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Abstract 

Using our hands to manipulate objects in our daily life requires both dexterous movements 

and the integration of somatosensory information across fingers. Although the primary motor 

(M1) and somatosensory cortices (S1) are critical for these two complementary roles, it is 

unclear how neural populations in these regions functionally represent these processes. This 

thesis examined the functional organization of brain representations (the representational 

geometry) in M1 and S1 for dexterous hand control and somatosensory processing. To that 

end, representational geometries were estimated from fine-grained brain activity patterns 

measured with functional MRI (fMRI). Since fMRI measures a blood-based proxy of neural 

activity, any non-linearities in the coupling between neural activity and the fMRI signal 

could distort the representational geometries. Chapter 2 therefore evaluated the stability of 

representational geometries. Human participants made individuated finger presses at varying 

pressing speeds, such that overall activity was modulated across a broad range. 

Representational geometries were relatively stable across pressing speeds in M1 and S1, 

validating the use of this analysis framework with fMRI data. Chapter 3 then explored how 

M1 is organized for dexterous hand control. In agreement with previous research, 

representations of each finger were quite distinct. However, representations of the same 

finger moving in different directions were very similar. Insight into this observation was 

gained by comparing the fMRI results to neural spiking data recorded in monkeys trained to 

perform an identical task. By leveraging the complementary perspectives offered by fMRI 

and spiking, a new organization of M1 for finger control was proposed. Chapter 4 then 

examined how somatosensory inputs from multiple fingers are integrated in S1. The full 

nature of this integration is unknown. Here, human participants experienced simulation of all 

possible single- and multi-finger combinations. Representational model analyses revealed 

that unique non-linear interactions between finger sensory inputs occur throughout S1, with 

stronger (and more spatially distant) interactions occurring in posterior S1. Altogether, these 

results provide new insight into how M1 and S1 are functionally organized to serve the 

motoric and sensory processes of the hand, and more broadly demonstrate how fMRI can be 

used to make inferences about the underlying functional organization of brain 

representations. 
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Summary for Lay Audience 

Hand movements, like playing the piano or typing, are central in our everyday lives. These 

movements require fine control of individual fingers. Moreover, hand movements require 

that we also use sensory information from our fingers to better control object(s) in our hands. 

Although this sounds laborious, using our hands often feels effortless, suggesting that 

neurons in the brain are organized in such a way as to support these processes. In this thesis, I 

investigated how two brain regions, the primary motor cortex (M1) and primary 

somatosensory cortex (S1), are organized to control dexterous hand movements and integrate 

sensory information from the fingers. Understanding how M1 and S1 are organized for hand 

control is important because these regions are often damaged in brain diseases such as stroke. 

To study this, I used functional magnetic resonance imaging (fMRI) in healthy human 

participants. This technique non-invasively measures brain activity. However, fMRI does not 

measure neural activity directly. Therefore, there are several caveats that we must be aware 

of when using fMRI to draw conclusions about neural processes in the brain. Therefore, in 

my first project, I validated my analysis framework for fMRI data to ensure that some of the 

assumptions I make in my analyses are not violated. Having validated my analysis 

framework, I then investigated the relationships between patterns of brain activity (i.e., 

representations) in M1 that are evoked by movements of individual fingers in different 

directions. I found that the representations for different fingers were organized according to 

how we move our fingers in our daily lives. In other words, fingers that commonly move 

together are represented more similarly in M1. Furthermore, representations of the same 

finger moving in opposing directions were more similar than expected, given that such 

movements cannot co-occur in daily life. My findings suggest that groups of neurons that are 

involved in controlling opposing muscular patterns are closely linked in M1. In my last 

project, I used fMRI to study how sensory inputs from different fingers are integrated in S1. 

This integration process is important because it allows us to build information about an 

object in our hand (e.g., shape, size). To study how sensory inputs from the fingers are 

integrated, I stimulated all 31 possible single- and multi-finger combinations. I found that 

inputs from the fingers are integrated in unique ways depending on which fingers are 

stimulated, and that these inputs are entirely integrated in S1. Together, my work provides 

insight into how M1 and S1 are organized to enable dexterous hand control.  
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Chapter 1  

1 General Introduction 

1.1 Preamble 

The human hand is beautifully complex. We not only use our hands to perform daily 

tasks like manipulating tools and typing, but to also convey emotion through touch, as a 

communicative aid via hand gestures and sign language, and as creative instruments to 

create art and music. Given the central role that the hand plays in human behaviour, a 

natural question to ask is how does the brain control the hand?  

Charles Bell argued that the beauty and utility of the hand was evidence of a divine 

creator (Bell 1834). If this were true, one might presume that the circuits and structures 

that control hand movements are neatly organized and arranged. This, however, is not the 

case. The sensorimotor systems that are involved in hand control are broadly distributed 

throughout the nervous system. Muscle contractions that produce hand movements are 

evoked by spinal motor neurons, which receive projections from both cortical and 

subcortical regions that are themselves embedded in broad, interconnected networks. The 

complexity of this organization arises because these sensorimotor systems have slowly 

emerged over time to produce ever more ethologically suitable behaviours (Cisek 2019). 

The developmental slog of evolution is indeed progressive, but it does not result in neatly 

organized systems because evolution can only operate with what is immediately available 

(Jacob 1977). I highlight all of this to make the point that several levels of the 

sensorimotor system (spinal, subcortical, and cortical) are involved in controlling the 

hand, and that there is no single compact circuit.  

However, this thesis is not concerned with understanding the entirety of all circuits 

relevant for hand control. Rather, I focus on the neural populations that are critical for the 

two fundamental roles that the hand serves in our everyday life. First, the hand is a 

medium for motor activity, allowing us to interact with the surrounding world with great 

dexterity. Second, the hand is an active sensory organ, providing sensory information that 

important for future behaviour. The neural populations that primarily control dexterous 
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movements and process sensory inputs from the fingers reside in the primary motor (M1) 

and somatosensory (S1) cortices (Lemon 2008; Rathelot and Strick 2009). Therefore, in 

my thesis, I examine how the distributed population activity in M1 and S1 relate to the 

two roles that hand plays in our daily life.  

To study this, I use multivariate representational analyses of functional magnetic 

resonance imaging (fMRI) data collected from human participants. In brief, the first 

project (Chapter 2) examines the stability of multivariate representational analysis of 

fMRI data. The degree to which brain representations measured with fMRI are stable has 

important implications for the kinds of inferences one can make with this analysis 

framework, and it has direct implications for the rest of the work presented in my thesis. 

In the second project (Chapter 3), I examine how neural populations in M1 are organized 

to control fine individuated finger flexion and extension movements. Finally, in the last 

project (Chapter 4), I examine how tactile inputs from multiple fingers are integrated in 

the sensorimotor cortex.  

Given the focus of my thesis, I forgo an exhaustive literature review about the 

sensorimotor control of the hand in the following opening chapter. Instead, I will focus 

on providing a more detailed introduction to the key neuroscientific and technical 

concepts that underlie the work presented in my thesis. The introduction is organized into 

three sections. In the first section, I briefly review the anatomical architecture that links 

the motor cortex with the hand and consider how neural populations in the primary motor 

cortex are organized for dexterous hand control. In the second section, I discuss how 

neural populations in the somatosensory cortex processes and integrate sensory input 

from the fingers. In the third section, I discuss how we use multivariate analyses of fMRI 

data to make inferences about the organization of representations in the brain. I discuss 

the relationship between neural population activity and distributed fMRI activity patterns, 

and highlight a series of caveats that must be considered when making inferences about 

the underlying neural code. These considerations have important implications for the 

work presented in my thesis. 
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1.2 How is the primary motor cortex (M1) organized for 
dexterous hand control? 

Consider dexterous hand movements like writing, playing the piano, or folding origami. 

These movements involve fine fractionated control of individual fingers. How does the 

brain execute such fine control over them? Although several cortical and subcortical 

regions appear to be recruited during control of hand movements, the primary motor 

cortex (M1) is paramount for the dexterous control of the hand. Three lines of evidence 

support this. 

First, M1 provides substantial inputs to both cortical (i.e., corticospinal) and subcortical 

(i.e., rubrospinal and reticulospinal) descending pathways (Russell and DeMyer 1961; 

Dum and Strick 1991; Morecraft et al. 2013; Rathelot and Strick 2006), all of which 

ultimately influence motor neuron pools in the ventral horn of the spinal cord. Lesioning 

either of these pathways results in a loss of dexterous movements (Tower 1940; 

Lawrence and Kuypers 1968; Lawrence and Hopkins 1976; Sasaki et al. 2004; Kinoshita 

et al. 2012).  

Second, there are a substantial number of monosynaptic corticospinal projections that 

originate from M1 and synapse directly with motor neurons in the spinal cord (Bernhard 

and Bohm 1954; Strick and Preston 1982; Lemon 2008; Rathelot and Strick 2009). Much 

of these monosynaptic projections terminate in motor neurons pools that innervate distal 

hand muscles, perhaps allowing for more precise control over hand muscles (Phillips and 

Porter 1964; Clough, Kernell, and Phillips 1968; Asanuma et al. 1978; Shinoda, Yokota, 

and Futami 1981). Indeed, primates with greater finger individuation abilities appear to 

have greater numbers of these monosynaptic projections that arise from M1 (Heffner and 

Masterton 1983; Bortoff and Strick 1993; Lemon 2008).  

Third, M1 lesions in monkeys result in substantial loss of manual dexterity, such as the 

ability to perform a precision grip of objects between the thumb and index finger 

(Passingham, Perry, and Wilkinson 1983; Matsumura et al. 1991; Schieber and Poliakov 

1998; Bashir et al. 2012). Due to the distributed nature of the systems involved in hand 

control, these monkeys do not entirely lose the ability to use the affected hand and often 
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regain some skillful abilities (Murata et al. 2008); however, this recovery always appears 

incomplete (Rouiller et al. 1998; Liu and Rouiller 1999; Darling et al. 2014). Recovery of 

precise hand movements is even more incomplete in human stroke patients. Patients who 

have damage to the hand area of M1 have clear deficits in dexterous hand movements 

(Lang and Schieber 2004) that persist even after one year post-stroke (Ejaz et al. 2018). 

Thus, not only are neural populations in M1 involved in dexterous hand control, they are 

critical for this behaviour.  

The spiking outputs from M1 to motor neuron pools in the spinal cord ultimately contain 

the muscle commands necessary to produce dexterous hand movements (Kakei, 

Hoffman, and Strick 1999). It is unclear, however, how neurons in M1 are organized to 

exert tight control over the complex musculoskeletal system of the primate hand. Do they 

spatially cluster according to finger preference, or according to individual muscles? Or is 

the organization more spatially diffuse? Perhaps neural populations are functionally 

organized, such that movements that tend to co-occur are represented in overlapping 

neural substrates and lack clear modularity. Here, I briefly consider each of these 

hypotheses and discuss their shortcomings. I conclude by highlighting why, from an 

ethological perspective, the simplest organization is one that is dictated by the statistics of 

everyday movements. 

1.2.1 M1 as a somatotopic map 

Initially, M1 was hypothesized to contain a map of different body parts, each represented 

by non-overlapping groups of neurons (Jackson 1870; Fritsch and Hitzig 1870; Penfield 

and Boldrey 1937). Thus, fingers were predicted to be represented by distinct groups of 

non-overlapping neurons in M1, with each neuron in each finger cluster being tuned to 

only movements of that finger. Under this organization, when we move our index finger, 

neurons in the index finger region become active. To move our middle finger, neurons in 

the middle finger region become active. The evidence for this somatotopic organization 

came from brain stimulation studies in various animals and human patients that elicited 

movements of specific limbs when specific cortical sites were stimulated (see Phillips 

1973 and Taylor and Gross 2003 for reviews). This somatotopic model was the dominant 

theory of M1 organization for some time, and its popularity is evident from the continued 
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use of the pictorial representation of the motor homunculus (Fig. 1.1A; Penfield and 

Rasmussen 1950). This organization is also not wrong – there is indeed evidence for a 

broad somatotopic ordering (i.e., a gradient) of finger representations in M1, with the 

thumb being represented in more ventral regions of M1 and the little finger being more 

represented in dorsal regions (Beisteiner et al. 2001; Hlustík et al. 2001; Indovina and 

Sanes 2001; Dechent and Frahm 2003). However, studies consistently report that finger 

somatotopy in M1 is not strictly defined. Instead, finger representations in M1 are highly 

overlapping and fractured (Nudo et al. 1992). Similar observations are reported in human 

fMRI studies, where regions of activity evoked by single finger movements are also 

highly overlapping and diffuse (Sanes et al. 1995; Beisteiner et al. 2001; Hlustík et al. 

2001; Indovina and Sanes 2001; Ejaz, Hamada, and Diedrichsen 2015). Furthermore, 

individual neurons in the hand region of M1 are not tuned to single fingers (as predicted 

under a strict somatotopic organization) but rather have broad and heterogenous tuning to 

multiple fingers (Schieber and Hibbard 1993; Schieber 2002). Therefore, somatotopy 

alone cannot explain the organization of neural populations in M1. To be fair, such a 

strict interpretation was never emphasized by Penfield (Penfield and Boldrey 1937), but 

the continued use of the motor homunculus as a didactic tool in neuroscience textbooks 

has obscured this because the homunculus does not necessarily distinguish between a 

strict somatotopic organization and a stomatotopic gradient in M1. 

1.2.2 M1 as a muscle map 

One possible explanation for the overlap of finger representations is that neural 

populations in M1 are not tuned to a specific limb per se, but are rather tuned to 

individual muscles (Foerster 1936; Chang, Ruch, and Ward 1947). Thus, the overlap of 

limb representations in M1 would reflect the degree to which similar sets of muscles are 

recruited to move each limb. Penfield argued against this organization, stating that “the 

cortical motor sequence of man shows little preservation of the segmental representations 

of muscles found in the spinal cord and brain stem” (Penfield 1947). However, others 

argued that at some level, limbs must be represented by their constituent muscles (Chang, 

Ruch, and Ward 1947). Strong evidence to support the single muscle organization 

emerged after advances in microstimulation techniques allowed for much more precise  
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Figure 1.1: Proposed organizations of primary motor cortex 

(a) The motor homunculus, arranged on a cross-section of the primary motor cortex (M1). Under 

this organization, each part of the body is represented at a focal point in M1. Figure reproduced 

under the CC BY-SA 4.0 license and was obtained from 

https://en.wikipedia.org/wiki/Cortical_homunculus#/media/File:Motor_homunculus.svg  

(b) Schematic of the single muscle map proposed by Asanuma and Rosen (1972). Under this 

organization, each muscle would have a unique, clustered representation (“efferent zone”) in M1. 

The neurons in this cluster would represent only the corresponding muscle. These zones have 

strict borders and were hypothesized to rarely overlap, if at all. 
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stimulation in the cortex (Asanuma and Sakata 1967; Stoney, Thompson, and Asanuma 

1968). Asasnuma and Rosen (1972) demonstrated that low-threshold intracortical 

stimulation evoked activity of single muscles in primates. They hypothesized that 

neurons in M1 were spatially clustered into “cortical efferent zones” for each muscle, that 

the efferent zone of different muscles did not spatially overlap, and that the output of 

each zone innervated a single motor neuron pool in the spinal cord (Fig. 1.1B; Asanuma 

and Rosen 1972; Asanuma 1975; Asanuma et al. 1978).  

Three clear lines of evidence argue against this organization. First, cortical neurons that 

project to single motor neuron pools are broadly distributed and highly overlapping in 

M1, not arranged in discrete, non-overlapping efferent zones (Landgren, Phillips, and 

Porter 1962; Jankowska, Padel, and Tanaka 1975; Andersen et al. 1975; Rathelot and 

Strick 2006, 2009). Second, the spiking activity of single neurons in M1 covary with the 

activity of several muscles of the upper forelimb, not single muscles (Fetz, Cheney, and 

German 1976; Fetz and Cheney 1980; Cheney and Fetz 1985; Buys et al. 1986; 

McKiernan et al. 1998). Third, the majority of corticospinal projections from M1 are not 

monosynaptic and instead exert influence on motor neurons via spinal interneurons. 

These premotor interneurons produce facilitation in multiple hand muscles, not just a 

single muscle (Takei and Seki 2010). These findings suggest that neurons in M1 are 

tuned not to single muscles, but rather groups of muscles. If neurons are tuned to groups 

of several muscles, what is the organizational principle that dictates muscle grouping? In 

the next section, I approach an answer to this question from an ethological perspective. 

1.2.3 An ethological organization of M1 

From an ethological perspective, it should not be very surprising that neural populations 

in M1 are not strictly organized according to specific fingers or single muscles. Everyday 

movements of the hand often involve multiple fingers moving in concert. For example, 

manipulating a small clasp on a piece of jewelry requires several different fingers moving 

together to operate the clasp while simultaneously stabilizing the piece of jewelry. If 

neurons in M1 are critical for producing such complex behaviour, why would they be 

arranged to represent each finger (muscle) separately given that they so rarely move 

(contract) in isolation? Therefore, an alternative organization for hand control in M1 is 
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that neurons are organized based on the statistics of everyday movements. Specifically, 

the fractured and overlapping nature of fingers representations comes about due to 

movement co-occurrence, with fingers that commonly move together being represented 

more similarly in M1. Importantly, this hypothesis does not suggest that M1 represents 

movements and not muscles (Phillips 1975; Kakei, Hoffman, and Strick 1999). Instead, 

this hypothesis suggests that any underlying feature (e.g., movement or muscle 

combinations) will be represented in a manner that is structured by the statistics of 

everyday actions1. Thus, if neurons in M1 explicitly represent muscles, then the 

underlying organization of these muscle representations would be dictated according to 

recruitment patterns in everyday life. 

The idea that M1 is organized according to ethologically relevant movements is not new. 

Ferrier (1875) electrically stimulated areas of the brain, noting that long-duration 

electrical stimulation in M1 produced complex, multi-joint movements. More recently, 

Graziano and colleagues (2002) revisited this idea and performed long-duration electrical 

stimulation in M1 and premotor cortex of monkeys. The authors noted that this 

stimulation produced complex, multi-joint movements, and that the movements appeared 

to have behavioural relevance. For example, some of the elicited movements involved 

bringing the hand to the mouth (presumably in reference to eating from the hand) or 

reaching with the arm. Therefore, instead of single body parts or individual muscles, 

Graziano and colleagues hypothesized that neural populations in M1 are organized 

according to ethologically-relevant movements (Graziano and Aflalo 2007). That this 

organizational principle extends to fine finger movements was demonstrated using 

transcranial magnetic stimulation (TMS) of M1. Gentner and Classen (2006) reported 

that the kinematics of multi-finger twitches evoked by TMS of M1 resembled the 

kinematic structure of everyday hand movements. To then demonstrate that is 

organization is shaped by the statistics of everyday movement, Gentner and colleagues 

(2010) studied multi-finger twitches evoked in musicians by M1 TMS. They reasoned 

 

1
 This is an important point, and so I expand on this idea in the Discussion section (Chapter Five). 
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that professional musicians (like violinists) will have different movement statistics of the 

hand because they train highly specific patterns of hand movements, and this experience 

should alter the kinds of movements evoked by stimulating M1. To test this, they applied 

TMS to M1 and found that the multi-finger twitches evoked in professional musicians did 

indeed contain kinematic features that were not present in non-musician controls. 

Although these studies demonstrated that stimulation evokes movements that resemble 

everyday actions, it is possible that such structure arises in populations downstream from 

M1. Therefore, to directly examine how M1 is organized, Ejaz and colleagues (2015) 

used multivariate analyses of fMRI activity patterns to examine the organization of 

single- and multi-finger representations in human M1. They demonstrated that the co-

occurrence of finger movements during everyday activities fully predicted the measured 

organization of finger representations in M1. Furthermore, predictions from a muscle and 

a somatotopic model performed significantly worse at explaining the organization of 

measured finger representations.  

Demonstrating that movement co-occurrence fully explains the similarities between 

finger representations is the first step to testing the hypothesis that M1 is organized 

according to the statistics of everyday movements. However, everyday hand movements 

(such as typing) involve several fingers moving in different directions. Under this 

hypothesis, one would predict that since movements of the same finger in different 

directions cannot temporally co-occur, these movements must be represented by distinct, 

non-overlapping neural substrates in M1. In Chapter 3, I put this prediction to a critical 

test by investigating to what degree the statistics of everyday hand movements can 

predict the relationship between M1 representations for movements of the same finger in 

different directions. 

1.3 How does the primary somatosensory cortex (S1) 
process sensory input from the fingers? 

When we write with a pen or interact with a cell phone, we rely on sensory information 

from our fingers so that we can better control the pen/phone. In order to better control a 

phone in our hand, somatosensory signals from each finger need to be integrated, 

yielding information about the phone’s shape and how best to hold it. Whereas M1 is 
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necessary for the execution of hand movements, the primary somatosensory cortex (S1) 

is important for the integration of sensory information from the fingers2.  

Sensory information from fingers is important for hand control. Sensory signals from the 

fingers are relayed to S1 where they are integrated and are used for future manipulative 

actions. Lesions to S1 result in severe impairments of hand movements, even though M1 

and the descending motor pathways are not physically impacted (Carlson 1981; Hikosaka 

et al. 1985; Brochier et al. 1999; Friel et al. 2005). These impairments commonly 

manifest as clumsy movements and deficient hand postures (for the task at hand). Why 

do S1 lesions produce such effects? The reason is that S1 has substantial inputs to several 

cortical regions involved in motor control of the hand, namely M1 and the posterior 

parietal cortex (Yau et al. 2016). The posterior parietal cortex is recruited during object 

manipulation and tool-use behaviours (Johnson-Frey 2004; Culham and Valyear 2006), 

and has recently been shown to have corticospinal projections that influence movements 

of the hand (Rathelot, Dum, and Strick 2017). S1 lesions impair the sensory information 

available to these regions, and the behavioural deficits that arise after S1 lesions therefore 

reflect the critical role that this sensory information plays in dexterous hand control.  

In the context of dexterous hand control, it would be useful to be able to detect any 

unique combination of stimulation across the fingers. This detection would allow for a 

flexible mapping between patterns of somatosensory inputs from the fingers and motor 

responses. This leads to a fundamental question: how are somatosensory signals from the 

fingers integrated? Understanding how sensory inputs are integrated across the fingers is 

important because this integrated information is used to shape behaviour. Moreover, it 

can provide insight into the kinds of computations that are necessary in order to provide 

behaviourally-relevant sensory feedback from neural prostheses (Suminski et al. 2010; 

Abbasi et al. 2020; Flesher et al. 2021). In the following sections, I therefore examine 

how sensory inputs are integrated across fingers in human S1. I start by briefly reviewing 

 

2
 Note that these processes are not exclusively performed by either region, but rather, neural populations in 

each region are more implicated in each process. 
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how somatosensory signals from the periphery are relayed to S1, and then consider the 

subregions of S1 and their respective roles in processing somatosensory signals. 

1.3.1 Relay of somatosensory signals from the periphery to S1 

I start with considering how the somatosensory signals are relayed from the periphery to 

S1. There are two broad classes of somatosensory information that are important for 

object manipulation. Cutaneous signals reflect contact events of an object with the skin of 

the hand, and proprioceptive signals reflect information about movement and hand 

posture (Hsiao and Yau 2008; Yau et al. 2016). Proprioceptive signals arise from golgi 

tendon organs, joint receptors, and muscle spindles, and cutaneous signals arise from 

mechanoreceptors in the glabrous skin of the hand3. There are four categories of 

mechanoreceptors, each responding to different features of contact events (Johansson and 

Vallbo 1983). Meissner endings (fast-adapting type I) transduce low-frequency vibrations 

and movement across the skin, and are sensitive to local spatial discontinuities like edges. 

Merkel endings (slow-adapting type I) transduce low-frequency vibrations and static 

indentations, and are sensitive to local spatial features. Pacinian endings (fast-adapting 

type II) transduce high-frequency vibrations, reflecting texture. Ruffini endings (slow-

adapting type II) transduce skin stretch (Johansson and Flanagan 2009). All 

mechanoreceptors are stimulated when we dexterously manipulate objects with our 

hands. 

These somatosensory signals from the upper-limb are relayed from the periphery via the 

cuneate nucleus to the ventral posterior lateral (VPL) nucleus of the thalamus. Although 

the cuneate and VPL appear to play an important role in gain control of sensory inputs 

(Azim and Seki 2019) and cross-modal integration (in cats: Jörntell et al. 2014), signals 

specific to each finger remain largely segregated (Florence, Wall, and Kaas 1988, 1989). 

 

3
 Mechanoreceptors can also convey proprioceptive information. For example, the skin of the hand will 

stretch along certain directions when moving the hand from one posture to another, and this stretch 

stimulates Ruffini endings. 
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From the VPL, the signals are relayed to S1. It is here in S1 that the sensory signals from 

different fingers substantially interact (Hsieh et al. 1995). 

The primary somatosensory cortex of humans can be divided into four 

cytoarchitectonically distinct Brodmann areas (BA): 3a, 3b, 1, and 2 (Brodmann 1909; 

Powell and Mountcastle 1959). Most thalamic inputs are to BA 3a and 3b (Fig 1.2), with 

progressively fewer inputs to BA 1 and BA 2 (Jones and Powell 1970; Jones 1975; 

Shanks and Powell 1981). Instead, BA 1 and BA 2 receive substantial inputs from BA 3b 

(Burton and Fabri 1995). Furthermore, the average receptive fields of neurons in each 

region become increasingly broad, with neurons in BA 3b predominantly responding to 

stimulations at specific fingers, whereas receptive fields in BA 2 span multiple fingers 

(Hyvärinen and Poranen 1978; Sur, Merzenich, and Kaas 1980; Iwamura et al. 1993). 

That neural receptive fields broaden from BA 3 to BA 2 has often been interpreted as 

evidence that inputs from the different fingers are progressively integrated along S1 

(Iwamura 1998).  

1.3.2 Integrating sensory information across fingers in S1 

As previously mentioned, it would be advantageous to be able to detect any arbitrary 

pattern of stimulation across the fingers for dexterous hand control. Such a detection 

ability would require that stimulation of each multi-finger pattern is uniquely represented 

in S1. In this section, I review what is currently known about the integration of sensory 

inputs across fingers in S1. To this end, I also briefly discuss how sensory inputs from 

multiple whiskers in rodents are integrated in the barrel cortex. 

Previous experiments that have studied tactile signal integration from the fingers 

typically use simultaneous two-finger stimulation paradigms. The neural responses to 

two-finger stimulation are then compared against responses evoked during single-finger 

stimulation. At the single-neuron level, spike rates evoked during two finger stimulation 

are generally lower than expected if the individual finger responses were summed, 

although there are a few instances of increased firing rates (Reed et al. 2010). These 

suppressive effects are reported in BA 3b (Friedman, Chen, and Roe 2008; Lipton et al.  
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Figure 1.2: Subdivisions of primary motor and somatosensory cortex 

The primary somatosensory cortex (S1) can be subdivided into 4 cytoarchitectonically distinct 

subdivisions: BA 3a, 3b, 1, and 2 (Brodmann 1909; Powell and Mountcastle 1959). BA 3a and 

3b receive the brunt of thalamic inputs, and BA 1 and 2 receive progressively fewer. BA 3 projects 

to BA 1 (and 2), and BA 1 projects heavily to BA 2. This projection architecture has been 

interpreted to suggest that somatosensory inputs are progressively processed along S1. The 

primary motor cortex is also displayed here, and can be subdivivded into 2 cytoarchitectonically 

distinct subdivisions: BA 4a and 4p (Geyer et al. 1996). Thalamic inputs to M1 are not shown in 

this figure. 
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2010; Thakur, Fitzgerald, and Hsiao 2012) and BA 1 (Friedman, Chen, and Roe 2008). 

Similar observations have been made in human participants using non-invasive 

measurements that average the activity across neural populations in these regions 

(Gandevia, Burke, and McKeon 1983; Hsieh et al. 1995; Biermann et al. 1998; Ishibashi 

et al. 2000; Hoechstetter et al. 2001; Ruben et al. 2006; Brouwer et al. 2015). The general 

suppressive effect appears to increase from BA 3b to BA 2, and this is interpreted as 

evidence that sensory inputs from the fingers interact to a greater degree in the posterior 

S1 (Ruben et al. 2006).  

Furthermore, in BA 3b, greater sub-linear suppression occurs between inputs from 

spatially close regions on the hand, with few interactions occurring between inputs from 

distant points (Reed et al. 2008, 2010), suggesting that initial interactions in S1 occur 

between spatially close regions on the hand. Further support for this idea comes from the 

observation that neurons in BA 3b respond to spatially local tactile features like edge 

orientation, which can be extracted from inputs from a single finger (Bensmaia et al. 

2008). It is hypothesized that interactions between more spatially distant points on the 

hand arise in BA 1 and BA 2, because the kinds of tactile features that neurons in S1 

respond to become more complex (Iwamura and Tanaka 1978; Bodegård et al. 2001; Yau 

et al. 2016). For example, neurons in BA 2 are selective for specific curvatures, which is 

a tactile feature that extends across multiple fingers (Yau, Connor, and Hsiao 2013). 

Taken together, this body of work indicates that sensory inputs from the fingers interact 

in S1, and appear to be progressively integrated.  

However, the full nature of interactions between sensory inputs from multiple fingers are 

unknown. This is because previous studies have been limited to two-finger stimulation 

paradigms. During dexterous object manipulation in daily life, one needs to integrate 

sensory inputs from all five fingers (or any combination therein). In addition, it is not 

clear whether this suppressive interaction effect observed during two-finger stimulation 

reflects non-linear integration of the sensory inputs from the fingers, or a general non-

linear scaling of overall activity. 
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To therefore provide further insight into how sensory inputs across fingers might be 

combined, I briefly consider how inputs from multiple whiskers are integrated in the 

rodent barrel cortex. Clearly whiskers and fingers differ, but the rodent whisker system is 

one of the most well-studied sensory systems in neuroscience and has several parallels 

with sensory processing of multiple fingers (i.e., integrating sensory inputs across several 

flexible sensors; feature extraction). Sensory inputs from the whiskers to rodent S1 are 

arranged in distinct topographic modules called “barrels”, where each barrel receives 

thalamic inputs predominately from an individual whisker referred to as the “principal” 

whisker (Woolsey and Van der Loos 1970). Earlier work demonstrated that the activity of 

single barrel cortex neurons was lower during simultaneous stimulation of the principal 

and non-principal whiskers, presumably to enhance the spatial contrast between the 

principal whiskers and those adjacent to it (Simons 1985; Brumberg, Pinto, and Simons 

1996). A similar observation was made using array-recordings to study population-level 

activity, with multi-whisker stimulation producing a sub-linear effect across the recorded 

neural population (Mirabella, Battiston, and Diamond 2001), like the effects reported 

during two-finger stimulation. However, recent work using more extensive sets of multi-

whisker combinations, stimulating up to five whiskers simultaneously, report that 

individual neurons in the barrel cortex are highly selective to specific multi-whisker 

combinations. This means that each whisker combination is uniquely represented in 

barrel cortex, with some neurons responding supra-linearly to specific combinations 

(Laboy-Juárez et al. 2019; Lyall et al. 2020). This sparse encoding is the result of unique 

non-linear interactions that occur between inputs from specific whiskers in the barrel 

cortex (not a general suppressive effect). These findings indicate that multi-whisker 

integration is more complex than expected if all multi-whisker combinations evoked 

similar sub-linear effects.  

