‘gb_mo is holomorphic with re-
spect to the integrable complex structure ¢*.Jjop—, and invariant under the S*(1,b;m)
action. Finally as ¢ preserves homology we have that ¢_1(E|2b,m|) is also in the homol-

ogy class B — MF This shows that ¢*Jjop—pm| € jf; N Ujgp—m|- Finally we note that
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Jm € jf; N U,,, thus proving the Jf; intersects the strata Uy, and Ujgp_p,/.

We now prove that these are the only strata that joi " intersects. Suppose .Zi "AU #
& for k ¢ {m, |2b—m/|}, then there exists an S*(1, b; m) invariant curve in the class B—£F.
Note that any invariant sphere must pass through two of the four fixed points P,Q),R and
S. Further, by Theorem the calculation of weights and the moment map values
at the fixed points determine the homology class of the invariant curve passing through

the fixed points. Arguing as in Example we conclude that the homology class of

m

an invariant curve connecting any two of the 4 fixed points must be either B — 2 F,

B — |m;2b‘F, F, B+ 3F,or B+ @F Hence we can conclude the such an invariant
curve in the class B — £F for k ¢ {m, |2b — m|} cannot exist. This completes the proof.

]

3.2 Symplectic actions of compact abelian groups

on R*

2%

In order to study the action of the the equivariant symplectomorphism group Sympf ' (S
S? wy) on each invariant stratum Jf; N Uy, we will need to understand the equivari-
ant topology of linearised symplectic actions. In this section, we consider an arbitrary

compact abelian group GG. The following two theorems were proven by W.Chen in the

manuscript [11]. As this paper was never published, we shall reproduce their proof here.

Let G be an abelian group acting effectively and symplectically on C? = R* with the
symplectic form wy := dzy A dy; + (dze A dys). We say it acts linearly if it acts as a
subgroup of U(2) < Sp(4). As G is abelian, the representation G < U(2) decomposes

into irreducible complex 1 dimensional representations.

Theorem 3.2.1. Let G be a compact abelian group acting linearly on (R*, wy). Suppose

V is a G invariant compact star shaped neighbourhood of 0. Let f : R\V — R* be a
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G-equivariant symplectic embedding which is the identity near infinity. Then, for every
G-invariant neighbourhood W of V', there exists a G-equivariant symplectomorphism g :

R* — R* such that glraw = f.

Proof. As 0 € int(V') and as f is the identity near infinity, there exist 7' > 0 such that
f(Tz) = Ta for all z € R\ V. Define fi(z) = {2 for 1 < ¢ < T. Then we observe
that as the G action is linear, f; is equivariant for all t € [1,T], f1 = f, fr = id and
fifwo = wy for all t. Thus there are compact sets V; = f;(V') and open neighbourhoods
W, = f;(W) of V; such that the restriction f; : R\V — R\V; and f; : R\W — R\W,

are diffeomorphic. As G acts linearly, each of the sets W; and V; are G-invariant.

Define X; as the vector field that satisfies % fi = X; o f; and consider the one form
a; = ix,wo. As f;is G equivariant, both X; and a; are G-equivariant. Let H; : R\V; — R
be a one parameter family of Hamiltonians that are G-invariant and that satisfy o, = dH;.
Note that as f; is the identity near infinity, this implies that H, is constant near infinity

and we can take this constant to be 0.

Finally we can take a family of G-invariant bump functions p; : R* — [0, 1] such
that p; = 0 in a neighbourhood of V; and p; = 1 on R4\Wt. Then the Hamiltonian
peH, : R* — R is defined on the whole R* and is also G-invariant. The Hamiltonian
isotopy g; generated by p,H; is G equivariant for all 1 < ¢ < T and satisfies the properties
gr = id and gi|ga\w = f. Thus g; is the required symplectomorphism g in the statement

of the theorem. O

Theorem 3.2.2. Let (V,w) be a compact star shaped open neighbourhood of the origin
and let w be such that w = wy near the boundary of V. Let G be a compact abelian group
acting on (V,w) via symplectomorphisms that are linear near the boundary of V. Then the
G action is conjugate to a linear symplectic action of G on (V,wy) by a diffeomorphism

® which is the identity near the boundary and which satisfies ®*w = wy.
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Proof. Identify R* with C2. The linear action near 0V extends to a unitary action on
R*. As G is abelian this linear action splits into two eigenspaces namely C ® C. Fix the
above decomposition of C2. Then we can compactify each eigenspace C to an S? and
hence this G action extends to a symplectic action S? x S? with respect to the form @
induced by w. Similarly lets denote by @&y the form induced on S? x S? by wy. S? x S?
comes equipped with two actions of G namely p : G — Symp(S? x S? &) which is the
action coming from extending the G action on Vand py, : G — Symp(S? x S?, &) which
is the extension of the linear G action on C? to S? x S2. Note that there exists a star

shaped subset V; = V such that both the action p and py;, agree on C*\V;.

The point at infinity p := (00, 0) is a fixed point for both the action p and py;,. We
then fix a @ compatible G-invariant almost complex structure on S? x S? such that .J is
the standard almost complex structure in a neighborhood X, := (5% x D,) u (8% x D,)
of the wedge (S5? x {0}) v ({0} x S?) < S? x S? (where D, is thought of as a small
ball around p of radius epsilon). As (S? x {o0}) and ({00} x S?) are holomorphic spheres
for the induced J representing the classes B and I respectively, we conclude that there
exists foliations B; and F; by embedded J-holomorphic spheres in the classes B and F.
Given any q = (z,w) € S? x S?, let u,, denote the unique curve in the class B passing
through (0,w) and, similarly, let v, be the curve in class F passing through (z,0). We
can define a diffeomorphism (see Chapter 9 [31] for more details as to why the map is a

diffeomorphism) of 5% x S? by setting
Uy:S? x 52— 52 x 5
(z,w) —> Uy NV,
This ¥, is in fact an equivariant diffeomorphism of S? x S? where the action on the
domain in the linear action given by py, and the action on the target S% x S? is the

action given by p. Moreover, as J is the standard complex structure in a neighbourhood

X, of the wedge, U is the identity near the base point p. We modify ¥ ; as follows in
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order to make it the identity in the neighbourhood X.. As J is the standard complex
structure on X, we have that

(2, 02(z,w)) if z€ D, = §% x S?
\IIJ(ZJU)) =

(p1(z,w),w) ifweD,c S92 %« §2

where ¢1(z,0) = z and ¢5(0,w) = w for all z,w € S%.

Choose a G equivariant (for the G action on {00} x S?)) smooth map f; : S — S?
such that 8i(z) = z for all z € D, and 1 = o in a neighbourhood Ds contained in D,
and such that det(814(z)) = 0V 2 € S?. Similarly define a G equivariant map( for the G
action on S? x {00}) By : S% — 52 satisfying analogous conditions as ;. Then we define

the modified ¥ by setting

-

U, if 2 e (52 x S?)\X.

(2, w) = 4 (2, (¢o(Bi(2),w)) i z € D,

\((;51(2752(10)),10) if we D,

This modification makes W, identity in a smaller neighbourhood Xj := .(5% x Ds) U
(52 x Ds) (6 < €). The submanifolds {z} x 5% and S? x {w} for all z,w € S? are symplectic
for the form ¥’;*@ and hence @y A U'%@ > 0. Thus the path w; 1= t0 + (1 — )50 is a

path of non-degenerate symplectic forms for all ¢ € [0, 1].

We use a equivariant Moser isotopy to get an equivariant diffeomorphism o of S% x S?
% ~

such that o* W’ ;*® = @g . Further, as U@ = @y on X5 we have « restricted to X; to be

the identity. We define U, =0 0q.

The restriction of ¥, : C2 — C2? gives us a map which is G-equivariant with respect
to the action py, on the domain C? and p on the target C2. As noted before there exists

a star shaped subset Vi © V such that both the action p and py, agree on C*\V;. We can
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choose V; such that 0 € int(V;). We now apply Theorem to the map f := \Ifjl|(c2\vl
and we choose W in Theorem to be a G-invariant open subset of V' which contains
Vi. Let g : C> — C? be an equivariant symplectomorphism as in Theorem such
that g|gaw = f, then the map & := (@J o g> lv : V' — V is identity near the boundary
and satisfies ®*w = wy and is G-equivariant where the action of G on the domain of ¢ is
the linear action py, while on the range of ® it is the GG action p on V that we started out
with. Thus ® is the required equivariant symplectomorphism that linearizes the given G

action and takes the form w to wy. O

Any unitary representation of a compact abelian group G on C? induces a splitting
into eigenspaces C2 = C - V; @ C - V5. Consider a polydisk D? x D? such that each D?
is contained in C - V;. Consider the symplectic form w on R* given such that outside of

some smaller polydisk of the form D, x D, < D? x D? for some radius r, w = wp.

Theorem 3.2.3. Let G be an abelian group. Let w be a symplectic form on D? x D?
which is equal to wy near the boundary. Let G act symplectically on (D?* x D* w) and
suppose the action is linear near the boundary. Then the group SympCG(D2 x D? w)
of equivariant symplectomorphisms that are equal to the identity near the boundary of

D? x D? is non-empty and contractible.

Proof. As the G action outside of D, x D, < R* is linear, we can extend this G action to
the whole of R*. Identify R* with C? and as G is abelian the linear action splits into 2
eigenspaces namely C@® C. Fix the above decomposition of C2. Then we can compactify
each eigenspace C to an S? and hence this G action extends to a symplectic action S? x S?

with respect to the form @ induced by w.

By Theorem [3.2.2| we can conjugate our GG action by a symplectomorphism which is
identity near the boundary to get a linear GG action on the whole of V. As any two con-
jugate topological subgroups are homeomorphic, we shall just study the homotopy type

of the compactly supported equivariant symplectomorphism group Sympghn(D2 x D% w)
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for the linear G action on V.

Let JY be the non-empty and contractible space of all equivariant almost complex
structures on D? x D? that are compatible with w and are the standard split almost com-
plex structure Jy outside of D, x D,.. As they are the standard almost complex structures
outside of a neighbourhood these almost complex structure extend to S? x S? and are
compatible with @y. Further once we pick a base point p = (00, 20) € S% x S? and identify
D?* x D? with the complement of a standard neighborhood X, := (5% x D) U (S? x D,) of
the wedge (5% x {o0}) v ({00} x S?) = 5% x S? (note that the wedge point (o0, o0) is a fixed
point for the extended action of G on S? x S?), then any element J € J¢ extends to a
equivariant almost complex structure of S? x S? which is the standard product complex
structure on S% x 5% on a neighbourhood X, of the wedge (S? x {y}) v ({z} x 5?) = S?x S%.
Conversely any such equivariant almost complex structure compatible with w that is stan-
dard in some neighbourhood of the wedge (S? x {0}) v ({00} x S?) < S? x S? gives us

an element of J¢ .

In order to show that Symp%,(D? x D? w) is contractible, we shall prove that it is

homotopy equivalent to the contractible space J¢.

Define the map ¥ as in the proof of Theorem m Thus we have a map
T T, — Sympglin(D2 x D? w)
J— 0,
To prove that 7 is a homotopy equivalence we construct a homotopy inverse as follows.
B Sympfnn(Dz x D% w) — T,
¢ —> dxdo

By construction we see that 7(/5(¢)) = id and the other direction is homotopic to the

identity as J, is contractible. O
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We shall repeatedly use the following theorem in our analysis of the homotopy type

of the equivariant symplectomorphism groups of S? x S2.

Theorem 3.2.4. (Equivariant Gromov Theorem) Let (V,w) be an compact star shaped
symplectic manifold of R* such that 0 € int(V) and let w be such that w = wy near the
boundary of V. Let G be an abelian group that acts symplectically and linearly near the
boundary and send the boundary to itself, then the space of equivariant symplectomor-
phisms that act as identity near the boundary (denoted by SympS (V,w)) is non-empty

and contractible.

Proof. By Theorem [3.2.2) we can conjugate our G action by a symplectomorphism which
is identity near the boundary to get a linear GG action on the whole of V' and such that
it takes the form w to wy. As the homotopy type of the two conjugate equivariant sym-
plectomorphism group is the same (they are in fact homeomorphic), we shall just study
the homotopy type of the compactly supported equivariant symplectomorphism group

for the linear G action on (V,wy). We denote this group by Sympghn(v, wp).

Choose real numbers » > 0 and T" > 1 , D, x D, is a polydisk of radius r, such
that -V < D, x D, < int(V), and consider the family of maps F; : Sympghn(V, wy) —
Sympi, (V,wp) for 1 <t < T defined by Fy(¢)(z) = @ forall z e V.

Then we have that F; is G equivariant for all 1 < t < T, Fi(¢) = ¢ for all ¢ €
Sympghn(v, wo), Fi(id) = id for all t, and Fr (Sympghn(v, wo)) c Sympghn(DT X D, w).

The proof of Theorem W tells us that the inclusion 7 : Sympghn(Dr X Dpyw) —
Sympgnn(v, wp) is contractible. Hence we can fix a contraction oy for T' < t < T + 1 such
that ar =i and ary1(¢) = id for all ¢ € SympcG,lin(Dr x D,,w). Then the concatenation

- F, 1<t<T
F, =

Froa, T<t<T+1
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gives us a retraction of Sympghn(‘/, wo) to id and hence Symp¢ (V, w) is contractible. [

3.3 Homotopical description of joil N Uy

We now consider the action of the group of equivariant symplectomorphisms on the
contractible space joil of invariant, compatible, almost-complex structures, and we in-
vestigate the orbit-type stratification of this action up to homotopy. Recall that, by the
Lalonde-McDuff classification Theorem [2.1.6] it is sufficient to consider A > 1.

3.3.1 Notation

We shall use the following notation in the rest of the document. Let M denote the
manifolds S? x S or CP?#CP2. Let G be a compact abelian group acting symplectically
on (M,w,). Let py be a fixed point for the group action. Given a GG invariant symplectic
curve C, and a wy orthogonal G invariant sphere F in the homology class F that intersects

C at a point pg, we define the following spaces:
e N(C):= The symplectic normal bundle to a symplectic submanifold C'.

e Symp{ (M, w,) := The group of G equivariant symplectomorphisms on (M, w,) that

acts trivially on homology.

e Stab®(C) := The group of all ¢ € Symp$ (M, w,) such that ¢(C) = C, that is, such

that ¢ stabilises C' but does not necessarily act as the identity on C.

e Fix%(C) := The group of all ¢ € Symp{ (M,w,) such that ¢|¢ = id, that is, such

that fixes C' pointwise.

e Fix“(N(C)):= The group of all ¢ € Sympj (M, w,) such that ¢|c = id and do|yc) :
N(C) — N(C) is the identity on N(C).

e Gauge’(N(C)):= The group of G-equivariant symplectic gauge automorphisms of

the symplectic normal bundle of C.
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e Gauge®(N(Cv F)) := The group of G-equivariant symplectic gauge automorphism
of the symplectic normal bundle of the crossing divisor C' v F that are identity in

a neighbourhood of the wedge point.

e S := The space of unparametrized G-invariant symplectic embedded spheres in

the homology class K.

) Sg’p():: The space of unparametrized G-invariant symplectic embedded spheres in

the homology class K passsing through py.

° jwci (C) := The space of G-equivariant w, compatible almost complex structures s.t

the curve C' is holomorphic.
. SympG(C’):: The space pf all G-equivariant symplectomorphisms of the curve C.

e Fix®(N(C v F)) := The space of all G-equivariant symplectomorphisms that are
the identity in the neighbourhood of C' v F.

e Symp” ' (F, N(po)) := equivariant symplectomorphism of the sphere F' that are the

identity in an open set of F around py.

° Sgpozz The space of unparametrized G-invariant symplectic spheres in the homol-

ogy class F that are equal to a fixed curve F in a neighbourhood of py.
. Symplgi,h(M, wy):= The group of all ¢ € Symp§ (M, w,) fixing po.
o Stabe(C’):: The group of all ¢ € Stab®(C) such that ¢(py) = po.

All the above spaces are equipped with the C* topology.

3.3.2 Case 1: Symp; (5% x S2,w,) action on .75;1 N Uy, with k& # 0

Let Dy denote the homology class B — kF and let S g;k denote the space of all St invari-
ant symplectic embedded spheres in the class Dy,. The 2k in the notation stands for the

self-intersection of the curve i.e (B —kF) - (B — kF') = —2k. Further we shall assume
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that Sg:k is non-empty. We already addressed the question as to when these spaces are

non-empty in Theorems [3.1.5( and [3.1.9]

We fix a S action S*(a, b;m) on (52 x S2,wy) where A > 1. Let Symp; (5% x 52, w,)
denote the space of S equivariant symplectomorphisms of (5% x S?,wy). We first show

that Sg;k is a homogeneous space.
Lemma 3.3.1. Sympfl(s2 x S% wy) acts transitively on Sg;k.

Proof. Given a S'-invariant sphere C' € Sf,:k, choose an invariant almost complex struc-
ture J e J5' for which C' J-holomorphic. Let py be a fixed point for the symplectic S*
action on C. The existence of such a fixed point is guaranteed by the fact that any sym-
plectic St action on S? has a fixed point. Let A be a J holomorphic curves in the class F
passing through py. As p is a fixed point we have that A is S! invariant. Using Lemma
we can equivariantly isotope A to A’ such that C' and A" are wy orthogonal. Now
using the symplectic neighbourhood theorem we can get a neighbourhood V of C'u A’
and a diffeomorphism « : S? x S? — S? x 5% such that aly is a symplectomorphism
of V onto an open neighbourhood V' of D U F, the standard configuration of curves
in the class Dy, and F' in Ws,. This configuration is outlined by red in the moment
map image below. Note that the support of a can be taken to be in an arbitrary small
neighbourhood of the configuration C' U A’. Also we observe that the complement of V'
is diffeomorphic to a star shaped set in R*. Take a smaller subset U < V in S? x S?
such that S? x S?\U is diffeomorphic to a star shaped set W in R*. Then we have that
a*(wx)|s2xs2\v is a symplectic form which is equal to the standard symplectic form wy
near the boundary of W. By Theorem [3.2.4] we get that that there is an equivariant
symplectomorphism ~ such that v is equivariant, equal to the identity near the boundary
and satisfies 7*a*(wy) = wy. As v is the identity near the boundary of W it extends to

S? x S? and if we take our map « to have support in U, then the maps o and 7 patch
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together to give us a map 7 : S% x S? — S2% x S? defined by setting
v on S% x SA\V
aonV

By construction, 7 takes C' to D and v € Sympfl(S2 x S% wy).

D

F

]

Remark 3.3.2. We note that the above proof can be carried out depending continuously

on a finite number of parameters whose values run through a compact set.

The homotopy type of Symp; (52 x $2, wy) is related to the strata jf; N Uy, through
the following sequence of fibrations. We use the symbol ”~"” to mean ”weakly homotopy
equivalent” throughout the rest of the document. In the fibrations below, we use the

notation established in Section B.3.1]
Stab™ (D) — Sympj , (S? x S%,w)) — S5, ——— T Uy,
Fix®' (D) — Stab® (D) —» Symp® (D) —— 5" or SO(3)
Fix®' (N (D)) — Fix®' (D) —» Gauge® (N(D)) —— §"
Stab®' (F) n Fix® (N(D)) — Fix® (N(D)) — S, —— J%' (D) =~ {}
Fix®" (F) — Stab® (F) n Fix® (N(D)) —» Symp® (F, N(py)) ——> {+}
{+} ——Fix® (N(D v F)) — Fix*' (F) —» Gauge® (N(D v F)) —— {x}

Here F and D are the wy-orthogonally intersecting invariant curves in the 2k **-Hirzebruch

surface Ws, and whose momentum map images are depicted below in red. We note that
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F is the only fiber the given curve D € Sg;k intersecting wy-orthogonally at py. In the
second fibration, the group Symps1 (D) is homotopy equivalent to SO(3) when the S*
action fixes the curve D pointwise. Otherwise, it is homotopy equivalent to S*.

D Do
F

Figure 3.3: The isolated fixed point pq

Assuming the homotopy equivalence in the first fibration, we immediately get

Theorem 3.3.3. Consider the S*(a,b;m) action on (S* x S%,w,) with A > 1. If J5' n
Uy # ¢, then Sympy (S? x S2,w,)/Stab® (D) ~ TS A Usg.

Furthermore, tracking down the various homotopy equivalences in the other fibra-
tions, we will prove that the equivariant stabilizer of the curve D, namely Stab® ' (D), is
homotopy equivalent to the equivariant stabilizer of the corresponding complex structure

under the natural action of Sympi1 (S? x 8% wy). More precisely,
e Stab® (D) ~ T2, when (a,b) # (0, +1);
e Stab® (D) ~ SO(3) x S! when (a,b) = (0, +1).
We shall now justify each of the homotopy equivalences in the above fibrations.

Lemma 3.3.4. Let D be a fized symplectic sphere in the class B—kF, then the evaluation

map

0 : Sympﬁl(S2 x 5% wy) —» Sg:k

¢ — ¢(D)
is a Serre fibration with fibre over D given by

Stab(D) := {¢ e Symp®' (52 x 5%,w,) | (D) = E}
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Proof. In order to show that Sympfl(S2 x S% wy) —» Sg;k is a Serre fibration, we need
to show that given a map v from a n dimensional disk D" to Sg;k, then v lifts to
Symp; (52 x S2,wy).

Symp; (52 x 52, w,)

_ T
El] - l@

n ~ 2l St
- 5
D Sp,,

-

This follows from noting that the proof of Lemma [3.3.1] goes through for compact

families of curves as in Remark [3.3.2] O

Remark 3.3.5. As both Sympf1 (S?x5% wy) and Sg;k can be shown to be C'W-complexes,
we see from Theorem 1 in [38] (with proof corrected in [10]), that a Serre fibration in
which the total space and base space are both CW complexes is necessarily a Hurewicz
fibration. Thus the map 0 : Sympﬁl(S2 x 5% wy) —» Sg;k 15 in fact a Hurewicz fibration

and hence the fibre over any arbitrary D € Sg:k is homotopy equivalent to Stab(D).

Now that we know that the action map
1 ,— 1 1
Stab® (D) — Sympj, (S* x S%,wy) = Sj,
is a fibration, we show that Sg;k is weakly homotopic to jf: N Usg.

Lemma 3.3.6. The natural map « : joil N Uy — Sf;;k defined by sending an almost
complex structure J € jf: N Usy to the unique J- holomorphic curve in class Doy 15 a

weak homotopic equivalence.

Proof. To show that « is a weak homotopy equivalence, we first show that the map is
Serre fibration. To do so, consider an arbitrary element D e S]g;k. As in the proof of
Lemma [3.3.4], it suffices to show that given a map ~ from a n-dimensional disk D", such

that v(0) = D, there exists a lift 7' to \75;1 N Usg.

1
jwi N Usy

r A
E| 7/// la

-

n v St
D" —— Sp,



3.3. HOMOTOPICAL DESCRIPTION OF\Zilm(@ 47

Once again by Lemma [3.3.1) and Remark [3.3.2, we have that there exists a lift 7 : D" —
Symp; (52 x 52, w,) of 7. Pick an element J € a~*(D) and define v/(s) := 7*J. This
defines a lift 4" of 7. Hence « is a fibration, with fibre begin contractible. Thus we get

the required result that jf; N Uy, ~ Sg:k. ]
Lemma 3.3.7. The restriction map Stab®’ (D) — Sympsl (D) is a fibration.

Proof. To show that the restriction map is a fibration we use Theorem [C.0.9] in which

we set X = Symp” ' (D), G = Stab® ' (D) and the action is given by

GXX—>X
(¢,9) = Bl o

Hence in order to show that the restriction map r : Stab®’ (D) — Symp® (D) is a fibra-
tion, we only need to show that the action described above admits local cross sections.
Suppose we only show that a neighbourhood of identity admits local cross sections and
that Stab® (D) acts transitively on Symp® (D) this would suffice to show that r is a
fibration as by Theorem [C.0.9] its a local fibration near the identity and the map r is

equivariant with respect to the action of Stab® ' (D), thus completing the proof.

Consider the identity id € Symp® (D). As Let o : N(D) — U be a equivariant
diffeomorphism between the symplectic normal bundle N(D) and a neighbourhood U
of D. As Symp®’ (D) is locally contractible (This can be seen for example by noticing
that the proof of Prop 3.3.14 in [32] can be made equivariant) there is a neighbourhood
V of id, and fix a retraction (3; of the neighbourhood V' onto the identity. Hence given
any ¥ € Symp® (D), we get a one parameter family 3;(¢) of symplectomorphisms. As
m1(D) = 0, B;(v)) is Hamiltonian and is generated by a function H;. Let 7 : N(D) — D
be the projection of the normal bundle. Define H, := a o 7*H,. Thus H, defines an
invariant function on a U. Fix an invariant bump function p with support in U and is 1 in

a small neighbourhood around D, then pH, is an invariant function and the corresponding

symplectomorphism it generates ¢ belong to Stab” ' (D) and extends 1. Note that if we
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fix the neighbourhood U, the bump function and the retraction of the neighbourhood in
Symps1 (D) then this procedure gives us a lift of ¢ near id in Symps1 (D) to Stab® ' (D).
By Theorem this shows r is fibration. O

The above proof also shows that the action is transitive. As given v € Symp” ' (D) we
give a procedure to construct an element 4 € Stab® ' (D) such that the restriction to D is

v, thus showing the action is transitive.

Lemma 3.3.8. Symp® (D) is homotopic to SO(3) for the circle action S*(0,+1,m) and

Symps1 (D) is homotopic to S* for all other circle actions.

Proof. Consider the circle action induced by D. The action S*(0,+1,m) fixes D point-
wise. Hence Symp® (D) = Symp(D). By Smale’s theorem we know that Symp(D) is

homotopy equivalent to SO(3).

For all other actions, we have the following two subcases. Consider an S! action not
of the form S*(0,+1,m). Assume that the action is effective. Let pu : D — T*S' be
it’s momentum map. Then as explained in the proof of Proposition 3.21 in [35] we have
that Symp® (D) ~ C*(u(D), 51), where C*(u(D, S*) denotes the space of smooth maps
from the image of the momentum map to S'. The image of the momentum map is an

interval. We shall now argue that C*(u(D), S') ~ S*.

Fix a point v € u(D), let P denote that space of smooth maps from the image of the
momentum map to S* and finally let P, denote the space of space of smooth maps from

the image of the momentum map to S* that send v to 1 € St. Then we have a fibration.
P,—»pP = St
[ f)

The evaluation map ev : P — S! is a surjective fibration and the fibre over 1 € S is

P,. Finally as u(D) is contractible this implies that P, is contractible, thus giving us the
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required statement.

