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Abstract

In this thesis, we compute the homotopy type of the group of equivariant symplecto-

morphisms of S2 ˆ S2 and CP 2#CP 2 under the presence of Hamiltonian group actions

of either S1 or finite cyclic groups. For Hamiltonian circle actions, we prove that the

centralizers are homotopy equivalent to either a torus, or to the homotopy pushout of

two tori depending on whether the circle action extends to a single toric action or to

exactly two non-equivalent toric actions. We can show that the same holds for the cen-

tralizers of most finite cyclic groups in the Hamiltonian group HampMq. Our results rely

on J-holomorphic techniques, on Delzant’s classification of toric actions, on Karshon’s

classification of Hamiltonian circle actions on 4-manifolds, and on the Chen-Wilczyński

smooth classification of Zn-actions on Hirzebruch surfaces.

Keywords: Homotopy type of Symplectomorphism group, pseudo-holomorphic

curves, symplectic rational ruled manifolds, centraliser, abelian Hamiltonian

actions.
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Summary for lay audience

The study of symplectic manifolds is motivated by classical mechanics. Consider a phys-

ical system such as a simple pendulum, or a spring with a mass attached. Associated to

such a system is a space called the phase space which encapsulates every possible state

that the system can attain. Such a space comes naturally equipped with a non-degenerate

two form called a symplectic form and the time evolution of a particle corresponds to

flowing along the symplectic gradient of the Hamiltonian of the system.

By Darboux’s theorem all symplectic manifolds are locally alike and hence there are

no local invariants to distinguish symplectic manifolds. Global invariants of symplectic

manifolds can be obtained by investigating the homotopy type of mapping spaces (such

as symplectomorphism groups or symplectic embedding spaces) related to the symplectic

structure. In his seminal paper [21], M. Gromov provided one such invariant called the

Gromov width. This paper also shows that studying the topology of mapping spaces such

as the space of symplectic embeddings of a ball into a symplectic manifold, or similarly,

the group of self maps that preserve the symplectic structure, gives us key symplectic

insights about the symplectic manifold.

In general, investigating symplectomorphism groups or embedding spaces are very

hard problems. However, in dimension 4, due to certain special features of J-holomorphic

curves we have more tools at our disposal to understand such questions of a global nature.

It is very natural for physical systems to have symmetries. These symmetries of a

system correspond to Hamiltonian groups actions on the phase spaces. In this setting,

we are interested in the time evolution of particles that preserve these symmetries (or

group actions). The maps that preserve these symmetries are called equivariant symplec-

tomorphims. These symmetries can be continuous symmetries like the action of circle S1

or discrete symmetries like the n-th roots of unity.
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In this thesis we combine the theory of holomorphic curves as in [3], [4] and [36]

together with moment map techniques as in [25] to study the topology of spaces of all

equivariant symplectomorphisms of CP 2#CP 2 and S2 ˆ S2 endowed with Hamiltonian

actions of either the circle or a finite cyclic group.
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Chapter 1

Introduction

In the works of [2], [3], [4], [36], [5] the homotopical properties of the group of sym-

plectomorphisms of CP 2, S2 ˆ S2 and their symplectic blow-ups were studied. Given

any Hamiltonian group action of a group G, it is very natural to ask what the homotopi-

cal properties of the centralizer of G inside the Hamiltonian group of these manifolds are.

In Proposition 3.21 in [35] it was shown that

Theorem 1.0.1. Let pM,ωq be a compact symplectic manifold. Given an effective toric

action ρ : Tn ãÑ Symp pM2n, ωq with moment map µ : M Ñ t » Rn. Let SympTn
pM,ωq

denote the centralizer of Tn in SymppM,ωq. Then the centralizer SympTn
pM,ωq is equal

to the group of all symplectomorphisms φ that preserve the moment map, that is, such

that µ ˝ φ “ µ. Moreover, SympTn
pM,ωq is connected and SympTn

pM,ωq Ă HampM,ωq.

Using this and the fact that for toric actions, the level sets of the momentum map

are orbits for the toric action, one can derive that SympTn
pM,ωq is homotopic to Tn.

Further for the manifolds pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq, where λ is a parameter

that determines the symplectic form, it is possible to obtain the same result using the

pseudo-holomorphic curve techniques. A key point to notice is that the homotopy type

of the centraliser for a toric action is independent of the action.

1



2 Chapter 1. Introduction

The next most natural case is of S1-actions on pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq.

The situation becomes more complex than in the toric case, primarily because the level

sets of the momentum map are no longer single orbits but rather unions of orbits: an S1

equivariant symplectomorphism can swap orbits whilst preserving the level sets.

In this thesis we use both pseudo-holomorphic curve techniques and moment map

techniques to determine the homotopy type of equivariant symplectomorphisms of S2ˆS2

and CP 2#CP 2 under the presence of circle actions. The advantage of using pseudo-

holomorphic curve techniques is the that the proofs generalise under the presence of any

compact abelian group actions.

The thesis is structures as follows:

In Chapter 2, we present the background material for both moment map techniques

and pseudo-holomorphic curves techniques that we use in the thesis.

The crux of the thesis lies in Chapters 3, 4 and 5. We adapt the framework of [4]

to study symplectomorphism groups in the presence of an S1 action. In particular we

show that the space of invariant almost complex structures J S1

ωλ
decomposes into disjoint

strata, each of them being homotopy equivalent to an orbit of the equivariant symplec-

tomorphism group with stabilizer being homotopy equivalent to S1 equivariant Kähler

isometries (Theorems 3.3.15 and 3.3.23). In Chapter 3, we use Karshon’s classification of

circle action on 4-manifolds [25] to investigate into how many invariant strata the space

of invariant almost complex structures J S1

ωλ
decomposes. We prove that J S1

ωλ
decomposes

into either one or two strata, and that the later case occurs only for an exceptional family

of circle actions on S2 ˆ S2 (Theorems 3.1.9 and 3.1.5).

In Chapter 4, using techniques similar to the ones developed in [5] we obtain the ho-
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motopy type of SympS
1

pS2 ˆ S2, ωλq for all Hamiltonian circle actions on pS2 ˆ S2, ωλq.

We notice that in most cases the homotopy type of SympS
1

pS2 ˆ S2, ωλq is the same as

that of the space of S1 equivariant Kähler isometries. But for the exceptional family circle

of actions on S2 ˆ S2 for which J S1

ωλ
has two invariant strata, we see that the homotopy

type of SympS
1

h pS
2 ˆ S2, ωλq undergoes a “phase transition” for a particular value of λ.

The homotopy types changes from being one of a finite dimensional Lie group to one of

an infinite-dimensional space (Theorem 4.3.1).

In Chapter 5, we prove S1 equivariant analogues of some key lemmas involving defor-

mation theory as in [3]. We use these techniques to prove that for the exceptional family

of circle actions, the stratum with positive codimension in J S1

ωλ
is always of codimension

two.

In Chapter 6, we carry out a similar analysis on the manifold CP 2#CP 2 and ob-

tain the homotopy type of SympS
1

pCP 2#CP 2, ωλq for all Hamiltonian circle actions on

pCP 2#CP 2, ωλq.

We explore the homotopy type of the equivariant symplectomorphisms under the

presence of a finite cyclic group in Chapter 7 of the thesis. We define a Hamiltonian

action of a finite group G on pM,ωq to be a morphism of G into the group of Hamiltonian

diffeomorphisms HampM,ωq. The list of all finite groups that admit a Hamiltonian action

on pS2ˆS2, ωλq or pCP 2#CP 2, ωλq is given in [9]. In particular, they prove the following

two theorems.

Theorem 1.0.2. Let F be a finite group that acts effectively and symplectically on the

product pS2ˆ S2, ωλq.

• If λ ‰ 1, F is isomorphic to a subgroup of G1ˆG2 for some finite subgroups G1, G2

of SOp3q.



4 Chapter 1. Introduction

• If λ “ 1, F is isomorphic to a subgroup of G1ˆG2 for some finite subgroups G1, G2

of SOp3q, or F belongs to an exact sequence

1 Ñ H ˆH Ñ F Ñ Z{2 Ñ 1

for some finite subgroup H of SOp3q.

For the non-trivial bundle CP 2#CP 2, the list is even simpler.

Theorem 1.0.3. A finite group F acts effectively and symplectically on the non-trivial

bundle pCP 2#CP 2, ωλq if and only if F is isomorphic to a finite subgroup of Up2q.

Hence the only finite abelian groups with Hamiltonian actions on pS2 ˆ S2, ωλq with

λ ą 1 are of the form Zn or Zn ˆ Zm. In Chapter 7, we explore the homotopy type of

the equivariant symplectomorphism groups of pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq under

the presence of Hamiltonian Zn actions. Unlike the S1 case, Hamiltonian finite group

actions do not admit momentum maps. Hence, we extract information about the equiv-

ariant symplectomorphism group by using pseudo-holomorphic curve techniques. Most

of the techniques we use in the S1 case go through mutatis mutandis in the Zn case

as well, but unlike in the S1 case, we do not have a classification of Zn actions on

S2 ˆ S2 (and CP 2#CP 2) up to Zn equivariant symplectomorphisms. We can still use

the Chen-Wilczyński classification of Zn-actions up to oriented diffeomorphisms given

in [12] and [40] to obtain the homotopy type of Zn equivariant symplectomorphisms of

pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq for a large class of Hamiltonian Zn actions.

Finally, in chapter 8 we outline potential research directions that emerge from the

thesis.



Chapter 2

Preliminaries

2.1 Hamiltonian actions

Definition 2.1.1. Let G be a Lie group acting symplectically on the symplectic manifold

pM,ωq. Let g denote the Lie algebra of G and g˚ be it’s dual. Given Y P g, we denote by

Y the fundamental vector field associated to Y . We say that the action is Hamiltonian

if it satisfies the following conditions

1. There exists a moment map µ : M Ñ g˚ such that dµppXpqpY q “ ωpX, Y q for all

X P TpM and Y P g.

2. This map µ is equivariant with respect to the G action on M and the coadjoint

action on g˚

Definition 2.1.2. A smooth action of a finite group G on pM,ωq is called Hamiltonian,

if there exists a group homomorphism ρ : G Ñ HampM,ωq where HampM,ωq denotes

the group of Hamiltonian diffeomorphisms of pM,ωq.

We then have the following theorems

Theorem 2.1.3. (Atiyah-Guillemin-Sternberg) Let pM,ωq be a symplectic manifold with

a Hamiltonian action of a torus Td on M . Then the image of the moment map µ is a

convex polytope of t˚ whose vertices are images of the fixed points of the torus action.

5



6 Chapter 2. Preliminaries

We call a Hamiltonian torus action toric if the torus acting is half the dimension of

the manifold M . When a manifold admits a toric action we have the following theorem.

Theorem 2.1.4. (Delzant [15]) Let Tn ˆ M2n Ñ M2n be a toric action on a 2n-

dimensional symplectic manifold pM2n, ωq, with momentum map µ. Then the moment

polytope µpMq determines the Hamiltonian space up to Tn-equivariant symplectomor-

phisms.

Y. Karshon proved in [25] an analogous equivariant classification for S1 action on

4-dimensional symplectic manifolds pM,ωq in which the moment map image is replaced

by labelled graphs. More precisely, given any Hamiltonian S1 action on a 4-manifold M ,

one can associate a labelled graph to the action as follows:

• Each component of the fixed point set corresponds to a unique vertex of the graph.

• Each vertex is labeled by the value of the moment map on the corresponding fixed

point component. If an extremal vertex corresponds to a symplectic surface S,

two additional labels are attached: the genus of that surface, and its normalized

symplectic area.

• Two vertices are connected by an edge if and only if the corresponding isolated

fixed points are connected by a Zk-sphere i.e by a S1 invariant sphere on which the

S1 acts by a global stabilizer Zk.

• Each edge is labelled by the isotropy weight k of the corresponding Zk sphere.

Just as Delzant polytopes classify toric actions up to symplectomorphisms, labelled

graphs classify Hamiltonian S1 actions.

Theorem 2.1.5. (Karshon [25]) The labelled graph determines the Hamiltonian circle

action and the manifold M up to S1-equivariant symplectomorphisms.

In particular, the classification tells that that it is not important to keep track of

the spheres with trivial isotropy and hence, these spheres do not appear in the labelled

graphs.
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2.1.1 Torus actions on S2 ˆ S2 and CP 2#CP 2

We would like to use the above theorems to understand all the possible Hamiltonian

circle actions on S2 ˆ S2 and CP 2#CP 2 and their relations to toric actions. To this

end, we first recall the Lalonde-McDuff classification of symplectic forms on S2ˆS2 and

CP 2#CP 2. We equip S2ˆS2 with the product symplectic form ωλ “ λσ‘σ, where λ ą 0

and σ is the standard area form on S2 normalized such that σpS2q “ 1. If we think of

S2ˆS2 as a trivial fiber bundle, ωλ gives area 1 to the fibers, while the area of horizontal

sections is λ. Similarly, if we view CP 2#CP 2 as the non-trivial S2 bundle over S2, we

define an analogous form ωλ which gives area 1 to the fibers and area λ´1 to symplectic

sections of self-intersection ´1, that is, to sections homologous to the exceptional divisor.

From an homological point of view, if F denotes the homology class of a fiber in either

S2ˆS2 or CP 2#CP 2, if B denotes the class of a section of self-intersection 0 in S2ˆS2,

if E denotes the class of the exceptional divisor in CP 2#CP 2, and if L denotes the class

of a line in CP 2#CP 2, then rωλsF “ 1, rωλsB “ λ, rωλsL “ λ and rωλsE “ λ ´ 1. We

can now state the Lalonde-McDuff classification theorem.

Theorem 2.1.6 (Lalonde-McDuff [29], Theorem 1.1). Any symplectic form on S2 ˆ S2

or CP 2#CP 2 is diffeomorphic to a constant multiple of ωλ with λ ě 1. Moreover, any

two cohomologous forms are diffeomorphic.

If we consider any Hamiltonian circle action on S2 ˆ S2 or CP 2#CP 2, the first

important result is an extension theorem due to Y. Karshon:

Theorem 2.1.7 (Karshon [26], Theorem 1). Any symplectic S1 action on pS2 ˆ S2, ωλq

and pCP 2#CP 2, ωλq extends to an Hamiltonian toric action.

To characterise all possible S1 action on pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq, we need

to first understand what the possible inequivalent toric actions on these spaces are. In

order to determine this we recall how Hirzebruch surfaces are defined.
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We define the Hirzebruch surface Wm as the complex submanifold of CP 1 ˆ CP 2

satisfying the equation

Wm :“
 

prx1, x2s , ry1, y2, y3sq P CP 1
ˆ CP 2

| xm1 y2 ´ x
m
2 y1 “ 0

(

The projection map CP 1 ˆ CP 2 ÝÑ CP 1 gives Wm the structure of a CP 1 bundle over

CP 1 which is diffeomorphic to S2 ˆ S2 if m is even and diffeomorphic to the non-trivial

S2 bundle over S2 i.e CP 2#CP 2 if m is odd. Thus, for each m we have an integrable

complex structure Jm induced on S2 ˆ S2 or CP 2#CP 2. We can endow CP 1 ˆ CP 2

with the symplectic form pλ´ m
2
qσ1‘σ2, where σ1 and σ2 are the standard Fubini-Study

forms on CP 1 and CP 2 respectively and restricting this symplectic form to Wm makes it

a symplectic manifold. We can analogously define the form pλ´ m`1
2
qσ1 ‘ σ2 when m is

odd. With these choices of symplectic forms, Wm is symplectomorphic to pS2 ˆ S2, ωλq

if m is even and pCP 2#CP 2, ωλq when m is odd.

The torus T2 acts on CP 1 ˆ CP 2 by setting

pu, vq ¨ prx1, x2s , ry1, y2, y3sq “ prux1, x2s , ru
my1, y2, vy3sq

This action leaves Wm invariant and preserves both the complex and the symplectic

structures. Its restriction to Wm defines a toric action that we denote T2
m. Its momentum

map is

µ pprx1, x2s , ry1, y2, y3sqq “

ˆˆ

pλ´ m
2
q|x1|

2

|x1|
2 ` |x2|

2
`m

|y1|
2

|y1|
2 ` |y2|

2 ` |y3|
2

˙

,
|y3|

2

|y1|
2 ` |y2|

2 ` |y3|
2

˙

When m is even, the image of the moment map is the polytope of Figure 2.1

Q “ p0, 1q

P “ p0, 0q

R “ pλ´ m
2
, 1q

S “ pλ` m
2
, 0q

B ´ m
2
F

FF

B ` m
2
F

Figure 2.1: Even Hirzebruch surface
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The labels above the edges in the above picture refer to the homology classes of the T2

invariant spheres in S2ˆS2. With our normalization, we have ωλpBq “ λ and ωλpF q “ 1.

Also the vertices P ,Q,R,S are the fixed points for the torus action.

Similarly, when m is odd, we have the following momentum map image

Q “ p0, 1q

P “ p0, 0q

R “ pλ´ m`1
2
, 1q

S “ pλ` m´1
2
, 0q

B ´ m`1
2
F

FF

B ` m´1
2
F

Figure 2.2: Odd Hirzebruch surface

where B now refers to the homology class of a line L in CP 2#CP 2 and F refers to the

class L´E where L is the class of the line and E is the class of the exceptional divisor.

We define the zero-section s0 to be

s0 : CP 1
Ñ Wm

rx1;x2s ÞÑ trx1, x2s, r0; 0; 1su

and the section at infinity s8 to be

s8 : CP 1
Ñ Wm

rx1;x2s ÞÑ trx1, x2s, rx
m
1 ;xm2 ; 0su

The curve s0 has homology class B´ m
2

in S2ˆS2 and B´ m`1
2

in CP 2#CP 2. Similarly,

the section s8 has homology class B ` m
2
F in S2 ˆ S2 and B ´ m`1

2
F in CP 2#CP 2.

Finally, the homology class F can be represented by a fixed fibre such as tr1, 0s, ry1, 0, y3su.

Since the action of T2
m is holomorphic with respect to the complex structure Jm, there

always exists holomorphic curves coming from the sections s0 and s8 in class B´ m
2

and
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B ` m
2
F in S2 ˆ S2 (and analogously in classes B ´ m`1

2
and B ´ m`1

2
F in CP 2#CP 2).

It follows from Delzant’s classification that any toric action on S2 ˆ S2 and CP 2#CP 2

is an action of the above form. In particular, we have the following lemma.

Lemma 2.1.8. Up to equivalence, the toric action T2
m is characterised by the existence

of an invariant, embedded, symplectic sphere Cm in class B ´ m
2
F with self intersection

´m.

Lemma 2.1.9. Write λ ě 1 as λ “ `` δ with ` an integer and 0 ă δ ď 1. Then, up to

symplectomorphisms and reparametrizations,

• there are exactly `` 1 inequivalent toric actions on pS2ˆS2, ωλq given by the even

Hirzebruch actions T2
2k with 0 ď k ď `, and

• there are exactly ` inequivalent toric actions on pCP 2#CP 2, ωλq given by the odd

Hirzebruch actions T2
2k`1 with 0 ď k ď `´ 1.

Proof. Write m “ 2k or m “ 2k ` 1 with k ě 0. As seen above, it follows from

Delzant’s classification that any toric action on S2ˆS2 and CP 2#CP 2 is T2-equivariantly

symplectomorphic to one of the actions T2
m. As there always exists a Jm-holomorphic

curve Cm in the class B ´ kF on S2 ˆ S2 which is Tm invariant (or equivalently a curve

Cm in the class L´pk` 1qF in CP 2#CP 2), and as this curve must always have positive

area, that is,

0 ă ωλpB´kF q “ λ´k “ ``δ´k or 0 ă ωλpL´pk`1qF q “ λ´pk`1qF “ ``δ´pk`1q

the result follows.

By Theorem 2.1.7 we know that every symplectic S1 action on S2ˆS2 and CP 2#CP 2

extends to an action of a torus T2
m. Equivalently, circle actions are given by embeddings

S1 ãÑ T2
m

t ÞÑ pta, tbq
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Consequently, any such Hamiltonian circle action corresponds to a unique triple of num-

bers pa, b;mq P ZˆZˆZě0. Since we are only interested in effective actions (i.e actions

with no global stabilizer), this translates numerically into the condition gcdpa, bq “ 1.

We shall always assume this unless otherwise stated.

Definition 2.1.10. We shall say a circle action S1pa, b;mq extends to a toric action T2
m1

if it is S1-equivariantly symplectomorphic to a circle action of the form S1pa1, b1;m1q.

Note that Theorem 2.1.7 does not give us how many tori a given symplectic circle

action on S2ˆS2 or CP 2#CP 2 extends to. We explore this question in the next chapter.

We shall now explore how the graphs for the circle actions S1pa, b;mq on Wm look

like. But before we do that we need to recall a few facts.

By the slice theorem applied to the fixed points, there exists a neighbourhood of

p which is equivariantly diffeomorphic with a neighbourhood of the origin in R4 with

the torus acting on R4 via real linear transformations. Fixing a T2 invariant compatible

almost complex structure J , the torus action on the tangent space at p acts as a subgroup

of the standard Up2q action on C2. By Schur’s Lemma, any unitary T2-representation

splits into a sum of 1-dimensional representations. Hence in a local model the action

looks like

pu, vq ¨ z1 “ uα
1
1vα

1
2z1

pu, vq ¨ z2 “ uα
2
1vα

2
2z2

where u, v P S1 and z1, z2 P C2 are eigen vectors. The vector ppα1
1, α

2
1q, pα

1
2, α

2
2qq in

Z2 ˆ Z2 are called the weights of the action at the fixed point. Note that the weights

are only well defined up to change in order of the tuples. To see that the weights up to

change in order of tuples are independent of the choice of T2 invariant almost complex
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structure J , we note that the weights define a continuous map from the space of T2

invariant compatible almost complex structures to the space of unordered integer tuples

ppZˆ Zq ˆ pZˆ Zqq {Z2 where Z2 acts on the pZˆ Zq ˆ pZˆ Zq as follows:

Z2 ˆ pZˆ Zq ˆ pZˆ Zq Ñ pZˆ Zq ˆ pZˆ Zq
`

´1,
`

pα1
1, α

2
1q, pα

1
2, α

2
2q
˘˘

Ñ
`

pα2
1, α

1
1q, pα

2
2, α

1
2q
˘

As the space of T2 invariant compatible almost complex structures is contractible, the

weights up to change in order of tuples are independent of the choice of J . If the point

p had weights pα1
1, α

1
2q and pα2

1, α
2
2q for the Tm action, then for the restricted S1pa, b;mq

action the weights up to change in order of the tuples are given by

`

aα1
1 ` bα

1
2, aα

2
1 ` bα

2
2

˘

We would now like to understand how the weight at a fixed point transforms under

the action of an equivariant symplectomorphism.

Lemma 2.1.11. Let pM,ωq be a symplectic manifold with a S1 Hamiltonian action with

momentum map µ. Then φ P SympS
1

pS2 ˆ S2, ωλq iff µ ˝ φ “ µ and φ P SymppM,ωq.

Proof. pðq Let X P R (where we think of R as the lie algebra of S1) and let X denote

the fundamental vector field associated to X. Since φ is a symplectomorphism preserving

µ, we have ωpdφ´1pXq, Y q “ φ˚ωpX, dφpY qq “ ωpX, dφpY qq “ dµpdφpY qq “ dµpY q “

ωpX, Y q for any vector field Y , which implies dφpXq “ X for all X P R. Consequently,

φ commutes with the action.

pñq Let ρ : S1 Ñ SymppM,ωq denote the action. Then φ´1 ˝ ρ ˝ φ “ ρ for all

φ P SympS
1

pS2 ˆ S2, ωλq. But if the action ρ is generated by a Hamiltonian Ht and has

momentum map µ then φ´1 ˝ ρ ˝ φ is generated by Ht ˝ φ
´1 and has momentum map

µ ˝ φ´1. But as the two actions are the same implies µ ˝ φ´1 “ µ` C for some constant

C. As S2 ˆ S2 is compact we can choose this constant to be 0.
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Corollary 2.1.12. Let φ be an S1-equivariant symplectomorphism. Then φ acts on the

fixed point set preserving the weights of the fixed points up to change of order of each

tuple.

Proof. Firstly we note that as the space of S1-invariant compatible almost structures J S1

ωλ

is contractible, the weights at a fixed point are independent of the choice of invariant

almost complex structure used to calculate them. Let p0 be a fixed point of the S1 action,

and choose an arbitrary J P J S1

ωλ
to calculate the weights of the S1 action at p0. Choose

φ˚J to calculate the weights at φpp0q. As φ is by definition holomorphic with respect to

the chosen almost complex structures, φ preserves the weights of the fixed points up to

change of order of each tuple

Remark 2.1.13. One can also prove the above theorem using Lemma 2.1.11 as follows.

Any S1 equivariant symplectomorphism φ takes one fixed point to another and, by Lemma

2.1.11, preserves the momentum map. By the local normal form theorem (Proposition

I.2.1 in [6]), the momentum map is determined by the weights in a neighbourhood of a

fixed point. If the weights at p are w1 and w2, then the momentum map is locally given

by w1|z1|
2 ` w2|z2|

2. This implies that the weights at a fixed point p and φppq have to be

the same up to change of order of each tuple.

From this and Table 2.1.1, we can construct the graphs of all S1pa, b;mq action on

pS2 ˆ S2, ωλq. We present a few of them below. The following graphs are for circles of

the form S1pa, b;mq with a ą 0, b ą 0 and m is even. The other cases are similar. When

the value for one of the labels on the edge is 1, then invariant sphere is free and we omit

that edge in the graphs.
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µ “ 1

µ “ 0

A “ λ´ m
2

A “ λ` m
2

(a) When pa, bq “ p0, 1q

m

R

S
µ “ λ` m

2

µ “ 0A “ 1

µ “ λ´ m
2

(b) When pa, bq “ p1, 0q

Figure 2.3: Graphs for circle actions with embedded surfaces in the fixed points set

Q

S

R

µ “ b` apλ´ m
2
q

µ “ apλ` m
2
q

µ “ b

P
b

a

a
b´ am

µ “ 0

(a) When b ą am and apλ` m
2 q ą b

b

a

a
am´ b

µ “ apλ` m
2
q

µ “ b

µ “ b` pλ´ m
2
qa

µ “ 0

Q

R

S

P

(b) When am ą b

µ “ b` apλ´ m
2
q

µ “ apλ` m
2
q

µ “ b

b
a

a
b´ am

µ “ 0

S

Q

R

P

(c) When b ą am and apλ` m
2 q ă b

µ “ b` apλ´ m
2
q

µ “ apλ` m
2
qµ “ b

b a

a b´ am

µ “ 0

SQ

R

P

(d) When b ą am and apλ` m
2 q “ b

Figure 2.4: Graphs for circle actions with no fixed surfaces
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Here the labels µ represents the value of the momentum map and A the area of

the fixed surface. All fixed surfaces have genus 0. For the above torus action on the

Hirzebruch surfaces, the isotropy weights at the fixed points are given in the following

table:

Weights at vertices

Vertex Weights for T2
m action Weights for the S1pa, b;mq action

P pp1, 0q, p0, 1qq pa, bq

Q pp1, 0q, p0,´1qq pa,´bq

R pp´1,mq, p0,´1qq p´a, am´ bq

S pp´1,´mq, p0, 1qq p´a,´am` bq

In turns, the weights at fixed points put strong restrictions on the graphs associated to

the circle actions.

Remark 2.1.14. The graph for the circle action S1p´1,´m;mq is given by

m

P

Q

µ “ λ` m
2

µ “ 0A “ 1

µ “ λ´ m
2

Figure 2.5: When pa, bq “ p´1,´mq

From the above graphs we notice that the action S1p1, 0;mq is S1-equivariantly sym-

plectomorphic to S1p´1,´m;mq. Similarly S1p´1, 0;mq is S1-equivariantly symplecto-

morphic to S1p1,m;mq.

2.2 J-Holomorphic Preliminaries

In order to investigate the homotopy type of the group of equivariant symplectomor-

phisms we shall use the theory of J-holomorphic curves. Before we begin, we shall
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recall a few facts about holomorphic curves and the space of compatible almost com-

plex structures in pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq. We present most of our results for

pS2 ˆ S2, ωλq, the case for pCP 2#CP 2, ωλq is analogous.

Definition 2.2.1 (Compatible almost complex structures). An almost complex structure

J on a symplectic manifold pM,ωq is said to be compatible with ω if ωpu, Juq ą 0 and

ωpJu, Jvq “ ωpu, vq for all non-zero u, v P T˚M .

Lemma 2.2.2. The space Jω “ J pM,ωq of all compatible almost complex structures on

a symplectic manifold pM,ωq is non-empty and contractible.

Definition 2.2.3. J-holomorphic spheres: Let pM,ωq be a symplectic manifold endowed

with a compatible almost complex structure J . A rational J-holomorphic map, also called

a parametrized J-holomorphic sphere, is a C8 map

u : pS2, jq ÝÑ pM,ω, Jq

satisfying the Cauchy-Riemann equation

B̄Jpuq “
1

2
pdu ˝ j ´ J ˝ duq “ 0

where j is the usual complex structure on the sphere. The image of a J-holomorphic

rational map is called a rational J-holomorphic curve or simply a J-curve.

Remark 2.2.4. A J-holomorphic map defines an integral homology class rus :“ u˚rS
2s P

H2pM,Zq.

Definition 2.2.5 (Multi-covered and simple maps). We say that a J-holomorphic map

u : CP 1 ÝÑ pM,Jq is multi-covered if u “ u1 ˝f , where f : CP 1 Ñ CP 1 is a holomorphic

map of degree greater than 1 and where u1 : CP 1 Ñ pM,Jq is a J-holomorphic map. We

call a J-holomorphic map simple if it is not multi-covered.

Remark 2.2.6. We usually assume that a J-holomorphic map is somewhere injective,

meaning that Dz P S2 such that duz ‰ 0 and u´1upzq “ z. In particular, somewhere

injective maps do not factor through multiple covers h : S2 Ñ S2.
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Definition 2.2.7 (Moduli spaces of J-holomorphic maps or curves). Let pM,ωq be a

symplectic manifold and let J P Jω. Given A P H2pM,Zq we denote by ĂMpA, Jq the

space of all J-holomorphic, somewhere injective maps representing the homology class A.

The Mobius group G “ PSLp2,Cq acts freely on this space by reparametrization and the

quotient space MpA, Jq :“ ĂMpA, Jq{G is called the moduli space of (unparametrised)

J-curves in class A.

In dimension 4, the geometric properties of J-holomorphic curves are, to a large

extend, controlled by homological data. As a result, many properties of complex algebraic

curves in complex algebraic surfaces extend to J-holomorphic curves in 4-dimensional

symplectic manifolds. Below we list some key properties of J-holomorphic curves we will

be relying on.

Theorem 2.2.8 (Positivity). Let pM,ωq be a 4-dimensional symplectic manifold. If a

homology class A P H2pM,Zq is represented by a nonconstant J-curves for some J P Jω

then ωpAq ą 0.

The following facts rely on well-known results about J-holomorphic curves in sym-

plectic 4-manifolds that we briefly recall for convenience. The proofs can be found in

[31], [24] and [21].

Theorem 2.2.9 (Fredholm property and automatic regularity). .Let pM,ωq be a 4-

dimensional symplectic manifold. Then the universal moduli space

ĂMpA,Jωq :“
ď

JPJω

ĂMpA, Jq

with C l-topology (l ě 2) is a smooth Banach manifold and the projection map

πA : ĂMpA,Jωq ÝÑ Jω

is a Fredholm map of index 2pc1pAq ` 2q where c1 P H
2pM,Zq is the first chern class

of pTM, Jq (note that the Chern class is independent of choice of J P Jω). An almost

complex structure is said to be regular for the class A if it is a regular value for the
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projection πA. If this is the case then the moduli spaces ĂMpA, Jq and MpA, Jq are

smooth manifolds of dimensions 2pc1pAq ` 2q and 2pc1pAq ´ 1q respectively. The set of

regular values J P Jω is a subset of second category and is denoted by J reg
ω pAq. If J P Jω

is integrable and S is an embedded J-holomorphic sphere with self-intersection number

rSs ¨ rSs ě ´1, then J is regular for the class rSs. In dimension 4, the same conclusion

holds without the integrability assumption.

Definition 2.2.10 (Cusp Curves). Let pM,ωq be a symplectic manifold. Let J P Jω. A

J-holomorphic cusp curve C is a connected finite union of J-holomorphic curves

C “ C1 Y C2 . . .Y Ck

where Ci “ uipCP 1q and ui : CP 1 Ñ pM,Jq is a (possibly multi-covered) J-holomorphic

map.

Theorem 2.2.11 (Gromov’s compactness theorem). Let pM,ωq be a compact symplectic

manifold. Let Jn P Jω be a sequence converging to J in the C8 topology and let Si be

Ji-holomorphic spheres of bounded symplectic area ωpSiq. Then there is a subsequence of

the Si which converges weakly to a J-holomorphic curve or cusp-curve S. In particular

if all the Si’s belong to the class A, then S also belongs the class A, and any cusp curve

defines a homological decomposition of A “
ř

iAi such that ωpAiq ą 0.

Theorem 2.2.12 (Positivity of intersections). Let J P Jωλ and A, B be two distinct

J-holomorphic curves in a 4-dimensional manifold. Then they intersect at only finitely

many points and each point contributes positively to the intersection multiplicity rAs ¨rBs.

Moreover, rAs ¨ rBs “ 1 iff the curves intersect transversally at exactly one point, while

rAs ¨ rBs “ 0 iff the curves are disjoint.

As a corollary of Positivity of intersections we have the following result under the

presence of a group action.

Corollary 2.2.13. Let pM,ωq be a symplectic 4-manifold and let G be a compact Lie

group acting symplectically on M . Suppose that G acts trivially on homology. Let JG
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denote the space of ω tame (or compatible) almost complex structures and let C be a J

holomorphic curve for some J P J G. Then,

1. if C has negative self intersection, then g ¨ C “ C for all g P G.

2. If C has zero self intersection, then g ¨ C “ C or g ¨ C X C “ H for all g P G.

Theorem 2.2.14 (Adjunction formula). Let u : pS2, jq ÝÑ pM4, Jq be a somewhere

injective J-holomorphic map representing the homology class A in a 4-dimensional man-

ifold. Define the virtual genus of A as

gvpAq “ 1`
1

2
prAs ¨ rAs ´ c1pAqq

where c1pAq “ xc1pTM, Jq, Ay. Then gvpAq ě 0 with equality if, and only if, the map u

is an embedding.

2.3 J-holomorphic spheres in S2 ˆ S2 and CP 2#CP 2

For most symplectic 4-manifolds equipped with a generic compatible almost complex

structure J , there are relatively few J-holomorphic spheres. But for symplectic 4-

manifolds with b`2 “ 1, like CP 2, S2 ˆ S2 and their k-fold blow-ups, the spaces of

J-holomorphic spheres have a very rich structure. For S2 ˆ S2 and CP 2#CP 2 it is pos-

sible to study the J-holomorphic spheres in detail. We will show how the existence of

certain J-holomorphic spheres induces a natural partition of the space Jω. We present

the analysis for pS2 ˆ S2, ωλq. Using similar techniques as outlined below we can prove

analogous results for pCP 2#CP 2, ωλq as well. Hence we present the theorems without

any proof in the case of pCP 2#CP 2, ωλq.

Recall that we defined the homology classes B “ rS2ˆt˚us and F “ rt˚uˆS2s. With

our normalization, we have ωλpBq “ λ and ωλpF q “ 1. For S2 ˆ S2 it is easily seen that

the class rBs and rF s generate the homology.
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Proposition 2.3.1. Let A “ arBs`brF s P H2pS2ˆS2,Zq be represented by a somewhere

injective J-holomorphic sphere for some J P Jω. Then exactly one of the following is

true

1. a, b ě 2,

2. a “ 1 and b ą ´λ,

3. b “ 1 and a ě 0.

Proof. By the adjunction formula we have that

0 ď gvpAq “ 1`
1

2
pA ¨ A´ c1pAqq “ 1`

1

2
p2ab´ a´ bq “ pa´ 1qpb´ 1q

Also, as A is J-holomorphic, we must have
ş

A
ω “ λa` b ą 0. Putting these conditions

together yields the required result.

Corollary 2.3.2. Let λ “ l ` δ where l P N and 0 ă δ ď 1. Then we have

1. Any J-holomorphic representative of the class F is a simple curve.

2. The only J-holomorphic decomposition of the class B are of the form B “ pB ´

kF q`kF , where 0 ď k ď `. In this decomposition, the J-holomorphic representative

of the class pB´kF q is an embedded sphere, while the class kF may be represented

by a collection of (possibly multiply covered) spheres representing multiples of the

class F .

Proof. Suppose rF s decomposes as
ř

imirCis where Ci are somewhere injective J-curves.

Let rCis “ airBs ` birF s. Suppose there exists i such that ai ‰ 0, Without loss of gener-

ality, we can assume ai ě 0 and hence we must have a j ‰ i such that aj ď 0. But that

is impossible due to positivity as in Proposition 2.3.1.

Suppose rBs “
ř

imirCis where Ci are somewhere injective J-curves and let rCis “

airBs`birF s as above. Suppose there exists i such that bi ‰ 0, Without loss of generality,
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we can assume bi ě 0 and hence we must have a j ‰ i such that bj ď 0. By proposi-

tion 2.3.1, we have that 0 ě bj ą ´λ. So we have rBs “ rB ´ bjF s `
ř

i‰jmirCis. But

then
ř

i‰jmirCis must be equal to bjrF s. But as rF s is indecomposable we have that the

only decomposition for bjrF s “
ř

i qirF s where
ř

i qi “ bj. Thus the only J-holomorphic

decompositions of the class B are of the form B “ pB´kF q`kF . Finally, the adjunction

formula 2.2.14 implies that the pB ´ kF q representative must be embedded.

Proposition 2.3.3. Let F be the class of a fiber. Then the moduli space of J-holomorphic

maps ĂMpF, Jq is either empty or a smooth manifold of dimension 8. The moduli space

MpF, Jq of J-holomorphic curves is always compact.

Proof. As c1pF q “ 2 ě 1, automatic regularity in dimension 4 (Theorem 2.2.9) implies

that, for all J P Jω, ĂMpF, Jq is a (possibly empty) smooth manifold. The expected

dimension can then be calculated using the index theorem. In general the dimension of

the moduli space ĂMpA, Jq for generic J is given by the formula pn ´ 3q2 ` 2c1pAq ` 6,

where n is half the dimension of the ambient manifold. Plugging in the numbers in our

case we get dim ĂMpF, Jq “ 8 whenever it is non-empty. Thus we only need to show that

MpF, Jq “ ĂMpF, Jq{G is compact.