What do these results mean for multi-finger integration in S1? If combination-specific 

interactions are a general feature of somatosensory processing, then multi-finger 

integration should also result in unique representations of any arbitrary stimulus 

combination in S1. Therefore, in Chapter 4, I stimulate all 31 possible single- and multi-

finger combinations to study the interactions that occur during multi-finger integration in 

human S1. 

/Users/sarbuckle/Dropbox%20(Diedrichsenlab)/Arbuckle_thesis_shared/_Chapter_title#_
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1.4 Measuring brain representations with functional 
magnetic resonance imaging (fMRI) 

In this thesis, I examine how neural populations in the human brain facilitate hand 

control. I focus on humans because compared to other primates, the flexibility and skill 

humans show with their hands is unmatched. I use fMRI as a non-invasive method to 

measure brain activity in humans, and use multivariate analyses to make inferences about 

how neural populations in the brain represent4 different aspects of hand control.  

In univariate analyses of fMRI data, patterns of fMRI activity are often smoothed and 

averaged across participants, yielding activation maps that show where there is activity in 

the brain for each of the different experimental conditions (Fig. 1.3A). Although useful, 

this analysis approach cannot provide insight into what this activity reflects. Insight into 

what is represented in the brain activity patterns requires multivariate fMRI analyses.  

One popular multivariate approach is to decode experimental conditions from the fine-

grained activity patterns within each participant. For example, it is possible to decode 

upcoming reaching actions from fMRI patterns in premotor and parietal brain regions 

(Gallivan et al. 2011). The ability to decode experimental conditions is taken as evidence 

that the region from which the patterns are measured represents something about the 

experimental conditions (Haxby et al. 2001; Haxby, Connolly, and Guntupalli 2014). In 

this framework, decoding is used as a tool to reveal what information is contained in the 

activity patterns, but not necessarily how it is represented – knowing that certain kinds of 

information are contained in the population activity is not the same thing as 

understanding how this information is structured in the underlying brain representations 

(Kriegeskorte and Douglas 2019). The underlying representational structure conveys not 

only what information is represented, but also how it is represented relative to other 

 

4
 Population activity patterns from the brain convey information about the world. However, the presence of 

information in activity patterns from a brain region does not mean that the region is functionally implicated 

in some process. A representational interpretation, however, implies that not only is there information about 

the world in the activity patterns, but that this information is used by downstream neurons/regions in a such 

a way that it is relevant for behaviour (deCharms and Zador 2000; Kriegeskorte and Diedrichsen 2019). 
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experimental conditions. Therefore, stronger insights into how the underlying neural 

populations are involved in computation (or behaviour) can be formulated by considering 

how the fMRI activity patterns relate to one another in a brain region.  

To this end, I measure the degree to which pairs of activity patterns are dissimilar (Fig. 

1.2B), which is a non-discretized measure of decodability (Kriegeskorte, Mur, and 

Bandettini 2008; Walther et al. 2016). The collection of these dissimilarities is referred to 

as a representational geometry and it characterizes both how strongly each condition is 

represented in the patterns (what is represented), and how the different conditions relate 

to one-another5 (how it is represented; Diedrichsen and Kriegeskorte 2017; Kriegeskorte 

and Diedrichsen 2019). A great strength of this approach is that the representational 

geometries measured in each participant can be compared to model-predicted 

representational geometries that hypothesize how features are represented in the brain 

(Fig. 1.3B).  

However, there are (at least) three important caveats that we must consider when using 

multivariate analyses of fMRI data to make inferences about the underlying neural 

representations. First, fMRI does not measure spiking activity directly, but rather a proxy 

of neural activity that depends on the concentration of oxygenated hemoglobin in the 

blood. Second, the measurement unit in fMRI (a volumetric-pixel, or voxel) averages 

activity across tens- to hundreds-of-thousands of neurons, and thus each voxel is not 

sensitive to information encoded in the neural activity patterns within that voxel. This 

averaging also results in a much coarser spatial perspective of neural activity compared to 

electrophysiology. Third, the fMRI signal is related to neural events through complex 

neurovascular coupling. Any instability of neurovascular coupling could have severe 

implications for multivariate analyses of fMRI data. In the following sections, I expand 

 

5
 Note that the representational geometry abstracts from the spatial arrangement of the activity patterns on 

the cortical surface. Therefore, information about the spatial arrangement and the degree to which features 

representation are concentrated or distributed across the population are disregarded. Depending on the 

research goal, ignoring these aspects may be a disadvantage. 
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Figure 1.3: Analysis of fMRI data 

(A) In univariate fMRI analyses, fMRI activity patterns are averaged across participants to yield 

a group-level activity map per condition, identifying what areas in the brain are active for each 

experimental condition. As can be appreciated in these example maps, fine spatial details from 

each participant are lost after averaging.  

(B) In representational multivariate fMRI analysis, differences between activity patterns within 

each participant are summarized by calculating the paired dissimilarities between activity 

patterns. The collection of dissimilarities describes the representational geometry. Although the 

spatial patterns of each condition are quite distinct between participant 1 and 2, the relative 

dissimilarities between conditions are quite similar. This suggests that there is an underlying 

organization to these patterns across participants. To adjudicate between different organizing 

principles, model-predicted representational geometries are compared to the representational 

geometries of the participants.  

(C) Schematic of the transformations that arise from stimulus presentation to measured BOLD 

fMRI activity patterns. The stimulus transduction can be any arbitrary linear or non-linear 

transformation. The neural activity representing the stimulus gives rise to hemodynamic 

responses, namely increases in blood-flow, blood-volume, and oxygen concentration. The 

changes in local magnetic susceptibility of the tissue is measured using MRI, yielding the BOLD 

signal measurement. The neural-to-BOLD fMRI transformation is comprised of the 

hemodynamic responses and the MRI measurement process. Figure is inspired from Boynton et 

al. (1996). 
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on these caveats and consider under what circumstances they alter the inferences one can 

make about the underlying neural population activities using multivariate fMRI analysis. 

1.4.1 fMRI measures excitatory postsynaptic activity, not spiking 

The first caveat we must consider is that fMRI does not directly measure the spiking 

activity of neurons. The studies presented in this thesis measure the Blood-Oxygen-

Level-Dependent (BOLD) signal with fMRI (Ogawa, Lee, Kay, et al. 1990; Bandettini et 

al. 1992; Kwong et al. 1992; Ogawa et al. 1992). Although the BOLD signal is not a 

direct readout of neural spiking, it is tightly linked to neural activity. This is because 

neural communication in the brain involves active metabolic processes that require 

oxygen (Schwartz et al. 1979; Mata et al. 1980), and during increases in neural 

communication, the greater demand for oxygen is met by localized increases in 

oxygenated blood flow (Buxton, Wong, and Frank 1998). Thus, BOLD reflects neural 

processes that consume energy. 

The greatest factor of energy consumption in the brain comes from active processes that 

reverse ion fluxes in postsynaptic receptors (≥50%; Attwell and Laughlin 2001; Attwell 

and Iadecola 2002; Harris, Jolivet, and Attwell 2012). Both excitatory and inhibitory 

synaptic communication give rise to these postsynaptic events. However, because only 

10-20% of cortical synapses are inhibitory (Hendry et al. 1987; Markram et al. 2004; 

Attwell and Iadecola 2002), the majority of metabolic activity related to synaptic 

transmission in the brain reflects excitatory communication. In addition, large inhibitory 

interneurons most often project to the initial segments of axons (DeFelipe et al. 1985) or 

to perisomatic regions of postsynaptic neurons (Miles et al. 1996), where the net effect of 

a single inhibitory input is stronger (meaning fewer inhibitory inputs are necessary). 

Taken together, this suggests that local energy demand in the primate brain arises 

predominantly from excitatory postsynaptic activity.  

The increased demand for energy (oxygen and glucose) in the primate brain is met by 

increases in oxygenated blood flow – increases in oxygenated blood flow cause increases 

in the BOLD signal. The BOLD signal is sensitive to changes in the magnetic field that 

arise from the magnetic properties of hemoglobin, the oxygen-transport protein in red 
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blood cells (Pauling and Coryell 1936). In regions with more oxyhemoglobin, the BOLD 

signal is stronger because there is less magnetic field distortion (Ogawa, Lee, Nayak, et 

al. 1990; Ogawa, Lee, Kay, et al. 1990). In sum, this indicates that BOLD signal 

increases in a brain region reflect increased excitatory inputs and recurrent activity. 

Several studies support this hypothesis. The BOLD signal is greater in cortical layers 

with the greatest number of excitatory synaptic inputs (Harel et al. 2006), and the BOLD 

signal is more strongly correlated with local field potentials than single- or multi-unit 

spiking outputs (Logothetis et al. 2001, 2003). In Chapter 3, we revisit this idea to 

provide a unique interpretation of our results. 

1.4.2 fMRI provides a coarse measurement of population activity 

The second caveat we must consider with fMRI is that there are two different signal 

resolutions, and these resolutions may limit the feature representations that we are 

sensitive to. The first resolution is the intrinsic spatial resolution of the hemodynamic 

response itself, which is dictated by the spatial specificity of neurovascular coupling. The 

good news is that this coupling appears to be fairly high resolution. With a clever design, 

O’Herron and colleagues (2016) demonstrated that the vasodilatory responses of 

individual blood vessels were tightly coupled to local synaptic activity. The authors 

reported that in the cat visual cortex, where neurons are spatially arranged into columns 

selective to stimulus orientation, the orientation tuning of individual blood vessels well-

approximated the tuning of the neurons in a ~½mm diameter window around the vessel. 

Therefore, the hemodynamic response averages the underlying neural population 

responses at a spatial scale of ~½mm, which is too poor to resolve the synaptic activity of 

single neurons. However, when using fMRI to study brain representations, we are able to 

measure brain activity across a greater spatial extent than possible with neural recordings, 

and so there is a trade-off between spatial specificity and spatial coverage in either 

measurement modality. 

The second limiter to spatial resolution is the resolution from the MR acquisition itself. A 

three-dimensional MR image is acquired over a short period of time by imaging several 

2-dimensional slices (think sliced bread). Each spatial frequency of each slice requires 
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the readout of a gradient echo signal. The spatial resolution of each voxel in each slice is 

therefore limited by the time available to collect all these echoes during echo-planar 

BOLD imaging. Generally, faster collection leads to lower resolution voxels (but this 

depends on magnetic field strength and parallel imaging methods). In this thesis, I used 

high-field (7Tesla) MRI field strength imaging with isotropic voxel resolutions of 

~1.5mm. Therefore, this means that the voxels have, to some degree, distorted the 

underlying neural representations. Within each voxel, the postsynaptic activity over tens- 

to hundreds-of-thousands of neurons have been averaged. Thus, although fMRI provides 

excellent spatial coverage compared to neural recordings, the spatial coverage comes at a 

cost.  

Under what circumstances could the averaging of the fMRI measurement process distort 

the underlying neural representations? Let us consider an example where individual 

neurons are each tuned to movements of a single finger. If the neurons are broadly 

spatially clustered according to finger preference, then differences between fingers 

representations will be evident even after averaging the synaptic activities within each 

voxel. In contrast, if neurons tuned to different fingers are randomly intermixed, then any 

finger-specific signals will be strongly attenuated when averaging synaptic activity within 

each voxel. Therefore, fMRI is biased towards feature representations that exist at a 

broader spatial scale (Kriegeskorte and Diedrichsen 2016). To partly address this bias, I 

used higher resolution (i.e., smaller) voxels. However, the use of smaller voxels does not 

fully alleviate the fact that fMRI is biased towards representations that exist at a broad 

spatial scale. We revisit this idea again in Chapter 3, when we consider neural 

representations for fingers and movement directions. 

1.4.3 Interpretations of fMRI assume linear and stable 

neurovascular coupling 

The final caveat we must be aware of with fMRI concerns the linearity of the 

transformation between neural activity patterns and fMRI activity patterns (Fig. 1.3C). 

The analysis and interpretation of fMRI data depends on the assumption that the 

transformation between neural activity and fMRI activity is linear (Boynton et al. 1996). 

Specifically, we assume that an fMRI activity pattern (𝑦) is the result of a constant linear 
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transformation function (𝐴) of the underlying neural activity pattern (𝑥): 𝑦 = 𝐴(𝑥). This 

means that the same neural activity pattern will evoke the same fMRI activity pattern, 

and two different neural activity patterns will evoke two comparably different fMRI 

activity patterns. We additionally assume that 𝐴 is independent of 𝑥 such that the 

transformation between neural patterns and fMRI patterns is stable across a broad range 

of overall activity levels, and does not change for neural patterns in a region. It is only 

under these conditions that we can reliably interpret any changes in the fMRI activity 

patterns as being the result of changes in the underlying neural patterns. 

Given the complexity of the neurovascular relationship, these assumptions may be 

violated to some extent. How would such violations influence fMRI analyses? For 

univariate fMRI analyses, any small violations of the stability of the transformation from 

neural to fMRI patterns would not pose too large a problem. This is because any small, 

idiosyncratic changes to 𝐴 will be averaged out at the group-level analysis. In contrast, 

for multivariate fMRI analyses, violations of a stable linear transform between neural 

patterns and fMRI patterns would have substantially dire consequences. It would mean 

that the representations measured with fMRI would change based on the overall neural 

activity. For example, consider a ceiling effect of the BOLD signal (Siero et al., 2013). At 

low levels of overall neural activity, each distinct neural activity pattern would produce 

comparably distinct fMRI activity pattern. However, at increasing levels of neural 

activity, the BOLD patterns would saturate and suddenly become very similar to each 

other, much like over-exposed photographs. Effects like this would make representational 

geometries measured with fMRI difficult to compare across brain regions or patient 

populations where the overall signal magnitude varies. It would also lead to inappropriate 

inferences, such as when selecting between competing hypotheses about neural 

representations. Unfortunately, recent studies have reported evidence of changing 

nonlinearities in neurovascular coupling, meaning that fMRI inferences would depend on 

overall activity (Zhang, Zhu, and Chen 2008; Zhang et al. 2009; O’Herron et al. 2016). 

To therefore address this concern, in Chapter 2 I experimentally tested the stability of 

representational geometries measured with fMRI. The work presented in Chapter 2 is 

critical because the remainder of the work in my thesis uses multivariate fMRI to make 

inferences about the underlying neural code in M1 and S1. 
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1.5 Thesis overview 

The work presented in this thesis uses multivariate analyses of fMRI to examine how M1 

is organized for individuated finger movements and how S1 integrates somatosensory 

information from multiple fingers. Therefore, the degree to which brain representations 

measured with fMRI are stable has important implications for my experiments. In 

Chapter 2, I examine the stability of brain representations measured with fMRI. In 

Chapter 3, I then examine how M1 is organized to control finger flexion and extension 

movements. Under the hypothesis that M1 is organized according to movement co-

occurrence, one would predict that since flexion and extension of the same finger can 

never co-occur (from a kinematic perspective), finger flexion and extension should be 

associated with distinct brain representations. I tested this prediction using human fMRI 

and compared the results to neural spiking patterns recorded in two monkeys performing 

an identical task. In Chapter 4, I then examine how somatosensory inputs from the 

fingers are integrated in S1. Sensory inputs from all fingers must be integrated during 

everyday hand use. However, previous work studying sensory integration across fingers 

have been restricted to studying how inputs form two fingers interact. Therefore, the full 

nature of finger interactions is unknown. To address this gap, I stimulate all possible 

single- and multi-finger combinations in humans and characterize the patterns of 

integration that occur in S1. Finally, in Chapter 5, I return to the motivating questions in 

my thesis and offer commentary and future directions.  
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Chapter 2  

2 Stability of representational geometry across a wide 
range of fMRI activity levels 

In this first project, I examined the stability of multivariate representational analysis of 

fMRI data. The degree to which brain representations measured with fMRI are stable has 

important implications for the kinds of inferences one can make with this analysis 

framework, and has direct implications for the rest of the work presented in my thesis.  

2.1 Abstract 

Fine-grained activity patterns, as measured with functional magnetic resonance imaging 

(fMRI), are thought to reflect underlying neural representations. Multivariate analysis 

techniques, such as representational similarity analysis (RSA), can be used to test models 

of brain representation by quantifying the representational geometry (the collection of 

pair-wise dissimilarities between activity patterns). One important caveat, however, is 

that nonlinearities in the coupling between neural activity and the fMRI signal may lead 

to significant distortions in the representational geometry estimated from fMRI activity 

patterns. Here we tested the stability of representational dissimilarity measures in primary 

sensory-motor (S1 and M1) and early visual regions (V1/V2) across a large range of 

activation levels. Participants were visually cued with different letters to perform single 

finger presses with one of the 5 fingers at a rate of 0.3–2.6 Hz. For each stimulation 

frequency, we quantified the difference between the 5 activity patterns in M1, S1, and 

V1/V2. We found that the representational geometry remained relatively stable, even 

though the average activity increased over a large dynamic range. These results indicate 

that the representational geometry of fMRI activity patterns can be reliably assessed, 

largely independent of the average activity in the region. This has important 

methodological implications for RSA and other multivariate analysis approaches that use 

the representational geometry to make inferences about brain representations. 
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2.2 Introduction 

Multivariate analysis of activity patterns has profoundly changed functional magnetic 

resonance imaging (fMRI) data analysis. Traditional fMRI studies have examined 

differences in overall activity levels in extended brain regions. In this approach, local 

fine-grained patterns of activity are removed by smoothing, as they are typically not 

consistent across individuals. However, it was realized that one could decode the 

experimental condition from activity patterns within individuals, even if the average 

activity is the same between conditions (Haxby et al., 2001). Decodability is often 

interpreted as evidence that the region represents something about the underlying 

distinction between conditions (Haxby et al., 2014), i.e., that another area can potentially 

read out information about the distinction (de-Wit et al., 2016; deCharms and Zador, 

2000). Extending this idea, the degree to which different pairs of activity patterns are 

dissimilar may tell us something about the structure of the underlying neural population 

code. For example, a region involved in object recognition should show large 

dissimilarities between activity patterns associated with objects from different categories, 

but smaller dissimilarities between objects of the same category (Kriegeskorte et al., 

2008b). The relationship between all pair-wise dissimilarities defines what we call the 

representational geometry. Representational similarity analysis (RSA, Kriegeskorte et al., 

2008a), pattern component modelling (PCM, Diedrichsen et al., 2018) and encoding 

models (Naselaris et al., 2011) all analyse this representational geometry to test between 

models of brain representations (Diedrichsen and Kriegeskorte, 2017).  

When testing representational models with fMRI data, we base our analysis on the Blood 

Oxygenation Level Dependent (BOLD) signal. To what degree can we make inferences 

about neural representations using this indirect measure of neural activity? There are a 

number of reasons why representational fMRI analysis may be limited (see discussion). 

One important problem, which is the main focus of this paper, is that the measured 

representational geometry may depend strongly on the overall activity in a region. This is 

of concern as we often make comparisons across regions, participants, or attentional 

states with different activity levels. Although RSA is in theory independent of average 

activity, it is possible that the patterns and their dissimilarities distort with increasing 
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activation. The relationship between the pair-wise pattern dissimilarities is only 

guaranteed to remain the same if all voxel activities in a region scale (up to a 

multiplicative constant) according to the same function. Thus, even though there is 

evidence that the relationship between neural activity and the average BOLD is fairly 

linear in M1 (Siero et al., 2013) and V1 (Boynton et al., 1996; Heeger et al., 2000), these 

findings do not guarantee that the representational geometry would also scale in an 

orderly fashion. 

There are a number of potential mechanisms that could lead to substantial distortions of 

the representational geometry when measured with fMRI. For example, the spatial point-

spread function of BOLD may differ across activity levels. Recent work using optical 

imaging suggests that although vasodilation of arterioles is relatively coupled with the 

pre- and post-synaptic activity of the surrounding neural tissues (O'Herron et al., 2016), 

the authors observed many instances of vasodilatory responses in the absence of local 

changes in neural activity. Notably, they propose that this decoupling may change with 

increasing neural activity. We interpret this result as cause for concern, as this effect 

could cause an increasing spread of the BOLD signal to neighboring voxels as activity 

increases. Because such spread would affect different activity patterns differently, it 

could lead to severe distortions of the representational geometry, which would make it 

difficult to draw conclusions about the representational content of neural population 

codes using fMRI data. Therefore, it is important to empirically test if the 

representational geometry remains stable across a wide range of overall activity levels.  

We investigated this question with an experiment that allowed us to assess patterns in 

sensory-motor regions (S1 and M1) and in primary and secondary visual cortices (V1 and 

V2) using RSA. Ejaz et al. (2015) demonstrated a stable representational geometry across 

humans for individual finger movements in M1 and S1, in which the thumb had the most 

distinct activity pattern and neighboring fingers showed higher similarities than non-

neighboring fingers. Similarly, it has been shown that letters (Miyawaki et al., 2008) as 

well as colours (Brouwer and Heeger, 2009), can be decoded from activity in visual 

cortices. We therefore cued finger presses with coloured letter cues presented on a screen. 

We chose a specific letter and colour for each finger, such that the perceptual similarities 
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between stimuli would be different from the dissimilarities of motor actions. To increase 

the overall activity in both regions, we varied the letter flashing and finger pressing 

frequency between 0.3 Hz and 2.6 Hz. For individual finger presses on our isometric 

device (see methods), a rate of 2.6 Hz is close to the upper performance limit.  

In interpreting the results, it is important to distinguish between changes in the 

representational geometry that arise from the fact that the neural activity patterns change 

qualitatively with higher stimulation frequency, and changes that arise through distortions 

when measuring the representational geometry using BOLD. We designed our task 

assuming that the underlying neural activity patterns would scale by a single 

multiplicative factor with increasing speed, allowing us to identify distortions arising in 

the neural-to-BOLD coupling.  

We note that the data have been already included in a recent publication from our lab 

(Diedrichsen et al., 2018) as an example to highlight the technical aspects of fitting 

different types of PCM models. Although not the focus of the paper, the results already 

indicate that, on a group level, the representational geometry in M1 remains relatively 

unchanged across movement speeds. However, because possible distortion may be 

idiosyncratic across individuals, we here re-investigate this issue with dedicated analyses 

within the framework of RSA. 

2.3 Methods 

2.3.1 Participants 

We measured cortical activity patterns in 5 female and 3 male participants (mean Age = 

25.5 (2.41) years). All participants were self-reported right handers (mean Edinburgh 

questionnaire laterality quotient = 91.25 (7.82)), and made individuated finger presses of 

the right hand. Motor cortex data from these participants were used as example data in a 

method article describing non-linear pattern component models (Diedrichsen et al., 

2018). 
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Figure 2.1: Experimental paradigm 

(a) Participants made short, isometric presses of an individual finger onto a keyboard while in an 

MR scanner. Each finger press was cued with a unique colour-letter combination.  

(b) A cue at the start of each trial (1s) instructed participants which finger they would press. 

Participants then executed presses when prompted by a larger cue presentation. The cues flashed 

either 2, 4, 8, or 16 presses in 6 seconds (0.3, 0.6, 1.3, 2.6Hz). A 1s inter-trial-interval (ITI) 

separated each trial. Random periods of rest were interleaved between trials in each block. This 

design yielded 20 conditions (5 fingers /letters x 4 frequencies). 
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2.3.2 Apparatus and stimuli 

The motor behaviour was monitored by a keyboard-like device. The device had a key for 

each finger of the right hand, with a force transducer (Honeywell-FS series, dynamic 

range=0–16N, resolution <0.02N) mounted under each key. A bevel on each key ensured 

fingertip placement across participants was consistent. Forces were recorded at a 

sampling rate of 200 Hz. 

To evoke visual responses, we presented coloured letter stimuli on the screen at the same 

frequency as the finger presses. The aim was to pick letters and colours that would induce 

a dissimilarity structure that would differ considerably from that of the fingers. Therefore, 

we chose similar letters and colours for fingers which evoke different activity profiles 

(see Fig. 2.1A for finger-letter-colour pairs). The letters were presented centrally and 

peripherally (Fig. 2.1B). The size of the letters on the screen were 8x10 cm, subtending a 

visual angle of approximately 7º. The screen background was black. Participants were 

instructed to maintain visual fixation on a gray cross presented centrally on the screen. 

Cues were presented centered on the fixation cue. Five lines were presented in the lower 

third of the screen, one for each of the five fingers. The locations of these lines were 

dynamically updated to indicate the real-time force applied to each key of the fingerboard 

device. 

2.3.3 Behavioural task 

In the MR scanner, participants completed a paced finger pressing task. Each trial lasted 

for 8 s and was divided into three phases (Fig. 2.1B). In the announce phase (1s), 

participants saw a visual cue indicating which finger of their right hand they were to 

press in the current trial. During the following execution phase (6s), participants made 2, 

4, 8, or 16 isometric presses of the finger (0.3, 0.6, 1.3, and 2.6Hz pressing frequency). 

Each press was paced by a visual metronome, which flashed the letter cue from the 

announce phase for 100ms each. The first and the last press always occurred at the 

beginning and end of the execution phase, with the intermediate presses being cued at a 

constant rate (Fig. 2.1B). Following this, there was an inter-trial interval of 1s before the 
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next trial started. Throughout the entire experiment, participants were instructed to refrain 

from moving their wrist or fingers of either hand when not instructed to do so.  

There were 20 possible conditions (5 fingers/letters x 4 pressing frequencies). The task 

was divided into 8 runs of 40 trials each, with two repeats per condition. Trial order 

within each run was randomized. Seven periods of rest (13s) were randomly interspersed 

between trials in each run. Each run lasted 411s. Participants were instructed to produce a 

minimum of 2N, but not to exceed a maximum of 4N with each finger press. Minimum 

and maximum force thresholds were visually presented on screen above the finger force 

lines. Between presses, the force applied to each key needed to be below 0.75N before 

another press could be registered. The fixation cross turned white for each correct press. 

Participants trained on this task prior to the scanning portion of the experiment to ensure 

stable performance. 

2.3.4 fMRI data acquisition 

Functional images were acquired using a Siemens Magnetom 7T MRI scanner with a 32-

channel head coil at Western University (London, Ontario, Canada). Volumes were 

acquired using an interleaved, multiband slice acquisition (TR = 1000ms, 44 slices, 1.4 

mm isotropic voxels, no gap between slices, in-plane acceleration factor = 3, multi-band 

factor = 4). The first three images of each functional run were discarded to allow 

magnetization to reach equilibrium. The slices covered the dorsal aspects of the 

cerebrum, encompassing M1 through to V1. A T1-weighted anatomical scan (3D 

MPRAGE sequence, TR = 6000ms, 0.75 mm isotropic voxels, 208 vol) was also acquired 

at the start of the scan. Fieldmaps were collected at the end of the imaging session. 

2.3.5 Preprocessing and first-level model 

First-level fMRI analyses were conducted with SPM12 (http://www. 

fil.ion.ucl.ac.uk/spm/). Functional images were realigned to correct for motion across 

runs. Within this process, we utilized a B0 fieldmap to correct for magnetic field 

inhomogeneities. Due to the short TR, no slice timing corrections were applied. The 

functional data was co-registered to the individual anatomical scan, but no normalization 

was applied.  
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The pre-processed images were analysed with a general linear model (GLM) with 

separate task regressors for each condition (20 regressors) for each run. Each regressor 

was a boxcar function that was on for 6s of the trial duration and off otherwise. These 

regressors were then convolved with a hemodynamic response function with a peak onset 

of 4.5s and a post-stimulus undershoot minimum at 11s.  

We used the SPM FAST autocorrelation model in conjunction with restricted-maximum 

likelihood (ReML) estimation to estimate the long-range temporal dependencies in the 

functional timeseries. This relies on a minor modification of the standard SPM analysis 

routine. SPM proceeds in a two-step estimation process. First, SPM estimates an ordinary 

least square regression to collect sufficient statistics on the voxels in order to select 

voxels that are used for autocovariance estimation using ReML. By default, the inclusion 

of voxels is decided using an omnibus F-test (any difference in any condition vs. zero) 

with a threshold set to 0.001. This means voxels that are probably “involved” in the task 

of interest will be included. Using the FAST option to estimate the temporal covariance 

effectively attenuates low-temporal frequencies. This means it is unnecessary to apply a 

separate high-pass filter. Without additional high-pass filtering, however, very few voxels 

will be significant in the omnibus F-test in the first step because the data is dominated by 

low-frequency noise (which is now only removed in the second stage with the FAST 

option). Therefore, we modified the estimation procedure to specify separate masks that 

defined which voxels are included in the first and second steps of the analysis. Here, we 

were interested in optimal inferences for gray-matter. Therefore, the coefficients of this 

model were estimated from all gray-matter voxels using a gray-matter mask. We found 

that on several data sets, this analysis procedure improves the reliability of activity 

pattern estimates as compared to the standard high-pass filtering and subsequent temporal 

autocorrelation correction with FAST. 

2.3.6 Region of interest (ROI) definitions 

We used Freesurfer software (Dale et al., 1999) to extract the white-gray matter and pial 

surfaces from each participant's anatomical image. These surfaces were inflated to a 

sphere and aligned using sulcal depth and curvature information to the Freesurfer average 

atlas (fsaverage, Fischl et al., 1999). Following alignment, both hemispheres in each 
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participant were resampled into a 163,842 vertex grid. This allowed us to reference 

similar areas of the cortical surface in each participant by selecting the corresponding 

vertex on the group atlas.  

Anatomical regions of interest (ROI) were defined using a procedure established in 

previous work (Wiestler and Diedrichsen, 2013; Ejaz et al., 2015). All ROIs were defined 

using a probabilistic cytoarchtectonic atlas (Fischl et al., 2008) projected onto the 

common group surface. For M1 and S1, we constrained the resulting ROIs to the hand 

and arm region by choosing the area of the cyctoarchteconically defined strip 2.5 cm 

above and below the hand knob (Yousry et al., 1997). To avoid cross-contamination 

between M1 and S1 activities along the central sulcus, voxels with more than 25% of 

their volume originating from the opposite side of the central sulcus were excluded. The 

primary and secondary visual cortices (V1/V2) were grouped as one ROI. The group area 

was then projected onto the individual volume using the individual surface 

reconstruction. 

2.3.7 Multivariate fMRI analysis 

Multi-voxel analyses were conducted within each ROI (M1, S1, and V1/V2), using the 

RSA (Nili et al., 2014) and PCM toolboxes (Diedrichsen et al., 2018). For each ROI, we 

extracted the beta-weights from the first-level GLM for each condition in each imaging 

run. These beta-weights were then spatially pre-whitened using multivariate noise-

normalization to suppress correlated noise across voxels (Walther et al., 2016). The mean 

pattern was not removed from each run to preserve information about activity from 

baseline in each voxel.  