Finally if the induced symplectic S action on D has Z; stabilizer, the action of
S1/Zy ~ S*, is effective and the space of symplectomorphisms equivariant with respect to
this quotient effective action is the same as space of symplectomorphisms equivariant with

respect to the non-effective S* action. Thus the homotopy type of Symp® ' (D) ~ St O

Remark 3.3.9. We note an alternate way to prove Lemma[3.5.8 is to mimick the proof
of Lemma[A.0.7
Lemma 3.3.10. The map
o : Fix®' (D) — Gauge® (N (D))
¢ — d¢|N(B)

is a Serre fibration with fibre homotopic to Fix® (N(D)). The base space Gauge® (N(D))

is homotopy equivalent to S*.

Proof. The fact that Gauge® (N(D)) ~ S! is explained in Appendix A. Thus we only
need to prove that the restriction of the derivative indeed is a fibration and the fibre is

homotopic to Fix®' (N(D)).

Counsider the action
Fix%' (D) x Gauge® (N (D)) — Gauge® (N (D))
(¢,%) — do|npy oy

Again by Theorem it suffices to show that the there is a local section to above

action. Such a local section is produced by Lemma [C.0.5]

The fibre is a priori given by all equivariant symplectomorphisms that act as identity
on the normal bundle of D. The claim is that this is in fact homotopy equivalent to the

space Fix® (N(D)). This follows from lemma |[C.0.7] O
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Lemma 3.3.11. The map
Fix¥ (N(D)) — S,
¢ — ¢(F)

is a fibration and Sﬁlpo ~ jf; (D) ~ {+}

Proof. The proof for this is similar to Lemma [3.3.1, Given a F’ € S2.

o0 DY Equivariant

Symplectic Neighbourhood Theorem there is a equivariant diffeomorphism of S? x S?
such that « is a symplectomorphism in a neighbourhood of D U F to another neighbour-
hood of DU F. Then by Theorem we again have that Fix®’ (N(D)) acts transitively

on S P@;O, and thus the action map induces a fibration.

Proof that jf: (D) ~ {}: This follows from the equivariant version of the standard
proof of considering the homeomorphic space of equivariant compatible metrics and not-

ing that this space of metrics is contractible.

Proof that S}?}m ~ jj; (D) =~ {+}: Let Sf,, denote the space of all ST invariant
symplectically embedded spheres S in class F such that S~ D = p, and S and D intersect
wy-orthogonally at py. Let S}",{po denote the space of all S!' invariant symplectically
embedded spheres S in class F such that S is transverse to D. By Theorem we
have that Sﬁpo ~ Sﬁpo. Further, by Lemma we see that there exists a J € jf: (D)

such that the configuration S v D is J-holomorphic. We now have the following fibration
St M 1
jw/\ (D> — SF,po = SF,FO

Where the map ~ : \75’; (D) — S?%po is just sending J € JWS; (D) to the corresponding
curve in class F' passing through py. Now we show that 7 is a homotopy equivalence. To
do that we consider the following commutative diagram

T ———— Sp,
[ 2

I3 (D)
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F7p0

Where T := {(A, J)eSp, x IS (D) | A is J—holomorphic}. Both the maps 7; and

7y are fibrations (this can be argued as in Lemma [3.3.4)) with contractible fibres. As the

diagram commutes, the map v must be a homotopy equivalence. O
Finally we have,
Lemma 3.3.12. The inclusion i : Sﬁ;o — Sp,, U5 a weak homotopy equivalence

Proof. Let Sp(4)5" - T,,,(F) denote the orbit of T}, (F) in T}, (S? x S?) under action of
Sp(4)S" where Sp®' (4) the centralizer of S* < Sp(4). For the S'(a, b;m) action such that

a # b then we have the following fibration,

_ L _
Sglpo - Sﬁpo - Sp(4)s 'Tpo (F)

ST, S

This is a fibration by Theorem [B.0.2l We would be done in this case if we can
show that Sp(4)%" - T,,(F) is contractible. We note that Sp®'(4) acts transitively on
Sp(4)5" - T, (F) with stabilizer Sp®'(2) x Sp™' (2).

As the S'(a,b) action is also holomorphic, by the equivariant version of usual proof
of Sp(2n) retracting to U(n) we can show that Sp° (2n) retracts to US' (n). Hence we

can show that

Sp(4)¥' )
Sp™'(2) x Sp®T(2)  U(1) x U(1)

Sp(4)°" - T3, (F) =

As we considered the case when a # b we have that US'(2) = T2, thus Sp(4)" -
Tyl(F) ~ [}

The other case when we have a = b (as we assumed that a, b were co-prime it implies
that a,b € {1,—1}), then we have a similar fibration to the one above (now we need to

remove T}, (D) from the orbit as a = b there exists an element of Sp(4)%" that takes

T (F) to T, (ﬁ))

St Sﬁpo - Sp(4)s1 - Ty (F)\T, (D)

F7p0
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]

We again show that Sp(4)S" - T, (F)\T,, (D) is contractible. To do that we note as
above that
- Us'(2)
Sp(4 ST (F)~ —— 2
p(4) w(F) U(l) xU(1)

In this case we note that US'(2) = U(2) and thus we have that Sp(4)*" - T}, (F)

lle

s = CP'. And hence Sp(4)°" - T (F)\T,,, (D) = {#}.

Lemma 3.3.13.
Stab® (F) n Fix® (N(D)) — Symp® (F, N(p,))

¢~ dlp
is a fibration and Symp®’ (F,N(py)) =~ {+}

Proof. The fact that this is a fibration follows from applying the proof of Lemma [3.3.

mutatis mutandis. To proof that Symp®' (F, N(po)) =~ {*}, we note that again similar to
Lemma, Symp® ' (F, N(po)) is homotopy equivalent to maps from the interval [0, 1]
to S! that is identity near 0. The space of such maps is contractible thus giving the

result. O

Lemma 3.3.14.

Fix®' (F) — Gauge® (N(D v F))

¢ — d¢|N(5vf)

is a fibration and Gauge® (N(D v F)) = {+} and the fibre Fix® (N(D v F)) =~ {x}

Proof. The proof that this is a fibration is similar to the proof of Lemma|3.3.10, The fact
that Gauge® (N(DvF)) ~ {+} follows from by LemmalA.0.4, The fact that Fixg: (N(Dv
F)) ~ {+} follows from the Equivariant Gromov Theorem [3.2.4} O

Putting all the fibrations together gives the following theorem.
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Theorem 3.3.15. Consider the S'(a,b;m) action on (S? x S?,wy) with A > 1. If

jf: N Us # @, then we have the following homotopy equivalences:
Strg2 2 2 st
1. when (a,b) # (0, 1), we have Sympj, (S* x S?,wy)/T3, ~ T7 0 Us;
2. when (a,b) = (0, +1), we have Symp; (5% x 5%, wy)/(SO(3) x S1) ~ juil N Uy,
Proof. When (a,b;m) # (0, £1;0) we have a commutative diagram of fibrations

Fix® (D) — Stab® (D) — Symp®' (D)

J J J

ste——— T2 ——— 5!
while in the case (a,b) = (0, £1), we have the diagram

Fix®' (D) —— Stab® (D) —— Symp® (D)

J J J

Sl §' % SO(3) —— SO(3)

In both the diagrams the leftmost and the rightmost arrows are homotopy equiva-
lences. As the diagram commutes, the 5 lemma implies that the middle inclusion
T2 — Stab® (D) or (S' x SO(3)) — Stab® (D) are also homotopy equivalences. This

gives us the required result. O

Remark 3.3.16. Let Jo;, be the standard complex structure on Wayy,. We note that for the
action S1(0, £1,;m) the stabiliser of Jop under the natural action of Sympf1 (52 x 52 wy)
on jbil N Uy is the group of Kdhler isometries S* x SO(3). For all other circle actions
SY(a, b;m) with (a,b) # (0, +1), the stabiliser of Joy is the mazimal torus Ta, < S' x
SO(3).

3.3.3 Case 2: Symp; (52 x 52, w,) action on .75;1 N Uy

In order to describe the action of Sympfl(S2 x S% wy) on the open stratum Jf; N Uy,
we need to modify slightly the setting introduced in the previous section. The main

difference comes from the fact that for an almost-complex structure J € jf) ' A Uy, there
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is no invariant curve with negative self-intersection representing a class B — kF', k > 1.
Instead, each such J determines a regular 2-dimensional foliation of J-holomorphic curves
in the class B. Consequently, there is no natural map between the stratum jf; N Uy
and the space S]gl of invariant curves in the class B. However, once we choose a fixed
point pg, given any J € jf; N Up, there is a unique invariant .J-holomorphic curve in
the class B passing through po(Theorem . This defines a map jf: N Uy — ngpo
that can be used to prove that the space jws; N Up is homotopy equivalent to an orbit of
Syrnp;?l(éY2 x 5% wy). To do so, because the fixed point py is not unique, we must also
investigate how the group Symp}SLl(S2 x S% wy) acts on the fixed point set of the circle

action. This is done in Lemma [3.3.18 Before we proceed to prove this lemma we first

describe the action of Sympfl(S2 x S% wy) on juil N Uy. Note that by Theorems |3.1.5]

|3.1.6| and |3.1.7|, the space joi " A Uy is non-empty only for the following circle actions:

o S¥a,b;0), or
e S'(1,b;m) with |20 — m| = 0 and 2)\ > [2b — m|, or
e S1(—1,b;m) with |2b 4+ m| = 0 and 2\ > |2b + m].

Secondly, we observe that all these actions have at least one isolated fixed point except

the actions of the forms
e S'(£1,0;0) and

o 51(0,+1;0)

Actions with an isolated fixed point

We now consider actions S*(a, b; m) with an isolated fixed point py. We can choose py to
correspond to the vertex R in the Hirzerbruch surface W, shown in Figure 2.1} Given
Je jws; N Uy, there is a unique J-holomorphic curve B, ; in class B that passes through

po- Because pq is fixed, J is invariant, and B - B = 0, positivity of intersection implies
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that By, s is S'-invariant. We thus get a well-defined map

1 1
‘-71.;5;\ ﬁU0—>SS

szo

where Sgpo denotes the space of invariant, embedded, symplectic spheres representing

the class B and containing the point py.

Lemma 3.3.17. Consider any S'(a,b;m) action on (S? x S?,wy). Let py and p; be two
fized points such that there exists an invariant fibre {} x S? passing through them . Then

there exists no S* invariant curve in the class B — kF for k = 0 passing through py and

P1.

Proof. Suppose not, let Dy, be a S' invariant curve in the class B — kF with & > 0

passing through py and p;. Then the projection onto the first factor
71 0 Do — S% x {0} < 5% x §?

is surjective. Hence the curve Dy passes through a third fixed point p,. As the sym-
plectic S action on Dy has three fixed points, it has to fix Dy, pointwise. This is a
contradiction as all fixed surfaces for S* actions must be either a maximum or mini-
mum for the momentum map, but the fixed points ps, p; and py cannot have the same

momentum map value. O

Lemma 3.3.18. Let S'(a,b;m) be a circle action for which the space \75; N Uy 1s
non-empty. Assume there is an isolated fized point py corresponding to the vertexr R
in Figure 2.1, Then any equivariant symplectomorphism that preserves homology ¢ €

Symp,fl(S2 x S% wy) fizes po.

Proof. Case 1: A > 1: By Lemma [2.1.11| and Corollary [2.1.12] any such ¢ must preserve

the momentum values and the weights of the fixed points (up to change of order of the

tuples). These weights are given in Table and the momentum map values are given
in the graphs and [2.4. The two conditions on the circle action imply that either

m =0, |2b —m| = 0, or |2b + m| = 0. It is now easy to see that under any of these
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three numerical conditions, the weights and momentum map values at R differ from the

weights at all other fixed points. The result follows.

Case 2: )\ = 1: If the actions are not of the form S*(1,1;0) or S'(—1,—1;0) with

A = 1, then an argument similar to Case 1 holds. The only case left are the actions of
the form S1(1,1;0) or S'(—1,—1;0) with A = 1. In this case, the homology classes F, B
have the same area and the fixed points R and @) have the same weights (up to change of
order of tuples) and the same momentum map values. We again argue by contradiction
in this case. Let B denote a fixed curve in class B passing through R and P. Suppose
¢ € Symp; (52 x 52,w,) doesn’t fix the point po = R. Then ¢ has to take the point
R to the point (). Further by Lemma ¢ fixes the maximum and minimum and

hence ¢(P) = P. As ¢ preserves homology, the curve ¢(B) has homology class B and
has as to pass through @ and P which contradicts Lemma |3.3.17] O

Let Jy € Uy be the complex structure of the Hirzebruch surface Wy and let B, be the

unique Jy-holomorphic curve containing py and representing the homology class B.

Corollary 3.3.19. Let S(a,b;m) be a circle action with an isolated fived point and
for which the structure Jy € Uy is invariant. Then the group Sympﬁl(S2 x S% wy) acts

transitively on the space Sj;’lpo, and the action map

Sympfl(S2 x 5% wy) —» g?po
¢ — (By,)

1s a Serre fibration.

Proof. Since any element of Sympf1 (S?x.S% wy) fixes py, it follows that this group acts on
B,,.;. The transitivity of the action and the fact that the action defines a fibration follow

from the exact same arguments as in the proof of Lemma and Lemma O

As before, we can now show that the stratum jj; N Uy is homotopy equivalent to a

space of invariant curves.
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Lemma 3.3.20. The natural map « : \75;1 NnUy — ngpo defined by sending an almost
complex structure J € Jf; N Uy to the unique J-holomorphic curve in class B passing

through pg is a weak homotopic equivalence.

Proof. The argument is identical to the proof of Lemma [3.3.6 O]

From now on, we can determine the homotopy type of Joi AU, by going through a
similar sequence of fibrations and homotopy equivalences as in Section [3.3.2] namely,

Stabsl(Bpo) — Symp51(52 x % wy) —» S§.

~ Sl
B,po ij N Uo

1

Fix* (By,) — Staby, (By,) —» Symp® (B,,) —— 5
FiXSl (N(BP())) - FiXSl(Bm) - GaUgesq (N(Bpo)) — Sl
Stab®' (F) n Fix® (N(B,,)) — Fix™ (N (B,,)) — S5 —— 7% (B,,)
Fix® (F) — Stab™ (F) 0 Fix® (N (By,)) —» Symp® (F, N(po)) —— {+}

{1} = Fix® (N(By, v F)) — Fix® (F) —» Gauge® (N(B,, v F)) —— {«}
where S}?’;O denotes the space of all symplectically embedded curve in the class F' that
pass through py and agree with a standard curve F},) in a neighbourhood of py. The proofs
that these maps are fibrations, and the proofs of the homotopy equivalences are exactly
the same as before. Consequently, we obtain the following homotopical description of
IS A U,

Theorem 3.3.21. Consider one of the following circle actions on (S% x S?,wy)
e S'(a,b;0) with (a,b) # (+1,0) and (a,b) # (0, +1), or
o SY(1,b;m) with |2b — m| = 0 and 2\ > [2b — m|, or
o SY(—1,b;m) with |20 +m| =0 and 2\ > |2b + m|.

Then the stratum jf; N Uy is non-empty and

Sympj, (5% x S2,w,)/T2 ~ TS~ Uy
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Actions without isolated fixed points

We now turn our attention to the action of Sympf1 (52 x S?,wy) on the stratum jf; n Uy

when the circle action is either
1. S*(£1,0;0) or
2. Sl(O, +1;0).

These actions has no isolated fixed points and the associated graphs are of the form

Fm(lI Bmafl;
p=a» A=1 h=1am A=)
p=0 e A=1 p=0 e A=)
Fmin Bmin
(a) Subcase 1: S(£1,0;0) (b) Subcase 2: S1(0,+1;0)

where ;1 denotes the value of the momentum map and A denotes the area of the fixed
surface. We notice that there are pointwise fixed curves in the class F' for the circle action
S1(£1,0;0) and pointwise fixed curves in class B for the action S*(0, £1;0). We denote
the fixed surface which is a minimum for the momentum map as F},;,, Bmin respectively

and the maximum by Fj,.., B

Consider the action S'(0, +1;0). By Lemmal2.1.11{we note that any ¢ € Sympf1 (52 x
S?% wy) must send B4, to itself. Then, given py € Bas, we define the following sequence

of fibrations and homotopy equivalences:
FiXSI(Bmam) o Sympfl(S2 x 5% wy) — Symp(Baz) —— SO(3)
Stab51(Fpo) — Fix¥ (Bmaz) — Slg;o — juil ~ {+}

Fix®" (F,,) —> Stab®' (F,,) —» Symp®' (F,) —— &'
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{+} — FiXSl(N(Bmaw 4 Fpo)) - FiXSl<Fpo> I GaUg851(N(Bmaw 4 Fpo)) — {+}

For the other circle action S'(£1,0;0), we obtain a similar sequence of fibrations and
homotopy equivalences in which By, is replaced by the curve F... As before, putting

all the homotopy equivalences together, we obtain the following theorem:
Theorem 3.3.22. Consider the following two circle actions on (S* x S% wy)
o SY(£1,0;0) or
e S1(0,+£1;0)
Then there is a homotopy equivalence
Symp; (52 x $%,wy)/(S' x SO(3)) ~ TS n Uy

[
For convenience, we collect together the two main results of this section in the theorem

below.

Theorem 3.3.23. Consider the action S*(a,b;m) on (S? x 5% ,wy) such that one of the

following hold:

o S'(a,b;0) with (a,b) # (+1,0) and (a,b) # (0, £1), or

o SY(1,b;m) with |20 — m| = 0 and 2\ > |2b —m|, or

o SY(—1,b;m) with |20 +m| =0 and 2\ > |2b + m|.
Then the stratum jws: N Uy is non-empty and

Sympy, (S? x §%,wy)/T2 ~ T3 A U

If instead the S'(a,b;m) action satisfies

e (a,b;m) = (+1,0;0) or

e (a,b;m) = (0,%+1;0)
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then we have that
Symp; (5% x §%,wy)/(S" x SO(3)) = T 0 Uy

and \75: intersects only the strata U.



Chapter 4

The homotopy type of the

symplectic centralisers of S'(a,b;m)

Given any Hamiltonian circle action on (S? x 5% w,), the two Theorems [3.1.5[ and [3.1.9|

give us a complete understanding of which strata the space joi " intersects. Together with

Theorems |3.3.15| and [3.3.23| describing the strata as homogeneous spaces, this allows us

to compute the homotopy type of the group of equivariant symplectomorphisms.

4.1 When ij; is homotopy equivalent to a single
symplectic orbit

Theorem 4.1.1. Consider the circle action S*(a,b;m) on (S? x S%,wy). Under the fol-
lowing numerical conditions on a,b, m, \, the homotopy type of Symps1(52 x S% wy) is

given by the table below.

61
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St action (a,b;m) A Number of | Homotopy type of
strata J5 Symp® (52 x $2)
intersects

(0,£1;m) m#0 A>1 1 St x SO(3)

A= 1 S x SO(3)

(0, £1;0) or (£1,0;0)

A1 1 S x SO(3)

(+1,+1,0) A=1 1 T2 x Z,

(£1,0;m) m # 0 A>1 1 T?

(£1,+m;m) m # 0 A>1 1 T?

(1,b;m) b # {m,0} 20 —m|=2XA>1 | I T?

(—1,b;m),b # {—m, 0} 2b+m|=22>1 |1 T2

All other values of (a,b;m) || VA 1 T

except (+1,b;m)

Proof. By Theorem , in each of the above S(a, b;m) actions, the space of S! invari-
ant compatible almost complex structures juil intersects only the stratum U,,. Conse-
quently,

Sympy (S? x S%,wy)/Stab(J) ~ TS A Uy, = TS =~ {+}
where Stab(.J,,,) denotes the stabiliser of the standard complex structure J,, € U,,. Thus,
for all the actions in the table, we have that Symp} (5% x S2,w,) ~ Stab(.J,,). For the

St action given by the triples (0, £1,m), (£1,0,0) or the circle action S*(0,41,0) when

A = 1, Theorems [3.3.15| and [3.3.23| imply that Stab(.J,,) ~ S* x SO(3). For all other S*

actions in the table, the stabilizers are homotopy equivalent to T2.
We now show how to recover the homotopy type of the full group Symp® ' (52 x 5% wy)
from the homotopy type of the subgroup Syrnp;fl(S2 x S?,wy). When A > 1, we have

the equality Symp® (S2 x 2, wy) = Symp; (S% x 52, w,) as stated in Lemmam

When A = 1 and a # b, there exists standard S'(a,b;m) invariant curves in classes
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B and F' such that the isotropy weight of the action on the curve in class B is a and
the isotropy weight of the S! action on the curve in the class F is b. Hence, as ¢ is an
equivariant symplectomorphism, Lemma implies that must have ¢.[F] = [F] and

¢+[B] = [B]. Consequently, Sympy (5% x 52, w,) = Symp® (52 x 52, w,).

In the special case when A =1 and a = b = +1, then we have an equivariant version

of the exact sequence |3.1
1 — Symp; (S x S, wy) — Symp® (S x §%,wy) —> Aut, ,, (H*(S? x §?)) — 1
where Aut,, ., (H*(S? x 5§?)) =~ Zy. The map
¢:8%x 8% - 5% x 52
(z,w) = (w, 2)

is a S' equivariant symplectomorphism (for the action S'(1,1,0) or (—1,—1,0)) and
gives a section from Zs to Aute, o, (H2(S? x S2)). Thus we have Symp®' (S2 x $2,w,) =~
Sympf1 (52 x S?,wy) % Zsy. As the semidirect product of two topological groups is homo-
topy equivalent to the direct product of the groups, we have that Symp® ' (52 x 5% wy) ~
Symp; (52 x 5%, wy) % Zy ~ Symp; (52 x S%,wy) x Zy ~ T? x Zy. This completes the

proof. O]

4.2 When jj; is homotopy equivalent to the union
of two symplectic orbits

Theorem gives the homotopy type of the group of equivariant symplectomorphisms

for all circle actions apart from the following two families of actions:
e (i)a=1,b+#{0,m}, and 2\ > |2b —m|; or

o (ii) a = —1,b# {0,—m}, and 2\ > |2b + m]|.
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For convenience, we will write m’ for either |2b—m| or |2b+m/| depending on which of the
above families we consider. Up to swapping m and m’, we will also assume m’ > m. The
goal of this section is to show that the symplectic stabilizers of any of these circle actions

is homotopy equivalent to the homotopy colimit of the two tori T?, and T?, it extends to.

Before delving into the technicalities, it may be useful to outline the proof, which is
an adaptation of the Anjos-Granja argument used in [5] to compute the homotopy type
of the full group of symplectomorphisms of S? x S? for 1 < X\ < 2. The first step is to

show that the two inclusions
T2, < Symp} (S% x 5%, wy) and T2, < Symp; (S? x S%, wy)

induce injective maps in homology. By the Leray-Hirsch theorem, it follows that the

cohomology modules of the total space of the fibrations
T2 — Sympfl(S2 x S% wy) — Symp,fl(S2 x S% wy)/T? ~ joil N U,
T2, — Symp; (8% x S%,wy) — Symp; (S x S%,w))/T2, ~ T3 A Uy

split (with coefficients in an arbitrary field k). Using the fact that the contractible space

of invariant compatible almost-complex structures decomposes as the disjoint union
1 1 1
TS = (TS 0 Up) u (TS 0 Umw)

the rank of Hi(Symp; (5% x 52,w,); k) can be computed inductively from Alexander-
Eells duality. We then compute the cohomology algebra and the Pontryagin algebra of

the homotopy colimit (or homotopy pushout)
P = hocolim(T?, < S'(a,b,m) — T?,)
and use this to show that the natural map
T:P— Sympfl(S2 x 5% wy)

is a homotopy equivalence in the category of topological groups. We further prove that

P is weakly homotopy equivalent, as a space, to the product 5% x St x S x St
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4.2.1 Homological injectivity

We first show that the two inclusions T2, < Symp; (5%x52,w,) and T2, < Symp; (52 x
S% wy) induce injective maps in homology. As the argument does not depend on m, we

shall only provide the details for the inclusion T?, — Sympf’:1 (S? x 8% wy).

Fix a homology preserving diffeomorphism ¢, : (W,,,*) — (S? x S?, %) where the
base point {x} is the S'(1,b,m) fixed point ([0,1][0,0,1]) in W,,. Let (5% x S?, )
and (W, {x}) denote the space of orientation preserving homotopy, pointed, self-
equivalences of (S? x S? ) and (W,,,*). The homology preserving diffeomorphism ¢,
induces a homeomorphism between £(S? x S? %) =~ £(W,,,*). Further define £(S5?, *)
to be the space of all orientation preserving homotopy self-equivalences of the sphere

preserving a base point {x}.

We now observe that for the above two families of circle actions (i) and (ii), the same

argument as in Lemma |3.3.18| shows that any ¢ € Sympfl(S2 x S% wy) fixes the base

point {=}.

Now, recall that the zero section sg of W, is given by
so: 8% > W,
[20, 21] = ([20, 211, [0, 0, 1])
and the projection to the first factor is
7w W, — 52
([20, 21] ; [wo, w1, ws]) = [20, 1]
We define a continuous map Ay : Sympy (S2 x 52, wy) — & (52, +) by setting
hy @ Sympj (5% x S%,wy) — & (82, %)

Y i=moros
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Similarly, using the inclusion of S? as the fiber

f:8% > W,

[ZOv Zl] — ([07 1]7 [07 205 Zl])

and the projection to the second factor m : S? x S? — S?, we can define a map

hy : Sympj (8% x §%,wy) — € (52, %)

?ﬂ'—”ﬂz 3=7T20¢O¢m0f

where ¢, : W, — S? x S? is our fixed identification of W,, with S? x S2. We thus get a

continuous map

b Symps (8% x 52 wy) — E(S%,+) x £(S?, %)
Y (hi(¥), ha(v))

Lemma 4.2.1. The inclusion i,, : T2, — Symp21(52 x S% wy) induces a map which is

injective in homology with coefficients in any field k.