Let un P ĂMpF, Jq be a sequence of curves. By Gromov compactness we know that

there is a subsequence of un (which we again denote by un itself for brevity) that either

converges to a cusp curve or to a C8J-curve. Suppose it converges to a cusp curve.

Then the class F would decompose as F “ A1 ` . . . An, n ě 2, which is impossible

by Theorem 2.3.2. Hence the sequence un converges to an honest J-curve in MpF, Jq,

proving compactness. Note that the curve that un converges to is only defined up to

reparametrization and hence is a well defined element of MpF, Jq.

Proposition 2.3.4. Given a point p P pS2 ˆ S2, ωλq and any almost complex structure

J P Jωλ such that ĂMpF, Jq ‰ H, there exists a unique unparametrised J-curve in the

class F passing through p.
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Proof. We will show that the the evaluation map

evpF,Jq : ĂMpF, Jq ˆPSLp2;Cq S
2
Ñ S2

ˆ S2

pu, zq ÞÑ upzq

is a diffeomorphism.

The evaluation map is injective: Suppose evpF,Jqpu, zq “ evpF,Jqpu
1, z1q then the images

of u and u1 intersect at a point.As both u and u1 represent the class F , and as F ¨F “ 0,

by Positivity of intersections (Theorem 2.2.8) the images of u and u1 must coincide i.e

there exists an element φ P PSLp2, Cq such that u1 “ u ˝ φ.

Further it can be shown through explicit calculations (see page 312 in [31]) that DevJ

is surjective at all points and that evJ is a proper map.

Also we note that the

• dimension of ĂMpF, Jq “ 8 (As ĂMpF, Jq ‰ Hq

• dimension of PSLp2, Cq “ 6

• dimension of S2 “ 2

Thus we have ĂMpF, JqˆPSLp2;CqS
2 “ 8`2´6 “ 4 “ dimension of S2ˆS2. Hence we

have that evJ is smooth proper submersion between 2 manifolds of the same dimension.

By Ehresmann’s fibration theorem we have that evJ is a diffeomorphism, which concludes

the proof of the proposition.

Proposition 2.3.5. The moduli space ĂMpF, Jq ‰ H for all J P Jω. In particular,

for every compatible almost complex structure J P Jωλ, and for any given point p P

S2ˆS2, there is a unique embedded J-holomorphic sphere representing the class F passing

through p.

Proof. Let J0 “ j0 ˆ j0 be the standard split complex structure on S2 ˆ S2 and let

J1 P Jω be an arbitrary compatible almost structure. Consider a path Jt from J0 to J1.
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Let S “ tt P r0, 1s | ĂMpF, Jtq ‰ Hu. To show S is open in r0, 1s, we proceed as follows.

Suppose there exist t0 such that Jt0 P S. By automatic regularity (Theorem 2.2.9), as

F ¨ F “ 0 ą ´1 we can conclude that there exists a open neighbourhood N around t0

such that for all t P N , ĂMpF, Jtq ‰ H.

Next we show S is a closed set in r0, 1s. Consider a sequence tn ÝÑ t, tn P S. This

implies that there exist Jt-holomorphic curves ut representing the homology class F . As

Jtn converges to Jt Gromov compactness theorem (Theorem 2.2.11) implies that there is

a subsequence(which we denote again by un for brevity) that converges either to a cusp

curve or to an honest J-holomorphic curve which we denote by u. However, by Theorem

2.3.2 we conclude that it cannot converge to a cusp curve. Consequently the limit curve

u is an honest Jt holomorphic curve showing that MpF, Jtq is non-empty and hence S is

closed.

As r0, 1s is connected and as 0 P S we conclude that S “ r0, 1s, thus proving the

theorem. The uniqueness follows from Positivity of intersection (Theorem 2.2.8).

We also have an analogous result for pCP 2#CP 2, ωλq.

Theorem 2.3.6. Given any point p P CP 2#CP 2, and any J P J S1

ωλ
, there is a J-

holomorphic curve in the class F passing through p.

The following Theorem due to Abreu and McDuff [4] tells us about the decomposition

of the space of compatible almost complex structures on pS2ˆS2, ωλq into finitely many

strata.

Theorem 2.3.7. Let Jωλ denote the space of all compatible almost complex structures

(not necessarily invariant) for the form ωλ, on S2ˆS2 then the space Jωλ admits a finite

decomposition into disjoint Fréchet manifolds of finite codimensions

Jωλ “ U0 \ U2 \ U4 . . .\ U2n
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where 2n “ r2λs´ 1 and rλs is the unique integer l such that l ă λ ď l ` 1 and where

Uk :“

"

J P Jωλ |
ˆ

B ´
k

2
F

˙

P H2pS
2
ˆ S2,Zq is represented by a J-holomorphic sphere

*

A completely analogous description holds true for CP 2#CP 2.

Theorem 2.3.8. Let Jωλ denote the space of all compatible almost complex structures

(not necessarily invariant) for the form ωλ, then the space Jωλ admits a finite decompo-

sition into disjoint Fréchet manifolds of finite codimensions

Jωλ “ U1 \ U3 \ U5 . . .\ U2n´1

where 2n “ r2λs´ 1, and rλs is the unique integer l such that l ă λ ď l ` 1 and where

Uk :“

"

J P Jωλ |
ˆ

B ´
k ` 1

2
F

˙

P H2pS
2
ˆ S2,Zq is represented by a J-holomorphic sphere

*

Remark 2.3.9. We label the strata in S2 ˆ S2 and CP 2#CP 2, by the homological self-

intersection of the classes B ´ kF or L´ pk ` 1qF .

Remark 2.3.10. We note that for both S2 ˆ S2 and CP 2#CP 2, there is a canonical

integrable almost complex structure Jm in the strata Um coming from realizing S2 ˆ

S2 and CP 2#CP 2 as the mth- Hirzebruch surface Wm of section 1.2. Further recall

that associated to each Jm we have a unique Jm-holomorphic Hamiltonian toric action

Tm. Thus the set of possible equivalence classes of toric actions (up to T2 equivariant

symplectomorphisms) on S2 ˆ S2 and CP 2#CP 2 are in one-to-one correspondence with

the strata in the decomposition of Jωλ. This fact will be crucial in our later analysis of

centralizer subgroups.

Theorem 2.3.11 (see [31]). Consider M “ pS2 ˆ S2, ωλq and the classes B “ S2 ˆ pt

and F “ ptˆ S2. Then for any J P U0 the map

Ψ : ĂMpB, Jq{PSLp2,Cq ˆ ĂMpF, Jq{PSLp2,Cq ÝÑ S2
ˆ S2

prus, rvsq ÞÝÑ imrus X imrvs

is a diffeomorphism.
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Proof. By proposition 2.3.5, we know that for every J P U0, and for any point p P S2ˆS2,

there exist a unique J-holomorphic sphere passing through p in each of the classes B and

F . Hence, the map Ψ is bijective and its inverse can be written as

Ψ´1
“ pπB ˆ πF q ˝ pevpB,Jq ˆ evpF,Jqq

´1
˝∆

where

πB : ĂMpB, Jq ˆPSLp2;Cq S
2
ÝÑ ĂMpB, Jq{PSLp2;Cq

is the usual projection map (and similarly for πF ), and where ∆ : M ÝÑ M ˆM is

the diagonal inclusion. We can compute the differential explicitly to conclude, using the

inverse function theorem, that the map Ψ is indeed a diffeomorphism.

Remark 2.3.12. For J P U0, let uw denote the J-curve in the class B through p0, wq P

pS2 ˆ S2, ωλq and vz denote the J-curve in the class F through pz, 0q and let G “

PSLp2, Cq. It can be shown that the map

S2
Ñ ĂMpB, Jq{G

w ÞÑ uw

is a diffeomorphism (and similarly for ĂMpF, Jq{G). Thus we can show that the map

Ψ̃ : S2
ˆ S2

ÝÑ S2
ˆ S2

pz, wq ÞÝÑ uw X vz

is a diffeomorphism.
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Action of SympS
1
pS2 ˆ S2, ωλq on J S1

ωλ

In this chapter we show that the space J S1

ωλ
can be decomposed into strata each of which

being homotopy equivalent to a homogeneous space under the action of the equivariant

symplectomorphism group. In the following sections, apart from a few general observa-

tions, we shall only deal with the case of the product pS2 ˆ S2, ωλq. The case of the

non-trivial bundle pCP 2#CP 2, ωλq is postponed to Chapter 6.

3.1 Intersection of J S1
ωλ

with the strata

In this section we fix a circle action on pS2 ˆ S2, ωλq, and use Karshon’s classification

of circle actions to determine which strata that the space of invariant almost complex

structures J S1

ωλ
intersects.

In what follows, we will use the following simple observation several times. Let pM,ωq

be a simply connected symplectic 4-manifold. There is a left-exact sequence

1 Ñ SymphpM,ωq Ñ SymppM,ωq Ñ Autc1,ω pH2pM,Zqq (3.1)

where SymphpM,ωq is the subgroup of symplectomorphisms acting trivially on homology,

and where Autc1,ωλ pH2pM,Zqq is the group of automorphisms of H2pM,Zq that preserve

the intersection product and the Poincaré duals of the cohomology classes c1pTMq and

26
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rωλs. This later group is the identity for pCP 2#CP 2, ωλq with λ ě 1 and for pS2ˆS2, ωλq

with λ ą 1. In the case of pS2 ˆ S2, ωλq with λ “ 1, the group Autc1,ωλ pH2pM,Zqq is

equal to Z2 and is generated by the symplectomorphism that swaps the two S2 factors.

Consequently, for any symplectically ruled rational surface, the above sequence is also

right-exact and splits.

Lemma 3.1.1. We have the following equalities among symplectomorphism groups:

• SymppS2 ˆ S2, ωλq “ SymphpS
2 ˆ S2, ωλq ˙ Z2 when λ “ 1,

• SymppS2 ˆ S2, ωλq “ SymphpS
2 ˆ S2, ωλq when λ ą 1, and

• SymphpCP 2#CP 2, ωλq “ SymppCP 2#CP 2, ωλq for all λ ě 1.

3.1.1 The case J S1

ωλ
intersects only one strata

Proposition 3.1.2. Suppose λ “ 1. Then the space Jω1 of compatible, almost-complex

structures on pS2 ˆ S2, ω1q is made of only one stratum. In particular, any Hamiltonian

circle action extends to the toric action T2
0 and the subspace J S1

ωλ
of S1 invariant almost-

complex structures is contractible.

Proof. This follows directly from Theorem 2.3.7 and Remark 2.3.10.

We use the following lemmas in order to calculate the self intersection and area of

invariant spheres for a given S1 action.

Lemma 3.1.3 (Lemma 5.4 in [25]). Let S1 act on S2 by rotating it k times while fixing

the north and south poles. Suppose that the action lifts to a complex line bundle E over

S2. Then S1 acts linearly on the fibers over the north and south poles; let m and n be

the weights for these actions. Then

m´ n “ ´ek

where e is the self intersection of the zero section.
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Lemma 3.1.4. Let S1 act on S2 by rotating it k times while fixing the north and south

poles. Let µpnq denote the value of the momentum map at the north pole and µpsq the

value of the momentum map at the south pole. Then the symplectic area of the S2 is

given by µpnq´µpsq
k

.

Hence given the weights of the circle action S1pa, b;mq we can calculate the self-

intersection and symplectic area of the invariant spheres that appear in the graph as-

sociated to the action. As any homology class in pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq is

determined by their self intersection and area the formulae in Lemmas 3.1.3 and 3.1.4

determine the homology class of the invariant curve.

Theorem 3.1.5. Suppose λ ą 1. Consider an S1pa, b;mq action. Under the following

numerical conditions on a, b,m, λ, the space J S1

ωλ
intersects only the stratum Um:

• when a ‰ ˘1;

• when a “ ˘1 and b P t0,˘mu;

• when a “ ˘1 and 2λ ď |2b´m|.

Proof. As λ ą 1, given an S1pa, b;mq action, it suffices to understand the self intersection

and symplectic area – hence the homology class – of the S1 invariant symplectic spheres

in order to characterise which strata J S1

ωλ
intersects. There are two subcases to consider.

Case1: The circle action has no fixed surfaces: Under the condition that there are no

fixed surfaces, the three families of circle actions considered in the theorem correspond to

the graphs in Figure 2.4. If the action has only isolated fixed points, then any S1 invariant

sphere passes through two of the four fixed points P ,Q,R,S. Thus from the calculation

of weights at the 4 fixed points given in Table 2.1.1 and the formula in Lemma 3.1.3 we

can determine the self intersection of all possible S1 invariant curves. In particular, when

m ‰ 0, we conclude that the above S1 actions admit a unique invariant sphere C with

negative self-intersection ´m. Also, if m ‰ 0, by the same reasoning we can see that it

is not possible to have an invariant curve in the homology class B in these graphs, thus
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showing that J S1

ωλ
doesn’t intersect the stratum to U0. Finally, if m “ 0, we see that

there is no invariant curve with negative self intersection. Therefore, the only stratum

J S1

ωλ
intersects is Um.

Case2: If the circle action has a fixed surface: This corresponds to the circle actions

with graphs in Figure 2.3. As the action is effective, the weights at any point on the

fixed surface are p0,˘1q. Thus we can argue as in case 1 to conclude the proof of the

theorem.

3.1.2 The case when J S1

ωλ
intersects two strata

The only cases left to investigate are the circle actions of type S1pa, b;mq where the

parameters a, b, and λ satisfy

• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.

Let us first investigate the case (i) in the subcase b ą m. Under these conditions on

a, b, m and λ, the graph for the circle action S1p1, b;mq is given in Figure 2.4 (A) in

which the edges labelled ”a” are removed. Similarly, when b ą m, we see that the

graph associated to the circle action S1p1, b; 2b´mq Ă T2
2b´m is given in Figure 2.4 (B),

with the two edges labelled ”a” removed. In both cases, we obtain the labelled graph of

Figure 3.1 below, proving that the actions S1p1, b;mq and S1p1, b; 2b´mq are equivariantly

symplectomorphic. Consequently, when a “ 1, b ‰ t0,mu, 2λ ą |2b ´m|, and b ą m,

the circle action S1pa, b;mq admits two distinct toric extensions, namely T2
m and T2

2b´m.
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b

b´m

µ “ b` λ´ m
2

µ “ b

µ “ λ` m
2

µ “ 0

Figure 3.1: Graph for the circle action S1p1, b;mq with b ‰ t0,mu

In the two other subcases b ă 0 or 0 ă b ă m, a similar argument can be used to

show the existence of two toric extensions in case (i). We summarise the results in the

following theorems.

Theorem 3.1.6. Consider the S1 actions S1p1, b;mq on pS2ˆS2, ωλq and suppose 2λ ą

|m ´ 2b|. Then under the following numerical conditions on b and m, the S1p1, b;mq

action extends to the toric action T2
|m´2b| and is equivariantly symplectomorphic to the

following subcircle in T2
|m´2b| :

1. if b ą 0 and b ą m, then S1p1, b;mq is equivalent to S1p1, b; |m´ 2b|q;

2. if b ą 0, m ą b, and 2b´m ă 0, then S1p1, b;mq is equivalent to S1p1,´b; |m´2b|q;

3. if b ą 0, m ą b, and 2b´m ą 0, then S1p1, b;mq is equivalent to S1p1, b; |m´ 2b|q;

4. finally, if b ă 0, then S1p1, b;mq is equivalent to S1p1,´b; |m´ 2b|q.

A completely similar discussion applies in the case (ii), namely, when a “ ´1, b ‰

t0,´mu, and 2λ ą |2b`m|. The details are left to the reader.

Theorem 3.1.7. Consider the S1 actions S1p´1, b;mq on pS2ˆS2, ωλq and suppose 2λ ą

|m ` 2b|. Then under the following numerical conditions on b and m, the S1p´1, b;mq

action extends to the toric action T2
|m`2b| and is equivariantly symplectomorphic to the

following subcircle in T2
|m`2b| :
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1. if b ă 0 and m ą ´2b, then S1p´1, b;mq is equivalent to S1p´1,´b; |m` 2b|q;

2. if b ă 0, m ą ´b, and ´2b ą m, then S1p´1, b;mq is equivalent to S1p´1, b; |m `

2b|q;

3. if b ă 0 and ´b ą m, then S1p´1, b;mq is equivalent to S1p´1, b; |m` 2b|q;

4. if b ą 0, then S1p´1, b;mq is equivalent to S1p´1,´b; |m` 2b|q.

Example 3.1.8. Consider the circle actions of the form S1p1, b;mq with b ą m. Under

these conditions, there are no surfaces fixed under the S1 action. We shall try to see

the homology classes of the invariant spheres between the isolated fixed points P ,Q,R,S

in this case. The graph for the circle action S1p1, b;mq with b ą m can be obtained by

setting the edges labelled ”a” in Figure 2.4(A). As b ą m is equivalent to the condition

2b´m ą b, the graph of the circle action S1p1, b; 2b´mq can be obtained by setting the the

edges labelled ”a” in in Figure 2.4(B). In order to highlight the different configurations

of the invariant sphere for the two actions, we present the graphs along with the free

invariant spheres for the circle action S1p1, b;mq and S1p1, b; 2b´mq respectively below.

Q

S

R

µ “ b` pλ´ m
2
q

µ “ pλ` m
2
q

µ “ b

P
b

1

1
b´m

µ “ 0

(a) S1p1, b;mq with b ą m

b

1

1
b´m

µ “ λ` p2b´m
2
q “ b` λ´ m

2

µ “ b

µ “ λ` m
2

µ “ 0

Q

R

S

P

(b) S1p1, b; 2b´mq with b ą m

and the weights at the four fixed points are given by
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Vertex Weights for the S1p1, b;mq action

P p1, bq

Q p1,´bq

R p´1,m´ bq

S p´1,´m` bq

By Theorem 3.1.6 we know that the two actions are equivariantly symplectomorphic.

Let us denote the symplectomorphism by φ. By Corollary 2.1.12 and the above table we

see that the equivariant symplectomorphism φ satisfies φpP q “ P , φpQq “ Q , φpRq “ S

and φpSq “ R. Hence the invariant sphere between Q and R in Figure 3.2b is taken to

an invariant sphere between Q and S in Figure 3.2a.

Using the formulae in Theorems 3.1.3 and 3.1.4, we can calculate the homology class

of invariant curves that pass through the fixed points P , Q, R and S.

In particular we have

Pair of vertices Self intersection of

the curve that passes

through the given

vertices

Area of the

curve

Homology class of

curve

(P,Q) 0 1 F

(Q,R) ´m λ´ m
2

B ´ m
2
F

(R,S) 0 1 F

(S,P) m λ` m
2

B ` m
2
F

(P,R) ´p2b´mq λ´ 2b´m
2

B ´
`

2b´m
2

˘

F

(Q,S) 2b´m λ` 2b´m
2

B `
`

2b´m
2

˘

F

We shall now use the above theorems to understand how many strata the space of

S1p˘1, b,mq compatible almost complex structures J S1

ωλ
intersects.

Fix an action of the form S1p˘1, b;mq. Assume 2λ ą |2b ´ m| if the action is of

the form S1p1, b;mq or 2λ ą |2b ` m| if the action is of the form S1p´1, b;mq. We
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know by Theorem 3.1.6 that the S1p1, b,mq action is equivariantly symplectomorphic

to S1p1, b1,m1q (where b1 “ ˘b and m1 P t|2b ´ m|, |2b ` m|u depending on the numer-

ical condition as given in Theorems 3.1.6 and 3.1.7). Let Jm and Jm1 be the standard

integrable complex structures on S2 ˆ S2 (as introduced in Chapter 1) which are equiv-

ariant under the S1p1, b;mq and S1p1, b1;m1q action. Let pS2 ˆ S2qm denote S2 ˆ S2

endowed with the action S1p1, b;mq and similarly let pS2ˆS2qm1 denote S2ˆS2 endowed

with the action S1p1, b1,m1q. Then Theorem 3.1.6 tell us that there is a S1 equivariant

symplectomorphism φ : ppS2 ˆ S2qm, ωλq Ñ ppS2 ˆ S2qm1 , ωλq.

Theorem 3.1.9. Consider the S1p˘1, b,mq action on pS2ˆS2, ωλq, then J S1

ωλ
intersects

exactly two strata. More precisely,

1. if a “ 1, b ‰ t0,mu, λ ą 1, and 2λ ą |2b ´ m|, then the space of S1p1, b;mq-

equivariant almost complex structures J S1

ωλ
intersects the two strata Um and U|m´2b|.

2. If a “ ´1,b ‰ t0,´mu, λ ą 1, and 2λ ą |2b `m|, then the space of S1p´1, b;mq-

equivariant almost complex structures J S1

ωλ
intersects the two strata Um and U|m`2b|.

Proof. We shall present the proof only in case one, the proof in the second case being

similar. Consider the almost complex structure φ˚J2b´m :“ φ˚ ˝ J|2b´m| ˝ φ
´1
˚ , where

φ : ppS2ˆS2qm, ωλq Ñ ppS2ˆS2q|2b´m|, ωλq is the equivariant symplectomorphism as de-

fined above. We can check that φ˚J2b´m is invariant with respect to the S1p1, b;mq action.

Let D|2b´m| be the standard J|2b´m|-holomorphic curve in the class B´ |2b´m|
2

F which

is invariant under the S1p1, b1; |2b ´ m|q action. By Lemma 3.1.1, when λ ą 1, the

group SymphpS
2 ˆ S2, ωλq is equal to SymppS2 ˆ S2, ωλq. Thus the symplectomorphism

φ preserves homology. In particular we have that φ´1pD|2b´m|q is holomorphic with re-

spect to the integrable complex structure φ˚J|2b´m| and invariant under the S1p1, b;mq

action. Finally as φ preserves homology we have that φ´1pD|2b´m|q is also in the homol-

ogy class B ´ |2b´m|
2

F . This shows that φ˚J|2b´m| P J S1

ωλ
X U|2b´m|. Finally we note that
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Jm P J S1

ωλ
X Um, thus proving the J S1

ωλ
intersects the strata Um and U|2b´m|.

We now prove that these are the only strata that J S1

ωλ
intersects. Suppose J S1

ωλ
XUk ‰

H for k R tm, |2b´m|u, then there exists an S1p1, b;mq invariant curve in the class B´ k
2
F .

Note that any invariant sphere must pass through two of the four fixed points P ,Q,R and

S. Further, by Theorem 3.1.3, the calculation of weights and the moment map values

at the fixed points determine the homology class of the invariant curve passing through

the fixed points. Arguing as in Example 3.1.8 we conclude that the homology class of

an invariant curve connecting any two of the 4 fixed points must be either B ´ m
2
F ,

B ´ |m´2b|
2

F , F , B ` m
2
F , or B ` |m`2b|

2
F . Hence we can conclude the such an invariant

curve in the class B ´ k
2
F for k R tm, |2b´m|u cannot exist. This completes the proof.

3.2 Symplectic actions of compact abelian groups

on R4

In order to study the action of the the equivariant symplectomorphism group SympS
1

h pS
2ˆ

S2, ωλq on each invariant stratum J S1

ωλ
X Uk, we will need to understand the equivari-

ant topology of linearised symplectic actions. In this section, we consider an arbitrary

compact abelian group G. The following two theorems were proven by W.Chen in the

manuscript [11]. As this paper was never published, we shall reproduce their proof here.

Let G be an abelian group acting effectively and symplectically on C2 “ R4 with the

symplectic form ω0 :“ dx1 ^ dy1 ` pdx2 ^ dy2q. We say it acts linearly if it acts as a

subgroup of Up2q Ă Spp4q. As G is abelian, the representation G ãÑ Up2q decomposes

into irreducible complex 1 dimensional representations.

Theorem 3.2.1. Let G be a compact abelian group acting linearly on pR4, ω0q. Suppose

V is a G invariant compact star shaped neighbourhood of 0. Let f : R4zV Ñ R4 be a
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G-equivariant symplectic embedding which is the identity near infinity. Then, for every

G-invariant neighbourhood W of V , there exists a G-equivariant symplectomorphism g :

R4 Ñ R4 such that g|R4zW “ f .

Proof. As 0 P intpV q and as f is the identity near infinity, there exist T ą 0 such that

fpTxq “ Tx for all x P R4z V . Define ftpxq “
fptxq
t

for 1 ď t ď T . Then we observe

that as the G action is linear, ft is equivariant for all t P r1, T s, f1 “ f , fT “ id and

f˚t ω0 “ ω0 for all t. Thus there are compact sets Vt “ ftpV q and open neighbourhoods

Wt “ ftpW q of Vt such that the restriction ft : R4zV Ñ R4zVt and ft : R4zW Ñ R4zWt

are diffeomorphic. As G acts linearly, each of the sets Wt and Vt are G-invariant.

Define Xt as the vector field that satisfies d
dt
ft “ Xt ˝ ft and consider the one form

αt “ iXtω0. As ft is G equivariant, both Xt and αt are G-equivariant. Let Ht : R4zVt Ñ R

be a one parameter family of Hamiltonians that are G-invariant and that satisfy αt “ dHt.

Note that as ft is the identity near infinity, this implies that Ht is constant near infinity

and we can take this constant to be 0.

Finally we can take a family of G-invariant bump functions ρt : R4 Ñ r0, 1s such

that ρt ” 0 in a neighbourhood of Vt and ρt ” 1 on R4zWt. Then the Hamiltonian

ρtHt : R4 Ñ R is defined on the whole R4 and is also G-invariant. The Hamiltonian

isotopy gt generated by ρtHt is G equivariant for all 1 ď t ď T and satisfies the properties

gT “ id and g1|R4zW “ f . Thus g1 is the required symplectomorphism g in the statement

of the theorem.

Theorem 3.2.2. Let pV, ωq be a compact star shaped open neighbourhood of the origin

and let ω be such that ω “ ω0 near the boundary of V . Let G be a compact abelian group

acting on pV, ωq via symplectomorphisms that are linear near the boundary of V. Then the

G action is conjugate to a linear symplectic action of G on pV, ω0q by a diffeomorphism

Φ which is the identity near the boundary and which satisfies Φ˚ω “ ω0.
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Proof. Identify R4 with C2. The linear action near BV extends to a unitary action on

R4. As G is abelian this linear action splits into two eigenspaces namely C‘C. Fix the

above decomposition of C2. Then we can compactify each eigenspace C to an S2 and

hence this G action extends to a symplectic action S2 ˆ S2 with respect to the form ω̃

induced by ω. Similarly lets denote by ω̃0 the form induced on S2 ˆ S2 by ω0. S2 ˆ S2

comes equipped with two actions of G namely ρ : G ãÑ SymppS2 ˆ S2, ω̃q which is the

action coming from extending the G action on V and ρlin : G ãÑ SymppS2 ˆ S2, ω̃q which

is the extension of the linear G action on C2 to S2 ˆ S2. Note that there exists a star

shaped subset V1 Ă V such that both the action ρ and ρlin agree on C2zV1.

The point at infinity p :“ p8,8q is a fixed point for both the action ρ and ρlin. We

then fix a ω̃ compatible G-invariant almost complex structure on S2 ˆ S2 such that J is

the standard almost complex structure in a neighborhood Xε :“ pS2 ˆDεq Y pS
2 ˆDεq

of the wedge pS2 ˆ t8uq _ pt8u ˆ S2q Ă S2 ˆ S2 (where Dε is thought of as a small

ball around p of radius epsilon). As pS2ˆ t8uq and pt8uˆ S2q are holomorphic spheres

for the induced J representing the classes B and F respectively, we conclude that there

exists foliations BJ and FJ by embedded J-holomorphic spheres in the classes B and F .

Given any q “ pz, wq P S2 ˆ S2, let uw denote the unique curve in the class B passing

through p0, wq and, similarly, let vz be the curve in class F passing through pz, 0q. We

can define a diffeomorphism (see Chapter 9 [31] for more details as to why the map is a

diffeomorphism) of S2 ˆ S2 by setting

ΨJ : S2
ˆ S2

ÝÑ S2
ˆ S2

pz, wq ÞÝÑ uw X vz

This ΨJ is in fact an equivariant diffeomorphism of S2 ˆ S2 where the action on the

domain in the linear action given by ρlin and the action on the target S2 ˆ S2 is the

action given by ρ. Moreover, as J is the standard complex structure in a neighbourhood

Xε of the wedge, ΨJ is the identity near the base point p. We modify ΨJ as follows in
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order to make it the identity in the neighbourhood Xε. As J is the standard complex

structure on Xε we have that

ΨJpz, wq “

$

’

’

&

’

’

%

pz, φ2pz, wqq if z P Dε Ă S2 ˆ S2

pφ1pz, wq, wq if w P Dε Ă S2 ˆ S2

where φ1pz, 0q “ z and φ2p0, wq “ w for all z, w P S2.

Choose a G equivariant (for the G action on t8u ˆ S2q) smooth map β1 : S2 ÝÑ S2

such that β1pzq “ z for all z P Dε and β1 “ 8 in a neighbourhood Dδ contained in Dε

and such that detpβ1,˚pzqq ě 0 @ z P S2. Similarly define a G equivariant map( for the G

action on S2 ˆ t8u) β2 : S2 Ñ S2 satisfying analogous conditions as β1. Then we define

the modified Ψ by setting

Ψ1
Jpz, wq “

$

’

’

’

’

’

&

’

’

’

’

’

%

ΨJ if z P pS2 ˆ S2qzXε

pz, pφ2pβ1pzq, wqq if z P Dε

pφ1pz, β2pwqq, wq if w P Dε

This modification makes Ψ1
J identity in a smaller neighbourhood Xδ :“ .pS2 ˆDδq Y

pS2ˆDδq pδ ă εq. The submanifolds tzuˆS2 and S2ˆtwu for all z, w P S2 are symplectic

for the form Ψ1
J
˚ω̃ and hence ω̃0 ^Ψ1˚

J ω̃ ą 0. Thus the path ωt :“ tω̃ ` p1´ tqΨ1˚

J ω̃ is a

path of non-degenerate symplectic forms for all t P r0, 1s.

We use a equivariant Moser isotopy to get an equivariant diffeomorphism α of S2ˆS2

such that α˚Ψ1
J
˚ω̃ “ ω̃0 . Further, as Ψ1˚

J ω̃ “ ω̃0 on Xδ we have α restricted to Xδ to be

the identity. We define Ψ̃J :“ Ψ1
J ˝ α.

The restriction of Ψ̃J : C2 Ñ C2 gives us a map which is G-equivariant with respect

to the action ρlin on the domain C2 and ρ on the target C2. As noted before there exists

a star shaped subset V1 Ă V such that both the action ρ and ρlin agree on C2zV1. We can
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choose V1 such that 0 P intpV1q. We now apply Theorem 3.2.1 to the map f :“ Ψ̃´1
J |C2zV1

and we choose W in Theorem 3.2.1 to be a G-invariant open subset of V which contains

V1. Let g : C2 Ñ C2 be an equivariant symplectomorphism as in Theorem 3.2.1 such

that g|R4zW “ f , then the map Φ :“
´

Ψ̃J ˝ g
¯

|V : V Ñ V is identity near the boundary

and satisfies Φ˚ω “ ω0 and is G-equivariant where the action of G on the domain of φ is

the linear action ρlin while on the range of Φ it is the G action ρ on V that we started out

with. Thus Φ is the required equivariant symplectomorphism that linearizes the given G

action and takes the form ω to ω0.

Any unitary representation of a compact abelian group G on C2 induces a splitting

into eigenspaces C2 “ C ¨ V1

À

C ¨ V2. Consider a polydisk D2 ˆD2 such that each D2

is contained in C ¨ Vi. Consider the symplectic form ω on R4 given such that outside of

some smaller polydisk of the form Dr ˆDr Ă D2 ˆD2 for some radius r, ω “ ω0.

Theorem 3.2.3. Let G be an abelian group. Let ω be a symplectic form on D2 ˆ D2

which is equal to ω0 near the boundary. Let G act symplectically on pD2 ˆ D2, ωq and

suppose the action is linear near the boundary. Then the group SympGc pD
2 ˆ D2, ωq

of equivariant symplectomorphisms that are equal to the identity near the boundary of

D2 ˆD2 is non-empty and contractible.

Proof. As the G action outside of DrˆDr Ă R4 is linear, we can extend this G action to

the whole of R4. Identify R4 with C2 and as G is abelian the linear action splits into 2

eigenspaces namely C‘C. Fix the above decomposition of C2. Then we can compactify

each eigenspace C to an S2 and hence this G action extends to a symplectic action S2ˆS2

with respect to the form ω̃ induced by ω.

By Theorem 3.2.2 we can conjugate our G action by a symplectomorphism which is

identity near the boundary to get a linear G action on the whole of V . As any two con-

jugate topological subgroups are homeomorphic, we shall just study the homotopy type

of the compactly supported equivariant symplectomorphism group SympGc,linpD
2ˆD2, ωq
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for the linear G action on V .

Let J G
ω be the non-empty and contractible space of all equivariant almost complex

structures on D2ˆD2 that are compatible with ω and are the standard split almost com-

plex structure J0 outside of DrˆDr. As they are the standard almost complex structures

outside of a neighbourhood these almost complex structure extend to S2 ˆ S2 and are

compatible with ω̃0. Further once we pick a base point p “ p8,8q P S2ˆS2 and identify

D2ˆD2 with the complement of a standard neighborhood Xε :“ pS2ˆDεqYpS
2ˆDεq of

the wedge pS2ˆt8uq_pt8uˆS2q Ă S2ˆS2 (note that the wedge point p8,8q is a fixed

point for the extended action of G on S2 ˆ S2), then any element J P J G
σ extends to a

equivariant almost complex structure of S2 ˆ S2 which is the standard product complex

structure on S2ˆS2 on a neighbourhood Xε of the wedge pS2ˆtyuq_ptxuˆS2q Ă S2ˆS2.

Conversely any such equivariant almost complex structure compatible with ω̃ that is stan-

dard in some neighbourhood of the wedge pS2 ˆ t8uq _ pt8u ˆ S2q Ă S2 ˆ S2 gives us

an element of J G
ω .

In order to show that SympGc,linpD
2 ˆD2, ωq is contractible, we shall prove that it is

homotopy equivalent to the contractible space J G
ω .

Define the map Ψ̃J as in the proof of Theorem 3.2.2. Thus we have a map

τ : Jω ÝÑ SympGc,linpD
2
ˆD2, ωq

J ÞÝÑ Ψ̃J

To prove that τ is a homotopy equivalence we construct a homotopy inverse as follows.

β : SympGc,linpD
2
ˆD2, ωq ÝÑ Jω

φ ÞÝÑ φ˚J0

By construction we see that τpβpφqq “ id and the other direction is homotopic to the

identity as Jω is contractible.
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We shall repeatedly use the following theorem in our analysis of the homotopy type

of the equivariant symplectomorphism groups of S2 ˆ S2.

Theorem 3.2.4. (Equivariant Gromov Theorem) Let pV, ωq be an compact star shaped

symplectic manifold of R4 such that 0 P intpV q and let ω be such that ω “ ω0 near the

boundary of V . Let G be an abelian group that acts symplectically and linearly near the

boundary and send the boundary to itself, then the space of equivariant symplectomor-

phisms that act as identity near the boundary (denoted by SympGc pV, ωq) is non-empty

and contractible.

Proof. By Theorem 3.2.2 we can conjugate our G action by a symplectomorphism which

is identity near the boundary to get a linear G action on the whole of V and such that

it takes the form ω to ω0. As the homotopy type of the two conjugate equivariant sym-

plectomorphism group is the same (they are in fact homeomorphic), we shall just study

the homotopy type of the compactly supported equivariant symplectomorphism group

for the linear G action on pV, ω0q. We denote this group by SympGc,linpV, ω0q.

Choose real numbers r ą 0 and T ą 1 , Dr ˆ Dr is a polydisk of radius r, such

that 1
T
V Ă Dr ˆ Dr Ă intpV q, and consider the family of maps Ft : SympGc,linpV, ω0q Ñ

SympGc,linpV, ω0q for 1 ď t ď T defined by Ftpφqpxq “
φptxq
t

for all x P V .

Then we have that Ft is G equivariant for all 1 ď t ď T , F1pφq “ φ for all φ P

SympGc,linpV, ω0q, Ftpidq “ id for all t, and FT
`

SympGc,linpV, ω0q
˘

Ă SympGc,linpDr ˆDr, ωq.

The proof of Theorem 3.2.3 tells us that the inclusion i : SympGc,linpDr ˆ Dr, ωq ãÑ

SympGc,linpV, ω0q is contractible. Hence we can fix a contraction αt for T ď t ď T ` 1 such

that αT “ i and αT`1pφq “ id for all φ P SympGc,linpDr ˆDr, ωq. Then the concatenation

F̃t :“

$

’

’

&

’

’

%

Ft 1 ď t ď T

FT ˝ αt T ď t ď T ` 1



3.3. Homotopical description of J S1

ωλ
X Uk 41

gives us a retraction of SympGc,linpV, ω0q to id and hence SympGc pV, ωq is contractible.

3.3 Homotopical description of J S1
ωλ
X Uk

We now consider the action of the group of equivariant symplectomorphisms on the

contractible space J S1

ωλ
of invariant, compatible, almost-complex structures, and we in-

vestigate the orbit-type stratification of this action up to homotopy. Recall that, by the

Lalonde-McDuff classification Theorem 2.1.6, it is sufficient to consider λ ě 1.

3.3.1 Notation

We shall use the following notation in the rest of the document. Let M denote the

manifolds S2ˆS2 or CP 2#CP 2. Let G be a compact abelian group acting symplectically

on pM,ωλq. Let p0 be a fixed point for the group action. Given a G invariant symplectic

curve C, and a ωλ orthogonal G invariant sphere F in the homology class F that intersects

C at a point p0, we define the following spaces:

• NpCq:= The symplectic normal bundle to a symplectic submanifold C.

• SympGh pM,ωλq := The group of G equivariant symplectomorphisms on pM,ωλq that

acts trivially on homology.

• StabGpCq := The group of all φ P SympGh pM,ωλq such that φpCq “ C, that is, such

that φ stabilises C but does not necessarily act as the identity on C.

• FixGpCq := The group of all φ P SympGh pM,ωλq such that φ|C “ id, that is, such

that fixes C pointwise.

• FixGpNpCqq:= The group of all φ P SympGh pM,ωλq such that φ|C “ id and dφ|NpCq :

NpCq Ñ NpCq is the identity on NpCq.

• GaugeGpNpCqq:= The group of G-equivariant symplectic gauge automorphisms of

the symplectic normal bundle of C.
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• GaugeGpNpC_F qq := The group of G-equivariant symplectic gauge automorphism

of the symplectic normal bundle of the crossing divisor C _ F that are identity in

a neighbourhood of the wedge point.

• SGK := The space of unparametrized G-invariant symplectic embedded spheres in

the homology class K.