We then calculated the squared cross-validated Mahalanobis distance (crossnobis; 

Walther et al., 2016; Diedrichsen et al., 2016) between activity patterns: 

𝑑2(𝑥𝑦, 𝑥𝑧) = (𝐱y − 𝐱z)𝐴
𝑇𝚺−1(𝐱𝑦 − 𝐱𝑧)𝐵 

where (𝐱𝑦 − 𝐱𝑧)𝐴 corresponds to the difference between the activity patterns of 

conditions 𝑦 and 𝑧 in run 𝐴, and 𝛴 refers to the voxel-wise noise covariance matrix 

(Walther et al., 2016). We repeated this procedure over all possible leave-one-run-out 
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cross-validation folds and then averaged the resulting dissimilarities across folds. This 

procedure leads to an unbiased distance estimate, which on average will be zero if there is 

no reliable difference between the two patterns. This also means that the crossnobis 

estimator can become negative. The large advantage for this measure, however, is that 

zero is meaningfully defined and hence ratios between distances can be interpreted in a 

meaningful way. 

The representational geometry is characterized by the dissimilarities between all possible 

pairs of condition activity patterns, that can be collected into a representational 

dissimilarity matrix (RDM). The RDM is a (# conditions x # conditions) symmetric 

matrix, with zeros along the diagonal. Dissimilarities were calculated for the left 

hemisphere M1 and S1 ROIs (contralateral to the side of finger movements). For V1/V2 

ROIs, we first calculated dissimilarities for each hemisphere, then averaged the 

dissimilarities across hemispheres within each participant. We used classical multi-

dimensional scaling (eigenvalue decomposition) to visualize a low-dimensional 

projection of the representational geometry (Diedrichsen et al., 2018) in figure 2.3. 

2.3.8 Stability of representational geometry across stimulation-
frequencies 

To assess the stability of the representational geometry across frequency conditions, we 

correlated the RDMs across all 6 possible frequencies pairs within each participant. For 

each frequency condition (j), we had 10 pairwise dissimilarities (di,j, where i corresponds 

to one of the 10 dissimilarities for frequency condition j). We calculated a Pearson 

correlation without subtracting the mean across the 10 dissimilarities first, as zero is a 

fixed and meaningful value for the unbiased crossnobis distance (see section 2.3.7). The 

RDM correlation between frequency conditions j and k then becomes  

𝑟𝑗,𝑘 =  
∑ 𝑑𝑖,𝑗𝑑𝑖,𝑘

10
𝑖=1

√∑ 𝑑𝑖,𝑗
2 𝑑𝑖,𝑘

210
𝑖=1

 

Because the RDM is a symmetric matrix, we correlated only the dissimilarities in the 

lower triangular of each RDM (excluding the zero diagonal values).  
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To compare the correlation values to a meaningful noise ceiling (see section 2.3.9), we 

split the data into odd and even runs and calculated crossnobis distances for each partition 

separately. We then calculated the correlation either between odd runs for frequency 

condition j and even runs for frequency condition k, or the other way around. The two 

correlations were then averaged for each participant and cross-frequency pair. 

2.3.9 Reliability of representational geometries 

Even if the representational geometry was perfectly stable across frequencies, the 

resultant correlations would not be 1 given the noise in our measurements. Therefore, to 

interpret these cross-frequency RDM correlations meaningfully, we used the reliability of 

each RDM to estimate a noise-ceiling for each of the 6-possible cross-frequency pairs. 

We measured the split-half reliability of the RDM at each frequency (𝑟𝑗, 𝑟𝑘) using the 

same procedure used to calculate the cross-frequency correlations, but this time 

correlating the RDMs for odd and even runs within frequencies. If the true activity 

patterns for frequency condition j and k were identical, the expected cross-frequency 

correlation would be  

𝐸(𝑟𝑗,𝑘) =  √𝑟𝑗 ∗ 𝑟𝑘 . 

This prediction therefore provides an appropriate noise ceiling for the measured cross-

frequency correlations. We then scaled the measured cross-frequency correlations to their 

corresponding noise ceilings, such that a value of 1 indicates the RDMs of the two 

frequency conditions were highly similar after correcting for measurement noise. Due to 

the cross-validated calculation of the cross-frequency correlations, we can encounter 

scaled correlations > 1 (where the cross-frequency correlation is larger than expected). 

We tested if the rescaled cross-frequency correlations were significantly lower than 1 

using a one-tailed sign-test. Deviations significantly lower than 1 indicated that the cross-

frequency RDM correlations were lower than expected given the reliability of each 

RDM.  
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2.3.10 Bayesian analysis to quantify the evidence for no RDM 
distortion 

Given that we are also interested in quantifying the evidence for the Null-hypothesis (no 

distortions), we conducted a Bayesian analysis. For this, we first needed to determine 

what size of deviation from perfect stability would matter for model comparison, i.e., we 

needed to determine the effect size of the alternative hypothesis. As an example for a 

difficult model comparison problem, we used the muscle model and natural statistics 

model RDMs from Ejaz et al. (2015). Both models specify how finger movements are 

represented in the sensory-motor cortex. The natural statistics model hypothesizes that 

fingers that frequently move together evoke cortical activity patterns that are more 

similar. In contrast, the muscle model hypothesizes that finger movements that engage 

similar muscles would have a high overlap. Comparing between these models is difficult 

because the predicted distances from each model are highly correlated (r = 0.9). 

As a slightly easier model comparison, we used the contrast between the somatotopic 

model and the natural statistics model (Ejaz et al., 2015). The somatotopic model 

hypothesizes that cortical activity patterns for single finger movements are arranged in an 

orderly fashion along the central sulcus, with some overlap between neighboring fingers. 

The RDMs of the somatotopic and natural statistics model were only moderately 

correlated (r = 0.68).  

We simulated 1000 RDMs under each of the three models, then distorted the distances 

for each simulated RDM by increasing or decreasing each distance by a specific 

percentage of the true value. At each level of simulated distortion, we calculated the 

average correlation with the true model. We also determined whether the resulting RDM 

was closer to the true model or to the competing model with a Pearson correlation with a 

fixed intercept. Each misclassification was counted as a model confusion. Model RDMs 

that are more distinct would result in lower confusion rates at the same levels of 

distortion. 

Next, we evaluated the probability of the observed cross-frequency RDM correlations 

from each ROI under the Null-hypothesis (no distortion, corrected r = 1), and various 
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levels of the alternative hypothesis (some distortion, corrected r < 1). As a distribution of 

the differences, we assumed a Gaussian distribution with a mean of 1 and the empirical 

standard deviation (𝜎) of the corresponding cross-frequency correlations: 

𝐻0~ 𝑁(1, 𝜎). 

For the alternative models, we shifted the Gaussian to be centered on the average 

correlation for each distortion level from our simulation (𝑟𝐷): 

𝐻𝐷~ 𝑁(𝑟𝐷, 𝜎). 

To obtain a Bayes factor, we averaged the empirical differences in correlations for each 

participant across all non-neighboring frequency pairs, and then evaluated the probability 

of this group data under each of the alternative models. A Bayes factor ≥ 3 is considered 

to be positive evidence for the hypothesis in question, and factors ≥ 20 indicate strong 

positive evidence (Raftery and Kass, 1995). This approach allowed us to determine the 

distortion levels for which we observe positive evidence in favour of the alternative 

model (i.e., the data is probable under this level of distortion) and the levels at which we 

have positive evidence in favour of the null model (i.e., the data is more likely under the 

null model). 

 

2.4 Results 

We measured cortical BOLD activity patterns as participants saw digits flashed 

repeatedly on the screen (Fig. 2.1B), and made short, isometric presses of each finger of 

the right hand (Fig. 2.1A). We systematically increased the stimulation and pressing 

frequencies (Fig. 2.1B) to increase the overall activity in the visual and motor regions. 

Our main question was whether the representational geometry – i.e., the collection of 

relative dissimilarities between different conditions, would remain relatively stable across 

a large range of overall activity. Behaviourally, participants were able to follow the 

pacing and to perform the task with relatively high accuracy and matched forces (see 

Table 2.1). 



50 

 

 

 

  Pressing 

freq. (Hz) 

Force 

(N) 

Pressing 

freq. (Hz) 

Force 

(N) 

Pressing 

freq. (Hz) 

Force 

(N) 

Pressing 

freq. (Hz) 

Force 

(N) 

Cued 

freq. 

 0.3Hz  0.6Hz  1.3Hz  2.6Hz  

Thumb  0.33 

(0.02) 

3.04 

(0.08) 

0.66 

(0.03) 

3.12 

(0.05) 

1.32 

(0.04) 

3.18 

(0.07) 

2.65 

(0.10) 

3.13 

(0.07) 

Index  0.32 

(0.03) 

2.82 

(0.07) 

0.65 

(0.04) 

2.91 

(0.07) 

1.33 

(0.02) 

2.99 

(0.05) 

2.67 

(0.21) 

2.97 

(0.07) 

Middle  0.34 

(0.02) 

3.62 

(0.16) 

0.67 

(0.02) 

3.53 

(0.14) 

1.34 

(0.03) 

3.52 

(0.14) 

2.70 

(0.14) 

3.39 

(0.11) 

Fourth  0.33 

(0.04) 

2.94 

(0.08) 

0.67 

(0.04) 

2.99 

(0.05) 

1.34 

(0.03) 

3.07 

(0.05) 

2.63 

(0.24) 

2.98 

(0.07) 

Little  0.33 

(0.02) 

2.99 

(0.06) 

0.65 

(0.04) 

2.99 

(0.05) 

1.32 

(0.05) 

3.11 

(0.04) 

2.66 

(0.21) 

2.97 

(0.05) 

Table 2.1: Finger pressing behaviour during MRI data acquisition. 

Mean and (in parentheses) between-subject standard error of behavioural measure of the finger 

pressing task. The pressing frequency is reported in Hertz (Hz), and forces in Newtons (N). 

Participants (n=8) were able to approximately match the instructed frequency and keep the pressing 

forces relatively stable. 

 

Figure 2.2A shows a surface representation of the activity patterns in the left hemisphere 

hand region of primary motor and sensory cortices (M1 and S1) from one participant. 

The overlapping nature of the activity patterns for the different fingers is clearly visible, 

as well as an overall gradient with the thumb activating more ventral and the little finger 

more dorsal aspects of the hand region. The overall intensity of the activity increased 

with increasing pressing frequency, but the spatial distribution of the activity associated 

with each finger movement appeared to remain stable. Overall, we observed an 

approximately 5-fold increase in M1 and S1 (Fig. 2.2B), with less activity evoked in 

visual cortices (V1/ V2). 
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Figure 2.2: Scaling of fMRI activity patterns 

(A) BOLD activity patterns from the hand area of the primary sensorimotor cortices of an example 

participant projected onto a flat, surface reconstruction of their cortex. Dotted lines indicate the 

fundus of the central sulcus. The top insert reflects sulcal depth (darker colours reflect larger 

depths) and denotes location of M1 and S1. Colour maps reflect t-values of activity against rest. 

Each column corresponds to one finger (thumb to little), and each row one pressing frequency 

(0.3 to 2.6Hz). The activity increases with increasing pressing frequency.  

(B) Activity (beta-coefficients) in contralateral M1, S1, and bilateral V1/V2 as a function of 

pressing/stimulation frequency. Data from each participant are plotted. The group average for 

each region are plotted in bold Error bars reflect s.e.m. across participants. 
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Our main interest was whether intensity-dependent variations in neural-to-BOLD 

coupling would lead to distortions of the representational geometry. Therefore, to assess 

this, we calculated the dissimilarity between pairs of activity patterns for each condition 

of the same frequency (i.e., the representational geometry), for each ROI in each 

participant. We then examined how stable this geometry remained despite the nearly 5-

fold increase in overall activity. As a first step, we visualized the group average 

representational geometry in M1 (S1 representational geometries are very similar to those 

in M1: see Ejaz et al., 2015) and V1/V2 using a multi-dimensional scaling plot. 

For M1 (Fig. 2.3A), we observed the expected representational geometry with the thumb 

having the most unique pattern and the other fingers being arranged according to their 

neighborhood relationship (Ejaz et al., 2015). As pressing frequency increased, this 

arrangement scaled up and substantially moved away from resting baseline (Fig. 2.3A, 

cross), but the overall geometry remained the same. This stability can also be appreciated 

when visualizing the 10 pairwise dissimilarities between fingers for each frequency (Fig. 

2.4A, E). 

In the visual cortices (V1/V2), we observed a distinct arrangement of the conditions, with 

the representational geometry relating to the letters and colours presented for each finger. 

Similarly to M1 and S1, this structure scaled up with increasing stimulation frequency 

(Fig. 2.3B). However, the lowest stimulation frequency was not very successful in 

eliciting either average activity or very reliable activity patterns (see below).  

To quantify the stability of the representational geometry across different levels of 

activity, we correlated the dissimilarities in M1, S1, and V1/V2 (Fig. 2.4A, E, J) across 

frequencies within each participant. The average cross-frequency correlations (Pearson 

correlation without intercept – see methods) was r = 0.92 in M1 (Fig. 2.4B) and r = 0.94 

in S1 (Fig. 2.4F). In V1/V2 (Fig. 2.4J), cross-frequency correlations were lower when 

they involved the lowest stimulation frequency (average of all cross-frequency 

correlations was 0.69), but increased with stimulation frequency (the average cross-

frequency correlation between the RDMs of the two highest frequencies was 0.95). 
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Figure 2.3: Multidimensional scaling of group average representational geometries 

Multidimensional scaling of group average representational geometries for M1 (A) and bilateral 

V1/V2 (B). Colours correspond to pressing/stimulation frequency. Numbers indicate fingers (1 = 

thumb, 5 = little finger). Letters correspond to the flashed letter cue (1=E, 2=I, 3=M, 4=F, 5=J). 

Note that the conditions are connected differently for M1 and V1/V2. Panels in the same row 

present different views of the same space, defined by the first three eigenvectors. The blue cross 

indicates baseline. 
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Figure 2.4: Stability of representational geometry across stimulation frequencies 

(A) Average dissimilarity between all possible pairs of the five activity patterns measured at each 

frequency in M1. Colours indicate pressing/stimulation frequency, and shaded regions reflect 

s.e.m. across participants. 

(B) Cross-frequency correlations (see methods) between dissimilarities depicted in A. The box 

plot extends from the 25th to 75th percentiles, and whiskers extend to the full range of the data. 

The line in the center of each box denotes the median. Outliers (circles) are points more than 1.5 

times the box length away from the median.  

(C) Within participant split-half reliabilities (Pearson correlation with a forced intercept) of the 

dissimilarities depicted in A.  

(D) Measured cross-frequency correlations from B scaled by their respective expected 

correlations (noise ceiling, see methods). Values < 1 indicate the observed correlation (stability) 

is lower than what would be expected given the internal reliability of each RDM. Deviations from 

1 were evaluated with one-tailed signed rank tests. Asterisks indicate significant deviations (p < 

0.05). The outlier data in M1 does not drive this result.   

(E-H) Results for S1.  

(I-L) Results for V1/V2. Note that the representational geometry in visual regions is different 

from the one found in M1/S1, reflecting the finger-to-letter assignment. Due to low stimulation 

intensity, visual regions have lower reliabilities for low stimulation frequencies.  
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Given measurement noise in the data, however, the cross-frequency correlations are 

expected to be < 1 even if they are perfectly stable. Therefore, to quantify the stability of 

the representational geometry, we calculated a noise-ceiling (the expected correlation if 

the true patterns were identical across frequencies-see Methods) for each cross-frequency 

pair. We first determined the split-half reliabilities of the RDMs within each frequency. 

In M1 and S1, the average split-half reliabilities across participants (Fig. 2.4C, G) was 

high (r > 0.88) for all pressing frequencies. In V1/V2 (Fig. 2.4K), the reliabilities of the 

dissimilarities measured at the slowest stimulation frequencies were lower, likely due to 

low levels of evoked activity, but increased comparably to reliabilities measured for M1 

and S1 at higher frequencies (average split-half reliabilities across participants in V1/V2 

for all stimulation frequencies was 0.78). We then estimated the noise-ceilings for each 

cross-frequency pair by calculating the geometric means of pairs of split-half reliabilities 

for different frequencies within each participant (see Methods). 

Comparison between the measured and the expected (noise ceiling) correlations 

confirmed that the representational geometries remained as stable as could be expected 

based on the level of measurement noise across a broad range of overall activities. The 

right-most column in figure 2.4 shows the measured cross-frequency correlations as a 

ratio of their respective noise-ceilings. Values < 1 indicate that the measured correlations 

were lower than expected given an estimate of measurement noise for that cross-

frequency pair, whereas values > 1 indicate the opposite. In V1/V2, one-tailed sign-tests 

indicated the measured cross-frequency correlations did not significantly differ from their 

estimated noise ceilings (p-values evaluated without corrections for multiple 

comparisons). In M1, only the measured correlations for the lowest and third highest 

frequency (Fig. 2.4D, pair 1 vs. 3) deviated significantly from the expected correlations 

(p = 0.035). In S1, the only significant deviations were for frequency condition pair 2 vs. 

4 (Fig. 2.4H, p =0.004). Although these deviations in M1 and S1 are statistically 

significant, the magnitude of these deviations were minor (average rescaled cross-

frequency correlations in M1 and S1 = 0.97). More importantly, the correlations between 

the RDMs measured at the lowest and highest activity level were not significantly 

different from the noise ceiling estimates. 
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To assess whether these relatively minor distortions would be of practical relevance, we 

assessed their influence on model inference through simulations. For different levels of 

distortions, we determined the model confusion rate for a difficult model comparison 

problem (model RDMs are correlated with r = 0.9, see Methods), and a moderate model 

comparison problem (r = 0.68). As can be seen in figure 2.5A, the model confusion rate 

increased with increasing levels of RDM distortion. However, at the observed distortion 

rates (dashed lines in Fig. 2.5A), the confusion rates were below 12%, even for the 

difficult model inference. 

To quantify the statistical evidence that our data shows no distortion (the Null-

hypothesis), we calculated the Bayes Factor (BF, see Methods) of the Null against 

distortions of various sizes. Because we were interested in distortions that would arise 

due to intensity-dependent variations in neural-to-BOLD coupling, we analysed the 

empirical differences between 1 and the cross-frequency correlations (corrected to their 

respective noise-ceiling) for all non-neighboring cross-frequency pairs (averaged across 

pairs within each participant). Figure 2.5B shows the log Bayes factor for various levels 

of distortion for the three ROI. We obtained positive evidence (|BF| ≥ 3) in favour of the 

null at a distortion of r = 0.95 for M1 and for r = 0.93 for S1, which were associated with 

a model confusion rate of 5–17% and 9–19%. For V1/V2, we excluded the lowest 

stimulation frequency, as we could not measure the representational structure reliably 

here. We observed positive evidence against a higher distortion level (r = 0.91) 

corresponding to a confusion range of approximately 12–28%. Evidence in favour of the 

Null hypothesis for these high distortion levels indicates the true distortion is 

substantially lower. Indeed, the average of the non-neighboring scaled cross-frequency 

correlations in M1, S1, and V1/V2 were close to 1 (M1: r = 0.98, S1: r = 0.97, V1/V2: r = 

0.97). The evidence for the alternative hypothesis at these levels of distortion was weak 

in M1 (|BF| = 2.8) and positive in S1 (|BF| = 9). The associated model confusion rates 

were 0–6% in M1 and 2–12% in S1, respectively. We did not observe positive evidence 

for RDM distortions at any level in V1/V2.  
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Figure 2.5: The effect of RDM distortions on representational model comparisons. 

(A) Simulated model confusion rates between two highly correlated (dark gray, r = 0.9) and two 

moderately correlated (light gray, r = 0.68) model RDMs (see section 2.10). Dotted lines reflect 

the average observed cross-frequency correlations (scaled to noise-ceilings) from each of the three 

ROIs. RDMs are more commonly misclassified as distortion increases (shown here as a decrease 

in the correlation between the true and distorted RDM). The magnitude of misclassification 

depends on how similar the two model RDMs are.  

(B) Bayes factors (BF) for evidence of the null (no distortion) over the alternative (distortion) 

models for increasing levels of RDM distortion (x-axis). Negative BF indicate evidence in favor 

of the alternative model, which means that the cross-frequency RDM correlations are more 

probable under the corresponding level of distortion. In contrast, positive BF indicate evidence in 

favor of the null model, suggesting that the cross-frequency RDM correlations exhibit a lower 

level of distortion than the corresponding level tested. The dashed red lines indicate the thresholds 

for positive evidence (|BF| ≥ 3) and strong evidence (|BF| ≥ 20). 
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Together, these results demonstrate that the relationship between crossnobis 

dissimilarities remains relatively stable across a broad range of overall activity in 

sensorimotor cortices, and to a lesser extent in and primary and secondary visual cortices. 

2.5 Discussion 

Here we critically investigated whether there are measurable distortions of the 

representational geometry as measured by BOLD as overall neural activity increases. We 

tested this assumption by stimulating both sensory-motor and visual regions at increasing 

frequencies. We assumed that on the neural level, each repeated event should elicit 

approximately the same activity pattern. Therefore, the temporally integrated patterns 

should scale in an orderly fashion across frequencies. Importantly, this does not imply 

that neural activity would increase linearly with the number of events. Indeed, previous 

findings have shown that the neural response to subsequent finger taps is strongly 

attenuated in M1 (Hermes et al., 2012). However, as pointed out in the introduction, this 

non-linearity between behavioural and average BOLD does not provide insight into 

whether the representational geometry would distort.  

Indeed, we found that in M1 and S1 the representational geometry scales in a relatively 

orderly manner, even though the local activity increased over a large dynamic range – 

likely close to the achievable maximum for this paradigm. The drop in correlation across 

pressing frequencies (as compared to the noise ceiling derived from within-frequency 

consistency) was minor (r=0.97 on average). It also needs to be kept in mind that some of 

the observed distortions may have been due to real changes in the representational 

geometry of the neural activity patterns - after all our assumption that the neural 

representational geometry would be completely stable may not be true. Thus, our results 

provide an upper bound for distortions that can be attributed the neural-to-BOLD 

coupling. Our ability to identify the correct representational model at this level of 

distortion remained good, even for a difficult model comparison.  

Our results in V1/V2 were slightly weaker. While the measured distortions were at a 

similar level as in M1/S1, the variability of our RDM estimates were much higher in than 

in sensorimotor regions, especially for lower stimulation frequencies. This likely reflects 
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limitations in our task design, which succeeded in driving the overall activity level in M1 

and S1 across a large range, but was not optimal to elicit maximal activity in visual 

regions.  

 Overall, our findings provide an important extension of previous studies that report 

linear coupling between neural activity and BOLD responses in M1/S1 (Siero et al., 

2013) and V1 (Boynton et al., 1996; Heeger et al., 2000). Showing that BOLD signal and 

neural activity are linearly coupled on average does not guarantee that the fine-grained 

activity patterns would also retain their representational geometry. For this, every 

individual voxel would have to obey the same scaling function. Testing this commonly-

held assumption, we provide here the strongest empirical evidence to date that the 

dissimilarities of multivariate fMRI activity patterns are stable across a wide range of 

activation levels. Our findings are broadly consistent with a PCM-style analysis of the 

same data (Diedrichsen, Yokoi, & Arbuckle, 2018), which already showed the stability of 

the representational structure on the group level in M1. The current paper extends these 

results by quantifying the stability on the individual level, in multiple brain regions, and 

by estimating the effect the distortions may have on model comparison.  

These findings have important implications for multivariate fMRI analyses. In general, 

most papers rely explicitly or implicitly on the assumption that the representational 

geometry as measured with fMRI veridically reflects the representational geometry of the 

underlying neural population code. While this strong assumption may still be violated for 

other reasons (see below), we at least show here that the representational geometry can be 

meaningfully compared across a large range of overall activation levels. Thus, under 

appropriate conditions, representational geometries can be compared across different 

regions, individuals, or patient populations. Furthermore, from our data it appears 

justified to compare RDMs between different attentional states or different levels of 

learning, even if these differ in their average activity. Given our results, changes in the 

representational geometry across these conditions are likely due to real changes in the 

underlying neural population code, rather than due to distortions induced by neural-to-

BOLD coupling.  
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For RSA, these findings also have implications for the choice of a dissimilarity measure. 

Not all measures make equally strong assumptions about the relation between the 

underlying neural representational geometry and the one measured with fMRI. For 

example, a common practice in RSA is to evaluate rank-correlation between measured 

and predicted RDMs. Arguably, this approach makes interpretations more robust against 

minor distortions in the measurement process (Kriegeskorte, Mur, & Bandettini, 2008; 

Nili et al., 2014). Our results indicate that the exact ratio-relationship between 

dissimilarity measures can be meaningfully interpreted across a large range of average 

activation states. For this to be true, we of course need to use a dissimilarity measure that 

provides a meaningful zero point unbiased by noise – a condition met by the crossnobis 

estimator (Diedrichsen et al., 2016; Kriegeskorte & Diedrichsen, 2016; Walther et al., 

2016). The additional information in the exact ratio-relationships allow for more 

powerful inference about the underlying representations (Diedrichsen & Kriegeskorte, 

2017). 

The stability of the representational geometry is also good news for alternative 

approaches that test representational models. PCM (Diedrichsen et al., 2011; Diedrichsen, 

Yokoi, and Arbuckle 2018) and encoding models (Naselaris, Kay, Nishimoto, & Gallant, 

2011) make inferences about the underlying representational geometry in a very similar 

way to RSA (Diedrichsen & Kriegeskorte, 2017). Therefore, PCM and encoding 

approaches are subject to similar assumptions as RSA – and our findings generalize, such 

that inferences using these two methods will also be stable across activity levels.  

Do these results suggest that one can make inferences about the representational 

geometry of the underlying neural population code from fMRI measures? While our 

results are reassuring in some aspects, there are two important caveats that we did not 

address in the current paper. First, fMRI samples neural activity with dramatic spatial 

averaging, even when using sub-millimeter resolution. Representations that exist at a 

finer spatial scale in the neural population code will be under-represented in BOLD 

activity patterns, while representations at a large spatial scale will be over-represented 

(see Kriegeskorte & Diedrichsen, 2016). Therefore, the representational geometry of 

BOLD activity patterns may differ systematically from the underlying neural code.  
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Secondly, the physiological processes underlying the BOLD signal and underlying 

extracellular neural recording are fundamentally different: While the BOLD signal 

reflects to a large degree the metabolically expensive processes of ion transport after 

excitatory postsynaptic potentials (Attwell & Laughlin, 2001; Harris, Jolivet, & Attwell, 

2012), extracellular recordings reflect neural spiking. Crudely stated, therefore, BOLD 

reflects more the input to a region, while neural extracellular recordings reflect the 

output. Additionally, most extracellular recordings are biased towards large output 

neurons, as these provide the clearest extracellular signal (Firmin et al., 2014; Harris et 

al., 2016), whereas the BOLD signal indiscriminately averages metabolic activity. These 

important caveats need to be kept in mind when drawing parallels between 

representational analysis of extracellular recordings and BOLD signal.   

2.5.1 Conclusion 

One common assumption in multivariate fMRI analyses is that the relationship between 

activity patterns can be meaningfully interpreted. Intensity-dependent variations in 

neural-to-BOLD coupling, however, could lead to substantial distortions of multivariate 

measures when overall activity increases. Our results demonstrate that, across a broad 

range of overall activation states in M1 and S1 the ratio-relationships between pair-wise 

dissimilarities remain stable. This suggests that it is viable to leverage more powerful 

techniques, such as the use of cross-validated dissimilarities and likelihood-based RSA 

(Diedrichsen et al., 2016; Diedrichsen & Kriegeskorte, 2017), for model comparison. The 

finding also applies to other multivariate techniques that analyse the relationship of 

BOLD activity patterns. 
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Chapter 3  

3 Structure of population activity in primary motor cortex 
for single finger flexion and extension 

In the previous chapter I validated the stability of representational analyses with fMRI 

data. In my next project, I used this analysis framework to examine how M1 is organized 

to control finger flexion and extension movements. Under the movement co-occurrence 

hypothesis, one would predict that since flexion and extension of the same finger can 

never co-occur (from a kinematic perspective), finger flexion and extension should be 

associated with distinct brain representations. I tested this prediction using human fMRI 

and compared the results to neural spiking patterns recorded in two monkeys performing 

an identical task. 

3.1 Abstract 

How is the primary motor cortex (M1) organized to control fine finger movements? We 

investigated the population activity in M1 for single finger flexion and extension, using 

7T functional magnetic resonance imaging (fMRI) in female and male human 

participants, and compared these results to the neural spiking patterns recorded in two 

male monkeys performing the identical task. fMRI activity patterns were distinct for 

movements of different fingers, but quite similar for flexion and extension of the same 

finger. In contrast, spiking patterns in monkeys were quite distinct for both fingers and 

directions, similar to what was found for muscular activity patterns. The discrepancy 

between fMRI and electrophysiological measurements can be explained by two (non-

mutually exclusive) characteristics of the organization of finger flexion and extension 

movements. Given that fMRI reflects predominantly input and recurrent activity, the 

results can be explained by an architecture in which neural populations that control 

flexion or extension of the same finger produce distinct outputs, but interact tightly with 

each other and receive similar inputs. Additionally, neurons tuned to different movement 

directions for the same finger (or combination of fingers) may cluster closely together, 

while neurons that control different finger combinations may be more spatially separated. 

When measuring this organization with fMRI at a coarse spatial scale, the activity 
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patterns for flexion and extension of the same finger would appear very similar. Overall, 

we suggest that the discrepancy between fMRI and electrophysiological measurements 

provides new insights into the general organization of fine finger movements in M1. 

3.2 Introduction 

Dexterous movements of fingers require accurate coordination of different hand muscles. 

Hand muscles are innervated by motorneurons in the ventral horn of the spinal cord, 

which receive direct and indirect projections from the hand region of the contralateral 

primary motor cortex (M1) (Lemon, 2008). In monkey species capable of better finger 

individuation, direct (monosynaptic) projections from M1 to ventral horn motor neurons 

are more pronounced (Heffner & Masterton, 1983; Bortoff & Strick, 1993). Lesions to 

the corticospinal tract (Tower, 1940; Lawrence & Kuypers, 1968; Lawrence & Hopkins, 

1976; Sasaki et al., 2004) or to M1 (permanent: Liu & Rouiller, 1999; Darling et al., 

2009; reversible: Schieber & Poliakov, 1998) result in a significant loss of finger 

individuation. Such symptoms are also reported in human stroke patients who have 

damage to the hand area of M1 or the descending corticospinal pathway (Lang & 

Schieber, 2003; Xu et al., 2017). These results indicate that M1 is important for the fine 

control of individuated finger movements. 

What is less well understood is how this cortical control module for finger movements is 

organized. Here, we studied this question by investigating cortical activation patterns 

evoked during flexion and extension of individual fingers. Previous electrophysiological 

work in macaque monkeys (Schieber & Hibbard, 1993; Schieber & Poliakov, 1998) have 

indicated that motor cortical neurons have complex tuning functions, often responding to 

movements of multiple fingers and to both flexion and extension movements. Therefore, 

there exists no clearly organized “map”, with separate regions dedicated to the control of 

a single finger. Instead, the population of M1 neurons involved in hand control must be 

organized by some other principle.  