Proof. As T? is connected, i, : Ho(T?; k) — HO(Sympfl(S2 x S?% wy); k) is injective.
To show that the inclusion map induces an injection at the H; level, we consider the

composition a : T? — &£(S?, %) x £(S?, *) given by

T2, — Symp} (52 x S2,wy) —— E(S2, {+}) x £(S2, )

m

and show that o induces a map which is injective in homology.
We claim that H;(E(S?,*);Z) ~ Z. Indeed, the standard action of SO(3) on S? gives

rise to a diagram of fibrations

E(8% %) ——— £(5?) —=» 52

J .

St =80(2) —— SO(3) —=» S?
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where the maps ev are evaluations at the base point {}. This induces a long exact ladder

of homotopy groups

s IS m(E(S%, %)) —— m(SO(3)) x #1Q) —— mhsH

d | |

s 7, >WZ—> 71 (SO(3)) —>WO

where we have used the fact, proven by Hansen in [34], that £(S?) ~ SO(3) x (2, where
Q2 denotes the universal covering space for the connected component of the double loop
space of S? containing the constant based map, and where the SO(3) component is just
the inclusion. Consequently, 7r1(§§) = 0 and the map m(SO(3)) — m(SO(3)) x 7r1(§§)
is an isomorphism. From the commutativity of the middle square, it follows that 3 :
7 (SY) — 7 (E(S?, %)) is also an isomorphism. As the spaces we consider are topological

groups, 7 is abelian and hence m; = Hy, proving the claim.

Now, the classes a, b, of the subcircles (0,1) and (1,0) form a basis for H;(T?;k).

We claim that a,[0, 1] and «a,[1, 0] generate a subgroup of rank 2. To see this, let write

1

I"and a2 for the components of a,. Then, al(0,1) = 0 as the circle (0,1) fixes the

o
zero section ([z1,z2],[0,0,1]) = W, pointwise, while a2[0,1] # 0 by the reasoning in
the previous paragraph. Similarly, al[1,0] # 0 and «2[1,0] = 0, proving our claim. We

conclude that « is injective on Hy (T2 ; k).

Finally, to show that 4, is injective on Ho(T?; k), we will prove the dual statement,
namely, that the map i* : H2(Symp; (S% x S2,wy); k) — H2(T2:k) is surjective. A
generator of H*(T?:k) ~ k is given by a U b. Because i, is injective at the H; level,
i* - HY(Symp? (52 x S2,wy); k) — H'(T?; k) is surjective, hence there exists elements o,
b e H(Symp; (52 x S2,wy); k) such that i*(a’) = a and *(¥') = b. Since i*(a’) Ui* (V) =

a U b, it follows that i* : H2(Symp; (S2 x 52 wy): k) — H2(T2,; k) is surjective. O
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4.2.2 Cohomology module of the centralizer of S'(+1,b;m)

We are now ready to compute the cohomology module of the centralizer of S*(£1,b;m)
with coefficients in in a field k. By duality, this is equivalent to determining the homology
module.

Recall that the contractible space of invariant compatible almost-complex structures

joil decomposes as the disjoint union
1 1 1 1 1
TS = (T5 AU U (TS A Uw) = US L US,

. 1 1 1 1 . .
where, for convenience, we set U,f; = JWSA N U, and U;z, = jui N U,y. We will show in

Chapter [5| the following two important facts:
e the strata Ufll and US; are submanifolds of jws;l (see Corollary [5.2.6)), and
o the stratum Uné;l is open in jf;, while U;f; is of codimension 2 (see Theorem [5.3.1)).

In particular, it follows that U,;Z1 = joil — Uf; is connected. As explained in Ap-
pendix [D] Proposition the Alexander-Eells duality induces an isomorphism of

homology groups

1

Aot Hy(US) k) — Hy oy (US' 3 E) (4.1)

Now recall that we also have fibrations

T2, — Symp} (5% x 52, wy) 2% Symp; (8% x 52, wy)/T2, ~ U’ (4.2)
T2, — Symp} (S% x 5%, wy) 2% Sympy (S% x 52, wy)/T2, ~ U,
From the first fibration, the connectedness of the open stratum U;fl1 implies that the

group Sympfl(S2 x 5% wy) is connected. In turns, the second fibration implies that the

. . 1 . . .
codimension 2 stratum U;fl/ is also connected. Because the two inclusions

T2, < Symp} (5% x 5%, wy) and T2, < Symp; (S? x S, wy)
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induce surjective maps in cohomology, the Leray-Hirsch theorem implies that the coho-

mology module of Symp; (52 x $2,wy) splits as
H*(Sympj, (S” x S%,wn), k) = H*(US 1 k) @ H*(T5,; k) (4.3)
H*(Symp; (8% x 52,w)), k) =~ H*(US,; k) @ H*(T2,; k)

By duality, we have corresponding splittings in homology, namely,

H,(Sympy (52 x S%,wy), k) = H,(US"; k) @ Hy (T2 ; k) (4.4)

H,(Symp;" (52 x S% wy), k) = H,(US); k) ® Hy(T2,; k)

It follows that
H,(Up; k) ~ Hy(Upys; k) for all p =0

Together with the Alexander-Eells isomorphism (4.1)) and the connectedness of U, this
implies that
H,(Up; k) ~ k for all p >0

Using the splitting 4.4 and dualizing, we can finally compute the cohomology module of

Symp; (52 x S2,wy).

Theorem 4.2.2. Consider any of the following circle actions:
e (i)a=1,0%#{0,m}, and 2\ > |2b —m|; or
o (ii)a=—1,b+#{0,—m}, and 2\ > |2b + m)|.

Then, the cohomology groups of the symplectic centralizer are

H? (Sympsl(52 X Sz,wk);k:> ~k p=1

for any field k. In particular, the topological group Sympsl(S2 x S?,wy) is of finite type.
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4.2.3 The homotopy colimit of T, < S'(£1,b;m) — Ty

As explained in Theorems |3.1.6{ and [3.1.7} the circle actions S*(£1,b;m) we are consid-

ering in this section extend to exactly two toric actions T?, and T?,. Geometrically, this
means that the two tori T2, and T?, intersect in Sympfbl(S2 x S? wy) along the circle

S(+1,b;m) and, in particular, that we have two inclusions of Lie groups

St —>(1’bl) T2,
(Lb)l
T2

In this section we consider the homotopy colimit — or homotopy pushout — of these two

inclusions, namely,

P := hocolim(T;,, < S'(1,b;m) — Tp)

This pushout is to be understood in the category of topological groups. As we will show
later, the topological group P turns out to be a model for the homotopy type of the

centralizer Symp; (5% x 52, wy).

The Pontryagin algebra of the pushout

In what follows, all k algebras are graded, and the commutator of two elements is given
by
[a,b] = ab — (—1)l*"lpg

For any field &, and for any abelian group A, the Pontryagin algebra H,(A; k) is isomor-
phic to the cohomology algebra H*(A; k). Tt follows that H,(S') is isomorphic to A(t),
where ¢ is of degree 1. Similarly, the Pontryagin algebra H,(T?; k) is isomorphic to the
to an exterior algebra A(z1, 22) generated by two elements of degree one. The pushout

diagram of topological groups

gt 49, T2,

<1,b>l l

T2 — P
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is homologically free (see Definition 3.1 in [5]). As before, P denotes the pushout in the
category of topological groups. By Theorem 3.8 of [5], the Pontryagin algebra of P is the

pushout of k algebras

Ho(s% k) T g2 k)

H(l,b)l l
H*(Tfn; k) —— H.(P;k)

which is isomorphic to

b
At =20 Ay, )

) |

Ay, 29) —— P
where P2" ~ H,(P; k). By the description of the pushout of k algebras as amalgamated
products (See [5] for more details), the k algebra P can be identified with equivalence
classes of finite linear combinations of words in the letters {x1, z2,y1,y2} under the rela-
tions x;x; = 0, yiy; = 0, [x1,22] = 0, [y1,y2] = 0, and x1 + bxy = y; + V'ys. From the
last equality, we can write y; = (x; + bxy) — b'y2, which means that we can choose, as
generators, the elements
{t = x1 + bxa, T2, Yo}

with the relations 2 = 23 = y3 = 0, [t,22] = [t,y2] = 0. The remaining commutator

w = [z3,y2] is nonzero and commutes with ¢, x5 and y,. It follows that any word in

t, xo, Yo is equivalent to a linear combination of words of the form

w® Y3t

with a € N U {0}, and 3,7,0 € {0,1}. Hence, there is an isomorphism of graded algebras

P:lg ~ F(anyQ) ®A(t)

R
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where F'(xz9,y2) denotes the free graded algebra over k generated by the elements x5 and

12, and where x5, 1o, are of degree one. In particular,

P;lgzﬁk?’ p=1

and the words waxg yJt® form an additive basis of the homology module Py s,

By duality, the cohomology modules P%9* are P40 ~ k. P9l ~ |3 and PP ~ |4
for all p = 2. The algebra structure of P%9* can be determined as follows. Let ¢, i,
and g, be the duals of the generators of degree 1, and let w be the dual of the generator

w = [, y2] of degree 2.

Let us now recall the Hopf-Borel theorem (see [30] Theorem 6.36).

Theorem 4.2.3. (Hopf-Borel) Let k be a field of characteristic p where p may be zero or
a prime. A connected Hopf algebra H over k is said to be monogenic if H is generated
as an algebra by 1 and one homogeneous element x of degree strictly greater than 0. If

H is a monogenic Hopf algebra, then
1. if p # 2 and degree x is odd, then H =~ A(x),

2. if p # 2 and degree x is even, then H =~ k|x|/{x®) where s is a power of p or is
infinite i.e H =~ k[z],

3. if p=2, then H = k[x]|/{x®) where s is a power of 2 or is infinite.

As P%9* is an associative, graded commutative Hopf algebra of finite type, the Hopf-
Borel theorem implies that P9* is a tensor product of monogenic Hopf algebras. For a
field k of characteristic p different from 2, including p = 0, P%9* contains a subalgebra

of the form

A* = At &2, §2) ® k[w] {0®)
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where s is a power of p or is infinite. Suppose s = p” > 3 is finite. Then, the rank of
A? would coincide with the rank of P97 up to degree i = 2s — 1, and we would have
A = 0 for i > 2s. Therefore, we would need 4 more generators of degree 2s to account
for the rank of P92 and their pairwise products would imply that rk P%94 > 4. This
contradiction shows that s must be infinite and that the rank of A® equals the rank of
P97 for all i > 0. Consequently, for a field k of characteristic p # 2, the k-algebra P9-*
is isomorphic to

Palfh* = A(fa i?v g?) ® S(w)

In characteristic p = 2, P%9* is the tensor product of truncated polynomial algebras

k[z;]/z" where s; is a power of 2. As before, it contains a subalgebra of the form
A = K[t 22, 90) /B2, 23, 95) ® k[0] (™)

Again, assuming s is finite forces the existence of 4 new generators in degree 2s whose
products would yield too many generators in degree 4s. Therefore, in characteristic p = 2,

the cohomology algebra of P is isomorphic to
P9 = k[t g, 9] /8, 23, 95) © k[]

In characteristic zero, the computation of the cohomology ring yields the minimal model
of H*(P)® Q. As P is a H-space, it is a nilpotent space (see Exercise 1.13 in [19]), so
that the main theorem of dgc rational homotopy theory applies (see [19], Theorem 2.50)
namely, the dimension m,(P) ® Q for p > 2 is equal to the number of generators of
degree p in the minimal model. For p = 1, as P is a topological group, the dimension of

m(P) ® Q is same as the rank of H;(P,Q). Consequently,

]
Q p=0
Q p=1
Wp(P)®Q2<
Q p=2
kO p=3
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The homotopy type of P

We want to better understand the homotopy type of the space P. To this end, consider

the embeddings

fn 1 T2 — St x St x St (4.5)

1, = ) ) ! 1
(1, 22) — (21, 22,b'11)

for T2, — St x St x St (4.6)

(y1,y2) — (yl,byh?h)

The universal property of pushouts implies that there is a unique map fp : P — St x
St x S making the following diagram commutative

Bs' 209 pre,

B(l,b)l l

BT? —— BP

ey
BS' x BS' x BS!
By Theorem 3.9 of [5], the homotopy fiber of B fp is the pushout of the homotopy fibers

of the other maps in the diagram. To determine this fiber, we first replace the maps in

the diagram of groups by homotopy equivalent fibrations

Z < = ZxZ - > Z
(1,1,a1)l l(l,al,ag) l(l,l,cu)
T2 x R < Sl x R x R Jaufactes)a), T2, x R
(ahag,b’ale(ag))l l(a1,ba1e(a2),b’a1e(a3)) l(al,bme(ag),az)

(a1,baie(az),as)

SlxSlxsl — = s 9lxglxsgl e = Glxgtxst
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where a; denote the i"" coordinate function and e(a;) = e*™@. Applying the classifying

space functor, this gives

St ¢ Ptz St x St P » St
BT? BS" , BT2,

| | |

BS' x BS' x BS' —— BS! x BS!' x BS' «—— BS!' x BS' x BS!

which shows that the homotopy fiber of the canonical map BP — BS! x BS! x BS! is

homotopy equivalent to
hocolim{S* &2 ' x §t 2L, g1 ~ g1, g1 ~ 63
Consequently, BP is the total space of a fibration
S* - BP — BS' x BS' x BS'

that, after looping, becomes

. fmr=(a1,ba1,a2)
o

LN S RV S RN

A
fm=(a1,a2,b'a1)

T2

o)
U
&

The map fp admits a section given by
s(ar, as, as) = jp(ay, b as)jm(1, b ay ag)
It follows that, as a space, P is weakly homotopically equivalent to the product
P~Q08%x St x St x st

which is consistent with the algebraic computations of the previous section.
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4.2.4 Homotopy type of S'(+1,b;m) equivariant symplectomor-
phisms

We are now able to determine the homotopy type of the group Sympfl(S2 x 5% wy) for

the circle actions
e S'(1,b,m) when 2)\ > |2b — m|, and
e S'(—1,b,m) when 2)\ > |2b + m)|.

Since the arguments are identical in the two cases, we will only discuss the first one.
Again, in order to keep the notation simple, we write TZ and T2, for the two tori the
circle extends to, assuming m’ > m, and we write (1,0) : S* — T? and (1,V) : S* — T?,

for the two inclusions.

From the universal property of pushouts, there is a canonical map
T : P — H,(Symp} (5% x 5% w,): k)

making the following diagram commutative

1,y
A 1 A, )

) |

A(wy,25) —— PI7

H*(Sympfl(s2 x S% wy); k)
Proposition 4.2.4. For every field k, the map T : P2 — H,(Symp; (52 x 5%, wy); k)

s an isomorphism of k-algebras.

Proof. By definition, the map T is an homomorphism of k-algebras. Since P™ =~

HZ-(Sympfl(S2 x S?,wy); k) for each 4, it is sufficient to show that Y is surjective.
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Let R be the image of Y. Since the maps 7,, and i,, are injective, R is the sub-
ring generated by the classes ¢, zo, yo viewed as elements in H*(Sympfl(S2 x S% wy); k).

Consider the two fibrations induced by the action maps
T;, — Symp;, (8% x §%,wn) 2 Sympj] (% x §%,w,)/T;, ~ Uy,
T2, — Sympy (S? x 52, wy) 2% Symp (S x 5%, wy)/T2, ~ U,

Observe that p,,(t) = 0, ppm(z2) = 0, po(t) = 0, and p,y(y2) = 0. Now suppose there is

an element z € ]—I*(Sympfl(S2 x S? wy); k), not in R, and of minimal degree d. Since

Hd(Sympfl(S2 X SQ,wA);k‘) ~
Hy(US": k)@ Ho(T2: k) @ Hy(US' k)@ Hi(T2: k) @® Hyo(US 3 k) ® Ho(T2: k)
(4.7)

we would have a decomposition

z2=c1Q®1 ® ¢t @ C$2®$2+CT®[T31]

with at least one coefficient ¢; which is not a polynomial in the classes p,,(w) and p,(y2).
Let ¢, be such coefficient of minimal degree d —2 < ¢ < d. The inverse of the Alexander-

Eells isomorphism of Proposition

N Hpn (Uy)) = Hy(Us))

*

would map ¢, to a class ¢,_; € Hg,l(U;zf; k). This class could not be a polynomial in

Py (w) and p,y(x2) since, otherwise,

Cy = )\* (szl) = pm([y2 ® szl])

would be a polynomial in the classes p,,(w) and py,(y2). In turn, this class ¢;,_; would have
to be the image of some element in Hy_; (Symp; (52 x 52, w,): k) not in R, contradicting

the minimality of z. O]

Corollary 4.2.5. The map Y : P2 — H,(Symp; (52 x S% wy); Z) is an isomorphism

of Pontryagin algebras over the ring of integers.
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Proof. This follows from the well known fact that a map induces isomorphisms on homol-
ogy with Z coefficients iff it induces isomorphisms on homology with Q and Z,, coefficients

for all primes p, see [22], Corollary 3A.7 (b). O
Theorem 4.2.6. The map Y : P — Symp;’?l(S2 x S?,wy) is an homotopy equivalence.

Proof. The map T is a homology equivalence on integral homology. Because P and
Sylrnp;?l(S2 x S?,w,) are topological groups, it follows that it is a weak equivalence,
see [16], Example 4.2. Because both spaces are homotopy equivalent to CW-complexes,

this weak equivalence is a homotopy equivalence. See [22], Proposition 4.74. O

4.3 Centralizers of Hamiltonian S! actions on 52 x S?

We summarise all the results we have obtained in this chapter in the following theorem.

Theorem 4.3.1. Consider any Hamiltonian circle action S*(a,b;m) on (S? x 5% w,).
The homotopy type of the symplectic stabilizer Sympsl(S2 x S2%,wy) is given in the table

below:
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Values of (a, b;m) A Number of | Homotopy  type  of
strata JJ, Symp® (52 x 52, w,)
intersects
(0, +£1;m), m # 0 A>1 1 St x SO(3)
A= 1 S x SO(3)
(0, £1;0) or (£1,0;0)
A1 1 S x SO(3)
(+1,+1;0) A=1 1 T2 x 7,
(£1,0;m),m # 0 A>1 1 T?
(1, £m;m),m # 0 A>1 1 T2
20 —m|=2XA>1 | 1 T?
2> 2b—m| =0 | 2 083 x 81 x St x St
2b+m|=22>1 |1 T2
(_17 b; m)? b # {_m7 O}
2\>[2b+m| =0 |2 053 x St x St x St
All  other walues of | YA 1 T?
(a,b;m)
where QS% denotes the based loop space of S2. O



Chapter 5

Calculating the codimension

As seen in the previous chapter we calculate the homotopy type of the group of S*(£1, b;m)
equivariant symplectomorphisms assuming that the codimension of the the invariant
strata jui " AU, in jui " was 2. In this chapter, we first prove using deformation theory
that the invariant strata jf; N U, 1s a submanifold of jf; and then calculate the di-

mension of normal bundle of this submanifold to obtain the codimension.

We mimic the techniques in [3] in the equivariant setting. Fix a Ké&hler 4-manifold
(M,w,J) and an S! action on (M,w,J) such that g*w = w and g*J = J Vg € S*. We
work in this generality and note that our required manifolds S? x S? and CP?#CP? along
with the circle action S*(a, b; m) satisfies the given conditions. Throughout the section we
note that the holomorphic S! action on the base manifold M induces a natural action on
the various tensor spaces such as TVOM, ng(M ,TM) etc considered below. We write

g1

(TLOM)Sl, (Qg’k(M, TM)) etc to denote the S! invariant elements of these tensor

spaces.

80
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5.1 Space of invariant complex structures

Define J° " to be the space of S! invariant almost complex structures of M with regularity
C' endowed with C! topology. We briefly outline the procedure to put a Banach manifold
structure on 7° as follows. Fix a .J € 7% and consider the sub-bundle h¥' (T'M, .J) of
End} ' (TM) of invariant endomorphisms of the tangent bundle of regularity C! defined
by

BF (TM, J) = {A e Endf (TM) | AJ + JA = 0}

Consider the map ¢ : hfl (TM,J) — .7151 given by
¢s(A) = Jet

As shown in [14], the map ¢ is a global homeomorphism sending C* endomorphisms
(k = 1) in h¥"(TM,J) to C* almost complex structures. Consequently, we use ¢ to

define charts at J on J;°" (See [14] for more details).

Let [ lsl denote the space of integrable almost complex structures of M with regularity
C'. We first show that If'is a Banach submanifold of 75", Let N,(X,Y) = [X,Y] +
J([JX, Y]+ [X,JY]) — [JX, JY] denote the Nijenhuis tensor with respect to J. We
construct a vector bundle over % with fibres Q) (M, TM)5" of S'- invariant (0,2)
forms with regularity C'~! and take values in the holomorphic tangent bundle TM. We
construct of this bundle with fibre Q?fl(]\/[ . TM)5" as a sub-bundle of the trivial bundle
N/l (Q7 (M, TM ® (C))Sl. It is indeed easy to check that the Nijenhuis tensor takes

clements in 7" to elements in Q"% (M, TM)5". This is because

= g:l0. ' X, 0. Y] + 92 (V92 ' X, 0. 'Y + [0, X, Jg, 'Y]) — gu - [Jg. ' X, Jg, 'Y ]

=[X,)Y]+ J([JX, Y]+ [X,JY]) - [JX,JY]
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Where the last equality follows from the fact that g.[X,Y] = [¢9.X, ¢.Y] and noting

that J is equivariant. Thus we have a well defined map

N: 75 = Q% (M, TM)

J'_’NJ

If we show that the derivative of this map is surjective then indeed we would have

that I; is a Banach submanifold.

As shown in Appendix A of [3], we can define 0 : Q?”l(M, TM)— 9?7212—1(]\/[7 TM) for

any almost complex structure J. Further let VN (J) denote the following composition.

(QOJ;}(M,TM»Sl (@2 (M, TM®C))51 T Q02 (M, TM)S

VN,

where 7 is the canonical projection of Q2 (M, TM ® C)5" = Q° (M, TM)%" @
QY (M, TM)S @ Q% (M, TM)3" onto the last summand. Then,

Theorem 5.1.1. VN(J) = —2J0;
Proof. Check Appendix A in [3]. ]

In particular to show that VN (.J) is surjective, we require that 0, : Q"' (M, TM)5" —
Q?fl(M ,TM)5" is surjective. This is trivially true whenever the manifold as M is 4

dimensional and HY*(M,TM) = 0. Thus we have the following theorem.

Theorem 5.1.2. Suppose M is a 4- manifold with HS’Q(M, TM) =0 with J € Ilsl,then
the space IlSl 1s a Banach submanifold of jlsl in a neighbourhood of J with tangent space

at J identified with ker 0y : Q) (M, TM)5" — Q)2 (M, TM)" or equivalently
.= 0,0 st 0,1 51 0,1 st
T1 =~ <1m 3y (00, TM))® — QM (M, TM) )@ (HOL (M, TM))

Let jfll denote the space of all St equivariant compatible almost complex structures

of regularity C'. Our next goal is to show for under some cohomological restrictions, that
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the space of equivariant integrable compatible almost complex structures of regularity C"
denoted by 511 is a Banach submanifold of jjll We first note that Given J e jwsll , that
the equivariant metric hy(-,-) := w(-, J-) —iw(-,-) induced by the pair (w, /) identifies
7,75 = QYN (M, TM)S" with the space (T°2)% = (Q°2(M))* @(Q%2(M))*" of complex

equivariant (0, 2)-tensors via the map

6: (190 — QL (M, TM)"

A 0(A) = hy(A-,-)

Let us denote by S (M, TM)5" the tangent space of Tjjf‘j < T;.7°" of all equiv-
ariant compatible almost complex structures. More explicitly, the tangent space consists
of elements A € Q' (M, TM)5" such that AJ + JA = 0 and w(A-,-) = —w(-, A-). Under
the above identification, we can check that SQ?’l(M ,T'M )Sl gets mapped to the space
of symmetric S* invariant (0, 2)-tensors which we denote by (50’2)51.

Further we may identify the quotient with the space of invariant (0,2) forms on M

as follows.

1,78 TS0 = QP (M, TM) SOP (M, M) = T92(M)/ (8% = (957(a1))°

As before, the Nijenhuis tensor defines a map
N T8 — )2 (M, TM)S

whose kernel is precisely the submanifold [ 5" Tt would once again suffice to show that

w,l?
the derivative VN is surjective. As we know that VN(J) = —2J0d;, we would need to
show that 0 : SQ' (M, TM)%" — Q)2 (M, TM)%" is surjective. As M is a 4-manifold,

all forms in Q"% (M, TM)3" are in fact closed, hence to show that the restriction of @ to
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SQ?’I(M, TM)5" is surjective, it would suffice to show that the group

vs o kerd: QU2 (M,TM)S" — (%M, TM))”
SHJ (TM) T =y 0,1 1 0,2 1
im @ : SO (M, TM)S* — Q2 (M, TM)3
Q2 (M, TM)S
Cim @ SQMN(M, TM)S — Q2 (M, TM)S

is in fact 0.

As the above condition is not easy to check directly, we would like to get a simpler
condition on the manifold that would guarantee that SHY?(TM)%" is indeed 0. In order

to do that, we consider the following commutative diagram

00— SQM (M, TM)S" —2 Q¥ (M, TM)S" —— 0

| | |

QP (M, TM)S" —2s QM (M, TM)S" —2— Q% (M, TM)5" —— 0
QML (M5 ———— Q"2 (M)S! 2 » 0 > 0

where the map SQ?’l(M, TM)S1 — Q?’l(M, TM)S1 is just the inclusion and the map
QNTM)S — QP (M)S" is the quotient Q) (TM)S — QYN (TM)S" /SQY (M, TM)S'
followed by identifying Q' (TM)S"/SQY (M, TM)S" = QY (M, TM)5". We refer the
reader to page 548 of [3] for more details about how this identification is made. Finally

the map « is defined as follows

. 0,0
o Ql-‘rl

(M, TM)% — Q!