• SGK,p0 := The space of unparametrized G-invariant symplectic embedded spheres in

the homology class K passsing through p0.

• J G
ωλ
pCq := The space of G-equivariant ωλ compatible almost complex structures s.t

the curve C is holomorphic.

• SympGpCq:= The space pf all G-equivariant symplectomorphisms of the curve C.

• FixGpNpC _ F qq := The space of all G-equivariant symplectomorphisms that are

the identity in the neighbourhood of C _ F .

• SympS
1

pF ,Npp0qq := equivariant symplectomorphism of the sphere F that are the

identity in an open set of F around p0.

• SGF,p0 := The space of unparametrized G-invariant symplectic spheres in the homol-

ogy class F that are equal to a fixed curve F in a neighbourhood of p0.

• SympGp0,hpM,ωλq:= The group of all φ P SympGh pM,ωλq fixing p0.

• StabGp0pCq:= The group of all φ P StabGpCq such that φpp0q “ p0.

All the above spaces are equipped with the C8 topology.

3.3.2 Case 1: SympS
1

h pS
2 ˆ S2, ωλq action on J S1

ωλ
X U2k with k ‰ 0

Let D2k denote the homology class B´kF and let SS1

D2k
denote the space of all S1 invari-

ant symplectic embedded spheres in the class D2k. The 2k in the notation stands for the

self-intersection of the curve i.e pB ´ kF q ¨ pB ´ kF q “ ´2k. Further we shall assume
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that SS1

D2k
is non-empty. We already addressed the question as to when these spaces are

non-empty in Theorems 3.1.5 and 3.1.9.

We fix a S1 action S1pa, b;mq on pS2ˆS2, ωλq where λ ą 1. Let SympS
1

h pS
2ˆS2, ωλq

denote the space of S1 equivariant symplectomorphisms of pS2 ˆ S2, ωλq. We first show

that SS1

D2k
is a homogeneous space.

Lemma 3.3.1. SympS
1

h pS
2 ˆ S2, ωλq acts transitively on SS1

D2k
.

Proof. Given a S1-invariant sphere C P SS1

D2k
, choose an invariant almost complex struc-

ture J P J S1

c for which C J-holomorphic. Let p0 be a fixed point for the symplectic S1

action on C. The existence of such a fixed point is guaranteed by the fact that any sym-

plectic S1 action on S2 has a fixed point. Let A be a J holomorphic curves in the class F

passing through p0. As p0 is a fixed point we have that A is S1 invariant. Using Lemma

B.0.2 we can equivariantly isotope A to A1 such that C and A1 are ω0 orthogonal. Now

using the symplectic neighbourhood theorem we can get a neighbourhood V of C Y A1

and a diffeomorphism α : S2 ˆ S2 Ñ S2 ˆ S2 such that α|V is a symplectomorphism

of V onto an open neighbourhood V 1 of D Y F , the standard configuration of curves

in the class D2k and F in W2k. This configuration is outlined by red in the moment

map image below. Note that the support of α can be taken to be in an arbitrary small

neighbourhood of the configuration C Y A1. Also we observe that the complement of V 1

is diffeomorphic to a star shaped set in R4. Take a smaller subset U Ă V in S2 ˆ S2

such that S2 ˆ S2zU is diffeomorphic to a star shaped set W in R4. Then we have that

α˚pωλq|S2ˆS2zU is a symplectic form which is equal to the standard symplectic form ω0

near the boundary of W . By Theorem 3.2.4 we get that that there is an equivariant

symplectomorphism γ such that γ is equivariant, equal to the identity near the boundary

and satisfies γ˚α˚pωλq “ ωλ. As γ is the identity near the boundary of W it extends to

S2 ˆ S2 and if we take our map α to have support in U , then the maps α and γ patch
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together to give us a map γ̃ : S2 ˆ S2 Ñ S2 ˆ S2 defined by setting

γ̃ “

$

’

’

&

’

’

%

γ on S2 ˆ S2zV

α on V

By construction, γ̃ takes C to D and γ P SympS
1

h pS
2 ˆ S2, ωλq.

D

F

Remark 3.3.2. We note that the above proof can be carried out depending continuously

on a finite number of parameters whose values run through a compact set.

The homotopy type of SympS
1

h pS
2ˆS2, ωλq is related to the strata J S1

ωλ
XU2k through

the following sequence of fibrations. We use the symbol ”»” to mean ”weakly homotopy

equivalent” throughout the rest of the document. In the fibrations below, we use the

notation established in Section 3.3.1.

StabS
1

pDq ÝÑ SympS
1

h,p0
pS2

ˆ S2, ωλq Ý� SS1

D2k

»
ÝÝÝÑ J S1

ωλ
X U2k

FixS
1

pDq ÝÑ StabS
1

pDq Ý� SympS
1

pDq
»

ÝÝÝÑ S1 or SOp3q

FixS
1

pNpDqq ÝÑ FixS
1

pDq Ý� GaugeS
1

pNpDqq
»

ÝÝÝÑ S1

StabS
1

pF q X FixS
1

pNpDqq ÝÑ FixS
1

pNpDqq Ý� SS1

F,p0

»
ÝÝÝÑ J S1

pDq » t˚u

FixS
1

pF q ÝÑ StabS
1

pF q X FixS
1

pNpDqq Ý� SympS
1

pF ,Npp0qq
»

ÝÝÝÑ t˚u

t˚u
»

ÐÝÝÝ FixS
1

pNpD _ F qq ÝÑ FixS
1

pF q Ý� GaugeS
1

pNpD _ F qq
»

ÝÝÝÑ t˚u

Here F andD are the ωλ-orthogonally intersecting invariant curves in the 2k th-Hirzebruch

surface W2k and whose momentum map images are depicted below in red. We note that
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F is the only fiber the given curve D P SS1

D2k
intersecting ωλ-orthogonally at p0. In the

second fibration, the group SympS
1

pDq is homotopy equivalent to SOp3q when the S1

action fixes the curve D pointwise. Otherwise, it is homotopy equivalent to S1.

D

F

p0

Figure 3.3: The isolated fixed point p0

Assuming the homotopy equivalence in the first fibration, we immediately get

Theorem 3.3.3. Consider the S1pa, b;mq action on pS2 ˆ S2, ωλq with λ ą 1. If J S1

ωλ
X

U2k ‰ φ, then SympS
1

h pS
2 ˆ S2, ωλq{ StabS

1

pDq » J S1

ωλ
X U2k.

Furthermore, tracking down the various homotopy equivalences in the other fibra-

tions, we will prove that the equivariant stabilizer of the curve D, namely StabS
1

pDq, is

homotopy equivalent to the equivariant stabilizer of the corresponding complex structure

under the natural action of SympS
1

h pS
2 ˆ S2, ωλq. More precisely,

• StabS
1

pDq » T2
2k when pa, bq ‰ p0,˘1q;

• StabS
1

pDq » SOp3q ˆ S1 when pa, bq “ p0,˘1q.

We shall now justify each of the homotopy equivalences in the above fibrations.

Lemma 3.3.4. Let D be a fixed symplectic sphere in the class B´kF , then the evaluation

map

θ : SympS
1

h pS
2
ˆ S2, ωλq� SS1

D2k

φ ÞÑ φpDq

is a Serre fibration with fibre over D given by

StabpDq :“
!

φ P SympS
1

pS2
ˆ S2, ωλq | φpDq “ D

)
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Proof. In order to show that SympS
1

h pS
2 ˆ S2, ωλq � SS1

D2k
is a Serre fibration, we need

to show that given a map γ from a n dimensional disk Dn to SS1

D2k
, then γ lifts to

SympS
1

h pS
2 ˆ S2, ωλq.

SympS
1

h pS
2 ˆ S2, ωλq

Dn SS1

D2k

θ

γ

D γ

This follows from noting that the proof of Lemma 3.3.1 goes through for compact

families of curves as in Remark 3.3.2.

Remark 3.3.5. As both SympS
1

h pS
2ˆS2, ωλq and SS1

D2k
can be shown to be CW-complexes,

we see from Theorem 1 in [38] (with proof corrected in [10]), that a Serre fibration in

which the total space and base space are both CW complexes is necessarily a Hurewicz

fibration. Thus the map θ : SympS
1

h pS
2 ˆ S2, ωλq � SS1

D2k
is in fact a Hurewicz fibration

and hence the fibre over any arbitrary D P SS1

D2k
is homotopy equivalent to StabpDq.

Now that we know that the action map

StabS
1

pDq Ñ SympS
1

h pS
2
ˆ S2, ωλq� SS1

D2k

is a fibration, we show that SS1

D2k
is weakly homotopic to J S1

ωλ
X U2k.

Lemma 3.3.6. The natural map α : J S1

ωλ
X U2k Ñ SS1

D2k
defined by sending an almost

complex structure J P J S1

ωλ
X U2k to the unique J- holomorphic curve in class D2k is a

weak homotopic equivalence.

Proof. To show that α is a weak homotopy equivalence, we first show that the map is

Serre fibration. To do so, consider an arbitrary element D P SS1

D2k
. As in the proof of

Lemma 3.3.4, it suffices to show that given a map γ from a n-dimensional disk Dn, such

that γp0q “ D, there exists a lift γ1 to J S1

ωλ
X U2k.

J S1

ωλ
X U2k

Dn SS1

D2k

α

γ

D γ1
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Once again by Lemma 3.3.1 and Remark 3.3.2, we have that there exists a lift γ : Dn Ñ

SympS
1

h pS
2 ˆ S2, ωλq of γ. Pick an element J P α´1pDq and define γ1psq :“ γ˚J . This

defines a lift γ1 of γ. Hence α is a fibration, with fibre begin contractible. Thus we get

the required result that J S1

ωλ
X U2k » SS1

D2k
.

Lemma 3.3.7. The restriction map StabS
1

pDq� SympS
1

pDq is a fibration.

Proof. To show that the restriction map is a fibration we use Theorem C.0.9, in which

we set X “ SympS
1

pDq, G “ StabS
1

pDq and the action is given by

GˆX Ñ X

pφ, ψq Ñ φ|D ˝ ψ

Hence in order to show that the restriction map r : StabS
1

pDq Ñ SympS
1

pDq is a fibra-

tion, we only need to show that the action described above admits local cross sections.

Suppose we only show that a neighbourhood of identity admits local cross sections and

that StabS
1

pDq acts transitively on SympS
1

pDq this would suffice to show that r is a

fibration as by Theorem C.0.9, its a local fibration near the identity and the map r is

equivariant with respect to the action of StabS
1

pDq, thus completing the proof.

Consider the identity id P SympS
1

pDq. As Let α : NpDq Ñ U be a equivariant

diffeomorphism between the symplectic normal bundle NpDq and a neighbourhood U

of D. As SympS
1

pDq is locally contractible (This can be seen for example by noticing

that the proof of Prop 3.3.14 in [32] can be made equivariant) there is a neighbourhood

V of id, and fix a retraction βt of the neighbourhood V onto the identity. Hence given

any ψ P SympS
1

pDq, we get a one parameter family βtpψq of symplectomorphisms. As

π1pDq “ 0, βtpψq is Hamiltonian and is generated by a function Ht. Let π : NpDq Ñ D

be the projection of the normal bundle. Define H̃t :“ α ˝ π˚Ht. Thus H̃t defines an

invariant function on a U. Fix an invariant bump function ρ with support in U and is 1 in

a small neighbourhood around D, then ρH̃t is an invariant function and the corresponding

symplectomorphism it generates ψ̃ belong to StabS
1

pDq and extends ψ. Note that if we
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fix the neighbourhood U , the bump function and the retraction of the neighbourhood in

SympS
1

pDq then this procedure gives us a lift of ψ near id in SympS
1

pDq to StabS
1

pDq.

By Theorem C.0.9 this shows r is fibration.

The above proof also shows that the action is transitive. As given γ P SympS
1

pDq we

give a procedure to construct an element γ̃ P StabS
1

pDq such that the restriction to D is

γ, thus showing the action is transitive.

Lemma 3.3.8. SympS
1

pDq is homotopic to SOp3q for the circle action S1p0,˘1,mq and

SympS
1

pDq is homotopic to S1 for all other circle actions.

Proof. Consider the circle action induced by D. The action S1p0,˘1,mq fixes D point-

wise. Hence SympS
1

pDq “ SymppDq. By Smale’s theorem we know that SymppDq is

homotopy equivalent to SOp3q.

For all other actions, we have the following two subcases. Consider an S1 action not

of the form S1p0,˘1,mq. Assume that the action is effective. Let µ : D Ñ T ˚S1 be

it’s momentum map. Then as explained in the proof of Proposition 3.21 in [35] we have

that SympS
1

pDq » C8pµpDq, S1q, where C8pµpD,S1q denotes the space of smooth maps

from the image of the momentum map to S1. The image of the momentum map is an

interval. We shall now argue that C8pµpDq, S1q » S1.

Fix a point v P µpDq, let P denote that space of smooth maps from the image of the

momentum map to S1 and finally let Pv denote the space of space of smooth maps from

the image of the momentum map to S1 that send v to 1 P S1. Then we have a fibration.

Pv Ñ P
ev
ÝÑ S1

f ÞÑ fpvq

The evaluation map ev : P Ñ S1 is a surjective fibration and the fibre over 1 P S1 is

Pv. Finally as µpDq is contractible this implies that Pv is contractible, thus giving us the
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required statement.

Finally if the induced symplectic S1 action on D has Zk stabilizer, the action of

S1{Zk – S1, is effective and the space of symplectomorphisms equivariant with respect to

this quotient effective action is the same as space of symplectomorphisms equivariant with

respect to the non-effective S1 action. Thus the homotopy type of SympS
1

pDq » S1.

Remark 3.3.9. We note an alternate way to prove Lemma 3.3.8 is to mimick the proof

of Lemma A.0.7.

Lemma 3.3.10. The map

α : FixS
1

pDq� GaugeS
1

pNpDqq

φ ÞÑ dφ|NpDq

is a Serre fibration with fibre homotopic to FixS
1

pNpDqq. The base space GaugeS
1

pNpDqq

is homotopy equivalent to S1.

Proof. The fact that GaugeS
1

pNpDqq » S1 is explained in Appendix A. Thus we only

need to prove that the restriction of the derivative indeed is a fibration and the fibre is

homotopic to FixS
1

pNpDqq.

Consider the action

FixS
1

pDq ˆGaugeS
1

pNpDqq Ñ GaugeS
1

pNpDqq

pφ, ψq Ñ dφ|NpDq ˝ ψ

Again by Theorem C.0.9 it suffices to show that the there is a local section to above

action. Such a local section is produced by Lemma C.0.5.

The fibre is a priori given by all equivariant symplectomorphisms that act as identity

on the normal bundle of D. The claim is that this is in fact homotopy equivalent to the

space FixS
1

pNpDqq. This follows from lemma C.0.7.
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Lemma 3.3.11. The map

FixS
1

pNpDqq Ñ SS1

F,p0

φ ÞÑ φpF q

is a fibration and SS1

F,p0
» J S1

ωλ
pDq » t˚u

Proof. The proof for this is similar to Lemma 3.3.1. Given a F 1 P SS1

F,p0
, by Equivariant

Symplectic Neighbourhood Theorem there is a equivariant diffeomorphism of S2 ˆ S2

such that α is a symplectomorphism in a neighbourhood of DYF to another neighbour-

hood of DYF . Then by Theorem 3.2.4 we again have that FixS
1

pNpDqq acts transitively

on SS1

F,p0
, and thus the action map induces a fibration.

Proof that J S1

ωλ
pDq » t˚u: This follows from the equivariant version of the standard

proof of considering the homeomorphic space of equivariant compatible metrics and not-

ing that this space of metrics is contractible.

Proof that SS1

F,p0
» J S1

ωλ
pDq » t˚u: Let SKF,p0 denote the space of all S1 invariant

symplectically embedded spheres S in class F such that SXD “ p0 and S and D intersect

ωλ-orthogonally at p0. Let S&
F,p0

denote the space of all S1 invariant symplectically

embedded spheres S in class F such that S is transverse to D. By Theorem B.0.2 we

have that S&
F,p0

» SKF,p0 . Further, by Lemma B.0.1 we see that there exists a J P J S1

ωλ
pDq

such that the configuration S_D is J-holomorphic. We now have the following fibration

J S1

ωλ
pDq Ý� S&

F,p0
» SKF,p0

Where the map γ : J S1

ωλ
pDq Ñ S&

F,p0
is just sending J P J S1

ωλ
pDq to the corresponding

curve in class F passing through p0. Now we show that γ is a homotopy equivalence. To

do that we consider the following commutative diagram

T S&
F,p0

J S1

ωλ
pDq

π2

π1

γ



3.3. Homotopical description of J S1

ωλ
X Uk 51

Where T :“
!

pA, Jq P S&
F,p0

ˆ J S1

ωλ
pDq | A is J-holomorphic

)

. Both the maps π1 and

π2 are fibrations (this can be argued as in Lemma 3.3.4) with contractible fibres. As the

diagram commutes, the map γ must be a homotopy equivalence.

Finally we have,

Lemma 3.3.12. The inclusion i : SS1

F,p0
ãÑ SKF,p0 is a weak homotopy equivalence

Proof. Let Spp4qS
1
¨ Tp0pF q denote the orbit of Tp0pF q in Tp0pS

2 ˆ S2q under action of

Spp4qS
1

where SpS
1

p4q the centralizer of S1 Ă Spp4q. For the S1pa, b;mq action such that

a ‰ b then we have the following fibration,

SS1

F,p0
Ñ SKF,p0 � Spp4qS

1

¨ Tp0pF q

S ÞÑ Tp0S

This is a fibration by Theorem B.0.2. We would be done in this case if we can

show that Spp4qS
1
¨ Tp0pF q is contractible. We note that SpS

1

p4q acts transitively on

Spp4qS
1
¨ Tp0pF q with stabilizer SpS

1

p2q ˆ SpS
1

p2q.

As the S1pa, bq action is also holomorphic, by the equivariant version of usual proof

of Spp2nq retracting to Upnq we can show that SpS
1

p2nq retracts to US1
pnq. Hence we

can show that

Spp4qS
1

¨ Tp0pF q –
Spp4qS

1

SpS
1
p2q ˆ SpS

1
p2q

»
US1

p2q

Up1q ˆ Up1q

As we considered the case when a ‰ b we have that US1
p2q “ T2, thus Spp4qS

1
¨

Tp0pF q » t˚u.

The other case when we have a “ b (as we assumed that a, b were co-prime it implies

that a, b P t1,´1u), then we have a similar fibration to the one above (now we need to

remove Tp0pDq from the orbit as a “ b there exists an element of Spp4qS
1

that takes

Tp0pF q to Tp0pDq)

SS1

F,p0
ÝÑ SKF,p0 Ý� Spp4qS

1

¨ Tp0pF qzTp0pDq
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We again show that Spp4qS
1
¨ Tp0pF qzTp0pDq is contractible. To do that we note as

above that

Spp4qS
1

¨ Tp0pF q »
US1

p2q

Up1q ˆ Up1q

In this case we note that US1
p2q “ Up2q and thus we have that Spp4qS

1
¨ Tp0pF q –

Up2q
Up1qˆUp1q

– CP 1. And hence Spp4qS
1
¨ Tp0pF qzTp0pDq » t˚u.

Lemma 3.3.13.

StabS
1

pF q X FixS
1

pNpDqq Ñ SympS
1

pF ,Npp0qq

φ ÞÑ φ|F

is a fibration and SympS
1

pF ,Npp0qq » t˚u

Proof. The fact that this is a fibration follows from applying the proof of Lemma 3.3.7

mutatis mutandis. To proof that SympS
1

pF ,Npp0qq » t˚u, we note that again similar to

Lemma 3.3.7 SympS
1

pF ,Npp0qq is homotopy equivalent to maps from the interval r0, 1s

to S1 that is identity near 0. The space of such maps is contractible thus giving the

result.

Lemma 3.3.14.

FixS
1

pF q Ñ GaugeS
1

pNpD _ F qq

φ ÞÑ dφ|NpD_F q

is a fibration and GaugeS
1

pNpD _ F qq » t˚u and the fibre FixS
1

pNpD _ F qq » t˚u

Proof. The proof that this is a fibration is similar to the proof of Lemma 3.3.10. The fact

that GaugeS
1

pNpD_F qq » t˚u follows from by Lemma A.0.4. The fact that FixS1pNpD_

F qq » t˚u follows from the Equivariant Gromov Theorem 3.2.4.

Putting all the fibrations together gives the following theorem.
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Theorem 3.3.15. Consider the S1pa, b;mq action on pS2 ˆ S2, ωλq with λ ą 1. If

J S1

ωλ
X U2k ‰ φ, then we have the following homotopy equivalences:

1. when pa, bq ‰ p0,˘1q, we have SympS
1

h pS
2 ˆ S2, ωλq{T2

2k » J S1

ωλ
X U2k;

2. when pa, bq “ p0,˘1q, we have SympS
1

h pS
2 ˆ S2, ωλq{pSOp3q ˆ S

1q » J S1

ωλ
X U2k.

Proof. When pa, b;mq ‰ p0,˘1; 0q we have a commutative diagram of fibrations

FixS
1

pDq StabS
1

pDq SympS
1

pDq

S1 T2
2k S1

while in the case pa, bq “ p0,˘1q, we have the diagram

FixS
1

pDq StabS
1

pDq SympS
1

pDq

S1 S1 ˆ SOp3q SOp3q

In both the diagrams the leftmost and the rightmost arrows are homotopy equiva-

lences. As the diagram commutes, the 5 lemma implies that the middle inclusion

T2 ãÑ StabS
1

pDq or pS1 ˆ SOp3qq ãÑ StabS
1

pDq are also homotopy equivalences. This

gives us the required result.

Remark 3.3.16. Let J2k be the standard complex structure on W2k. We note that for the

action S1p0,˘1, ;mq the stabiliser of J2k under the natural action of SympS
1

h pS
2ˆS2, ωλq

on J S1

ωλ
X U2k is the group of Kähler isometries S1 ˆ SOp3q. For all other circle actions

S1pa, b;mq with pa, bq ‰ p0,˘1q, the stabiliser of J2k is the maximal torus T2
2k Ă S1 ˆ

SOp3q.

3.3.3 Case 2: SympS
1

h pS
2 ˆ S2, ωλq action on J S1

ωλ
X U0

In order to describe the action of SympS
1

h pS
2 ˆ S2, ωλq on the open stratum J S1

ωλ
X U0,

we need to modify slightly the setting introduced in the previous section. The main

difference comes from the fact that for an almost-complex structure J P J S1

ωλ
XU0, there
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is no invariant curve with negative self-intersection representing a class B ´ kF , k ě 1.

Instead, each such J determines a regular 2-dimensional foliation of J-holomorphic curves

in the class B. Consequently, there is no natural map between the stratum J S1

ωλ
X U0

and the space SS1

B of invariant curves in the class B. However, once we choose a fixed

point p0, given any J P J S1

ωλ
X U0, there is a unique invariant J-holomorphic curve in

the class B passing through p0(Theorem 2.3.11). This defines a map J S1

ωλ
X U0 Ñ SS1

B,p0

that can be used to prove that the space J S1

ωλ
XU0 is homotopy equivalent to an orbit of

SympS
1

h pS
2 ˆ S2, ωλq. To do so, because the fixed point p0 is not unique, we must also

investigate how the group SympS
1

h pS
2 ˆ S2, ωλq acts on the fixed point set of the circle

action. This is done in Lemma 3.3.18. Before we proceed to prove this lemma we first

describe the action of SympS
1

h pS
2 ˆ S2, ωλq on J S1

ωλ
X U0. Note that by Theorems 3.1.5,

3.1.6 and 3.1.7, the space J S1

ωλ
X U0 is non-empty only for the following circle actions:

• S1pa, b; 0q, or

• S1p1, b;mq with |2b´m| “ 0 and 2λ ą |2b´m|, or

• S1p´1, b;mq with |2b`m| “ 0 and 2λ ą |2b`m|.

Secondly, we observe that all these actions have at least one isolated fixed point except

the actions of the forms

• S1p˘1, 0; 0q and

• S1p0,˘1; 0q

Actions with an isolated fixed point

We now consider actions S1pa, b;mq with an isolated fixed point p0. We can choose p0 to

correspond to the vertex R in the Hirzerbruch surface Wm shown in Figure 2.1. Given

J P J S1

ωλ
XU0, there is a unique J-holomorphic curve Bp0,J in class B that passes through

p0. Because p0 is fixed, J is invariant, and B ¨ B “ 0, positivity of intersection implies
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that Bp0,J is S1-invariant. We thus get a well-defined map

J S1

ωλ
X U0 Ñ SS1

B,p0

where SS1

B,p0
denotes the space of invariant, embedded, symplectic spheres representing

the class B and containing the point p0.

Lemma 3.3.17. Consider any S1pa, b;mq action on pS2 ˆ S2, ωλq. Let p0 and p1 be two

fixed points such that there exists an invariant fibre t˚uˆS2 passing through them . Then

there exists no S1 invariant curve in the class B ´ kF for k ě 0 passing through p0 and

p1.

Proof. Suppose not, let D2k be a S1 invariant curve in the class B ´ kF with k ě 0

passing through p0 and p1. Then the projection onto the first factor

π1 : D2k Ñ S2
ˆ t0u Ă S2

ˆ S2

is surjective. Hence the curve D2k passes through a third fixed point p2. As the sym-

plectic S1 action on D2k has three fixed points, it has to fix D2k pointwise. This is a

contradiction as all fixed surfaces for S1 actions must be either a maximum or mini-

mum for the momentum map, but the fixed points p2, p1 and p0 cannot have the same

momentum map value.

Lemma 3.3.18. Let S1pa, b;mq be a circle action for which the space J S1

ωλ
X U0 is

non-empty. Assume there is an isolated fixed point p0 corresponding to the vertex R

in Figure 2.1. Then any equivariant symplectomorphism that preserves homology φ P

SympS
1

h pS
2 ˆ S2, ωλq fixes p0.

Proof. Case 1: λ ą 1: By Lemma 2.1.11 and Corollary 2.1.12 any such φ must preserve

the momentum values and the weights of the fixed points (up to change of order of the

tuples). These weights are given in Table 2.1.1 and the momentum map values are given

in the graphs 2.3 and 2.4. The two conditions on the circle action imply that either

m “ 0, |2b ´ m| “ 0, or |2b ` m| “ 0. It is now easy to see that under any of these
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three numerical conditions, the weights and momentum map values at R differ from the

weights at all other fixed points. The result follows.

Case 2: λ “ 1: If the actions are not of the form S1p1, 1; 0q or S1p´1,´1; 0q with

λ “ 1, then an argument similar to Case 1 holds. The only case left are the actions of

the form S1p1, 1; 0q or S1p´1,´1; 0q with λ “ 1. In this case, the homology classes F , B

have the same area and the fixed points R and Q have the same weights (up to change of

order of tuples) and the same momentum map values. We again argue by contradiction

in this case. Let B denote a fixed curve in class B passing through R and P . Suppose

φ P SympS
1

h pS
2 ˆ S2, ωλq doesn’t fix the point p0 “ R. Then φ has to take the point

R to the point Q. Further by Lemma 2.1.11, φ fixes the maximum and minimum and

hence φpP q “ P . As φ preserves homology, the curve φpBq has homology class B and

has as to pass through Q and P which contradicts Lemma 3.3.17.

Let J0 P U0 be the complex structure of the Hirzebruch surface W0 and let Bp0 be the

unique J0-holomorphic curve containing p0 and representing the homology class B.

Corollary 3.3.19. Let S1pa, b;mq be a circle action with an isolated fixed point and

for which the structure J0 P U0 is invariant. Then the group SympS
1

h pS
2 ˆ S2, ωλq acts

transitively on the space SS1

B,p0
, and the action map

SympS
1

h pS
2
ˆ S2, ωλq Ý� SS1

B,p0

φ ÞÑ φpBp0q

is a Serre fibration.

Proof. Since any element of SympS
1

h pS
2ˆS2, ωλq fixes p0, it follows that this group acts on

Bp0,J . The transitivity of the action and the fact that the action defines a fibration follow

from the exact same arguments as in the proof of Lemma 3.3.1 and Lemma 3.3.4.

As before, we can now show that the stratum J S1

ωλ
X U0 is homotopy equivalent to a

space of invariant curves.
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Lemma 3.3.20. The natural map α : J S1

ωλ
X U0 Ñ SS1

B,p0
defined by sending an almost

complex structure J P J S1

ωλ
X U0 to the unique J-holomorphic curve in class B passing

through p0 is a weak homotopic equivalence.

Proof. The argument is identical to the proof of Lemma 3.3.6

From now on, we can determine the homotopy type of J S1

ωλ
X U0 by going through a

similar sequence of fibrations and homotopy equivalences as in Section 3.3.2, namely,

StabS
1

pBp0q Ñ SympS
1

h pS
2
ˆ S2, ωλq Ý� SS1

B,p0

»
ÝÝÝÑ J S1

ωλ
X U0

FixS
1

pBp0q Ñ StabS
1

p0
pBp0q Ý� SympS

1

pBp0q
»

ÝÝÝÑ S1

FixS
1

pNpBp0qq Ñ FixS
1

pBp0q Ý� GaugeS
1

pNpBp0qq
»

ÝÝÝÑ S1

StabS
1

pF q X FixS
1

pNpBp0qq Ñ FixS
1

pNpBp0qq Ý� SS1

F,p0

»
ÝÝÝÑ J S1

pBp0q

FixS
1

pF q Ñ StabS
1

pF q X FixS
1

pNpBp0qq Ý� SympS
1

pF ,Npp0qq
»

ÝÝÝÑ t˚u

t˚u
»

ÐÝÝÝ FixS
1

pNpBp0 _ F qq Ñ FixS
1

pF q Ý� GaugeS
1

pNpBp0 _ F qq
»

ÝÝÝÑ t˚u

where SS1

F,p0
denotes the space of all symplectically embedded curve in the class F that

pass through p0 and agree with a standard curve Fp0 in a neighbourhood of p0. The proofs

that these maps are fibrations, and the proofs of the homotopy equivalences are exactly

the same as before. Consequently, we obtain the following homotopical description of

J S1

ωλ
X U0.

Theorem 3.3.21. Consider one of the following circle actions on pS2 ˆ S2, ωλq

• S1pa, b; 0q with pa, bq ‰ p˘1, 0q and pa, bq ‰ p0,˘1q, or

• S1p1, b;mq with |2b´m| “ 0 and 2λ ą |2b´m|, or

• S1p´1, b;mq with |2b`m| “ 0 and 2λ ą |2b`m|.

Then the stratum J S1

ωλ
X U0 is non-empty and

SympS
1

h,p0
pS2

ˆ S2, ωλq{T2
0 » J S1

ωλ
X U0
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Actions without isolated fixed points

We now turn our attention to the action of SympS
1

h pS
2ˆS2, ωλq on the stratum J S1

ωλ
XU0

when the circle action is either

1. S1p˘1, 0; 0q or

2. S1p0,˘1; 0q.

These actions has no isolated fixed points and the associated graphs are of the form

Fmax

Fmin

µ “ λ

µ “ 0

A “ 1

A “ 1

(a) Subcase 1: S1p˘1, 0; 0q

Bmax

Bmin

µ “ 1

µ “ 0

A “ λ

A “ λ

(b) Subcase 2: S1p0,˘1; 0q

where µ denotes the value of the momentum map and A denotes the area of the fixed

surface. We notice that there are pointwise fixed curves in the class F for the circle action

S1p˘1, 0; 0q and pointwise fixed curves in class B for the action S1p0,˘1; 0q. We denote

the fixed surface which is a minimum for the momentum map as Fmin, Bmin respectively

and the maximum by Fmax, Bmax.

Consider the action S1p0,˘1; 0q. By Lemma 2.1.11 we note that any φ P SympS
1

h pS
2ˆ

S2, ωλq must send Bmax to itself. Then, given p0 P Bmax, we define the following sequence

of fibrations and homotopy equivalences:

FixS
1

pBmaxq ÝÑ SympS
1

h pS
2
ˆ S2, ωλq Ý� SymppBmaxq

»
ÝÝÝÑ SOp3q

StabS
1

pFp0q ÝÑ FixS
1

pBmaxq Ý� SS1

F,p0

»
ÝÝÝÑ J S1

ωλ
» t˚u

FixS
1

pFp0q ÝÑ StabS
1

pFp0q Ý� SympS
1

pFp0q
»

ÝÝÝÑ S1
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t˚u
»

ÐÝÝÝ FixS
1

pNpBmax _ Fp0qq ÝÑ FixS
1

pFp0q Ý� GaugeS
1

pNpBmax _ Fp0qq
»

ÝÝÝÑ t˚u

For the other circle action S1p˘1, 0; 0q, we obtain a similar sequence of fibrations and

homotopy equivalences in which Bmax is replaced by the curve Fmax. As before, putting

all the homotopy equivalences together, we obtain the following theorem:

Theorem 3.3.22. Consider the following two circle actions on pS2 ˆ S2, ωλq

• S1p˘1, 0; 0q or

• S1p0,˘1; 0q

Then there is a homotopy equivalence

SympS
1

h pS
2
ˆ S2, ωλq{pS

1
ˆ SOp3qq » J S1

ωλ
X U0

For convenience, we collect together the two main results of this section in the theorem

below.

Theorem 3.3.23. Consider the action S1pa, b;mq on pS2 ˆ S2, ωλq such that one of the

following hold:

• S1pa, b; 0q with pa, bq ‰ p˘1, 0q and pa, bq ‰ p0,˘1q, or

• S1p1, b;mq with |2b´m| “ 0 and 2λ ą |2b´m|, or

• S1p´1, b;mq with |2b`m| “ 0 and 2λ ą |2b`m|.

Then the stratum J S1

ωλ
X U0 is non-empty and

SympS
1

h,p0
pS2

ˆ S2, ωλq{T2
0 » J S1

ωλ
X U0

If instead the S1pa, b;mq action satisfies

• pa, b;mq “ p˘1, 0; 0q or

• pa, b;mq “ p0,˘1; 0q
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1

pS2 ˆ S2, ωλq on J S1

ωλ

then we have that

SympS
1

h pS
2
ˆ S2, ωλq{pS

1
ˆ SOp3qq » J S1

ωλ
X U0

and J S1

ωλ
intersects only the strata U0.



Chapter 4

The homotopy type of the

symplectic centralisers of S1pa, b;mq

Given any Hamiltonian circle action on pS2 ˆ S2, ωλq, the two Theorems 3.1.5 and 3.1.9

give us a complete understanding of which strata the space J S1

ωλ
intersects. Together with

Theorems 3.3.15, and 3.3.23 describing the strata as homogeneous spaces, this allows us

to compute the homotopy type of the group of equivariant symplectomorphisms.

4.1 When J S1
ωλ

is homotopy equivalent to a single

symplectic orbit

Theorem 4.1.1. Consider the circle action S1pa, b;mq on pS2 ˆ S2, ωλq. Under the fol-

lowing numerical conditions on a, b,m, λ, the homotopy type of SympS
1

pS2 ˆ S2, ωλq is

given by the table below.

61
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S1 action pa, b;mq λ Number of

strata J S1

ωλ

intersects

Homotopy type of

SympS
1

pS2 ˆ S2q

p0,˘1;mq m ‰ 0 λ ą 1 1 S1 ˆ SOp3q

p0,˘1; 0q or p˘1, 0; 0q
λ “ 1 1 S1 ˆ SOp3q

λ ą 1 1 S1 ˆ SOp3q

p˘1,˘1, 0q λ “ 1 1 T2 ˆ Z2

p˘1, 0;mq m ‰ 0 λ ą 1 1 T2

p˘1,˘m;mq m ‰ 0 λ ą 1 1 T2

p1, b;mq b ‰ tm, 0u |2b´m| ě 2λ ě 1 1 T2

p´1, b;mq, b ‰ t´m, 0u |2b`m| ě 2λ ě 1 1 T2

All other values of pa, b;mq

except p˘1, b;mq

@λ 1 T2

Proof. By Theorem 3.1.5, in each of the above S1pa, b;mq actions, the space of S1 invari-

ant compatible almost complex structures J S1

ωλ
intersects only the stratum Um. Conse-

quently,

SympS
1

h pS
2
ˆ S2, ωλq{ StabpJmq » J S1

ωλ
X Um “ J S1

ωλ
» t˚u

where StabpJmq denotes the stabiliser of the standard complex structure Jm P Um. Thus,

for all the actions in the table, we have that SympS
1

h pS
2 ˆ S2, ωλq » StabpJmq. For the

S1 action given by the triples p0,˘1,mq, p˘1, 0, 0q or the circle action S1p0,˘1, 0q when

λ “ 1, Theorems 3.3.15 and 3.3.23 imply that StabpJmq » S1 ˆ SOp3q. For all other S1

actions in the table, the stabilizers are homotopy equivalent to T2.

We now show how to recover the homotopy type of the full group SympS
1

pS2ˆS2, ωλq

from the homotopy type of the subgroup SympS
1

h pS
2 ˆ S2, ωλq. When λ ą 1, we have

the equality SympS
1

pS2 ˆ S2, ωλq “ SympS
1

h pS
2 ˆ S2, ωλq as stated in Lemma 3.1.1.

When λ “ 1 and a ‰ b, there exists standard S1pa, b;mq invariant curves in classes
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B and F such that the isotropy weight of the action on the curve in class B is a and

the isotropy weight of the S1 action on the curve in the class F is b. Hence, as φ is an

equivariant symplectomorphism, Lemma 3.1.1 implies that must have φ˚rF s “ rF s and

φ˚rBs “ rBs. Consequently, SympS
1

h pS
2 ˆ S2, ωλq “ SympS

1

pS2 ˆ S2, ωλq.

In the special case when λ “ 1 and a “ b “ ˘1, then we have an equivariant version

of the exact sequence 3.1

1 ÝÑ SympS
1

h pS
2
ˆ S2, ωλq ÝÑ SympS

1

pS2
ˆ S2, ωλq ÝÑ Autc1,ωλpH

2
pS2

ˆ S2
qq ÝÑ 1

where Autc1,ωλpH
2pS2 ˆ S2qq – Z2. The map

φ : S2
ˆ S2

Ñ S2
ˆ S2

pz, wq ÞÑ pw, zq

is a S1 equivariant symplectomorphism (for the action S1p1, 1, 0q or p´1,´1, 0q) and

gives a section from Z2 to Autc1,ωλpH
2pS2 ˆ S2qq. Thus we have SympS

1

pS2 ˆ S2, ωλq –

SympS
1

h pS
2ˆS2, ωλq¸Z2. As the semidirect product of two topological groups is homo-

topy equivalent to the direct product of the groups, we have that SympS
1

pS2ˆS2, ωλq –

SympS
1

h pS
2 ˆ S2, ωλq ¸ Z2 » SympS

1

h pS
2 ˆ S2, ωλq ˆ Z2 » T2 ˆ Z2. This completes the

proof.