One plausible principle is that the statistics of natural hand use shapes the organization of 

neuronal populations in the hand region of M1. This idea predicts that movements that 

commonly co-occur in every-day life are represented in overlapping substrates in M1 
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(Graziano & Aflalo, 2007). In humans, fingers with high correlations between their joint-

angle velocities during every-day hand movements (Ingram, et al., 2008) have been 

shown to have more similar M1 activity patterns, as measured with fMRI (Ejaz et al., 

2015). The correlation structure of every-day finger movements nearly fully explained 

the relative similarities of M1 finger activity patterns, and fit the data better than a model 

that used the similarity of the required muscle activity patterns (i.e., predicting that 

movements that use similar muscles also have similar activity patterns) or a somatotopic 

model (i.e., predicting that fingers are represented in an orderly finger map). 

In this paper, we asked to what degree this kinematic hypothesis could generalize to 

movements of the same finger in different directions. We measured the activity evoked in 

the hand area of M1 using high-field fMRI while human participants performed near-

isometric single finger flexion and extension presses with their right hand. By 

extrapolating the model used in Ejaz et al. (2015) to this situation, we predicted that each 

movement should have its own, clearly separated representation in M1, as flexion and 

extension movements of the same finger can never co-occur. Indeed, it has been recently 

suggested that human motor cortex has multiple representations of each finger, one 

dedicated to flexion and one to extension (Huber et al., 2020). 

We found, however, that the measured M1 fMRI patterns for flexion and extension of the 

same finger were strikingly similar, much more similar than would be expected for two 

movements that cannot co-occur. This similarity was not the result of co-contraction 

during the task. To better understand these results, we investigated the representational 

structure of single-neuron activity in M1 of two macaque monkeys trained on the same 

flexion-extension task (data from Schieber & Rivlis, 2005; Schieber & Rivlis, 2007). The 

spiking patterns in monkeys were quite distinct for fingers and directions. From these 

results, we propose two, non-mutually exclusive hypotheses about the organization of 

finger movement representations in the primary motor cortex. 
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3.3 Methods 

3.3.1 Human participants 

Nine healthy, participants were recruited for the study (5 males and 4 females, mean 

age=24.78, SD=4.68; mean Edinburgh handedness score=90.11, SD=11.34). Participants 

completed 3 experimental sessions. During the first training session, participants learned 

to perform the finger individuation task. In the scanner session, participants performed 

the finger individuation task while undergoing fMRI. In the EMG session, participants 

performed the finger individuation task while muscle activities were recorded. All 

participants provided informed consent before the beginning of the study, and all 

procedures were approved by the Office for Research and Ethics at the University of 

Western Ontario. 

3.3.2 Experimental design of human finger individuation task 

In all three (training, scanning, and EMG) sessions, the five fingers of the right hand were 

individually clamped between two keys (Fig. 3.1A). Foam padding on each key ensured 

each finger was comfortably restrained. Force transducers (Honeywell-FS series, 

dynamic range=0-16N, resolution<0.02N, sampling rate=200Hz) above and below each 

key monitored the forces applied by each finger in extension and flexion directions. 

During the task, participants viewed a screen that presented two rows of five bars (Fig. 

3.1B). These bars corresponded to flexion or extension direction for each of the five 

fingers of the right hand. The forces applied by each finger were indicated on the visual 

display as five solid white lines (one per finger). On each trial, participants were cued to 

make an isometric, single-finger flexion or extension press at one of three forces levels 

(1, 1.5, or 2N for extension; 1.5, 2, or 2.5N for flexion) through the display of a white 

target box (Fig. 3.1B). Extension forces were chosen to be lower than flexion forces, as 

extension finger presses are more difficult (Valero-Cuevas, Zajac, & Burgar, 1998; Li, et 

al., 2003) and can lead to more enslaving (i.e., co-articulation) of non-instructed fingers 

(Yu, Duinen, & Gandevia, 2010). This design yielded two levels of matched target forces 

for flexion and extension presses (1.5 and 2N). The forces were similar to the low forces 
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required in the monkey task design. The finger displacement required to achieve these 

force thresholds was minimal, such that the finger presses were close to isometric. 

Each trial lasted 6000ms and consisted of four phases (Fig. 3.1B): a cue phase (1500ms), 

a press phase (2000ms), a hold phase (1000ms), and a 1500ms inter-trial interval. This 

trial structure was designed to mirror the NHP task (see NHP methods and also  Schieber, 

1991). During the cue phase, a white box appeared in one of the ten finger bars presented 

on screen, indicating the desired finger and direction. The desired pressing force was 

reflected by the relative location of the cue within the finger bar. After 1500ms, the cue 

turned green. This instructed the participant to initiate the finger press. Participants had 

up to 2000ms after the cue turned green to reach the specified force. Once the pressing 

force was within the target box (target force ±12.5%) the cue turned blue. Participants 

were trained to hold the force constant within this interval for 1000ms. When this time 

had elapsed, the cue disappeared and the participants were instructed to release the press 

by relaxing their hand. Importantly, participants were instructed not to actively move the 

finger in the opposite direction. A new trial started every 6s. For the scanning session, 

periods of rest were randomly intermixed between trials (see below). The muscle 

recording sessions lacked these rest periods, but otherwise had the same trial structure. 

Trials of the 30 conditions (5 fingers x 2 directions x 3 forces) were presented in a 

pseudo-random order. Trials were marked as errors if the participant was too slow (i.e., 

did not initiate movement within 2000ms of the go-cue), pressed the wrong finger or in 

the wrong direction, or if the participant did not reach at least 0.5N force with the cued 

finger in the cued direction. Due to the pre-training, the participants had low error rates in 

both the fMRI (mean error rate across conditions=1.48% ±1.05% sem) and EMG (mean 

error rate across conditions=1.30% ±0.97%) sessions, and accurately produced the 

required target forces (fMRI: mean peak force accuracy=108.93% ±2.56% of the target 

forces; EMG: mean accuracy=107.80% ±2.19%). Therefore, we included all trials in 

subsequent analyses. 

We also did not exclude any trials based on finger co-activation. Overall, participants 

were able to individuate their fingers relatively well. During fMRI extension trials, the  
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Figure 3.1: Experiment paradigms 

(A) Human participants made isometric single finger presses in the flexion and extension 

directions on a custom-built keyboard. Each finger of the right hand was clamped between two 

keys, and each key was associated with a force transducer either above (keyboard on top of hand) 

or below (keyboard under the hand) the key to monitor forces applied in the flexion and extension 

directions, respectively.  

(B) Schematic illustration for a single trial in the fMRI and EMG sessions, with associated visual 

feedback shown below. The white lines represent the produced force for each finger. Applying 

flexion to a finger key moved the associated line down (vice-versa for extension). The cue box 

(centred at target force) was initially presented as white at the trial start, and turned green to cue 

the participant to make the finger press (here, index finger extension). The box turned blue to 

instruct participants to maintain the current force. At the end of the press hold, the cue box 

disappeared and participants relaxed their hand.  

(C) The monkey hand configuration and device (illustration from Schieber, 1991).  

(D) Trial schematic for the monkey task. The columns represent 5 LED cues (one per finger) 

which instructed the monkey both what finger and what direction to press. The monkeys had up 

to 700ms from the onset of the go cue to press the cued finger in the cued direction. They were 

trained to hold the press for 500ms before relaxing the finger. 
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forces applied through the non-instructed fingers were, on average, 14.01% (±1.41%) of 

the forces applied by the instructed finger. During fMRI flexion, forces produced by non-

instructed fingers was 20.51% (±1.49%) of the force produce by the instructed finger. 

Most enslaving occurred during presses of the middle, fourth, and little fingers, all of 

which are difficult to individuate (Schieber, 1991). Note, however, that the presence of 

enslaving does not compromise the main finding of our paper. To some degree, neural 

activity patterns related to flexion and extension of single fingers will always depend on 

the biomechanical coupling between fingers, either because the cortical activation 

patterns need to overcome that coupling, or because coupling does occur, which then 

influences the recurrent sensory input. Our main conclusions are based on comparisons 

between flexion and extension presses, and remain valid whether we study the actions of 

isolated fingers, or groups of fingers (see discussion). 

3.3.3 fMRI acquisition and analysis 

3.3.3.1 Image acquisition 

We used high-field functional magnetic resonance imaging (fMRI, Siemens 7T 

Magnetom with a 32 channel head coil at Western University, London, Ontario, Canada) 

to measure the blood-oxygen-level dependent (BOLD) responses in human participants. 

For each participant, evoked-BOLD responses were measured for isometric, single-finger 

presses in the flexion and extension directions. 

There were 2 repeats of each condition during each imaging run (5 fingers × 2 directions 

× 3 force levels × 2 repeats = 60 trials). Trial order in each run was randomized. In 

addition, 5 rest conditions of 6000ms were randomly interspersed between trials within 

each run. Each run lasted approximately 390 seconds. Participants performed 8 such runs 

during the scanning session.  

During each run, 270 functional images were obtained using a multiband 2D-echoplanar 

imaging sequence (GRAPPA, in-plane acceleration factor=2, multi-band factor=2, 

repetition time [TR]=1500ms, echo time [TE]=20ms, flip angle [FA]=45 deg). Per image, 

we acquired 32 interleaved slices (without gap) with isotropic voxel size of 1.5mm. The 

first 2 images in the sequence were discarded to allow magnetization to reach 
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equilibrium. To estimate magnetic field inhomogeneities, we acquired a gradient echo 

field map at the end of the scanning session. Finally, a T1-weighted anatomical scan was 

obtained using a magnetization-prepared rapid gradient echo sequence (MPRAGE) with a 

voxel size of 0.75mm isotropic (3D gradient echo sequence, TR=6000ms, 208 volumes). 

3.3.3.2 Image preprocessing and first-level analysis 

Functional images were first realigned to correct for head motion during the scanning 

session (3 translations: x,y,z; 3 rotations: pitch, roll, yaw), and co-registered to each 

participant’s anatomical T1-image. Within this process, we used a B0 fieldmap to correct 

for image distortions arising from magnetic field inhomogeneities (Hutton et al., 2002). 

Due to the relatively short TR (1.5s), no slice-timing correction was applied. Nor was the 

data spatially smoothed or normalized to a standard template. 

The minimally preprocessed data were then analysed using a general linear model (GLM; 

Friston et al., 1994) using SPM12 (fil.ion.ucl.ac.uk/spm/). Each of the finger-direction-

force conditions were modeled with separate regressors per run, resulting in 30 regressors 

per run (30*8 runs = 320 task regressors), along with an intercept for each run. The 

regressor was a boxcar function that started at the presentation of the go-cue and lasted 

for the trial duration, spanning the press, hold, and release periods of each trial. The 

boxcar functions were convolved with a hemodynamic response function with a delayed 

onset of 1000ms and a post-stimulus undershoot at 7500ms. Given the low error rate, we 

did not exclude any trials from this analysis. To model the long-range temporal 

autocorrelations in the functional timeseries, we used the SPM FAST autocorrelation 

model with restricted-maximum likelihood estimation (see Arbuckle et al., 2019 for 

details). High-pass filtering was then achieved by temporally pre-whitening the 

functional data with this temporal autocorrelation estimate. This analysis resulted in one 

activation estimate (“beta-weights”) for each of the 30 conditions per run for each 

participant. For visual display (as in Figure 2) and further analysis, the beta values were 

divided by the root-mean-square error from the first-level GLM to yield a t-value per 

voxel for each condition in each run. 
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3.3.3.3 Surface reconstruction and ROI definition 

Each participant’s T1-image was used to reconstruct the pial and white-grey matter 

surfaces using Freesurfer (Fischl, Sereno, & Dale, 1999). Individual surfaces were 

aligned across participants and spherically registered to match a template atlas (Fischl, 

Sereno, Tootell, & Dale, 1999) using a sulcal-depth map and local curvature as 

minimization criteria. M1 was defined as a single region of interest (ROI) on the group 

surface using probabilistic cytoarchitectonic maps aligned to the template surface (Fischl 

et al., 2008). We defined M1 as being the surface nodes with the highest probability for 

Brodmann area 4 and who fell within 2.5cm above and below the hand knob anatomical 

landmark (Yousry et al., 1997). To avoid cross-contamination between M1 and S1 

activities along the central sulcus, voxels with more than 25% of their volume in the grey 

matter on the opposite side of the central sulcus were excluded. 

3.3.3.4 Multivariate fMRI analysis 

We used the cross-validated squared Mahalanobis dissimilarity (i.e., crossnobis 

dissimilarity) to quantify differences between fMRI activity patterns for each pressing 

condition within each participant (Walther, et al., 2016; Diedrichsen, et al., 2020). Cross-

validation ensures the dissimilarity estimates are unbiased, such that if two patterns differ 

only by measurement noise, the mean of the estimated dissimilarities would be zero. This 

also means that estimates can sometimes become negative (Diedrichsen, Provost, & 

Zareamoghaddam, 2016). Therefore, dissimilarities significantly larger than zero indicate 

that two patterns are reliably distinct.  

The fMRI activity patterns were first-level GLM beta-weights for voxels within the M1 

ROI mask. Analyses were conducted using functions from the RSA (Nili et al., 2014) and 

PCM (Diedrichsen, Yokoi, & Arbuckle, 2018) MATLAB toolboxes. The crossnobis 

dissimilarity d between the fMRI activity patterns (x) for conditions i and j was 

calculated as 

𝑑𝑖,𝑗 =  
1

𝑀
∑(𝒙𝑖 − 𝒙𝑗)

𝑚

𝑇
𝛴−1(𝒙𝑖 − 𝒙𝑗)

~𝑚

𝑀

𝑚
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where the activity patterns from run m are multiplied with the activity patterns averaged 

over all runs except m (~m). Σ is the voxel-wise noise covariance matrix, estimated from 

the residuals of the GLM, and slightly regularized to ensure invertibility. Multivariate 

noise-normalization removes spatially correlated noise and yields generally more reliable 

dissimilarity estimates (Walther et al., 2016). 

The dissimilarities are organized in a representational dissimilarity matrix (RDM). The 

RDM is a symmetric matrix (number of conditions x number of conditions in size) with 

off-diagonal values corresponding to the paired distance between two conditions. Values 

along the diagonal are zero, as there is no difference between a pattern paired with itself. 

We calculated an RDM for the matched force conditions separately (i.e., the 1.5N and 2N 

presses, 10 conditions each), and then averaged the resulting RDMs within each 

participant. This yielded one RDM per participant containing the crossnobis 

dissimilarities between presses of the five fingers in either direction (10 conditions, 45 

dissimilarity pairs). 

3.3.3.5 Estimating spatial tuning of fingers and direction 

We considered the possibility that fingers and directions could be encoded at different 

spatial scales in M1. We therefore estimated the spatial covariance of tuning for fingers 

and directions. Within each imaging run, we averaged the fMRI activity patterns (t-

values) for each condition across the matched forces (1.5 and 2N). This yielded a vector 

of 10 activity values per voxel (one value per each finger per direction), which we refer 

to as an activity profile. We modeled the activity profile values (𝑦𝑖,𝑗) of each voxel and 

partition using three components: 

𝑦𝑖,𝑗 = 𝑓𝑖 + 𝑑𝑗 + 𝑞𝑖,𝑗 

where 𝑓𝑖 is the main effect of finger 𝑖, 𝑑𝑗 is the main effect of direction 𝑗, and 𝑞𝑖,𝑗 is the 

finger x direction interaction effect. We used ordinary least-squares regression to estimate 

the finger and direction components. The residual from the regression was taken as 

estimate of the interaction component.  
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We first reconstructed the activity profiles using only the finger component (𝑓), and then 

estimated the covariance of the finger activity profiles between voxel pairs in M1. These 

covariances were calculated in a cross-validated fashion: we averaged the reconstructed 

activity profiles for odd and even runs separately, and then then computed the covariance 

of the activity profile of different voxels across independent partitions of the data. Given 

that the estimates for all components contained some noise, normal covariance estimates 

are biased by the spatial structure of the noise. Cross-validation alleviates the influence of 

noise on (co-) variance estimation, as the average of the product of noise across odd and 

even runs is zero.  

We then binned the covariances based on the spatial distance between each voxel pair 

and averaged the covariances within each bin. The first bin included only the cross-

partition covariance between each voxel and itself (i.e., the cross-validated estimate of 

the voxel variances). The second bin contained the covariances between immediately and 

diagonally neighbouring voxels (1.5 to 2.6mm), the third bin the second layer of direct 

and diagonally neighbouring voxels (>2.6 to 5.2mm), and so on, up to a total distance of 

20.8mm. Finally, we normalized the binned covariances by the cross-validated voxel 

variances (value of the first bin) to obtain an estimate of the spatial autocorrelation 

function (ACF) for fingers in M1. 

We used the same procedure to estimate the ACF for direction. Importantly, we included 

both the direction (𝑑) and the finger x direction interaction (𝑞) components in the activity 

profile reconstruction. We included the interaction component as we hypothesized that 

the tuning of voxels to flexion and extension patterns would be different across fingers.  

Finally, we estimated the smoothness of the finger and direction ACFs (Diedrichsen, 

Ridgway, Friston, & Wiestler, 2011). To do this, we fitted a function that decayed 

exponentially with the square of the distance (𝛿) between voxels (𝑣): 

𝐴𝐶𝐹(𝑣𝑥, 𝑣𝑥+𝛿) =  exp (−
𝛿2

2𝑠2
) 
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Here, 𝑠 is the standard deviation of the ACF. If neighbouring voxels are relatively 

independent (i.e., low covariance), the value of 𝑠 will be small. While we can use 𝑠 to 

express the smoothness of the ACF, the smoothness can also be expressed as the full-

width-half-maximum (FWHM) of the Gaussian smoothing kernel that – when applied to 

spatially independent data – would yield the same ACF. The standard deviation of this 

Gaussian kernel is √1/2𝑠, and the FWHM is calculated as: 

𝐹𝑊𝐻𝑀 = 2𝑠√log(2)  

We applied this approach to the reconstructed finger and direction activity profiles 

separately to estimate the FWHM of fingers and direction M1. The goodness of fit 

(evaluated with 𝑅2) of the fitted exponential decays were both high (mean 𝑅2 of finger 

ACF=0.960 ±0.008 sem, mean 𝑅2 of direction ACF=0.908 ±0.020 sem). Although there 

was a significant difference between the finger and direction model 𝑅2 (two-sided paired 

t-test: t8=2.412, p=0.0424), the mean difference was quite small (0.052 ±0.021sem). 

3.3.3.6 Centre-of-Gravity (CoG) Analysis 

We analysed the activity patterns to determine if there were significant differences in the 

spatial arrangement of finger flexion and extension, as proposed by Huber et al. (2020). 

To ensure our analysis closely matched this previous report, we restricted the CoG 

analysis to include only surface nodes from Brodmann area 4a, as based on the 

probabilistic atlas (Fischl et al., 2008). We also restricted the analysis to the hand region 

by selecting only vertices within 1.5cm of the hand knob anatomical landmark. On the 

flattened activity maps for each finger, we then calculated the centre-of-gravity (CoG) of 

each map as the average spatial location (𝑥̂, 𝑦̂) of each surface node (𝑖), weighted by its 

respective t-value (𝑡): 

𝑥̂ =
∑ 𝑥𝑖𝑡𝑖

𝑃
𝑖=1

∑ 𝑡𝑖
𝑃
𝑖=1

 

𝑦̂ =
∑ 𝑦𝑖𝑡𝑖

𝑃
𝑖=1

∑ 𝑡𝑖
𝑃
𝑖=1

. 
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In the above calculations, we set negative t-values equal to zero, thereby focusing our 

spatial analysis on regions that showed activity increases. We used a two-factor repeated-

measures MANOVA to test for significant differences between the measured CoGs for 

different fingers and directions. To summarize the structure of the spatial arrangement, 

we calculated the pairwise Euclidean distances between the CoG coordinates for each 

condition, and arranged them into an RDM. 

3.3.4 EMG recording and analysis 

3.3.4.1 EMG recordings and preprocessing 

In a separate session, we recorded hand and forearm muscle activity to ensure 

participants performed the task as instructed. During the EMG session, participants were 

seated upright, whereas during the fMRI session participants lay prone in the scanner. In 

both sessions, however, we ensured that the arm was in a relaxed position, the palm of 

the hand was supported by the device, the wrist slightly extended, and the elbow joint 

slightly bend. Thus, wrist and forearm posture, both known to influence muscle activity 

during finger movements (Beringer, et al., 2020; Mogk & Keir, 2003) were matched 

across the two sessions. Participants’ skin was cleaned with rubbing alcohol. Surface 

EMG of distal muscles of the hand were recorded with self-adhering Ag/AgCl cloth 

electrodes (H59P-127 repositionable monitoring electrodes, Kendall, Mansfield, 

Massachusetts, USA). Electrodes were cut and positioned in line with a muscle in a bi-

polar configuration with an approximate 1cm inter-electrode distance. Surface EMG of 

proximal limb muscles were recorded with surface electrodes (Delsys Bagnoli-8 system 

with DE-2.1 sensors). The contacts were coated with a conductive gel. Ground electrodes 

were placed on the ulna at the wrist and elbow. The signal from each electrode was 

sampled at 2000Hz, de-meaned, rectified, and low-pass filtered (fourth order butterworth 

filter, 𝑓𝑐=40Hz). 

3.3.4.2 Multivariate EMG analysis 

We used the crossnobis dissimilarity to quantify differences between patterns of muscle 

activities for each movement condition, similar to the fMRI analysis. This metric is 

invariant to scaling of the EMG signals from each electrode, and has been established in 
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previous work (Ejaz, Hamada, & Diedrichsen, 2015). Briefly, we first calculated the 

average square-root EMG activity for each electrode and trial by averaging over the press 

and hold time windows (mean window= 1800ms, up to a max window of 3000ms). We 

then subtracted the mean value for each electrode across conditions for each run 

independently to remove any drifts in the signal. These values were then divided by the 

standard deviation of that electrode across trials and conditions to avoid arbitrary scaling. 

Finally, we calculated the crossnobis dissimilarity between pairs of EMG activity patterns 

for different conditions across runs. 

3.3.5 Experimental design of monkey finger individuation task 

The behavioural task performed by two male Macaca mulatta monkeys (monkeys C and 

G) has been described previously (Schieber, 1991; Schieber & Rivlis, 2007). Briefly, the 

monkeys were trained to perform cued single finger flexion and extension presses. Each 

monkey sat in a primate chair and, similar to the human device described above, their 

right hand was clamped in a device that separated each finger into a different slot (Fig. 

3.1C). Each slot was comprised of two microswitches (one in the flexion direction and 

one in the extension direction). One switch was closed by flexing the finger, the other by 

extending the finger. The absolute degree of movement required to close either switch 

was minimal (a few millimeters), and therefore the force required to make and hold a 

successful press was small- similar to the human finger individuation task. Therefore, like 

the fMRI task behaviour, these finger movements are very close to isometric presses. 

A series of LED instructions were presented to the monkey during each trial (Fig. 3.1D). 

A successful trial occurred when the monkey pressed the cued finger in the cued direction 

without closing any other switch. Similar to our human experiment design, the monkeys 

were trained to hold the cued switch closed for 500ms, before relaxing the finger (Fig. 

3.1D). At the end of a successful trail, the monkey received a water reward. The 

monkey's wrist was also clamped in this device, and some trials required the monkey to 

flex or extend the wrist. Wrist trials were not included in the current analysis. Flexion and 

extension trials of each finger and wrist were pseudorandomly ordered. In the case of a 

behavioural error, trials were repeated until successful. Therefore, we excluded all trials 
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with an error and also the successful trials that followed error trials to avoid potential 

changes in the baseline firing rate of the recorded neuron. 

In contrast to the human task, the required force level for the monkeys was the same for 

all trials – therefore, they did not receive continuous visual feedback about the force 

produced. Instead, they received small tactile feedback when the switch closed, a feature 

that was absent from the human task. In spite of these small differences in feedback, the 

task requirements were well matched across species: Both monkey and humans were 

required to produce low, well-controlled forces with a single finger, while keeping forces 

on the non-instructed fingers minimal, either to avoid unwanted switch-closure, or 

excessive movement of the associated visual feedback. 

3.3.6 Analysis of single cell spiking data 

3.3.6.1 Spike rate calculation 

Single cells were isolated and spike times were recorded while monkeys performed the 

finger individuation task. The details of the recordings are reported previously (Poliakov 

& Schieber, 1999). Each trial was labeled with a series of behavioural markers, indicating 

the time of trial onset, presentation of condition cue, switch closure, and reward onset. 

For the spike rate traces plotted in Figure 3.4, we calculated the spike rate per 10ms bin, 

aligned to press onset, and smoothed the binned rates with a Gaussian kernel 

(FWHM=50ms). For the dissimilarity analysis (see below), we calculated the average 

spike rate over time per trial starting at go cue onset (when the monkey was instructed as 

to which finger and direction to press) until the end of the hold phase (500ms after switch 

closure). This time window encompassed a short period of time prior to the start of the 

finger press and the entire hold duration of the press (Monkey C: mean window= 739ms; 

Monkey G: mean window=773ms). 

3.3.6.2 Multivariate spiking analysis 

Similar to the human fMRI and EMG analyses, we computed crossnobis dissimilarities 

between spiking patterns for different conditions within each monkey. To cross-validate 

the estimated distances, we restricted our analysis to include cells for which we had at 
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least two successful trials for each finger in both directions. This criteria yielded 44801 

trials from 238 cells in monkey C (median number of trials per cell=168, median number 

of trials per condition per cell=19) and 5535 trials from 45 cells in monkey G (median 

number of trials per cell=115, median number of trials per condition per cell=12). After 

calculating the average spike rates, we arranged the spike rates into vectors per condition 

(Fig. 3.4B). In order to account for the Poisson-like increase of variability with increasing 

mean firing rates, we applied the square-root transform to the average firing rates (Yu et 

al., 2009).  

For each cell per condition, we randomly split the square-root spike rates from different 

trials into one of two partitions. The random splits contained approximately the same 

number of trials, which ensured that each condition was approximately equally 

represented in each partition. We then averaged the spike rates within each partition. This 

yielded two independent sets of spiking patterns per monkey (10 patterns- 5 fingers x 2 

directions). Per partition, we normalized each neuron’s spike pattern by dividing by the 

neuron’s max rate across conditions, and then re-weighted the normalized spike rates per 

cell according to the number of trials per cell (cells with more trials were up-weighted, 

vice versa for cells with fewer trials). Finally, we calculated pairwise cross-validated 

Euclidean distances between the two sets of patterns. We repeated this RDM calculation 

procedure 1000x per monkey, each time using a different random partitioning of the data. 

We then averaged the RDMs across iterations to yield one RDM estimate per monkey. 

We note that results were not dependent on the normalization we chose- results were 

qualitatively consistent when using raw firing rates, z-scoring the firing rates, not 

applying trial re-weighting, and various combinations of these approaches. 

3.3.7 Kinematic finger model RDM 

As in Ejaz et al. (2015), we used the statistics of naturalistic hand movements to predict 

the relative similarity of single finger representations in M1. In the text we refer to this 

model as the kinematic model. To construct the kinematic model RDM, we used hand 

movement statistics from an independent study in which 6 male participants wore a cloth 

glove imbedded with motion sensory (CyberGlove, Virtual Technologies) while they 

performed everyday activities (Ingram et al., 2008). These statistics included the 
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velocities about joint angles specific to each of the five fingers of the participants’ right 

hands. Positive velocities indicated finger flexion, and negative velocities indicated finger 

extension. 

Because the movement in our finger pressing task was restricted to movements about the 

metacarpal (MCP) joint of each finger, we used the MCP joint velocities to predict 

cortical M1 finger similarity. First, we split the data for each joint velocity into two 

vectors: one for flexion and one for extension, taking the absolute of the velocities in this 

process. During periods of finger flexion, we set the extension velocity to zero, and vice 

versa. This resulted in 10 velocity vectors (5 fingers x 2 directions). Then, to account for 

differences in scaling, we normalized each velocity vector to a length of 1. Finally, we 

calculated the dissimilarities between pairs of these processed velocity vectors. We 

averaged these RDMs across the six participants in the natural statistics dataset, yielding 

one kinematic model RDM. 

3.3.8 Experimental design and statistical analysis 

3.3.8.1 Statistical analysis of dissimilarities 

We summarized the RDMs by classifying dissimilarities into finger-specific and 

direction-specific dissimilarities for each participant and dataset. Finger-specific 

dissimilarities were the dissimilarities between conditions where different fingers were 

pressed in the same direction (10 pairs for flexion, 10 pairs for extension). Direction-

specific dissimilarities were the dissimilarities between conditions where the same finger 

was pressed in different directions (5 pairs total). Within each category, dissimilarities 

were averaged. For the human data, we used one-sided, one-sample t-tests to test if mean 

finger and direction dissimilarities were greater than zero. To compare between the 

average finger and direction dissimilarities, we used two-sided paired t-tests. We report 

the mean and standard error of the dissimilarities where appropriate in the text. 

3.3.8.2 Statistical analysis of RDM correlations 

Pearson’s correlations between the vectorized upper-triangular elements of the RDMs 

were used to compare different RDMs (Ejaz et al., 2015). To calculate the stability of 
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RDMs, we calculated the Pearson’s correlations between all possible pairs of the 

participants’ RDMs. This yielded 36 correlations (one per unique participant pair). We 

Fisher-Z transformed these correlations and calculated the mean and standard error. We 

used these values to calculate the lower and upper bounds of the 95% confidence interval, 

assuming normality. Finally, the mean and confidence bounds were transformed back to 

correlations. We report these values in the text as r=mean [lower bound - upper bound]. 

The same method was applied to correlations between measured RDMs and model 

predictions. Note that because we used a within-subject design, the muscle model 

predictions were specific to each human participant. In contrast, the kinematic model 

prediction was the same for each participant because data for this model was obtained 

from an independent study. Paired t-tests were performed on Fisher-z transformed 

correlations to compare fits between models. 

3.3.8.3 Estimating noise ceiling for RDM model fits 

Since the dissimilarities between fMRI patterns can only be estimated with noise, even a 

perfect model fit would not result in a perfect correlation with the RDM of each 

participant. Therefore, we estimated the noise ceiling, which places bounds on the 

expected model correlations if the model is a perfect fit. We first calculated the average 

correlation of each participant’s RDM with the group mean RDM (Nili et al., 2014), 

treating the mean RDM as the perfect model. The resulting average correlation is an 

overestimate of the best possible fit, as each RDM is correlated with a mean that includes 

that RDM (and hence also the measurement error of that RDM). To then estimate a lower 

bound, we calculated the correlation between a participant’s RDM and the group mean 

RDM in which that individual was removed. 

3.4 Results 

3.4.1 M1 fMRI activity patterns differ strongly for different fingers, 

not for direction 

We measured activity patterns evoked in M1 in human participants (n=9) while they 

performed a near-isometric finger flexion-extension task in a 7T MRI scanner. 

Participants’ right hands were clamped in a device that had force transducers mounted 
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both above (extension) and below (flexion) each finger (Fig. 3.1A) to record forces 

produced at the distal phalanges. The device limited the overall degree of movement to a 

few millimeters, thereby making the task near-isometric. On each trial, participants were 

cued to press a single finger in one direction, while keeping the other fingers as relaxed 

as possible (Fig. 3.1B). They had to reach the required force level, hold it for 1 second, 

and then simply relax their hand to let the force passively return to baseline. This aspect 

of the task instruction was critical to ensure that participants did not activate the 

antagonist muscles during release.  