I+1

(M)*

X > a(X)(Y) i= w(X, JY) — iw(X,Y)

where J € [ fll and X,Y e Q) (M, TM)3 ' We refer the reader to Appendix B in [3] for
the proof of commutativity of the diagram. We note that the proof for the equivariant
case follows mutatis mutandis from the proof in Appendix B of [3] by observing that the
0 operator is equivariant and hence takes invariant elements to invariant ones. Thus the

above diagram gives rise to a long exact sequence is cohomology
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0 — (HYTM))* —> QY (M) -2 SO (M, TM)S" —L HON(TM)S" — .
— HY*(M)5 — SHY*(TM)S — HY*(TM)*" — 0 o
where cIQ5" (M)5" denotes the kernel of @ in (Qg’l(M))Sl and similarly cISQY" (M, T M)

is the kernel of @ : SQY (M, TM)S" — QY (M, TM)5". Thus if we had a 4-manifold
M with an S! invariant compatible integrable almost complex structure J such that
HY*(M) = 0and Hy*(TM) = 0, noting that 0 takes S* invariant elements to S' invariant
elements we can conclude that Hy*(M)%" = 0 and H)*(M,TM)%" = 0. Further, it fol-
lows from equation 5.1/ for such a manifold (M, w, J) as above, that SH*(T M) = 0 and
hence Ifll would indeed be a manifold in a neighbourhood of such a J. Thus HS’Q(M )=0
and H*2(TM) = 0 gives us a simpler condition for when I3, would indeed be a manifold

in a neighbourhood of J as required.

Additionally the averaging operator commutes with the @ operator, Hy*(M) = 0 im-
plies that H?(M)S" = 0. This tells us that ¢ : c1SQ (M, TM)5" — HY (TM)S" is sur-

Q%! (M, M)
0, 1 0, T
ker q:clSQ (M, TM)S' —HY' (TM)S

jective and hence by the first isomorphism theorem we have

is isomorphic to Hg’l(TM )Sl. Then the above long exact sequence gives us

. 1
61593’1]§M7TM>S - ClSQgﬁl-(M(’;TMF LTI
er q 1m

Putting all this together we have that

Theorem 5.1.3. If (M, w,J) is a Kihler 4-manifold such that the groups Hy*(M) = 0
and HE’Q(TM) = 0, then Ifll 1s a Banach submanifold of jfll in a neighbourhood of J

with tangent space at J € [fll identified with
TyI5, = dSQY (M, TM)%" = ker @ : SO (M, TM)% — QY% (M, TM)%

or equivalently

Ty15, = imé @ HY (TM)

Proposition 5.1.4. The conditions Hy*(M) = 0 and HY*(M,TM) = 0 are satisfied for

all the Hirzebruch surfaces.
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Proof. To prove HS’Q(M ,TM) = 0 for all Hirzebruch surfaces see the computation in
Example 6.2 b) pg 312 in [27]. To prove, H7*(M) = 0 we note that the the rank of
HY*(M) = 0 (usually called the geometric genus p,) is a birational invariant. As all
Hirzebruch surfaces are birationally equivalent, the result follows from the computation

on pg 220 in [27]. O

Finally we would like to show that the strata U,,; n jfll is a Banach submanifold
of jfll The most naive method to try to prove this would be to consider the universal
moduli space M(B — ZF, J,,,) of curves in the class B — 7 F and try to prove that jf;l
intersects the image of M(B — % F, J,,) under the projection map to the space of all

compatible almost complex structures of regularity C.

M(B = 3F, )

lﬂ

IS ———— T,
However, this approach is flawed as the two maps are never transversal. The alterna-
tive method is to try to define an equivariant universal moduli space M?* ' (B—%F, joi 171)

and argue that the image under the projection to Jui 171 is a Banach submanifold of joi 17l'

This is the plan of action we implement in the following section.

5.2 Construction of Equivariant moduli spaces

In this section we construct the moduli space of S! invariant .J-holomorphic maps into
52?2 x S2? or CP?#CP2?. Once again we shall present the analysis and note that all the
arguments go through even in the case when the target manifold is CP?#CP2?. Recall
that J, was the standard complex structure on the £™ Hizerbruch surface. As seen
in Chapter 2 there is a standard Ji-holomorphic curve D in S? x S? in the homology
class B — £F. Consider the S*(a, b;m) action on (5? x S?,w,). From the graph for the
circle action S'(a,b;m) we see that S' acts on D in a non-effective manner with global

stabilizer Z,. The following theorem is useful in our analysis.
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Lemma 5.2.1. Consider the S'(a,b;m) action on (S* x S?,wy) or (CP?*#CP? w)). Let
S be any St(a,b;m)-invariant symplectic embedded sphere in the same homology class

B - %F with k > 0. Then the S' action on S has global stabilizer isomorphic to Z,.

Proof. This follows from noting that any other S! invariant curve passes through
the same set of fixed points as D , and hence by again we that the global stabilizer

is the same. O

Thus we can fix an action on a base sphere, namely the standard S' action that
agrees with the action of S* on D and consider the moduli space of all equivariant maps

u: (8% j,) — (5% x S2,J) for some J € jf;}l. We define M5 (B — kF, J5')) as follows

w,l

M (B — kF, «75;1,0 := {(u, J) | uis equivariant, somewhere injective, J-holomorphic and

represents the class B — kF'}

Remark 5.2.2. As we are only interested in the case when k > 0, the curves in class
B — %F have negative self intersection and the adjunction formula tells us that these
curves are embedded. Thus all somewhere injective curves in class B — %F for k>0 are

embedded.

As in the non-equivariant case we now wish to prove that this moduli space is a

smooth Banach manifold.

To prove this we recall the set up. The set up is analogous to the non-equivariant set

up as in [31]. We have a bundle

&S

—1,]7

|7

St St
Bk,p x \71

where &5 is a vector bundle with fibre over (u, J) consisting of S! invariant elements
in [(S2, Q01 (5%, u*T(S? x %)), BE, = {ue (Whr(S?, 82 x $2))° | [u] = B— kF} and

Whp(S2, 8% x 52))5" denotes the space ofequivariant maps of Sobolev regularity W*?
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from S? to S? x S2.

We would like to show that the section 8, := (u, d,u) : B x J5' — &2, where
Oyju = 3(du+ J o duo jg) is transversal to the zero section. Note that 5;1(0) =

./\/lsl(B — kF, jcil,l)7 thus giving it a smooth structure as in the non-equivariant case

(McDuff- Salamon Lemma 3.2.1)

In order to show trasnversality we project the map to the fibre and show that the
derivative is surjective at (u,.J) when wu is a simple equivariant curve. (Check Lemma

3.2.1 in [31] for more details) i.e

1

DFE, - WFP(S2urT(S? x §%))5 xC1(S? x S2, End(T'S? x S, J,w)®
SRS 05 (S? urT(S? x §%)))F
But by Lemma 3.2.1 in [31I] we know that the linearized derivative D.%#, ; in the non-
equivariant case
DFyy: WEP(S? u*T(S? x $))xCH(S? x S%, End(TS? x S2, J,w)
- (92,5 (5%, u*T(S? x 5%)))
is surjective.
As J € jws;, the 0; operator commutes with the averaging operator with respect to

the S1 action. Averaging the above non-equivariant derivative D.%, ; by the S! action

would prove that Dﬁj } is surjective. Hence we can conclude the following theorem.

Theorem 5.2.3. M (B — kF, J5',) is a smooth Banach manifold.

W)\,l

Also we have the projection map

M (B —kF,J5)

|7

Sl
jw)\,l
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To conclude that the image of 7 is a submanifold of jf;,z we need the following theorem

whose proof can be found in [1].

Theorem 5.2.4. (Theorem 3.5.18 in [1]) If there is a smooth map f : M — N where
M, N are Banach manifolds such that

1. kerT'f is a sub-bundle of T'M
2. For each m e M, f.(T,,M) is closed and splits in Ty N
3. fis open or closed onto it’s image
Then f(M) is a smooth Banach submanifold of N
A map that satisfies the above conditions is called a sub-immersion.
Lemma 5.2.5. The projection map 7 : ./\/lSI(B —kF, jbf;l’l) — juil,l 1S a sub-tmmersion.

Proof. Note that the ker dr is of constant rank and is the tangent space to the reparametriza-
tion group C* is which freely on MSI(B — kF, jbil). Hence ker dr is a sub-bundle of
TMS(B—-kF,J5).

Now we show that the image of dr is closed TJjuil’l. Note first that TJJMS;J =
SO (M, TM)®" hence 7, <T(u,J)MSI (B — kF, .70;9;[)) as a subspace of SQY' (M, TM)5'

can be described as follows:

m T M (B~ kF.J5,) =

w,l

_ {a e SO M, TM)S" | [aoduo je] = 0e HY(S?, u*TM)Sl} (5.2)

(This follows from noting that the proof of proposition 2.8 in [3] goes through under
the presence of a compact group action.) Let v, € m, (T(u“])./\/ls1 (B — kF, jf:,l)> ie
Yo € QU M, TM)" = TJ5', and satisfies [y, o duo Js| = 0 € HY'(S%,u*TM)%". Fur-

ther assume the sequence 7, converges to v in Q%! (M, TM)SI. Then [yoduo jg] =0¢€
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Hgosi (82, u*TM)5", thus showing image of dr is closed Tjuil,l‘

Next to that the image of dr splits in ijil, we proceed as follows. We firstly show
that the codimension of the image of dr in ij:,l is finite and hence it follows that the

image of dm splits. Consider the map
1 st
L:SQFH (M, TM)* — Hj", (5% u*TM)
a— [aoduo js|

By equation [5.2] we see that the kernel of this map is precisely the image of the map
dr. As H;-); (S, u*TM )Sl is finite dimensional it follows that the codimension of dr is

finite and hence the image of dr in Tj“i 171 splits.

Finally to show that 7 is open onto it’s image we note that,

M5 (B — kF, jjjJ)
lq \

M3 (B — kF, jj;l’l)/(C* — S im 7

>~

where the map h : M5 (B—kF, ;751,) /C* — im is a homeomorphism. As ¢ is a quotient
map for a group action, we have that ¢ is an open map and as m = h o ¢, we have the
7 too is an open map, thus showing that = satisfies all the conditions in the lemma and

hence 7 is a sub-immersion. O

Corollary 5.2.6. Uy, N jj;l is a Banach submanifold of jj;l.

Proof. Follows from Lemma and noting that the image of 7 is Uiy N jjA 171. m
Finally we would like to understand what the normal bundle to Ug; N jui 171 looks like

(when k& > 0). To do this consider the following

MS (B —kF,J5")

w,l
lw

? St
_
\7&))”[

15

w,l
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We would like to arrive at a condition when these two spaces intersect transversely and
thus we can use this transverse intersection to get a description of the normal bundle of

Sl
Usky 0 T -

Lemma 5.2.7. For any of the Hirzebruch surfaces (S*xS?,wy, Jp,) or (CP?*#CP2%, wy, J,,)
we have that u* : H((}i (M, T]W)S1 — H](-)S’i (52, u*T.M)S1 is an isomorphism.

Proof. From Proposition 3.4 in [3] we know that u* : HS;;(M, TM) — H;]S’E(SQ, u*T M)

is an isomorphism. As u is equivariant this indeed gives us that
“HO (M, TM)S — HY (82wt T M)
wo g ( ’ ) - Jg2 ( y U )
is also an isomorphism. O

Lemma 5.2.8. Let (M,w)) denote either (5% x S* wy) or (CP?#CP? w)). Further let
i IS, — J5, denote the inclusion and © : M (B — kF,J5')) — T2, denote the

projection. Then we have that
o iMhm

e the infinitesimal complement(i.e the fibre of the normal bundle) of U,,; N jf;l at

Jm € IS, can be identified with Hy'(M,TM)%".
Proof. Recall by Theorem , that the tangent space of I fll was given by
TyIS, = dSQY (M, TM)®" = kerd : SO (M, TM)*" — Q2 (M, TM)*

Letvye TyJ5 , = (SQOY(M, TM))® and define [y o du o jg] == 1 € Hy (5%, u*TM)5.
To show that i, we need to produce B € TJm]571l = clSQg’i(M, TM)S1 such that

[(y = 8) oduo js2] = 0. To do so, we consider the following commutative diagram.
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HY (M, TM)S" ut > Ho (8%, ur T M)
[a] [0 dul

J¥ l Jzz

[oduojg] =

[0 Jp 0 du)

v ~

HYN (M, TM) » HY(S? T M)

[0 Jp] ————

u¥®

where all the maps u*,J* and j§, are isomorphisms. Further we have the equality
[ oduo jsz2] = [ao Jodu]asuis jg2-J, holomorphic. As we know that Hf};f(]\f)s1 =0,

from the long exact sequence equation [5.1 we see that the quotient map
dASQSH (M, TM)S — HY (M, TM)"

is surjective. As both u* and J* are isomorphisms, there exists J € clSQ?,’i(M ,TM )S1 —
TJIE;I such that [f o Jodu] = [foduo js] =mn:=[yoduo js]. Hence we indeed have

[(y = B) oduo jgz] = 0 as required.

We now show that the fibre of the normal bundle of U,,; n J5; at J, € IS can be
identified with H SJ(M ,TM)5". As seen in the proof of Lemma we know that there

is a map

L:SO% (M, TM)S — HO' (8%, uw*T M)

a — [aoduo jg]

As the quotient map clSQg’"lL (M, TM)S" — HS;}L(M, TM)S" is surjective and the maps
u* and jg2 are isomorphisms, we have that the map L is surjective. As the kernel of L is
the image of dr, the cokernel can be identified with Hgs’i (S u”‘T]\/AI')S1 ~ HS;;(M, TM)S
Hence the the fibre of the normal bundle of U,,; n TS5 at J, € Ifll can be identified

Ay
with HY' (M, TM)".
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Hence to calculate the codimension of Uy N jf;l, we only need to calculate the

dimension of Hgi(]\/[ ,TM)5". We present that calculation in the next section.

5.3 Isotropy representations

By Theorem 4.2 in [3], the action of the isometry group K (2n) ~ S' x SO(3) on the space
H 3’1(]\/[ , T M) of infinitesimal deformations is isomorphic to Det ® Sym?" 2, where Det is
the standard action of S' = U(1) on C?, and where Sym(C?) is the representation #;,_;

of SO(3) induced by the (2n — 2)-fold symmetric product of the standard representation
of SU(2) on C2.

5.3.1 Hirzebruch surfaces and their isometry groups

In this section we mostly try to follow the same notation as in [3]. The reader may note

that in our case 2n = m.

Following [3], we construct the Hirzebruch surface Fy, by Kihler reduction of C*

under the action of the torus T3, defined by
(5,1) - 2 = (8*"tzy,t29, 523, 524)

The moment map is ¢(z) = (2n|z1|> + |23]* + |24]?, |21]* + |22/*) and the reduced man-
ifold at level (A + m,1) is symplectomorphic to (S? x 5% wy) and biholomorphic to
the Hirzebruch surface Fy,. In this model, the projection to the base is given by
[(21,...,21)] = [23 : 24], the zero section is [wg : w;] — [(wE,0,wg,w;)], and a fiber
is [wo : wy] = [(wowi™, wowy,0,w)]. The torus T?(2n) = T*/T3, acts on Fy,. This
torus is generated by the elements [(1,e,1,1)] and [(1,1,¢€%,1)], and its moment map
is [(21, 22, 23, 24)] = (]22]%, |23/%). The moment polytope A(2n) is the convex hull of the

vertices (0,0), (1,0), (1, A + n), and (0, A —n).
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The isometry group of Fy, is
K(2n) = Zu(T3)/T, = (T? x U2))/TZ, ~ §' x PU(2) ~ 5" x SO(3)
where the middle isomorphism is given by
[(5,t), A] — (s 'tdet A", [A])

Under this isomorphism, an element [(1,a, b, 1)] of the torus T'(2n) is taken to

b 0 b2 0
ab”, = | "a,
0 1 0 b2
Consequently, at the Lie algebra level of the maximal tori, the map identifying the
maximal torus of K (2n) whose lie algebra is denoted by t*(2n) with the maximal torus

St x SO(2) =« S* x SO(3) whose lie algebra is denoted by t? (where SO(2) is identified

with the rotations around the z-axis) is given by

1 n

0 1

The moment polytope associated to the maximal torus 7% < K (2n) is thus the balanced

1 0
polytope obtained from A(2n) by applying the inverse transpose

-n 1

Thus the moment polytope associated to the maximal torus 7% < K(2n) has the

following shape
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5.3.2 Even isotropy representations

Let J,, be the standard S! invariant integrable almost complex structure in the strata
U, coming from the Hirzebruch surface W,,. The action of the isometry group K (2n) ~
S' x SO(3) on the space Hy'(S? x S2,T(S? x S?) = C™* (see [27] Example 6.2(b)(4),
p.309 for more details about how the isomorphism is obtained) of infinitesimal deforma-
tions is isomorphic to Det ® Sym** 2, where Det is the standard action of S' = U(1) on
C?, and where Sym(C?) is the representation #;,_; of SO(3) induced by the (2n — 2)-fold
symmetric product of the standard representation of SU(2) on C? (see Theorem 4.2 in[3]).
We shall denote this (2n — 2)-fold symmetric product of the standard representation of
SU(2) on C? as ¥,,_». See [§] for more details about the representation theory of SO(3)

and SU(2)

The circle of SO(3) = PU(2) = U(2)/A(S1)

1 0 0
R(t) = |0 cos(t) —sin(t) |, t€[0,27)
0 sin(f) cos(t)

lifts to

6z‘t/2 0
e(t/2) = | eSu?)
0 efzt/Q

so that the character of #,_; at R(t) is given by (see [§] p.88)

n—1 2n—2 ; —i
emt —e wnt

Xt 1 (R(1)) = X, 5 (e(t/2)) = Z et = Z el 1Rl — PT—ry

k=1—-n k=0
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The character of Det is,
Xpet (R(t)) = €

For p.q = 0, we have the orthogonality relations

1 2

ipt _iqlt\ __ —ipt iqt _

(e e >——2 J e Pt dt = 0,,
T Jo

In general, given a representation V' of a compact group G, the dimension of the invariant

subspace V¢ is given by (see [§] Thm. 4.11)

dim V¢ = Jx(g) dg
For a,b coprime, consider the embedding S' — S'(a,b,2n) = K(2n) defined by
St S x SO(3) = K(2n)
t — (at, R(bt))

Then, the S*(a, b, 2n)-invariant subspace of Det ® Sym**~?(C?) has dimension

1 n—1 2m 1 n—1 21
_ b iat jikbt 3, _  * i(a+bk)t
dapon = o Z L e'Me™r dt = o Z fo e dt

k=1-n k=1-n
1 ifa+bk=0forsomeke{l—n,...,n—1}
0  otherwise

Note that the above codimension calculation was with respect to the basis of the

maximal torus in K (2n). Hence to calculate the codimension for the S*(1,b,m) < T2, as

o1

in our case, we need to transform the basis by multiplication by the matrix
1 0

. 1 . .
Thus it takes the vector in the basis for the standard moment polytope
b
Al . . .
to the vector in the basis for the balanced polytope (for which we did the
1

above calculations).
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Therefore the codimension of S*(1, b;m) is given by the number of k € {1-%,.-- | 2

1} such that (% —b) + k = 0. Relabelling k" as % + k, we have that the codimension is

given by the number of &’ € {1,--- ,m — 1} such that ¥’ = b.

Theorem 5.3.1. Given the circle action S*(1,b,m) with 2\ > |2b —m| and b # {0, m},
the complexr codimension of the stratum jf; N U, in jf; in given by the number of
ke{l,--- ,m—1} such that k = b.

Similarly for the action S*(—1,b,m) with 2\ > |2b + m| and b # {0, —m}, the complex
codimension of of the stratum juil NnU,, in jf; in given by the number of k € {1,--- m—

1} such that k = —b.
Corollary 5.3.2. For the circle actions
e (i)a=1,0b%#{0,m}, and 2\ > |2b —m|; or
o (ii)a=—1,b#{0,—m}, and 2\ > |2b + m)|.
The complex codimension of the stratum jf; NUpy, in jf; is either 0 or 1.

Proof. Follows from the calculation and discussion above. O

Alternative calculation of the codimension

As explained above, the action of K(2n) on Hy'(S? x §2,T30(S% x S?)) =~ C™ ! is
isomorphic to Det ® Sym®" 2. Hence to calculate the the codimension we only need to
calculate the dimension of the invariant subspace of H*!'(5? x S?,T;:9(5? x §%)) ~ C"~!
under this action. To do so we note that a basis of Sym?* ™2 is given by the homogeneous

polynomials Py, = 27" 27%2% for k € {0,...,2n — 2}. The action of R(t) on P, is

R(t)- Py = e(t/2) - Py = ei(2n—2—2k)t/2pk _ ittn=1-8) p
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so that the action of (e, R(t)) = S* x SO(3) on P is
(6i57 R(t) P, = 6i(s+t(n—1—k)) P,

Each P, generates an eigenspace for the action of the maximal torus 7'(2n). In particular,

the circle S*(a, b; 2n) acts trivially on P, if, and only if,
a+bn—1—-k)=(a,b)-(l,n—1—-k)=0
for k € {0,2n — 2}. Equivalently, we must have
a+ bk = (a,b)-(1,k)=0

forke{l—mn,...,n—1}
Hence the dimension of the invariant subspace is given by the number of k£ € {1 —

n,...,n — 1} such that a + bk = 0 as derived in the previous section.

As an aside we also note that, The generator (1,1 — k) (in the balanced basis of

K(2n)) of T'(2k)/S(a, b;2n) then acts on the eigenspace (P with weight

which shows that the action is effective and does not depend on a, b, or m = 2n.

Remark 5.3.3. In the beginning of the section, we only show that the space jo.il,l N
Uk was a Banach submanifold. But in order to obtain the topology of the space of
Sympsl(S2 x 52 wy) with C*-topology, we require that the space .70;9: N Uy, with the C'*°
topology is a Fréchet manifold and that the codimension of jf; N Usy in juil s given by
the same formula as in Theorem [5.5.1. As this discrepancy exists in the literature even

in the non-equivariant case, and as a resolution of this issue is well beyond the scope of

the thesis we do not attempt to resolve this here.



Chapter 6

Odd Hirzebruch surfaces

6.1 Homotopy type of Symp(CP*#CP2, w))

We now compute the centralisers for the S! actions on the odd Hirzebruch surfaces. The
theory is extremely analogous to the even Hirzebruch case i.e S? x S?, hence we shall
only point out the key differences. Most of the setup was discussed in the preliminaries
but we shall repeat them in the beginning of this section for the purposes of continuity

of exposition.

As noted before we have that the odd Hirzebruch surface W,, (where m is odd) is

defined as a complex submanifold of CP! x CP? defined by setting
Wi = {([xl,fz] y1,y2,y3]) € CP x CP? | 2™y — m0y™, = 0}

This manifold is diffeomorphic to CP2#CP2. The Torus T? acts on CP! x CP? in

the following manner.

(u,v) ' ([xbm?] ) [yh y27y3]) = ([U“Tlv I2] ) [umy17y2> U@/g])

(again with m being odd) and the momentum map image looks like

99



100 CHAPTER 6. ODD HIRZEBRUCH SURFACES

B-—mtp
Q=(0,1) - R=(\—mh1)
F
P =(0,0) S =(\+220)
B+mp ?

where B now refers to the homology class of a line L in CP?#CP? and F refers to the
class L — E where L is the class of the line and FE is the class of the exceptional divisor.
There is a canonical form which we also call wy on CP?#CP2, which has weight A on
B and 1 on F. As before all symplectic S* action on CP2#CP? extend to toric actions.
Hence only need to consider sub-circles of the above family of torus actions. The graphs
for the different circles are analogous to the S? x S? case, the only difference being in the
momentum map labels. Again as before we have the following stratification of the space

of compatible almost complex structures

Theorem 6.1.1. Let J,,, denote the space of all compatible almost complex structures
(not necessarily invariant) for the form wy, then the space J., admits a finite decompo-

sition into disjoint Fréchet manifolds of finite codimensions
ij :Ul I_IU3I_IU5...I_IU2n+1
where n = |A| is the unique integer such that n < A < 2n + 1 and where
Ug:=3J€ T, | (B- TF) € Hy(S* x S%,Z) is represented by a J-holomorphic sphere

Using similar notation to the discussion in the S? x S? case, we have the following

fibrations.
Stab®' (D) —> Symp; (52 x S2,wy) —» SB;M = J¥ A Ugs

Fix®' (D) — Stab® (D) —» Symp® (D) —— S or SO(3)

Fix%' (N(D)) — Fix®' (D) —» Gauge® (N(D)) —— S!
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Stab® (F) A Fix® (N (D)) — Fix® (N(D)) — S, —— T (D) ~ {}
Fix® (F) — Stab® (F) n Fix®' (N(D)) —» Symp” (F, N(po)) —— {*}
{+} <= Fix® (N(D v F)) —> Fix® (F) —» Gauge® (N(D v F)) —— {x}
Thus we have that when the S'(a,b) = T?, action where (a,b) # (0, £1)

Fix®' (D) — Stab® (D) — Symp®' (D)

J J J

[ J -
When (a,b) = (0,+1) we have

Fix® (D) — Stab® (D) — Symp®' (D)

J J J

Sl L U@2) —— SO(3)

Where both the leftmost and the rightmost arrow’s are homotopy equivalences from
the fibrations set up above. As the diagram above commutes, the left and right most
arrows being homotopy equivalences would imply via the 5 lemma that the middle inclu-
sion T2 < Stab® (D) or U(2) — Stab® (D) are also homotopy equivalences. Thus for

the action S'(a, b;m) we have the following cases. If (a,b) # (0, £1) then
Sympgl(CPQ#CPQ,WA)/Tng = jf; N Usg+1
and if (a,b) = (0, +1) then

Sympj (CP*#CP2,w))/U(2) ~ TS A Uiy

As before, we have the following theorem.
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Theorem 6.1.2. Consider the circle action S*(a,b;m) on (CP2#CP?,w)), then we have

the following cases:

1. ifa=1,b+# {0,m}, A > 1, and 2\ > |2b — m|, then the space of S*(1,b;m)-

equivariant almost complex structures joil intersects the two strata Uy, and Ujy,_op.

2. Ifa=—1,b%# {0,—m}, A\ > 1, and 2)\ > |20 + m]|, then the space of S*(—1,b;m)-

equivariant almost complex structures joil intersects the two strata Uy, and Ujy, 4oy
3. for all other cases jf: intersects only one strata U,,.
As before, we use the intersection with strata to conclude the following theorem.

Theorem 6.1.3. Consider the circle action S'(a,b;m) on (CP*#CP? w)). Under the
following numerical conditions on a,b, m, A, the homotopy type ofSympS1 (CP?#CP?,wy)

1s given by the table below.

Values of (a,b;m) A Number of | Homotopy type of
strata J3 | Symp®' (S2 x 52, w,)
intersects

(0, +1;m), m # 0 A>1 1 U(2)

A= 1 U(2)

(0,£1;0) or (£1,0;0)

A>1 1 U(2)

(£1,0;m),m # 0 A>1 1 T?

(£1 m),m # 0 A>1 1 T?