4.2 When J S1
ωλ

is homotopy equivalent to the union

of two symplectic orbits

Theorem 4.1.1 gives the homotopy type of the group of equivariant symplectomorphisms

for all circle actions apart from the following two families of actions:

• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.
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For convenience, we will write m1 for either |2b´m| or |2b`m| depending on which of the

above families we consider. Up to swapping m and m1, we will also assume m1 ą m. The

goal of this section is to show that the symplectic stabilizers of any of these circle actions

is homotopy equivalent to the homotopy colimit of the two tori T2
m and T2

m1 it extends to.

Before delving into the technicalities, it may be useful to outline the proof, which is

an adaptation of the Anjos-Granja argument used in [5] to compute the homotopy type

of the full group of symplectomorphisms of S2 ˆ S2 for 1 ă λ ď 2. The first step is to

show that the two inclusions

T2
m ãÑ SympS

1

h pS
2
ˆ S2, ωλq and T2

m1 ãÑ SympS
1

h pS
2
ˆ S2, ωλq

induce injective maps in homology. By the Leray-Hirsch theorem, it follows that the

cohomology modules of the total space of the fibrations

T2
m Ñ SympS

1

h pS
2
ˆ S2, ωλq Ñ SympS

1

h pS
2
ˆ S2, ωλq{T2

m » J S1

ωλ
X Um

T2
m1 Ñ SympS

1

h pS
2
ˆ S2, ωλq Ñ SympS

1

h pS
2
ˆ S2, ωλq{T2

m1 » J S1

ωλ
X Um1

split (with coefficients in an arbitrary field k). Using the fact that the contractible space

of invariant compatible almost-complex structures decomposes as the disjoint union

J S1

ωλ
“ pJ S1

ωλ
X Umq \ pJ S1

ωλ
X Um1q

the rank of H ipSympS
1

h pS
2 ˆ S2, ωλq; kq can be computed inductively from Alexander-

Eells duality. We then compute the cohomology algebra and the Pontryagin algebra of

the homotopy colimit (or homotopy pushout)

P “ hocolimpT2
m Ð S1

pa, b,mq Ñ T2
m1q

and use this to show that the natural map

Υ : P Ñ SympS
1

h pS
2
ˆ S2, ωλq

is a homotopy equivalence in the category of topological groups. We further prove that

P is weakly homotopy equivalent, as a space, to the product ΩS3 ˆ S1 ˆ S1 ˆ S1.
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4.2.1 Homological injectivity

We first show that the two inclusions T2
m ãÑ SympS

1

h pS
2ˆS2, ωλq and T2

m1 ãÑ SympS
1

h pS
2ˆ

S2, ωλq induce injective maps in homology. As the argument does not depend on m, we

shall only provide the details for the inclusion T2
m ãÑ SympS

1

h pS
2 ˆ S2, ωλq.

Fix a homology preserving diffeomorphism φm : pWm, ˚q Ñ pS2 ˆ S2, ˚q where the

base point t˚u is the S1p1, b,mq fixed point pr0, 1sr0, 0, 1sq in Wm. Let EpS2 ˆ S2, ˚q

and EpWm, t˚uq denote the space of orientation preserving homotopy, pointed, self-

equivalences of pS2 ˆ S2, ˚q and pWm, ˚q. The homology preserving diffeomorphism φm

induces a homeomorphism between EpS2 ˆ S2, ˚q – EpWm, ˚q. Further define EpS2, ˚q

to be the space of all orientation preserving homotopy self-equivalences of the sphere

preserving a base point t˚u.

We now observe that for the above two families of circle actions (i) and (ii), the same

argument as in Lemma 3.3.18 shows that any φ P SympS
1

h pS
2 ˆ S2, ωλq fixes the base

point t˚u.

Now, recall that the zero section s0 of Wm is given by

s0 : S2
Ñ Wm

rz0, z1s ÞÑ prz0, z1s , r0, 0, 1sq

and the projection to the first factor is

π1 : Wm Ñ S2

prz0, z1s , rw0, w1, w2sq ÞÑ rz0, z1s

We define a continuous map h1 : SympS
1

h pS
2 ˆ S2, ωλq Ñ E pS2, ˚q by setting

h1 : SympS
1

h pS
2
ˆ S2, ωλq Ñ E

`

S2, ˚
˘

ψ ÞÑ ψ1 :“ π1 ˝ ψ ˝ s0
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Similarly, using the inclusion of S2 as the fiber

f : S2
Ñ Wm

rz0, z1s ÞÑ pr0, 1s, r0, z0, z1sq

and the projection to the second factor π2 : S2 ˆ S2 Ñ S2, we can define a map

h2 : SympS
1

h pS
2
ˆ S2, ωλq Ñ E

`

S2, ˚
˘

ψ ÞÑ ψ2 :“ π2 ˝ ψ ˝ φm ˝ f

where φm : Wm Ñ S2 ˆ S2 is our fixed identification of Wm with S2 ˆ S2. We thus get a

continuous map

h : SympS
1

h pS
2
ˆ S2, ωλq Ñ EpS2, ˚q ˆ EpS2, ˚q

ψ ÞÑ ph1pψq, h2pψqq

Lemma 4.2.1. The inclusion im : T2
m ãÑ SympS

1

h pS
2 ˆ S2, ωλq induces a map which is

injective in homology with coefficients in any field k.

Proof. As T2 is connected, im : H0pT2
m; kq Ñ H0pSympS

1

h pS
2 ˆ S2, ωλq; kq is injective.

To show that the inclusion map induces an injection at the H1 level, we consider the

composition α : T2
m Ñ EpS2, ˚q ˆ EpS2, ˚q given by

T2
m SympS

1

h pS
2 ˆ S2, ωλq EpS2, t˚uq ˆ EpS2, ˚qh

and show that α induces a map which is injective in homology.

We claim that H1pEpS2, ˚q;Zq » Z. Indeed, the standard action of SOp3q on S2 gives

rise to a diagram of fibrations

EpS2, ˚q EpS2q S2

S1 “ SOp2q SOp3q S2

ev

ev
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where the maps ev are evaluations at the base point t˚u. This induces a long exact ladder

of homotopy groups

¨ ¨ ¨ ���
�:Z

π2pS
2q π1pEpS2, ˚qq π1pSOp3qq ˆ��>

0
π1pΩq ���

�: 0
π1pS

2q

¨ ¨ ¨ Z ���
�:Z

π1pS
1q π1pSOp3qq ���

�: 0
π1pS

2q

β

where we have used the fact, proven by Hansen in [34], that EpS2q » SOp3q ˆĂΩ2, where

ĂΩ2 denotes the universal covering space for the connected component of the double loop

space of S2 containing the constant based map, and where the SOp3q component is just

the inclusion. Consequently, π1p
ĂΩ2q “ 0 and the map π1pSOp3qq Ñ π1pSOp3qq ˆ π1p

ĂΩ2q

is an isomorphism. From the commutativity of the middle square, it follows that β :

π1pS
1q Ñ π1pEpS2, ˚qq is also an isomorphism. As the spaces we consider are topological

groups, π1 is abelian and hence π1 “ H1, proving the claim.

Now, the classes a, b, of the subcircles p0, 1q and p1, 0q form a basis for H1pT2
m; kq.

We claim that α˚r0, 1s and α˚r1, 0s generate a subgroup of rank 2. To see this, let write

α1
˚ and α2

˚ for the components of α˚. Then, α1
˚p0, 1q “ 0 as the circle p0, 1q fixes the

zero section prx1, x2s, r0, 0, 1sq Ă Wm pointwise, while α2
˚r0, 1s ‰ 0 by the reasoning in

the previous paragraph. Similarly, α1
˚r1, 0s ‰ 0 and α2

˚r1, 0s “ 0, proving our claim. We

conclude that α is injective on H1pT2
m; kq.

Finally, to show that i˚ is injective on H2pT2
m; kq, we will prove the dual statement,

namely, that the map i˚ : H2pSympS
1

h pS
2 ˆ S2, ωλq; kq Ñ H2pT2

m; kq is surjective. A

generator of H2pT2
m; kq – k is given by a Y b. Because i˚ is injective at the H1 level,

i˚ : H1pSympS
1

h pS
2ˆS2, ωλq; kq Ñ H1pT2; kq is surjective, hence there exists elements a1,

b1 P H1pSympS
1

h pS
2ˆS2, ωλq; kq such that i˚pa1q “ a and i˚pb1q “ b. Since i˚pa1qYi˚pb1q “

aY b, it follows that i˚ : H2pSympS
1

h pS
2 ˆ S2, ωλq; kq Ñ H2pT2

m; kq is surjective.
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4.2.2 Cohomology module of the centralizer of S1p˘1, b;mq

We are now ready to compute the cohomology module of the centralizer of S1p˘1, b;mq

with coefficients in in a field k. By duality, this is equivalent to determining the homology

module.

Recall that the contractible space of invariant compatible almost-complex structures

J S1

ωλ
decomposes as the disjoint union

J S1

ωλ
“ pJ S1

ωλ
X Umq \ pJ S1

ωλ
X Um1q “: US1

m \ US1

m1

where, for convenience, we set US1

m “ J S1

ωλ
X Um and US1

m1 “ J S1

ωλ
X Um1 . We will show in

Chapter 5 the following two important facts:

• the strata US1

m and US1

m1 are submanifolds of J S1

ωλ
(see Corollary 5.2.6), and

• the stratum US1

m is open in J S1

ωλ
, while US1

m1 is of codimension 2 (see Theorem 5.3.1).

In particular, it follows that US1

m “ J S1

ωλ
´ US1

m1 is connected. As explained in Ap-

pendix D, Proposition D.0.5, the Alexander-Eells duality induces an isomorphism of

homology groups

λ˚ : HppU
S1

m1 ; kq Ñ Hp`1pU
S1

m ; kq (4.1)

Now recall that we also have fibrations

T2
m Ñ SympS

1

h pS
2
ˆ S2, ωλq

pm
ÝÑ SympS

1

h pS
2
ˆ S2, ωλq{T2

m » US1

m (4.2)

T2
m1 Ñ SympS

1

h pS
2
ˆ S2, ωλq

pm1
ÝÝÑ SympS

1

h pS
2
ˆ S2, ωλq{T2

m1 » US1

m1

From the first fibration, the connectedness of the open stratum US1

m implies that the

group SympS
1

h pS
2 ˆ S2, ωλq is connected. In turns, the second fibration implies that the

codimension 2 stratum US1

m1 is also connected. Because the two inclusions

T2
m ãÑ SympS

1

h pS
2
ˆ S2, ωλq and T2

m1 ãÑ SympS
1

h pS
2
ˆ S2, ωλq
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induce surjective maps in cohomology, the Leray-Hirsch theorem implies that the coho-

mology module of SympS
1

h pS
2 ˆ S2, ωλq splits as

H˚
pSympS

1

h pS
2
ˆ S2, ωλq, kq – H˚

pUS1

m ; kq bH˚
pT2

m; kq (4.3)

H˚
pSympS

1

h pS
2
ˆ S2, ωλq, kq – H˚

pUS1

m1 ; kq bH
˚
pT2

m1 ; kq

By duality, we have corresponding splittings in homology, namely,

H˚pSympS
1

h pS
2
ˆ S2, ωλq, kq – H˚pU

S1

m ; kq bH˚pT2
m; kq (4.4)

H˚pSympS
1

h pS
2
ˆ S2, ωλq, kq – H˚pU

S1

m1 ; kq bH˚pT2
m1 ; kq

It follows that

HppUm; kq » HppUm1 ; kq for all p ě 0

Together with the Alexander-Eells isomorphism (4.1) and the connectedness of Um1 , this

implies that

HppUm; kq » k for all p ě 0

Using the splitting 4.4 and dualizing, we can finally compute the cohomology module of

SympS
1

h pS
2 ˆ S2, ωλq.

Theorem 4.2.2. Consider any of the following circle actions:

• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.

Then, the cohomology groups of the symplectic centralizer are

Hp
´

SympS
1

pS2
ˆ S2, ωλq; k

¯

»

$

’

’

’

’

’

&

’

’

’

’

’

%

k4 p ě 2

k3 p “ 1

k p “ 0

for any field k. In particular, the topological group SympS
1

pS2 ˆ S2, ωλq is of finite type.
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4.2.3 The homotopy colimit of Tm Ð S1p˘1, b;mq Ñ Tm1

As explained in Theorems 3.1.6 and 3.1.7, the circle actions S1p˘1, b;mq we are consid-

ering in this section extend to exactly two toric actions T2
m and T2

m1 . Geometrically, this

means that the two tori T2
m and T2

m1 intersect in SympS
1

h pS
2 ˆ S2, ωλq along the circle

S1p˘1, b;mq and, in particular, that we have two inclusions of Lie groups

S1 T 2
m1

T 2
m

p1,b1q

p1,bq

In this section we consider the homotopy colimit – or homotopy pushout – of these two

inclusions, namely,

P :“ hocolimpTm Ð S1
p1, b;mq Ñ Tm1q

This pushout is to be understood in the category of topological groups. As we will show

later, the topological group P turns out to be a model for the homotopy type of the

centralizer SympS
1

h pS
2 ˆ S2, ωλq.

The Pontryagin algebra of the pushout

In what follows, all k algebras are graded, and the commutator of two elements is given

by

ra, bs “ ab´ p´1q|a|¨|b|ba

For any field k, and for any abelian group A, the Pontryagin algebra H˚pA; kq is isomor-

phic to the cohomology algebra H˚pA; kq. It follows that H˚pS
1q is isomorphic to Λptq,

where t is of degree 1. Similarly, the Pontryagin algebra H˚pT
2; kq is isomorphic to the

to an exterior algebra Λpz1, z2q generated by two elements of degree one. The pushout

diagram of topological groups

S1 T 2
m1

T 2
m P

p1,b1q

p1,bq
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is homologically free (see Definition 3.1 in [5]). As before, P denotes the pushout in the

category of topological groups. By Theorem 3.8 of [5], the Pontryagin algebra of P is the

pushout of k algebras

H˚pS
1; kq H˚pT

2
m1 ; kq

H˚pT
2
m; kq H˚pP ; kq

Hp1,b1q

Hp1,bq

which is isomorphic to

Λptq Λpy1, y2q

Λpx1, x2q P alg
˚

p1,b1q

p1,bq

where P alg
˚ » H˚pP ; kq. By the description of the pushout of k algebras as amalgamated

products (See [5] for more details), the k algebra P alg
˚ can be identified with equivalence

classes of finite linear combinations of words in the letters tx1, x2, y1, y2u under the rela-

tions xixi “ 0, yiyi “ 0, rx1, x2s “ 0, ry1, y2s “ 0, and x1 ` bx2 “ y1 ` b1y2. From the

last equality, we can write y1 “ px1 ` bx2q ´ b1y2, which means that we can choose, as

generators, the elements

tt “ x1 ` bx2, x2, y2u

with the relations t2 “ x2
2 “ y2

2 “ 0, rt, x2s “ rt, y2s “ 0. The remaining commutator

w “ rx2, y2s is nonzero and commutes with t, x2 and y2. It follows that any word in

t, x2, y2 is equivalent to a linear combination of words of the form

wαxβ2y
γ
2 t
δ

with α P NY t0u, and β, γ, δ P t0, 1u. Hence, there is an isomorphism of graded algebras

P alg
˚ –

F px2, y2q

xx2
2, y

2
2y
b Λptq
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where F px2, y2q denotes the free graded algebra over k generated by the elements x2 and

y2, and where x2, y2, t are of degree one. In particular,

P alg
p »

$

’

’

’

’

’

&

’

’

’

’

’

%

k p “ 0

k3 p “ 1

k4 p ě 2

and the words wαxβ2y
γ
2 t
δ form an additive basis of the homology module P alg

˚ .

By duality, the cohomology modules P alg,˚ are P alg,0 » k, P alg,1 » k3, and P alg,p » k4

for all p ě 2. The algebra structure of P alg,˚ can be determined as follows. Let t̂, x̂2,

and ŷ2 be the duals of the generators of degree 1, and let ŵ be the dual of the generator

w “ rx2, y2s of degree 2.

Let us now recall the Hopf-Borel theorem (see [30] Theorem 6.36).

Theorem 4.2.3. (Hopf-Borel) Let k be a field of characteristic p where p may be zero or

a prime. A connected Hopf algebra H over k is said to be monogenic if H is generated

as an algebra by 1 and one homogeneous element x of degree strictly greater than 0. If

H is a monogenic Hopf algebra, then

1. if p ‰ 2 and degree x is odd, then H – Λpxq,

2. if p ‰ 2 and degree x is even, then H – krxs{ xxsy where s is a power of p or is

infinite i.e H – krxs,

3. if p “ 2, then H – krxs{ xxsy where s is a power of 2 or is infinite.

As P alg,˚ is an associative, graded commutative Hopf algebra of finite type, the Hopf-

Borel theorem implies that P alg,˚ is a tensor product of monogenic Hopf algebras. For a

field k of characteristic p different from 2, including p “ 0, P alg,˚ contains a subalgebra

of the form

A˚ “ Λpt̂, x̂2, ŷ2q b krŵs{xŵ
s
y
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where s is a power of p or is infinite. Suppose s “ pn ě 3 is finite. Then, the rank of

Ai would coincide with the rank of P alg,i up to degree i “ 2s ´ 1, and we would have

Ai “ 0 for i ě 2s. Therefore, we would need 4 more generators of degree 2s to account

for the rank of P alg,2s, and their pairwise products would imply that rkP alg,4s ą 4. This

contradiction shows that s must be infinite and that the rank of Ai equals the rank of

P alg,i for all i ě 0. Consequently, for a field k of characteristic p ‰ 2, the k-algebra P alg,˚

is isomorphic to

P alg,˚
– Λpt̂, x̂2, ŷ2q b Spŵq

In characteristic p “ 2, P alg,˚ is the tensor product of truncated polynomial algebras

krzis{z
si
i where si is a power of 2. As before, it contains a subalgebra of the form

A˚ “ krt̂, x̂2, ŷ2s{xt̂
2, x̂2

2, ŷ
2
2y b krŵs{xŵ

s
y

Again, assuming s is finite forces the existence of 4 new generators in degree 2s whose

products would yield too many generators in degree 4s. Therefore, in characteristic p “ 2,

the cohomology algebra of P is isomorphic to

P alg,˚
– krt̂, x̂2, ŷ2s{xt̂

2, x̂2
2, ŷ

2
2y b krŵs

In characteristic zero, the computation of the cohomology ring yields the minimal model

of H˚pP q b Q. As P is a H-space, it is a nilpotent space (see Exercise 1.13 in [19]), so

that the main theorem of dgc rational homotopy theory applies (see [19], Theorem 2.50)

namely, the dimension πppP q b Q for p ě 2 is equal to the number of generators of

degree p in the minimal model. For p “ 1, as P is a topological group, the dimension of

π1pP q bQ is same as the rank of H1pP,Qq. Consequently,

πppP q bQ »

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Q p “ 0

Q3 p “ 1

Q p “ 2

0 p ě 3
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The homotopy type of P

We want to better understand the homotopy type of the space P . To this end, consider

the embeddings

fm : T 2
m Ñ S1

ˆ S1
ˆ S1 (4.5)

px1, x2q ÞÑ px1, x2, b
1x1q

fm1 : T 2
m1 Ñ S1

ˆ S1
ˆ S1 (4.6)

py1, y2q ÞÑ py1, by1, y2q

The universal property of pushouts implies that there is a unique map fP : P Ñ S1 ˆ

S1 ˆ S1 making the following diagram commutative

BS1 BT 2
m1

BT 2
m BP

BS1 ˆBS1 ˆBS1

Bp1,b1q

Bp1,bq

Bfm1

Bfm

BfP

By Theorem 3.9 of [5], the homotopy fiber of BfP is the pushout of the homotopy fibers

of the other maps in the diagram. To determine this fiber, we first replace the maps in

the diagram of groups by homotopy equivalent fibrations

Z Zˆ Z Z

T 2
m ˆ R S1 ˆ Rˆ R T 2

m1 ˆ R

S1 ˆ S1 ˆ S1 S1 ˆ S1 ˆ S1 S1 ˆ S1 ˆ S1

p1,1,a1q p1,a1,a2q

a2 a1

p1,1,a1q

pa1,a2,b1a1epa3qq

pa1,ba1epa2q,a3q pa1,b1a1epa3q,a2q

pa1,ba1epa2q,b1a1epa3qq pa1,ba1epa3q,a2q

“ “
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where ai denote the ith coordinate function and epajq “ e2πiaj . Applying the classifying

space functor, this gives

S1 S1 ˆ S1 S1

BT 2
m BS1 BT 2

m1

BS1 ˆBS1 ˆBS1 BS1 ˆBS1 ˆBS1 BS1 ˆBS1 ˆBS1

pr2 pr1

“ “

which shows that the homotopy fiber of the canonical map BP Ñ BS1 ˆ BS1 ˆ BS1 is

homotopy equivalent to

hocolimtS1 pr2
ÐÝÝ S1

ˆ S1 pr1
ÝÝÑ S1

u » S1
˚ S1

» S3

Consequently, BP is the total space of a fibration

S3
Ñ BP Ñ BS1

ˆBS1
ˆBS1

that, after looping, becomes

T 2
m1

ΩS3 P S1 ˆ S1 ˆ S1

T 2
m

jm1
fm1“pa1,ba1,a2q

fP

jm
fm“pa1,a2,b1a1q

The map fP admits a section given by

spa1, a2, a3q “ jm1pa1, b
1´1
a3qjmp1, b

´1a´1
1 a2q

It follows that, as a space, P is weakly homotopically equivalent to the product

P » ΩS3
ˆ S1

ˆ S1
ˆ S1

which is consistent with the algebraic computations of the previous section.
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4.2.4 Homotopy type of S1p˘1, b;mq equivariant symplectomor-

phisms

We are now able to determine the homotopy type of the group SympS
1

h pS
2 ˆ S2, ωλq for

the circle actions

• S1p1, b,mq when 2λ ą |2b´m|, and

• S1p´1, b,mq when 2λ ą |2b`m|.

Since the arguments are identical in the two cases, we will only discuss the first one.

Again, in order to keep the notation simple, we write T2
m and T2

m1 for the two tori the

circle extends to, assuming m1 ą m, and we write p1, bq : S1 Ñ T2
m and p1, b1q : S1 Ñ T2

m1

for the two inclusions.

From the universal property of pushouts, there is a canonical map

Υ : P alg
˚ Ñ H˚pSympS

1

h pS
2
ˆ S2, ωλq; kq

making the following diagram commutative

Λptq Λpy1, y2q

Λpx1, x2q P alg
˚

H˚pSympS
1

h pS
2 ˆ S2, ωλq; kq

p1,b1q

p1,bq
im1

im

Υ

Proposition 4.2.4. For every field k, the map Υ : P alg
˚ Ñ H˚pSympS

1

h pS
2 ˆ S2, ωλq; kq

is an isomorphism of k-algebras.

Proof. By definition, the map Υ is an homomorphism of k-algebras. Since P alg
i –

HipSympS
1

h pS
2 ˆ S2, ωλq; kq for each i, it is sufficient to show that Υ is surjective.



4.2. The two orbits case 77

Let R be the image of Υ. Since the maps im and im1 are injective, R is the sub-

ring generated by the classes t, x2, y2 viewed as elements in H˚pSympS
1

h pS
2 ˆ S2, ωλq; kq.

Consider the two fibrations induced by the action maps

T2
m Ñ SympS

1

h pS
2
ˆ S2, ωλq

pm
ÝÑ SympS

1

h pS
2
ˆ S2, ωλq{T2

m » US1

m

T2
m1 Ñ SympS

1

h pS
2
ˆ S2, ωλq

pm1
ÝÝÑ SympS

1

h pS
2
ˆ S2, ωλq{T2

m1 » US1

m1

Observe that pmptq “ 0, pmpx2q “ 0, pm1ptq “ 0, and pm1py2q “ 0. Now suppose there is

an element z P H˚pSympS
1

h pS
2 ˆ S2, ωλq; kq, not in R, and of minimal degree d. Since

HdpSympS
1

h pS
2
ˆ S2, ωλq; kq –

HdpU
S1

m ; kq bH0pT
2
m; kq ‘ Hd´1pU

S1

m ; kq bH1pT
2
m; kq ‘ Hd´2pU

S1

m ; kq bH2pT
2
m; kq

(4.7)

we would have a decomposition

z “ c1 b 1 ‘ ct b t ‘ cx2 b x2 ` cT b rT
2
ms

with at least one coefficient cj which is not a polynomial in the classes pmpwq and pmpy2q.

Let c` be such coefficient of minimal degree d´ 2 ď ` ď d. The inverse of the Alexander-

Eells isomorphism of Proposition D.0.5

λ´1
˚ : Hp`1pU

S1

m q Ñ HppU
S1

m1 q

would map c` to a class c1`´1 P H`´1pU
S1

m1 ; kq. This class could not be a polynomial in

pm1pwq and pm1px2q since, otherwise,

c` “ λ˚pc
1
`´1q “ pm

`

ry2 b c
1
`´1s

˘

would be a polynomial in the classes pmpwq and pmpy2q. In turn, this class c1`´1 would have

to be the image of some element in H`´1pSympS
1

h pS
2ˆS2, ωλq; kq not in R, contradicting

the minimality of z.

Corollary 4.2.5. The map Υ : P alg
˚ Ñ H˚pSympS

1

h pS
2 ˆ S2, ωλq;Zq is an isomorphism

of Pontryagin algebras over the ring of integers.
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Proof. This follows from the well known fact that a map induces isomorphisms on homol-

ogy with Z coefficients iff it induces isomorphisms on homology with Q and Zp coefficients

for all primes p, see [22], Corollary 3A.7 (b).

Theorem 4.2.6. The map Υ : P Ñ SympS
1

h pS
2 ˆ S2, ωλq is an homotopy equivalence.

Proof. The map Υ is a homology equivalence on integral homology. Because P and

SympS
1

h pS
2 ˆ S2, ωλq are topological groups, it follows that it is a weak equivalence,

see [16], Example 4.2. Because both spaces are homotopy equivalent to CW-complexes,

this weak equivalence is a homotopy equivalence. See [22], Proposition 4.74.

4.3 Centralizers of Hamiltonian S1 actions on S2ˆS2

We summarise all the results we have obtained in this chapter in the following theorem.

Theorem 4.3.1. Consider any Hamiltonian circle action S1pa, b;mq on pS2 ˆ S2, ωλq.

The homotopy type of the symplectic stabilizer SympS
1

pS2 ˆ S2, ωλq is given in the table

below:
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Values of pa, b;mq λ Number of

strata J S1

ωλ,l

intersects

Homotopy type of

SympS
1

pS2 ˆ S2, ωλq

p0,˘1;mq, m ‰ 0 λ ą 1 1 S1 ˆ SOp3q

p0,˘1; 0q or p˘1, 0; 0q
λ “ 1 1 S1 ˆ SOp3q

λ ą 1 1 S1 ˆ SOp3q

p˘1,˘1; 0q λ “ 1 1 T2 ˆ Z2

p˘1, 0;mq,m ‰ 0 λ ą 1 1 T2

p˘1,˘m;mq,m ‰ 0 λ ą 1 1 T2

p1, b;mq, b ‰ tm, 0u
|2b´m| ě 2λ ě 1 1 T2

2λ ą |2b´m| ě 0 2 ΩS3 ˆ S1 ˆ S1 ˆ S1

p´1, b;mq, b ‰ t´m, 0u
|2b`m| ě 2λ ě 1 1 T2

2λ ą |2b`m| ě 0 2 ΩS3 ˆ S1 ˆ S1 ˆ S1

All other values of

pa, b;mq

@λ 1 T2

where ΩS3 denotes the based loop space of S3.
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Calculating the codimension

As seen in the previous chapter we calculate the homotopy type of the group of S1p˘1, b;mq

equivariant symplectomorphisms assuming that the codimension of the the invariant

strata J S1

ωλ
X Um1 in J S1

ωλ
was 2. In this chapter, we first prove using deformation theory

that the invariant strata J S1

ωλ
X Um1 is a submanifold of J S1

ωλ
and then calculate the di-

mension of normal bundle of this submanifold to obtain the codimension.

We mimic the techniques in [3] in the equivariant setting. Fix a Kähler 4-manifold

pM,ω, Jq and an S1 action on pM,ω, Jq such that g˚ω “ ω and g˚J “ J @g P S1. We

work in this generality and note that our required manifolds S2ˆS2 and CP 2#CP 2 along

with the circle action S1pa, b;mq satisfies the given conditions. Throughout the section we

note that the holomorphic S1 action on the base manifold M induces a natural action on

the various tensor spaces such as T 1,0M , Ω0,k
J pM,TMq etc considered below. We write

pT 1,0Mq
S1

,
´

Ω0,k
J pM,TMq

¯S1

etc to denote the S1 invariant elements of these tensor

spaces.

80
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5.1 Space of invariant complex structures

Define J S1

l to be the space of S1 invariant almost complex structures of M with regularity

C l endowed with C l topology. We briefly outline the procedure to put a Banach manifold

structure on J S1

l as follows. Fix a J P J S1

l and consider the sub-bundle hS
1

l pTM, Jq of

EndS
1

l pTMq of invariant endomorphisms of the tangent bundle of regularity C l defined

by

hS
1

l pTM, Jq “
!

A P EndS
1

l pTMq | AJ ` JA “ 0
)

Consider the map φJ : hS
1

l pTM, Jq Ñ J S1

l given by

φJpAq “ JeA

As shown in [14], the map φJ is a global homeomorphism sending Ck endomorphisms

(k ě l) in hS
1

l pTM, Jq to Ck almost complex structures. Consequently, we use φJ to

define charts at J on J S1

l (See [14] for more details).

Let IS
1

l denote the space of integrable almost complex structures of M with regularity

C l. We first show that IS
1

l is a Banach submanifold of J S1

l . Let NJpX, Y q “ rX, Y s `

J prJX, Y s ` rX, JY sq ´ rJX, JY s denote the Nijenhuis tensor with respect to J . We

construct a vector bundle over J S1

l with fibres Ω0,2
l´1pM,TMqS

1
of S1- invariant p0, 2q

forms with regularity C l´1 and take values in the holomorphic tangent bundle TM . We

construct of this bundle with fibre Ω0,2
l´1pM,TMqS

1
as a sub-bundle of the trivial bundle

J S1

l ˆ
`

Ω2
l´1pM,TM b Cq

˘S1

. It is indeed easy to check that the Nijenhuis tensor takes

elements in J S1

l to elements in Ω0,2
l´1pM,TMqS

1
. This is because

g ¨NJpX, Y q :“ g ¨ rX, Y s ` g ¨ J prJX, Y s ` rX, JY sq ´ g ¨ rJX, JY s

“ g˚rg
´1
˚ X, g´1

˚ Y s ` g˚J
`

rJg´1
˚ X, g´1

˚ Y s ` rg´1
˚ X, Jg´1

˚ Y s
˘

´ g˚ ¨ rJg
´1
˚ X, Jg´1

˚ Y s

“ rX, Y s ` J prJX, Y s ` rX, JY sq ´ rJX, JY s
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Where the last equality follows from the fact that g˚rX, Y s “ rg˚X, g˚Y s and noting

that J is equivariant. Thus we have a well defined map

N : J S1

l Ñ Ω0,2
l´1pM,TMqS

1

J ÞÑ NJ

If we show that the derivative of this map is surjective then indeed we would have

that Il is a Banach submanifold.

As shown in Appendix A of [3], we can define BJ : Ω0,1
J,l pM,TMq Ñ Ω0,2

J,l´1pM,TMq for

any almost complex structure J . Further let ∇NpJq denote the following composition.

`

Ω0,1
J,l pM,TMq

˘S1
`

Ω2
l´1pM,TM b Cq

˘S1

Ω0,2
l´1pM,TMqS

1dNJ

∇NJ

π

where π is the canonical projection of Ω2
l´1pM,TM b CqS1

– Ω2,0
l´1pM,TMqS

1
‘

Ω1,1
l´1pM,TMqS

1
‘ Ω0,2

l´1pM,TMqS
1

onto the last summand. Then,

Theorem 5.1.1. ∇NpJq “ ´2JBJ

Proof. Check Appendix A in [3].

In particular to show that ∇NpJq is surjective, we require that BJ : Ω0,1
l pM,TMqS

1
Ñ

Ω0,2
l´1pM,TMqS

1
is surjective. This is trivially true whenever the manifold as M is 4

dimensional and H0,2
J pM,TMq “ 0. Thus we have the following theorem.

Theorem 5.1.2. Suppose M is a 4- manifold with H0,2
J pM,TMq “ 0 with J P IS

1

l ,then

the space IS
1

l is a Banach submanifold of J S1

l in a neighbourhood of J with tangent space

at J identified with ker BJ : Ω0,1
l pM,TMqS

1
Ñ Ω0,2

l´1pM,TMqS
1

or equivalently

TJIl –
´

im BJ :
`

Ω0,0
l pM,TMq

˘S1

Ñ Ω0,1
l pM,TMqS

1
¯

‘
`

H0,1
pM,TMq

˘S1

Let J S1

ω,l denote the space of all S1 equivariant compatible almost complex structures

of regularity C l. Our next goal is to show for under some cohomological restrictions, that
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the space of equivariant integrable compatible almost complex structures of regularity C l

denoted by IS
1

ω,l is a Banach submanifold of J S1

ω,l . We first note that Given J P J S1

ω,l , that

the equivariant metric hJp¨, ¨q :“ ωp¨, J ¨q ´ iωp¨, ¨q induced by the pair pω, Jq identifies

TJJ S1

l “ Ω0,1
l pM,TMqS

1
with the space pT 0,2q

S1

:“ pΩ0,2pMqq
S1

bpΩ0,2pMqq
S1

of complex

equivariant p0, 2q-tensors via the map

θ :
`

T 0,2
˘S1

Ñ Ω0,1
l pM,TMqS

1

A ÞÑ θpAq :“ hJpA¨, ¨q

Let us denote by SΩ0,1
l pM,TMqS

1
the tangent space of TJJ S1

ω,l Ă TJJ S1

l of all equiv-

ariant compatible almost complex structures. More explicitly, the tangent space consists

of elements A P Ω0,1
l pM,TMqS

1
such that AJ ` JA “ 0 and ωpA¨, ¨q “ ´ωp¨, A¨q. Under

the above identification, we can check that SΩ0,1
l pM,TMqS

1
gets mapped to the space

of symmetric S1 invariant p0, 2q-tensors which we denote by pS0,2q
S1

.

Further we may identify the quotient with the space of invariant p0, 2q forms on M

as follows.

TJJ S1

l {TJJ S1

ωλ,l
“ Ω0,1

l pM,TMqS
1
{SΩ0,1

l pM,TMqS
1
– T 0,2

J pMq{ pS0,2q
S1

“
`

Ω0,2
J pMq

˘S1

As before, the Nijenhuis tensor defines a map

N : J S1

ω,l Ñ Ω0,2
l´1pM,TMqS

1

whose kernel is precisely the submanifold IS
1

ω,l, It would once again suffice to show that

the derivative ∇N is surjective. As we know that ∇NpJq “ ´2JBJ , we would need to

show that B : SΩ0,1
l pM,TMqS

1
Ñ Ω0,2

l´1pM,TMqS
1

is surjective. As M is a 4-manifold,

all forms in Ω0,2
l´1pM,TMqS

1
are in fact closed, hence to show that the restriction of B to
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SΩ0,1
l pM,TMqS

1
is surjective, it would suffice to show that the group

SH0,2
J pTMq

S1

:“
ker B : Ω0,2

l´1pM,TMqS
1
Ñ

`

Ω0,3
l´2pM,TMq

˘S1

im B : SΩ0,1
l pM,TMqS1

Ñ Ω0,2
l´1pM,TMqS1

“
Ω0,2
l´1pM,TMqS

1

im B : SΩ0,1
l pM,TMqS1

Ñ Ω0,2
l´1pM,TMqS1

is in fact 0.

As the above condition is not easy to check directly, we would like to get a simpler

condition on the manifold that would guarantee that SH0,2
J pTMq

S1
is indeed 0. In order

to do that, we consider the following commutative diagram

0 SΩ0,1
l pM,TMqS

1
Ω0,2
l´1pM,TMqS

1
0

Ω0,0
l`1pM,TMqS

1
Ω0,1
l pM,TMqS

1
Ω0,2
l´1pM,TMqS

1
0

Ω0,1
l`1pMq

S1
Ω0,2
l pMq

S1
0 0

B

B

α

B

B B

where the map SΩ0,1
l pM,TMqS

1
Ñ Ω0,1

l pM,TMqS
1

is just the inclusion and the map

Ω0,1
l pTMq

S1
Ñ Ω0,2

l pMq
S1

is the quotient Ω0,1
l pTMq

S1
Ñ Ω0,1

l pTMq
S1
{SΩ0,1

l pM,TMqS
1

followed by identifying Ω0,1
l pTMq

S1
{SΩ0,1

l pM,TMqS
1
– Ω0,2

l´1pM,TMqS
1
. We refer the

reader to page 548 of [3] for more details about how this identification is made. Finally

the map α is defined as follows

α : Ω0,0
l`1pM,TMqS

1

Ñ Ω0,1
l`1pMq

S1

X ÞÑ αpXqpY q :“ ωpX, JY q ´ iωpX, Y q

where J P IS
1

ω,l and X, Y P Ω0,0
l`1pM,TMqS

1
. We refer the reader to Appendix B in [3] for

the proof of commutativity of the diagram. We note that the proof for the equivariant

case follows mutatis mutandis from the proof in Appendix B of [3] by observing that the

B operator is equivariant and hence takes invariant elements to invariant ones. Thus the

above diagram gives rise to a long exact sequence is cohomology
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0 ÝÑ
`

H0
JpTMq

˘S1

ÝÑ clΩ0,1
J pMq

Sl δ
ÝÑ clSΩ0,1

J pM,TMqS
1 q
ÝÑ H0,1

J pTMq
S1

ÝÑ

ÝÑ H0,2
J pMq

S1

ÝÑ SH0,2
J pTMq

S1

ÝÑ H0,2
J pTMq

S1

ÝÑ 0
(5.1)

where clΩ0,1
J pMq

Sl denotes the kernel of B in
`

Ω0,1
J pMq

˘Sl

and similarly clSΩ0,1
J pM,TMqS

1

is the kernel of B : SΩ0,1
l pM,TMqS

1
Ñ Ω0,2

l´1pM,TMqS
1
. Thus if we had a 4-manifold

M with an S1 invariant compatible integrable almost complex structure J such that

H0,2
J pMq “ 0 andH0,2

J pTMq “ 0, noting that B takes S1 invariant elements to S1 invariant

elements we can conclude that H0,2
J pMq

S1
“ 0 and H0,2

J pM,TMqS
1
“ 0. Further, it fol-

lows from equation 5.1 for such a manifold pM,ω, Jq as above, that SH0,2
J pTMq

S1
“ 0 and

hence IS
1

ω,l would indeed be a manifold in a neighbourhood of such a J . Thus H0,2
J pMq “ 0

and H0,2pTMq “ 0 gives us a simpler condition for when IS
1

ω,l would indeed be a manifold

in a neighbourhood of J as required.