Figure 3.2 shows the activity patterns measured in left M1 (contralateral to movement) 

for three participants during right-handed finger presses at 2N. As previously observed 

(Ejaz et al., 2015), the activity patterns did not consist of focal regions of activity 

dedicated to each finger. Rather, the spatial patterns were complex and involved multiple 

overlapping regions within the M1 hand area. Furthermore, the inter-subject variability in 

the spatial organization of these patterns was considerable. 

One common observation across all participants, however, was that the activity patterns 

were different between different fingers (e.g., index flexion vs. fourth flexion), but rather 

similar for flexion and extension of the same finger (e.g., index flexion vs. index 

extension). We used representational similarity analysis (RSA) to quantify these 

observations by calculating a measure of dissimilarity (crossnobis dissimilarity, see 

Methods) between each pair of fMRI patterns. Large dissimilarity values indicate that the 

two patterns are quite distinct with little overlap. A value of zero indicates that the two 

patterns are identical and only differ by noise. We restricted the analysis to conditions 

with matched force levels across flexion and extension. The group-averaged 

representational dissimilarity matrix (RDM) is shown in figure 3.3A. Both within the 

finger flexion and extension conditions, there was a characteristic structure with the 

thumb activity pattern being the most distinct and neighbouring fingers tending to have 

more similar activity patterns. Across directions, activity patterns evoked by pressing the 

same finger in different directions were the most similar. This representational structure 

was quite stable across participants (average inter-participant Pearson’s r=0.790, 95% CI: 

[0.754-0.820]). 
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Figure 3.2: fMRI activity patterns for finger flexion and extension in human M1 

Evoked fMRI activity maps (t-values) for three participants for each of the 5 fingers pressing in 

the extension and flexion directions at 2N. Results were normalized to a surface-based atlas. Maps 

are shown in the hand-knob region of the left (contralateral) hemisphere. The black dotted line 

shows the fundus of the central sulcus. The upper inset shows the average sulcal depth. 
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To obtain predictions for flexion and extension movements, we needed to adapt the 

natural usage model, proposed by Ejaz et al. (2015). This model used kinematic finger 

data, specifically the joint-angle velocities of the metacarpal (MCP) joints, recorded 

while subjects participated in their normal, every-day tasks (data from Ingram et al., 

2008).  

Fingers were predicted to have more similar representations if their movement velocities, 

across flexion and extension, were positively correlated. For the current experiment, we 

split the data into periods of finger flexion and finger extension (see methods), resulting 

in 10 time series, and calculated the correlation between them (after taking the absolute 

value). 

The estimated kinematic RDM (Fig. 3.3B) showed similar structures within flexion and 

extension movements. The thumb was the most distinct compared to the other fingers, 

and for the remaining fingers there was a clear similarity structure with neighbouring 

fingers more similar than non-neighbouring. This structure very closely mirrored those 

found for fMRI activity patterns: flexion and extension fMRI RDMs correlated strongly 

with the corresponding kinematic models for flexion (r=0.727 [0.635-0.800]) and 

extension (r=0.797 [0.684-0.873]) RDMs (Fig. 3.3C, white). Compared to the noise 

ceiling (grey bar in Fig 3C, which reflects the best possible model fit given measurement 

noise: see methods) the natural use model accounted for 79.9% and 84.9% of the variance 

in the flexion and extension fMRI RDMs, respectively.  

In contrast, the kinematic model completely failed to predict the relationships between 

activity patterns for flexion and extension. Because flexion and extension of the same 

finger can never co-occur, the kinematic model predicts that the movements are 

associated with quite distinct cortical activity patterns. The measured fMRI patterns, 

however, were rather similar for these two actions. As a result, the full kinematic model 

was not a good fit to the full fMRI RDM (r=0.086 [0.038-0.133]), much below the noise 

ceiling (r=0.875 [0.822-0.913]).  
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Figure 3.3: Representational structure of fingers and direction in human M1 

(A) Group average of the fMRI representational dissimilarity matrix (RDM).  

(B) Predicted RDM from the kinematic model. To aid visual inspection, the values of the RDMs 

in A and B are plotted as the square-root of the dissimilarities. All statistical analyses of the RDMs 

are done on squared distances.  

(C) Model fits (Pearson’s correlation) of the kinematic (white) and muscle (grey) models to the 

M1 RDM for flexion, extension, and the full RDMs (the indices for each RDM are shown on the 

right). The muscle model was specific to each participant and was estimated from the EMG data. 

The grey bars denote noise ceilings (theoretically the best possible fits). Each dot reflects one 

participant, and thin grey lines connect fits of each model to the same participant. Black bars 

denote the means, and black dashed lines denoted the mean paired difference. *significant 

differences between model fits (one-sided paired t-test, p<0.05); ∤ significantly lower than the 

noise ceiling (two-sided paired t-test, p<0.05); n.s. not significant (p>0.05). 
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Thus, although the statistics of movement co-occurrence was a good predictor 

for representational similarity between the activity patterns for different fingers (i.e., 

within flexion or extension), this simple model failed to predict the relative organization 

of the patterns for flexion and extension of the same finger. Even though flexion and 

extension of the same finger cannot co-occur, their fMRI activity patterns were highly 

similar. In the remainder of the paper, we explore a number of possible explanations for 

this finding and propose a candidate model of the organization. 

3.4.2 Similarities of cortical representations for presses in different 
directions cannot be explained by the patterns of muscle 
activity 

We first considered the possibility that the structure of similarity between flexion and 

extension presses can be explained by the patterns of muscle activity required by these 

movements. Specifically, it is possible that participants co-contracted both agonist and 

antagonist muscles, or that they activated the antagonistic muscles when returning to 

baseline. Given the temporally sluggish nature of the blood-oxygen level-dependent 

(BOLD) signal measured with fMRI, either behaviour could cause the cortical activity 

patterns evoked during flexion to resemble activity patterns during extension (and vice 

versa). Therefore, we conducted a control experiment with the same participants outside 

the MR scanner, during which we recorded surface electromyography (EMG) from 14 

sites of the hand and forearm in the participants (Fig. 3.4A), while they performed the 

same isometric finger flexion-extension task as in the fMRI session. Performance on the 

task was comparable to that during the fMRI scan. 

As an example, the participant-averaged EMG data from an electrode placed above the 

abductor digiti minimi (ADM) muscle (Fig. 3.4B) showed that the ADM muscle was 

recruited only during the flexion of the little finger. During extension of the same finger, 

the muscle was silent, both during hold and release. In general, we found very little 

evidence for co-contraction of the antagonist muscle. 

For a quantitative analysis, we averaged the muscle activity from the time of the go-cue 

to the end of the hold phase. The EMG patterns averaged across participants (Fig. 3.4C) 
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already allow for two observations. First, the muscle activities for the same movement at 

different force levels were very similar and increased with increasing force. The average 

correlation across force levels for each finger-direction combination was high, indicating 

the same muscles were consistently recruited to perform the same finger press across 

different force levels (within participant correlations: r=0.860 [0.808-0.898]). Second, 

quite distinct muscle groups were recruited to produce forces with the same finger in 

different directions. The average correlation between the pattern of muscle activity 

recruited to press the same finger in different directions was low (within participant 

correlations: r=0.244 [0.150-0.334]). 

We then derived a muscle-based RDM by calculating the crossnobis 

dissimilarity between normalized activity patterns for each condition. As for the fMRI 

analysis, we included the patterns for the matched force conditions only. The group 

averaged matrix RDM (Fig. 3.4D) was only moderately stable across participants 

(average inter-participant Pearson’s r=0.480 [0.379-0.570]), likely reflecting the fact that 

there was some degree of inter-individual variation in electrode placement.  

We tested to what degree the patterns of muscle activity, specific to each participant, 

could explain the cortical similarity structure between individual finger movements 

within the flexion or extension directions. For the flexion direction, the fit of the muscle 

model (r=0.611 [0.408-0.757]) was lower than that for the kinematic model in 6 out of 9 

participants (Fig. 3.3C), but the difference did not reach statistical significance (one-sided 

paired t-test kinematic>muscle: t8=1.775, p=0.0569). For the extension direction, the 

muscle model fit substantially worse (r=0.020 [-0.147-0.187]), significantly less than the 

kinematic model (one-sided paired t-test kinematic>muscle: t8=5.588, p=2.59e-4). This 

generally confirms the results reported in Ejaz et al. (2015) that the relative similarities of 

M1 finger flexion activity patterns is better explained by the correlation structure of 

everyday movements than the correlation structure of the required muscle activity 

patterns. Our new results now show that this observation generalized also to extension 

movements.  

  



90 

 

  

Figure 3.4: Quantifying similarity of muscle activity patterns during finger flexion 

and extension 

(A) Fourteen surface electrode sites. APB, abductor pollicis brevis; FPB, flexor pollicis brevis; 

2-4Lum, lumbricals; ADM, abductor digiti minimi; 1-4DO, interossei dorsales; PFr/u, flexor 

digitorum profundus (radial/ulnar regions); PEr/u, extensor digitorum profundus (radial/ulnar) 

(B) Group averaged normalized EMG (normalized, per participant, to peak activity from this 

electrode across trials) from the ADM muscle (electrode #6) during 2N little finger (5) flexion 

(dark grey) and extension (light grey) trials, aligned to hold onset (0s). During extension 

movement (light grey trace, >1000ms), this flexor muscle was not recruited. Shaded areas reflect 

standard error of the mean. Traces were smoothed with a gaussian kernel (FWHM=25ms).  

(C) Average muscle activity across participants, normalized by peak activation across conditions 

(per participant), recorded from the 14 electrode sites during the flexion extension task. Each 

condition was measured under 3 force conditions.  

(D) Group average representational dissimilarity matrix (RDM) of the muscle activity patterns. 

As in figure 2, the RDM is plotted as square-root dissimilarities to aid visual inspection. 
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Critically, however, the muscle activity model did not provide a good explanation for the 

similarity between flexion and extension patterns. The fit for the full muscle model 

(r=0.146 [0.055-0.235]) was as poor as for the kinematic model (two-sided paired t-test 

muscle vs. kinematic: t8=1.082, p=0.3108) and significantly below the noise ceiling (two-

sided paired t-test noise ceiling vs. muscle: t8=12.701, p=1.39e-6). Thus, neither the co-

occurrence of movements, nor the pattern of muscle activities can explain the high 

similarity of activity patterns for finger flexion and extension in M1. 

3.4.3 M1 spiking output differs equally for fingers and direction 

To what degree is the high similarity between flexion and extension patterns a function of 

fMRI as the measurement modality? To approach this question, we analysed the spiking 

activity of output neurons in M1 during an equivalent single-finger individuation task in 

two trained non-human primates (Macaca mulatta, data from Schieber & Rivlis, 2005 & 

2007). To facilitate this, we had designed the behavioural task for the human fMRI 

experiment to closely match the task for the monkeys, such that we could make strong 

comparisons across species and measurement modalities. Figure 3.5A shows the 

condition averaged firing rate traces from a single neuron from this data set. This neuron 

displayed strong preference (increased firing rates) for flexion of the middle finger and 

extension of the index finger. As previously reported (Schieber & Hibbard, 1993), the 

population of M1 neurons demonstrated complex, heterogeneous tuning across fingers 

and directions.  

To compare the representational structure from spiking data to that obtained with fMRI, 

we calculated the mean firing rate for each neuron from the go-cue onset to the end of the 

hold phase during each trial. We then calculated dissimilarities between the population 

responses for different conditions (see Methods), similar to the analysis of the human 

EMG and fMRI data. The average RDM is shown in Figure 3.5C. Similar to the structure 

of representations in human M1, the thumb activity patterns for both directions were the 

most distinct, and neighbouring fingers had more similar activity patterns. In contrast to 

the fMRI data, however, the spiking patterns for flexion and extension of the same finger 

were quite distinct. 
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Figure 3.5: Analysis of M1 spiking activity during monkey single  finger flexion 

and extension 

(A) Trial averaged firing rates from one cell (monkey C). Traces are aligned to press onset (0s). 

This cell demonstrates selective tuning to middle finger flexion and index finger extension. Firing 

rates were calculated for 10ms bins and smoothed with a gaussian kernel (FWHM=50ms). Shaded 

areas reflect standard error across trials.  

(B) Averaged firing rates for a subset of cells from monkey C, arranged by condition. Cell #13 is 

plotted in A. Firing rates are normalized to the peak rate per cell.  

(C) Average monkey RDM (square-root dissimilarities). 
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To quantify this observation, we averaged dissimilarities between different fingers 

pressing in the same direction (finger-specific) and the same finger pressing in different 

directions (direction-specific). The finger and direction-specific dissimilarities were close 

in magnitude for both monkeys (Fig. 3.6A). Also, the human EMG patterns had roughly 

matched direction and finger-specific dissimilarities (Fig. 3.6B). In contrast, the same 

analysis on the human fMRI data showed a clear and significant difference between these 

two kinds of dissimilarities (Fig. 3.6C).  

For a statistical comparison, we then calculated the ratio between dissimilarities between 

different directions and dissimilarities between different fingers (Fig. 3.6D). The fMRI 

ratio was significantly lower than 1 (mean ratio=0.298 ±0.071; one-sided one-sample t-

test: t8=-9.858, p=4.72e-6), indicating stronger representation of fingers compared to 

direction. In contrast, both the spiking patterns (monkey C ratio=1.173, monkey G 

ratio=1.025) and the human muscle patterns (mean ratio=0.984 ±0.051) differed similarly 

for different fingers and different directions, with the muscle ratios being significantly 

larger than those for human fMRI (two-sided paired t-test: t8=9.733, p=1.04e-5). Thus, 

we found a clear difference between the structure of fMRI patterns and the structures of 

spiking and muscle activity patterns.  

We suggest that this difference is informative about the general organization of finger 

flexion and extension movements in M1. The discrepancy between the two measurement 

modalities can likely be attributed to two (non-mutually exclusive) differences between 

fMRI and electrophysiology. First, the fMRI signal is dominated by excitatory inputs and 

local synaptic signaling, and only partly reflects the spiking activity of output neurons 

(Logothetis et al., 2001). Therefore, the overlapping fMRI activity patterns for flexion 

and extension might reflect similar inputs and shared local processes within these cortical 

areas, while the output spiking of these two population remains quite distinct in order to 

produce the different patterns of muscle activity required for fine finger control.  

Second, fMRI samples a proxy of neuronal activity in a coarse manner, averaging across 

~200,000 cortical neurons per mm3 in M1 (Young, Collins, & Kaas, 2013). Thus, even 

high-resolution fMRI is biased to functional organization at a coarse spatial scale  
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Figure 3.6: Comparing strength of finger and direction representations across 

datasets 

The average finger and direction-specific dissimilarities for the spiking (A), human EMG (B), 

and human fMRI (C) datasets. Each dot denotes one participant, and lines connect dots from the 

same participants. Black bars denote the means, and black dashed lines reflect the mean paired 

differences. ∤ dissimilarities significantly larger than zero (one-sided t-test, p<0.05). *significant 

difference between finger and direction dissimilarities (two-sided paired t-test, p<0.05).  

(D) The ratio of the direction-to-finger dissimilarities for each dataset. Values <1 indicate stronger 

finger representation. ∤ dissimilatrities significantly lower than one (one-sided t-test, p<0.05). 

*significant differences between dissimilarity ratios (two-sided paired t-test, p<0.05). 

(E) Estimated spatial autocorrelations of finger (black) and direction (grey) pattern components 

in human M1, plotted as a function of spatial distance between voxels. No significant difference 

was observed between finger and direction tuning in M1. The thick lines denote the median spatial 

autocorrelation functions, and small lines are drawn for each participant for each pattern 

component. The vertical shaded bar denotes the distance between voxel size, for which 

correlations can be induced by motion correction.  

(F) Centre-of-gravity (CoG) of activation elicited by single finger presses in the flexion or 

extension direction for each participant. CoGs were aligned across participants prior to plotting 

by subtracting the centre of the informative region within each participant (i.e the mean CoG 

across all conditions). A somatotopic gradient for finger flexion and extension in Brodmann area 

4a is visible with the thumb being more ventral and the little finger more dorsal.  

(G) Group average RDM of the paired Euclidean distance between condition CoGs. 
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(Kriegeskorte & Diedrichsen, 2016), and so our results could be caused by an 

organization where neurons tuned to different movement directions for the same finger 

(or combination of fingers) are clustered together, while neurons that control different 

fingers or finger combinations are more spatially separated. 

3.4.4 Spatial organization of finger- and direction-related fMRI 

patterns 

To investigate the second explanation directly, we attempted to determine whether the 

activity patterns associated with different fingers were organized on a coarser spatial 

scale than the patterns associated with flexion and extension of a given finger. Using the 

fMRI data, we calculated to covariance of the finger-specific and direction-specific 

activations for each pair of voxels within M1, and binned these covariances according to 

the spatial distance between voxel pairs (see Methods). If direction is encoded at a finer 

spatial scale than fingers, we would expect finger effects to be correlated over larger 

spatial distances. 

In contrast to this prediction, the spatial correlation functions for fingers and direction 

were quite similar (Fig. 3.6E). We estimated the full-width at half-maximum (FWHM) of 

the spatial autocorrelation functions. To account for outliers, we evaluated the median 

FWHMs. The median FWHM of the finger spatial kernel in M1 was 3.22mm 

(mean=3.44mm ±0.24 sem), comparable to previous reports (Diedrichsen et al., 2011; 

Wiestler, McGonigle, & Diedrichsen, 2011). The median FWHM of the direction spatial 

kernel in M1 was 4.65mm (mean=4.77mm ±0.84 sem), and there was no significant 

difference between the two (two-sided paired Wilcoxon signed-rank test, finger vs. 

direction: W=11, p=0.2031; two-sided paired t-test finger vs. direction: t8=-1.417, 

p=0.1942). Therefore, we did not find any direct empirical support for the idea that 

differences between flexion and extension patterns are organized at a finer spatial scale 

than differences between fingers. However, our analysis was itself limited by the spatial 

resolution of 7T fMRI, such that we cannot rule out the possibility that subpopulations 

for different directions are interdigitated at a sub-voxel scale. 
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Additionally, we did not find evidence of a substantial spatial separation of flexion vs. 

extension movements, as was suggested by Huber et al. (2020). These authors observed 

two sets of digit maps in Brodmann area 4a, with one set being more activated for whole 

hand grasping, and the other more activated for whole hand retraction movements. From 

this, the authors suggested that each individual finger map has a preferential function role 

in guiding flexion and extension movements. To test this idea with our fMRI data, we 

calculated the centre-of-gravity (CoG) of the activity maps for each finger pressing in the 

flexion and extension directions in Brodmann area 4a (see Methods). 

As shown in figure 3.6F, both finger flexion and extension CoGs revealed the expected 

overall somatotopic gradient, with thumb movements activating more ventrolateral areas 

and the little finger activating more dorsomedial areas in 4a (2-factor repeated-measures 

MANOVA, finger factor: Wilks’ Λ(4,32)=0.28, p=2.2075e-6). However, there was no 

significant difference in these digit maps across flexion and extension movements (2-

factor repeated-measures MANOVA, direction factor: Wilks’ Λ(1,8)=0.88, p=0.6427; 

finger x direction interaction: Wilks’ Λ(4,32)=0.65, p=0.0793). We then calculated the 

pairwise Euclidean distances between the condition CoGs (Fig. 3.6G) and compared the 

between and within finger distances, as done previously. Replicating the results from the 

fMRI RSA analysis, we found that pressing different fingers resulted in more spatially 

distinct activation patterns compared to pressing the same finger in different directions 

(mean ratio=0.67 ±0.04; one-sided one-sample t-test ratio<1: t8=-8.003, p=4.356e-5). 

This finding in inconsistent with the idea of separate flexion and extension finger maps.  

3.5 Discussion 

Here we investigated how the population activity in M1 is organized for control of 

flexion and extension of single fingers. We analysed M1 population activity measured in 

humans with 7T fMRI and spiking data from NHPs while participants made isometric 

single finger presses in either direction. Importantly, we ensured the behavioural tasks in 

both experiments were carefully matched to allow us to compare results across the two 

datasets.  
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We first demonstrated that the representational structure of single finger flexion or 

extension presses in human M1 measured with fMRI were relatively well explained by 

the natural statistics of every-day movements, replicating the flexion results reported in 

Ejaz et al. (2015) and extending them to single finger extension movements. The same 

model, however, failed to correctly predict the relationship between flexion and extension 

movements. Because flexion and extension of the same finger cannot temporally co-

occur, the model predicted quite separate representations for the two actions. In our data, 

however, we observed the opposite effect – cortical M1 activity patterns measured with 

fMRI in humans were very similar for the flexion and extension of the same finger, as 

compared to the quite distinct patterns for different fingers. We also analysed spiking 

data from a similar task in two monkeys and found that the similarity of finger flexion 

and extension were specific to fMRI: In the monkey electrophysiological recordings, 

different movement directions were associated with distinct patterns of neuronal activity.  

The discrepancy between the fMRI and electrophysiological measures suggest a specific 

organization of finger flexion and extension movements in M1 (Fig. 3.7). This suggested 

architecture has two characteristics that likely contribute to the observed difference 

between measurement modalities.  

First, we hypothesize that neurons that contribute to the flexion of a finger receive similar 

sensory input as neurons that contribute to the extension of the same finger (dashed line, 

Fig. 3.7). There is evidence in the literature to support such an organization. In macaque 

M1, single neurons tuned to torque production at the shoulder integrate information from 

the shoulder and elbow joints to facilitate rapid corrective responses to mechanical arm 

perturbations (Pruszynski et al., 2011). Thus, these neurons receive common sensory 

input about the shoulder and elbow joints, but the output is largely specific to movements 

about the shoulder. Additionally, units controlling flexion and extension of the same 

finger a likely to directly communicate with each other (curved solid arrows, Fig. 3.7). 

Such coordination would be necessary to orchestrate fast alternation of finger movements 

and to finely control the grip force during object manipulation. 
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Figure 3.7: Summary model of M1 organization 

Output neurons in M1 produce complex patterns of muscular activity. We refer to groups of 

neurons that, together, evoke a complex pattern of muscle activity that results in single finger 

movements as functional units (circles). These functional units receive a control signal input for 

the upcoming movement (solid lines with arrows). Functional units that evoke movements of the 

same finger in opposite directions receive common inputs (dashed lines) and share strong 

recurrent connections (circular lines). The spiking output (solid lines without arrows) of these 

units, however, is directionally specific. Additionally, under the spatial scale model, functional 

units tuned to finger movements in different directions are clustered together according to their 

finger tuning. 
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This organization would lead to highly similar fMRI activity patterns. In cortical grey 

matter, the BOLD signal measured with fMRI reflects mainly excitatory postsynaptic 

potentials (EPSPs), caused by input to a region or recurrent activity within a region 

(Logothetis et al., 2001). This is because much of the metabolic costs associated with 

signal transmission arise from re-establishing resting membrane potential of neurons after 

an EPSP (Attwell & Laughlin, 2001; Magistretti & Allaman, 2015; Yu et al., 2018). 

Given that the input to subpopulations controlling flexion and extension of the same 

finger will be highly temporally correlated, the fMRI activity patterns for the two 

movements should also be very similar.  

At the same time, the two subpopulations need to produce distinct spiking outputs. To do 

so, the populations must receive a control signal input that defines whether to flex or 

extend a finger. Indeed, in our fMRI data, although flexion and extension patterns for the 

same finger were highly similar, we could still discriminate between the patterns. This 

control signal would influence how neurons react to sensory inputs and the information 

they exchange. Thus, the observed local variations in metabolic activity would be 

dissociated from the local neural firing rates (Picard, Matsuzaka, & Strick, 2013). 

As a second characteristic, we also hypothesize that units controlling muscle patterns that 

produce flexion and extension of the same effector are spatially co-localized to support 

fast and efficient communication. Because fMRI samples activity in a coarse manner, 

even high-resolution fMRI is biased to functional organization at a coarse spatial scale 

(Kriegeskorte & Diedrichsen, 2016). Therefore, features that exist at fine spatial scales in 

the neural population are under-represented in fMRI activity patterns. Our results could 

therefore be caused by an organization where neurons tuned to different movement 

directions for the same finger (or combination of fingers) are clustered together, while 

neurons that control different fingers or finger combinations are more spatially separated. 

We did not find any evidence for a difference in spatial organization of fingers and 

direction in the fMRI data. However, given that this comparison itself is limited by the 

spatial resolution of fMRI, we cannot rule out that differences in the fine-grained spatial 

organization also contributed to the observed effect.  
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Although we experimentally studied the flexion and extension of single fingers, we do 

not suggest that isolated finger movements are explicitly represented in M1. Rather, M1 

output neurons will produce a complex pattern of muscle activity. This complexity likely 

arises because the neuronal populations are optimized to produce muscle activities which 

elicit combinations of finger movements that are useful in everyday tasks (Poliakov & 

Schieber, 1999; Gentner & Classen, 2006; Ejaz et al., 2015). When we measure activity 

patterns related to movements of isolated fingers, we simply observe the specific 

combination of neuronal populations that need to be active to move a single finger 

(Schieber, 1990). The core of our hypothesis is that populations of neurons that produce 

opposing muscular patterns form a functional unit with increased communication, 

common sensory input, and potentially also spatial co-localization.  

Our findings are at odds with the organization suggested by Huber et al. (2020). Using 

high-resolution functional imaging in humans, the authors reported evidence of two 

spatially distinct finger maps in M1, one for flexion and one for extension. Consistent 

with Huber et al., we found that individuated finger activity patterns in M1 are fractured 

and have multiple hotspots (Fig. 3.2). However, we found no evidence for a clear spatial 

separation of flexion and extension finger into two action maps (Fig 3.6F-G). Even 

though the spatial resolution of BOLD imaging in our study was lower than that of the 

blood-volume based method employed by Huber et al., we should have been able to 

detect larger spatial separations between flexion and extension movements than between 

individual fingers. Instead, the opposite was the case. Both the RSA and the spatial 

analyses showed greater differences between fingers than between directions. These 

results, however, are not unexpected. Partial inactivation of neurons in the hand area of 

macaque M1 result in a complex loss of flexion and/or extension movements of different 

fingers (Schieber & Poliakov, 1998), and electrophysiological recordings from this same 

area show flexion and extension preference is not spatially clustered (Schieber & 

Hibbard, 1993). We believe that the differences between our results and those of Huber et 

al. are likely explained by the fact that Huber et al. did not study flexion and extension of 

individual fingers, but relied on a large spatial gradient detected between whole-hand 

grasping and retraction. We think this is problematic, as the control requirements of 

individual finger movements is qualitatively different from those of whole hand grasping. 
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That is, neuronal activity during whole hand grasping is not the sum of the neural activity 

during individuated finger flexion movements (Ejaz et al., 2015), but rather engages a 

different control mechanism. Consistent with this idea, electrophysiological studies have 

shown that the neural control of whole hand and individuated finger movements relies on 

different neural subpopulations (Muir & Lemon, 1983; Lemon, 2008).  

There are of course many caveats when comparing results across different recording 

methodologies, experimental setups, and species. While we tried to make the behavioural 

tasks across human and macaques as similar as possible, species differences or the 

extensive training for the non-human primates may account for some of the differences.  

Overall, however, we believe that the comparison between fMRI and spiking provides 

some interesting insights into the organization of the hand region of the primary motor 

cortex. Cortical representations of single finger movements are not purely dictated by the 

kinematics of hand usage. We posit that the deviation from this organization appears to 

reflect a control process, where neurons tuned to movements of a specific finger receive 

common sensory input and share local recurrent processes. These tightly coordinated 

populations then produce the spiking output that needs to be quite distinct for the flexion 

and extension of the same finger. 
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Chapter 4  

4 Mapping the integration of sensory information across 
fingers in human sensorimotor cortex 

In my final project, I examined how somatosensory inputs from the fingers are integrated 

in S1. Sensory inputs from all fingers must be integrated during everyday hand use. 

However, previous work studying sensory integration across fingers have been restricted 

to studying how inputs form two fingers interact. Therefore, the full nature of finger 

interactions is unknown. In this chapter, I addressed this gap and characterized the 

magnitude of multi-finger interactions that occur in S1. 

4.1 Abstract 

The integration of somatosensory signals across fingers is essential for dexterous object 

manipulation. Previous experiments suggest that neural populations in the primary 

somatosensory cortex (S1) are responsible for this integration. However, the integration 

process has not been fully characterized, as previous studies have mainly used two-finger 

stimulation paradigms. Here, we addressed this gap by stimulating all 31 single- and 

multi-finger combinations. We measured population-wide activity patterns evoked during 

finger stimulation in human S1 and primary motor cortex (M1) using 7T functional 

magnetic resonance imaging (fMRI). Using multivariate fMRI analyses, we found clear 

evidence of unique non-linear interactions between fingers. In Brodmann area (BA) 3b, 

interactions predominantly occurred between pairs of neighboring fingers. In BA 2, 

however, we found equally strong interactions between spatially distant fingers, as well 

as interactions between finger triplets and quadruplets, suggesting the presence of rich, 

non-linear integration of somatosensory information across fingers. 

4.2 Introduction 

When writing with a pen or manipulating a Rubik’s cube in one hand, the sensorimotor 

system needs to integrate somatosensory information from multiple fingers to estimate 

the object’s shape, position, and movement within the hand. The mechanism that 

underlies this integration, however, remains poorly understood. We hypothesized that, in 
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order to support flexible behavioural responses to any pattern of sensory stimulation 

across the hand, sensory inputs from neighbouring and non-neighbouring fingers need to 

be integrated in a non-linear fashion. This non-linear code could then provide the neural 

substrate necessary to detect any specific pattern of stimulation across the hand, and 

provide the basis for learning a flexible mapping between sensory inputs and motor 

responses of the hand.  

Stimulation to the fingers is relayed from mechanoreceptors via the cuneate nucleus to 

the thalamus, with signals from different fingers remaining largely segregated (Florence, 

Wall, & Kaas, 1988, 1989). Signals from different fingers begin to interact substantially 

only in S1 and M1 (Hsieh et al., 1995). Cortical sensory processing is critical for 

dexterous hand control, as perturbing either the transmission of somatosensory 

information from the hand to the cortex (Moberg, 1958; Monzée, Lamarre, & Smith, 

2003; Chemnitz, Dahlin, & Carlsson, 2013), or lesioning S1 (Carlson, 1981; Hikosaka et 

al., 1985; Brochier et al., 1999) grossly impairs fine manual dexterity. We refer here to 

S1 and M1 collectively as sensorimotor cortex. In the primate brain this comprises six 

cytoarchitectonically distinct Brodmann areas (BA): 4a, 4p, 3a, 3b, 1, and 2 (Brodmann, 

1909; Powell & Mountcastle, 1959; Geyer et al., 1996). Inputs from the thalamic 

somatosensory nuclei vary across these regions, with BA 3a and BA 3b receiving most of 

the inputs, BA 4a and BA 4p receiving a substantial amount, and BA 1 and BA 2 

receiving progressively fewer ( Jones & Powell, 1970; Jones, 1975; Shanks & Powell, 

1981; Darian-Smith & Darian-Smith, 1993). In nonhuman primates, neurons in BA 3b 

have receptive fields mainly devoted to single fingers, whereas in BA 1 and BA 2, 

receptive fields encompass multiple fingers (Hyvärinen & Poranen, 1978b; Sur, 1980; 

Iwamura et al., 1993). Measuring the coarse spatial organization for fingers in these 

regions with fMRI reveals comparable findings in humans, with finger representations 

becoming more spatially overlapping in posterior subregions of S1 (Krause et al., 2001; 

Martuzzi, et al., 2014; Besle et al., 2014). At the single-neuron level, paired finger 

stimulation generally results in lower firing rates relative to what would be expected from 

summing the firing rates resulting from single finger stimulation (Friedman, Chen, & 

Roe, 2008; Lipton et al., 2010; Reed et al., 2010; Thakur, Fitzgerald, & Hsiao, 2012). 
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Together, these findings have been interpreted as evidence that inputs from multiple 

fingers are integrated in the sensorimotor cortex (Iwamura, 1998; Yau et al., 2016).  