(1,b;m),b # {m, 0} 20—m|>22>1 |1 T

(—1,b;m),b £ {-m,0} | [2b+m|=21>1 |1 T

All  other walues of | YA 1 T?

(a,b;m) except (+1,b;m)

O
Theorem gives the homotopy type of the group of equivariant symplectomor-

phisms for all circle actions apart from the following two families of actions:
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e (i)a=1,b+#{0,m}, and 2\ > |2b — m|; or
o (ii) a = —1,b# {0,—m}, and 2\ > |2b+ m]|.

For the above family of actions, we compute as in Chapter 4, the dimension of the
vector spaces HP(Symp® ' (CP?#CP2% wy), k) for any field k, . Firstly, we show that the
map T2, < Symp; (CP?#CP?, w,) induces a map that is injective in homology. Before

we embark on the proof of this claim we set up the following notation.

Fix a curve F in the homology class F and passing through the fixed points @) and
P in figure . Let S}?lQ denote the space of Sl-invariant curves in the class F passing
through @ (defined in figure and let Sympfl(S2 x S% F,wy) denote the space of

S'-equivariant symplectomorphisms that pointwise fix the curve F.

Without loss of generality, assume that jui "AU im—2p| 15 the strata of positive codimen-
sion in jf;. As jf; is contractible, jf; U, = juil — j‘f; A Ujm—ap|, and the real codi-
mension of jf: NUjpp—2p| In juil is 2 (See Corollary, it follows that juil NnU,, is con-
nected. Further we have that Symp; (CP2*#CP?, w,) ~ jbil N U,,/T?, is connected. As
the fixed points for the S*(+1,b,m) actions are isolated and as Symp; (CP24#CP?, wy) is
connected, any element ¢ € Symp; (CP2#CP2,w,) takes a fixed point for the S action

to itself. Thus the action of Sympfl(CPQ#CPZ,w,\) on Sng is well defined.

Lemma 6.1.4. The inclusion i : Sympfl(C]ﬂ#CPQ,F, wy) — Sympf1 (CP?#CP2% wy)

18 a homotopy equivalence.
Proof. Consider the fibration
Symp; (CP*#TP?, F,w,) = Sympj (CPHCTP?,w,) — Sig

To show that the action Sympf1 (CP?#CP? w,) on S}?lQ is transitive we note that
given I’ € SﬁlQ, there exists a J' € juil such that F’ is J'-holomorphic. As jf; is

connected, consider a path J; such that J, = J' and J; = J,, where J,, is the standard
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complex structure on the m™-Hirzebruch surface for which the curve F is holomorphic.

By Theorem for every J; we have a family of curves F; (with Fy = F’ and
Fy = F) in class F passing through @ and this curve is S* invariant as .J; are S! invariant.
By Lemma we have a one parameter family of Hamiltonian symplectomorphisms
¢, € Symp;; (CP2#CPZ, w,) such that ¢,(Fy) = F, for all .

Thus it suffices to show that Sf:lQ is contractible to complete the proof. To do this
note that,

TS (F) - T3 — Sty

where \7‘;9; (F) denotes the space of S! invariant almost complex structures for which

the curve F is J-holomorphic. As both juil (F) and jf; are contractible, SEIQ is con-

tractible as well completing the proof. O]

Define the following projections just as in the exposition above Theorem [£.2.1} In our
case we take the point {+} to be the point Q in Figure[6.1]

so: S > W,
[20, z1] = ([20, 1], [0, 0, 1])
and the projection to the first factor of CP! x CP? is
o W, — S?
([20, 21] s [wo, w1, w2]) — [20, 21]
We define a continuous map h; : Symp} (CP*#CPZ?, wy) — & (52, +) by setting
hy : Symp; (CP2#CP2?,w,) — &€ (52, #)
Y i=motos

Further define the restriction map 7 : Sympy (CP2#CP?, F,wy) — € (52, +) by just
restricting ¢ € Symp; (CP2#CP?, F,w,) to the fibre F.
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Thus we have a well defined map

h: Sympy (CP*#CP? F,wy) — £ (8% %) x £ (5%, )

¢ = (ha(¢),r(¢))

Theorem 6.1.5. The inclusion map i : T2, — Symp; (CP*#CP? wy) induces a map

that is injective 1n homology.

Proof. By Lemma m, it suffices to prove that the inclusion i : T? Sympfl(S2 X

S?, F,w,) induces a map that is injective in homology.

Composing with A we have an inclusion of hoi : T? < £(S? ) x £(S?, +) and it
suffices to show that this map induces a map that is injective in homology. The proof of

this claim in analogous to the proof of Theorem [4.2.1

Remark 6.1.6. The same proof as above also shows that for the family of circle actions
given by S*(1,0,m) with 2\ > |m—2b|, the inclusion T?, _,, into Symp; (CP2#CP?, w,)
also induces a map that is injective in homology and similarly for the S*(—1,b;m) actions
with 2\ > |m—+2b|, the inclusion Tfmﬂb‘ into Symp; (CP*#CP?,w,) also induces a map

that is injective in homology.

]

As in the S§% x S? case, we have that i : T2 — Sympsl(CPQ#m, wy) induces
a map which is injective in homology, From our discussion above we also had that
Symp; (CP2#CP?,w,)/T2, ~ J5' A U,, and Symp; (CP>#CP?, wr) /T, oy = T5 A
Ujm—ap|-Let I AU, =P and J5 N Upm—2);= @, as i : T2, — Symp®' (S% x 52, wy)
induces a map which is injective in homology, further by Leray-Hirsch theorem we have

that

H*(Symp; (CP2#CP?, w,)) P)R) H*(T?)

H*(Symp; (CP?*#CP?, w,)) Q) X) H*(T?)
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As before we need to compute the codimension of the strata j‘i{l N Ujpp—ap)in Jf;l. The
computation in the section below shows it to be 2 (see Corollary [6.2.3)) .
Thus we have the following theorem on the ranks of the homology groups of the space

of equivariant symplectomorphisms.

Theorem 6.1.7. Consider the following circle actions on (CPz#(C_P2
e (i)a=1,0%#{0,m}, and 2\ > |2b — m|; or
o (ii)a=—1,b+#{0,—m}, and 2\ > |2b + m)|.

Then we have

H? <Sympsl(CP2#CP2,w)\),k‘> =1k p=1

for any field k.

As the proof of Theorem holds verbatim for the S*(a, b; m) actions on CP?#C P2

satisfying the conditions
e (i)a=1,b+#{0,m}, and 2\ > |2b — m|; or
o (ii) a=—1,b# {0,—m}, and 2\ > |2b+ m]|.

The above results give us the homotopy type of the centralizer for all circle actions on

CP?#CP? which we summarise in the table below.

Theorem 6.1.8. For the S' action given by the integers (a,b;m), acting on (CP*#CP?, w)),

we have the following cases
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Values of (a, b;m) A Number of | Homotopy type of
strata J3 | Symp® (52 x S2,w,)
ntersects

(0,4+1;m), m # 0 A1 1 U(2)

A=1 1 U(2)
(0, £1;0) or (£1,0;0)
A>1 1 U(2)
(£1,0;m),m # 0 A>1 1 T?
(£1,£m;m),m # 0 A>1 1 T2
20 —m|=2XA>1 | 1 T2
(1,b;m),b # {m,0}
20> 2b—m| =0 | 2 083 x 1 x 51 x St
26 +m| =221 |1 T2
(_Lb; m)ab 7 {—m,O}
2A>2b+m| =0 | 2 053 x St x St x St
All  other walues of | VA 1 T?
(a,b;m)

6.2 Isometry groups of odd Hirzebruch surfaces

In this section we calculate the codimension of the smaller strata in \75‘;. In order to
retain the notation as in [3], we use the convention m = 2n + 1. The Hirzebruch surface
Fa,41 is obtained by Kahler reduction of C* under the action of the torus Ty, ., defined
by

(5,1) -2 = (*" "2y, tzy, 523, 524)

The moment map is ¢(z) = ((2n + 1)|z211* + |23]* + |24/%, |21]* + |22]*) and the reduced
manifold at level (A + n, 1) is symplectomorphic to (CP?#CP?,w,) and biholomorphic
to the Hirzebruch surface Fs,,1. In this model, the projection to the base is given by
[(21,...,24)] = [z3 : 24], the zero section is [wy : wi] = [(wg™*!, 0, wp,w1)], and a fiber
is [wo : wi] = [(wowi™™, wowy, 0,wy)]. The torus T?(2n + 1) = T*/T2, ., acts on Fa,, ;.

This torus is generated by the elements [(1,e,1,1)] and [(1,1,¢€%,1)], and its moment
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map is [(z1, 22, 23, 24)] — (|22]?, |23/%). The moment polytope A(2n + 1) is the convex hull

of the vertices (0,0), (1,0), (1, A +n), and (0,\ —n — 1).

The isometry group of Fy, . is
K20+ 1) = Zog(T2,)/ T = (T2 x U@))/TE,,, ~ U(2)
where the last isomorphism is given by
[(5,1), A] = (s 'tdet A™)A
Under this isomorphism, an element [(1,a,b, 1)] of the torus T'(2n + 1) is taken to

b 0
ab™
0 1

Consequently, at the Lie algebra level of the maximal tori, the map t(2n + 1) — t? is

given by
1 n+1

1 n

The moment polytope associated to the maximal torus 72 < K (2n + 1) is thus the bal-

—n 1
anced polytope obtained from A(2n+1) by applying the inverse transpose

n+1 —1

6.2.1 0Odd isotropy representations

The action of the isometry group K(2n + 1) ~ U(2) on the space H"' (M, TM) of in-
finitesimal deformations is isomorphic to Det' ™ ® Sym®* ™!, where Det is the determinant
representation of U(2) on C, and where Sym*(C?) is the k-fold symmetric product of the
standard representation of U(2) on C2. Using the double covering S* x SU(2) — U(2), we
see that irreducible representations of U(2) correspond to irreducible representations of
S x SU(2) for which (—1, —id) acts trivially. If A,, denotes the representation t-z = t™z

of S! on C, and if V,, is the n-fold symmetric product of the defining representation of
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SU(2) on C?, then the irreducible representations of U(2) are A,,®V,, with m+n even. In
this notation, we have the identifications Det = A,, while Sym = A; ® V;. Consequently,

Det' " ® Symz"_1 = A; ® V5,1 whose character is given by

et 0 -1
xz®e)=x[2® == Z i (2n—1-2k)t
0 e k=0

With respect to the double covering S* x SU(2) — U(2), the maximal torus 7% < U(2)

s

of diagonal matrices D, := ' lifts to
O ezt
i(s—t)/2
12 Dsp | itstoy2 et/ 0
‘Ds,t‘ ) 1/2 € )
| Dyt 0 eilt=s)/2

so that the character of Det!™ ® Sym®" ! at Dy, is given by

2n—1
X(Ds,t) — pils+t)/2 Z oi(2n—2k—1)(s—1)/2
k=0

Remark 6.2.1. More directly, the character of the (2n — 1)-fold symmetric product of

the standard representation of U(2) on C? is

2n—1
X(Ds,t) _ Z 62[5(2n—1—k)+tk]
k=0

while the character of Det'™ is

6i(s+1§)(17n)
which gives the same result as above.

For a, b coprime, consider the embedding S — S*(a,b,2n + 1) = K(2n + 1) = U(2)
defined by

St U(2)

t— Dat,bt
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Then, the S*(a, b, 2n + 1)-invariant subspace of Det' " ® Sym®" ! has dimension

da,b,2n+1 = f X(Dat,bt) dt
Sl

1 1 2n—1
_ ez’(a+b)t/2 2 6i(2n—2k—1)(a—b)t/2 dt
2 Jo =

2n—1

1
:%’;0

=#{ke{0,....2n =1} | (n—k)(a—b) + b =0}

1
f eit[(n—k) (a—b)+b] dt
0

Assuming ab # 0, we have

—k—-1

which implies a = n — k — 1 and b = n — k. Consequently, for a given n, there is at most

one solution k € {0,...,2n — 1}.

Note that just as in the S? x S? case, the above codimension calculation was with
respect to the basis of the maximal torus in K(2n+1). Hence to calculate the codimension

for the S1(1,b,m) < T?, as in our case, we need to transform the basis by multiplication

m—1
=+1 -1 1
by the matrix 2 . Thus it takes the vector in the basis for the standard

m—1
R b

moment polytope

m=1 _ p
to the vector 2 in the basis for the balanced polytope. Hence the a and
m—1
b
b in the formula above need to be replace by mT_l — b and mT_l — b to get the correct

codimension for the S'(1,b,m) action.

Thus we have the following theorem.
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Theorem 6.2.2. Given the circle action S'(1,b,m) on (CP*#CP? w)) with 2\ >
12b — m| and b # {0,m}, the complex codimension of of the strata jf; N U, in jf;

in given by the number of k € {1,--- ;m — 1} such that k = b.

Similarly for the action S*(—1,b,m) with 2\ > [2b+m| and b # {0, —m}, the complex
codimension of the strata jf; NUpy, in jf; in given by the number of ke {1,--- ;m—1}

such that k = —b.

O
Corollary 6.2.3. For the circle actions
e (i)a=1,0%#{0,m}, and 2\ > |2b —m|; or
o (ii)a=—1,b+#{0,—m}, and 2\ > |2b + m)|.
The complex codimension of the stratum jf; NnU, in jj; 18 either 0 or 1.
O

Alternative calculation for the codimension

As explained above, the action of K(2n + 1) on H*'(CP*#CP? T;°(CP*#CP?)) =~
C™ ! is isomorphic to Det'™ ®@Sym?"~'. Hence to calculate the the codimension we

only need to calculate the dimension of the invariant subspace of the vector space
HOYCP?*#CP?, T (CP?#CP?)) =~ C™ ! under the S'(1,b;m) action. To do so we
note that a basis of Sym®"~! is given by the homogeneous polynomials P, = 22"~ 1% 2k

for k € {0,...,2n — 1}. The action of D, on Py is

Dst . Pk: _ 6i((s+t)(1—n)+s(2n—1—k)+tk:) Pk;

so that each Py generates an eigenspace for the action of the maximal torus T'(2n + 1)
generated by Dy ;. In particular, the circle S*(a, b;2n+ 1) acts trivially on P if, and only
if,

(a—=b)(n—k)+b=(a,b)-(n—k,k—n+1)=0
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Thus the codimension (in the balanced basis of the maximal torus of K(2n+1) is given by
the number of k € {0, ...,2n—1} such that (a—b)(n—k)+b = (a,b)-(n—k,k—n+1) = 0.
Just as proved above, we can transform using a change of basis to get the result for the

standard moment polytope.

As an aside we also note that generator (1,1) (in the balanced basis of K (2n + 1)) of
T(2k +1)/S"(a,b;2n + 1) then acts on the eigenspace (P ) with weight

(L1)-(n—kk—n+1)=1

which shows that this action is effective and does not depend on a, b, or m = 2n + 1.



Chapter 7

Centralizers of finite cyclic groups

Having established the homotopy type of the S!' equivariant symplectomorphisms, we
would like to do a similar analysis for finite cyclic groups acting via Hamiltonian diffeo-
morphisms. The two key differences between Z, and S' actions are that we no longer
have a momentum map associated to a Z, action, and we do not have a classification
of Z, actions on S? x S? and CP?*#CP? up to equivariant symplectomorphisms. Con-
sequently, we have to modify our approach substantially. In particular, we replace the
space of invariant and compatible almost-complex structures jf; with the subspace If:
of integrable, compatible, and invariant complex structures, and a large part of our work
consists in showing that the action of the centralizer on If; is homotopically equivalent
to its action on JZ». The restriction to integrable structures allows to use the classifica-
tion of complex structures on S? x S? and CP?*#CP? together with the Chen-Wilczyriski
classification of Z,, actions up to oriented diffeomorphisms, to partially make up for the
lack of a proper classification of Hamiltonian 7Z,, actions, and to determine which stratum
U,y the space If; intersects. This is enough to deal with most Hamiltonian 7Z,, actions,

leaving open the cases of actions satisfying some specific numerical conditions.

113
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7.1 Symplectic actions of finite abelian groups

As shown in [9], when A\ > 1 the only finite abelian groups that have an Hamiltonian
action on (S? x S?% wy) are abstractly isomorphic to finite subgroups of SO(3) x SO(3)
(see Theorem in the present document). In particular this means that the only
finite abelian group that have Hamiltonian actions on (S? x S% wy) when A > 1 are
groups of the form 7Z,, and Z,, x Z,,. Similary, we have that all finite groups that admit
a Hamiltonian action on (CP?#CP?,w,) are abstractly isomorphic to subgroups of U(2)
(see Theorem in the present document).

We shall say an action Z,(a, b;r) extends to a toric action T? if it is Z,-equivariantly

symplectomorphic to an action of a finite subgroup of T?. Similarly we say a Z,, action

extends to a circle S'(a/,V';r') if it is Z,-equivariantly symplectomorphic to a finite sub-

group Z, of S*(a’,b';1").

As shown in [13], we know that every Hamiltonian Z, action on (5% x S? w,) and
(CP?#CP?,w,) extends to Hamiltonian S* actions. Consequently, each triple of numbers
(a,b; ) determines a single Hamiltonian Z, action on S? x S? or (CP?*#CP2, wy) up to a
possible reparametrization of Z, = S*(a,b;r) and, conversely, each such reparametriza-
tion class of Hamiltonian Z, action is given by triples, one for each possible S! the Z,
action extends to. We note that if a = @’ (mod n), b =V (mod n) then Z,(a,b;r) and
Z,(a', V', r") denote the same action. As we are only interested in effective Z,, actions, we

only consider pairs of values a,b € {0,--- ,n — 1} with ged(a,b) = 1.
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7.2 Z,(a,b;r) actions on (5% x S? w,) with A > 1 and
r # 0.

In order to simplify the discussion, we first consider Z, actions on the product (S? x
S? wy). For technical reasons, we further restrict ourselves to Z, actions for which JWZA"
does not intersect the open stratum Uy, see Remark at the end of this section. In
particular, we assume A > 1 and we only consider triples (a, b;r) with r # 0. We saw in
Chapterthat for such a triple (a, b; r), there is a unique J,-holomorphic curve in the class
B — LF which is invariant under the S*(a,b;r) action. In particular, together with posi-
tivity of intersection (Theorem this implies that there is a unique J.-holomorphic
curve in the class B—Z I which is invariant under the Z,(a, b; ) action. As Theoremm
holds for finite abelian groups, the arguments used to establish the existence of the fi-
brations and homotopy equivalences associated to the action of Sympfl(S2 x 52 wy) on
invariant curves and on invariant almost-complex structures work mutatis mutandis for
Z, actions. Consequently, assuming ijA" N Uy, is nonempty for some 2k > 0, we have

the following sequence of fibrations and homotopy equivalences:
Stab” (D) — Sympi~(S? x S% wy) —» S%’;k —— T Uy,
Fix%"(D) — Stab® (D) — Symp”" (D) —— Z, or SO(3)

Fix?*(N (D)) — Fix"(D) —» Gauge”"(N(D)) —— Z,

Stab” (F) n Fix”"(N(D)) — Fix""(N(D)) — Sz, —— J""(D) = {+}
Fix”" (F) — Stab™ (F) n Fix”"(N(D)) —» Symp™ (F, N(po)) —— {}
{+} ——Fix’"(N(D v F)) — Fix’"(F) —» Gauge’(N(D v F)) —— {x}

As before, the homotopy type of Symp”" (D) depends on whether the unique .J,-holomor-
phic curve in the class B—£ F' is pointwise fixed under the Z,, action or not. The homotopy

type is SO(3) if it pointwise fixed and is S' otherwise.
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Putting all the homotopy equivalences together, we again have that, in all cases where

there is no symplectic sphere in class B — 5 F' pointwise fixed under the Z, action that
Symph"(52 X SQ,WA)/Tgk = ij: N Uy

and in all other cases where there exists a symplectic sphere in class B — £ F pointwise

fixed under the Z,, action, we have
Symp;™(S% x 5% wy) /(ST x SO(3)) ~ ij; A Usy,

Keeping track of the homotopy equivalences, we obtain (as in Remark (3.3.16|) the follow-

ing Theorem.

Theorem 7.2.1. Given a symplectic Z,(a,b;r) action on (S? x S?,wy), and assuming

JWZA" N Uy, is nonempty for some 2k > 0, the map

evy, : Symp,™ (5% x 5%, wy)/ Isom™ (wy, Jar) — Usp, 0 T 20
o= (971)" T

1s a homotopy equivalence. Here Jo, denotes the standard integrable almost complex
structure on the Hirzebruch surface Way and IsomZ"(w,\, Jor) denotes the space of Zy,-

equivariant Kdhler isometries of the space (S? x S?,wy, Jor,).

Remark 7.2.2. Throughout this chapter, we assume ijA" does not intersect the strata
Uys. We put this restriction to avoid the analysis of the Z, action on the fixed point
set. In the case of circle actions, this analysis was done in two steps: when there is
an isolated fized point py, and when there were only fived surfaces. In particular, we
explicitly used momentum map arguments to show that for the S actions for which
the space of invariant almost complex structures Jail’l intersected the stratum Uy, every
equivariant symplectomorphism fized the isolated fived py (see Lemma . As 7.,
actions don’t admit a momentum map, the proof of this lemma does not generalise readily

to Zy actions. However, we may still use the techniques in subsection to obtain

Ln

nno (5% % S%,wy) of Ly, equivariant symplectomorphims that

results about the group Symp
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leave the fized point py invariant. More explicitly, for a Z,(a,b;r) action such that the

following conditions are satisfied
e (a,b) # (£1,0) or (0,+1)
° jwz;l N Uy in non-empty
we can still show that
Symp%:;O(SQ x 5% wy)/TE ~ ij; N Up.

Then, the homotopy type of Symp;™(S? x S? wy) can be recovered by a careful analysis

of its action on the fized point set of Zy(a,b;r). We leave this to future work.

7.3 Compatible complex structures

In this section, our goal is to show that the action of the centralizer Sympj™ (5% x 52, w,) on
the space of invariant, integrable, and compatible complex structures I, f; is homotopically
equivalent to its action on jWZA". To achieve this, we follow the approach of M. Abreu, G.
Granja, and N. Kitchloo and reprove Proposition 2.5 and Corollary 2.6 in [3] under the

presence of a group action.

7.3.1 Classification of complex structures on ruled surfaces

We first recall the classification of complex structure on the product S? x S? and on
the non-trivial bundle CP?#CP2. For a more complete exposition, we invite the reader
to consult the paper [37] and the references therein. We also recall some classical facts

about the automorphisms groups of these complex structure, see Gauduchon [20].

Theorem 7.3.1 (Classification of complex structures on S? x S?). Pick an orientation

on S?x 82, Let J be a complex structure on S* x S? compatible with the given orientation.
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1. There exists a orientation preserving diffeomorphism that takes J to exactly one
of the standard even Hirzebruch structures Jop, 2k = 0. The complex struc-
tures diffeomorphic to Jo, are characterized by the existence of a complex ruling
CP! x CP! — CP?! that admits a holomorphic section of self-intersection —2k.
In particular, if the homology class of the J-fibers coincides with the class of the

Jor-fibers, then the diffeomorphism ¢ acts trivially on homology.

2. Hol(Jy) ~ PSL(2,C) x PSL(2,C) x Zy where the Zy factor is generated by swapping
the two S? factors. Consequently, the maximal compact subgroup of the identity

component of Hol(Jax) is isomorphic to SO(3) x SO(3).

3. For 2k = 2, Hol(Jo) ~ GL(2,C)/par x C?*, where gy, is the subgroup of diagonal
matrices {£ -id | £ € Zay}. In particular, the group Hol(Jy) is connected, and its

mazimal compact subgroup is isomorphic to SO(3) x St. [

Theorem 7.3.2 (Classification of complex structures on CP?#CP?). Let J be a complex

structure on CP?#CP? compatible with the given orientation.

1. There exists a diffeomorphism acting trivially on homology that takes J to exactly
one of the standard odd Hirzebruch structures Jop1, 2k+1 = 1. The complex struc-
tures diffeomorphic to Jor, + 1 are characterized by the existence of a complex ruling
CP' — CP2#CP2? — CP" that admits a holomorphic section of self-intersection
—(2k+1).

2. For all2k+1 = 1, Hol(Jogy1) =~ GL(2, C)/pops1 < C***1 where oy is the subgroup
of diagonal matrices {£ -id | £ € Zogy1}. In particular, the group Hol(Jogi1) is

connected, and its mazximal compact subgroup is isomorphic to U(2). 0

Corollary 7.3.3. For any k > 1, the group Hol(Jy) of complex automorphisms of the

Hirzebruch complex structure Jy acts trivially on homology. 0
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7.3.2 The action of Symp,”(S? x S, w,) on IZ

Define If; to be the space of integrable wy-compatible almost complex structures on
S? x S% invariant under the Z, action. Fix a J° e IZr. We also define the following

spaces and groups:

o Diﬂ?[zo:;](s2 x S?) := The group of Z,-equivariant diffeomorphisms ¢ such that ¢

preserves the cohomology class of wy

e DiffZ"(S? x S?) := The identity component of the group of Z,-equivariant diffeo-

morphisms of S? x S2.

e I’ : = The space of all J € 1%, such that J° = ¢*J for some ¢ € Difl?[ZU’JTA](kS'2 x S?),

that is, the intersection of the Diﬂ?[ZJjA](S2 x S%) orbit of JO with I7r.

. Q%g:: The space of all Z, invariant symplectic forms 7 in the same cohomology

class of wy and such that 7 is compatible with .J°.

o Hol[Zu’]A](S2 x 52, J%) := The space of Z,-equivariant complex automorphisms of

(52 x S2,J%) that preserve the cohomology class wy.
e Isom”" (wy, J°) := The space of Z,-equivariant Kihler isometries of (S2 xS, wy, J°).

We now prove equivariant versions of Proposition 2.5 and Corollary 2.6 in [3] in order

to show that the orbit intersection
T — (Diff[%;;](s2 x %) JO) A I
is homotopically equivalent to the homogeneous space
Symp” (S? x 52, wy) x {wx}/Isom? (wy, JO).
Consider the map
U Q% — Diffgn(S? x S?)

n— ¥(n)
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where W(n) is defined as follows. Let 1, € Diff[ZUjA](S2 x S?) denote an isotopy satis-
fying ¢f ((1 —t)wx +tn)) = wy. We can pick 9, canonically by choosing a canonical
primitive in Z,-equivariant Moser’s method using Hodge theory for the canonical Z,-

equivariant metric coming from (wj, J°). Then we define ¥(n) to be ¢;. In particular,

U(n)*(n) = ¢d1*n = wa.