Additionally the averaging operator commutes with the B operator, H0,2
J pMq “ 0 im-

plies that H0,2
J pMq

S1
“ 0. This tells us that q : clSΩ0,1

J pM,TMqS
1
Ñ H0,1

J pTMq
S1

is sur-

jective and hence by the first isomorphism theorem we have
clSΩ0,1

J pM,TMqS
1

ker q:clSΩ0,1
J pM,TMqS1ÑH0,1

J pTMqS1

is isomorphic to H0,1
J pTMq

S1
. Then the above long exact sequence gives us

clSΩ0,1
J pM,TMqS

1

ker q
–
clSΩ0,1

J pM,TMqS
1

im δ
– H0,1

J pM,TMqS
1

Putting all this together we have that

Theorem 5.1.3. If pM,ω, Jq is a Kähler 4-manifold such that the groups H0,2
J pMq “ 0

and H0,2
J pTMq “ 0, then IS

1

ω,l is a Banach submanifold of J S1

ω,l in a neighbourhood of J

with tangent space at J P IS
1

ω,l identified with

TJI
S1

ω,l “ clSΩ0,1
J pM,TMqS

1

“ ker B : SΩ0,1
l pM,TMqS

1

ÝÑ Ω0,2
l´1pM,TMqS

1

or equivalently

TJI
S1

ω,l – im δ
à

H0,1
J pTMq

S1

Proposition 5.1.4. The conditions H0,2
J pMq “ 0 and H0,2

J pM,TMq “ 0 are satisfied for

all the Hirzebruch surfaces.
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Proof. To prove H0,2
J pM,TMq “ 0 for all Hirzebruch surfaces see the computation in

Example 6.2 b) pg 312 in [27]. To prove, H0,2
J pMq “ 0 we note that the the rank of

H0,2
J pMq “ 0 (usually called the geometric genus pg) is a birational invariant. As all

Hirzebruch surfaces are birationally equivalent, the result follows from the computation

on pg 220 in [27].

Finally we would like to show that the strata Um,l X J S1

ω,l is a Banach submanifold

of J S1

ω,l . The most naive method to try to prove this would be to consider the universal

moduli space MpB´ m
2
F,Jωλq of curves in the class B´ m

2
F and try to prove that J S1

ωλ,l

intersects the image of MpB ´ m
2
F,Jωλq under the projection map to the space of all

compatible almost complex structures of regularity C l.

MpB ´ m
2
F,Jωλq

J S1

ωλ,l
Jωλ

π

i

However, this approach is flawed as the two maps are never transversal. The alterna-

tive method is to try to define an equivariant universal moduli space MS1
pB´ m

2
F,J S1

ωλ,l
q

and argue that the image under the projection to J S1

ωλ,l
is a Banach submanifold of J S1

ωλ,l
.

This is the plan of action we implement in the following section.

5.2 Construction of Equivariant moduli spaces

In this section we construct the moduli space of S1 invariant J-holomorphic maps into

S2 ˆ S2 or CP 2#CP 2. Once again we shall present the analysis and note that all the

arguments go through even in the case when the target manifold is CP 2#CP 2. Recall

that Jk was the standard complex structure on the kth Hizerbruch surface. As seen

in Chapter 2 there is a standard Jk-holomorphic curve D in S2 ˆ S2 in the homology

class B ´ k
2
F . Consider the S1pa, b;mq action on pS2 ˆ S2, ωλq. From the graph for the

circle action S1pa, b;mq we see that S1 acts on D in a non-effective manner with global

stabilizer Za. The following theorem is useful in our analysis.
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Lemma 5.2.1. Consider the S1pa, b;mq action on pS2ˆS2, ωλq or pCP 2#CP 2, ωλq. Let

S be any S1pa, b;mq-invariant symplectic embedded sphere in the same homology class

B ´ k
2
F with k ą 0. Then the S1 action on S has global stabilizer isomorphic to Za.

Proof. This follows 3.1.3 from noting that any other S1 invariant curve passes through

the same set of fixed points as D , and hence by 3.1.3 again we that the global stabilizer

is the same.

Thus we can fix an action on a base sphere, namely the standard S1 action that

agrees with the action of S1 on D and consider the moduli space of all equivariant maps

u : pS2, joq Ñ pS2 ˆ S2, Jq for some J P J S1

ωλ,l
. We define MS1

pB ´ kF,J S1

ωλ,l
q as follows

MS1

pB ´ kF,J S1

ωλ,l
q :“ tpu, Jq | u is equivariant, somewhere injective, J-holomorphic and

represents the class B ´ kF u

Remark 5.2.2. As we are only interested in the case when k ą 0, the curves in class

B ´ k
2
F have negative self intersection and the adjunction formula tells us that these

curves are embedded. Thus all somewhere injective curves in class B ´ k
2
F for k ą 0 are

embedded.

As in the non-equivariant case we now wish to prove that this moduli space is a

smooth Banach manifold.

To prove this we recall the set up. The set up is analogous to the non-equivariant set

up as in [31]. We have a bundle

E S1

k´1,p

BS1

k,p ˆ J S1

l

π

where E S1
is a vector bundle with fibre over pu, Jq consisting of S1 invariant elements

in ΓpS2,Ω0,1
J pS

2, u˚T pS2ˆS2qq, BS1

k,p :“ tu P
`

W k,ppS2, S2 ˆ S2q
˘S1

| rus “ B´ kF u and

W k,ppS2, S2 ˆ S2qqS
1

denotes the space ofequivariant maps of Sobolev regularity W k,p
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from S2 to S2 ˆ S2.

We would like to show that the section B
´1

J :“ pu, BJuq : Bk,p ˆ J S1

l Ñ E S1

k´1,p where

BJu “
1
2
pdu ` J ˝ du ˝ jS2q is transversal to the zero section. Note that B

´1

J p0q “

MS1
pB ´ kF,J S1

ωλ,l
q, thus giving it a smooth structure as in the non-equivariant case

(McDuff- Salamon Lemma 3.2.1)

In order to show trasnversality we project the map to the fibre and show that the

derivative is surjective at pu, Jq when u is a simple equivariant curve. (Check Lemma

3.2.1 in [31] for more details) i.e

DF S1

u,J : W k,p
pS2, u˚T pS2

ˆ S2
qq
S1

ˆC l
pS2

ˆ S2,EndpTS2
ˆ S2, J, ωqS

1

ÑW k,p
pS2,Ω0,1

J pS
2, u˚T pS2

ˆ S2
qqq

S1

But by Lemma 3.2.1 in [31] we know that the linearized derivative DFu,J in the non-

equivariant case

DFu,J : W k,p
pS2, u˚T pS2

ˆ S2
qqˆC l

pS2
ˆ S2, EndpTS2

ˆ S2, J, ωq

ÑW k,p
`

pS2,Ω0,1
J

`

S2, u˚T pS2
ˆ S2

q
˘˘

is surjective.

As J P J S1

ωλ
, the B̄J operator commutes with the averaging operator with respect to

the S1 action. Averaging the above non-equivariant derivative DFu,J by the S1 action

would prove that DF S1

u,J is surjective. Hence we can conclude the following theorem.

Theorem 5.2.3. MS1
pB ´ kF,J S1

ωλ,l
q is a smooth Banach manifold.

Also we have the projection map

MS1
pB ´ kF,J S1

ωλ,l
q

J S1

ωλ,l

π
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To conclude that the image of π is a submanifold of J S1

ωλ,l
we need the following theorem

whose proof can be found in [1].

Theorem 5.2.4. (Theorem 3.5.18 in [1]) If there is a smooth map f : M Ñ N where

M,N are Banach manifolds such that

1. kerTf is a sub-bundle of TM

2. For each m PM , f˚pTmMq is closed and splits in TfpmqN

3. f is open or closed onto it’s image

Then fpMq is a smooth Banach submanifold of N

A map that satisfies the above conditions is called a sub-immersion.

Lemma 5.2.5. The projection map π : MS1
pB ´ kF,J S1

ωλ,l
q Ñ J S1

ωλ,l
is a sub-immersion.

Proof. Note that the ker dπ is of constant rank and is the tangent space to the reparametriza-

tion group C˚ is which freely on MS1
pB ´ kF,J S1

ωλ,l
q. Hence ker dπ is a sub-bundle of

TMS1
pB ´ kF,J S1

ωλ,l
q.

Now we show that the image of dπ is closed TJJ S1

ωλ,l
. Note first that TJJ S1

ωλ,l
“

SΩ0,1
J pM,TMqS

1
, hence π˚

´

Tpu,JqMS1
´

B ´ kF,J S1

ωλ,l

¯¯

as a subspace of SΩ0,1
J pM,TMqS

1

can be described as follows:

π˚Tpu,JqMS1
´

B ´ kF,J S1

ωλ,l

¯

“

“

!

α P SΩ0,1
J pM,TMqS

1

| rα ˝ du ˝ jS2s “ 0 P H0,1
J pS

2, u˚TMqS
1
)

(5.2)

(This follows from noting that the proof of proposition 2.8 in [3] goes through under

the presence of a compact group action.) Let γn P π˚

´

Tpu,JqMS1
´

B ´ kF,J S1

ωλ,l

¯¯

i.e

γn P Ω0,1pM,TMqS
1
“ TJ S1

ωλ,l
and satisfies rγn ˝ du ˝ JS2s “ 0 P H0,1

J pS
2, u˚TMqS

1
. Fur-

ther assume the sequence γn converges to γ in Ω0,1pM,TMqS
1
. Then rγ ˝ du ˝ jS2s “ 0 P
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H0,1
jS2
pS2, u˚TMqS

1
, thus showing image of dπ is closed TJ S1

ωλ,l
.

Next to that the image of dπ splits in TJ S1

ωλ,l
, we proceed as follows. We firstly show

that the codimension of the image of dπ in TJ S1

ωλ,l
is finite and hence it follows that the

image of dπ splits. Consider the map

L : SΩ0,1
J pM,TMqS

1

Ñ H0,1
jS2

`

S2, u˚TM
˘S1

α ÞÑ rα ˝ du ˝ jS2s

By equation 5.2 we see that the kernel of this map is precisely the image of the map

dπ. As H0,1
jS2
pS2, u˚TMq

S1

is finite dimensional it follows that the codimension of dπ is

finite and hence the image of dπ in TJ S1

ωλ,l
splits.

Finally to show that π is open onto it’s image we note that,

MS1
pB ´ kF,J S1

ωλ,l
q

MS1
pB ´ kF,J S1

ωλ,l
q{C˚ im π

πq

h
–

where the map h : MS1
pB´kF,J S1

ωλ,l
q{C˚ Ñ imπ is a homeomorphism. As q is a quotient

map for a group action, we have that q is an open map and as π “ h ˝ q, we have the

π too is an open map, thus showing that π satisfies all the conditions in the lemma and

hence π is a sub-immersion.

Corollary 5.2.6. U2k,l X J S1

ωλ,l
is a Banach submanifold of J S1

ωλ,l
.

Proof. Follows from Lemma 5.2.5 and noting that the image of π is U2k,l X J S1

ωλ,l
.

Finally we would like to understand what the normal bundle to U2k,lXJ S1

ωλ,l
looks like

(when k ą 0). To do this consider the following

MS1
pB ´ kF,J S1

ωλ,l
q

IS
1

ω,l J S1

ωλ,l

π

i
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We would like to arrive at a condition when these two spaces intersect transversely and

thus we can use this transverse intersection to get a description of the normal bundle of

U2k,l X J S1

ωλ,l
.

Lemma 5.2.7. For any of the Hirzebruch surfaces pS2ˆS2, ωλ, Jmq or pCP 2#CP 2, ωλ, Jmq

we have that u˚ : H0,1
Jm
pM,TMqS

1

Ñ H0,1
jS2
pS2, u˚TMq

S1

is an isomorphism.

Proof. From Proposition 3.4 in [3] we know that u˚ : H0,1
Jm
pM,TMq Ñ H0,1

jS2
pS2, u˚TMq

is an isomorphism. As u is equivariant this indeed gives us that

u˚ : H0,1
Jm
pM,TMqS

1

ÝÑ H0,1
jS2

`

S2, u˚TM
˘S1

is also an isomorphism.

Lemma 5.2.8. Let pM,ωλq denote either pS2 ˆ S2, ωλq or pCP 2#CP 2, ωλq. Further let

i : IS
1

ω,l ãÑ J S1

ωλ,l
denote the inclusion and π : MS1

pB ´ kF,J S1

ωλ,l
q Ñ J S1

ωλ,l
denote the

projection. Then we have that

• i&π

• the infinitesimal complement(i.e the fibre of the normal bundle) of Um,l X J S1

ωλ,l
at

Jm P I
S1

ω,l can be identified with H0,1
Jm
pM,TMqS

1
.

Proof. Recall by Theorem 5.1.3, that the tangent space of IS
1

ω,l was given by

TJI
S1

ω,l “ clSΩ0,1
J pM,TMqS

1

:“ ker B : SΩ0,1
l pM,TMqS

1

ÝÑ Ω0,2
l´1 pM,TMqS

1

Let γ P TJJ S1

ωλ,l
“ pSΩ0,1pM,TMqq

S1

and define rγ ˝ du ˝ jS2s :“ η P H0,1
jS2
pS2, u˚TMqS

1
.

To show that i&π, we need to produce β P TJmI
S1

ω,l “ clSΩ0,1
Jm
pM,TMqS

1
such that

rpγ ´ βq ˝ du ˝ jS2s “ 0. To do so, we consider the following commutative diagram.
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H0,1
Jm
pM,TMqS

1
H0,1
jS2
pS2, u˚TMqS

1

H0,1
Jm
pM,TMqS

1
H0,1
jS2
pS2, u˚TMqS

1

u˚

J˚m j˚
S2

u˚

rαs rα ˝ dus

rα ˝ Jms
rα ˝ du ˝ jS2s “

rα ˝ Jm ˝ dus

where all the maps u˚,J˚ and j˚S2 are isomorphisms. Further we have the equality

rα ˝ du ˝ jS2s “ rα ˝ J ˝ dus as u is jS2-Jm holomorphic. As we know that H0,2
Jm
pMqS

1
“ 0,

from the long exact sequence equation 5.1 we see that the quotient map

clSΩ0,1
Jm
pM,TMqS

1

Ñ H0,1
Jm
pM,TMqS

1

is surjective. As both u˚ and J˚ are isomorphisms, there exists β P clSΩ0,1
Jm
pM,TMqS

1
“

TJI
S1

ωλ,l
such that rβ ˝ J ˝ dus “ rβ ˝ du ˝ jS2s “ η :“ rγ ˝ du ˝ jS2s. Hence we indeed have

rpγ ´ βq ˝ du ˝ jS2s “ 0 as required.

We now show that the fibre of the normal bundle of Um,l X J S1

ωλ,l
at Jm P I

S1

ω,l can be

identified with H0,1
Jm
pM,TMqS

1
. As seen in the proof of Lemma 5.2.5, we know that there

is a map

L : SΩ0,1
J pM,TMqS

1

Ñ H0,1
J

`

S2, u˚TM
˘S1

α ÞÑ rα ˝ du ˝ jS2s

As the quotient map clSΩ0,1
Jm
pM,TMqS

1
Ñ H0,1

Jm
pM,TMqS

1
is surjective and the maps

u˚ and jS2 are isomorphisms, we have that the map L is surjective. As the kernel of L is

the image of dπ, the cokernel can be identified with H0,1
jS2
pS2, u˚TMq

S1

– H0,1
Jm
pM,TMqS

1

Hence the the fibre of the normal bundle of Um,l X J S1

ωλ,l
at Jm P I

S1

ω,l can be identified

with H0,1
Jm
pM,TMqS

1
.
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Hence to calculate the codimension of U2k,l X J S1

ωλ,l
, we only need to calculate the

dimension of H0,1
Jm
pM,TMqS

1
. We present that calculation in the next section.

5.3 Isotropy representations

By Theorem 4.2 in [3], the action of the isometry group Kp2nq » S1ˆSOp3q on the space

H0,1
J pM,TMq of infinitesimal deformations is isomorphic to Detb Sym2n´2, where Det is

the standard action of S1 “ Up1q on C2, and where SympC2q is the representation Wn´1

of SOp3q induced by the p2n´ 2q-fold symmetric product of the standard representation

of SUp2q on C2.

5.3.1 Hirzebruch surfaces and their isometry groups

In this section we mostly try to follow the same notation as in [3]. The reader may note

that in our case 2n “ m.

Following [3], we construct the Hirzebruch surface F2n by Kähler reduction of C4

under the action of the torus T 2
2n defined by

ps, tq ¨ z “ ps2ntz1, tz2, sz3, sz4q

The moment map is φpzq “ p2n|z1|
2 ` |z3|

2 ` |z4|
2, |z1|

2 ` |z2|
2q and the reduced man-

ifold at level pλ ` n, 1q is symplectomorphic to pS2 ˆ S2, ωλq and biholomorphic to

the Hirzebruch surface F2n. In this model, the projection to the base is given by

rpz1, . . . , z4qs ÞÑ rz3 : z4s, the zero section is rw0 : w1s ÞÑ rpw2n
0 , 0, w0, w1qs, and a fiber

is rw0 : w1s ÞÑ rpw0w
2n
1 , w0w1, 0, w1qs. The torus T 2p2nq “ T 4{T 2

2n acts on F2n. This

torus is generated by the elements rp1, eit, 1, 1qs and rp1, 1, eis, 1qs, and its moment map

is rpz1, z2, z3, z4qs ÞÑ p|z2|
2, |z3|

2q. The moment polytope ∆p2nq is the convex hull of the

vertices p0, 0q, p1, 0q, p1, λ` nq, and p0, λ´ nq.
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The isometry group of F2n is

Kp2nq “ ZUp4qpT
2
2nq{T

2
2n “ pT

2
ˆ Up2qq{T 2

2n » S1
ˆ PUp2q » S1

ˆ SOp3q

where the middle isomorphism is given by

rps, tq, As ÞÑ ps´1t detAn, rAsq

Under this isomorphism, an element rp1, a, b, 1qs of the torus T p2nq is taken to

¨

˝abn,

»

–

b 0

0 1

fi

fl

˛

‚“

¨

˝bna,

»

–

b1{2 0

0 b´1{2

fi

fl

˛

‚

Consequently, at the Lie algebra level of the maximal tori, the map identifying the

maximal torus of Kp2nq whose lie algebra is denoted by t2p2nq with the maximal torus

S1 ˆ SOp2q Ă S1 ˆ SOp3q whose lie algebra is denoted by t2 (where SOp2q is identified

with the rotations around the z-axis) is given by

¨

˝

1 n

0 1

˛

‚

The moment polytope associated to the maximal torus T 2 Ă Kp2nq is thus the balanced

polytope obtained from ∆p2nq by applying the inverse transpose

¨

˝

1 0

´n 1

˛

‚.

Thus the moment polytope associated to the maximal torus T 2 Ă Kp2nq has the

following shape
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5.3.2 Even isotropy representations

Let Jm be the standard S1 invariant integrable almost complex structure in the strata

Um, coming from the Hirzebruch surface Wm. The action of the isometry group Kp2nq »

S1 ˆ SOp3q on the space H0,1
Jm
pS2 ˆ S2, T pS2 ˆ S2q – Cm´1 (see [27] Example 6.2(b)(4),

p.309 for more details about how the isomorphism is obtained) of infinitesimal deforma-

tions is isomorphic to Detb Sym2n´2, where Det is the standard action of S1 “ Up1q on

C2, and where SympC2q is the representation Wn´1 of SOp3q induced by the p2n´ 2q-fold

symmetric product of the standard representation of SUp2q on C2 (see Theorem 4.2 in[3]).

We shall denote this p2n ´ 2q-fold symmetric product of the standard representation of

SUp2q on C2 as V2n´2. See [8] for more details about the representation theory of SOp3q

and SUp2q

The circle of SOp3q “ PUp2q “ Up2q{∆pS1q

Rptq “

¨

˚

˚

˚

˝

1 0 0

0 cosptq ´ sinptq

0 sinptq cosptq

˛

‹

‹

‹

‚

, t P r0, 2πq

lifts to

ept{2q :“

¨

˝

eit{2 0

0 e´it{2

˛

‚P SUp2q

so that the character of Wn´1 at Rptq is given by (see [8] p.88)

χWn´1pRptqq “ χV2n´2pept{2qq “
n´1
ÿ

k“1´n

eikt “
2n´2
ÿ

k“0

eipn´1´kqt
“
eint ´ e´int

e´it ´ e´it
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The character of Det is,

χDetpRptqq “ eit

For p.q ě 0, we have the orthogonality relations

xeipt, eiqty “
1

2π

ż 2π

0

e´ipteiqt dt “ δp,q

In general, given a representation V of a compact group G, the dimension of the invariant

subspace V G is given by (see [8] Thm. 4.11)

dimV G
“

ż

χpgq dg

For a, b coprime, consider the embedding S1 Ñ S1pa, b, 2nq Ă Kp2nq defined by

S1 ãÑ S1
ˆ SOp3q “ Kp2nq

t ÞÑ pat, Rpbtqq

Then, the S1pa, b, 2nq-invariant subspace of Detb Sym2n´2
pC2q has dimension

da,b,2n “
1

2π

n´1
ÿ

k“1´n

ż 2π

0

eiateikbt dt “
1

2π

n´1
ÿ

k“1´n

ż 2π

0

eipa`bkqt dt

“

$

’

’

&

’

’

%

1 if a` bk “ 0 for some k P t1´ n, . . . , n´ 1u

0 otherwise

Note that the above codimension calculation was with respect to the basis of the

maximal torus in Kp2nq. Hence to calculate the codimension for the S1p1, b,mq Ă T2
m as

in our case, we need to transform the basis by multiplication by the matrix

¨

˝

m
2
´1

1 0

˛

‚.

Thus it takes the vector

¨

˝

1

b

˛

‚ in the basis for the standard moment polytope

to the vector

¨

˝

m
2
´ b

1

˛

‚ in the basis for the balanced polytope (for which we did the

above calculations).
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Therefore the codimension of S1p1, b;mq is given by the number of k P t1´m
2
, ¨ ¨ ¨ , m

2
´

1u such that pm
2
´ bq ` k “ 0. Relabelling k1 as m

2
` k, we have that the codimension is

given by the number of k1 P t1, ¨ ¨ ¨ ,m´ 1u such that k1 “ b.

Theorem 5.3.1. Given the circle action S1p1, b,mq with 2λ ą |2b´m| and b ‰ t0,mu,

the complex codimension of the stratum J S1

ωλ
X Um in J S1

ωλ
in given by the number of

k P t1, ¨ ¨ ¨ ,m´ 1u such that k “ b.

Similarly for the action S1p´1, b,mq with 2λ ą |2b `m| and b ‰ t0,´mu, the complex

codimension of of the stratum J S1

ωλ
XUm in J S1

ωλ
in given by the number of k P t1, ¨ ¨ ¨ ,m´

1u such that k “ ´b.

Corollary 5.3.2. For the circle actions

• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.

The complex codimension of the stratum J S1

ωλ
X Um in J S1

ωλ
is either 0 or 1.

Proof. Follows from the calculation and discussion above.

Alternative calculation of the codimension

As explained above, the action of Kp2nq on H0,1
Jm
pS2 ˆ S2, T 1.0

Jm
pS2 ˆ S2qq – Cm´1 is

isomorphic to Detb Sym2n´2.Hence to calculate the the codimension we only need to

calculate the dimension of the invariant subspace of H0,1pS2ˆS2, T 1.0
Jm
pS2ˆS2qq – Cm´1

under this action. To do so we note that a basis of Sym2n´2 is given by the homogeneous

polynomials Pk “ z2n´2´k
1 zk2 for k P t0, . . . , 2n´ 2u. The action of Rptq on Pk is

Rptq ¨ Pk “ ept{2q ¨ Pk “ ei
`

2n´2´2k
˘

t{2Pk “ eitpn´1´kqPk
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so that the action of peis, Rptqq Ă S1 ˆ SOp3q on Pk is

peis, Rptq ¨ Pk “ ei
`

s`tpn´1´kq
˘

Pk

Each Pk generates an eigenspace for the action of the maximal torus T p2nq. In particular,

the circle S1pa, b; 2nq acts trivially on Pk if, and only if,

a` bpn´ 1´ kq “ pa, bq ¨ p1, n´ 1´ kq “ 0

for k P t0, 2n´ 2u. Equivalently, we must have

a` bk “ pa, bq ¨ p1, kq “ 0

for k P t1´ n, . . . , n´ 1u

Hence the dimension of the invariant subspace is given by the number of k P t1 ´

n, . . . , n´ 1u such that a` bk “ 0 as derived in the previous section.

As an aside we also note that, The generator p1, 1 ´ kq (in the balanced basis of

Kp2nq) of T p2kq{S1pa, b; 2nq then acts on the eigenspace xPky with weight

p1, 1´ kq ¨ p1, kq “ 1

which shows that the action is effective and does not depend on a, b, or m “ 2n.

Remark 5.3.3. In the beginning of the section, we only show that the space J S1

ωλ,l
X

U2k,l was a Banach submanifold. But in order to obtain the topology of the space of

SympS
1

pS2 ˆ S2, ωλq with C8-topology, we require that the space J S1

ωλ
XU2k with the C8

topology is a Fréchet manifold and that the codimension of J S1

ωλ
XU2k in J S1

ωλ
is given by

the same formula as in Theorem 5.3.1. As this discrepancy exists in the literature even

in the non-equivariant case, and as a resolution of this issue is well beyond the scope of

the thesis we do not attempt to resolve this here.



Chapter 6

Odd Hirzebruch surfaces

6.1 Homotopy type of SymppCP 2#CP 2, ωλq

We now compute the centralisers for the S1 actions on the odd Hirzebruch surfaces. The

theory is extremely analogous to the even Hirzebruch case i.e S2 ˆ S2, hence we shall

only point out the key differences. Most of the setup was discussed in the preliminaries

but we shall repeat them in the beginning of this section for the purposes of continuity

of exposition.

As noted before we have that the odd Hirzebruch surface Wm (where m is odd) is

defined as a complex submanifold of CP 1 ˆ CP 2 defined by setting

Wm :“
 

prx1, x2s , ry1, y2, y3sq P CP 1
ˆ CP 2

| xm1y2 ´ x2y
m

1 “ 0
(

This manifold is diffeomorphic to CP 2#CP 2. The Torus T2 acts on CP 1 ˆ CP 2 in

the following manner.

pu, vq ¨ prx1, x2s , ry1, y2, y3sq “ prux1, x2s , ru
my1, y2, vy3sq

(again with m being odd) and the momentum map image looks like

99
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Q “ p0, 1q

P “ p0, 0q

R “ pλ´ m`1
2
, 1q

S “ pλ` m´1
2
, 0q

B ´ m`1
2
F

FF

B ` m´1
2
F

where B now refers to the homology class of a line L in CP 2#CP 2 and F refers to the

class L´E where L is the class of the line and E is the class of the exceptional divisor.

There is a canonical form which we also call ωλ on CP 2#CP 2, which has weight λ on

B and 1 on F . As before all symplectic S1 action on CP 2#CP 2 extend to toric actions.

Hence only need to consider sub-circles of the above family of torus actions. The graphs

for the different circles are analogous to the S2ˆS2 case, the only difference being in the

momentum map labels. Again as before we have the following stratification of the space

of compatible almost complex structures

Theorem 6.1.1. Let Jωλ denote the space of all compatible almost complex structures

(not necessarily invariant) for the form ωλ, then the space Jωλ admits a finite decompo-

sition into disjoint Fréchet manifolds of finite codimensions

Jωλ “ U1 \ U3 \ U5 . . .\ U2n`1

where n “ tλu is the unique integer such that n ď λ ă 2n` 1 and where

Uk :“

"

J P Jωλ | pB ´
k ´ 1

2
F q P H2pS

2
ˆ S2,Zq is represented by a J-holomorphic sphere

*

Using similar notation to the discussion in the S2 ˆ S2 case, we have the following

fibrations.

StabS
1

pDq ÝÑ SympS
1

h pS
2
ˆ S2, ωλq Ý� SS1

D2k`1

»
ÝÝÝÑ JS

1

X U2k`1

FixS
1

pDq ÝÑ StabS
1

pDq Ý� SympS
1

pDq
»

ÝÝÝÑ S1 or SOp3q

FixS
1

pNpDqq ÝÑ FixS
1

pDq Ý� GaugeS
1

pNpDqq
»

ÝÝÝÑ S1
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StabS
1

pF q X FixS
1

pNpDqq ÝÑ FixS
1

pNpDqq Ý� SS1

F,p0

»
ÝÝÝÑ J S1

pDq » t˚u

FixS
1

pF q ÝÑ StabS
1

pF q X FixS
1

pNpDqq Ý� SympS
1

pF ,Npp0qq
»

ÝÝÝÑ t˚u

t˚u
»

ÐÝÝÝ FixS
1

pNpD _ F qq ÝÑ FixS
1

pF q Ý� GaugeS
1

pNpD _ F qq
»

ÝÝÝÑ t˚u

Thus we have that when the S1pa, bq Ă T2
m action where pa, bq ‰ p0,˘1q

FixS
1

pDq StabS
1

pDq SympS
1

pDq

S1 T2
2k`1 S1

When pa, bq “ p0,˘1q we have

FixS
1

pDq StabS
1

pDq SympS
1

pDq

S1 Up2q SOp3q

Where both the leftmost and the rightmost arrow’s are homotopy equivalences from

the fibrations set up above. As the diagram above commutes, the left and right most

arrows being homotopy equivalences would imply via the 5 lemma that the middle inclu-

sion T2 ãÑ StabS
1

pDq or Up2q ãÑ StabS
1

pDq are also homotopy equivalences. Thus for

the action S1pa, b;mq we have the following cases. If pa, bq ‰ p0,˘1q then

SympS
1

h pCP 2#CP 2, ωλq{T2
2k`1 » J S1

ωλ
X U2k`1

and if pa, bq “ p0,˘1q then

SympS
1

h pCP 2#CP 2, ωλq{Up2q » J S1

ωλ
X U2k`1

.

As before, we have the following theorem.
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Theorem 6.1.2. Consider the circle action S1pa, b;mq on pCP 2#CP 2, ωλq, then we have

the following cases:

1. if a “ 1, b ‰ t0,mu, λ ą 1, and 2λ ą |2b ´ m|, then the space of S1p1, b;mq-

equivariant almost complex structures J S1

ωλ
intersects the two strata Um and U|m´2b|.

2. If a “ ´1,b ‰ t0,´mu, λ ą 1, and 2λ ą |2b `m|, then the space of S1p´1, b;mq-

equivariant almost complex structures J S1

ωλ
intersects the two strata Um and U|m`2b|.

3. for all other cases J S1

ωλ
intersects only one strata Um.

As before, we use the intersection with strata to conclude the following theorem.

Theorem 6.1.3. Consider the circle action S1pa, b;mq on pCP 2#CP 2, ωλq. Under the

following numerical conditions on a, b,m, λ, the homotopy type of SympS
1

pCP 2#CP 2, ωλq

is given by the table below.

Values of pa, b;mq λ Number of

strata J S1

ωλ,l

intersects

Homotopy type of

SympS
1

pS2 ˆ S2, ωλq

p0,˘1;mq, m ‰ 0 λ ą 1 1 Up2q

p0,˘1; 0q or p˘1, 0; 0q
λ “ 1 1 Up2q

λ ą 1 1 Up2q

p˘1, 0;mq,m ‰ 0 λ ą 1 1 T2

p˘1,˘m;mq,m ‰ 0 λ ą 1 1 T2

p1, b;mq, b ‰ tm, 0u |2b´m| ě 2λ ě 1 1 T2

p´1, b;mq, b ‰ t´m, 0u |2b`m| ě 2λ ě 1 1 T2

All other values of

pa, b;mq except p˘1, b;mq

@λ 1 T2

Theorem 6.1.3 gives the homotopy type of the group of equivariant symplectomor-

phisms for all circle actions apart from the following two families of actions:
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• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.

For the above family of actions, we compute as in Chapter 4, the dimension of the

vector spaces HppSympS
1

pCP 2#CP 2, ωλq, kq for any field k, . Firstly, we show that the

map T2
m ãÑ SympS

1

h pCP 2#CP 2, ωλq induces a map that is injective in homology. Before

we embark on the proof of this claim we set up the following notation.

Fix a curve F in the homology class F and passing through the fixed points Q and

P in figure 6.1. Let SS1

F,Q denote the space of S1-invariant curves in the class F passing

through Q (defined in figure 6.1) and let SympS
1

h pS
2 ˆ S2, F , ωλq denote the space of

S1-equivariant symplectomorphisms that pointwise fix the curve F .

Without loss of generality, assume that J S1

ωλ
XU|m´2b| is the strata of positive codimen-

sion in J S1

ωλ
. As J S1

ωλ
is contractible, J S1

ωλ
XUm “ J S1

ωλ
´J S1

ωλ
XU|m´2b|, and the real codi-

mension of J S1

ωλ
XU|m´2b| in J S1

ωλ
is 2 (See Corollary 6.2.3), it follows that J S1

ωλ
XUm is con-

nected. Further we have that SympS
1

h pCP 2#CP 2, ωλq » J S1

ωλ
X Um{T2

m is connected. As

the fixed points for the S1p˘1, b,mq actions are isolated and as SympS
1

h pCP 2#CP 2, ωλq is

connected, any element φ P SympS
1

h pCP 2#CP 2, ωλq takes a fixed point for the S1 action

to itself. Thus the action of SympS
1

h pCP 2#CP 2, ωλq on SS1

F,Q is well defined.

Lemma 6.1.4. The inclusion i : SympS
1

h pCP 2#CP 2, F , ωλq ãÑ SympS
1

h pCP 2#CP 2, ωλq

is a homotopy equivalence.

Proof. Consider the fibration

SympS
1

h pCP 2#CP 2, F , ωλq ãÑ SympS
1

h pCP 2#CP 2, ωλq Ý� SS1

F,Q

To show that the action SympS
1

h pCP 2#CP 2, ωλq on SS1

F,Q is transitive we note that

given F 1 P SS1

F,Q, there exists a J 1 P J S1

ωλ
such that F 1 is J 1-holomorphic. As J S1

ωλ
is

connected, consider a path Jt such that J0 “ J 1 and J1 “ Jm where Jm is the standard
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complex structure on the mth-Hirzebruch surface for which the curve F is holomorphic.

By Theorem 2.3.5, for every Jt we have a family of curves Ft (with F0 “ F 1 and

F1 “ F ) in class F passing through Q and this curve is S1 invariant as Jt are S1 invariant.

By Lemma C.0.8 we have a one parameter family of Hamiltonian symplectomorphisms

φt P SympS
1

h pCP 2#CP 2, ωλq such that φtpF0q “ Ft for all t.

Thus it suffices to show that SS1

F,Q is contractible to complete the proof. To do this

note that,

J S1

ωλ
pF q Ñ J S1

ωλ
Ñ SS1

F,Q

where J S1

ωλ
pF q denotes the space of S1 invariant almost complex structures for which

the curve F is J-holomorphic. As both J S1

ωλ
pF q and J S1

ωλ
are contractible, SS1

F,Q is con-

tractible as well completing the proof.

Define the following projections just as in the exposition above Theorem 4.2.1. In our

case we take the point t˚u to be the point Q in Figure 6.1.

s0 : S2
Ñ Wm

rz0, z1s ÞÑ prz0, z1s , r0, 0, 1sq

and the projection to the first factor of CP 1 ˆ CP 2 is

π1 : Wm Ñ S2

prz0, z1s , rw0, w1, w2sq ÞÑ rz0, z1s

We define a continuous map h1 : SympS
1

h pCP 2#CP 2, ωλq Ñ E pS2, ˚q by setting

h1 : SympS
1

h pCP 2#CP 2, ωλq Ñ E
`

S2, ˚
˘

ψ ÞÑ ψ1 :“ π1 ˝ ψ ˝ s0

Further define the restriction map r : SympS
1

h pCP 2#CP 2, F , ωλq Ñ E pS2, ˚q by just

restricting φ P SympS
1

h pCP 2#CP 2, F , ωλq to the fibre F .
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Thus we have a well defined map

h : SympS
1

h pCP 2#CP 2, F , ωλq Ñ E
`

S2, ˚
˘

ˆ E
`

S2, ˚
˘

φ ÞÑ ph1pφq, rpφqq

Theorem 6.1.5. The inclusion map i : T2
m ãÑ SympS

1

h pCP 2#CP 2, ωλq induces a map

that is injective in homology.

Proof. By Lemma 6.1.4, it suffices to prove that the inclusion i : T2
m ãÑ SympS

1

h pS
2 ˆ

S2, F , ωλq induces a map that is injective in homology.

Composing with h we have an inclusion of h ˝ i : T2
m ãÑ E pS2, ˚q ˆ E pS2, ˚q and it

suffices to show that this map induces a map that is injective in homology. The proof of

this claim in analogous to the proof of Theorem 4.2.1.

Remark 6.1.6. The same proof as above also shows that for the family of circle actions

given by S1p1, b,mq with 2λ ą |m´2b|, the inclusion T2
|m´2b| into SympS

1

h pCP 2#CP 2, ωλq

also induces a map that is injective in homology and similarly for the S1p´1, b;mq actions

with 2λ ą |m`2b|, the inclusion T2
|m`2b| into SympS

1

h pCP 2#CP 2, ωλq also induces a map

that is injective in homology.

As in the S2 ˆ S2 case, we have that i : T2
m ãÑ SympS

1

pCP 2#CP 2, ωλq induces

a map which is injective in homology, From our discussion above we also had that

SympS
1

h pCP 2#CP 2, ωλq{T2
m » J S1

X Um and SympS
1

h pCP 2#CP 2, ωλq{T2
|m´2b| » J S1

X

U|m´2b|.Let J S1
X Um :“ P and J S1

X U|m´2b|;“ Q, as i : T2
m ãÑ SympS

1

pS2 ˆ S2, ωλq

induces a map which is injective in homology, further by Leray-Hirsch theorem we have

that

H˚
pSympS

1

h pCP 2#CP 2, ωλqq – H˚
pP q

â

H˚
pT2
q

H˚
pSympS

1

h pCP 2#CP 2, ωλqq – H˚
pQq

â

H˚
pT2
q
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As before we need to compute the codimension of the strata J S1

ωλ,l
XU|m´2b|in J S1

ωλ,l
. The

computation in the section below shows it to be 2 (see Corollary 6.2.3) .