Everyday object manipulation often demands the integration of information across all 

fingers of the hand. In contrast, most previous studies have typically examined 

stimulation of only a few pairs of fingers. Consequently, the full nature of the interactions 

that occur between somatosensory inputs from all five fingers is not well characterized. 

Furthermore, it is unclear whether these previously reported suppressive interactions 

reflect the encoding of specific patterns of multi-finger stimulation (i.e., non-linear finger 

integration) or simply divisive normalization ( Carandini & Heeger, 2011; Brouwer et al., 

2015), where the inputs coming from individual fingers are linearly combined, but the net 

activity suppressed through a diffuse inhibition. Studies of finger integration in humans 

also share these limitations (Gandevia, Burke, & McKeon, 1983; Hsieh et al., 1995; 

Biermann et al., 1998; Ishibashi et al., 2000; Hoechstetter et al., 2001; Ruben et al., 

2006).  

Here, we addressed this gap by studying all 31 possible finger combinations by 

simultaneously stimulating one, two, three, four, or five fingers of the right hand. We 

measured activity patterns evoked in the hand area of the sensorimotor cortex using 7T 

fMRI while human participants experienced passive tactile stimulation. Consistent with 

previous work, we found progressive overlap of single finger representation in 

sensorimotor cortex. By analyzing the multivoxel activity patterns in each subregion, we 

also found clear evidence for progressively stronger multi-finger interactions in posterior 

S1 and M1. 

4.3 Results 

4.3.1 Finger stimulation evokes broadly distributed activity in 
sensorimotor cortex 

Using high-resolution 7T fMRI, we measured the activity patterns evoked by passive 

finger stimulation in the brains of 10 human participants. Stimulation was delivered 

independently to each fingertip of the right hand by indenting the skin with a small rod 

pushed by a pneumatic piston. We tested the entire set of 31 single- and multi-finger 
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combinations. To keep participants engaged during the experiment, they were instructed 

to detect rare mismatches between the stimulated combination and a visual probe 

presented after the stimulation (see Methods). 

Figure 4.1A shows the group-average percent signal change (relative to rest) during right-

hand finger stimulation on a flattened surface view of the cortical hand regions in S1 and 

M1 of the left hemisphere. During single-finger stimulation, evoked activity was low, but 

as more fingers were stimulated, we observed an increase in overall activity across 

subregions of the sensorimotor cortex. To statistically evaluate activity, we subdivided 

the hand region into six anatomically defined Brodmann areas using a cytoarchitectonic 

atlas (Fischl et al., 2008), spanning from BA 4a to BA 2 (see Methods). In each BA 

subregion, activity increased when more fingers were stimulated (all F(4,36)≥4.730, all 

p≤0.0036; see Fig. 4.1B). 

This activity increase does not provide a detailed view of how sensory information from 

different fingers is integrated in the human sensorimotor cortex. As a starting point to 

address this question, we quantified how dissimilar the local single-finger activity 

patterns were from each other. We used a crossvalidated estimate of the dissimilarity 

measure (crossnobis, see Methods), such that a value of zero indicated that patterns only 

differed by noise, and larger dissimilarity values indicated that the patterns were 

increasingly distinct. The average dissimilarities showed that single-finger stimulation 

evoked distinct finger patterns in all subregions (Fig. 4.1C), similar to the distribution of 

average activity. Indeed, all considered BA regions showed highly significant finger-

specific pattern differences (one-sided t-test>0: all t9≥3.012, all p≤0.0073, Bonferroni 

corrected -value=0.0083). Dissimilarities between all 2-, 3-, and 4-finger combinations 

showed a similar spatial distribution, although the overall magnitude of the dissimilarities 

was reduced compared to the single-finger patterns (Fig. 4.1D). This finding is expected 

because multi-finger combinations also share an increasing number of fingers. 
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Figure 4.1: Activation and representation of fingers in the sensorimotor cortex 

(A) Group-average percent signal change (relative to resting baseline) across all 31 possible finger 

combinations, projected to a flattened view of the left cortical sensorimotor areas around the 

central sulcus. Approximate boundaries of cyctoarchitectonic areas (Fischl et al., 2008) are 

indicated by white dotted lines. The gray background indicates the average sulcal depth, with gyri 

in light, and sulci in dark colours. The rectangle indicates the area of averaging in the cross-

sections in B and D. The scale bar approximates 1cm on the flattened surface.  

(B) Profile plot of the average percent signal change (±SEM across participants), grouped by the 

number of fingers in each combination.  

(C) Cortical surface map of the average crossnobis dissimilarity between activity patterns evoked 

by single-finger stimulation.  

(D) Profile plot of the average crossnobis dissimlarity (±SEM across participants) between pairs 

of single-finger, 2-finger, 3-finger, or 4-finger combinations. 
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4.3.2 Increasing overlap of single-finger patterns in sensorimotor 
cortex 

Based on previous electrophysiological (Hyvärinen & Poranen, 1978b; Sur, 1980; 

Iwamura et al., 1993) and fMRI (Martuzzi et al., 2014; Besle et al., 2014) results, we 

would expect to find relatively focal single-finger activation in BA 3b, with more overlap 

between fingers in other parts of the sensorimotor cortex. This seemed to be the case as 

shown in the single-finger patterns for two exemplary participants (Fig. 4.2A). Each 

finger activated a quite distinct region of BA 3b and BA 3a. In contrast, the spatial 

patterns for each finger in BA 1 and BA 2, as well as in M1 (BA 4a and BA 4p) were 

more complex and involved multiple “hot spots” per finger, with substantial overlap 

between fingers. 

We quantified this observation by computing a measure of finger-selectivity for each 

voxel. We selected voxels from each region that were significantly responsive to 

stimulation of any individual finger (see Methods), and scaled the responses of these 

voxels, such that the activity associated with the finger that evoked the largest positive 

response (i.e., the most-preferred finger) equaled 1, and the activity associated with the 

finger that evoked the smallest response (i.e., the least-preferred finger) equaled 0. If the 

voxel was only tuned to one finger, all non-preferred fingers would have a value of zero. 

The average scaled responses for the 4 non-preferred fingers therefore can be used as a 

measure of the selectivity of that voxel (Fig. 4.2B). To then define a selectivity index, we 

subtracted the averaged scaled responses for the 4 non-preferred fingers from 1, such that 

1 indicates maximal selectivity, and 0 equal activation for all fingers. We averaged the 

selectivity indices across voxels per participant in each region. 

Before comparing this selectivity index across regions, we needed to address one last 

problem – namely, regions with less reliable data could appear to be more broadly tuned 

to multiple fingers simply because higher measurement noise makes the tuning less clear. 

This is a concern because the strength of single-finger representations, as measured in the 

average pattern dissimilarities, varied across regions (Fig. 4.1D). Previous imaging work 

(Martuzzi et al., 2014; Besle et al., 2014) has not accounted for this potential confound. 

Here we addressed this issue by computing the expected selectivity indices for random  
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Figure 4.2: Finger tuning in the sensorimotor cortex 

(A) Activity patterns for each of the five fingers from one participant, projected onto a flattened 

cortical surface and cut to include BA 3a to BA 2 in each panel.  

(B) Average scaled voxel tuning curves arranged by most preferred finger (denoted by the gray 

box). Each colour corresponds to different regions.  

(C) Normalized finger selectivities per region. Light gray lines reflect normalized selectivities per 

participant, and solid black line reflects the average across participants. A-priori paired t-tests 

were conducted between selectivities from different regions, and lines above the plot denote 

significant differences. Errorbars in B and C reflect SEM across participants in each region. 
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tuning and for perfectly selective tuning, given the signal reliability in each region and 

each participant (see Methods). We then normalized the measured selectivity for each 

participant and region separately, with 0 indicating random tuning and 1 indicating 

perfect tuning for a single finger only. 

After carefully controlling for signal reliability across regions, we confirmed that voxels 

in BA 3b showed strong selectivity for single fingers (Fig. 4.2C), significantly more than 

expected from random tuning (one-sided t-test >0: t9=7.557, p=1.739e-5). In comparison, 

more posterior subregions of S1 were more broadly tuned, indicated by significantly 

lower selectivity indices compared to BA 3b (BA 1: t9=2.152, p=0.0299, BA 2: t9=4.839, 

p=0.0005). Indeed, in BA 2, the finger selectivity indices did not differ from what would 

be expected assuming random tuning curves (t9=1.687, p=0.8696). Moving anterior 

relative to BA 3b, voxels appeared less selective in BA 3a but this difference failed to 

reach statistical significance (t9=1.482, p=0.0862). 

Selectivity indices in M1 were significantly lower than in BA 3b, for both posterior (BA 

4p, t9=4.669, p=0.0006) and anterior portions (BA 4a, t9=3.052, p=0.0069). Rathelot and 

Strick (2009) proposed that “new M1” is more essential for individuated finger 

movements than “old M1”, from which one may predict that new M1 should show more 

selective single-finger representation. To test this prediction, we contrasted BA 4p and 

BA 4a, which may approximate old and new M1, respectively. Contrary to this prediction 

we found no difference in the average selectivity indices between these regions (t9=-

0.496, p=0.6841). Taken together, however, our analyses confirm the idea that sensory 

information from individual fingers is spatially quite segregated in BA 3b, but then 

continuously intermixes when moving more anterior or posterior in the sensorimotor 

cortex. 

4.3.3 Interactions between finger activity patterns explain spatial 
complexity of multi-finger patterns 

Having established that somatosensory inputs from different fingers heavily overlap in 

regions of the sensorimotor cortex, we then asked how somatosensory inputs are 

integrated across fingers. As a first step, we inspected the spatial activity patterns evoked 
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during multi-finger stimulation. Figure 4.3A shows the activity patterns from two 

exemplary participants during stimulation of the index finger, the little finger, or during 

stimulation of both fingers. The spatial patterns evoked by stimulating each finger had a 

relatively focal activation point in BA 3b. For the combined stimulation, we can see two 

areas of activation, one corresponding to the region active for the index finger, and the 

other corresponding to the region active during for the little finger. This suggests that the 

representation of inputs from multiple fingers in BA 3b may be linear, simply reflecting 

the superposition of activity caused by the stimulation of the individual fingers. We 

would expect such linearity if the inputs from different fingers do not interact with each 

other. 

In contrast, the multi-finger spatial pattern in BA 1 and BA 2 appeared more complex, 

with clusters of activity emerging during simultaneous stimulation that were not present 

when either finger was stimulated individually. Given that the neural populations 

representing each finger appeared to be more overlapping in these same regions, the 

complexity of the spatial patterns suggests the presence of an interaction between fingers.  

To test this idea formally, we fit a series of representational models to the activity 

patterns in each participant and region. These encoding-style models were fit to the 

activity patterns across all voxels in a subregion during single- and multi-finger 

stimulation, and then evaluated by their ability to predict multi-voxel activity patterns 

measured during an independent test run (see Methods). To compare model fits across 

regions, we normalized them to the performance of a null model and a noise-ceiling 

model. The null model predicted that the overall activity would increase when more 

fingers are stimulated, but that the activity patterns themselves would not differ between 

finger combinations. The noise-ceiling model was fit by estimating a unique pattern for 

each finger combination from the data, i.e. the model allowed for any arbitrary non-

linearity. The model fits were then normalised between the null model (0) and noise-

ceiling model (1), to express how much of the replicable finger-specific variation in the 

activity patterns each model could explain. Based on the observations in BA 3b, we first 

examined to what degree multi-finger patterns were simply the sum of the constituent 

single-finger patterns. The predictive performance of this linear model was significantly 



116 

 

better than that of the null model across the sensorimotor cortex (region x model 

ANOVA, main effect of model: F(1,9)=590.662, p=1.618e-9; see Fig. 4.3B), indicating 

that the linear model captured some reliable aspects of the spatial activity patterns. 

Furthermore, the normalized linear model fit varied across regions (region x model 

ANOVA, interaction effect: F(5,45)=7.308, p=4.385e-5). The best fit was observed in BA 

3b, with significantly lower fits in all other regions (all t9≥4.139, all p≤0.0025, evaluated 

at a Bonferroni corrected -value=0.01) except BA 3a (t9=2.822, p=0.0200), where the 

difference was not significant after correction. Importantly, in all regions the linear model 

predicted the data significantly worse than the noise-ceiling model (all t9≥5.318, all 

p≤0.0005), suggesting that there were unexplained systematic non-linearities.  

To visualize more generally how the linear model fit across the sensorimotor cortex in a 

region-blind manner, we applied the same model fitting to data from regularly tessellated 

regions (Fig. 4.3C, see Methods). This yielded similar results, with good fits in BA 3b 

and increasing non-linearities in regions anterior and posterior to it.  

We then considered the possibility that non-linearities in how the activity patterns for 

single fingers combine would arise from the interaction of pairs of fingers, perhaps via 

local surround-inhibition or divisive normalization between two finger representations. 

Therefore, we created a two-finger interaction model, which explained all patterns as the 

sum of the component single-finger patterns, as well as their two-finger interactions (see 

Methods). Across all regions, this two-finger interaction model predicted left-out data 

significantly better than the linear model (region x model ANOVA, main effect of model: 

F(1,9)=209.851, p=1.526e-7). 

The amount of variance explained by these two-finger interactions, however, differed 

across regions (Fig. 4.3D). While the two-finger interactions lead to a small gain in 

predictive performance in BA 3b (8.44±0.83%), the gain was over four times larger in 

BA 2 (37.37±4.41%). Indeed, the region x model interaction effect was highly significant 

(F(5,45)=9.753, p=2.320e-6). This indicates that a larger proportion of the pattern variance 

could be explained in regions outside of BA 3b when including interaction effects 

between pairs of fingers. 
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Figure 4.3: Multi-finger activity patterns in the somatosensory cortex 

(A) Exemplar activity patterns from the participants displayed in Figure 2A.  

(B) Representational model fits were normalized to the null model (0) and the noise-ceiling (1) 

in each region in each participant. Dots reflect the mean and error bars reflect SEM across 

participants per region.  

(C) Surface map of the linear model fit (median across participants) in tessels where there were 

significant differences between all finger combination patterns (average paired dissimilarities 

between finger combination patterns ≥0.005). The dashed outline indicates the area shown in 3A 

and 2A.  

(D) Difference between the fits of the 2-finger interaction model and the linear model in each 

tessel (median across participants).  

(E) Difference between the noise-ceiling and the fit of the 2-finger interaction model in each 

tessel. Note that the colour scale for C is different than that for D and E.  

(F) The full 2-finger interaction model (red line) was compared to a model that only contained 

the adjacent (black markers) or the non-adjacent (white markers) finger-pairs. Asterisks denote 

significantly lower model fits compared to using all interactions (two-sided paired t-test, p<0.05). 
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4.3.4 Interactions do not only arise between adjacent fingers 

Do the non-linear interactions between fingers described above arise mostly between 

adjacent fingers or do interactions also arise between spatially distant fingers of the hand? 

Previous work has shown that stimulating adjacent fingers leads to lower activity 

compared to non-adjacent fingers, which has been interpreted as evidence that adjacent 

fingers interact more than non-adjacent fingers (Biermann et al., 1998; Friedman et al., 

2008; Hsieh et al., 1995; Ishibashi et al., 2000; Lipton et al., 2010). However, whether 

adjacent finger interactions are stronger across all regions of the sensorimotor cortex is 

not known. We investigated this by fitting two variants of the full two-finger interaction 

model, either including only the interaction terms for either adjacent or non-adjacent 

finger-pairs. Using only the non-adjacent pairs resulted in significantly lower model 

performance in all regions compared to using all finger-pairs (all t9≤–5.609, all p≤0.0003; 

see Fig. 4.3F). When we used the adjacent finger pairs, the model performance was not 

significantly reduced in BA 4p (t9=–0.605, p=0.5600), BA 4a (t9=–2.793, p=0.0210), and 

BA 3a (t9=–1.318, p=0.2199) when correcting for multiple comparisons (-

value=0.0083). In contrast, the fits in BA 3b, BA 1, and BA 2 were significantly lower 

(all t9≤–4.611, all p≤0.0013). This suggests that in posterior regions of the sensorimotor 

cortex, interactions between both adjacent and non-adjacent finger-pairs were important 

in explaining the multi-finger activity patterns. Furthermore, a significant region x model 

interaction (F(5,45)=3.199, p=0.0148) indicated that the effect of finger adjacency differed 

across regions. In BA 2, the predictive power of adjacent or non-adjacent interactions 

was comparable (two-sided paired t-test: t9=–1.403, p=0.1941), whereas non-adjacent 

interactions were significantly less important in all other subregions (all t9≤–3.090, all 

p≤0.0130). This suggests that BA 2 shows strong interactions between finger-pairs 

irrespective of finger adjacency. 

4.3.5 Complexity of finger interactions increases along 
sensorimotor cortex 

Thus far, we have demonstrated that population activity across sensorimotor cortex 

strongly represents two-finger interactions. However, in order to provide the neural 

substrate necessary to skillfully manipulate an object held in the entire hand, the 
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sensorimotor system needs to be able to detect specific patterns of stimulation across all 

fingers. Therefore, we should find evidence for integration of information across more 

than two fingers.  

In BA 3b and BA 3a, the two-finger interaction model provided a good fit to the multi-

finger activity patterns. In these regions, the model performance of the two-finger 

interaction model was very close to the noise-ceiling model, accounting for 98.42±0.38% 

and 95.37±2.40% of the reliable pattern variance, respectively. While a small significant 

difference remained in BA3b (two-sided paired t-test: t9=4.162, p=0.0024), the two-

finger interaction model explained the activity patterns as well as the noise-ceiling model 

in BA 3a (t9=1.916, p=0.0877). Thus, neural populations in BA 3b and BA 3a do not 

appear to provide a unique, and hence linearly separable, representation of all possible 

multi-finger combinations. 

In contrast, the predictive performance of the two-finger interaction model was still lower 

than the noise-ceiling in the other regions (all t9≥3.142, all p≤0.0119; see Fig. 4.3E). We 

therefore considered the interactions of three fingers in our models (see Methods). By 

including three-finger interactions, we were able to explain the activity patterns as well as 

the noise-ceiling model in BA 4a (t9=2.183, p=0.0569). In BA 4p, BA 1, and BA 2, 

however, performance was still significantly lower than the noise-ceiling (all t9≥2.731, 

p≤0.0232). Only after including four-finger interactions were we able to fully explain the 

activity patterns in these remaining regions (all t9≤2.154, p≥0.0597). This suggests that 

the interactions in the most anterior and posterior regions of the sensorimotor cortex are 

more complex, involving non-linear interactions between three or more fingers. 

Therefore, our results appear to indicate that BA1, BA2, and also BA4 integrate sensory 

information arriving from multiple fingers to create a unique representation of specific 

patterns of multi-finger stimulation. 

4.3.6 Finger interactions do not reflect a general suppression of 
activity 

There is, however, an alternative and relatively simple mechanism that could give rise to 

the poor performance of the linear model in subregions of the sensorimotor cortex. 
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Specifically, it may be the case that the single-finger activity patterns combine linearly, 

but that the overall activity in each region is scaled in a non-linear fashion. Such non-

linear scaling could arise from divisive normalization of the overall activity within the 

region, or from non-linearities between neural activity and the BOLD signal. 

To test this, we expanded the linear model to allow for non-linear scaling of overall 

activity (see Methods). Indeed, this linear-nonlinear model provided a significantly better 

fit than the original linear model in all BA regions (two-sided paired t-test: all t9≥6.105, 

all p≤0.0002; see Fig. 3B). This alone should not be too surprising, given that the average 

activity did not scale linearly with the number of fingers stimulated (Fig. 4.1B). 

Importantly, however, the predictive performance of the two-finger interaction model 

remained significantly better than that of the linear-nonlinear model in BA 3a, BA 3b, 

BA 1, and BA 4 (all t9≥3.395, all p≤0.0079). Although this difference was not significant 

in BA 2 after applying Bonferroni correction for multiple comparisons (t9=3.291, 

p=0.0094, -value=0.0083), the two-finger interaction model still accounted for 

15.23±4.63% more pattern variance in this region. Furthermore, compared to the higher-

order interaction models, the linear-nonlinear model performed substantially worse in BA 

2 (flexible vs. three-finger: t9=–2.837, p=0.0195; four-finger: t9=–3.715, p=0.0048), and 

more generally across the sensorimotor cortex (Fig. 4.3B). Therefore, the non-linearities 

captured by our multi-finger interaction models likely reflect complex interactions that 

arise between specific sets of finger patterns, rather than simply reflecting a general non-

linear scaling of activity across the region. 

4.4 Discussion 

In this study, we investigated how somatosensory information coming from the fingers is 

integrated in different areas of the sensorimotor cortex. We hypothesized that to guide 

skillful object manipulation, the sensorimotor system needs to be able to detect relatively 

arbitrary combinations of sensory inputs across fingers, requiring non-linear integration 

of any pair, triplet, and quadruplet of fingers. We reported that voxels in BA 3b tend to be 

selectively tuned to the inputs from a single finger, whereas regions anterior and posterior 

show less finger-specificity, even after we controlled for differences in signal to noise. In 
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previous work, this broader tuning to multiple fingers has often been interpreted as 

evidence for finger integration (Iwamura et al., 1993; Martuzzi et al., 2014). However, 

spatial overlap itself only suggests that individual fingers are represented in overlapping 

neural populations– it does not necessarily mean that information from different fingers is 

integrated. By using the full set of multi-finger combinations and representational model 

analyses, we could show that the multi-finger patterns could not be explained by a simple 

linear combination of the single-finger patterns. Rather, most regions showed clear non-

linearities, which not only reflected interactions between pairs of finger-pairs, but by any 

combination of multiple fingers.  

An important strength of our experimental design was that it allowed us to test whether 

the observed non-linearities really reflected integration of information across the fingers. 

Alternatively, a relatively simple explanation for our results is that the activity patterns 

caused by single finger stimulations are simply summed but that the overall activity is 

then suppressed in a non-linear fashion. Previous studies  have been unable to distinguish 

between these two explanations, as they used very few multi-finger combinations, 

making it difficult to dissociate global non-linear activity suppression from unique non-

linear interactions (Gandevia et al., 1983; Hsieh et al., 1995; Biermann et al., 1998; 

Ishibashi et al., 2000; Hoechstetter et al., 2001; Ruben et al., 2006; Lipton et al., 2010; 

Brouwer et al., 2015). Having stimulated all possible multi-finger combinations, we had 

sufficient leverage to distinguish between these two possibilities and were able to rule out 

simple global suppression. That is, the interactions we report in this paper likely reflect 

rich, non-linear integration of sensory inputs from the fingers. 

The fit of the linear combination model was greatest in BA 3b, where neurons have 

receptive fields that are largely restricted to single fingers (Sur, 1980; Iwamura et al., 

1993) and preferentially code for tactile features that can be extracted from local spatial 

regions such as stimulus edge orientation (Hyvärinen & Poranen, 1978a; Bensmaia et al., 

2008). However, this is not to say that multi-finger integration was entirely absent in BA 

3b. Indeed, consistent with previous work (Reed et al., 2008, 2010; Lipton et al., 2010; 

Thakur et al., 2012), we found significant finger-pair integration in BA 3b. Interactions 

were stronger between adjacent fingers, indicating that the majority of integration that 
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occurs in BA 3b is across spatially close distances, as previously reported (Reed et al., 

2008). 

Moving posterior from BA 3b to BA 2, we observed progressively more complex multi-

finger interactions, with evidence for non-linear interactions of all possible multi-finger 

combinations in BA 2. This complexity matches the changes in tactile feature preference 

of individual neurons, shifting from local tactile features like edge orientation (Bensmaia 

et al., 2008) to higher-order features that span multiple fingers like object curvature (Yau, 

Connor, & Hsiao, 2013). The interactions also occurred for finger pairs of increasing 

spatial distance. Indeed, the interactions between adjacent and non-adjacent fingers were 

equally strong in BA 2. Such broad spatial integration is important for extracting spatially 

invariant higher-order tactile features of an object (Yau et al., 2016). Together, these 

observations provide empirical support for the hypothesis that tactile inputs from the 

hand are progressively elaborated along the sensory cortical pathway (Hyvärinen & 

Poranen, 1978b; Phillips, Johnson, & Hsiao, 1988; Iwamura, 1998). 

We also examined sensory processing in the hand area of M1, which has commonly been 

ignored in previous work. Although BA 4 is traditionally viewed as a motor area, it 

receives substantial inputs from the somatosensory thalamus (Jones, 1975; Darian-Smith 

& Darian-Smith, 1993) and from various areas of S1 (Ghosh, Brinkman, & Porter, 1987). 

Therefore, neural populations in this region may also be involved in integrating tactile 

inputs from the fingers, perhaps for rapid behavioural responses to object displacements 

(Crevecoeur et al., 2017; Hernandez-Castillo et al., 2020). Our results demonstrate that 

there were finger interactions in BA 4, and the strength of these interactions were 

comparable to those in BA 2. However, it is not clear whether these interactions arose 

specifically within BA 4 or reflect inputs from BA1 or BA 2. 

What benefit does non-linear finger integration of information from different fingers 

provide? From an ethological standpoint, non-linear finger integration allows for a more 

flexible mapping between sensory inputs and motor responses. For example, consider the 

scenario where you are holding a cup in your hand and must prevent it from slipping out 

of your grasp. Any movement of the cup across your fingers will provide stimulation, but 
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the appropriate behavioural responses to these inputs differ. For example, a downward 

movement of the object would cause slip in the same direction across all fingers, whereas 

an object rotation would elicit slip signals in opposite directions on the index and little 

finger. Only a non-linear integration of the slip-direction signals, therefore, would allow 

the mapping of these different patterns to distinct motor responses. 

More broadly, our results are also in agreement with recent evidence from multi-whisker 

stimulation studies in rodents, where multi-whisker combinations are uniquely 

represented by neural populations in the rodent barrel cortex (Laboy-Juárez et al., 2019; 

Lyall et al., 2020). These studies, together with our current results, suggest that non-linear 

integration between somatosensory inputs is a general feature of somatosensory 

processing. 

In our experiment, we required participants to remain attentive to the finger stimulation. 

Processes of selective attention have been shown to modulate neural firing rates in 

response to finger stimulation (Hsiao, O’Shaughnessy, & Johnson, 1993). To what degree 

are our finding caused by raw sensory input, and to what degree do top-down influences 

modulate the sensory processing? The sequence of trials was fully randomized, such that 

in the moment of stimulation, participants did not know what combination to expect. In 

this respect we can be sure that our results are clearly dependent on the actual sensory 

input.  Nonetheless, it is quite likely that some cognitive processes may influence how 

sensory information from the hand is processed. Indeed, neural populations in S1 are 

modulated by inputs from M1 (Goldring et al., 2014), and the neural state of S1 is 

strongly influenced by the planning of upcoming actions (Ariani, Pruszynski, & 

Diedrichsen, 2020; Gale, Flanagan, & Gallivan, 2021). Such modulation is important, as 

the processing requirements of somatosensory information depends on the task at hand. 

For example, the reaction to object slip depends not only on the direction of the slipping 

object (Häger-Ross, Cole, & Johansson, 1996), but also on the perceived physical 

properties of the object (i.e., how “object-like” the simulation is, Ohki, Edin, & 

Johansson, 2002), and the behavioural goal (Hernandez-Castillo et al., 2020). We may 

therefore expect that, in order to provide support for flexible sensory-motor mapping, the 

way that information is integrated across fingers changes with the behavioral context. 
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Thus, the next challenge is to probe how such top-down influences alter the integration of 

somatosensory inputs from the fingers. 

4.5 Methods 

4.5.1 Participants 

Ten healthy participants were recruited for the study (7 males and 3 females, mean 

age=25.5, SD=3.24; mean Edinburgh handedness score=58.42, SD=55.43). Participants 

completed one training session and two experimental sessions. During the training 

session, participants were familiarized with the finger stimulation task. In the two 

experimental sessions, participants experienced finger stimulation while undergoing 7T 

fMRI. All participants provided informed consent before the beginning of the study, and 

all procedures were approved by the Office for Research and Ethics at the University of 

Western Ontario. 

4.5.2 Stimulation apparatus 

We used a custom-built five-finger keyboard to apply stimulation independently to each 

of the five fingers of the right hand. Each finger was comfortably restrained above an 

immobile key using a clamp covered with padding (Fig. 4.4A). The clamp prevented any 

hand or finger movement and ensured that the passive stimulation was delivered to a 

constant area of the fingertip. We delivered independent stimulation to each fingertip, 

using a pneumatic air piston mounted underneath each key. The pistons were driven by 

compressed air (100 psi) delivered from outside the MRI scanning room through 

polyvinyl tubes. The air pressure for each piston rod was regulated by adjustable valves, 

which were controlled on-line using a PID controller to deliver forces of ~3 Newtons to 

each fingertip (one participant experienced stimulation of ~2N). The piston rods 

(diameter=3mm) deformed the skin of the fingertip. As the padding prevented movement 

of the finger, the stimulation was predominantly tactile in that it involved deformation of 

the skin. The forces applied to the fingertips were monitored using force transducers 

(Honeywell-FS series, dynamic range=0-16N, resolution<0.02N, sampling rate=200Hz).  
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Figure 4.4: Experiment paradigm 

(A) Participants experienced tactile stimulation using a custom-built finger stimulation box. Each 

finger was independently restrained, and pneumatic pistons were used to deliver stimulation to 

each fingertip.  

(B) Schematic illustration of a single trial (ITI: inter-trial-interval). The blue trace shows the mean 

finger stimulation force (±SEM across participants), time aligned to the start of the stimulation 

phase.  

(C) Participants experienced stimulation of all 31 possible single- and multi-finger combinations. 



126 

 

4.5.3 Finger stimulation task 

While lying in the scanner, participants viewed a back-projection screen through a mirror 

mounted to the head coil. They saw five bars in the centre of the screen, surrounded by a 

box (Fig. 4.4B). Each bar corresponded to one of the five fingers of the right hand (left-

to-right: thumb-to-little finger). All 31 possible finger combinations were stimulated (5 

single-finger, 10 two-finger, 10 three-finger, 5 four-finger, and 1 five-finger combination; 

Fig. 4.4C). 