Theorem 7.3.4. The map
p 2 Symp”(S? x 52 wy) x Q% — Iy
(6:m) = (¢7)" 0 (L(n))" J°
is a principal Hol[Z;A](SQ x S% J°%) bundle and the fibre over J, u=(J) can be identified
with = (J) = {go e Diff{" (52 x 57) | Jp = go*J}.

Proof. We first show that the map p is surjective. Suppose J € I?gl, we need to produce

(¢,m) € Symp” (S? x 52, wy) x Q?g such that u(p,n) = J. By the definition of I?{f there
exists ¢ € Diff[Z;A](SQ x S?%) such that ¢*J := ¢, J¢, = J°. Consider n = ¢*wy, then for

all v, w € T,(5% x S?) we have
n(J%, J'w) = ¢*wr(J v, J'w) = w) (¢*(J0v), (b*(JOw)) =
= wx (J(#x(v)), J(¢s(w))) = ¢*wr =1

where wy (J(04(v)), J(ps(w))) = ¢*wy because J is compatible with wy, and where
Wi (04 (J), s (JOw)) = wi (J(d4(v)), J (¢« (w))) because ¢*J = JO.

Similarly,

n(v, JO(U)) = Wx (gzﬁ*(v), ¢*(Jov)) = Wy (¢«(v), J(¢sv)) > 0

showing that 1 is compatible with J°. As ¢ € Diﬂ“[Zu’jA](S2 x S?) we have that [n] = [wy] €

H*(S? x S%,R). Hence n belongs to Q7.
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Moreover, as (¢oW(n))*wy = (¥(n))*n = wy, we have that ¢ o ¥(n) belongs to

Symp?"(S? x 52, wy). Thus we have that

(o (n)m) = (Tn) " oo™!) 0 W) = (¢71) I =T

thus showing p is surjective.

Next we investigate what the fibres of p look like, and why they are free orbits of
a Hol[ZU’]A](S2 x §2,J%) action. Given J € T%, and an element (¢,n) € u~(.J), consider
©=¢o(U(n)". Then ¢ € Diﬂf[zuj‘k](S2 x S%) and as p(é,n) = (¢~ W(n)*J° = J, it

implies that J° = p*J.

Conversely, given ¢ € Diﬂ?[Z“’jA](S2 x S?) such that J° = ©*J, consider 7 := ¢*wy. Then
we have that (¢ o ¥(n),n) belongs to p~!(J). Hence

p:pt(J) — {90 € Diff[Zw"A](S2 x SH) | Jy = go*J}
(6.1) = do (¥(n)™"

Ln
[wa]

is an homeomorphism. We define a right Hol“" ,(S? x S?,.J°) action on Symp”" (S? x

S%,wy) x Qs by

(6,n) - = (¢¥(n) "W (£*(n)) , *(n))

for ¢ € Hol[ZUjA](S2 x 8%, J%). A quick check shows us that if (¢, n) satisfies u(¢,n) = J,
then p ((¢,7n) - ¢) = J, thus verifying that the action defined above preserves the fibres

of u.

We now check that the action is free on the fibres of p. Consider the action of

Holi (5% x $%,J°) on Diffi (S? x 5?) defined by

a-p=aqop
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for all o € Diff?

[U:LA]

the identification of p~*(J) with {gp € Diﬂ?[Z;A](S2 x S%) | Jy = gp*J} given by

(S? x S?) and p € HOl[Z:/\](S2 x 52, J%). Tt is a simple check to see that

pi ) — {g& e Diff" (5% x 5%) | Jy = go*J}
(¢.m) > do (U(n) ™

is equivariant under this action on Diﬂ?[ZujA](S2 x S?) and the action on p~'(J) defined

above. As the action of Hol[Z; (8% x 52,J% on Diﬂ”[Z; 1(8% x %) is free this implies that

N A
Zn
N

the action of Holt™ 1(S? x 52, J%) on p~!(J) is also free.
Finally, to show that this is a principal bundle, we need to check that the map satisfy
local triviality. This follows by producing a local section and invoking Theorem[C.0.9} As

we already used similar arguments several times, we leave the details to the reader. [J

Remark 7.3.5. Note that when i is restricted to Symp™ (S? x S%, wy) x {wy} is just the

map given by

o Symp™ (8% x 8% ) x s} — T5
(gbv UJ)\) — (gb_l)* JO

Corollary 7.3.6. If J° € IZ is such that Isom™ (w,, J°) < Hol{™ (5% x 5%, J°) is a

BN

weak homotopy equivalence, then the inclusion of Symp” orbit of J° in I?gl,z'.e

Symp” (5% x S%,wy) x {wy}/ Isom™ (wy, JO) — I7¢

(¢, w0) = (¢7)"J°
15 also a weak homotopy equivalence.

Proof. From Theorem [7.3.4] we have that

Hol”

[;A]

(8% x S%,J°%) = ' (J°) — Symp™ (5* x S%,wy) x O 5 I

L,

Moreover we note that if 7y, 7o € Q% then (1—t)m1+1n; is also in Qg

785 thus giving us that

the space Q?S is contractible. In other words we have that the inclusion {w,} — Q?S is a
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homotopy equivalence and hence Symp”™ (52 x 5%, wy) x {wy} ~ Symp” (S?x S, wy) x Q5.

Quotienting the above fibration by Isom”"(wy, J°) we have that

Hol%

[:A](S2 x 52, %)/ Isom” (wy, J°) <> Symp”™ (52 x 52, wy) x Q% / Isom™ (wy, J°) £ %

where i is just the map induced on the quotient space by p. From the assumption
that Isom”" (wy, J°) < Hol[ZLjA](S 2 x 8%, J%) is a weak homotopy equivalence, we get that
Hol[Z;A](LS’2 x 52, J9)/Isom” (wy, J°) is weakly contractible. Putting all this together we
get that Symp” (5% x S2,wy) x Q7 /Isom™ (wy, J°) — 7 is a weak homotopy equiva-

lence.

Finally, as Symp”(S? x S2,wy) x {wx}/Isom® (wy, J%) ~ Symp”(S? x 52 wy) x

Q% /Isom™ (wy, J°) we get the required result. O

Let Hol?"(S? x 52, J;,) denote the space of all holomorphic Z,-equivariant automor-

phisms of (5% x 52, Jy).

Lemma 7.3.7. For all canonical integrable almost complex structures Jj, € If; NUy, with

k > 0 the space Hol”"(S? x S?,.J,) is equal to Hol[ZUjk](S2 x 5% Ji).

Proof. When k > 0, Hol”"(S? x S2,J,) is connected and hence preserves cohomology

(See Corollary [7.3.3]). O

Theorem 7.3.8. Fiz a Z,(a,b;r) action on (5% x S* wy). For all canonical integrable

almost complex structures Jy € If; N Uy, the inclusion map

Z

Isom” (wy, Ji) — Hol[ujk](S2 x S% Ji)

18 a weak homotopy equivalence.

Proof. By Theorem [7.3.1) when k > 0, we have that the group of holomorphic auto-
morphims of (5% x S2,J;) is given by GL(2,C)/u x H(CP', O(—k)). Under the pres-

ence of a Z, action which is holomorphic with respect to Ji, we can similarly show
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that Hol(r (5% x §%,Ji) = Hol® (8% x §%, J;) = (GL(2,C)/u x HO(CPY,0(—k)))™,
where (GL(2,C)/u, x H(CPY,O(—k)))™ denotes the centraliser of Z, in GL(2, C)/u, x
H°(CP',0(—k)). Further, we see that that Isom” (wy, .J;) is a maximal compact sub-

group of (GL(2,C)/px x HY(CP*, O(—Fk)))* thus proving the result.

Although not necessary for our purposes we also show that the theorem holds even

when k = 0. To show that Isom” (wy, J;) < HolZ

[JA]<52 x S2,Ji) is a homotopy equiva-
lence when k& = 0, we have proceed as follows. If A > 1, then any ¢ € HOI[ZU:‘A](S2 x 52, Jo)
has to send the foliation by .Jy-holomorphic curves in the class F' to itself and simi-
larly send the foliation Jy-holomorphic curves in the class B to itself. Hence we have
that HOI[Z"
wx
PSL(2,C) x PSL(2,C) by (PSL(2,C) x PSL(2,C))*". Then we have that Hol[ZUjA](S12 X
S2.Jo) = (PSL(2,C) x PSL(2,C))*" and Isom”(wy, Jo) — (PSL(2,C) x PSL(2,C))*"

](52 x S? Jp) =~ PSL(2,C) x PSL(2,C). Denote the centralizer of Z, in

is a maximal compact subgroup and hence the inclusion is a homotopy equivalence.

Finally in the case, when k = 0 and A = 1 then for the Z,(a, b;0) action we have
Hol? (8% x 5%, Jo) = (PSL(2,C) x PSL(2,C) x Zy)"" .

Again Isom” (wy, Jy) — Hol[ZLjA](LS’2 x 52, Jy) is a maximal compact subgroup and hence

the inclusion is a homotopy equivalence. O
Corollary 7.3.9. For any J° in If; there is an homotopy equivalence

7% - (Difff

[JA](S2 x S%) - J0> N IDm ~ Symp™ (5% x S, wy) x {wy}/ Isom™ (wy, JO).
0

We now relate the orbit intersection I%: with the stratum ]%; N Ug.

Lemma 7.3.10. Fiz a Z,(a,b;r) action on (S% x S?,wy). Then, for any for k > 0, we

have the equality I?: = If; N Uy.
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Proof. We see from the definition that Iﬁ" c If; N Ug. To show the reverse inclusion,
we need to produce a ¢ € Diﬂ?[Z;A](S2 x S?) such that ¢*J = Jj, for all J e I 0 Uy. We

do that as follows.

Let .J € 12" n Uy, by the classification of complex structures on S? x S?, and by the
argument above Theorem 3.3 in [3], we know that there exists a ¢ € Diff},,,j(S? x S?) such
that ¢*J = J;. Then we have the following diffeomorphism between Hol[ZOjA](S2 x S2,.J)
and HOI[Z;)\](S2 x 52, Jr).

po + Hol (5% x §%,.J) — Hol» (S x %, Jy)
> gopodt

As J is equivariant with respect to the Z,(a,b;r) action, we denote by i;(Z,) the
embedding of Z, into Hol[ZJA](SQ x 52, J) induced by the action Z,(a,b;r). Similarly
we denote by iy, (Z,(a,b;r)) the embedding given by the action of Z, into Holp,;(S* x
5%, Ji). Then (pg) (i7(Z,)) defines a Z, action holomorphic with respect to J,. We note
that although the fixed point set may apriori be different for the (py) (i,(Z,)) and the
iy, (Zn(a,b;r)) action, the weights at the fixed points of the (py) (i7(Z,)) are the same
as the weights for the action iy, (Z,(a,b;r)). By Theorem 4.1 in [40], we see that there
exist a ¢ € Holp,,1(5? x S?,Jy) such that ¢ o (py) (i5(Z,))p™" = iy, (Zn(a,b;r)). Thus
po e Diff[Zu’jA](S2 x S?) and (po)*J = ¢* o ¢*J = Y*Jp = Ji, thus proving the

theorem. O

Remark 7.3.11. Apriori Theorem 4.1 in [{0] only guarantees the existence of a ¢ €
Hol(S? x S2,Jy) such that v o (py) (i5(Zn))0 ™ = 15, (Zn(a,b;r)). As k > 0, we use
Lemma to show that 1 is in fact in the group Holp,, (S* x S?, J;)

We can finally conclude that the action of Symp”"(S? x S2,w,) on the space of
invariant, integrable structures / f; is homotopically equivalent to its action on the space

jf; of invariant almost-complex structures.
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Theorem 7.3.12. Fiz a Z,(a,b;r) action on (S* x S?,wy), then, for all for 2k > 0,
IDr AUy = J)m Uy

Proof. We shall prove something much stronger. By Theorem [7.2.1], Corollary and
Theorem [7.3.10] we have that both ev; and the map ev;_ o 4; in the diagram below are

homotopy equivalences.

SympZ“(S2 X SQ,wA)/IsomZ"(w,\, Jr) RN If: N U, 4, jwzf N Uy

o (671" T

It follows that ¢; is a homotopy equivalence as required. O

7.3.3 A characterization of the intersection I%A” N Usy

We now take advantage of the classification of complex structures to give a criterion as

to when I7» intersects the strata Usy.

Theorem 7.3.13. Let Z,(a,b;r) be a symplectic action on (S*x S?, wy) with A > 1. Then
the space of Z,-equivariant complex structures If; intersects the strata U, iff Z,(a,b;r)
is equivariantly symplectomorphic to a Z,(a’',b';1") action that acts as a subgroup of the

torus action ']Tf/ .

Proof. (<)Let Z, be symplectomorphic to a Z,(a’,b’;7’) action via the symplectomor-
phism ¢. Note that the standard almost complex structure J,» € U,, is invariant under
the T, action and hence in particular invariant under the Z,(a’, ;") action. Thus

¢*JT/ S I(%;l N UT/.

(=) Let J € If; N U,. Let Isom(wy, J) denote the group of Kéhler isometries of
(S? x S2%,J,w,) and let Hol(J) denote the space of holomorphic automorphisms of the
complex structure J. As J € I7, the Z, action induces a map, p : Z, — Hol(J).

As J is compatible with w), and the action is also symplectic, the image of p in fact
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lands in Isom(wy,J). By the classification of complex structures on S? x S? there
exists a diffeomorphism ¢ acting trivially on homology that takes .J onto J.. This
diffeomorphism takes wy to w’ := (¢~!)"wy, and the Z, action p to another action p’
that is, by construction, K&hler with respect to the pair (&', J,+) and such that the
cohomology class [w'] = [wx]. Apriori, there is no reason for the action p’ to extend to a
w’" symplectic T? action. However, Hol(J,») being connected, the subgroup Z, < Hol(.J,)
extends to a maximal compact subgroup K which is conjugated to the maximal compact
subgroup SO(3) x S = Isom(wy, J,») via some h € Hol(J,»). Note that although h need
not preserve the form w’, however it preserves the cohomology class of w’. Hence, we
have that C}, o Cy(Isom(wy, J)) = Isom(wy, J,) where Cy and C), denote conjugation by
¢ and h respectively. As a result we have that the diffeomorphism h o ¢ takes the Z,
action p to another action p” that is Kéhler with respect to the standard pair (wy, J).
This action p” does extends to a T? action a which is Kahler with respect to the standard
pair (wy, J,v). Take the triple (wy, J, &) back to (w”, J, /) using the inverse composition
(h o ¢)~t. Note that o : T?> — Isom(w”,J) < Hol(J) is a toric action with respect

" that extends p. The forms wy and w” are cohomologous, and there is an «'-

to w
invariant curve in class B — %/F By the classification of toric actions, the o’ action is
equivariantly symplectomorphic to the standard T? toric action via some diffeomorphism
Y € Diff,(S? x S?) (but this diffeomorphism does not intertwine the complex structures).

Hence ¢ o o/ : Hol(J) o T? — T? defines a Z,(a’,;7") action that is Z,-equivariantly

symplectomorphic to Z,(a, b; ) as required. O

7.4 Toric extensions of cyclic actions and homotopy
type of centralizers

From Theorem [7.3.13| we infer that in order to understand which strata 12" intersects,
we need to understand which tori T the Z,(a, b; ) action extends to. In the circle action

case, we used the Karshon classification of S! actions up to equivariant symplectomor-
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phims to answer the above question (See Theorem [3.1.9). But no such classification up
to equivariant symplectomorphism exists for Z,, actions. However, we do have a classi-

fication up to Z,-equivariant diffeomorphisms due to W. Chen [12] and D. Wilczynski

[40]. We shall use this classification to determine the homotopy type of Z,-equivariant
symplectomorphisms for a subfamily of Z,, actions. We present this classification up to

Zp-equivariant diffeomorphisms in the following paragraph.

7.4.1 The Chen—Wilczynski classification

Consider two Hirzerbruch surfaces W, and W, endowed with smooth Z,, action Z,(a, b; )
and Z,(a’, V', ") respectively. Denote by Z,(a,b, —r) the action which is the restriction of
the sub-circle S'(a, b) in the torus T_, where T_, the denotes the following torus action

on (8% x 5% w,)

(U,U) ’ ([xbm?] ) [y17y2;y3]> = ([uxhx?] ) [uiryluy2avy3])

whose moment map looks like

As described in the works of W. Chen [12] and D. Wilczynski [40], one can establish
the existence of six types of diffeomorphisms ¢y, -, cg which give a Z,, equivariant dif-
feomorphism between the Hirzerbruch surfaces W, and W,, with the respective actions,

provided the triples (a,b,r) and (a’, ;") satisfy the following conditions:
e Type ¢;: When a' = —a, b/ = —band 1’ =7r
e Type ¢co: When o/ = —a,b/ = —b+raand 1’ =r

e Type c3: When o' = a,0/ = —band 1’ = —r
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e Typecy: When ' =r=0,a =b,and V) =a
e Type c5: When a' = a, b/ = b, and ' = r (mod 2n)
e Type cg: When a' =a, b/ =b , and r’a’ = 2b — ra (mod 2n).

Remark 7.4.1. We note of the above types of diffeomorphisms only c5 and cg are between
cyclic groups in different torus actions T? and T?%. The equivariant diffeomorphisms of
type c1, o, 3, cq4 are between sub-circles in the same torus T2 (up to reparametrization of

the torus T?).

We call the above equivariant diffeomorphism standard of type ¢y, - -+, cg. One of the

main results of [12] is the following theorem.

Theorem 7.4.2. (Chen [12]) Two Z,-Hirzebruch surfaces are orientation-preserving
equivariantly diffeomorphic iff there is a composition of standard equivariant diffeomor-

phisms between them.

7.4.2 Consequences of the classification

We shall now use the above results to obtain the homotopy type of Z, equivariant
symplectomorphisms for a fixed Z,(a,b;r) action on (5% x S% wy) when A > 1 and

ged(a,n) # 1. In order to do this we need the following lemma from [13]

Lemma 7.4.3. If G is any compact group and J is any G-invariant almost complex
structure. Suppose S is the connected component of the fized point set of a non-trivial

subgroup H {id} # H < G. Then S is J-holomorphic.

Proof. To show S'is J-holomorphic we need to show that for any vector v € T,,S Jv € T,.S.
As S is pointwise fixed by a non-trivial subgroup H, all tangent vectors v € T,S are
characterised by the property that dh - v = v for all h € H. Thus in order to show that
that Jv e TS, it suffices to prove that dh - Jv = Jv for all h € H. But this immediately

follows from the equivariant of J as

dh - Jv = J(dh-v) = Jv
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]

Theorem 7.4.4. Under the numerical conditions 2\ > r > 1 and ged(a,n) # 1, the
finite cyclic group Z,(a,b;r) < S'(a,b;r) action can only extend to circles S*(a/,V;1”)

with v’ = r.

Proof. Suppose Z(a,b;r) extends to another circle S*(a’,’;r’) with ' # r. From the
Chen-Wilczynski classification we know that if this happened then either a = a’ or
a = —a'. This implies ged(a,n) = ged(a’,n) # 1 and hence Z,, N Zy = Zy N Ly #
{id}. We know that there are two invariant spheres S, and S,» in the homology classes
B —35F and B — %’F which are holomorphic for the integrable complex structures J,
and J,» respectively. As Z,(a,b;r) = S'(a,b;r), we further know by looking at the
graph associated to the action that S, is invariant under the S'(a,b;r) action and the
global stabilizer for the S'(a,b;r) action on S, is Z,. Similarly S, is invariant under
the S*(a’,';7") action and has global stabilizer Zy. As Z, N Zy = Zy, N Ly # {id},
we know that both S, and S, are pointwise fixed by the non-trivial subgroups Z,, N Z,
and Z, N Z, respectively. By Lemma for any Z, invariant J both S, and S, are
J-holomorphic. This is a contradiction by positivity of intersections (Theorem as

£, O

Theorem 7.4.5. For finite cyclic groups Zy(a,b;r) = S'(a,b;r) actions such that 2\ >
r > 1 ged(a,n) # 1, Sympi~(S? x S?,wy) = Symp”(S? x S%,wy) ~ T?

Proof. As A > 1, we can to conclude that Symp”"(S? x S%, wy) = Symp,"(S? x S%,wy).
By Theorem [7.4.4) we see that under the above conditions for the Z,(a, b;r) action, it

extends to only one torus T? and thus we have our result. ]

Although the proof of Theorem works for ged(a,n) # 1 and 2\ > r > 1. Using
the classification of Z,, action up to diffeomorphism we can obtain a partial result when

a = 1, for the actions Z,(1,b;r) such that n > 2\ > r > 1 and n > 2\ > |r — 20| > 1.
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Before we embark on these results we recall a few things about the classification up to
Zn-equivariant diffeomorphisms. As noted in the remark above Theorem [7.4.2] the only
types of Z,-equivariant diffeomorphisms between finite cyclic subgroups of different tori
are diffeomorphisms of type c; and cg. Similarly we note that the only diffeomorphism

that changes the parametrization of the torus T? is c3.

As explained in Theorem , we know that if the given Z,(a, b;r) = T? action is
symplectomorphic to an Z,(a’,V’;7’") action which is a subgroup of the torus T?, then
the space of Z,(a,b;r) invariant almost complex structures If; intersects the strata U,
and U,.. Conversely, if If; intersected U, and U,., then we would be able to realise
Zyp(a' U';1") from Z,(a,b;r) via a composition of diffeomorphisms ¢y, -, cg. Further
if » # 1/, then at least one Z, equivariant diffeomorphism of type c5 or cg feature in
this composition of diffeomorphisms. In the theorems that follow we shall use numerical
conditions on r,n,a and b to rule out the different solutions to ' that satisfy the mod-

ular equations in ¢5 and cg and hence glean information about which strata I fj intersects.

Remark 7.4.6. Note that c5 and cg only tell us that the Z,(a,b;r) and Z,(a',b';r")
are only equivariantly diffeomorphic (and not necessarily symplectomorphic). Thus a
solutions r' that satisfy the modular equations in cs and cg doesn’t necessarily tell us the
If; intersect U,.. Thus the Chen-Wilczynski classification only gives us obstructions to

which strata U, If; intersects.

Lemma 7.4.7. Consider the following families of Hamiltonian Z,(a,b;r) actions on

(8% x 8% wy) withr # 0 and A > 1
e (i)a=1,b#{0,r}, n>2X andn > 2\ > |r —2b| > 1, or
o (ii)a=—1,0+#{0,—1}, n>2\ and 2\ > |2b+ 7| > 1.

Then in case (i) the only strata that 127 intersects are U, and Uj,_gy and in case (ii) the

only trata that If; intersects are U, and Ujyyop|.
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Proof. We shall only prove the theorem for case (i). The proof for case (ii) works simi-
larly. Recall that if I7» intersects the strata U, then ' < 2. Now we shall use numerical
conditions on r,n, a and b to rule out the different solutions to ' that satisfy the modular

equations in ¢5 and cg.

Using the fact that n > 2XA > r > 1 we note that the only solutions for 7’ such that
7’| < 2\ and 1’ satisfies the modular equation ' = r (mod 2n) is just the trivial solution
r = r’. Hence under these numerical conditions any word generated by a composition of
c3 and ¢ only give a diffeomorphism between Z,(1,b;7) and another Z, action within

the same torus TZ.

Similarly as n > 2\ > |r — 2b| > 1 using triangle inequality we note that the only
solution to the modular equation ’a’ = 2b — ra (mod 2n) and satisfies the equation
7’| < 2\ is again the trivial solution 7" = 2b—r. Hence under these numerical conditions
any word generated by a composition of c3 and cg only give a diffeomorphism between

Zn(1,b;7) and Zn(1, £b, |r — 2b|) action within the torus T7,_,, .

These two inequalities tell us the only candidates for the strata U, that IZ» can
intersect is U, and Uj,_q. As we started off with a Z,(a,b;r) < T? action, we know
that If; N U, # ¢. Apriori the above argument doesn’t tell us that the intersection
If: N Ujp—2p is nonempty. This is because the two Z, actions inside T, and Tj,_g are

apriori only equivariantly diffeomorphic and not Z,-equivariantly symplectomorphic.

To see that they are in fact equivariantly symplectomorphic, we note that Z, (1, b;r)
S*(1,b;7) and by Karshon classification of S' actions we know that when 2\ > |r — 20|
then S'(1,b;r) is S equivariantly symplectomorphic (and thus Z,, equivariantly symplec-
tomorphic) to S*(1,¥'; |r — 2b|) < ']T|2r_2b| (where b’ is either equal to b or —b as explained
in Theorem . As all the other diffeomorphisms ¢y, --- ,c4 are between 7Z,, actions
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inside torus actions 7., we have the only strata ]%; intersects are U, and Uj._g thus

completing the proof. O

We use the above result to derive a result about Symp;™(S? x 52, w,) for specific Z,

actions.

Theorem 7.4.8. Consider a Z,(a,b;r) action on S* x S% which satisfies the following
numerical conditions n > 2\ > r > 1, ged(a,b) = 1 and r # 0. Then we have the

following cases:
1. If (a,b) € {(£1,0), (£1, +7)} then Sympi~(S? x S? wy) ~ T2.
2. if (a,b) = (0, £1) then, Symp2~(S? x S%,wy) ~ S' x SO(3).
3. Further if we have one of the following additional conditions
e Fither a =1, b # {0,r} and 2\ > |r — 2b| > 1 or
e a=—1,b#{0,—r} and 2\ > |r + 20| > 1

then we have the following result:

In the first case If; intersects exactly 2 strata U, and Uj._gy and in the second it
intersects the 2 strata U, and U}, ;9 as before. WLOG if we assume that If; NU, is
the strata of positive codimension in If;. Then the complex codimension of [f; NnU,

in IZ is given by the number of ke {1,--- ,r — 1} such that k =b (mod n).

Proof. Case 1: If (a,b) = {(+1,0), (£1,£7)}, r # 0.

Suppose If;’ intersected U, and U,.. Using the fact that n > 2\ > r > 1 and
2)\ > r’ | we see that the only solution for 7 in the modular equations in Chen-Wilczynski
classification is ’ = r. Hence the only stratum that If; intersects is U,, and thus we
have

Symp; " (S? x S, wy)/T? ~ [f; AU, = [ff ~ {+)
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Giving us the required result.