Thus we have the following theorem on the ranks of the homology groups of the space

of equivariant symplectomorphisms.

Theorem 6.1.7. Consider the following circle actions on CP 2#CP 2

• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.

Then we have

Hp
´

SympS
1

pCP 2#CP 2, ωλq, k
¯

“

$

’

’

’

’

’

&

’

’

’

’

’

%

k4 p ě 2

k3 p “ 1

k p “ 0

for any field k.

As the proof of Theorem 4.2.6 holds verbatim for the S1pa, b;mq actions on CP 2#CP 2

satisfying the conditions

• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.

The above results give us the homotopy type of the centralizer for all circle actions on

CP 2#CP 2 which we summarise in the table below.

Theorem 6.1.8. For the S1 action given by the integers pa, b;mq, acting on pCP 2#CP 2, ωλq,

we have the following cases
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Values of pa, b;mq λ Number of

strata J S1

ωλ,l

intersects

Homotopy type of

SympS
1

pS2 ˆ S2, ωλq

p0,˘1;mq, m ‰ 0 λ ą 1 1 Up2q

p0,˘1; 0q or p˘1, 0; 0q
λ “ 1 1 Up2q

λ ą 1 1 Up2q

p˘1, 0;mq,m ‰ 0 λ ą 1 1 T2

p˘1,˘m;mq,m ‰ 0 λ ą 1 1 T2

p1, b;mq, b ‰ tm, 0u
|2b´m| ě 2λ ě 1 1 T2

2λ ą |2b´m| ě 0 2 ΩS3 ˆ S1 ˆ S1 ˆ S1

p´1, b;mq, b ‰ t´m, 0u
|2b`m| ě 2λ ě 1 1 T2

2λ ą |2b`m| ě 0 2 ΩS3 ˆ S1 ˆ S1 ˆ S1

All other values of

pa, b;mq

@λ 1 T2

6.2 Isometry groups of odd Hirzebruch surfaces

In this section we calculate the codimension of the smaller strata in J S1

ωλ
. In order to

retain the notation as in [3], we use the convention m “ 2n` 1. The Hirzebruch surface

F2n`1 is obtained by Kähler reduction of C4 under the action of the torus T 2
2n`1 defined

by

ps, tq ¨ z “ ps2n`1tz1, tz2, sz3, sz4q

The moment map is φpzq “ pp2n ` 1q|z1|
2 ` |z3|

2 ` |z4|
2, |z1|

2 ` |z2|
2q and the reduced

manifold at level pλ ` n, 1q is symplectomorphic to pCP 2#CP 2, ωλq and biholomorphic

to the Hirzebruch surface F2n`1. In this model, the projection to the base is given by

rpz1, . . . , z4qs ÞÑ rz3 : z4s, the zero section is rw0 : w1s ÞÑ rpw2n`1
0 , 0, w0, w1qs, and a fiber

is rw0 : w1s ÞÑ rpw0w
2n`1
1 , w0w1, 0, w1qs. The torus T 2p2n` 1q “ T 4{T 2

2n`1 acts on F2n`1.

This torus is generated by the elements rp1, eit, 1, 1qs and rp1, 1, eis, 1qs, and its moment
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map is rpz1, z2, z3, z4qs ÞÑ p|z2|
2, |z3|

2q. The moment polytope ∆p2n`1q is the convex hull

of the vertices p0, 0q, p1, 0q, p1, λ` nq, and p0, λ´ n´ 1q.

The isometry group of F2n`1 is

Kp2n` 1q “ ZUp4qpT
2
2n`1q{T

2
2n`1 “ pT

2
ˆ Up2qq{T 2

2n`1 » Up2q

where the last isomorphism is given by

rps, tq, As ÞÑ ps´1t detAnqA

Under this isomorphism, an element rp1, a, b, 1qs of the torus T p2n` 1q is taken to

abn

»

–

b 0

0 1

fi

fl

Consequently, at the Lie algebra level of the maximal tori, the map t2p2n ` 1q Ñ t2 is

given by
¨

˝

1 n` 1

1 n

˛

‚

The moment polytope associated to the maximal torus T 2 Ă Kp2n` 1q is thus the bal-

anced polytope obtained from ∆p2n`1q by applying the inverse transpose

¨

˝

´n 1

n` 1 ´1

˛

‚.

6.2.1 Odd isotropy representations

The action of the isometry group Kp2n ` 1q » Up2q on the space H0,1
J pM,TMq of in-

finitesimal deformations is isomorphic to Det1´n
b Sym2n´1, where Det is the determinant

representation of Up2q on C, and where Symk
pC2q is the k-fold symmetric product of the

standard representation of Up2q on C2. Using the double covering S1ˆSUp2q Ñ Up2q, we

see that irreducible representations of Up2q correspond to irreducible representations of

S1ˆSUp2q for which p´1,´ idq acts trivially. If Am denotes the representation t ¨z “ tmz

of S1 on C, and if Vn is the n-fold symmetric product of the defining representation of
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SUp2q on C2, then the irreducible representations of Up2q are AmbVn with m`n even. In

this notation, we have the identifications Det “ A2, while Sym “ A1bV1. Consequently,

Det1´n
b Sym2n´1

“ A1 b V2n´1 whose character is given by

χ pz b eptqq “ χ

¨

˝z b

¨

˝

eit 0

0 e´it

˛

‚

˛

‚“ z
2n´1
ÿ

k“0

eip2n´1´2kqt

With respect to the double covering S1ˆSUp2q Ñ Up2q, the maximal torus T 2 Ă Up2q

of diagonal matrices Ds,t :“

¨

˝

eis 0

0 eit

˛

‚ lifts to

ˆ

|Ds,t|
1{2,

Ds,t

|Ds,t|
1{2

˙

“

¨

˝eips`tq{2,

¨

˝

eips´tq{2 0

0 eipt´sq{2

˛

‚

˛

‚

so that the character of Det1´n
b Sym2n´1 at Ds,t is given by

χpDs,tq “ eips`tq{2
2n´1
ÿ

k“0

eip2n´2k´1qps´tq{2

Remark 6.2.1. More directly, the character of the p2n ´ 1q-fold symmetric product of

the standard representation of Up2q on C2 is

χpDs,tq “

2n´1
ÿ

k“0

eirsp2n´1´kq`tks

while the character of Det1´n is

eips`tqp1´nq

which gives the same result as above.

For a, b coprime, consider the embedding S1 Ñ S1pa, b, 2n ` 1q Ă Kp2n ` 1q “ Up2q

defined by

S1 ãÑ Up2q

t ÞÑ Dat,bt
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Then, the S1pa, b, 2n` 1q-invariant subspace of Det1´n
b Sym2n´1 has dimension

da,b,2n`1 “

ż

S1

χpDat,btq dt

“
1

2π

ż 1

0

eipa`bqt{2
2n´1
ÿ

k“0

eip2n´2k´1qpa´bqt{2 dt

“
1

2π

2n´1
ÿ

k“0

ż 1

0

eitrpn´kqpa´bq`bs dt

“ #
 

k P t0, . . . , 2n´ 1u | pn´ kqpa´ bq ` b “ 0
(

Assuming ab ‰ 0, we have

pn´ kqpa´ bq ` b “ 0 ðñ
a

b
“
n´ k ´ 1

n´ k

which implies a “ n´ k´ 1 and b “ n´ k. Consequently, for a given n, there is at most

one solution k P t0, . . . , 2n´ 1u.

Note that just as in the S2 ˆ S2 case, the above codimension calculation was with

respect to the basis of the maximal torus in Kp2n`1q. Hence to calculate the codimension

for the S1p1, b,mq Ă T2
m as in our case, we need to transform the basis by multiplication

by the matrix

¨

˝

m´1
2
` 1 ´1

m´1
2

´1

˛

‚. Thus it takes the vector

¨

˝

1

b

˛

‚in the basis for the standard

moment polytope

to the vector

¨

˝

m´1
2
´ b

m´1
2
´ b

˛

‚ in the basis for the balanced polytope. Hence the a and

b in the formula above need to be replace by m´1
2
´ b and m´1

2
´ b to get the correct

codimension for the S1p1, b,mq action.

Thus we have the following theorem.
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Theorem 6.2.2. Given the circle action S1p1, b,mq on pCP 2#CP 2, ωλq with 2λ ą

|2b ´ m| and b ‰ t0,mu, the complex codimension of of the strata J S1

ωλ
X Um in J S1

ωλ

in given by the number of k P t1, ¨ ¨ ¨ ,m´ 1u such that k “ b.

Similarly for the action S1p´1, b,mq with 2λ ą |2b`m| and b ‰ t0,´mu, the complex

codimension of the strata J S1

ωλ
XUm in J S1

ωλ
in given by the number of k P t1, ¨ ¨ ¨ ,m´ 1u

such that k “ ´b.

Corollary 6.2.3. For the circle actions

• (i) a “ 1, b ‰ t0,mu, and 2λ ą |2b´m|; or

• (ii) a “ ´1, b ‰ t0,´mu, and 2λ ą |2b`m|.

The complex codimension of the stratum J S1

ωλ
X Um in J S1

ωλ
is either 0 or 1.

Alternative calculation for the codimension

As explained above, the action of Kp2n ` 1q on H0,1pCP 2#CP 2, T 1.0
Jm
pCP 2#CP 2qq –

Cm´1 is isomorphic to Det1´n
b Sym2n´1. Hence to calculate the the codimension we

only need to calculate the dimension of the invariant subspace of the vector space

H0,1pCP 2#CP 2, T 1.0
Jm
pCP 2#CP 2qq – Cm´1 under the S1p1, b;mq action. To do so we

note that a basis of Sym2n´1 is given by the homogeneous polynomials Pk “ z2n´1´k
1 zk2

for k P t0, . . . , 2n´ 1u. The action of Ds,t on Pk is

Ds,t ¨ Pk “ ei
`

ps`tqp1´nq`sp2n´1´kq`tk
˘

Pk

so that each Pk generates an eigenspace for the action of the maximal torus T p2n ` 1q

generated by Ds,t. In particular, the circle S1pa, b; 2n`1q acts trivially on Pk if, and only

if,

pa´ bqpn´ kq ` b “ pa, bq ¨ pn´ k, k ´ n` 1q “ 0
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Thus the codimension (in the balanced basis of the maximal torus of K(2n+1) is given by

the number of k P t0, . . . , 2n´1u such that pa´bqpn´kq`b “ pa, bq¨pn´k, k´n`1q “ 0.

Just as proved above, we can transform using a change of basis to get the result for the

standard moment polytope.

As an aside we also note that generator p1, 1q (in the balanced basis of Kp2n` 1q) of

T p2k ` 1q{S1pa, b; 2n` 1q then acts on the eigenspace xPky with weight

p1, 1q ¨ pn´ k, k ´ n` 1q “ 1

which shows that this action is effective and does not depend on a, b, or m “ 2n` 1.



Chapter 7

Centralizers of finite cyclic groups

Having established the homotopy type of the S1 equivariant symplectomorphisms, we

would like to do a similar analysis for finite cyclic groups acting via Hamiltonian diffeo-

morphisms. The two key differences between Zn and S1 actions are that we no longer

have a momentum map associated to a Zn action, and we do not have a classification

of Zn actions on S2 ˆ S2 and CP 2#CP 2 up to equivariant symplectomorphisms. Con-

sequently, we have to modify our approach substantially. In particular, we replace the

space of invariant and compatible almost-complex structures J Zn
ωλ

with the subspace IZnωλ

of integrable, compatible, and invariant complex structures, and a large part of our work

consists in showing that the action of the centralizer on IZnωλ is homotopically equivalent

to its action on J Zn
ωλ

. The restriction to integrable structures allows to use the classifica-

tion of complex structures on S2ˆS2 and CP 2#CP 2 together with the Chen-Wilczyński

classification of Zn actions up to oriented diffeomorphisms, to partially make up for the

lack of a proper classification of Hamiltonian Zn actions, and to determine which stratum

U2k the space IZnωλ intersects. This is enough to deal with most Hamiltonian Zn actions,

leaving open the cases of actions satisfying some specific numerical conditions.

113
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7.1 Symplectic actions of finite abelian groups

As shown in [9], when λ ą 1 the only finite abelian groups that have an Hamiltonian

action on pS2 ˆ S2, ωλq are abstractly isomorphic to finite subgroups of SOp3q ˆ SOp3q

(see Theorem 1.0.2 in the present document). In particular this means that the only

finite abelian group that have Hamiltonian actions on pS2 ˆ S2, ωλq when λ ą 1 are

groups of the form Zn and Zn ˆ Zm. Similary, we have that all finite groups that admit

a Hamiltonian action on pCP 2#CP 2, ωλq are abstractly isomorphic to subgroups of Up2q

(see Theorem 1.0.3 in the present document).

We shall say an action Znpa, b; rq extends to a toric action T2
r1 if it is Zn-equivariantly

symplectomorphic to an action of a finite subgroup of T2
r1 . Similarly we say a Zn action

extends to a circle S1pa1, b1; r1q if it is Zn-equivariantly symplectomorphic to a finite sub-

group Zn of S1pa1, b1; r1q.

As shown in [13], we know that every Hamiltonian Zn action on pS2 ˆ S2, ωλq and

pCP 2#CP 2, ωλq extends to Hamiltonian S1 actions. Consequently, each triple of numbers

pa, b; rq determines a single Hamiltonian Zn action on S2ˆS2 or pCP 2#CP 2, ωλq up to a

possible reparametrization of Zn Ă S1pa, b; rq and, conversely, each such reparametriza-

tion class of Hamiltonian Zn action is given by triples, one for each possible S1 the Zn

action extends to. We note that if a ” a1 pmod nq, b ” b1 pmod nq then Znpa, b; rq and

Znpa1, b1, r1q denote the same action. As we are only interested in effective Zn actions, we

only consider pairs of values a, b P t0, ¨ ¨ ¨ , n´ 1u with gcdpa, bq “ 1.
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7.2 Znpa, b; rq actions on pS2 ˆ S2, ωλ) with λ ą 1 and

r ‰ 0.

In order to simplify the discussion, we first consider Zn actions on the product pS2 ˆ

S2, ωλq. For technical reasons, we further restrict ourselves to Zn actions for which J Zn
ωλ

does not intersect the open stratum U0, see Remark 7.2.2 at the end of this section. In

particular, we assume λ ą 1 and we only consider triples pa, b; rq with r ‰ 0. We saw in

Chapter 3 that for such a triple pa, b; rq, there is a unique Jr-holomorphic curve in the class

B ´ r
2
F which is invariant under the S1pa, b; rq action. In particular, together with posi-

tivity of intersection (Theorem 2.2.12) this implies that there is a unique Jr-holomorphic

curve in the class B´ r
2
F which is invariant under the Znpa, b; rq action. As Theorem 3.2.4

holds for finite abelian groups, the arguments used to establish the existence of the fi-

brations and homotopy equivalences associated to the action of SympS
1

h pS
2 ˆ S2, ωλq on

invariant curves and on invariant almost-complex structures work mutatis mutandis for

Zn actions. Consequently, assuming J Zn
ωλ
X U2k is nonempty for some 2k ą 0, we have

the following sequence of fibrations and homotopy equivalences:

StabZnpDq Ñ SympZn
h pS

2
ˆ S2, ωλq Ý� SZn

D2k

»
ÝÝÝÑ J Zn

ωλ
X U2k

FixZnpDq Ñ StabZnpDq Ý� SympZnpDq
»

ÝÝÝÑ Zn or SOp3q

FixZnpNpDqq Ñ FixZnpDq Ý� GaugeZnpNpDqq
»

ÝÝÝÑ Zn

StabZnpF q X FixZnpNpDqq Ñ FixZnpNpDqq Ý� SZn
F,p0

»
ÝÝÝÑ J ZnpDq » t˚u

FixZnpF q Ñ StabZnpF q X FixZnpNpDqq Ý� SympZnpF ,Npp0qq
»

ÝÝÝÑ t˚u

t˚u
»

ÐÝÝÝ FixZnpNpD _ F qq Ñ FixZnpF q Ý� GaugeZnpNpD _ F qq
»

ÝÝÝÑ t˚u

As before, the homotopy type of SympZnpDq depends on whether the unique Jr-holomor-

phic curve in the class B´ r
2
F is pointwise fixed under the Zn action or not. The homotopy

type is SOp3q if it pointwise fixed and is S1 otherwise.
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Putting all the homotopy equivalences together, we again have that, in all cases where

there is no symplectic sphere in class B ´ r
2
F pointwise fixed under the Zn action that

SympZn
h pS

2
ˆ S2, ωλq{T2

2k » J Zn
ωλ
X U2k

and in all other cases where there exists a symplectic sphere in class B ´ r
2
F pointwise

fixed under the Zn action, we have

SympZn
h pS

2
ˆ S2, ωλq{pS

1
ˆ SOp3qq » J Zn

ωλ
X U2k

Keeping track of the homotopy equivalences, we obtain (as in Remark 3.3.16) the follow-

ing Theorem.

Theorem 7.2.1. Given a symplectic Znpa, b; rq action on pS2 ˆ S2, ωλq, and assuming

J Zn
ωλ
X U2k is nonempty for some 2k ą 0, the map

evJr : SympZn
h pS

2
ˆ S2, ωλq{ IsomZnpωλ, J2kq Ñ U2k X J Zn

ωλ

ϕ ÞÑ
`

ϕ´1
˘˚
J2k

is a homotopy equivalence. Here J2k denotes the standard integrable almost complex

structure on the Hirzebruch surface W2k and IsomZnpωλ, J2kq denotes the space of Zn-

equivariant Kähler isometries of the space pS2 ˆ S2, ωλ, J2kq.

Remark 7.2.2. Throughout this chapter, we assume J Zn
ωλ

does not intersect the strata

U0. We put this restriction to avoid the analysis of the Zn action on the fixed point

set. In the case of circle actions, this analysis was done in two steps: when there is

an isolated fixed point p0, and when there were only fixed surfaces. In particular, we

explicitly used momentum map arguments to show that for the S1 actions for which

the space of invariant almost complex structures J S1

ωλ,l
intersected the stratum U0, every

equivariant symplectomorphism fixed the isolated fixed p0 (see Lemma 3.3.18). As Zn

actions don’t admit a momentum map, the proof of this lemma does not generalise readily

to Zn actions. However, we may still use the techniques in subsection 3.3.3 to obtain

results about the group SympZn
h,p0
pS2 ˆ S2, ωλq of Zn equivariant symplectomorphims that
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leave the fixed point p0 invariant. More explicitly, for a Znpa, b; rq action such that the

following conditions are satisfied

• pa, bq ‰ p˘1, 0q or p0,˘1q

• J Zn
ωλ
X U0 in non-empty

we can still show that

SympZn
h,p0
pS2

ˆ S2, ωλq{T2
0 » J Zn

ωλ
X U0.

Then, the homotopy type of SympZn
h pS

2 ˆ S2, ωλq can be recovered by a careful analysis

of its action on the fixed point set of Znpa, b; rq. We leave this to future work.

7.3 Compatible complex structures

In this section, our goal is to show that the action of the centralizer SympZn
h pS

2ˆS2, ωλq on

the space of invariant, integrable, and compatible complex structures IZnωλ is homotopically

equivalent to its action on J Zn
ωλ

. To achieve this, we follow the approach of M. Abreu, G.

Granja, and N. Kitchloo and reprove Proposition 2.5 and Corollary 2.6 in [3] under the

presence of a group action.

7.3.1 Classification of complex structures on ruled surfaces

We first recall the classification of complex structure on the product S2 ˆ S2 and on

the non-trivial bundle CP 2#CP 2. For a more complete exposition, we invite the reader

to consult the paper [37] and the references therein. We also recall some classical facts

about the automorphisms groups of these complex structure, see Gauduchon [20].

Theorem 7.3.1 (Classification of complex structures on S2 ˆ S2). Pick an orientation

on S2ˆS2. Let J be a complex structure on S2ˆS2 compatible with the given orientation.
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1. There exists a orientation preserving diffeomorphism that takes J to exactly one

of the standard even Hirzebruch structures J2k, 2k ě 0. The complex struc-

tures diffeomorphic to J2k are characterized by the existence of a complex ruling

CP 1 ˆ CP 1 Ñ CP 1 that admits a holomorphic section of self-intersection ´2k.

In particular, if the homology class of the J-fibers coincides with the class of the

J2k-fibers, then the diffeomorphism φ acts trivially on homology.

2. HolpJ0q » PSLp2,CqˆPSLp2,CqˆZ2 where the Z2 factor is generated by swapping

the two S2 factors. Consequently, the maximal compact subgroup of the identity

component of HolpJ2kq is isomorphic to SOp3q ˆ SOp3q.

3. For 2k ě 2, HolpJ2kq » GLp2,Cq{µ2k ˙ C2k, where µ2k is the subgroup of diagonal

matrices tξ ¨ id | ξ P Z2ku. In particular, the group HolpJ2kq is connected, and its

maximal compact subgroup is isomorphic to SOp3q ˆ S1.

Theorem 7.3.2 (Classification of complex structures on CP 2#CP 2). Let J be a complex

structure on CP 2#CP 2 compatible with the given orientation.

1. There exists a diffeomorphism acting trivially on homology that takes J to exactly

one of the standard odd Hirzebruch structures J2k`1, 2k`1 ě 1. The complex struc-

tures diffeomorphic to J2k`1 are characterized by the existence of a complex ruling

CP 1 Ñ CP 2#CP 2 Ñ CP 1 that admits a holomorphic section of self-intersection

´p2k ` 1q.

2. For all 2k`1 ě 1, HolpJ2k`1q » GLp2,Cq{µ2k`1˙C2k`1, where µ2k`1 is the subgroup

of diagonal matrices tξ ¨ id | ξ P Z2k`1u. In particular, the group HolpJ2k`1q is

connected, and its maximal compact subgroup is isomorphic to Up2q.

Corollary 7.3.3. For any k ě 1, the group HolpJkq of complex automorphisms of the

Hirzebruch complex structure Jk acts trivially on homology.
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7.3.2 The action of SympZn
h pS

2 ˆ S2, ωλq on IZnωλ

Define IZnωλ to be the space of integrable ωλ-compatible almost complex structures on

S2 ˆ S2 invariant under the Zn action. Fix a J0 P IZnωλ . We also define the following

spaces and groups:

• DiffZn
rωλs
pS2 ˆ S2q := The group of Zn-equivariant diffeomorphisms φ such that φ

preserves the cohomology class of ωλ

• DiffZn
0 pS

2 ˆ S2q := The identity component of the group of Zn-equivariant diffeo-

morphisms of S2 ˆ S2.

• IZn
J0 : = The space of all J P IZnωλ , such that J0 “ φ˚J for some φ P DiffZn

rωλs
pS2ˆS2q,

that is, the intersection of the DiffZn
rωλs
pS2 ˆ S2q orbit of J0 with IZnωλ .

• ΩZn
J0 := The space of all Zn invariant symplectic forms η in the same cohomology

class of ωλ and such that η is compatible with J0.

• HolZn
rωλs
pS2 ˆ S2, J0q := The space of Zn-equivariant complex automorphisms of

pS2 ˆ S2, J0q that preserve the cohomology class ωλ.

• IsomZnpωλ, J
0q := The space of Zn-equivariant Kähler isometries of pS2ˆS2, ωλ, J

0q.

We now prove equivariant versions of Proposition 2.5 and Corollary 2.6 in [3] in order

to show that the orbit intersection

IZn
J0 “

´

DiffZn
rωλs
pS2

ˆ S2
q ¨ J0

¯

X IZnωλ

is homotopically equivalent to the homogeneous space

SympZnpS2
ˆ S2, ωλq ˆ tωλu{ IsomZnpωλ, J

0
q.

Consider the map

Ψ : ΩZn
J0 Ñ DiffZn

0 pS
2
ˆ S2

q

η ÞÑ Ψpηq
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where Ψpηq is defined as follows. Let ψt P DiffZn
rωλs
pS2 ˆ S2q denote an isotopy satis-

fying ψ˚t pp1´ tqωλ ` tηqq “ ωλ. We can pick ψt canonically by choosing a canonical

primitive in Zn-equivariant Moser’s method using Hodge theory for the canonical Zn-

equivariant metric coming from pωλ, J
0q. Then we define Ψpηq to be φ1. In particular,

Ψpηq˚pηq “ φ1 ˚ η “ ωλ.

Theorem 7.3.4. The map

µ : SympZnpS2
ˆ S2, ωλq ˆ ΩZn

J0 Ñ IZn
J0

pφ, ηq ÞÑ
`

φ´1
˘˚
˝ pΨpηqq˚ J0

is a principal HolZn
rωλs
pS2 ˆ S2, J0q bundle and the fibre over J , µ´1pJq can be identified

with µ´1pJq –
!

ϕ P DiffZn
rωλs
pS2 ˆ S2q | J0 “ ϕ˚J

)

.

Proof. We first show that the map µ is surjective. Suppose J P IZn
J0 , we need to produce

pφ, ηq P SympZnpS2ˆS2, ωλqˆΩZn
J0 such that µpϕ, ηq “ J . By the definition of IZn

J0 there

exists φ P DiffZn
rωλs
pS2 ˆ S2q such that φ˚J :“ φ´1

˚ Jφ˚ “ J0. Consider η “ φ˚ωλ, then for

all v, w P TppS
2 ˆ S2q we have

ηpJ0v, J0wq “ φ˚ωλpJ
0v, J0wq “ ωλ

`

φ˚pJ
0vq, φ˚pJ

0wq
˘

“

“ ωλ pJpφ˚pvqq, Jpφ˚pwqqq “ φ˚ωλ “ η

where ωλ pJpφ˚pvqq, Jpφ˚pwqqq “ φ˚ωλ because J is compatible with ωλ, and where

ωλ pφ˚pJ
0vq, φ˚pJ

0wqq “ ωλ pJpφ˚pvqq, Jpφ˚pwqqq because φ˚J “ J0.

Similarly,

ηpv, J0
pvqq “ ωλ

`

φ˚pvq, φ˚pJ
0vq

˘

“ ωλ pφ˚pvq, Jpφ˚vqq ą 0

showing that η is compatible with J0. As φ P DiffZn
rωλs
pS2ˆS2q we have that rηs “ rωλs P

H2pS2 ˆ S2,Rq. Hence η belongs to ΩZn
J0 .
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Moreover, as pφ ˝Ψpηqq˚ ωλ “ pΨpηqq˚ η “ ωλ, we have that φ ˝ Ψpηq belongs to

SympZnpS2 ˆ S2, ωλq. Thus we have that

µ pφ ˝Ψpηq, ηq “
`

Ψpηq´1
˝ φ´1

˘˚
˝Ψpηq˚J0

“
`

φ´1
˘˚
J0
“ J

thus showing µ is surjective.

Next we investigate what the fibres of µ look like, and why they are free orbits of

a HolZn
rωλs
pS2 ˆ S2, J0q action. Given J P IZn

J0 , and an element pφ, ηq P µ´1pJq, consider

ϕ “ φ ˝ pΨpηqq´1. Then ϕ P DiffZn
rωλs
pS2 ˆ S2q and as µpφ, ηq “ pφ´1q

˚
Ψpηq˚J0 “ J , it

implies that J0 “ ϕ˚J .

Conversely, given ϕ P DiffZn
rωλs
pS2ˆS2q such that J0 “ ϕ˚J , consider η :“ ϕ˚ωλ. Then

we have that pϕ ˝Ψpηq, ηq belongs to µ´1pJq. Hence

ρ : µ´1
pJq Ñ

!

ϕ P DiffZn
rωλs
pS2

ˆ S2
q | J0 “ ϕ˚J

)

pφ, ηq ÞÑ φ ˝ pΨpηqq´1

is an homeomorphism. We define a right HolZn
rωλs
pS2ˆS2, J0q action on SympZnpS2ˆ

S2, ωλq ˆ ΩZn
J0 by

pφ, ηq ¨ ϕ “
`

φΨpηq´1ϕΨ pϕ˚pηqq , ϕ˚pηq
˘

for ϕ P HolZn
rωλs
pS2 ˆ S2, J0q. A quick check shows us that if pφ, ηq satisfies µpφ, ηq “ J ,

then µ ppφ, ηq ¨ ϕq “ J , thus verifying that the action defined above preserves the fibres

of µ.

We now check that the action is free on the fibres of µ. Consider the action of

HolZn
rωλs
pS2 ˆ S2, J0q on DiffZn

rωλs
pS2 ˆ S2q defined by

α ¨ ϕ “ α ˝ ϕ
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for all α P DiffZn
rωλs
pS2 ˆ S2q and ϕ P HolZn

rωλs
pS2 ˆ S2, J0q. It is a simple check to see that

the identification of µ´1pJq with
!

ϕ P DiffZn
rωλs
pS2 ˆ S2q | J0 “ ϕ˚J

)

given by

ρ : µ´1
pJq Ñ

!

ϕ P DiffZn
rωλs
pS2

ˆ S2
q | J0 “ ϕ˚J

)

pφ, ηq ÞÑ φ ˝ pΨpηqq´1

is equivariant under this action on DiffZn
rωλs
pS2 ˆ S2q and the action on µ´1pJq defined

above. As the action of HolZn
rωλs
pS2 ˆ S2, J0q on DiffZn

rωλs
pS2 ˆ S2q is free this implies that

the action of HolZn
rωλs
pS2 ˆ S2, J0q on µ´1pJq is also free.

Finally, to show that this is a principal bundle, we need to check that the map satisfy

local triviality. This follows by producing a local section and invoking Theorem C.0.9. As

we already used similar arguments several times, we leave the details to the reader.

Remark 7.3.5. Note that when µ is restricted to SympZnpS2ˆS2, ωλqˆ tωλu is just the

map given by

µ : SympZnpS2
ˆ S2, ωλq ˆ tωλu Ñ IZn

J0

pφ, ωλq ÞÑ
`

φ´1
˘˚
J0

Corollary 7.3.6. If J0 P IZnωλ is such that IsomZnpωλ, J
0q ãÑ HolZn

rωλs
pS2 ˆ S2, J0q is a

weak homotopy equivalence, then the inclusion of SympZn orbit of J0 in IZn
J0 ,i.e

SympZnpS2
ˆ S2, ωλq ˆ tωλu{ IsomZnpωλ, J

0
q ãÑ IZn

J0

pφ, ωλq ÞÑ
`

φ´1
˘˚
J0

is also a weak homotopy equivalence.

Proof. From Theorem 7.3.4, we have that

HolZn
rωλs
pS2

ˆ S2, J0
q – µ´1

pJ0
q ãÑ SympZnpS2

ˆ S2, ωλq ˆ ΩZn
J0

µ
ÝÑ IZn

J0

Moreover we note that if η1, η2 P ΩZn
J0 , then p1´tqη1`tη2 is also in ΩZn

J0 , thus giving us that

the space ΩZn
J0 is contractible. In other words we have that the inclusion tωλu ãÑ ΩZn

J0 is a
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homotopy equivalence and hence SympZnpS2ˆS2, ωλqˆtωλu » SympZnpS2ˆS2, ωλqˆΩZn
J0 .

Quotienting the above fibration by IsomZnpωλ, J
0q we have that

HolZn
rωλs
pS2
ˆS2, J0

q{ IsomZnpωλ, J
0
q ãÑ SympZnpS2

ˆS2, ωλqˆΩZn
J0 { IsomZnpωλ, J

0
q
µ̄
ÝÑ IZn

J0

where µ̄ is just the map induced on the quotient space by µ. From the assumption

that IsomZnpωλ, J
0q ãÑ HolZn

rωλs
pS2ˆ S2, J0q is a weak homotopy equivalence, we get that

HolZn
rωλs
pS2 ˆ S2, J0q{ IsomZnpωλ, J

0q is weakly contractible. Putting all this together we

get that SympZnpS2 ˆ S2, ωλq ˆ ΩZn
J0 { IsomZnpωλ, J

0q ãÑ IZn
J0 is a weak homotopy equiva-

lence.

Finally, as SympZnpS2 ˆ S2, ωλq ˆ tωλu{ IsomZnpωλ, J
0q » SympZnpS2 ˆ S2, ωλq ˆ

ΩZn
J0 { IsomZnpωλ, J

0q we get the required result.

Let HolZnpS2 ˆ S2, Jkq denote the space of all holomorphic Zn-equivariant automor-

phisms of pS2 ˆ S2, Jkq.

Lemma 7.3.7. For all canonical integrable almost complex structures Jk P I
Zn
ωλ
XUk, with

k ą 0 the space HolZnpS2 ˆ S2, Jkq is equal to HolZn
rωλs
pS2 ˆ S2, Jkq.

Proof. When k ą 0, HolZnpS2 ˆ S2, Jkq is connected and hence preserves cohomology

(See Corollary 7.3.3).

Theorem 7.3.8. Fix a Znpa, b; rq action on pS2 ˆ S2, ωλq. For all canonical integrable

almost complex structures Jk P I
Zn
ωλ
X Uk, the inclusion map

IsomZnpωλ, Jkq ãÑ HolZn
rωλs
pS2

ˆ S2, Jkq

is a weak homotopy equivalence.

Proof. By Theorem 7.3.1 when k ą 0, we have that the group of holomorphic auto-

morphims of pS2 ˆ S2, Jkq is given by GLp2,Cq{µk ˙H0pCP 1,Op´kqq. Under the pres-

ence of a Zn action which is holomorphic with respect to Jk, we can similarly show
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that HolZn
rωλs
pS2 ˆ S2, Jkq “ HolZnpS2 ˆ S2, Jkq “ pGLp2,Cq{µk ˙H0pCP 1,Op´kqqqZn ,

where pGLp2,Cq{µk ˙H0pCP 1,Op´kqqqZn denotes the centraliser of Zn in GLp2,Cq{µk˙

H0pCP 1,Op´kqq. Further, we see that that IsomZnpωλ, Jkq is a maximal compact sub-

group of pGLp2,Cq{µk ˙H0pCP 1,Op´kqqqZn thus proving the result.

Although not necessary for our purposes we also show that the theorem holds even

when k “ 0. To show that IsomZnpωλ, Jkq ãÑ HolZn
rωλs
pS2 ˆ S2, Jkq is a homotopy equiva-

lence when k “ 0, we have proceed as follows. If λ ą 1, then any φ P HolZn
rωλs
pS2ˆS2, J0q

has to send the foliation by J0-holomorphic curves in the class F to itself and simi-

larly send the foliation J0-holomorphic curves in the class B to itself. Hence we have

that HolZn
rωλs
pS2 ˆ S2, Jkq – PSLp2,Cq ˆ PSLp2,Cq. Denote the centralizer of Zn in

PSLp2,Cq ˆ PSLp2,Cq by pPSLp2,Cq ˆ PSLp2,CqqZn . Then we have that HolZn
rωλs
pS2 ˆ

S2, J0q – pPSLp2,Cq ˆ PSLp2,CqqZn and IsomZnpωλ, J0q ãÑ pPSLp2,Cq ˆ PSLp2,CqqZn

is a maximal compact subgroup and hence the inclusion is a homotopy equivalence.

Finally in the case, when k “ 0 and λ “ 1 then for the Znpa, b; 0q action we have

HolZn
rωλs
pS2

ˆ S2, J0q – pPSLp2,Cq ˆ PSLp2,Cq ˙ Z2q
Zn .

Again IsomZnpωλ, J0q ãÑ HolZn
rωλs
pS2 ˆ S2, J0q is a maximal compact subgroup and hence

the inclusion is a homotopy equivalence.

Corollary 7.3.9. For any J0 in IZnωλ there is an homotopy equivalence

IZn
J0 “

´

DiffZn
rωλs
pS2

ˆ S2
q ¨ J0

¯

X IZnωλ » SympZnpS2
ˆ S2, ωλq ˆ tωλu{ IsomZnpωλ, J

0
q.

We now relate the orbit intersection IZn
Jk

with the stratum IZnωλ X Uk.

Lemma 7.3.10. Fix a Znpa, b; rq action on pS2 ˆ S2, ωλq. Then, for any for k ą 0, we

have the equality IZn
Jk
“ IZnωλ X Uk.
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Proof. We see from the definition that IZn
Jk
Ă IZnωλ X Uk. To show the reverse inclusion,

we need to produce a φ P DiffZn
rωλs
pS2 ˆ S2q such that φ˚J “ Jk for all J P IZnωλ X Uk. We

do that as follows.

Let J P IZnωλ X Uk, by the classification of complex structures on S2 ˆ S2, and by the

argument above Theorem 3.3 in [3], we know that there exists a φ P DiffrωλspS
2ˆS2q such

that φ˚J “ Jk. Then we have the following diffeomorphism between HolZn
rωλs
pS2 ˆ S2, Jq

and HolZn
rωλs
pS2 ˆ S2, Jkq.

ρφ : HolZn
rωλs
pS2

ˆ S2, Jq Ñ HolZn
rωλs
pS2

ˆ S2, Jkq

ψ ÞÑ φ ˝ ψ ˝ φ´1

As J is equivariant with respect to the Znpa, b; rq action, we denote by iJpZnq the

embedding of Zn into HolZn
rωλs
pS2 ˆ S2, Jq induced by the action Znpa, b; rq. Similarly

we denote by iJkpZnpa, b; rqq the embedding given by the action of Zn into HolrωλspS
2 ˆ

S2, Jkq. Then pρφq piJpZnqq defines a Zn action holomorphic with respect to Jk. We note

that although the fixed point set may apriori be different for the pρφq piJpZnqq and the

iJkpZnpa, b; rqq action, the weights at the fixed points of the pρφq piJpZnqq are the same

as the weights for the action iJkpZnpa, b; rqq. By Theorem 4.1 in [40], we see that there

exist a ψ P HolrωλspS
2 ˆ S2, Jkq such that ψ ˝ pρφq piJpZnqqψ´1 “ iJkpZnpa, b; rqq.Thus

φ ˝ ψ P DiffZn
rωλs
pS2 ˆ S2q and pφ ˝ ψq˚ J “ ψ˚ ˝ φ˚J “ ψ˚Jk “ Jk, thus proving the

theorem.

Remark 7.3.11. Apriori Theorem 4.1 in [40] only guarantees the existence of a ψ P

HolpS2 ˆ S2, Jkq such that ψ ˝ pρφq piJpZnqqψ´1 “ iJkpZnpa, b; rqq. As k ą 0, we use

Lemma 7.3.7 to show that ψ is in fact in the group HolrωλspS
2 ˆ S2, Jkq

We can finally conclude that the action of SympZnpS2 ˆ S2, ωλq on the space of

invariant, integrable structures IZnωλ is homotopically equivalent to its action on the space

J Zn
ωλ

of invariant almost-complex structures.
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Theorem 7.3.12. Fix a Znpa, b; rq action on pS2 ˆ S2, ωλq, then, for all for 2k ą 0,

IZnωλ X Uk » J Zn
ωλ
X Uk.