Each trial lasted 6.5s and consisted of four phases (Fig. 4.4B): a cue phase (0.5s), finger 

stimulation (4s), perceptual judgement (≤1.5s), and feedback (≥0.5s). The cue phase 

alerted participants to the start of the trial. During the cue, the outline box on the turned 

orange and the words “RELAX FINGERS” where presented on screen, instructing 

participants to relax their hand. No information was provided about which finger 

combination was going to be stimulated, and therefore participants remained naïve about 

the stimulation until it occurred. At the start of the stimulation phase, the words 

disappeared from the screen and the box turned white, after which one of the 31 possible 

finger combinations was stimulated. The stimulated force on each finger approximated a 

rectified sine wave, gradually increasing and decreasing. Each “wave” of stimulation 

lasted approximately 1s, and two complete waves were delivered during each trial. 

Across all fingers and combinations, the average peak stimulated force was 

2.67N±0.17N. 

To ensure that participants remained attentive during the experiment, we asked them to 

detect the occurrence of relatively rare (5%) probe trials. In the perceptual judgement 

phase of each trial, we presented a visual presentation of a specific finger combination, 

with the boxes corresponding to the stimulated fingers turning orange (Fig. 1). On 3 out 

of 62 trials per run, these presented and stimulated patterns did not match (probe trials). 

Participants were asked to detect this mismatch and indicate it by pressing their right 

thumb (2N threshold). They were instructed to refrain from pressing any finger in case 

the presented and stimulated pattern matched. Participants had 1.5s to judge and respond. 

After either 1.5s elapsed (indicating a match) or immediately following a thumb press 

(indicating a mismatch), participants were provided feedback on their response by 
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changing the colour of the finger combination green (correct) or red (incorrect). The 

feedback was presented on-screen for ≥0.5s, such that the feedback and response phases 

together lasted 2s regardless of response type.  

To encourage good performance, participants received points based on the performance 

of their perceptual judgements. They were awarded 1 point for correctly identifying a 

matching configuration, and 10 points for correctly identifying a mis-matched 

configuration. False alarms were penalized by -1 point, and misses (failing to recognize a 

mis-match configuration) was penalized by -10 points. Points were combined across 

imaging runs and used to calculate a financial bonus. Behavioural performance on the 

perceptual judgement task was high (overall error rate = 1.77%±0.40%). Of the true 

mismatches, participants missed only 13.03%±5.09%, and false alarms only occurred on 

only 1.29%±0.21% of the matched trials. Together, this resulted in participants making a 

response on 5.35%±0.20% of all trials. 

For the main analysis, any response was modelled separately with a regressor (see First-

level analysis). Because the response was always the same thumb press and occurred with 

roughly equal probability for each finger combination, any incomplete modelling of the 

response-evoked activity should not influence our results pertaining to the differences in 

activity patterns between finger combination.  

The next trial started after a variable inter-trial-interval (ITI), drawn randomly from the 

set of possible ITIs {1s, 2.5s, 4s, 5.5s, 7s, 8.5s, 10s} seconds, with the probability 

p=[0.37, 0.24, 0.16, 0.10, 0.06, 0.04, 0.03] for each ITI, respectively. Thus, shorter delays 

occurred more often and longer delays occurred less often. The order of trials, including 

the position of the 3 probe trials, in each run was pseudo-random. Two trials for each of 

the 31 finger combinations were presented in each run, and participants completed 11 

imaging runs each, yielding 682 trials total (31 combinations x 2 repeats x 11 runs).  

The trial structure during the training and imaging sessions were the same. During 

training, participants performed runs of trials until they achieved an overall error rate of 

0% in one run. Participants completed the training session 1-2 days before the first 
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scanning session. The 11 imaging runs were completed over two separate scanning 

sessions for each participant, usually within the same week. 

4.5.4 fMRI acquisition and analysis 

4.5.4.1 Image acquisition 

We used high-field functional magnetic resonance imaging (fMRI, Siemens 7T 

Magnetom with a 32-channel head coil at Western University, London, Ontario, Canada) 

to measure the blood-oxygen-level dependent (BOLD) responses evoked in participants. 

Each participant completed 11 runs of trials across two separate scanning days, usually 

with 6 runs on the first day and 5 runs on the second day. Each run lasted 614s. During 

each run, 410 functional images were obtained using a multiband 2D-echoplanar imaging 

sequence (GRAPPA, in-plane acceleration factor=2, multi-band factor=3, repetition time 

[TR]=1500ms, echo time [TE]=20ms, in-plane resolution 148 x 148 voxels). Per image, 

we acquired 66 interleaved slices (without gap) with isotropic voxel size of 1.4mm. The 

first 2 images in the sequence were discarded to allow magnetization to reach 

equilibrium. To estimate magnetic field inhomogeneities, we acquired a gradient echo 

field map at the end of the scanning session on each day. Finally, a T1-weighted 

anatomical scan was obtained using a magnetization-prepared rapid gradient echo 

sequence (MPRAGE) with a voxel size of 0.75mm isotropic (3D gradient echo sequence, 

TR=6000ms, 208 volumes). 

4.5.4.2 Image preprocessing and first-level analysis 

Functional images were first realigned to correct for head motion during the scanning 

session (3 translations: x,y,z; 3 rotations: pitch, roll, yaw), and co-registered to each 

participant’s anatomical T1-image. Within this process, we used B0 fieldmaps from each 

imaging session to correct for image distortions arising from magnetic field 

inhomogeneities (Hutton et al., 2002). Due to the relatively short TR (1.5s), no slice-

timing correction was applied, and no spatial smoothing or normalization to a standard 

template was applied. 
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The minimally preprocessed data were then analysed using a general linear model (GLM; 

Friston, Jezzard, and Turner 1994) using SPM12 (fil.ion.ucl.ac.uk/spm/) using a separate 

regressor for each of the 31 possible finger combinations in each run. The activation 

during stimulation was modeled using a boxcar function that spanned the stimulation 

phase of each trial, convolved with a hemodynamic response function with a delayed 

onset of 1.5s and a post-stimulus undershoot at 12s. To capture activity evoked by the 

thumb presses during perceptual judgements, we included one thumb press regressor in 

each run which modeled the 3 thumb responses per run (duration: 1s). All trials were 

included in the analysis, regardless of the perceptual judgement accuracy. Finally, we 

included an intercept regressor for each run, yielding 363 total regressors (33 regressors x 

11 runs). 

To model the long-range temporal autocorrelations in the functional timeseries, we used 

the SPM FAST autocorrelation model. High-pass filtering was then achieved by 

temporally pre-whitening the functional data with this temporal autocorrelation estimate. 

This analysis yielded one beta-weight for each voxel for each of the 31 finger 

combinations per run for each participant. Collectively, these defined the estimated 

activity patterns. We did not further analyse the activity pattern from the thumb press 

regressor. From these beta-weights, we calculated the average percent signal change 

(PSC) evoked by each finger combination relative to the baseline for each voxel, yielding 

31 PSC values per voxel.  

4.5.4.3 Surface-based analysis 

We used Freesurfer (Fischl, Sereno, and Dale 1999) to reconstruct the cortical white-

matter/gray-matter surface and the pial surface from the anatomical image of each 

participant. The surfaces were then spherically registered to match a template atlas 

(FreeSurfer’s Left-Right 164k node template) based on a sulcal-depth map and local 

curvature.  

Individual activity patterns were then projected on the individual surface. All voxels 

touching the line between the corresponding vertices of the white matter and the pial 

surface were averaged. To avoid the mixing of signals between M1 and S1 across the 
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central sulcus, we excluded any voxel which touched the surface at two different places 

from all further analysis.   

For multivariate analysis, we used a surface-based searchlight approach (Oosterhof et al., 

2011). For each surface node on each participant’s surface reconstruction, we defined a 

surrounding circular region of 160 voxels. The set of activity patterns from these voxels 

were then analysed together (see Multivariate fMRI analysis) and the results were 

assigned to the corresponding centre node. 

To conduct more computationally intensive representational model comparison (see 

Representational model analysis) across the cortical surface, we employed a coarser 

alternative to the searchlight approach: We subdivided the left hemisphere into 1442 

regular hexagonal tessels. We only analysed tessels that showed a reliable difference 

between the activity patterns associated with the different finger combinations (group-

averaged dissimilarity between all patterns ≥0.005). This criterion yielded 82 tessels that 

spanned the surface of sensorimotor cortex. 

4.5.4.4 Regions of interest definition 

For a targeted analysis of subregions of the sensorimotor cortex, we used a probabilistic 

cytoarchtectonic atlas projected to the cortical surface (Fischl et al. 2008) to define 

Brodmann areas (BA) 4a, 4p, 3a, 3b, 1, and 2. Surface nodes were assigned to the region 

that had the highest probability, and this probability needed to exceed 0.25. We further 

restricted these regions to the hand area by excluding nodes that fell 2.5cm above and 

2.5cm below the hand knob anatomical landmark (Yousry et al. 1997). To avoid 

smearing activity across the central sulcus, we again excluded voxels that touched the 

cortical surface at two separable places. 

4.5.5 Estimating single-finger selectivity 

4.5.5.1 Voxel sub-selection 

To quantify the selectivity of each voxel to single fingers, we considered only the activity 

estimates for the single-finger conditions. We sub-selected voxels from each region that 

showed significant modulation (relative to baseline) during any single-finger stimulation, 
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by conducting an omnibus F-test per voxel, retaining only voxels that were significant on 

an p=0.05 level (uncorrected). This criterion selected 7.45%±0.74% of the voxels from 

BA 4a, 6.84%±0.68% from BA 4p, 7.49%±0.99% from BA 3a, 15.52%±1.72% from BA 

3b, 12.74%±2.08% from BA 1, and 7.12%±0.64% from BA 2. We verified in simulations 

that this voxel sub-selection approach did not bias the subsequent selectivity analysis, but 

simply increased its power. This is because the omnibus F-test only tests if a voxel is 

tuned to one or more fingers, whereas the selectivity analysis characterizes the shape of 

the voxel’s tuning to different fingers. 

4.5.5.2 Calculating finger selectivity 

We then normalized the tuning curves (5 activity values for each voxel), such that the 

maximal response equaled 1 and the lowest response equaled 0. For the plots in Figure 

2B, we grouped the voxels according to the most preferred finger. 

Using the normalized tuning curve for each voxel, we calculated the voxel’s selectivity 

(𝜆) as 

𝜆 =  1 −
1

4
∑ 𝑦𝑖

𝑖

 

, where 𝑦𝑖 are the normalized responses to the “less-preferred” fingers. This yields the 

average difference between the activity evoked by the finger that the voxel is most tuned 

to (the maximal activity) and all other finger activities. Therefore, 𝜆 = 1 indicates a voxel 

is only active during stimulation of a specific finger. Conversely, 𝜆 < 1 indicates that a 

voxel also responds to stimulation of other fingers. For each participant, we averaged the 

resulting selectivities across the sub-selected voxels per region. This yielded one 

selectivity per region per participant. 

4.5.5.3 Controlling for measurement noise effects on finger 
selectivity 

Due to measurement noise, the estimated selectivities will always be <1. Furthermore, 

measurement noise may differ across regions, making it inappropriate to directly compare 

the selectivities. To address this issue, we simulated voxel tuning curves under two 
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different generative models. First, for random tuning, we simulated voxels with tuning 

that was drawn from a multivariate normal distribution, with covariance identical to the 

finger-by-finger correlation matrix (Ejaz, Hamada, and Diedrichsen 2015). Second, for 

perfect tuning, we simulated voxels that were selective for stimulation of a single finger 

and remained unresponsive to all other fingers. Both simulations were scaled, so that the 

average diagonal of the covariance matrix matched the signal strength for that region and 

participant (𝜎𝑠
2). We then added the measurement noise, drawn from a normal 

distribution with variance set to 𝜎𝜖
2. 

To estimate 𝜎𝑠
2 and 𝜎𝜖

2 from the real data, we first vectorized the matrix of mean-centred 

tuning curves for each run, and then calculated the average covariance between these 

vectors across runs. An estimate of 𝜎𝜖
2 could then be obtained via 𝜎𝜖

2 =  
𝜎𝑠

2

𝑟
− 𝜎𝑠

2, where 𝑟 

is the average Pearson’s correlation between the vectorized tuning curves across runs. 

This expression arises because we assume the noise in the real data is independent (i.e., 

uncorrelated) across different runs, and therefore, the expected value of the Pearson’s 

correlation between vectorized tuning curves from different runs is 𝑟 = 𝜎𝑠
2 (𝜎𝑠

2 + 𝜎𝜖
2)⁄ .  

Using these estimates, we simulated 1000 datasets with random tuning and 1000 datasets 

with perfectly selective tuning for each region in each participant, each with the same 

number of voxels as the real data. All data sets were simulated with 11 imaging runs. As 

for the real data, we then applied the voxel sub-selection to the simulated data. We 

calculated the average selectivity across voxels in each simulated dataset and averaged 

the selectivities across simulations. The selectivity of the real data was then normalized 

such that a selectivity of 0 reflected the expected value under random tuning and 1 

reflected the expected value for perfectly selective tuning. 

4.5.6 Multivariate fMRI analysis 

To test for reliable differences between fMRI activity patterns for each condition (i.e., the 

first-level GLM beta-weights), we used the cross-validated squared Mahalanobis 

dissimilarity (i.e., crossnobis dissimilarity: Walther et al., 2016). Cross-validation ensures 

the dissimilarity estimates are unbiased, such that if two patterns differ only by 

measurement noise, the mean of the estimated dissimilarities would be zero. This also 
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means that estimates can sometimes become negative (Diedrichsen, Provost, and 

Zareamoghaddam 2016; Diedrichsen et al. 2020). Therefore, dissimilarities significantly 

larger than zero indicate that two patterns are reliably distinct, and we take this as 

evidence that features about the finger combinations are represented in the activity 

patterns. 

The crossnobis dissimilarity 𝑑 between the fMRI activity patterns (𝒙) for conditions 𝑖 and 

𝑗 was calculated as 

𝑑𝑖,𝑗 =  
1

𝑀
∑(𝒙𝑖 − 𝒙𝑗)

𝑚

𝑇
𝛴−1(𝒙𝑖 − 𝒙𝑗)

~𝑚

𝑀

𝑚

 

, where the activity patterns from run 𝑚 are multiplied with the activity patterns averaged 

over all runs except 𝑚 (~𝑚). 𝛴 is the voxel-wise noise covariance matrix, estimated from 

the residuals of the first-level GLM, and slightly regularized to ensure invertibility. 

Multivariate noise-normalization removes spatially correlated noise and yields generally 

more reliable dissimilarity estimates (Walther et al. 2016). Analyses were conducted 

using functions from the RSA (Nili et al. 2014) and PCM (Diedrichsen, Yokoi, & 

Arbuckle, 2018) MATLAB toolboxes. For the searchlight results (Fig. 4.1C, D), we 

averaged the resulting dissimilarities based on whether they were between single-finger 

patterns, 2-finger patterns, 3-finger patterns, and 4-finger patterns. 

4.5.7 Representational model analysis 

A representational model characterizes the tuning curves of a group of voxels or neurons. 

In the sense we are using it here, it specifies a probability distribution over all possible 

tuning curves (Diedrichsen and Kriegeskorte 2017). Here, we used an encoding-style 

approach (Naselaris et al. 2011) to specify and evaluate representational models that 

predicted activity patterns for all finger combinations using various feature sets. Models 

were fit and evaluated within each region and participant using cross-validation across 

imaging runs. 
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4.5.7.1 Linear model 

The linear model predicted that activity patterns evoked during multi-finger stimulation 

were the sum of the constituent single-finger patterns: 

𝑌̂𝑙𝑖𝑛 = 𝑀𝑙𝑖𝑛𝑈𝑠𝑓 

, where 𝑌̂𝑙𝑖𝑛 are the [31 x P voxels] predicted activity patterns, 𝑈𝑠𝑓 is a [5 features x P 

voxels] matrix of single-finger feature patterns, and 𝑀𝑙𝑖𝑛 is a [31 combinations x 5 

features] indicator matrix denoting which finger(s) are in each of the combinations. To 

complete the representational model, we also specified that the single-finger features had 

a second-moment matrix (co-variance matrix without subtraction of the mean across 

voxels) of 𝐺𝑙𝑖𝑛. The second-moment matrix of finger-related patterns is highly invariant 

across individuals, reflecting the high correlations of patterns from neighboring fingers, 

and the low correlation of the pattern of the thumb with the other fingers (Ejaz, Hamada, 

and Diedrichsen 2015; Arbuckle et al. 2020). We determined the exact form of the matrix 

from the group-averaged second moment matrix 𝐺̅ for the area under question. From this, 

we determined the second moment matrix for the single-finger patterns that would best 

approximate the overall second moment matrix 𝐺𝑙𝑖𝑛 = 𝑀𝑙𝑖𝑛
+ 𝐺̅𝑀𝑙𝑖𝑛

+𝑇 , where 𝑀𝑙𝑖𝑛
+  is the 

Moore-Penrose pseudoinverse.  

4.5.7.2 Multi-finger interaction models 

We also constructed 3 multi-finger interaction models. Like the linear model, these 

models assumed that the multi-finger patterns were the sum of the constituent single 

finger patterns, but also included specific interaction effects between specific fingers. 

These models took the same general form as the linear model above. For the 2-finger 

interaction model, we included 10 terms indicating the presence of a specific pair of 

fingers (i.e., when the pair of fingers was pressed, the regressor was 1 and 0 otherwise), 

in addition to the 5 model features for the individual fingers. In the 3-finger interaction 

model, we additionally added 10 regressors indicating the presence of each unique 3-

finger combination. Finally, the 4-finger model included, in addition to the 3-, 2-, and 1-

finger terms, the five possible 4-finger interactions, resulting in 30 model features 
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overall. For each of the models, the second-moment matrix for the feature patterns 𝑈 was 

estimated from the group-averaged second-moment matrix as for the linear model.  

4.5.7.3 Adjacent and Non-adjacent 2-finger interaction models 

To test the strength of finger interactions between adjacent and non-adjacent finger pairs, 

we created two modified versions of the 2-finger interaction model. In the first version, 

we only included the 4 adjacent finger-pairs as interaction terms. In the second version 

we included only the 6 non-adjacent finger pairs. 

4.5.7.4 Linear-nonlinear model 

The linear-nonlinear model predicted that activity patterns for single-fingers combined 

linearly when multiple fingers were stimulated, but that the overall activity was 

compressed by a unknown, non-linear function f, 𝑌̂𝑙𝑛𝑙 = 𝑓(𝑀𝑙𝑖𝑛𝑈𝑠𝑓). Such a non-linearity 

could arise from a global divisive normalization of neural activity in the region, or from 

non-linearities in the relationship between neural activity and the BOLD signal. To 

approximate any form of such compressive non-linearity, we created a model, based on 

the linear model, that allowed for flexible scaling of the predicted multi-finger patterns. 

All predicted patterns that included the same number of stimulated fingers were scaled by 

a common factor. These scaling factors as well as the single-finger feature patterns 𝑈𝑠𝑓 

were estimated from the training data. 

4.5.7.5 Null model 

As a baseline for model comparison, we defined a null-model that predicted overall 

activity scaled the number of fingers stimulated, but that the patterns lacked finger-

specificity. Under this model, the predicted patterns were derived from the average 

activity patterns for the single-finger, 2-finger, 3-finger, 4-finger, and 5-finger 

combinations, respectively. For example, the predicted single finger patterns was the 

average pattern across the five single-finger conditions. 
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4.5.7.6 Noise-ceiling model 

To provide an estimate of how much systematic variation could be explained in the data 

given measurement noise, we included a “noise-ceiling” model. The predictions under 

the noise-ceiling model were simply the 31 activity patterns from the training data. Note 

that this fully saturated model differs from the 4-finger interaction model only by the 

addition of a single model term that models the specific non-linearities arising during the 

stimulation of all 5 fingers. The second-moment matrix for this model was set to the 

observed group-averaged estimate 𝐺̅ for the area under question.  

4.5.7.7 Model fitting 

We fit and evaluated the different models within each participant, using a leave-one-run-

out cross-validation procedure. For each cross-validation fold, the training data were the 

activity patterns from all imaging runs except one, and the test data were the activity 

patterns from the left-out run.  

For a representational model with the assumption that both noise and signal have 

multivariate Gaussian distribution (Diedrichsen and Kriegeskorte 2017), the feature 

patterns for each model can be estimated from the training data 𝑌𝑡𝑟𝑎𝑖𝑛 as:  

𝑈 = (𝑋𝑇𝑋 + 𝐺−1𝑠−1σ𝜖
2)−1𝑋𝑇𝑌𝑡𝑟𝑎𝑖𝑛 

, where 𝑋 is a model-specific design matrix that denoted which feature(s) were present in 

each of the rows (activity patterns) in 𝑌𝑡𝑟𝑎𝑖𝑛, 𝐺 is the model-dependent second-moment 

matrix as specified above, 𝑠 indicates the strength of the signal in 𝑌𝑡𝑟𝑎𝑖𝑛, and σ𝜖
2 is the 

variance of the random run-by-run noise. Note that this estimation takes the form of 

linear regression with Tikonov regularization. The strength of the regularization to the 

model prior was determined by 𝑠−1σ𝜖
2. For each cross-validation fold, we derived the 

maximum-likelihood estimate of 𝑠 and σ𝜖
2 using the PCM toolbox. For the linear-

nonlinear model, we additionally fitted the scaling parameters by minimizing the residual 

sums-of-squares of the model predicted patterns to the training data. 
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4.5.7.8 Model evaluation 

The estimated feature patterns (𝑈) were then used to predict activity patterns under the 

corresponding model. We compared the predicted 31 condition patterns with the left-out 

test data. The model fits were evaluated using Pearson’s correlation. For this, the 

predicted and test patterns were first mean-centred (per voxel), then correlated across all 

voxels and conditions within each cross-validation fold. We averaged the correlations 

across cross-validation folds to yield a single estimate of model performance per 

participant per region. We preferred Pearson’s correlation as our evaluation metric over 

the coefficient of determination, as it is less dependent on the exact choice of 

regularization coefficient (Diedrichsen and Kriegeskorte 2017), and therefore provides a 

more robust evaluation. 

Finally, the model fits were normalized between 0 and 1 using the fits of the null and 

noise-ceiling models. Normalized fits >0 indicated that the model captured more 

information than the simple scaling of overall activity (null model), and fits <1 indicated 

that there was structured variance in the activity patterns that remained unaccounted for 

in the model(s). 

4.5.8 Statistical analyses 

All statistical tests were performed in MATLAB R2019a (Mathworks, Inc.). We set the 

significance level in our analyses to p=0.05. When a test involved multiple comparisons 

without any specified a priori hypotheses, we adjusted the significance level by dividing 

by the number of comparisons (i.e., Bonferroni correction). For clarity, we report 

uncorrected p-values in the text. The Bonferroni-corrected statistical threshold is reported 

as an -value when appropriate. In cases where we had a priori hypotheses, we did not 

correct for multiple comparisons (i.e., replicating single-finger pattern overlap; Fig. 

4.2C). To compare evoked activity, dissimilarities, or model fits across regions, we used 

within-participant repeated measures ANOVAs. We used two-sided paired t-tests to 

compare the model fits to the fit of the noise-ceiling in each region. If the model fit did 

not differ significantly from the fit of the noise-ceiling model, we considered the model 

to be as good as the noise-ceiling. Therefore, to remain conservative, we evaluated 
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uncorrected p-values and did not correct for multiple comparisons, as this correction 

would lower the bar for what would be considered a “good-fitting” model. 
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Chapter 5  

5 General discussion 

In this thesis, I performed a series of experiments that were designed to examine how M1 

and S1 represent finger movements and integrate somatosensory inputs from multiple 

fingers. Previous studies have usually approached these questions either by measuring 

single neurons (e.g., for single finger movements Schieber and Hibbard, 1993; e.g., for 

sensory processing Thakur, Fitzgerald, and Hsiao, 2012), which is limited to a sparse 

sampling of the entire neural population, or by using fMRI to map where regions are 

activated (e.g., for movement: Huber et al. 2020; e.g., for sensory processing Bodegård et 

al. 2001), which does not reveal how conditions are represented within the active 

region(s). In my experiments, I took a different approach whereby I quantified how 

representations of finger movements and sensory inputs are organized in M1 and S1 

using multivariate fMRI analyses. 

In the first study (Chapter 2), I validated that representational geometries measured with 

fMRI are relatively stable across a broad range of overall activities (Arbuckle et al., 

2019). This result is good news for all flavours of multivariate fMRI analyses (e.g., 

encoding, PCM, RSA) because it demonstrates that one of the key assumptions we make 

in such analyses is valid (at least for M1, S1, and V1/V2). 

Having validated the multivariate analysis framework with fMRI data, I used this 

analysis to study how M1 represents single finger flexion and extension movements in 

M1 (Chapter 3). By comparing the fMRI results to neural spiking data recorded in 

monkeys trained to perform an identical task, I proposed a new organization of finger 

movements in M1, where neural populations that control opposing muscular patterns 

share common inputs and may spatially co-locate (Arbuckle et al. 2020). 

In my third study (Chapter 4), I examined how somatosensory inputs from multiple 

fingers are represented in S1. Using representational models, I quantified to what degree 

the activity patterns in each subregion of S1 could be explained by a linear integration of 

single fingers, and to what degree higher-order interactions between multiple fingers also 

/Users/sarbuckle/Dropbox%20(Diedrichsenlab)/Arbuckle_thesis_shared/_Chapter_title#_
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occurred. My results showed that significantly strong multi-finger interactions occur 

throughout S1, and that each multi-finger combination is uniquely represented. This 

suggests that sensory inputs from all fingers are completely integrated within S1. More 

broadly, this suggests that S1 contains the neural substrate necessary for pattern 

recognition of any arbitrary stimulation across the fingers during dexterous object 

manipulation. 

Each of the previous chapters has devoted space to discuss the findings of each study. 

Therefore, in the following sections, I build on these discussions and highlight five key 

questions that cut across the work I have presented in my thesis. 

5.1 Can fMRI be used to make inferences about the neural 
population code? 

Functional MRI is an incredibly popular tool to study brain activity in humans. The main 

advantages of fMRI are that it is non-invasive, has excellent spatial coverage, and is 

higher resolution compared to other non-invasive techniques. However, as with any 

measurement approach, fMRI comes with a set of caveats that will limit one’s ability to 

draw conclusions about the underlying neural code. This is problematic since this is 

exactly the goal of multivariate fMRI. There are four main caveats. First, fMRI measures 

a proxy of neural activity that largely reflects excitatory postsynaptic activity. Second, 

fMRI is biased to representations that exist at broad spatial scales and is virtually blind to 

information that is encoded in a neuron-to-neuron variation. Third, interpretation of fMRI 

data depends on the assumption that the neural-to-fMRI coupling is linear and stable. 

Fourth, the fMRI signal has poor temporal resolution. Given all these constraints, to what 

degree can we draw valid inferences about the underlying neural code from fMRI data? 

In the following sections, I discuss each caveat in more detail, highlighting how they 

influence the conclusions we can make using fMRI and offer ways that they can be 

mitigated (if possible). 

5.1.1 fMRI does not measure spiking 

First, BOLD fMRI predominantly reflects synaptic activity rather than spiking outputs 

(Logothetis 2003). Although this may initially appear to be a limiting factor when making 
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inferences about the underlying neural organization, it can actually be a strength. Clearly, 

spiking output from neural populations produce downstream behaviour. But the spiking 

outputs produced depend on the inputs to, and local recurrent activity within, these neural 

populations. Unfortunately, single-cell recordings provide limited insight into these 

features (however, multi-electrode arrays and high-density recording probes can capture 

these features). This is further compounded by the fact that single-neuron recordings are 

biased towards large principal output cells, as they are often easier to locate and record 

from (Firmin et al. 2014; but this bias is weaker with arrays and high-density probes). 

Thus, measuring only spiking outputs will restrict the view that one has on the underlying 

neural population. A strong example of this is the work of Picard and colleagues (2013). 

They trained monkeys to produce sequences of reaching movements, some of which were 

visually guided whereas others were internally generated, meaning that the monkeys 

needed to learn the sequences. After 1-6 years of practice, the spiking outputs from 

neurons in M1 were comparable when producing either sequence type, even though the 

internally generated sequences were highly trained skills. However, measurements of 

metabolic activity in M1 (using [14C]2-deoxyglucose uptake) showed that less energy 

was required to produce the spiking activity during internally generated sequences, 

demonstrating that neural populations in M1 became more metabolically efficient after 

long-term training. Clearly, if the authors only measured spiking, they would have been 

blind to the learning-related changes in efficiency that had occurred for trained 

sequences.  

The work of Picard and colleagues is a good example of how two different measurement 

modalities provide complementary views about the underlying neural processes. In the 

third chapter of my thesis, I combined the complementary viewpoints offered by BOLD 

fMRI and spiking to provide a testable hypothesis about how neural populations in M1 

are organized to control dexterous hand movements. The hypothesized organization 

suggests that neural populations which control opposing muscular patterns in M1 receive 

shared sensory input and closely communicate, effectively forming a “functional unit”. 

With only the spiking data, I would have been unable to make this inference (the monkey 

dataset lacked local field potential data). Therefore, although BOLD fMRI does not 
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directly measure spiking, we can still use it to help make inferences about the 

organization of the underlying neural population. 

5.1.2 fMRI is spatially biased 

The second caveat is that fMRI is biased towards detecting representations that exist at a 

broad spatial scale (Kriegeskorte and Diedrichsen 2016). This bias arises because fMRI 

effectively averages the synaptic activity across all neural tissue within each voxel. This 

averaging removes any neuron-to-neuron variation that exists within each voxel, which 

can strongly distort representations measured with fMRI. But, like for the first caveat, an 

acknowledgement of this bias can also help to make inferences about the spatial 

organization of representations in the brain. For example, in Chapter 3, I found that the 

activity patterns evoked by presses of different fingers were more dissimilar than the 

activity patterns evoked by presses of the same finger in different directions. Thus, 

fingers appeared more strongly represented than directions in the population activity of 

M1. One possibility for this is that neurons that control movements of the same finger in 

opposing directions spatially co-localize in M1. Therefore, when measuring the 

population activities with fMRI, these local neuron-to-neuron variations in direction 

preference are averaged out. I leveraged this idea when interpreting the results from the 

fMRI and spiking datasets to make a testable prediction about the spatial structure of 

finger and direction representations in M1. As another example, in Chapter 4, the 

observation that individual voxels in BA 3 were selective to sensory inputs from a 

specific finger indicate that neurons in this region spatially cluster (to some degree) 

according to finger preference. Furthermore, that multi-finger interactions were evident at 

the spatial scale of fMRI suggests that these interactions were not limited to a few select 

neurons, but rather occurred across a sizable number of neurons within each voxel. 

However, the spatial bias of fMRI can also be problematic. For example, when 

comparing the strength of representations across different regions, differences in the 

spatial organization of neurons in each region may obscure the measured representations 

and lead to erroneous inferences about representational content. Since the spatial bias is 

the result of the fMRI measurement process, it can be modelled, and its influence 

accounted for in more complex representational analyses (Kriegeskorte and Diedrichsen 
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2016). But, the effectiveness of this approach ultimately depends on how the 

measurement process is parameterized, and this can require prior knowledge of the 

spatial organization in the first place. So, what can be done when we lack a priori 

knowledge about the underlying spatial organization?  