Case 2: If (a,b) = (0, £1).

We see from the calculation of local isotropy weights at the fixed points that there
is a fixed sphere in the class B — 5F. As above, we can argue that the solution
for 7/ in the modular equations in Chen-Wilczyniski classification is v = r and hence

Symp;" (5% x S?,wy) ~ St x SO(3)

Case 3: If (a,b;7) = (£1,b;7) and 2\ > |r — 2b| > 1.

This follows from [7.4.7 The codimension of the smaller strata can be calculated anal-
ogous to the S! case and the precise calculation is explained below in the next section.

The case a = —1, b # {0, —r} and 2\ > |r + 2b| > 1 is similar to case 3. O

7.5 Codimension calculation

Firstly, we observe that Lemma holds verbatim for Z,, actions. Further, for the Z,
actions Z,(£1,b;r) with b # {0, £r}, we can see using Lemma for Z,, actions that
the only fixed points that admit a curve with self intersection —r are the fixed points Q

and R in figure 2.1} Hence Lemma holds for Z,, actions.

Lemma 7.5.1. Consider the Z,(a,b;m) action on (S? x S%,wy) or (CP?#CP2 w)). Let
S be any Z,(a,b;m)-invariant symplectic embedded sphere in the same homology class

B - gF with k > 0. Then the Z, action on S has global stabilizer isomorphic to Z,.

Proof. The proof follows exactly as in Lemma [5.2.1] [
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Hence the moduli spaces

M (B — kF, jcil’l) = {(u, J) | uis Zy-equivariant, somewhere injective,

J-holomorphic, and represents the class B — kF'}

for k > 0 are well defined. Arguing as in Theorem we can conclude that [ f:,z of C"
integrable equivariant almost complex structures is a Banach manifold. Further an analo-
gous argument to Theoremm gives us that [ f;"l intersects the strata Uy transversally.
Hence [ “Z):’l N Uy, is a Banach submanifold of [ ff,z' One can argue that [ f;l equipped
with the C'-topology is homotopy equivalent to If; equipped with the C'° topology. As
explained before, the normal bundle to the strata U, n ijA" at an equivariant integrable
almost complex structure J,,, can be identified with HS;;(SQ x S% T (S? x 52))Zn. It can
be shown that the normal to U,,, n JWZA” at J,, is given by normal to U, N .LZA" intersected
with IZ". Thus we see that the normal to U, n JZ" at J,, can also be identified with
HY'(S? x §2,T(S? % 5’2))2". Further we note that, H)'(S? x S2,T(S? x %)) = C™ L.
Hence to calculate the codimension we need to calculate the dimension of the subspace
of invariant elements in Hy'(S? x S2,T(S? x S?)) under the action of Z, = S* x SO(3).
By [3], we know the action of the Kahler isometry group K(r) = S' x SO(3) on in-

finitesimal deformations is isomorphic to Det ® Sym” 2.

A basis of Sym”™? is given by
the homogeneous polynomials P, = 2z, 27"z5 for k € {0,...,r — 2}. The action of R(t)
on P, is

R(t)- Py =e(t/2) P, = ei(T_Q_Qk)t/QPk = et5-1-k) p.
so that the action of S* = (¢, R(t)) = S* x SO(3) on Py is
(67;37 R(t)) . Pk _ ei(ert(%flfk)) Pk

Each Py generates an eigenspace for the action of the maximal torus 7'(r). In particular,

the finite group Z,(a,b;r) < S'(a,b;r) acts trivially on Py if, and only if,

b+a(g—1—k)=(a,b)-(g—1—k,1):0(modn)
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for k € {0,r — 2}. Equivalently, we must have
ak +b = (a,b) - (k,1) =0 (mod n)

forke{l—2,..., -1}

Note that as explained in the case of codimension calculation for the S! case, the
above calculation was done with respect to the basis of the maximal torus in K (2n).

Hence to calculate the codimension for the Z,(a,b;r) = S'(1,b,7) = T?, as in our case,

roo_
we need to transform the basis by multiplication by the matrix 2 . Thus it takes
1 0
Z—b
the vector in the basis for the standard moment polytope to the vector | 2 in
b 1

the basis for the balanced polytope. Therefore after transforming into the right basis we

get the following theorem.

Theorem 7.5.2. Given the action Z,(1,b;7) on (S? x S?,wy) with b # {0, 7}, ged(a, b) =
1 and X satisfying n > 2\ > r > 1, and 2\ > |r —2b| > 1, the complex codimension of of
the strata 157 o U, in IZr in given by the number of k € {1,--- ,r — 1} such that k = b
(mod n).

Similarly for the action Z,(—1,b;r) with b # {0,—r},ged(a,b) = 1 and \ satisfying
n>2\>r>1, and 2\ > |r + 2b| > 1 the complex codimension of of the strata ]f; N U,

in [f;’ is giwen by the number of k€ {1,--- ,r — 1} such that k = —b (mod n).

Corollary 7.5.3. For the family of Z, actions on (S? x S?,wy),
o Z,(1,b;r) on (S% x 5% wy) with b # {0,7}, ged(a,b) = 1 and X satisfying n > 2\ >

r>1,and 2\ > |r —2b| > 1 or

o Zn(—1,b;7) with b # {0,—r},ged(a,b) = 1 and X satisfying n > 2\ > r > 1, and
20> [r+20) > 1
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the complex codimension of If: N U, in ]f; is either 0 or 1.

7.6 Homotopy type of centralizers of Z,(+1,b;7)

Finally, the proof of Theorem [4.2.1] also gives us that

Theorem 7.6.1. Consider a Z,(a,b;r) action on (S* x S% ,wy) withr # 0 and A > 1.

Then,

1. Ifa =1,b # {0,r}, n > 2\ > 1, and 2\ > |20 — r| > 1, the inclusion i :
T%,Tfm_%‘ < Symp” (52 x S%,w,) induces a map which is injective in homology

with coefficients in any field k.

2. Ifa=—1,b# {0,—r}, n > 2\ > 1, and 2\ > |2b + r| > 1, the inclusion

i: T2 T|27~+2b\ <> Symp”" (S? x S?,wy) induces a map which is injective in homology

(with coefficients in any field k).
As a consequence of the above theorem and Leray-Hirsch Theorem we have
Corollary 7.6.2. H*(Symp),"(S* x S%,w,),R) = H*(IJ" n U,,R) Q H*(T* R)
Also, we have that
Theorem 7.6.3. For the following family of Z,(a, b;r) symplectic actions on (S?xS?, wy)

o Z,(1,b;7) on (S? x S wy) with b # {0,r}, ged(a,b) = 1 and X satisfying n > 2\ >

r>1, and 2\ > |r —2b| > 1 or

o Zn(—1,b;7) with b # {0,—r},ged(a,b) = 1 and X satisfying n > 2\ > r > 1, and
20> |r+2b > 1

the space If; is contractible.
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Proof. By Theorem , we have that If; = (If; N UT) L (If; N U|2b_,,|). Further by
Theorem [7.3.12, we have that the inclusions IZ;;L N U, — jwzf N U, and If: N Upp—gp) —
TEr A Upp—op) are homotopy equivalences. As JZ = (JZ nU,) u (TZ A Upgp—y)) is

contractible, we have the required result. O

Using the calculation of the codimension, Corollary and Theorem [7.6.3| we figure
out the cohomology H*(Symp;,"(S? x S2,wy),R). Using theorem and techniques
used in the proof of theorem we get the following theorem.

Theorem 7.6.4. Consider the following Z, actions on S? x S2.
e (i)a=1,0#{0,r},n>2\>1and 2\ > |2b—1r| > 1; or
o (ii)a=—1,b#{0,—r},n>2\>1and 2\ > |2b+r| > 1.

From Theorem we see that If; intersects 2 strata. Without loss of generality let

]f; N U, be the strata with positive codimension in ]f;. Then we have that,

kEp>1

HY(I% AU k) = $ e p— 0

\0 otherwise

with coefficients in a field k. Further, the cohomology of Symp%" (52 x S2%,wy) is isomor-
phic to
H* (Symp;,™ (S x 8%, wy), k) = H*(IJ" n U, k) () H* (T k

More explicitly, the ranks of the cohomology groups are given by

H? (Symp,™(S* x S%,wy), k) = { k3 p=1
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Remark 7.6.5. As A > 1 it can be argued as in Theorem that Symp;™ (5% x
S2%.wy) = Symp”(S? x S? wy) and hence we get the ranks of the cohomology of the

entire symplectomorphism group.

The exact same argument as in Theorem gives us the following theorem.
Theorem 7.6.6. Consider the following Z, actions on S? x S2.

e (i)a=1,0#{0,r},n>2\A>1and 2\ > |2b—1r| > 1; or

o (ii)a=—1,b#{0,—r},n>2\>1 and 2\ > |2b+r| > 1.

Then Symp” (S? x 52, wy) ~ Q5% x S' x S x S where QS® denotes the based loop space
of S3.

7.7 7, actions on (CP*#CP? w),) when \ > 1

In this section we only present the statements of our results on the homotopy type of
Sympzn(CPQ#(CP2, wy). The proofs follow from simple modifications of the arguments
given in Chapter 5 and Section 6.1. We also note that Theorems lemma [7.4.7] all

hold even in the case when r is odd.

Fix a Z,(a, b;r) action on (CP?#CP?2,w)). By [13] we know that every such S* action
extends to a circle action and hence to a T? action. Just as in Chapter @ we have the

following fibration.
Stab”" (D) — Symp’(S? x S?,wy) —» S%;‘k — joi” N Uz

Fix%"(D) — Stab? (D) — Symp”" (D) —— Z,, or SO(3)

Fix”"(N(D)) — Fix”" (D) —» Gauge”"(N(D)) —— Z,

Stab”"(F) n Fix*"(N(D)) — Fix**(N (D)) —» S&»

F7p0

—— J"(D) ~ {+}
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Fix?"(F) — Stab” (F) n Fix®* (N (D)) — Symp” (F, N(po)) — {+}
{+} «—— Fix*(N(D v F)) — Fix*"(F) —» Gauge”(N(D v F)) —— {+}

Asin Chapter @ we can deduce from the above fibrations that for the action Z,(a, b; r),
such that (a,b) # (0, £1) then

Symph”(CP2#CP2,w,\)/Tgk+l = jj; N Usg 11
and for the Z,(a, b;r) such that (a,b) = (0,+1) we have

Sympy," (CP*#CP?,wy)/U(2) ~ jf: N Usky1

Arguing as in Theorem [7.3.13| and Theorem [7.6.3] we have the following 2 theorems.

Theorem 7.7.1. Fiz a Z,(a,b; k) action on (CP?*#CP?, w)), then the space If: is con-

tractible.

Theorem 7.7.2. Let Z,(a,b;r) be a symplectic action on (CP?*#CP? w,). Then the
space of Z,-equivariant complex structures If; intersects the strata U, iff Z, is symplec-

tomorphic to a Z,(a',V';r") action that acts as a subgroup of the torus action T?.

Further by analogous arguments as in theorems [7.4.8| and [7.4.7], we obtain the follow-

ing result

Theorem 7.7.3. Consider a Z,(a,b;r) action on (CP?*#CP? w,) for which n > 2\ >
r =1 and ged(a,b) = 1. Then

1. If (a,b) = {(+1,0), (£1, +7r)} then Symp," (CP?*#CP? w)) ~ T?
2. if (a,b) = (0, 1) then, Symp;" (CP*#CP? w)) ~ U(2)
3. Further if we have one of the following additional conditions

e FEithera=1,b# {0,r} and 2\ > |r —2b| > 1 or
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e a=—1,0#{0,—r} and 2\ > |r + 2b| > 1
then we have the following result:

e Ifa=1and2\ > |r—2b|, If; intersects exactly 2 strata U, and U),_qy. Further,
if we assume that 10 n U, is the strata with positive codimension in 17

Then the complex codimension of If; N U, in If; is given by the number of

ke{l,--- ,r—1} such that k=0b (mod n).

o Ifa=—1and2X > |r+2b| 12" intersects the 2 strata U, and Uy, as before.
Further, if we assume that ]f; N U, is the strata with positive codimension in
If;. Then the complex codimension of I%; NnU, in If; 1s given by the number

of ke{l,--- ,r—1} such that k = —b (mod n).
Proof. The follows verbatim from the proof of [7.4.8 The only difference is the calcula-
tion on the codimension which we present below.

The action of K (2n+1) on infinitesimal deformations is isomorphic to Det' ™" ® Sym*" !,

A basis of Sym®" ! is given by the homogencous polynomials P, = 22" '7F2k for k €

{0,...,2n — 1}. The action of Dy, on Py is

Dst . Pk — ei((S+t)(1—n)+s(2n—l—k)+tk) Pk

so that each Py generates an eigenspace for the action of the maximal torus 7'(2n + 1)

generated by Ds,. In particular, the ¢ S'(a, b;2n + 1) acts trivially on P if, and only if,

(a=b)(n—k)+b=(a,b)- (n—k,k—n+1)=0 (mod n)

Thus the codimension (in the balanced basis of the maximal torus of K(2n+1) is given
by the number of k € {0, ...,2n—1} such that (a—b)(n—k)+b = (a,b)-(n—k,k—n+1) =
0 (mod n).
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Hence to calculate the codimension for the Z,(1,b,7) < T? as in our case, we need to

r—1
+1 -1
transform the basis by multiplication by the matrix 2 . Thus it takes the
r—1
5
1
vector in the basis for the standard moment polytope
b
r=1 _
to the vector | ? in the basis for the balanced polytope. Hence the a and b in
r—1
== —=b
2

the formula above need to be replace by ’";21 —b and % —b to get the correct codimension

for the Z,(1,b,r) action.

After making this substitution we get the required result that the codimension of
stratum(which we assumed to be If; N Ujr_g) is given by the number of k € {1,--- ,|r —

2b| — 1} such that £ —b =0 (mod n). O
As before, we have

Theorem 7.7.4. For the following family of Z,, actions we have

e (i)a=1,b+#{0,r}, n>2X>1, ged(a,b) = 1 and 2\ > |2b — r|; The inclusion
maps i Tf,'ﬂ‘ﬁbw < Symp”" (CP?*#CP2?, wy) induces a map which is injective in

homology (with coefficients in a field k). or

o (i) a =—1,0# {0,—r}, n > 2\ > 1, ged(a,b) = 1 and 2\ > |2b+ r|. The

inclusion maps i : T?”’T\Qr-i-%l < Symp”" (CP?*#CP?,wy) induces a map which is

injective in homology (with coefficients in a field k).

Proof. The proof is similar to the proof of Theorem [6.1.4] O

and
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Theorem 7.7.5. Consider the following families of Z, actions on (CP*#CP? w)) for
which n > 2\ > 1, ged(a,b) =1

o (i)a=1,0b%{0,r}, and 2\ > |20 —r|; or
o (ii)a=—1,b%#{0,—r}, and 2\ > |2b + r|.

From Theorem we see that If; intersects two strata U, and U._ay. Without loss of

generality let ]f; N U, be the strata with positive codimension in ]%:.Then,

-

k p=>1

Hp([f;ﬂUr,k)z 3 p=20

kO otherwise
and the cohomology H*(Sympj," (CP*#CP? wy), k) =~ H*(I% n U, k) @ H*(T? k).

More concretely,

H?(Symp," (CP*#CP? wy), k) = { k3 p=1

for any field k.
Remark 7.7.6. As A > 1 it can be argued as in Theorem[{.1.1] that
Symp;,™ (CP?#CP?,w)) = Symp”" (CP*#CP?,w))
and hence we get the ranks of the cohomology of the entire symplectomorphism group.
Arguing similar to Theorem we have,

Theorem 7.7.7. Consider the following families of Z, actions on (CP*#CP? w)) for
which n > 2\ > 1, ged(a,b) =1

e (i)a=1,0+#{0,r}, and 2\ > |2b —r|; or
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o (ii)a=—1,b%#{0,—r}, and 2\ > |2b + r|.

Then Symp”™ (CP?#CP?,w,) ~ Q5% x S' x ' x S' where QS* denotes the based loop

space of S3.

Finally as lemma and lemma hold verbatim for CP2#C P2, we can conclude

the following theorem.

Theorem 7.7.8. For finite cyclic groups Z,(a,b;r) = S'(a,b;r) actions such that 2\ >
2

r > 1 and ged(a,n) # 1, Sympir (CP?#CP?, wy) = Symp™ (CP?#CP?, w,) ~ T2.



Chapter 8

Conclusion

The thesis suggests many future directions for possible research. We outline a few of

related interesting questions that arise related to the work in the thesis.

8.1 Finite group action

As seen in Chapter 7, we are currently unable to understand the homotopy type of the Z,
-equivariant symplectomorphisms of the Hirzerbruch surfaces for some Z,, actions on (52 x
52, wy) and (CP?#CP2,w,). One of the key hurdles to determining the homotopy type
is that we currently don’t understand the classification of of 7Z,, actions on Hirzerbruch
surfaces up to Z,-equivariant symplectomorphisms. Two key questions in this regard are

the following

Question 1. Given two Z, actions (a,b;r) and (a’,0',r") on 5% x S? or CP?*#CP?, when

are they equivariantly symplectomorphic ?

Question 2. Given a Z, hamiltonian action (a,b;r) on S% x S? or CP?*#CP? which

tori T, does it extend to ¢

Answering these questions would help in understanding which strata the space of Z,

invariant almost complex structures intersect and hence the analysis we did in the S*

145
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case would go through and provide us with an understanding of homotopy type of the
centraliser for the Z,, action in all cases. The proof of this is by no means easy, and might

involve getting into analysis of orbifold J-holomorphic curves as in [12].

Another important discussion to be had for compact abelian groups in the following

Question 3. What can we say about the homotopy type of the normaliser N(G) of a
compact abelian group G in Symp(S? x S?) and Symp(CP*#CP?)? What about the
Weyl group W(G) = N(G)/Sympg(S? x 5%)2

As shown in [35], the answer in the toric case has been established and W (T™) is

always a finite group.

8.2 Alternate proof for S' actions

As mentioned in Theorem [I.0.1 we can use only moment map techniques to determine
the centraliser for toric actions. We established an analogous result (Theorem in
the case of S! actions on 4-manifolds as well. As the graphs associated to the S! action
contain all the information about the action, it should theoretically be possible to read
the homotopy type of the S! equivariant symplectomorphims directly from the graphs.
Another phenomenon that hints at this is the fact that the various changes in the ho-
motopy type of the S1(+£1,b; m)-equivariant symplectomorphism group (as in Theorem
4.3.1)) when A changes correspond precisely to whether the edges in the associated graph
overlap or not (as discussed in remark ??). Thus it would be an interesting endeavour

to explore a proof of Theorem [4.1.1] using only momentum map techniques.

This has the added advantage of not only working for our specific case of S! actions
on rational ruled surfaces, but should be applicable to all 4-manifolds with Hamiltonian

St actions.
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8.3 Non-abelian group actions

By Theorems|1.0.2] and [1.0.3| there are important classes of non-abelian finite groups that

act on Hirzerbruch surfaces. Hence it is natural to study the centralisers of these non-
abelian subgroups of the symplectomorphism group. However, in order for the arguments
presented in the thesis to work for the case of non-abelian group actions, we would need

to answer the following question.

Question 4. Let (B(r),w) be the standard ball of radius r around the origin in R* and
let w be such that w = wy near the boundary of B(r). Let G be an non-abelian group that
acts symplectically and linearly as a subgroup of U(2) near the boundary and sends the
boundary to itself. Is the space of equivariant symplectomorphisms that act as identity

near the boundary SympS (B(r),w) non-empty and contractible?

The proof of Theorem [3.2.4] would not help us in answering the above question as it is
essential for our analysis that the groups be abelian in order to guarantee simultaneous
diagonalization of the representation G — U(2). But the reliance on the group being
abelian seems to be a superficial artifact of Gromov’s proof of compactifying C @ C to
S? x S2%. Hence we would need to find other ways of reproving Gromov’s theorem without
compactifying to S? x S? which might make it easier to generalise under the presence of

a non-abelian finite group action.

A positive answer to the above question would open up the door to prove theorems
analogous to Theorem [3.3.15| for non-abelian group actions and figure out which strata
the invariant almost complex structures intersect in order to understand the homotopy

type of the symplectomorphism group for these actions.
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8.4 Embedding spaces

Let Emb(B?*"(r), M) denote the space of symplectic embeddings of the ball B**(r) into

the 2n-dimensional manifold (M, w), endowed with the C* topology and let
SEmb(B**(r), M) := Emb(B**(r), M)/ Symp(B**(r))

denote the space of unparameterized symplectic balls in (M,w). Fix an embedding
L : B(r) — M , by the symplectic isotopy theorem of balls, the natural action of the
identity component of the symplectomorphism group Symp,(M,w) on the component of

SEmb(B?*(r), M) containing ¢ defines the following fibration
Stab(1) — Sympy(M,w) — SEmb, (B*"(r), M)

where the fiber over an embedding ¢ : B*'(r) — M is the subgroup of symplecto-
morphisms sending ¢(B?"(r)) to itself. Thus, the homotopy type of Emb(B*(r), M) is

intimately connected to the homotopy type of symplectomorphism groups.

Having determined the homotopy type of the S and Z,-equivariant symplectomor-
phisms for (5? x S? w,) and (CP?*#CP? w)) we can now try to address the related
question on equivariant embeddings. Let G act linearly on the ball of radius r B*(r) in

R* and let Symp®(B*(r)) denotes the G-equivariant symplectomorphisms of B*(r).

Question 5. Given a compact group G acting symplectically on the (S? x S?,wy) (and
analogously for CP*#CP?). Let S be a connected component of the fized point set. Let us
denoted by Emb§ is the space of G-equivariant symplectic embeddings i : B*(r) < S%x S?

such that i(0) € S connected. Is SEmb§ := Emb§ /Symp®(B*(r)) connected?
This question was answered in [33] for toric actions. It was shown that,

Theorem 8.4.1. (Pelayo, [33]) For every symplectic-toric 2n manifold M with a toric
action of T™, there is an associated Z-valued non-increasing step function ky; : Ry —

[0, n!x(M)] such that for each r = 0 the space of equivariant symplectic embeddings from
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the 2n dimensional ball B2" into M is homotopically equivalent to a disjoint union of

k(1) subspaces, each of which is homeomorphic to the n-torus T".

In particular this implies that the space of equivariant embeddings ”centered” at a
fixed point of the T" action up to reparametrization is connected and is homotopic to
T™. However, no such theorems have so far been established for S* or Z, actions on
4-manifolds. We hope to build on the work in the thesis and try to understand these

space of equivariant embeddings for (S? x S?,wy) and (CP*#CP?, w)).



Appendix A

Equivariant Gauge Groups

In this section we basically show how to calculate the homotopy type of the equivariant

gauge groups that arise in lemma [3.3.10] and lemma [3.3.14

Let P be a principle G- bundle over B, where G is an abelian group that acts on the
right. Let H be a lie group that act on the base space B and this action lifts to an action
on the bundle P. We shall denote this action by a left action. Note that H need not act

effectively on the space B.

Let Gauge” (P) denote all equivariant (with respect to the action of H) bundle auto-
morphisms i.e equivariant maps u such that the following diagram commutes.

Pty p
A
;
Given u € Gauge” (P), define the map
by P — G
z = gu()
where ¢, (z) is defined such that

- du(r) = u(z)
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Let us now see how the map ¢, behaves under the left action of H. We have

wh-z)=h-x-¢y(h-x)

But we already have that

u(h-z)=h-u(x)=h-z-d,(x)

Putting the equalities together and noticing that the G -action is free we get that

That is that the map ¢, is invariant under the action of H.

Also from the definition we can see that

¢u($ ’ g) = gil : ¢u(x) g = ¢u(m)
where the last equality follows from G being abelian.
Denote by Mapsy (P, ) the space of all H and G-invariant smooth functions from P

to G. Note that because these maps are (G invariant this space is the same as H-invariant

maps from B to G which we shall denote by Inv(B, G) Then we now have an map

is an an homeomorphism for C'®°-topology with the inverse being constructed using the

definition z - ¢ (z) = u(x).

As Mapsy (P, G) = Inv(B, G) we have that Gauge (P) is homeomorphic to Inv(B, G).
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Let us now use this to calculate the Homotopy type of the Gauge groups in the fibra-

tions in Chapter 2.

Consider a rank 2 symplectic normal bundle of D. Let us fix an equivariant arbitrary
compatible fibre wise almost complex structure J on N (D). As this is a rank two bun-
dle, the structure group is Sp(2), and this now can be reduced to U(1) = S, and the

two bundles are isomorphic. Thus the space of symplectic automorphisms of the original

bundle is homeomorphic to the space of symplectic automorphisms of the reduced bundle.

In our case we have a right group action of S* on this bundle and we are interested in
the equivariant symplectic automorphisms of this bundle.This is homotopic to the space
of Equivariant symplectic automorphisms of the U(1) bundle.(As the reduction of the
structure group can be done equivariantly) And as U(1) = S! the space of Equivariant
symplectic automorphisms of the U(1) bundle is the same as Gauge® 1(P) where P is
the associated principal bundle. This is homeomorphic to Inv(S?,S1) from the above

discussion.

Finally note that for any non-trivial S action on S? (possibly non-effective) the quo-
tient space under this action is just the interval. Hence the space Inv(S?,S) is just the

space of smooth maps from the interval to S*.

Before we embark on trying to calculate the homotopy type of Gauge® 1(N (D)), we
would need the following technical lemma. Note that in all our calculations above we
have used the C®-topology on Gauge® (N(D)) and Invg (52, SY). Let Gaugefl(N(E))
denote the space of continuous S'-equivariant gauge transformations of the bundle N (D)
equipped the C°-topology. Using the same argument at the beginning of the section we
can show that Gauge® (N (D)) is homotopic to the space Invg: .(S?,S%) of continuous

Slinvariant maps from S? to S*. Then we have that,
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Lemma A.0.1. The space Gaugesl(N(E)) with the C'*-topology is homotopic to the

space Gaugefl(N(ﬁ)) equipped with the C°-topology.

The proof of this lemma follows from an equivariant version of the arguments used

to prove Theorem 3.2.13 in [41].
Lemma A.0.2. Gauge® (N(D)) ~ Gauge® (N(D)) ~ Invgr (52, S') ~ §?

Proof. Gauge® (N(D)) ~ Gauge® (N (D)) ~ Invg (52, 5%) follows from Lemma

and the discussion above.