Proof. We shall prove something much stronger. By Theorem 7.2.1, Corollary 7.3.6 and

Theorem 7.3.10 we have that both evJk and the map evJk ˝ i1 in the diagram below are

homotopy equivalences.

SympZnpS2
ˆ S2, ωλq{ IsomZnpωλ, Jkq

evJk
ãÝÝÑ IZnωλ X Uk

i1
ãÝÑ J Zn

ωλ
X Uk

φ ÞÑ
`

φ´1
˘˚
Jk

It follows that i1 is a homotopy equivalence as required.

7.3.3 A characterization of the intersection IZnωλ X U2k

We now take advantage of the classification of complex structures to give a criterion as

to when IZnωλ intersects the strata U2k.

Theorem 7.3.13. Let Znpa, b; rq be a symplectic action on pS2ˆS2, ωλq with λ ą 1. Then

the space of Zn-equivariant complex structures IZnωλ intersects the strata Ur1 iff Znpa, b; rq

is equivariantly symplectomorphic to a Znpa1, b1; r1q action that acts as a subgroup of the

torus action T2
r1.

Proof. (ð)Let Zn be symplectomorphic to a Znpa1, b1; r1q action via the symplectomor-

phism φ. Note that the standard almost complex structure Jr1 P Ur1 is invariant under

the Tr1 action and hence in particular invariant under the Znpa1, b1; r1q action. Thus

φ˚Jr1 P I
Zn
ωλ
X Ur1 .

(ñ) Let J P IZnωλ X Ur1 . Let Isompωλ, Jq denote the group of Kähler isometries of

pS2 ˆ S2, J, ωλq and let HolpJq denote the space of holomorphic automorphisms of the

complex structure J . As J P IZnωλ , the Zn action induces a map, ρ : Zn ãÑ HolpJq.

As J is compatible with ωλ, and the action is also symplectic, the image of ρ in fact
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lands in Isompωλ, Jq. By the classification of complex structures on S2 ˆ S2, there

exists a diffeomorphism φ acting trivially on homology that takes J onto Jr1 . This

diffeomorphism takes ωλ to ω1 :“ pφ´1q
˚
ωλ, and the Zn action ρ to another action ρ1

that is, by construction, Kähler with respect to the pair pω1, Jr1q and such that the

cohomology class rω1s “ rωλs. Apriori, there is no reason for the action ρ1 to extend to a

ω1 symplectic T2 action. However, HolpJr1q being connected, the subgroup Zn Ă HolpJr1q

extends to a maximal compact subgroup K which is conjugated to the maximal compact

subgroup SOp3q ˆ S1 “ Isompωλ, Jr1q via some h P HolpJr1q. Note that although h need

not preserve the form ω1, however it preserves the cohomology class of ω1. Hence, we

have that Ch ˝ CφpIsompωλ, Jqq “ Isompωλ, Jr1q where Cφ and Ch denote conjugation by

φ and h respectively. As a result we have that the diffeomorphism h ˝ φ takes the Zn

action ρ to another action ρ2 that is Kähler with respect to the standard pair pωλ, Jr1q.

This action ρ2 does extends to a T2 action α which is Kähler with respect to the standard

pair pωλ, Jr1q. Take the triple pωλ, Jr1 , αq back to pω3, J, α1q using the inverse composition

ph ˝ φq´1. Note that α1 : T2 Ñ Isompω3, Jq Ă HolpJq is a toric action with respect

to ω3 that extends ρ. The forms ωλ and ω3 are cohomologous, and there is an α1-

invariant curve in class B ´ r1

2
F . By the classification of toric actions, the α1 action is

equivariantly symplectomorphic to the standard T2
r1 toric action via some diffeomorphism

ψ P DiffhpS
2ˆS2q (but this diffeomorphism does not intertwine the complex structures).

Hence ψ ˝ α1 : HolpJq Ą T2 Ñ T2
r1 defines a Znpa1, b1; r1q action that is Zn-equivariantly

symplectomorphic to Znpa, b; rq as required.

7.4 Toric extensions of cyclic actions and homotopy

type of centralizers

From Theorem 7.3.13, we infer that in order to understand which strata IZnωλ intersects,

we need to understand which tori T2
r1 the Znpa, b; rq action extends to. In the circle action

case, we used the Karshon classification of S1 actions up to equivariant symplectomor-
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phims to answer the above question (See Theorem 3.1.9). But no such classification up

to equivariant symplectomorphism exists for Zn actions. However, we do have a classi-

fication up to Zn-equivariant diffeomorphisms due to W. Chen [12] and D. Wilczyński

[40]. We shall use this classification to determine the homotopy type of Zn-equivariant

symplectomorphisms for a subfamily of Zn actions. We present this classification up to

Zn-equivariant diffeomorphisms in the following paragraph.

7.4.1 The Chen–Wilczyński classification

Consider two Hirzerbruch surfaces Wr and Wr1 endowed with smooth Zn action Znpa, b; rq

and Znpa1, b1, r1q respectively. Denote by Znpa, b,´rq the action which is the restriction of

the sub-circle S1pa, bq in the torus T´r where T´r the denotes the following torus action

on pS2 ˆ S2, ωλq

pu, vq ¨ prx1, x2s , ry1, y2, y3sq “
`

rux1, x2s ,
“

u´ry1, y2, vy3

‰˘

whose moment map looks like

As described in the works of W. Chen [12] and D. Wilczyński [40], one can establish

the existence of six types of diffeomorphisms c1, ¨ ¨ ¨ , c6 which give a Zn equivariant dif-

feomorphism between the Hirzerbruch surfaces Wr and Wr1 with the respective actions,

provided the triples pa, b, rq and pa1, b1, r1q satisfy the following conditions:

• Type c1: When a1 “ ´a, b1 “ ´b and r1 “ r

• Type c2: When a1 “ ´a, b1 “ ´b` ra and r1 “ r

• Type c3: When a1 “ a, b1 “ ´b and r1 “ ´r
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• Type c4: When r1 “ r “ 0, a1 “ b, and b1 “ a

• Type c5: When a1 “ a, b1 “ b, and r1 ” r (mod 2n)

• Type c6: When a1 “ a, b1 “ b , and r1a1 ” 2b´ ra (mod 2n).

Remark 7.4.1. We note of the above types of diffeomorphisms only c5 and c6 are between

cyclic groups in different torus actions T2
r and T2

r1. The equivariant diffeomorphisms of

type c1, c2, c3, c4 are between sub-circles in the same torus T2
r (up to reparametrization of

the torus T2
r).

We call the above equivariant diffeomorphism standard of type c1, ¨ ¨ ¨ , c6. One of the

main results of [12] is the following theorem.

Theorem 7.4.2. (Chen [12]) Two Zn-Hirzebruch surfaces are orientation-preserving

equivariantly diffeomorphic iff there is a composition of standard equivariant diffeomor-

phisms between them.

7.4.2 Consequences of the classification

We shall now use the above results to obtain the homotopy type of Zn equivariant

symplectomorphisms for a fixed Znpa, b; rq action on pS2 ˆ S2, ωλq when λ ą 1 and

gcdpa, nq ‰ 1. In order to do this we need the following lemma from [13]

Lemma 7.4.3. If G is any compact group and J is any G-invariant almost complex

structure. Suppose S is the connected component of the fixed point set of a non-trivial

subgroup H tidu ‰ H Ă G. Then S is J-holomorphic.

Proof. To show S is J-holomorphic we need to show that for any vector v P TxS Jv P TxS.

As S is pointwise fixed by a non-trivial subgroup H, all tangent vectors v P TxS are

characterised by the property that dh ¨ v “ v for all h P H. Thus in order to show that

that Jv P TxS, it suffices to prove that dh ¨ Jv “ Jv for all h P H. But this immediately

follows from the equivariant of J as

dh ¨ Jv “ Jpdh ¨ vq “ Jv
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Theorem 7.4.4. Under the numerical conditions 2λ ą r ą 1 and gcdpa, nq ‰ 1, the

finite cyclic group Znpa, b; rq Ă S1pa, b; rq action can only extend to circles S1pa1, b1; r1q

with r1 “ r.

Proof. Suppose Znpa, b; rq extends to another circle S1pa1, b1; r1q with r1 ‰ r. From the

Chen-Wilczyński classification we know that if this happened then either a “ a1 or

a “ ´a1. This implies gcdpa, nq “ gcdpa1, nq ‰ 1 and hence Zn X Za “ Zn X Za1 ‰

tidu. We know that there are two invariant spheres Sr and Sr1 in the homology classes

B ´ r
2
F and B ´ r1

2
F which are holomorphic for the integrable complex structures Jr

and Jr1 respectively. As Znpa, b; rq Ă S1pa, b; rq, we further know by looking at the

graph associated to the action that Sr is invariant under the S1pa, b; rq action and the

global stabilizer for the S1pa, b; rq action on Sr is Za. Similarly Sr1 is invariant under

the S1pa1, b1; r1q action and has global stabilizer Za1 . As Zn X Za “ Zn X Za1 ‰ tidu,

we know that both Sr and Sr1 are pointwise fixed by the non-trivial subgroups Zn X Za

and Zn X Za1 respectively. By Lemma 7.4.3 for any Zn invariant J both Sr and Sr1 are

J-holomorphic. This is a contradiction by positivity of intersections (Theorem 2.2.12) as

r1 ‰ r.

Theorem 7.4.5. For finite cyclic groups Znpa, b; rq Ă S1pa, b; rq actions such that 2λ ą

r ą 1 gcdpa, nq ‰ 1, SympZn
h pS

2 ˆ S2, ωλq “ SympZnpS2 ˆ S2, ωλq » T2
r

Proof. As λ ą 1, we can to conclude that SympZnpS2 ˆ S2, ωλq “ SympZn
h pS

2 ˆ S2, ωλq.

By Theorem 7.4.4, we see that under the above conditions for the Znpa, b; rq action, it

extends to only one torus T2
r and thus we have our result.

Although the proof of Theorem 7.4.4 works for gcdpa, nq ‰ 1 and 2λ ą r ą 1. Using

the classification of Zn action up to diffeomorphism we can obtain a partial result when

a “ 1, for the actions Znp1, b; rq such that n ą 2λ ą r ą 1 and n ą 2λ ą |r ´ 2b| ą 1.
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Before we embark on these results we recall a few things about the classification up to

Zn-equivariant diffeomorphisms. As noted in the remark above Theorem 7.4.2, the only

types of Zn-equivariant diffeomorphisms between finite cyclic subgroups of different tori

are diffeomorphisms of type c5 and c6. Similarly we note that the only diffeomorphism

that changes the parametrization of the torus T2
r is c3.

As explained in Theorem 7.3.13, we know that if the given Znpa, b; rq Ă T2
r action is

symplectomorphic to an Znpa1, b1; r1q action which is a subgroup of the torus T2
r1 , then

the space of Znpa, b; rq invariant almost complex structures IZnωλ intersects the strata Ur

and Ur1 . Conversely, if IZnωλ intersected Ur and Ur1 , then we would be able to realise

Znpa1, b1; r1q from Znpa, b; rq via a composition of diffeomorphisms c1, ¨ ¨ ¨ , c6. Further

if r ‰ r1, then at least one Zn equivariant diffeomorphism of type c5 or c6 feature in

this composition of diffeomorphisms. In the theorems that follow we shall use numerical

conditions on r, n, a and b to rule out the different solutions to r1 that satisfy the mod-

ular equations in c5 and c6 and hence glean information about which strata IZnωλ intersects.

Remark 7.4.6. Note that c5 and c6 only tell us that the Znpa, b; rq and Znpa1, b1; r1q

are only equivariantly diffeomorphic (and not necessarily symplectomorphic). Thus a

solutions r1 that satisfy the modular equations in c5 and c6 doesn’t necessarily tell us the

IZnωλ intersect Ur1. Thus the Chen-Wilczyński classification only gives us obstructions to

which strata U1, I
Zn
ωλ

intersects.

Lemma 7.4.7. Consider the following families of Hamiltonian Znpa, b; rq actions on

pS2 ˆ S2, ωλq with r ‰ 0 and λ ą 1

• (i) a “ 1, b ‰ t0, ru, n ą 2λ and n ą 2λ ą |r ´ 2b| ą 1, or

• (ii) a “ ´1, b ‰ t0,´ru, n ą 2λ, and 2λ ą |2b` r| ą 1.

Then in case (i) the only strata that IZnωλ intersects are Ur and U|r´2b| and in case (ii) the

only trata that IZnωλ intersects are Ur and U|r`2b|.
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Proof. We shall only prove the theorem for case (i). The proof for case (ii) works simi-

larly. Recall that if IZnωλ intersects the strata Ur1 then r1 ă 2λ. Now we shall use numerical

conditions on r, n, a and b to rule out the different solutions to r1 that satisfy the modular

equations in c5 and c6.

Using the fact that n ą 2λ ą r ą 1 we note that the only solutions for r1 such that

|r1| ă 2λ and r1 satisfies the modular equation r1 ” r (mod 2n) is just the trivial solution

r “ r1. Hence under these numerical conditions any word generated by a composition of

c3 and c5 only give a diffeomorphism between Znp1, b; rq and another Zn action within

the same torus T2
r.

Similarly as n ą 2λ ą |r ´ 2b| ą 1 using triangle inequality we note that the only

solution to the modular equation r1a1 ” 2b ´ ra (mod 2n) and satisfies the equation

|r1| ă 2λ is again the trivial solution r1 “ 2b´ r. Hence under these numerical conditions

any word generated by a composition of c3 and c6 only give a diffeomorphism between

Znp1, b; rq and Znp1,˘b, |r ´ 2b|q action within the torus T2
|r´2b|.

These two inequalities tell us the only candidates for the strata Ur1 that IZnωλ can

intersect is Ur and U|r´2b|. As we started off with a Znpa, b; rq Ă T2
r action, we know

that IZnωλ X Ur ‰ φ. Apriori the above argument doesn’t tell us that the intersection

IZnωλ X U|r´2b| is nonempty. This is because the two Zn actions inside Tr and T|r´2b| are

apriori only equivariantly diffeomorphic and not Zn-equivariantly symplectomorphic.

To see that they are in fact equivariantly symplectomorphic, we note that Znp1, b; rq Ă

S1p1, b; rq and by Karshon classification of S1 actions we know that when 2λ ě |r ´ 2b|

then S1p1, b; rq is S1 equivariantly symplectomorphic (and thus Zn equivariantly symplec-

tomorphic) to S1p1, b1; |r´ 2b|q Ă T2
|r´2b| (where b1 is either equal to b or ´b as explained

in Theorem 3.1.6). As all the other diffeomorphisms c1, ¨ ¨ ¨ , c4 are between Zn actions
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inside torus actions Tr, we have the only strata IZnωλ intersects are Ur and U|r´2b| thus

completing the proof.

We use the above result to derive a result about SympZn
h pS

2 ˆ S2, ωλq for specific Zn

actions.

Theorem 7.4.8. Consider a Znpa, b; rq action on S2 ˆ S2 which satisfies the following

numerical conditions n ą 2λ ą r ą 1, gcdpa, bq “ 1 and r ‰ 0. Then we have the

following cases:

1. If pa, bq P tp˘1, 0q, p˘1,˘rqu then SympZn
h pS

2 ˆ S2, ωλq » T2.

2. if pa, bq “ p0,˘1q then, SympZn
h pS

2 ˆ S2, ωλq » S1 ˆ SOp3q.

3. Further if we have one of the following additional conditions

• Either a “ 1, b ‰ t0, ru and 2λ ą |r ´ 2b| ą 1 or

• a “ ´1, b ‰ t0,´ru and 2λ ą |r ` 2b| ą 1

then we have the following result:

In the first case IZnωλ intersects exactly 2 strata Ur and U|r´2b| and in the second it

intersects the 2 strata Ur and U|r`2b| as before. WLOG if we assume that IZnωλ XUr is

the strata of positive codimension in IZnωλ . Then the complex codimension of IZnωλ XUr

in IZnωλ is given by the number of k P t1, ¨ ¨ ¨ , r ´ 1u such that k ” b (mod n).

Proof. Case 1: If pa, bq “ tp˘1, 0q, p˘1,˘rqu, r ‰ 0.

Suppose IZnωλ intersected Ur and Ur1 . Using the fact that n ą 2λ ą r ą 1 and

2λ ą r1 , we see that the only solution for r1 in the modular equations in Chen-Wilczyński

classification is r1 “ r. Hence the only stratum that IZnωλ intersects is Ur, and thus we

have

SympZn
h pS

2
ˆ S2, ωλq{T2

r » IZnωλ X Ur “ IZnωλ » t˚u
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Giving us the required result.

Case 2: If pa, bq “ p0,˘1q.

We see from the calculation of local isotropy weights at the fixed points that there

is a fixed sphere in the class B ´ r
2
F . As above, we can argue that the solution

for r1 in the modular equations in Chen-Wilczyński classification is r1 “ r and hence

SympZn
h pS

2 ˆ S2, ωλq » S1 ˆ SOp3q

Case 3: If pa, b; rq “ p˘1, b; rq and 2λ ą |r ´ 2b| ą 1.

This follows from 7.4.7.The codimension of the smaller strata can be calculated anal-

ogous to the S1 case and the precise calculation is explained below in the next section.

The case a “ ´1, b ‰ t0,´ru and 2λ ą |r ` 2b| ą 1 is similar to case 3.

7.5 Codimension calculation

Firstly, we observe that Lemma 3.1.3 holds verbatim for Zn actions. Further, for the Zn

actions Znp˘1, b; rq with b ‰ t0,˘ru, we can see using Lemma 3.1.3 for Zn actions that

the only fixed points that admit a curve with self intersection ´r are the fixed points Q

and R in figure 2.1. Hence Lemma 5.2.1 holds for Zn actions.

Lemma 7.5.1. Consider the Znpa, b;mq action on pS2ˆS2, ωλq or pCP 2#CP 2, ωλq. Let

S be any Znpa, b;mq-invariant symplectic embedded sphere in the same homology class

B ´ k
2
F with k ą 0. Then the Zn action on S has global stabilizer isomorphic to Za.

Proof. The proof follows exactly as in Lemma 5.2.1.
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Hence the moduli spaces

MZnpB ´ kF,J S1

ωλ,l
q :“ tpu, Jq | u is Zn-equivariant, somewhere injective,

J-holomorphic, and represents the class B ´ kF u

for k ą 0 are well defined. Arguing as in Theorem 5.1.3 we can conclude that IZnωλ,l of C l

integrable equivariant almost complex structures is a Banach manifold. Further an analo-

gous argument to Theorem 5.2.8 gives us that IZnωλ,l intersects the strata Uk,l transversally.

Hence IZnωλ,l X Uk,l is a Banach submanifold of IZnωλ,l. One can argue that IZnωλ,l equipped

with the C l-topology is homotopy equivalent to IZnωλ equipped with the C8 topology. As

explained before, the normal bundle to the strata UmXJ Zn
ωλ

at an equivariant integrable

almost complex structure Jm can be identified with H0,1
Jm
pS2 ˆ S2, T pS2 ˆ S2qq

Zn
. It can

be shown that the normal to UmXJ Zn
ωλ

at Jm is given by normal to UmXJ Zn
ωλ

intersected

with IZnωλ . Thus we see that the normal to Um X J Zn
ωλ

at Jm can also be identified with

H0,1
Jm
pS2 ˆ S2, T pS2 ˆ S2qq

Zn
. Further we note that, H0,1

Jm
pS2 ˆ S2, T pS2 ˆ S2qq – Cm´1.

Hence to calculate the codimension we need to calculate the dimension of the subspace

of invariant elements in H0,1
Jm
pS2 ˆ S2, T pS2 ˆ S2qq under the action of Zn Ă S1ˆSOp3q.

By [3], we know the action of the Kähler isometry group Kprq “ S1 ˆ SOp3q on in-

finitesimal deformations is isomorphic to Detb Symr´2. A basis of Symr´2 is given by

the homogeneous polynomials Pk “ zr´2´k
1 zk2 for k P t0, . . . , r ´ 2u. The action of Rptq

on Pk is

Rptq ¨ Pk “ ept{2q ¨ Pk “ ei
`

r´2´2k
˘

t{2Pk “ eitp
r
2
´1´kqPk

so that the action of S1 “ peis, Rptqq Ă S1 ˆ SOp3q on Pk is

peis, Rptqq ¨ Pk “ ei
`

s`tp r
2
´1´kq

˘

Pk

Each Pk generates an eigenspace for the action of the maximal torus T prq. In particular,

the finite group Zqpa, b; rq Ă S1pa, b; rq acts trivially on Pk if, and only if,

b` ap
r

2
´ 1´ kq “ pa, bq ¨ p

r

2
´ 1´ k, 1q “ 0 pmod nq
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for k P t0, r ´ 2u. Equivalently, we must have

ak ` b “ pa, bq ¨ pk, 1q ” 0 pmod nq

for k P t1´ r
2
, . . . , r

2
´ 1u

Note that as explained in the case of codimension calculation for the S1 case, the

above calculation was done with respect to the basis of the maximal torus in Kp2nq.

Hence to calculate the codimension for the Znpa, b; rq Ă S1p1, b, rq Ă T2
m as in our case,

we need to transform the basis by multiplication by the matrix

¨

˝

r
2
´1

1 0

˛

‚. Thus it takes

the vector

¨

˝

1

b

˛

‚ in the basis for the standard moment polytope to the vector

¨

˝

r
2
´ b

1

˛

‚ in

the basis for the balanced polytope. Therefore after transforming into the right basis we

get the following theorem.

Theorem 7.5.2. Given the action Znp1, b; rq on pS2ˆS2, ωλq with b ‰ t0, ru, gcdpa, bq “

1 and λ satisfying n ą 2λ ą r ą 1, and 2λ ą |r´ 2b| ą 1, the complex codimension of of

the strata IZnωλ X Ur in IZnωλ in given by the number of k P t1, ¨ ¨ ¨ , r ´ 1u such that k ” b

(mod n).

Similarly for the action Znp´1, b; rq with b ‰ t0,´ru,gcdpa, bq “ 1 and λ satisfying

n ą 2λ ą r ą 1, and 2λ ą |r` 2b| ą 1 the complex codimension of of the strata IZnωλ XUr

in IZnωλ is given by the number of k P t1, ¨ ¨ ¨ , r ´ 1u such that k ” ´b (mod n).

Corollary 7.5.3. For the family of Zn actions on pS2 ˆ S2, ωλq,

• Znp1, b; rq on pS2ˆS2, ωλq with b ‰ t0, ru, gcdpa, bq “ 1 and λ satisfying n ą 2λ ą

r ą 1, and 2λ ą |r ´ 2b| ą 1 or

• Znp´1, b; rq with b ‰ t0,´ru,gcdpa, bq “ 1 and λ satisfying n ą 2λ ą r ą 1, and

2λ ą |r ` 2b| ą 1
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the complex codimension of IZnωλ X Ur in IZnωλ is either 0 or 1.

7.6 Homotopy type of centralizers of Znp˘1, b; rq

Finally, the proof of Theorem 4.2.1 also gives us that

Theorem 7.6.1. Consider a Znpa, b; rq action on pS2 ˆ S2, ωλq with r ‰ 0 and λ ą 1.

Then,

1. If a “ 1, b ‰ t0, ru, n ą 2λ ą 1, and 2λ ą |2b ´ r| ą 1, the inclusion i :

T2
m,T2

|m´2b| ãÑ SympZnpS2 ˆ S2, ωλq induces a map which is injective in homology

with coefficients in any field k.

2. If a “ ´1, b ‰ t0,´ru, n ą 2λ ą 1, and 2λ ą |2b ` r| ą 1, the inclusion

i : T2
r,T2

|r`2b| ãÑ SympZnpS2ˆS2, ωλq induces a map which is injective in homology

(with coefficients in any field k).

As a consequence of the above theorem and Leray-Hirsch Theorem we have

Corollary 7.6.2. H˚pSympZn
h pS

2 ˆ S2, ωλq,Rq – H˚pIZnωλ X Ur,Rq
Â

H˚pT2,Rq

Also, we have that

Theorem 7.6.3. For the following family of Znpa, b; rq symplectic actions on pS2ˆS2, ωλq

• Znp1, b; rq on pS2ˆS2, ωλq with b ‰ t0, ru, gcdpa, bq “ 1 and λ satisfying n ą 2λ ą

r ą 1, and 2λ ą |r ´ 2b| ą 1 or

• Znp´1, b; rq with b ‰ t0,´ru,gcdpa, bq “ 1 and λ satisfying n ą 2λ ą r ą 1, and

2λ ą |r ` 2b| ą 1

the space IZnωλ is contractible.
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Proof. By Theorem 7.4.8, we have that IZnωλ “
`

IZnωλ X Ur
˘

\
`

IZnωλ X U|2b´r|
˘

. Further by

Theorem 7.3.12, we have that the inclusions IZnωλ X Ur ãÑ J Zn
ωλ
X Ur and IZnωλ X U|r´2b| ãÑ

J Zn
ωλ
X U|r´2b| are homotopy equivalences. As J Zn

ωλ
“

`

J Zn
ωλ
X Ur

˘

\
`

J Zn
ωλ
X U|2b´r|

˘

is

contractible, we have the required result.

Using the calculation of the codimension, Corollary 7.6.2 and Theorem 7.6.3 we figure

out the cohomology H˚pSympZn
h pS

2 ˆ S2, ωλq,Rq. Using theorem 4.2.1 and techniques

used in the proof of theorem 4.2.2 we get the following theorem.

Theorem 7.6.4. Consider the following Zn actions on S2 ˆ S2.

• (i) a “ 1, b ‰ t0, ru, n ą 2λ ą 1 and 2λ ą |2b´ r| ą 1; or

• (ii) a “ ´1, b ‰ t0,´ru, n ą 2λ ą 1 and 2λ ą |2b` r| ą 1.

From Theorem 7.4.8 we see that IZnωλ intersects 2 strata. Without loss of generality let

IZnωλ X Ur be the strata with positive codimension in IZnωλ . Then we have that,

Hp
pIZnωλ X Ur, kq “

$

’

’

’

’

’

&

’

’

’

’

’

%

k p ě 1

k p “ 0

0 otherwise

with coefficients in a field k. Further, the cohomology of SympZn
h pS

2ˆ S2, ωλq is isomor-

phic to

H˚
`

SympZn
h pS

2
ˆ S2, ωλq, k

˘

– H˚
pIZnωλ X Ur, kq

â

H˚
pT2, kq.

More explicitly, the ranks of the cohomology groups are given by

Hp
`

SympZn
h pS

2
ˆ S2, ωλq, k

˘

“

$

’

’

’

’

’

&

’

’

’

’

’

%

k4 p ě 2

k3 p “ 1

k p “ 0
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Remark 7.6.5. As λ ą 1 it can be argued as in Theorem 4.1.1 that SympZn
h pS

2 ˆ

S2, ωλq “ SympZnpS2 ˆ S2, ωλq and hence we get the ranks of the cohomology of the

entire symplectomorphism group.

The exact same argument as in Theorem 4.2.6 gives us the following theorem.

Theorem 7.6.6. Consider the following Zn actions on S2 ˆ S2.

• (i) a “ 1, b ‰ t0, ru, n ą 2λ ą 1 and 2λ ą |2b´ r| ą 1; or

• (ii) a “ ´1, b ‰ t0,´ru, n ą 2λ ą 1 and 2λ ą |2b` r| ą 1.

Then SympZnpS2ˆS2, ωλq » ΩS3ˆS1ˆS1ˆS1 where ΩS3 denotes the based loop space

of S3.

7.7 Zn actions on pCP 2#CP 2, ωλq when λ ą 1

In this section we only present the statements of our results on the homotopy type of

SympZnpCP
2#CP 2, ωλq. The proofs follow from simple modifications of the arguments

given in Chapter 5 and Section 6.1. We also note that Theorems 7.4.2, lemma 7.4.7 all

hold even in the case when r is odd.

Fix a Znpa, b; rq action on pCP 2#CP 2, ωλq. By [13] we know that every such S1 action

extends to a circle action and hence to a T2 action. Just as in Chapter 6 we have the

following fibration.

StabZnpDq Ñ SympZn
h pS

2
ˆ S2, ωλq Ý� SZn

D2k

»
ÝÝÝÑ J Zn

ωλ
X U2k

FixZnpDq Ñ StabZnpDq Ý� SympZnpDq
»

ÝÝÝÑ Zn or SOp3q

FixZnpNpDqq Ñ FixZnpDq Ý� GaugeZnpNpDqq
»

ÝÝÝÑ Zn

StabZnpF q X FixZnpNpDqq Ñ FixZnpNpDqq Ý� SZn
F,p0

»
ÝÝÝÑ J ZnpDq » t˚u
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FixZnpF q Ñ StabZnpF q X FixZnpNpDqq Ý� SympZnpF ,Npp0qq
»

ÝÝÝÑ t˚u

t˚u
»

ÐÝÝÝ FixZnpNpD _ F qq Ñ FixZnpF q Ý� GaugeZnpNpD _ F qq
»

ÝÝÝÑ t˚u

As in Chapter 6, we can deduce from the above fibrations that for the action Znpa, b; rq,

such that pa, bq ‰ p0,˘1q then

SympZn
h pCP

2#CP 2, ωλq{T2
2k`1 » J S1

ωλ
X U2k`1

and for the Znpa, b; rq such that pa, bq “ p0,˘1q we have

SympZn
h pCP

2#CP 2, ωλq{Up2q » J S1

ωλ
X U2k`1

.

Arguing as in Theorem 7.3.13 and Theorem 7.6.3, we have the following 2 theorems.

Theorem 7.7.1. Fix a Znpa, b; kq action on pCP 2#CP 2, ωλq, then the space IZnωλ is con-

tractible.

Theorem 7.7.2. Let Znpa, b; rq be a symplectic action on pCP 2#CP 2, ωλq. Then the

space of Zn-equivariant complex structures IZnωλ intersects the strata Ur1 iff Zn is symplec-

tomorphic to a Znpa1, b1; r1q action that acts as a subgroup of the torus action T2
r1.

Further by analogous arguments as in theorems 7.4.8 and 7.4.7, we obtain the follow-

ing result

Theorem 7.7.3. Consider a Znpa, b; rq action on pCP 2#CP 2, ωλq for which n ą 2λ ą

r ě 1 and gcdpa, bq “ 1. Then

1. If pa, bq “ tp˘1, 0q, p˘1,˘rqu then SympZn
h pCP 2#CP 2, ωλq » T2

2. if pa, bq “ p0,˘1q then, SympZn
h pCP 2#CP 2, ωλq » Up2q

3. Further if we have one of the following additional conditions

• Either a “ 1, b ‰ t0, ru and 2λ ą |r ´ 2b| ą 1 or
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• a “ ´1, b ‰ t0,´ru and 2λ ą |r ` 2b| ą 1

then we have the following result:

• If a “ 1 and 2λ ą |r´2b|, IZnωλ intersects exactly 2 strata Ur and U|r´2b|.Further,

if we assume that IZnωλ X Ur is the strata with positive codimension in IZnωλ .

Then the complex codimension of IZnωλ X Ur in IZnωλ is given by the number of

k P t1, ¨ ¨ ¨ , r ´ 1u such that k ” b (mod n).

• If a “ ´1 and 2λ ą |r`2b| IZnωλ intersects the 2 strata Ur and U|r`2b| as before.

Further, if we assume that IZnωλ X Ur is the strata with positive codimension in

IZnωλ . Then the complex codimension of IZnωλ XUr in IZnωλ is given by the number

of k P t1, ¨ ¨ ¨ , r ´ 1u such that k ” ´b (mod n).

Proof. The follows verbatim from the proof of 7.4.8. The only difference is the calcula-

tion on the codimension which we present below.

The action ofKp2n`1q on infinitesimal deformations is isomorphic to Det1´n
b Sym2n´1.

A basis of Sym2n´1 is given by the homogeneous polynomials Pk “ z2n´1´k
1 zk2 for k P

t0, . . . , 2n´ 1u. The action of Ds,t on Pk is

Ds,t ¨ Pk “ ei
`

ps`tqp1´nq`sp2n´1´kq`tk
˘

Pk

so that each Pk generates an eigenspace for the action of the maximal torus T p2n ` 1q

generated by Ds,t. In particular, the c S1pa, b; 2n` 1q acts trivially on Pk if, and only if,

pa´ bqpn´ kq ` b “ pa, bq ¨ pn´ k, k ´ n` 1q ” 0 pmod nq

Thus the codimension (in the balanced basis of the maximal torus of K(2n+1) is given

by the number of k P t0, . . . , 2n´1u such that pa´bqpn´kq`b “ pa, bq¨pn´k, k´n`1q ”

0 pmod nq.
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Hence to calculate the codimension for the Znp1, b, rq Ă T2
r as in our case, we need to

transform the basis by multiplication by the matrix

¨

˝

r´1
2
` 1 ´1

r´1
2

´1

˛

‚. Thus it takes the

vector

¨

˝

1

b

˛

‚ in the basis for the standard moment polytope

to the vector

¨

˝

r´1
2
´ b

r´1
2
´ b

˛

‚ in the basis for the balanced polytope. Hence the a and b in

the formula above need to be replace by r´1
2
´b and r´1

2
´b to get the correct codimension

for the Znp1, b, rq action.

After making this substitution we get the required result that the codimension of

stratum(which we assumed to be IZnωλ XU|r´2b| is given by the number of k P t1, ¨ ¨ ¨ , |r´

2b| ´ 1u such that k ´ b ” 0 (mod n).

As before, we have

Theorem 7.7.4. For the following family of Zn actions we have

• (i) a “ 1, b ‰ t0, ru, n ą 2λ ą 1, gcdpa, bq “ 1 and 2λ ą |2b ´ r|; The inclusion

maps i : T2
r,T2

|r´2b| ãÑ SympZnpCP 2#CP 2, ωλq induces a map which is injective in

homology (with coefficients in a field k). or

• (ii) a “ ´1, b ‰ t0,´ru, n ą 2λ ą 1, gcdpa, bq “ 1 and 2λ ą |2b ` r|. The

inclusion maps i : T2
r,T2

|r`2b| ãÑ SympZnpCP 2#CP 2, ωλq induces a map which is

injective in homology (with coefficients in a field k).

Proof. The proof is similar to the proof of Theorem 6.1.4.

and
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Theorem 7.7.5. Consider the following families of Zn actions on pCP 2#CP 2, ωλq for

which n ą 2λ ą 1, gcdpa, bq “ 1

• (i) a “ 1, b ‰ t0, ru, and 2λ ą |2b´ r|; or

• (ii) a “ ´1, b ‰ t0,´ru, and 2λ ą |2b` r|.

From Theorem 7.4.8 we see that IZnωλ intersects two strata Ur and U|r´2b|. Without loss of

generality let IZnωλ X Ur be the strata with positive codimension in IZnωλ .Then,

Hp
pIZnωλ X Ur, kq “

$

’

’

’

’

’

&

’

’

’

’

’

%

k p ě 1

k p “ 0

0 otherwise

and the cohomology H˚pSympZn
h pCP 2#CP 2, ωλq, kq – H˚pIZnωλ X Ur, kq

Â

H˚pT2, kq.

More concretely,

Hp
pSympZn

h pCP
2#CP 2, ωλq, kq “

$

’

’

’

’

’

&

’

’

’

’

’

%

k4 p ě 2

k3 p “ 1

k p “ 0

for any field k.

Remark 7.7.6. As λ ą 1 it can be argued as in Theorem 4.1.1 that

SympZn
h pCP

2#CP 2, ωλq “ SympZnpCP 2#CP 2, ωλq

and hence we get the ranks of the cohomology of the entire symplectomorphism group.

Arguing similar to Theorem 4.2.6 we have,

Theorem 7.7.7. Consider the following families of Zn actions on pCP 2#CP 2, ωλq for

which n ą 2λ ą 1, gcdpa, bq “ 1

• (i) a “ 1, b ‰ t0, ru, and 2λ ą |2b´ r|; or
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• (ii) a “ ´1, b ‰ t0,´ru, and 2λ ą |2b` r|.

Then SympZnpCP 2#CP 2, ωλq » ΩS3 ˆ S1 ˆ S1 ˆ S1 where ΩS3 denotes the based loop

space of S3.

Finally as lemma 7.4.3 and lemma 7.4.4 hold verbatim for CP 2#CP 2, we can conclude

the following theorem.

Theorem 7.7.8. For finite cyclic groups Znpa, b; rq Ă S1pa, b; rq actions such that 2λ ą

r ą 1 and gcdpa, nq ‰ 1, SympZn
h pCP 2#CP 2, ωλq “ SympZnpCP 2#CP 2, ωλq » T2

r.



Chapter 8

Conclusion

The thesis suggests many future directions for possible research. We outline a few of

related interesting questions that arise related to the work in the thesis.

8.1 Finite group action

As seen in Chapter 7, we are currently unable to understand the homotopy type of the Zn

-equivariant symplectomorphisms of the Hirzerbruch surfaces for some Zn actions on pS2ˆ

S2, ωλq and pCP 2#CP 2, ωλq. One of the key hurdles to determining the homotopy type

is that we currently don’t understand the classification of of Zn actions on Hirzerbruch

surfaces up to Zn-equivariant symplectomorphisms. Two key questions in this regard are

the following

Question 1. Given two Zn actions pa, b; rq and pa1, b1, r1q on S2ˆS2 or CP 2#CP 2, when

are they equivariantly symplectomorphic ?

Question 2. Given a Zn hamiltonian action pa, b; rq on S2 ˆ S2 or CP 2#CP 2 which

tori Tm does it extend to ?

Answering these questions would help in understanding which strata the space of Zn

invariant almost complex structures intersect and hence the analysis we did in the S1

145
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case would go through and provide us with an understanding of homotopy type of the

centraliser for the Zn action in all cases. The proof of this is by no means easy, and might

involve getting into analysis of orbifold J-holomorphic curves as in [12].

Another important discussion to be had for compact abelian groups in the following

Question 3. What can we say about the homotopy type of the normaliser NpGq of a

compact abelian group G in SymppS2 ˆ S2q and SymppCP 2#CP 2q? What about the

Weyl group W pGq “ NpGq{ SympGpS
2 ˆ S2q?

As shown in [35], the answer in the toric case has been established and W pTnq is

always a finite group.

8.2 Alternate proof for S1 actions

As mentioned in Theorem 1.0.1, we can use only moment map techniques to determine

the centraliser for toric actions. We established an analogous result (Theorem 2.1.11) in

the case of S1 actions on 4-manifolds as well. As the graphs associated to the S1 action

contain all the information about the action, it should theoretically be possible to read

the homotopy type of the S1 equivariant symplectomorphims directly from the graphs.

Another phenomenon that hints at this is the fact that the various changes in the ho-

motopy type of the S1p˘1, b;mq-equivariant symplectomorphism group (as in Theorem

4.3.1) when λ changes correspond precisely to whether the edges in the associated graph

overlap or not (as discussed in remark ??). Thus it would be an interesting endeavour

to explore a proof of Theorem 4.1.1 using only momentum map techniques.

This has the added advantage of not only working for our specific case of S1 actions

on rational ruled surfaces, but should be applicable to all 4-manifolds with Hamiltonian

S1 actions.
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8.3 Non-abelian group actions

By Theorems 1.0.2 and 1.0.3 there are important classes of non-abelian finite groups that

act on Hirzerbruch surfaces. Hence it is natural to study the centralisers of these non-

abelian subgroups of the symplectomorphism group. However, in order for the arguments

presented in the thesis to work for the case of non-abelian group actions, we would need

to answer the following question.

Question 4. Let pBprq, ωq be the standard ball of radius r around the origin in R4 and

let ω be such that ω “ ω0 near the boundary of Bprq. Let G be an non-abelian group that

acts symplectically and linearly as a subgroup of Up2q near the boundary and sends the

boundary to itself. Is the space of equivariant symplectomorphisms that act as identity

near the boundary SympGc pBprq, ωq non-empty and contractible?

The proof of Theorem 3.2.4 would not help us in answering the above question as it is

essential for our analysis that the groups be abelian in order to guarantee simultaneous

diagonalization of the representation G Ñ Up2q. But the reliance on the group being

abelian seems to be a superficial artifact of Gromov’s proof of compactifying C ‘ C to

S2ˆS2. Hence we would need to find other ways of reproving Gromov’s theorem without

compactifying to S2 ˆ S2 which might make it easier to generalise under the presence of

a non-abelian finite group action.

A positive answer to the above question would open up the door to prove theorems

analogous to Theorem 3.3.15 for non-abelian group actions and figure out which strata

the invariant almost complex structures intersect in order to understand the homotopy

type of the symplectomorphism group for these actions.
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8.4 Embedding spaces

Let EmbpB2nprq,Mq denote the space of symplectic embeddings of the ball B2nprq into

the 2n-dimensional manifold pM,ωq, endowed with the C8 topology and let

=EmbpB2n
prq,Mq :“ EmbpB2n

prq,Mq{ SymppB2n
prqq

denote the space of unparameterized symplectic balls in pM,ωq. Fix an embedding

ι : Bprq Ñ M , by the symplectic isotopy theorem of balls, the natural action of the

identity component of the symplectomorphism group Symp0pM,ωq on the component of

=EmbpB2nprq,Mq containing ι defines the following fibration

Stabpιq ÝÑ Symp0pM,ωq ÝÑ =EmbιpB
2n
prq,Mq

where the fiber over an embedding ι : B2nprq Ñ M is the subgroup of symplecto-

morphisms sending ιpB2nprqq to itself. Thus, the homotopy type of EmbpB2nprq,Mq is

intimately connected to the homotopy type of symplectomorphism groups.

Having determined the homotopy type of the S1 and Zn-equivariant symplectomor-

phisms for pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq we can now try to address the related

question on equivariant embeddings. Let G act linearly on the ball of radius r B4prq in

R4 and let SympGpB4prqq denotes the G-equivariant symplectomorphisms of B4prq.

Question 5. Given a compact group G acting symplectically on the pS2 ˆ S2, ωλq (and

analogously for CP 2#CP 2q. Let S be a connected component of the fixed point set. Let us

denoted by EmbGS is the space of G-equivariant symplectic embeddings i : B4prq ãÑ S2ˆS2

such that ip0q P S connected. Is =EmbGS :“ EmbGS { SympGpB4prqq connected?

This question was answered in [33] for toric actions. It was shown that,

Theorem 8.4.1. (Pelayo, [33]) For every symplectic-toric 2n manifold M with a toric

action of Tn, there is an associated Z-valued non-increasing step function kM : Rě0 Ñ

r0, n!χpMqs such that for each r ě 0 the space of equivariant symplectic embeddings from
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the 2n dimensional ball B2n
r into M is homotopically equivalent to a disjoint union of

kMprq subspaces, each of which is homeomorphic to the n-torus Tn.

In particular this implies that the space of equivariant embeddings ”centered” at a

fixed point of the Tn action up to reparametrization is connected and is homotopic to

Tn. However, no such theorems have so far been established for S1 or Zn actions on

4-manifolds. We hope to build on the work in the thesis and try to understand these

space of equivariant embeddings for pS2 ˆ S2, ωλq and pCP 2#CP 2, ωλq.



Appendix A

Equivariant Gauge Groups

In this section we basically show how to calculate the homotopy type of the equivariant

gauge groups that arise in lemma 3.3.10 and lemma 3.3.14.

Let P be a principle G- bundle over B, where G is an abelian group that acts on the

right. Let H be a lie group that act on the base space B and this action lifts to an action

on the bundle P . We shall denote this action by a left action. Note that H need not act

effectively on the space B.

Let GaugeHpP q denote all equivariant (with respect to the action of H) bundle auto-

morphisms i.e equivariant maps u such that the following diagram commutes.

P P

B

π

u

π

Given u P GaugeHpP q, define the map

φu : P Ñ G

x ÞÑ φupxq

where φupxq is defined such that

x ¨ φupxq “ upxq
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Let us now see how the map φu behaves under the left action of H. We have

uph ¨ xq “ h ¨ x ¨ φuph ¨ xq

But we already have that

uph ¨ xq “ h ¨ upxq “ h ¨ x ¨ φupxq

Putting the equalities together and noticing that the G -action is free we get that

φuph ¨ xq “ φupxq

That is that the map φu is invariant under the action of H.

Also from the definition we can see that

φupx ¨ gq “ g´1
¨ φupxq ¨ g “ φupxq

where the last equality follows from G being abelian.

Denote by MapsH,GpP,Gq the space of all H and G-invariant smooth functions from P

to G. Note that because these maps are G invariant this space is the same as H-invariant

maps from B to G which we shall denote by InvpB,Gq Then we now have an map

ρ : GaugeHpP q Ñ MapsH,GpP,Gq

u ÞÑ φu

is an an homeomorphism for C8-topology with the inverse being constructed using the

definition x ¨ φupxq “ upxq.

As MapsH,GpP,Gq= InvpB,Gq we have that GaugeHpP q is homeomorphic to InvpB,Gq.
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Let us now use this to calculate the Homotopy type of the Gauge groups in the fibra-

tions in Chapter 2.

Consider a rank 2 symplectic normal bundle of D. Let us fix an equivariant arbitrary

compatible fibre wise almost complex structure J on NpDq. As this is a rank two bun-

dle, the structure group is Spp2q, and this now can be reduced to Up1q “ S1, and the

two bundles are isomorphic. Thus the space of symplectic automorphisms of the original

bundle is homeomorphic to the space of symplectic automorphisms of the reduced bundle.

In our case we have a right group action of S1 on this bundle and we are interested in

the equivariant symplectic automorphisms of this bundle.This is homotopic to the space

of Equivariant symplectic automorphisms of the Up1q bundle.(As the reduction of the

structure group can be done equivariantly) And as Up1q “ S1 the space of Equivariant

symplectic automorphisms of the Up1q bundle is the same as GaugeS
1

pP q where P is

the associated principal bundle. This is homeomorphic to InvpS2, S1q from the above

discussion.

Finally note that for any non-trivial S1 action on S2 (possibly non-effective) the quo-

tient space under this action is just the interval. Hence the space InvpS2, S1q is just the

space of smooth maps from the interval to S1.

Before we embark on trying to calculate the homotopy type of GaugeS
1

pNpDqq, we

would need the following technical lemma. Note that in all our calculations above we

have used the C8-topology on GaugeS
1

pNpDqq and InvS1pS2, S1q. Let GaugeS
1

c pNpDqq

denote the space of continuous S1-equivariant gauge transformations of the bundle NpDq

equipped the C0-topology. Using the same argument at the beginning of the section we

can show that GaugeS
1

c pNpDqq is homotopic to the space InvS1,cpS
2, S1q of continuous

S1-invariant maps from S2 to S1. Then we have that,
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Lemma A.0.1. The space GaugeS
1

pNpDqq with the C8-topology is homotopic to the

space GaugeS
1

c pNpDqq equipped with the C0-topology.

The proof of this lemma follows from an equivariant version of the arguments used

to prove Theorem 3.2.13 in [41].

Lemma A.0.2. GaugeS
1

pNpDqq » GaugeS
1

c pNpDqq » InvS1,cpS
2, S1q » S1

Proof. GaugeS
1

pNpDqq » GaugeS
1

c pNpDqq » InvS1,cpS
2, S1q follows from Lemma A.0.1

and the discussion above.

Let MapspS2{S1, S1q denote the space of continuous maps from S2{S1 to S1.Then the

space InvS1,cpS
2, S1q is homeomorphic to the space MapspS2{S1, S1q. Further we note

that as S2{S1 is homeomorphic to an interval r0, 1s, the space MapspS2{S1, S1q can be

identified the space of continuous maps from the interval r0, 1s to S1 which we denote by

Mapspr0, 1s, S1q . Let p0 be a fixed point for the S1 action on S2. Then we consider the

following fibration,

t˚u » InvS1,c ppS
2, p0q , pS

1, idqq InvpS2, S1q S1ev

Where the map ev : InvpS2, S1q Ñ S1 is just the evaluation map at the fixed point

(for the S1 action on S2) p0 and the space InvS1,c ppS
2, p0q , pS

1, idqq is the space of all

continuous maps from S2 to S1, invariant under the S1 action and send the point p0 to

the identity on S1. As above, the space Inv ppS2, p0q , pS
1, idqq can be identified with the

space of continuous maps from the the interval r0, 1s to S1 that send 0 to the the identity

on S1. This space of pointed maps from r0, 1s to S1 is contractible, thus completing the

proof.

Remark A.0.3. We need the point p0 to be a fixed point as the evaluation map has to

be surjective.

Lemma A.0.4. GaugeS
1

pNpD _ F qq » t˚u
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Proof. Analogous to our method above, we get that GaugeS
1

pNpD_F qq is just the space

of continuous maps from the following configuration to S1 that send some neighbourhood

of the crossing to the identity in S1

id
D

F

And the space of such maps is indeed contractible thus completing the proof.

We now want to carry out similar computation but for action of finite abelian groups

Zn on the bundle. As discussed before, we have that GaugeZnpNpDqq » InvZnpS
2, S1q

where InvZnpS
2, S1q denotes the space of Zn invariant maps from S2 to S1. Further let

GaugeZnc pNpDqq denote the space of continuous Zn equivariant gauge transformations.

As in Lemma A.0.1 we have that GaugeZnpNpDqq » GaugeZnc pNpDqq. Further, just as in

the S1 case we may identify GaugeZnc pNpDqq with the space InvZn,cpS
2, S1q of continuous

Zn invariant maps from S2 to S1.

Putting all this together we have,

Lemma A.0.5. GaugeZnpNpDqq » GaugeZnc pNpDqq » InvZn,cpS
2, S1q » S1

Proof. The homotopy equivalences GaugeZnpNpDqq » GaugeZnc pNpDqq » InvZn,cpS
2, S1q

are all explained above. Thus we only need to show that InvZn,cpS
2, S1q » S1. In our

case we know that the Zn action on S2 are in fact restrictions of S1 actions on S2, hence

they are rotations about fixed points of S2. Note that InvZn,cpS
2, S1q is homeomorphic

to the space MapspS2{Zn, S
1q of continuous maps from S2{Zn to S1. Further, S2{Zn is

homeomorphic to S2 and hence MapspS2{Zn, S
1q – MapspS2, S1q. Finally, we note that

MapspS2, S1q » S1 thus completing the result.
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Lemma A.0.6. GaugeZnpNpD _ F qq » t˚u

Proof. Analogous to the proof of Lemmas A.0.4 and A.0.5, we can identify the group

GaugeZnpNpD _ F qq with maps from S2 _ S2 that send a neighbourhood of the wedge

point to the identity in S1. The space of such maps is contractible.

Finally, we need to understand the homotopy type of Zn equivariant symplectomor-

phisms SympZnpS2q, in our analysis in Chapter 6.

Lemma A.0.7. Consider a symplectic action of Zn on S2, then the space SympZnpS2q

is homotopic to SOp3q, if Zn fixes S2 pointwise, and is homotopic to S1 otherwise.

Proof. Let ψ P SympZnpS2q, consider the graph ψ̃ of ψ i.e

ψ̃ : S2
Ñ S2

ˆ S2

z ÞÑ pz, ψpzqq

Let SOp3qZn denote the centraliser of Zn inside SOp3q. Choose a Zn equivariant metric

for the product Zn action on S2ˆS2 coming from the Zn action on S2. Then by Theorem

C, Corollary C and Corollary 4.1 in [39], the mean curvature flow with respect to this

equivariant metric gives us a canonical homotopy of ψ to an element inside SOp3qZn .

Further this homotopy is identity on all the elements of SOp3qZn . Thus the map we get is

in fact a deformation retract of SympZnpS2q and SOp3qZn . Note SOp3qZn “ SOp3q or S1

depending on whether Zn is in the centre of SOp3q or not respectively, thus proving the

claim.
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Holomorphic configurations and

equivariant Gompf argument

Theorem B.0.1. Let G be a compact group. Let A and B be two G-invariant symplectic

spheres in a 4-dimensional symplectic manifold pM,ωq intersecting ω-orthogonally at a

unique fixed point p for the G action. Then there exists an invariant J P J G
ω such that

both A and B are J-holomorphic. Here J G
ω denotes the space of G invariant compatible

almost complex structures on M .

Proof. The proof follows from mimicking the proof of Lemma A.1 in [18] under the

presence of a group action.

Theorem B.0.2. (Equivariant Gompf Argument) Let G be a compact group. Let A and

B be two G-invariant symplectic spheres in a 4-dimensional symplectic manifold pM,ωq

such that AXB “ tpu where p is a fixed point for the action and the intersection at p is

transverse. Then there exists an S1-equivariant isotopy At of A such that At intersects B

transversally at p for all t, A1 intersects B ω-orthogonally at p and the curve A1 agrees

with A outside some neighbourhood of p, .

Proof. Since this is a local problem, we can work in a trivialising chart in R4 in which

the action is linear. Let BKω be the symplectic orthogonal to B. We can assume the
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image of B to be the two plane in R4 given by p0, 0, x, yq, and BKω to the given by the

plane px, y, 0, 0q. As A is transverse to B at p, we can assume its image is given by the

graph of function (which we also call A) A : pf, gq : R2 Ñ R2.

Next we observe that given a function A :“ pf, gq : R2 Ñ R2, the graph of A is a

symplectic (for the standard form) submanifold of R4 iff tf, gu ą ´1. This can be proven

from a direct computation. We will construct an isotopy of graphs of function of the

form At :“ αtpr
2qA where αt is a bump function depending only on the radius squared

(for a fixed G invariant metric) in R2, and such that

• A0 “ A,

• A1 “ 0 near (0,0),

• At “ A outside of some neighbourhood of the origin,

• At is symplectic for all t.

Note that as αt is depends on the radius for a fixed G invariant metric, At is also G

invariant.

Define E “ g tf, r2u ` f tr2, gu. Using the fact that r2p0, 0q “ 0 and pr2q1p0, 0q “ 0

we see that Ep0, 0q “ 0 and B

Br
Ep0, 0q “ 0. By the intermediate value theorem, there

exists c ą 0, ε ą 0 and u ą 0 such that on the ball of radius u ` ε around the origin

Bp0, u`εq we have Epxq ě ´cr2pxq. Choose δ such that on Bp0, u`εq, 1`tf, gu ą δ ą 0

Pick α : RÑ R satisfying the following properties

• αpr2q “ 1 for r2 ě u .

• αprq “ 0 for r near 0.

• α1pr2q ď δ
2cr2

ă
1`tf,gu

2cr2
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Define αt :“ p1 ´ tq ` tαpr2q and At :“ αtA. To show that At is symplectic for all

0 ď t ď 1 we need to check that tαtf, αtgu ą ´1 for all 0 ď t ď 1. In the neighbourhood

Bpuq we have

1` tαtf, αtgu “ 1` α2
t tf, gu

loooooomoooooon

ěδ

` αtα
1
tE

loomoon

ě´δ
2

ě 0

The inequality 1` α2
t tf, gu ě δ follows from the definition of δ and from noting that

0 ě αt ě 1. αtα
1
tE ě

´δ
2

follows from the inequality

αtα
1
tE ě αtα

1
tp´cr

2
q

ě ´αt
δ

2cr2
pcr2

q

ě ´αt
δ

2

ě
´δ

2

Thus in the neighbourhood Bpuq we have the inequality 1 ` tαtf, αtgu ą 0 for all t.

Outside of Bpuq, the derivative α1t is identically 0 and αt ” 1. Hence αtα
1
tE ” 0 outside

Bpuq and 1` tαtf, αtgu “ 1` α2
t tf, gu `��

��: 0
αtα

1
tE “ 1` tf, gu ą 0 outside of Bpuq.

Finally we note that A1 “ 0 in a neighbourhood of p0, 0q and it equals A outside the

ball of radius u around the origin, thus proving the claim.
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Equivariant versions of classical

results from Differential Topology

Lemma C.0.1 (Relative Poincare Lemma). (see [28], Lemma 43.10) Let M be a smooth

finite dimensional manifold and let S Ă M be a closed submanifold. Let ω be a closed

pk ` 1q-form on M which vanishes on S. Then there exists a k-form σ on an open

neighborhood U of S in M such that dσ “ ω on U and σ “ 0 along S. If moreover ω “ 0

along S, then we may choose σ such that the first derivatives of σ vanish on S.

Proof. By restricting to a tubular neighborhood of S in M , we may assume that M is

a smooth vector bundle p : E Ñ S and that i : S Ñ E is the zero section. We consider

µ : RˆE Ñ E, given by µpt, xq “ µtpxq “ tx, then µ1 “ idE and µ0 “ i˝p : E Ñ S Ñ E.

Let V P XpEq be the vertical vector field V pxq “ vlpx, xq “ d
dt
px ` txq whose flow is

FlVt “ µet . Locally, for t in p0, 1s we have

d

dt
µ˚t ω “

d

dt
pFlVlog tq

˚ω “
1

t
pFlVlog tq

˚LV ω “
1

t
µ˚t piV dω ` diV ωq “

1

t
dµ˚t iV ω

159
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For x P E and X1, . . . , Xk P TxE we have

p
1

t
µ˚t iV ωqxpX1, . . . , Xkq “

1

t
piV ωtxpTxµt ¨X1, . . . , Txµt ¨Xkq

“
1

t
ωtxpV ptxq, Txµt ¨X1, . . . , Txµt ¨Xkq

“ ωtxpvlptx, txq, Txµt ¨X1, . . . , Txµt ¨Xkq

So the k-form 1
t
µ˚t iV ω is defined and smooth in pt, xq for all t P r0, 1s and describes a

smooth curve in ΩkpEq. Note that for x P S “ 0E we have 1
t
µ˚t iV ω “ 0, and if ω “ 0 on

TSM , we also have 0 “ d
dt
µ˚t ω “

1
t
dµ˚t iV ω, so that all first derivatives of 1

t
µ˚t iV ω vanish

along S. Since µ˚0ω “ p˚i˚ω “ 0 and µ˚1ω “ ω, we have

ω “ µ˚1ω ´ µ
˚
0ω

“

ż 1

0

d

dt
µ˚t ω dt

“

ż 1

0

dp
1

t
µ˚t iV ωq dt

“ d

ˆ
ż 1

0

p
1

t
µ˚t iV ωq dt

˙

“ dσ

If x P S, we have σ “ 0, and all first derivatives of σ vanish along S whenever ω “ 0 on

TSM .

Remark C.0.2. If there is a symplectic action of a compact group G acting on M such

that ω is G invariant and S is G-invariant, then we can construct σ as above such that

in addition to the above conditions σ also is G-invariant. This is gotten by noting that

ω “

ż

G

ω “

ż

G

dσ “ d

ż

G

σ

Let σ̃ :“
ş

G
σ and hence dσ̃ “ ω and σ̃ satisfies all the conditions.

Lemma C.0.3 (Moser isotopy). Let pM,ωq be a symplectic manifold and let S Ă M

be a submanifold. Suppose that ωi, i “ 0, 1, are closed 2-forms such that at each point

x P S, the forms ω0 and ω1 are equal and non-degenerate on TxS. Then there exist open
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neighborhoods N0 and N1 of S and a diffeomorphism φ : N0 Ñ N1 such that φ˚ω1 “ ω0,

φ|S “ id, and dφ|S “ id.

Proof. Consider the convex linear combination ωt “ ω0 ` tpω1 ´ ω0q. Since ω0 and ω1

are equal along S, there exists a neighborhood U1 of S on which ωt is non-degenerate

for all t P r0, 1s. By restricting U1 to a possibly smaller neighborhood U2, the Relative

PoincarÃ© Lemma C.0.1 implies that there exists a 1-form σ such that dσ “ pω1´ω0q,

σ “ 0 on S, and all first derivatives of σ vanish along S. Define the time-dependent

vector field Xt on U2 by setting

σ “ ´iXtωt

Since Xt “ 0 on S, by restricting U2 to a smaller neighborhood U3, we can ensure that

the flow ψt of Xt exists for t P r0, 1s. We then have

d

dt
ψ˚t ωt “ ψ˚t

ˆ

d

dt
ωt ` LXtωt

˙

“ ψ˚t

ˆ

d

dt
ωt ` diXtωt

˙

“ ψ˚pω1 ´ ω0 ´ dσq “ 0

so that ψ˚ωt “ ω0. Finally, since σ “ 0 on S, ψ “ id on S, and since all first derivatives

of σ vanish on TSM , dψ “ id on TSM .

Remark C.0.4. As the remark above, when both ω1 and ω2 are both invariant under

a compact group action G, and S is an G-invariant submanifold, then there is a G-

equivariant diffeomorphism φ that satisfies the conditions as above.

Lemma C.0.5. [Equivariant Symplectic neighborhoods theorem] Let pMi, ωiq, i “ 0, 1, be

two symplectic G-manifolds(The compact group G, acting symplectically on the 2 man-

ifolds) with two invariant symplectic submanifolds Si Ă Mi with invariant symplectic

normal bundles Ni. Suppose that there is an equivariant isomorphism A : N0 Ñ N1 cov-

ering an equivariant symplectomorphism φ : S0 Ñ S1. Then φ extends to a equivariant

symplectomorphism of neighborhoods Φ : U0 Ñ U1 whose derivative along S0 is equal to

A.

Proof. We can extend the automorphism A to a diffeomorphism of neighborhoods ψ :

U0 Ñ U1 by setting

ψ “ exp ˝A ˝ exp´1
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By construction, dψ “ A along S0, so that ω0 and ψ˚ω1 coincides along S0. Applying

the G- equivariant Moser isotopy Lemma gives the result.

Let pM,ωq be a symplectic manifold. Let G be a compact lie group acting symplec-

tically on M . Let S be an invariant submanifold under the G action. Let OppSq be an

invariant open neighbourhood of S, Further define

SympGid,NpM,Sq “ tφ P SympG0 pMq | φ|S “ id, dφ|TSM “ idu

SympGid,OppSqpM,Sq “ tφ P SympG0 pMq | φ “ id near Su

then we would like to show that SympGid,NpM,Sq “ SympGid,OppSqpM,Sq. But before

we do that we would need the following lemmas.

Following [23], we define a invariant tubular neighborhood of a invariant submanifold

ι : S ãÑM as a smooth equivariant embeddings f : E ãÑM of a vector bundle π : E Ñ S

such that

1. f |S “ ι after identifying S with the zero section of π : E Ñ S.

2. fpEq is an open neighborhood of S.

In practice, it is often enough to work with the normal bundle N Ă TSM defined as the

orthogonal of TSM relative to a equivariant riemannian structure. (See Bradon pg 303

for existence of such invariant tubular neighbourhood.)

Lemma C.0.6 (Unicity of tubular neighborhoods). (See [23], Theorem 4.5.3) Let M be

a G-manifold, let ι : S ãÑM be a invariant submanifold with normal bundle N . Then,

1. given any two invariant tubular neighborhoods fi : N ãÑ M , i “ 0, 1, there is a

equivariant gauge transformation A P GpNq such that f0 and f1 ˝A are equivariant

isotopic rel. to S.

2. The space TS of all invariant tubular neighborhoods f : N ãÑ M is homotopy

equivalent to the group of equivariant gauge transformations GpNq.
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3. The space TS,dι of invariant tubular neighborhoods f : N ãÑM such that df |S “ dι

is contractible.

Proof. (1) We construct an equivariant isotopy Ft in two steps. Firstly, given an G-

invariant smooth function δ : S Ñ p0, 1s, let Uδ Ă N be the invariant disc bundle

Uδ “ tx P N | |x| ă δpπpxqqu

Note that N smoothly retracts onto Uδ through embeddings Gt : N Ñ N of the form

Gt “ p1´ tq id`thδpxq

where hr is a equivariant one-parameter family of contracting, CpGq Ă SOpkq-invariant

diffeomorphism (where Cpgq is the centraliser of G in SOpkq and k is the rank of the

bundle) hr : Rk Ñ Dkprq, restricting to the identity on Dkpr{2q and varying smoothly

with r. Then, choosing an appropriate invariant function δ, and composing f1 with Gt,

we can isotope f1 to an embedding fδ “ f1G1 satisfying

fδpNq Ă f0pNq and fδ “ f1 on Uδ{2 (C.1)

so that the map g “ f´1
0 fδ : N Ñ N is well-defined. Secondly, observe that the map

g is equivariantly isotopic to its vertical derivative Afδ “ dgvert P GpNq along S via the

canonical smooth isotopy

H0pxq “ φpxq, Htpxq “ gptxq{t, 0 ă t ď 1

Note that H is indeed equivariant. An isotopy from fδ to f0 ˝Afδ is then given by f0H1´t.

The sought-for equivariant isotopy Ft is the concatenation of f1Gt with f0H1´t.

(2) Fix a invariant tubular neighborhood f0 : N ãÑ M and choose once for all a

smooth family of equivariant diffeomorphisms hr : Rk Ñ Dkprq as in the proof of (1).

Given any other invariant tubular neighborhood f : N ãÑM , the isotopy constructed in

(1) only depends on an auxiliary invariant function δ : S Ñ R`. Although the choice of
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this function is not canonical, the set ∆Gpfq of all invariant δ for which hδpNq Ă f´1f0pNq

is a convex subset of C8pS,R`q. Consequently, the projection of the fibre product

T∆ “ tpf, δq | f P TS, δ P ∆G
pfqu Ñ TS

is a homotopy equivalence. Consider the embedding

φ : GpNq ˆ C8,GpS,R`q ãÑ T∆ (C.2)

pA, δq ÞÑ pf0 ˝ A, δq (C.3)

and the continuous map

ψ : T∆ Ñ GpNq ˆ C8,GpS,R`q (C.4)

pf, δq ÞÑ pAfδ , δq (C.5)

where C8,GpS,R`q denotes the space of G invariant smooth functions. Then we have

ψφ “ idGpNqˆC8,GpS,R`q, while φψpf, δq “ pf0 ˝ Afδ , δq, the map f0 ˝ Afδ being the ter-

minal point of the isotopy defined in (1). This shows that φ and ψ are homotopy inverses.

(3) Choosing f0 such that df0 “ dι along S, this immediately follows from the fact

that the space TS,dι is homotopy equivalent to the subspace of T∆ that retracts to the

contractible subspace tf0u ˆ C
8pS,R`q under the isotopy defined in (1).

Lemma C.0.7. The inclusion SympGid,OppSqpM,Sq ãÑ SympGid,NpM,Sq is a homotopy

equivalence.

Proof. We follow the same ideas as in the non-equivariant case. Consider the short exact

sequence

SympGid,OppSqpM,Sq ãÑ SympGid,NpM,Sq Ñ GS,ω

where the group GS,ω :“ Sympid,NpM,Sq{ Sympid,OppSqpM,Sq is the group of germs along

S of equivariant symplectomorphisms φ P Sympid,NpM,Sq. We wish to show that GS,ω is

contractible.
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Choose a compatible equivariant almost-complex structure J and let g be the asso-

ciated equivariant metric. Let N be the symplectic orthogonal complement of TS in

TM . N is invariant under the G action. Equip N with the minimal coupling form Ω

and choose ε ą 0 so that the ε-disk subbundle Vε Ă N is symplectomorphic to a tubular

neighborhood U of S. Let ι denote both inclusions U ãÑM and V ãÑ N .

Let Ωloc,G
S be the space of germs of G invariant symplectic forms defined near S and

agreeing with ω along TSM . Given any two germs rω0s and rω1s, their linear convex

combination ωt “ p1 ´ tqω0 ` tω1 is non-degenerate in some neighborhood of S. Conse-

quently, Ωloc,G
S is convex, hence contractible. By the Symplectic neighborhood theorem,

the group GS,ω acts transitively on Ωloc,G
S , giving rise to a fibration

G loc,G
S,ω

»
Ñ GS,ω Ñ Ωloc,G

S

whose fiber G loc,G
S,ω is the group of germs of equivariant diffeomorphisms that are sym-

plectic near S. This space is homeomorphic to the space ES,ω of germs along S of

equivariant symplectic embeddings f : OppSq Ñ M such that f |S “ ι and df |S “ dι.

By Lemma C.0.6 (3), we know that ES,ω is contractible, so that GS,ω and G loc,G
S,ω are also

contractible, thus completing the proof.

Lemma C.0.8. Let G be a compact group acting symplectically on a compact manifold

pM,ωq. Let Wt be a smooth k-parameter family of symplectic submanifolds (t P r0, 1sk),

which are invariant under the G action. Then there exists a k-parameter family of equiv-

ariant Hamiltonian symplectomorphisms φt : M ÑM such that φtpW0q “ Wt

Proof. The proof follows by mimicking the proof of Proposition 4 in [7] under the presence

of a group action.

Let X be a topological space with an action of a topological group G. We say X

admits local cross sections at x0 P X if for there is a neighbourhood U containing x0 and

a map χ : X Ñ G such that χpuq ¨ x0 “ u for all u P U . We say X admits local cross

sections if this is true for all x0 P X.



166 Chapter C. Equivariant Differential Topology

Theorem C.0.9. (Palais) Let X, Y be a topological spaces with a action of a topological

group G. Let the G action on X admit local cross sections. Then any equivariant map f

from another space Y to X is locally trivial.

Proof. Suppose for every point x0 P X there is a local section χ : U Ñ G where U is an

open neighbourhood of x0. Then we define a local trivialisation of f as follows.

ρ : U ˆ f´1
px0q Ñ f´1

pUq

pu, γq ÞÑ χpuq ¨ γ

As f is equivariant we indeed have fpρpu, γqq “ fpχpuq¨γq “ χpuq¨fpγq “ χpuq¨x0 “ u,

where the last equality follows from the definition of being a local section. Thus ρ maps

U ˆ f´1px0q into f´1pUq.

Conversely there is map

β : f´1
pUq Ñ U ˆ f´1

px0q

y ÞÑ
`

fpyq, χpfpyqq´1
¨ y
˘

We can indeed check that the two maps are inverses of each other.

β˝ρpu, γq “ βpχpuq¨γq “
`

χpuq ¨ γ, χpχpuq ¨ fpγqq´1
¨ χpuq ¨ γ

˘

“ pu, χpuq´1χpuq¨γq “

pu, γq.

Similarly we can check that ρ ˝ β “ id, thus completing the proof.



Appendix D

Alexander-Eells isomorphism

In this appendix, we first recall an isomorphism between the homology of a subman-

ifold Y Ă X and the homology of its complement X ´ Y that is reminiscent of the

Alexander-Pontryagin duality in the category of oriented, finite dimensional manifolds.

This isomorphism, due to J. Eells, exists whenever the submanifold Y is co-oriented and

holds, in particular, for infinite dimensional Fréchet manifolds. We then give a geometric

realization of this isomorphism in the special case Y and X´Y are orbits of a continuous

action G ˆ X Ñ X satisfying some mild assumptions. We closely follow Eells [17] p.

125–126.

Let X be a manifold, possibly infinite dimensional, and let Y be a co-oriented sub-

manifold of positive codimension p. As explained in [17], there exists an isomorphism of

singular cohomology groups

φ : H i
pY q Ñ H i`p

pX,X ´ Y q

called the Alexander-Eells isomorphism. We define the fundamental class (Thom class)

of the pair pX, Y q as u “ φp1q P HppX,X ´ Y q.

167
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Proposition D.0.1 (Eells, p. 113). The pairing

H˚
pY q bH˚

pX,X ´ Y q Ñ H˚
pX,X ´ Y q

y b x ÞÑ y Y x

makes H˚pX,X ´ Y q into a free H˚pY q-module of rank one, generated by u.

Let φ˚ : Hi`ppX,X ´ Y q Ñ HipY q be the dual of the Alexander-Eells isomorphism

φ˚ “ φ. By definition, we have

φ˚paq “ uX a

Suppose a topological group G acts continuously on X (on the left), leaving Y invari-

ant, and in such a way that both X ´ Y and Y are homotopy equivalent to orbits. We

have continuous maps µ : Gˆ pX,X ´ Y q Ñ pX,X ´ Y q, µ : Gˆ pX ´ Y q Ñ pX ´ Y q,

and µ : G ˆ Y Ñ Y inducing H˚pGq-module structures on H˚pX,X ´ Y q, H˚pX ´ Y q

and H˚pY q. We write µ˚pcb aq “ c ˚ a for the action of c P HipGq.

Lemma D.0.2. In this situation, the Alexander-Eells isomorphism preserves the H˚pGq-

module structure, that is, the following diagram is commutative:

H˚pGq bH˚pX,X ´ Y q H˚pX,X ´ Y q

H˚pGq bH˚pY q H˚pY q

µ˚

1bφ˚ φ˚

µ˚

Thus for any a P Hi`ppX,X ´ Y q, c P HipGq, we have φ˚pc ˚ aq “ c ˚ φ˚paq.

Proof. We first note that if u is the fundamental class of the pair pX, Y q, then µ˚puq “

1bu P H0pGqbHppX,X´Y q, because H ipX,X´Y q “ 0 for all i ă p. The cap product

is a bilinear pairing

X : H˚
`

Gˆ pX,X ´ Y q
˘

bH˚
`

Gˆ pX,X ´ Y q
˘

Ñ H˚
`

GˆX
˘

that is adjoint to the cup product. Using the relative form of Künneth theorem, this

bilinear map defines a pairing

X :
`

H˚
pGq bH˚

pX,X ´ Y q
˘

b
`

H˚pGq bH˚pX,X ´ Y q
˘

Ñ H˚pGq bH˚pXq
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Let’s write j˚ : H˚pX,X ´ Y q Ñ H˚pXq. Then, for any cb x P H˚pGq bH˚pX,X ´ Y q,

and any bb a P H˚pGq bH˚pX,X ´ Y q we have

@

cb j˚x, µ˚puq X pbb aq
D

“
@

pcb xq Y µ˚puq, bb a
D

“
@

pcb xq Y p1b uq, bb a
D

“
@

pcY 1q b pxY uq, bb a
D

“
@

c, b
D@

pxY uq, a
D

“
@

c, b
D@

j˚x, uX a
D

“
@

cb j˚x, bb puX aq
D

It follows that µ˚puq X pbb aq “ bb puX aq “ bb φ˚paq. We then compute

φ˚pµ˚pcbxqq “ uXµ˚pcbxq “ µ˚
`

µ˚puqXpcbxq
˘

“ µ˚
`

cbφ˚pxq
˘

“ µ˚
`

p1bφ˚qpcbxq
˘

which is the desired relation.

Since HipX,X´Y q “ 0 for i ă p, the Universal Coefficient Theorem yields a canonical

isomorphism β : HppX,X´Y q Ñ HompHppX,X´Y q;Zq. If Y is connected, HppX,X´

Y q is of rank one. In this case, define au P HppX,X ´ Y q as the unique class such

that βpuqau “ 1. Suppose the Leray-Hirsch theorem applies to the evaluation fibration

G Ñ Y . Then, H˚pX,X ´ Y q becomes a H˚pY q-module by identifying H˚pY q with

1bH˚pY q Ă H˚pGq and by setting

b ˚ x :“ r1b bs ˚ x

Theorem D.0.3. Under the above assumptions, the isomorphism ψ˚ “ φ´1
˚ : HipY q Ñ

Hi`ppX,X ´ Y q is given by ψ˚pyq “ y ˚ au. Thus H˚pX,X ´ Y q is generated by au as a

H˚pY q-module.

Proof. Since

x1, φ˚pauqy “ x1, uX auy “ x1Y u, auy “ xu, auy “ 1

it follows that φ˚pauq “ 1, which is equivalent to ψ˚p1q “ au. Since φ˚ is an isomorphism

of H˚pGq-modules, its inverse is also an isomorphism of H˚pGq-modules. We can then



170 Chapter D. Alexander-Eells isomorphism

write

ψ˚pyq “ ψ˚py ˚ 1q “ y ˚ ψ˚p1q “ y ˚ au

From the naturality of the connecting homomorphism B in the long exact sequence

of the pair pX,X ´ Y q, we get

Corollary D.0.4. Suppose in addition to the above hypotheses that X is contractible.

Then the isomorphism

λ˚ “ B ˝ ψ˚ : HipY q Ñ Hi`p´1pX ´ Y q

is given by λ˚pyq “ y ˚ xu, where xu “ Bau.

We now apply the Alexander-Eells isomorphism to the situation of Section 4.2. Let

G be the centralizer SympS
1

h pS
2 ˆ S2, ωλq, let X “ J S1

ωλ
be the contractible space of

invariant, compatible, almost-complex structures, and let Y be the codimension 2 stratum

J S1

ωλ
XUm1 . The connecting isomorphism B : H2pJ S1

ωλ
,J S1

ωλ
XUmq Ñ H1pJ S1

ωλ
XUmq maps

the generator au to the link of J S1

ωλ
X Um1 in J S1

ωλ
X Um, that is, to the loop pmpy2q

generated by the action of y2 Ă G. Consequently, Corollary D.0.4 immediately implies

the following geometric description of the Alexander-Eells isomorphism.

Proposition D.0.5. The Alexander-Eells isomorphism

λ˚ : HppJ S1

ωλ
X Um1q Ñ Hp`1pJ S1

ωλ
X Umq

is given by

λ˚pyq “ y ˚ pmpy2q “ y ˚ y2 ˚ 1 “ ry2 b ys ˚ 1 “ µm
`

ry2 b ys b 1
˘

“ pm
`

ry2 b ys
˘

In particular, if pm1pỹq “ y P H˚pY q, then λ˚pyq “ ỹ ˚ y2 ˚ 1 “ pmpỹ ˚ y2q.
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