Let Maps(S?/S*, S1) denote the space of continuous maps from S?/S* to S*.Then the
space Invg (52, S') is homeomorphic to the space Maps(S?/S?, S1). Further we note
that as S2/S' is homeomorphic to an interval [0, 1], the space Maps(5?/S*, S') can be
identified the space of continuous maps from the interval [0, 1] to S* which we denote by
Maps([0, 1], S) . Let py be a fixed point for the S* action on S?. Then we consider the

following fibration,

{#} = Invgi . (5% po) , (S, id)) —— Inv($%,51) —=— S

Where the map ev : Inv(S?, S1) — S is just the evaluation map at the fixed point
(for the S* action on S?) py and the space Invg . ((S?% po), (S',id)) is the space of all
continuous maps from S? to S*, invariant under the S* action and send the point py to
the identity on S. As above, the space Inv ((S?,po), (S',id)) can be identified with the
space of continuous maps from the the interval [0, 1] to S* that send 0 to the the identity
on S'. This space of pointed maps from [0, 1] to S* is contractible, thus completing the

proof. O]

Remark A.0.3. We need the point py to be a fixed point as the evaluation map has to

be surjective.

Lemma A.0.4. Gauge® (N(D v F)) ~ {+}
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Proof. Analogous to our method above, we get that Grauges1 (N(Dv F)) is just the space
of continuous maps from the following configuration to S* that send some neighbourhood

of the crossing to the identity in S!

F

ol

And the space of such maps is indeed contractible thus completing the proof. O]

We now want to carry out similar computation but for action of finite abelian groups
Z,, on the bundle. As discussed before, we have that Gauge”"(N (D)) ~ Invyz, (S?,S")
where Invz, (S?,S') denotes the space of Z,, invariant maps from S? to S'. Further let
Gauge?" (N (D)) denote the space of continuous Z, equivariant gauge transformations.
As in Lemmawe have that Gauge?" (N (D)) ~ Gauge?"(N(D)). Further, just as in
the S' case we may identify Gauge?" (N (D)) with the space Invy, (52, S) of continuous

Z,, invariant maps from S? to S?.

Putting all this together we have,
Lemma A.0.5. Gauge”"(N(D)) ~ Gauge?"(N(D)) ~ Invy, .(S?,S1) ~ S*

Proof. The homotopy equivalences Gauge?” (N (D)) ~ Gauge?"(N (D)) ~ Inv, (5%, S")
are all explained above. Thus we only need to show that Invz, (5% S') ~ S'. In our
case we know that the Z,, action on S? are in fact restrictions of S' actions on S?, hence
they are rotations about fixed points of S?. Note that Invy, (5%, S") is homeomorphic
to the space Maps(S?/Z,, S!) of continuous maps from S?/Z, to S*. Further, S%/Z, is
homeomorphic to S? and hence Maps(S?/Z,, S') =~ Maps(S?, S1). Finally, we note that

Maps(S?, S1) ~ S! thus completing the result. O
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Lemma A.0.6. Gauge”*(N(D v F)) ~ {}

Proof. Analogous to the proof of Lemmas [A.0.4] and [A.0.5] we can identify the group

Gauge, (N(D v F)) with maps from 5? v S? that send a neighbourhood of the wedge

point to the identity in S*. The space of such maps is contractible. O

Finally, we need to understand the homotopy type of Z, equivariant symplectomor-

phisms Symp”" (S?), in our analysis in Chapter 6.

Lemma A.0.7. Consider a symplectic action of Z, on S, then the space Symp”"(S?)

is homotopic to SO(3), if Z,, fizres S* pointwise, and is homotopic to S* otherwise.
Proof. Let ¢ € Symp%"(S?), consider the graph ¢ of 1 i.e

8% - 5% x §?
2 (2,9(2))

Let SO(3)%» denote the centraliser of Z,, inside SO(3). Choose a Z, equivariant metric
for the product Z, action on S? x S? coming from the Z, action on S?. Then by Theorem
C, Corollary C and Corollary 4.1 in [39], the mean curvature flow with respect to this
equivariant metric gives us a canonical homotopy of 1 to an element inside SO(3)%".
Further this homotopy is identity on all the elements of SO(3)%». Thus the map we get is
in fact a deformation retract of Symp”"(S?) and SO(3)%". Note SO(3)%" = SO(3) or S*
depending on whether Z,, is in the centre of SO(3) or not respectively, thus proving the

claim. =



Appendix B

Holomorphic configurations and

equivariant Gompf argument

Theorem B.0.1. Let G be a compact group. Let A and B be two G-invariant symplectic
spheres in a 4-dimensional symplectic manifold (M,w) intersecting w-orthogonally at a
unique fized point p for the G action. Then there exists an invariant J € J¢ such that
both A and B are J-holomorphic. Here JS denotes the space of G invariant compatible

almost complex structures on M.

Proof. The proof follows from mimicking the proof of Lemma A.1 in [I§] under the
presence of a group action.

O

Theorem B.0.2. (Equivariant Gompf Argument) Let G be a compact group. Let A and
B be two G-invariant symplectic spheres in a 4-dimensional symplectic manifold (M, w)
such that A n B = {p} where p is a fixed point for the action and the intersection at p is
transverse. Then there exists an S'-equivariant isotopy A; of A such that A, intersects B
transversally at p for all t, Ay intersects B w-orthogonally at p and the curve Ay agrees

with A outside some neighbourhood of p, .

Proof. Since this is a local problem, we can work in a trivialising chart in R* in which

the action is linear. Let B*~ be the symplectic orthogonal to B. We can assume the

156
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image of B to be the two plane in R* given by (0,0, z,y), and B*~ to the given by the
plane (z,y,0,0). As A is transverse to B at p, we can assume its image is given by the

graph of function (which we also call A) A : (f,g) : R* —» R2

Next we observe that given a function A := (f,g) : R?> — R? the graph of A is a
symplectic (for the standard form) submanifold of R* iff {f, g} > —1. This can be proven
from a direct computation. We will construct an isotopy of graphs of function of the
form A; := ay(r?)A where «a; is a bump function depending only on the radius squared

(for a fixed G invariant metric) in R?, and such that
o Ay = A,
e A; =0 near (0,0),
e A; = A outside of some neighbourhood of the origin,
e A, is symplectic for all t.

Note that as «; is depends on the radius for a fixed G invariant metric, A; is also G

invariant.

Define E = g{f,r*} + f{r? g}. Using the fact that r%(0,0) = 0 and (r*)’(0,0) = 0
we see that £(0,0) = 0 and a—‘iE(0,0) = (0. By the intermediate value theorem, there
exists ¢ > 0, € > 0 and v > 0 such that on the ball of radius u + € around the origin

B(0,u+¢) we have E(z) = —cr?(x). Choose ¢ such that on B(0,u+¢), 1+{f, g} >3 >0

Pick a : R — R satisfying the following properties
e a(r’)=1forrm >u .

e a(r) =0 for r near 0.
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Define a; := (1 —t) + ta(r?) and A; := oy A. To show that A; is symplectic for all
0 <t < 1 we need to check that {a;f,a;g} > —1 for all 0 < ¢ < 1. In the neighbourhood
B(u) we have
1+ {asf,oug} =1+ al{f, g} +a,E >0
—_———— N —
>5 >0

The inequality 1 + o2{f, g} = 0 follows from the definition of § and from noting that

0> >1. yaE > _75 follows from the inequality

B = aal(—cr?)

2
> ~ Mo (1)
J
= _ati
—0

> —
2

Thus in the neighbourhood B(u) we have the inequality 1 + {«a;f, ayg} > 0 for all t.

Outside of B(u), the derivative «; is identically 0 and a; = 1. Hence oy, E = 0 outside

B(u) and 1 + {a,f, ug} = 1 + o2{f, g} + et E> 1+ {f, g} > 0 outside of B(u).

Finally we note that A; = 0 in a neighbourhood of (0,0) and it equals A outside the

ball of radius u around the origin, thus proving the claim. O]



Appendix C

Equivariant versions of classical

results from Differential Topology

Lemma C.0.1 (Relative Poincare Lemma). (see [28], Lemma 43.10) Let M be a smooth
finite dimensional manifold and let S = M be a closed submanifold. Let w be a closed
(k + 1)-form on M which vanishes on S. Then there ezists a k-form o on an open
netghborhood U of S in M such that do = w on U and o = 0 along S. If moreover w = 0

along S, then we may choose o such that the first derivatives of o vanish on S.

Proof. By restricting to a tubular neighborhood of S in M, we may assume that M is
a smooth vector bundle p : E — S and that ¢+ : S — E is the zero section. We consider
w:RxE — E given by u(t,z) = p(z) = tx, then gy = idg and g = iop: £ — S — E.
Let V € X(E) be the vertical vector field V(z) = vl(z,z) = 4(z + tz) whose flow is

F1/ = per. Locally, for ¢ in (0,1] we have

e = E(Flfggt) W= ;(Fll‘ggt) Lyw = TH (tydw + diyw) = detsz

159
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For x € E and X4,..., X € T, FE we have

1

(Eﬂ:in)z(Xla s >Xl~c) = (iVWtI(Tx,ut : Xla s aTx,ut ’ Xk)

wm(V(ta}), TleLt . Xla Ce ,Tx,ut . Xk)

| = k| =

= wtm(vl(txa t*r)a Tzut ’ X17 cee 7Tz,ut ’ Xk)

So the k-form %ufz’vw is defined and smooth in (¢,z) for all ¢ € [0,1] and describes a

smooth curve in QF(E). Note that for z € S = 0p we have tufiyw = 0, and if w = 0 on

1

TsM, we also have 0 = %u;“w = %d,ufivw, so that all first derivatives of ;ujiyw vanish

along S. Since piw = p*i*w = 0 and pfw = w, we have

* *
W = W — oW

1
d
= —uiwdt
Jgdt'utw

bl
= J d(=pjiyw)dt
o ¢

) Curive) i)

=do

If x € S, we have 0 = 0, and all first derivatives of ¢ vanish along S whenever w = 0 on

TsM. [l

Remark C.0.2. If there is a symplectic action of a compact group G acting on M such
that w 1s G invariant and S is G-invariant, then we can construct o as above such that

in addition to the above conditions o also is G-invariant. This is gotten by noting that

wzjwzfdazdfa
G a G

Let o := SG o and hence do = w and ¢ satisfies all the conditions.

Lemma C.0.3 (Moser isotopy). Let (M,w) be a symplectic manifold and let S < M
be a submanifold. Suppose that w;, 1 = 0,1, are closed 2-forms such that at each point

x €S, the forms wy and wy are equal and non-degenerate on T,.S. Then there exist open
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netghborhoods Ny and Ny of S and a diffeomorphism ¢ : Ny — Ny such that ¢*w, = wy,
¢’5 = id, and d¢|s = id.

Proof. Consider the convex linear combination w; = wy + t(w; — wp). Since wy and w;
are equal along S, there exists a neighborhood U; of S on which w; is non-degenerate
for all t € [0,1]. By restricting U; to a possibly smaller neighborhood Us, the Relative
PoincarA(C) Lemma implies that there exists a 1-form ¢ such that do = (w; — wy),
o =0 on S, and all first derivatives of o vanish along S. Define the time-dependent
vector field X; on U, by setting

g = —Z.tht

Since X; = 0 on S, by restricting Us to a smaller neighborhood Us, we can ensure that

the flow ¢y of X exists for ¢ € [0,1]. We then have

d L[ d d )
aiﬁwt = (awt + EXMt) = (%Wt + dlxtwt) =" (w1 —wp —do) =0

so that ¥*w; = wy. Finally, since 0 = 0 on S, ¥ = id on S, and since all first derivatives

of o vanish on TsM, dy) =id on TsM. O

Remark C.0.4. As the remark above, when both wi and wy are both invariant under
a compact group action G, and S is an G-invariant submanifold, then there is a G-

equivariant diffeomorphism ¢ that satisfies the conditions as above.

Lemma C.0.5. [Fquivariant Symplectic neighborhoods theorem] Let (M;,w;), i = 0,1, be
two symplectic G-manifolds(The compact group G, acting symplectically on the 2 man-
ifolds) with two invariant symplectic submanifolds S; < M; with invariant symplectic
normal bundles N;. Suppose that there is an equivariant isomorphism A : Ng — Ny cov-
ering an equivariant symplectomorphism ¢ : So — S1. Then ¢ extends to a equivariant

symplectomorphism of neighborhoods ® : Uy — U; whose derivative along Sy is equal to

A.

Proof. We can extend the automorphism A to a diffeomorphism of neighborhoods ) :

Uy — Uy by setting

1) = expoAoexp !
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By construction, dip = A along Sy, so that wy and *w; coincides along Sy. Applying

the G- equivariant Moser isotopy Lemma gives the result. O

Let (M,w) be a symplectic manifold. Let G be a compact lie group acting symplec-
tically on M. Let S be an invariant submanifold under the G action. Let Op(S) be an

invariant open neighbourhood of S, Further define
Sympig n (M, S) = {¢ € Sympg (M) | ¢|s = id, do|rsn = id}

Symp{ op(sy (M, S) = {¢ € Symp{ (M) | ¢ = id near S}

then we would like to show that SympﬁjN(M, S) = Sympﬁvop(s)(M, S). But before
we do that we would need the following lemmas.

Following [23], we define a invariant tubular neighborhood of a invariant submanifold
t: S — M as a smooth equivariant embeddings f : £ < M of a vector bundle 7 : £ — S

such that
1. fls = ¢ after identifying S with the zero section of 7 : £ — S.
2. f(E) is an open neighborhood of S.

In practice, it is often enough to work with the normal bundle N < TsM defined as the
orthogonal of TsM relative to a equivariant riemannian structure. (See Bradon pg 303

for existence of such invariant tubular neighbourhood.)

Lemma C.0.6 (Unicity of tubular neighborhoods). (See [23], Theorem 4.5.3) Let M be

a G-manifold, let v : S — M be a invariant submanifold with normal bundle N. Then,

1. giwen any two invariant tubular neighborhoods f; : N — M, i = 0,1, there is a
equivariant gauge transformation A € G(N) such that fo and f10 A are equivariant

1sotopic rel. to S.

2. The space Tg of all invariant tubular neighborhoods f : N < M 1is homotopy

equivalent to the group of equivariant gauge transformations G(N).
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3. The space Tga, of invariant tubular neighborhoods f : N — M such that df|s = du

18 contractible.

Proof. (1) We construct an equivariant isotopy F; in two steps. Firstly, given an G-

invariant smooth function ¢ : S — (0, 1], let Us = N be the invariant disc bundle
Us = {xe N[ |z <d(x(x))}
Note that N smoothly retracts onto Uy through embeddings G; : N — N of the form
Gy = (1 —t)id +ths

where h, is a equivariant one-parameter family of contracting, C(G) < SO(k)-invariant
diffeomorphism (where C(g) is the centraliser of G in SO(k) and k is the rank of the
bundle) h, : R* — DF(r), restricting to the identity on D*(r/2) and varying smoothly
with r. Then, choosing an appropriate invariant function 4, and composing f; with G,

we can isotope f; to an embedding f5 = f;G; satisfying

fs(N) < fo(N) and fs = fi on Us)o (C.1)

so that the map g = f;'fs : N — N is well-defined. Secondly, observe that the map
g is equivariantly isotopic to its vertical derivative Ay, = dg*** € G(N) along S via the

canonical smooth isotopy
Ho(z) = ¢(x), Hi(r) = g(tx)/t, 0 <t <1

Note that H is indeed equivariant. An isotopy from f5 to foo Ay, is then given by foH;_;.

The sought-for equivariant isotopy F; is the concatenation of fiG; with foH;_;.

(2) Fix a invariant tubular neighborhood f; : N < M and choose once for all a
smooth family of equivariant diffeomorphisms h, : R¥ — D*(r) as in the proof of (1).
Given any other invariant tubular neighborhood f : N < M, the isotopy constructed in

(1) only depends on an auxiliary invariant function 6 : S — R,. Although the choice of
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this function is not canonical, the set A®(f) of all invariant § for which hs(N) < f~!fo(V)

is a convex subset of C*(S, R, ). Consequently, the projection of the fibre product
Ta={(f,0)| feTs, 6 AY(f)} = Ts

is a homotopy equivalence. Consider the embedding

¢:G(N) x C*Y(S,RY) — Ta (C.2)
(A,8) — (foo A,6) (C.3)
and the continuous map
Y Ta — G(N) x C*Y(S,R,) (C.4)
(f,0) — (Ag;,0) (C.5)

where C*%(S, R, ) denotes the space of G invariant smooth functions. Then we have

Yo = idgnyxc=.c(sgr,), While ¢p(f,8) = (fo 0 Ay, 0), the map fy o Ay being the ter-

minal point of the isotopy defined in (1). This shows that ¢ and 1 are homotopy inverses.

(3) Choosing fy such that dfy = dv along S, this immediately follows from the fact
that the space Tgg4, is homotopy equivalent to the subspace of 7 that retracts to the

contractible subspace {fy} x C*(S,R,) under the isotopy defined in (1). O

Lemma C.0.7. The inclusion Sympg’op(s)(M, S) — Symp%N(M, S) is a homotopy

equivalence.

Proof. We follow the same ideas as in the non-equivariant case. Consider the short exact
sequence

Symp{ op(s) (M, S) < Symp§ v (M, S) = Gs.
where the group Gs, 1= Sympyq (M, )/ Symp;q op(s) (M, S) is the group of germs along
S of equivariant symplectomorphisms ¢ € Symp,y (M, S). We wish to show that Gg, is

contractible.



165

Choose a compatible equivariant almost-complex structure J and let g be the asso-
ciated equivariant metric. Let N be the symplectic orthogonal complement of T'S in
TM. N is invariant under the G action. Equip N with the minimal coupling form 2
and choose € > 0 so that the e-disk subbundle V. = N is symplectomorphic to a tubular

neighborhood U of S. Let ¢ denote both inclusions U < M and V < N.

Let QL?C’G be the space of germs of (G invariant symplectic forms defined near S and
agreeing with w along TsM. Given any two germs [wp]| and [w;], their linear convex
combination w; = (1 — t)wp + tw; is non-degenerate in some neighborhood of S. Conse-
quently, Q?C’G is convex, hence contractible. By the Symplectic neighborhood theorem,

o 1 . e . .
the group Gg,, acts transitively on (2 gc’G, giving rise to a fibration
loc,G =~ loc,G
gs,w - gS,w - QS

whose fiber QESJ’G is the group of germs of equivariant diffeomorphisms that are sym-
plectic near S. This space is homeomorphic to the space Es, of germs along S of

equivariant symplectic embeddings f : Op(S) — M such that f|s = ¢ and df|s = du.

By Lemma [C.0.6] (3), we know that &g, is contractible, so that Gg,, and Q}S?L’G are also

contractible, thus completing the proof. O

Lemma C.0.8. Let G be a compact group acting symplectically on a compact manifold
(M,w). Let W; be a smooth k-parameter family of symplectic submanifolds (t € [0, 1]%),
which are invariant under the G action. Then there exists a k-parameter family of equiv-

ariant Hamiltonian symplectomorphisms ¢y : M — M such that ¢,(Wy) = W,

Proof. The proof follows by mimicking the proof of Proposition 4 in [7] under the presence

of a group action. O]

Let X be a topological space with an action of a topological group GG. We say X
admits local cross sections at xg € X if for there is a neighbourhood U containing z, and
amap x : X — G such that y(u) - 2o = u for all u € U. We say X admits local cross

sections if this is true for all z¢ € X.
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Theorem C.0.9. (Palais) Let X, Y be a topological spaces with a action of a topological
group G. Let the G action on X admit local cross sections. Then any equivariant map f

from another space Y to X is locally trivial.

Proof. Suppose for every point xq € X there is a local section x : U — G where U is an

open neighbourhood of xy5. Then we define a local trivialisation of f as follows.

p:Ux [~ wo) = [THU)
(w,7) = x(u) -
As f is equivariant we indeed have f(p(u,v)) = f(x(uw)y) = x(u)-f(v) = x(u)-zo = u,

where the last equality follows from the definition of being a local section. Thus p maps

U x f~H(xo) into f~H(U).

Conversely there is map

B:fHU) - U x f(xo)
y— (F@).x(f@) ™" - y)

We can indeed check that the two maps are inverses of each other.
Bop(u,y) = B0x(u)-7) = (x(w) -7, x(x(w) - F(1)) - x(w) -7) = (u, x(uw) " x(w)7) =

(u, 7).
Similarly we can check that p o § = id, thus completing the proof. O



Appendix D

Alexander-Eells isomorphism

In this appendix, we first recall an isomorphism between the homology of a subman-
ifold Y < X and the homology of its complement X — Y that is reminiscent of the
Alexander-Pontryagin duality in the category of oriented, finite dimensional manifolds.
This isomorphism, due to J. Eells, exists whenever the submanifold Y is co-oriented and
holds, in particular, for infinite dimensional Fréchet manifolds. We then give a geometric
realization of this isomorphism in the special case Y and X —Y are orbits of a continuous
action G x X — X satisfying some mild assumptions. We closely follow Eells [17] p.
125-126.

Let X be a manifold, possibly infinite dimensional, and let Y be a co-oriented sub-
manifold of positive codimension p. As explained in [I7], there exists an isomorphism of

singular cohomology groups
¢: H(Y) - H'(X,X -Y)

called the Alexander-Eells isomorphism. We define the fundamental class (Thom class)

of the pair (X,Y) asu = ¢(1) e H?(X, X - Y).

167
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Proposition D.0.1 (Eells, p. 113). The pairing
HY) H* (X, X -Y) > H*(X, X -Y)
YRQTr—yux

makes H*(X, X —Y) into a free H*(Y')-module of rank one, generated by u.

Let ¢, : Hi1p(X, X —Y) — H;(Y) be the dual of the Alexander-Eells isomorphism
¢* = ¢. By definition, we have

du(a) =una

Suppose a topological group G acts continuously on X (on the left), leaving Y invari-
ant, and in such a way that both X — Y and Y are homotopy equivalent to orbits. We
have continuous maps p: G x (X, X —=Y) > (X, X -Y), u:Gx (X -Y) - (X -Y),
and p: G x Y — Y inducing H,(G)-module structures on H, (X, X —Y), H, (X —Y)
and H,(Y). We write p.(c® a) = ¢ = a for the action of c € H;(G).
Lemma D.0.2. In this situation, the Alexander-FEells isomorphism preserves the H,(G)-
module structure, that is, the following diagram is commutative:

H,(G)@H (X, X -Y) 5 H (X, X -Y)

1®¢*l l

P
H,(G)Q H,(Y) —X—— H,(Y)
Thus for any a € Hi+p(X, X =Y, ce H;(G), we have ¢.(c*a) = ¢ ¢p.(a).

Proof. We first note that if u is the fundamental class of the pair (X,Y), then p*(u) =
l®ue H(G)®HP(X, X —Y), because H (X, X —Y) = 0 for all i < p. The cap product

is a bilinear pairing
N H*(G X (X,X—Y)) ®H*(G’ X (X,X—Y)) — H*(G X X)

that is adjoint to the cup product. Using the relative form of Kiinneth theorem, this

bilinear map defines a pairing

A (H(G)®@ H (X, X - Y)) ® (Ho(G) ® Ho(X, X —Y)) — H,(G) ® Ho(X)
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Let’s write j* : H*(X, X —Y) — H*(X). Then, for any c®z € H*(G)®@ H*(X,X - Y),
and any b® a € H,.(G) ® H,(X, X —Y) we have
(e® "z, p*(w) 0 (b®a)) = {(c®@z) U p*(u),b®a)

= (@)U (1®u),b®a)
={(cul)®(zvu),b®a)y
= {e.b)X(wvu)a)
= {e,by(j*z, una)
={c®j*r,b®(una))

It follows that p*(u) N (b®a) =b® (una) =b® ¢.(a). We then compute

Gu (11 (c®2)) = un pu(c®) = s (1 (1) N (c®2)) = 1 (c® (1)) = 1 (1@ b4) (c® 1))
which is the desired relation. O

Since H;(X, X —Y) = 0fori < p, the Universal Coefficient Theorem yields a canonical
isomorphism 8 : H?(X, X —Y) — Hom(H,(X, X —Y);Z). If Y is connected, H,(X, X —
Y) is of rank one. In this case, define a, € Hy(X,X —Y) as the unique class such
that S(u)a, = 1. Suppose the Leray-Hirsch theorem applies to the evaluation fibration
G — Y. Then, H,(X,X —Y) becomes a H,(Y)-module by identifying H,(Y) with
1® H.(Y) < H,(G) and by setting

bxx:=[1®Db] *x

Theorem D.0.3. Under the above assumptions, the isomorphism 1, = ¢, '+ Hi(Y) —
Hi (X, X —Y) is given by ¥ (y) = y * ay. Thus H (X, X —Y) is generated by a, as a
H.(Y)-module.

Proof. Since
A, p(an))y ={d,una,) =1 vu,a,) ={ua,)=1

it follows that ¢, (a,) = 1, which is equivalent to ¥, (1) = a,. Since ¢, is an isomorphism

of H.(G)-modules, its inverse is also an isomorphism of H,(G)-modules. We can then
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write
Vo) = ey + 1) = yxhu(l) = y + ay

]

From the naturality of the connecting homomorphism ¢ in the long exact sequence

of the pair (X, X —Y), we get

Corollary D.0.4. Suppose in addition to the above hypotheses that X is contractible.

Then the isomorphism
)\* = (’/JO w* . HZ(Y) - Hz‘+p_1(X - Y)
is given by M\ (y) = y * x, where x, = Oay,.

We now apply the Alexander-Eells isomorphism to the situation of Section [4.2] Let
G be the centralizer Sympfl(S2 x S% wy), let X = jf; be the contractible space of
invariant, compatible, almost-complex structures, and let Y be the codimension 2 stratum
joil N U,y. The connecting isomorphism 0 : HQ(jgl, jws; NnU,) — Hl(joil N U,,) maps
the generator a, to the link of Jf; N U,y in j“il N Uy, that is, to the loop pm,(y2)
generated by the action of yo € . Consequently, Corollary immediately implies

the following geometric description of the Alexander-Eells isomorphism.

Proposition D.0.5. The Alexander-Fells isomorphism
A Hy(T5 0 Une) = Hya (TS5 0 Un)
15 given by
M) =y rpm(y2) =y ryex 1= [12@y] * 1 = i ([12 @y ® 1) = pu([y2 @ y])

In particular, if pry(9) =y € Ho(Y), then \u(y) = §* Yo * 1 = pp(7 * y2).
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