I suggest two possible approaches. First, one can attempt to estimate the spatial tuning to 

each class of representations. This is the approach I took in Chapter 3, where I evaluated 

the spatial tuning for fingers and directions in M1. For this, I calculated the correlations 

between voxel tuning profiles (see Fig. 1.3B and Fig. 3.6E) for fingers and for directions, 

separately, at various spatial distances. Features that are encoded at finer spatial distances 

would have correlations that decay (i.e., approach zero) faster. However, this approach 

itself is limited by the spatial resolution of the voxel, meaning that there is a limit to the 

spatial resolution that can be estimated with this analysis. Therefore, a second approach 

(to alleviate the spatial bias of fMRI) is to collect functional images with higher spatial 

resolution. However, there is a trade-off between voxel size and signal strength. Larger 

voxels have greater signal strength, and thus many studies commonly use larger voxel 

sizes (the influence of participant movement in the scanner is also attenuated with larger 

voxel sizes). Fortunately, the signal is stronger at higher magnetic field strengths (Gati et 

al. 1997; Yacoub et al. 2001), and so one can use this gain in signal strength to acquire 

higher resolution images. Linking back to Chapter 3, if direction representations exist at a 

smaller spatial scale than finger representations, then using higher resolution voxels will 

result in more distinct activity patterns for presses of the same finger in different 

directions.  

However, using the BOLD contrast to image at higher resolutions than the ~1.5mm3 

resolution used in my thesis may not provide better insight into the spatial organization of 

representations in M1. Although the intrinsic resolution of the hemodynamic response of 

penetrating vessels is ~½mm (in cats: O’Herron et al. 2016), one cannot achieve this 

resolution with gradient-echo BOLD. This because a substantial portion of the BOLD 

signal also arises from large draining veins on the cortical surface (Lai et al. 1993; Menon 

et al. 1993; Turner 2002). The pooling of blood into these macrovascular structures on 

the cortical surface “spreads” the BOLD signal. The spreading of BOLD signal that 
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occurs in response to a focal point of neural activity is called the point-spread function 

(PSF) of BOLD6. For 7T BOLD fMRI, the PSF is estimated to be ~1-2mm (in human 

V1, Shmuel et al. 2007; Chaimow et al., 2018)7. Thus, because the voxel size I used in 

Chapter 3 approximates the effective resolution of BOLD (due to the point spread effect), 

gradient-echo BOLD imaging at higher spatial resolution would not be a practical way to 

test my prediction that movement direction is represented at a smaller spatial scale than 

fingers in M1.  

Therefore, to achieve higher resolution with fMRI, one needs to remove the 

macrovascular contributions (draining veins) from the measured signal. One approach is 

to mask-out the signal that arises from voxels that contain these large veins (Menon 

2002). A second approach, which retains the data from all voxels, is to use a different 

fMRI contrast that measures cerebral blood volume (CBV) of the gray-matter 

microvasculature, which itself is also a proxy of changes in synaptic activity (O’Herron et 

al. 2016). The vascular space occupancy (VASO) contrast (Lu et al. 2003) is one contrast 

that measures cerebral blood volume, and recent efforts have made it more practical to 

use at high field strengths like 7T (Huber et al. 2014, 2015). The VASO signal 

acquisition implemented by Huber and colleagues includes a nulling of the CBV signal 

that arises from the macrovasculature on the cortical surface. Thus, this VASO signal 

moreso reflects CBV changes in the microvasculature of the gray matter. In turn, this 

yields better spatial resolution than gradient-echo BOLD. Therefore, to study direction 

 

6
 In effect, there are 3 effective limits to the spatial resolution of BOLD fMRI: 1) resolution of 

neurovascular coupling (this is in respect to a single blood vessel); 2) the point spread function of BOLD 

(this is the combined effect across several blood vessels and includes the dilution effects of large draining 

veins); 3) the spatial resolution of the voxels (determined by the time available to read out gradient echos). 

Limits 2 and 3 are the biggest culprits in BOLD fMRI. 

7
 Although the BOLD PSFs for human M1 and S1 have not been evaluated, I can make an estimated guess 

as to whether they are larger or smaller than that in V1. Cortical vascular densities are thought to influence 

the BOLD PSF (Uludağ and Blinder 2018), and it is hypothesized that higher vascular densities result in 

smaller PSFs (Harrison et al. 2002). Furthermore, there is a moderately strong correlation between vascular 

and neural densities in rodents (Tsai et al. 2009) and primates (Weber et al. 2008), and so neural densities 

can provide a crude approximation of the PSF (e.g., smaller neural density ≈ smaller vascular density ≈ 

larger PSF). Given that M1 and S1 have lower neural densities than V1 in primates (~½ in S1, ~1
3⁄  in M1, 

see Collins et al., 2010), I predict that the BOLD PSF in M1 and S1 are larger than that in V1. 
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representations in M1 at a finer spatial scale, I would benefit from using a different 

contrast, such as VASO. However, given that any fMRI contrast is limited to the intrinsic 

resolution of the neurovascular response, there are spatial limits to the neural 

representations that can be resolved with fMRI – it is simply not possible to study 

neuron-to-neuron variation with fMRI. 

5.1.3 Stability of representational analyses of fMRI data 

The third caveat is that interpretations of fMRI data are predicated on the assumption that 

neural-to-BOLD fMRI coupling is linear and stable (Boynton et al. 1996). This 

assumption is critical in multivariate fMRI analyses. Violations of this assumption could 

come about from a variable spatial spreading of the BOLD signal at different levels of 

overall activity. This would mean that the fMRI activity patterns measured for certain 

conditions would distort as a function of the overall activity of the neural population (like 

the over-exposed photograph example from the introduction). Because this is such an 

important caveat, I dedicated an entire chapter to testing this assumption.  

In Chapter 2, I quantified the stability of representational geometries measured across a 

broad range of overall activity in sensorimotor and visual cortices (Arbuckle et al. 2019). 

The good news was that, for the regions I studied (M1, S1, and V1/V2), the 

representational geometries appeared quite stable and therefore so too would inferences 

made using these representational geometries. This finding, however, should not be 

interpreted to mean that all representational geometries estimated from fMRI data are 

stable and independent of the underlying neural state. This is because neurovascular 

coupling might differ in different brain regions (Devonshire et al. 2012) and can be 

altered by neurological diseases (Girouard and Iadecola 2006). While these concerns 

cannot be entirely dismissed, these kinds of issues can be mitigated by careful estimation 

of the haemodynamic response in regions of interest and by conducting careful control 

analyses like those in Chapter 28. 

 

8
 For example, in Chapter 3, I instructed participants to make individuated finger movements at different 

force levels, with the assumption that overall activity in M1 would change with pressing force. I then 
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5.1.4 Temporal resolution of fMRI 

The fourth caveat is that BOLD fMRI has poor temporal resolution. This is because it is a 

blood-based signal. Thus, it is common practice to effectively average the signal over 

time. However, movement is a time-varying behaviour, and studying this behaviour with 

a temporally independent measure can be challenging. Using fMRI will not allow careful 

examination of any neural population dynamics that evolve over the course of the 

movement (Churchland et al. 2012; Shenoy, Sahani, and Churchland 2013). Fortunately, 

for the work presented in Chapter 3, I had the ability to characterize time-varying neural 

dynamics (in the monkey spiking data) that arise during individuated finger presses. In 

this dataset, I did not find substantial evidence to support the idea that neural activity in 

M1 evolved in a stereotyped fashion during individuated finger movements (i.e., variance 

of spiking patterns explained over time using two principal components ~15%, compared 

to ~30% for variance explained during reaching in Churchland et al. 2012). This agrees 

with recent work demonstrating that neural dynamics during grasping movements in 

monkey M1 are much less stereotyped than those recorded during reaching movements, 

suggesting that neural circuits underlying hand control are fundamentally different from 

that for arm control (Suresh et al. 2020).  

Whether there are true stereotyped neural dynamics or not, fMRI cannot measure these 

temporal processes. However, this does not mean that fMRI cannot provide insight into 

the underlying neural substrates that facilitate behaviour. For example, using a novel 

multivariate analysis technique (PCM), we were recently able to dissect M1 activity 

patterns evoked during multi-finger sequences to address the question of whether neural 

populations in M1 form unique representations for trained movement sequences (Yokoi, 

Arbuckle, and Diedrichsen 2018; data not included in this thesis). We found that M1 did 

not generate sequence-specific representations (i.e., an encoding of the order of finger 

presses), but rather represented a linear combination of the consistent single-finger 

patterns. This suggests that activity in M1 is related to the execution of each individual 

 

ensured my results were consistent across the different force levels (i.e. at different levels of overall 

activity), and only then reported the results averaged across the different forces. 
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movement element in a sequence. This finding is supported by recent 

electrophysiological recordings in monkeys trained on a sequential arm reaching task. 

The neural population dynamics estimated from M1 spiking data indicated that each 

component reach of the entire sequence was represented individually (Zimnik and 

Churchland 2021). Thus, even though BOLD has poor temporal resolution, advanced 

statistical analyses can allow one to overcome the temporal smearing of activity and 

make inferences about the functional organization of the underlying neural code. More 

broadly, the example above demonstrates how both representational and dynamical 

systems approaches to studying brain function can offer complementary insights. 

5.2 Can single-finger movements tell us anything about 
how M1 is organized to control dexterous hand 
movements? 

In this thesis, I have often commented on the great skill and precision humans show with 

hand movements. But in my experiments, participants were required to make presses with 

a single, isolated finger. There is clearly a visual distinction between the complexity of a 

single finger press and, for example, the finger coordination required to carefully stabilize 

and fold paper when making origami. However, although individuated finger movements 

may look simple, they are anything but. Neurons in M1 project to several motor neuron 

muscle pools in the spinal cord (McKiernan et al. 1998; Shinoda, Yokota, and Futami 

1981), and thus, the muscle recruitment is broader than would be needed to move a single 

finger. Indeed, instead of recruiting only the muscles necessary to move a single finger, 

individuated finger movements require complex patterns of muscle activity in order to 

limit movements across other fingers (Schieber 1991; Yu, van Duinen, and Gandevia 

2010). This fractionated control is attributed to neural populations in M1 (Muir and 

Lemon 1983; Takei et al. 2017) and their descending projections (Takei et al. 2017). The 

neural pathways that facilitate this individuated control are more developed in humans, 

and this is considered why humans are the most capable at producing individuated finger 

movements (Lemon 2008). Hence, instead of being relatively simple movements, I argue 

that individuated finger movements are complex. Such movements underlie the dexterous 
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abilities that make human hand control so special, and thus the activity patterns evoked 

during single-finger presses reflect the control processes I am interested in understanding. 

However, it is important to clarity that although I have studied movements of single 

fingers, I do not suggest that M1 explicitly represent movements of single fingers. 

Indeed, the findings reported in this thesis and elsewhere (Nudo et al. 1992; Schieber and 

Hibbard 1993; Sanes et al. 1995; Ejaz, Hamada, and Diedrichsen 2015) support the 

notion that the underlying organization of hand movements in M1 is not that of single 

fingers. My results in Chapter 4 provide further empirical support for this idea. In the 

multi-finger stimulation experiment, I found that the multi-finger activity patterns in M1 

could not be explained by a linear combination of single-finger patterns (see Fig. 4.3B). 

However, in this experiment participants did not make simultaneous finger movements, 

but instead received passive multi-finger stimulation. Therefore, to better test if the 

representations of multi-finger movements are comprised of single-fingers, I applied the 

representational model analyses from Chapter 4 to a different imaging dataset collected 

while participants produced all possible 31 finger chords (n=8; data from Ejaz et al., 

2015; analyses not shown). I found that for representations of multi-finger movements in 

M1, combinations of the single-finger patterns provided significantly worse fits than 

simply the mean overall activity (normalized linear model fit = -1.03 -±0.22, t7=-4.78, 

p=0.002; normalized nonlinear-linear model fit = -0.68 ±0.21, t7=-3.32, p=0.013). 

Together, these results demonstrate that the underlying organization of M1 is not that of 

single fingers. Instead, my findings support the notion that M1 represents complex 

patterns of muscle activities that evoke movements of multiple finger that commonly 

occur in everyday activities (Nudo et al. 1992; Graziano 2006; Ejaz, Hamada, and 

Diedrichsen 2015). Under this organization, the fMRI activity patterns evoked during 

individuated finger presses reflect the unique combination of underlying neural patterns 

that are recruited to produce the movement of a single finger (Schieber 1990, 1995). 

As an aside, this may seem at odds with the findings I discussed in the previous section, 

namely that activity patterns evoked in M1 during sequential finger presses appear to be 

linear combinations of the consistent single-finger patterns (Yokoi, Arbuckle, and 

Diedrichsen 2018). If M1 does not explicitly represent single fingers, why can linear 
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combinations of single-finger activity patterns predict the activity patterns evoked during 

sequential movements of different fingers? This is because each finger press in each 

sequence is temporally segregated, and so the cortical activity patterns necessary to 

produce muscle patterns evoking each press in the sequence are the same as those needed 

to evoke a single press in isolation. It follows that, if the sequences were comprised of 

multiple multi-finger chords, linear combinations of single-finger patterns would be 

unable to fully predict the sequence patterns. This is because a linear single-finger model 

does not account for the non-linearities that arise in M1 activity during simultaneous 

multi-finger movements. 

5.3 The feature fallacy: Does the brain encode movements 
or muscles? 

Neural populations in M1 are critical for producing dexterous hand movements that have 

ethological utility in our world. Therefore, the distributed activity patterns in M1 contain 

information that is used by downstream neurons to guide behaviour. In this section, I 

argue that even if we know that some features are represented in the distributed 

population activity, it may not provide significant insight into the computational 

functioning of a region. Indeed, if the research goal is to understand how the neural 

population in M1 controls dexterous hand movements, we should focus on how the neural 

population is functionally organized (i.e., the representational geometry of distributed 

patterns), not necessarily what features are represented. This is because different features 

can make similar (or even identical) predictions about brain representations, and so over-

interpreting exactly what features are represented can be problematic. 

Indeed, neurons in M1 show broad, heterogenous tuning to several movement features 

such as force (Evarts 1968), muscle EMG (Morrow and Miller 2003), movement/target 

direction (Georgopoulos, Schwartz, and Kettner 1986; Ashe and Georgopoulos 1994), 

and limb geometry (Scott and Kalaska 1997). These features are difficult to disambiguate 

because they often covary together – they are all related in some way to the movement 

that is produced. This is not to say that studies have not successfully separated these 

features, such as by altering arm postures and target locations in a reaching task (e.g., 

Scott and Kalaska 1997; Kakei, Hoffman, and Strick 1999), but across the literature, each 
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of these feature sets appear to be comparably good (and bad) descriptors of neural 

activity in M1. More problematic is that, because these features are tightly related, they 

often make similar predictions about representational organizations in M1.  

For example, the seminal finding that hand movement direction is represented as a 

population code in M1 was interpreted as evidence that the spatial coordinate frames of 

movement were more strongly represented in M1 than muscle parameters (Georgopoulos, 

Schwartz, and Kettner 1986). The implication of this was that downstream neural 

populations were then responsible for transforming this higher-order direction code into 

the exact muscle commands needed to produce the corresponding movement. But it was 

quickly demonstrated that similar results also come about if, instead of movement 

direction, neurons in M1 are tuned to muscle parameters (Mussa-Ivaldi 1988). To further 

this argument, Lillicrap and Scott (2013) demonstrated that units in a neural network 

trained to control a simulated arm (which performed reaches and maintained posture 

under static loads) exhibited strong directional preferences (i.e., they represented 

directions). This occurred even though units in the network produced “muscle-like” 

commands, suggesting that directional tuning emerged incidentally. This serves as an 

excellent example of how two different features can make highly similar, if not identical, 

predictions about the structure of representations in the brain. 

Therefore, the analyses in my thesis do not focus on what features are represented, but 

rather on the distribution of voxel tuning profiles. This distribution defines how 

representations are organized across population activity (independent of their spatial 

distribution9). The distribution of tuning profiles can be summarized by the collection of 

 

9
 The spatial arrangement of activity patterns is discarded in this analysis framework. This can be both a 

strength and a limitation. Without considering the spatial arrangement, I cannot make claims about whether 

features are encoded in localized regions, or broadly distributed across the entire population in an area 

without specialized analyses (such as the feature tuning analysis of chapter three, or the finger selectivity 

analysis form chapter four). Furthermore, the exact arrangement of these feature representations will likely 

influence the neural computations that occur for two reasons. First, spatially localized neurons may interact 

to a greater degree than more distant neurons, and this would therefore influence the degree to which 

certain features interact based on whether they are represented locally or more broadly. Second, neurons 

probably do not receive inputs from the entire population, but instead from specific subpopulations were 

not all features may be represented. One way to consider these spatial properties in representational 

analysis is to compare the representational geometries across smaller, more localized regions, such as the 
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dissimilarities (or covariances) between the activity patterns (see Fig. 1.2B). Importantly, 

two representational models are identical if they both predict the same representational 

geometry. This can occur even if the two models are built from different features (like the 

example discussed above). This is critical point because it means that inductive reasoning 

is not appropriate; that a representational model well-characterizes the data does not 

mean that the features used to construct the model are explicitly represented in the neural 

code. However, confusing the semantic labels of the tools/features that we use to describe 

brain activity data with the functional organization of the process that we are studying is 

rather common. This confusion between tools and processes is referred to as the feature 

fallacy (Diedrichsen 2019). 

The idea behind the feature fallacy is not new. Fetz (1992) had a similarly powerful 

conviction about this same issue, stating that the approach of searching for features that 

are encoded in neurons is “like reading tea leaves, [because] this approach can be used to 

create an impression by projecting conceptual schemes onto suggestive patterns”. Indeed, 

it can be problematic to interpret the semantic labels of features too literally. However, I 

disagree with the implied idea that features are not useful neuroscientific tools. Defining 

features can be useful. They do ultimately provide semantically interpretable descriptors 

of the data. Some neurons may explicitly represent specific features (e.g., first-order 

sensory neurons). They are also practical because they help construct representational 

models. But one needs to be careful to separate the tools from the interpretations. The 

tools used in my thesis provide the ability to gain insight into how representations are 

organized (e.g., according to movement co-occurrence) but cannot elucidate the true 

underlying features (movements or muscles). 

For example, in Chapter 3 I made model predicted geometries under the hypotheses that 

representations in M1 are organized according to the statistics of everyday hand 

movements, or according to the individual muscles that are recruited during the same 

movements. At face value, this would appear to be yet another test of whether M1 

 

tessellated regions from chapter four. Another possible approach would be to spatially decompose the 

activity patterns and analyse the representational content within each spatial frequency. 
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encodes movements or muscles. However, although the movement co-occurrence model 

provided a better description of finger representations (irrespective of movement 

directions), this does not mean that M1 represents movements and not muscles (Phillips 

1975; Kakei, Hoffman, and Strick 1999). Instead, it suggests that, if neural populations in 

M1 do represent muscles, it is in a manner that is highly structured by the patterns of 

muscle recruitment that occur during everyday hand use (Ejaz, Hamada, and Diedrichsen 

2015; Tresch and Jarc 2009). I made no claim that finger movements (rather than muscle 

activities) have a special status or meaning to the representation. In fact, this argument 

detracts from the main insight from that study, which is that opposing movement 

directions elicit similar states of activity in M1. As another example, in Chapter 4, 

although I constructed representational models using adjacent or non-adjacent finger-pair 

interactions, the actual insight this analysis provided was about whether interactions 

occurred between spatially close or spatially distant areas of the hand. This analysis did 

not imply any special status about neighbouring fingers per se.  

Ultimately, the importance assigned to specific features depends on the research question 

(Kriegeskorte and Diedrchsen, 2019), and my thesis work is not motivated by studying 

what is represented. More targeted analyses can be done to estimate the contribution of 

different features to the structure of brain representations (e.g., using pattern component 

modelling: Diedrichsen, Yokoi, and Arbuckle, 2018). Even in these approaches, however, 

features are only useful to the extent that they can make unique predictions about how 

representations are organized in the brain.  

5.4 How is M1 organized to control dexterous hand 
movements? 

I have thus far discussed that: 1) we can make inferences about the neural organization 

using representational fMRI analyses, 2) single-finger movements can be used to study 

functional organizations that support dexterous movements, and 3) my results cannot 

comment on whether the underlying neural code in M1 represents movements or 

muscles. Having established these points, I now discuss one of the motivating questions 

in my thesis, namely how is M1 organized to control dexterous movements? In the 

introduction, I presented evidence against a strict somatotopic or single-muscle 
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organization. Therefore, I focus my discussion here on the organization predicted by the 

results of Chapter 3. 

Previous fMRI results (Ejaz, Hamada, and Diedrichsen 2015; Diedrichsen, Yokoi, and 

Arbuckle 2018), support the hypothesis that neural representations in M1 are organized 

according to the natural statistics of movement. Put another way, movements that 

commonly co-occur will be represented more similarly than movements that do not 

temporally co-occur. If this hypothesis can fully explain the functional organization in 

M1, then movements that cannot co-occur in daily life (i.e., like movements of the same 

limb in different directions) should be represented in non-overlapping (i.e., unique) 

neural substrates. Recent work has provided evidence for such an organization (Huber et 

al. 2020). However, the authors in this study used separate tasks (finger presses and 

whole-hand grasping/extension) to map fingers and directions. This is problematic as 

different neural populations in M1 are engaged during whole-hand grasping vs. precise 

finger movements (Muir and Lemon 1983). Therefore, I designed my task to explicitly 

tease apart individuated finger flexion and extension in a more careful manner.  

In contrast to the prediction and the findings of Huber et al., I found that M1 activity 

patterns for presses of the same finger in opposing directions were highly similar, 

whereas movements of different fingers were quite distinct. This similarity could not be 

explained by muscle co-contraction during the experiment. Analysis of a complementary 

dataset of single neuron recordings from two monkeys trained on an identical task 

provided a unique opportunity to characterize the neural patterns in M1 at two spatial 

scales and with two different measurement modalities. This juxtaposition provided the 

means to propose a new hypothetical organization for the control of finger movements in 

M1. 

I predict that neural populations that are involved in coordinating opposing muscular 

patterns form a functional unit that receives common sensory input and extensively 

communicate. This organization would have clear benefits for the control of dexterous 

hand movements. For example, during object manipulation with the hand, the force 

applied by a finger needs to be closely controlled. Thus, from an ethological perspective, 
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it makes sense to have a functional organization that facilitates tight coordination 

between neurons involved in producing the opposing movements of finger flexion and 

extension. Recent evidence from Griffin and Strick (2020) supports this idea that neurons 

in M1 tightly coordinate opposing muscular patterns. Using a small sample of output 

neurons in M1, they reported that two descending commands are present – one that 

facilitates agonist muscles to generate movement, and another to suppress the antagonist 

muscles and prevent movement opposition (via spinal interneurons). The spiking outputs 

of these neurons would thus be specific for each finger in each direction, but presumably 

the sensory inputs to these neurons would come from both the agonist and antagonist 

muscles. This common sensory input would lead to similar activity patterns measured 

with fMRI, but distinct spiking output patterns when recording from single neurons. 

Furthermore, neurons tuned to opposing muscular patterns (i.e., from the same functional 

unit) may also spatially intermix in order to support fast and efficient communication.   

Two testable predictions emerge from this “functional unit” hypothesis. First, the 

synaptic inputs to, and recurrent activity within, populations involved in finger flexion 

and extension should be more similar than the spiking output. This prediction can be 

evaluated by contrasting the representations for single finger movements using LFP and 

spiking data measured in primates. Unfortunately, the monkey dataset that I analysed in 

Chapter 3 did not record LFP data, and so this prediction remains to be tested. The 

second, non-mutually exclusive prediction is that neural populations involved in finger 

flexion and extension are spatially arranged at a fine spatial scale. One way to test this 

spatial prediction is to image M1 at higher voxel resolution using VASO (see section 

5.1.2). If direction representations do exist at a finer spatial scale, then the direction 

representations will be better resolved using higher resolution imaging. In contrast, finger 

representations, which exist at a spatial scale (~3-5mm, see Fig. 3.6E and Wiestler et al., 

2011) that is larger than the voxel resolution in Chapter 3 (1.5mm3), will be unaffected by 

higher resolution imaging. Therefore, under this spatial hypothesis, I predict that 

direction-specific dissimilarities (i.e., differences between the same finger pressing in 

different directions) would increase relative to the finger-specific dissimilarities (i.e., 

between different fingers pressing in the same direction) at higher voxel resolutions. 

Finally, an interesting avenue for future study is to consider whether these non-mutually 



161 

 

exclusive organizations (opposing muscular patterns eliciting similar states of activity in 

M1, and spatial scale of organization) are restricted to neural populations involved in 

hand control or are universal principles of organization in M1. 

5.5 Why integrate somatosensory information across 
fingers? 

In this final section, I consider why it is beneficial to integrate sensory information across 

fingers and discuss potential avenues for future work. What benefit does non-linear 

sensory integration provide? Consider the example where you are holding a cup in your 

hand and wish to prevent it from slipping. Any movement of the cup across your fingers 

will provide stimulation, but the behavioural response necessary to prevent slips will 

differ based on the pattern of stimulation. A downward movement of the object will 

cause slip in the same direction across fingers, but a rotation of the object in the hand will 

cause different slips to arise on the fingers. We would only be able to respond 

appropriately to each slipping pattern by non-linearly integrating the slip-direction signals 

across fingers. Therefore, non-linear sensory integration allows for a flexible mapping 

between arbitrary patterns of sensory inputs and motor responses. 

Therefore, in order facilitate this flexible sensory-motor mapping, a neural population 

should uniquely represent each pattern of stimulation across fingers. Previous 

electrophysiological studies of finger integration have shown that, during simultaneous 

stimulation of fingers, the activity of neurons is sub-linear, and this has been taken as 

evidence that sensory integration across the fingers is non-linear. However, this non-

linearity could reflect a general suppression of overall activity, akin to divisive 

normalization, not a non-linearity arising during integration of sensory information. 

Specifically, in this case, the underlying representations of sensory inputs from each 

finger are linearly summated, and the non-linearity arises only to suppress overall 

activity. This form of integration would not provide the neural substrate necessary for a 

fast detection of specific patterns of slipping across the fingers.  

This is an important point, but it has been largely ignored in the finger integration 

literature. Perhaps this is because no other study has yet examined the representation of 
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all possible multi-finger stimulations. Without a broad stimulation battery, it is difficult to 

dissociate between a global non-linearity and local pattern interactions. This has also 

been the case for many studies examining multi-whisker integration in rodent barrel 

cortex, and only recently has it been demonstrated that distributed neurons in the barrel 

cortex are uniquely tuned to specific patterns of multi-whisker combinations. Laboy-

Juarez and colleagues (2019) demonstrated that neurons in barrel cortex show highly 

selective tuning for two-whisker combinations. This tuning was not explainable by global 

non-linear scaling alone, as the combination selectivity occurred through a selective non-

linear enhancement of the firing rate to the preferred combination. Following this, Lyall 

and colleagues (2020) examined a larger set of multi-whisker combinations. They 

stimulated all possible 31 combinations of five neighbouring whiskers. They too reported 

that specific sets of neurons in the barrel cortex were selectively tuned to each of the 

multi-whisker combinations, demonstrating a selective non-linear enhancement. Taken 

together, these studies suggest that S1 provides the neural substrate for unique 

representation of arbitrary patterns of sensory stimulation. 

In Chapter 4, I extended this finding by showing evidence that human S1 also provides 

the neural substrate necessary for a complete and unique sensory representation of all 

possible multi-finger combinations. In that study, I applied passive tactile stimulation to 

all 31 possible single- and multi-finger combinations. Using representational model 

analyses, I demonstrated that much of the population activity across S1 (and M1) was 

explained by unique non-linear interactions between sensory inputs from specific sets of 

fingers, and not by a global non-linear suppression of activity. My results, in combination 

with those from the multi-whisker studies, support the idea that unique encoding of 

arbitrary patterns of somatosensory inputs is a general principle of somatosensory 

processing.  

It is also worth acknowledging that the behavioural task in Chapter 4 did not require 

participants to integrate sensory information across fingers. Recall that the task in my 

study was a perceptual judgement task, where each participant needed to indicate whether 

a finger combination presented on a screen matched the stimulation felt on the fingers. In 

this task, each finger was identified separately, and so participants could have 
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successfully performed the task by simply noting which finger(s) were stimulated. This 

does not require multi-finger integration. Moreover, the stimulations themselves were not 

designed to feel “object-like”. That my analyses showed clear evidence of non-linear 

sensory integration further supports the notion that a general principle of somatosensory 

processing is that each multi-finger combination is uniquely represented in S1. 

Furthermore, object manipulation (like folding origami) requires different hand postures. 

Neurons in primate S1 have receptive fields that span several joints of the hand, and this 

enables a unique representation of hand postures that arise during natural grasping actions 

(comparable to the unique representation of stimulation patterns in my experiment; 

Goodman et al. 2019). However, little is known about how the neural population in S1 

integrate proprioceptive information of hand posture with tactile inputs from the hand. 

My experiment in Chapter 4 cannot speak to this because participants’ fingers were 

restrained (to limit movement during stimulation). But this is an important question 

because the hand is a flexible sensory organ, and so changes in hand posture (which 

occur during object manipulation) will influence how sensory signals from the fingers are 

integrated. Indeed, it would be necessary to take into account postural information when 

extracting information about the shape of an object (Yau et al. 2016). A study examining 

responses of single neurons in S1 (specifically BA 3b) showed that postural 

representations often exist in the same neurons that represent tactile inputs from the 

fingers (Kim et al. 2015). This intermixing of proprioceptive and cutaneous signals would 

therefore provide the neural substrate necessary to alter the integration of tactile inputs 

across fingers according to changes in hand posture. Indeed, in the same study, some 

neurons showed variable responses to the same pattern of tactile inputs when the relative 

location of each finger (i.e., hand posture) was altered. Whether these non-linearities lead 

to a highly unique representation of each pattern of tactile input for different hand 

postures remains to be studied. A highly unique non-linear integration of this sensory 

information would be ethologically beneficial. It would facilitate a flexible sensory-motor 

mapping that would enable fast, dexterous control of the hand – an ability that is 

important for object manipulation. 
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In future experiments, I plan to study these non-linear sensory interactions in S1 by 

varying the “object-like” patterns of stimulation. Specifically, we have developed an 

apparatus that can provide patterns of slipping stimulation to each of the five fingers 

independently (see Fig. 5.1). Using this device, I plan to apply patterns of slipping 

stimulations that mimic an object slipping or rotating the in hand and contrast the 

representations of these sensory signals in S1 to those evoked by patterns of random 

slipping across the fingers. Applying the same analyses as in Chapter 4, I predict that the 

object-like slipping conditions will elicit stronger, and distinct, non-linear interactions 

between sensory inputs compared to interactions arising during random slipping patterns 

that do not feel “object-like”. Stronger and distinct interactions would yield highly 

specific sensory representations that could trigger behavioural responses appropriate for 

the different slipping patterns produced by an object in the hand. A second avenue to 

pursue in future work is to study how changes in behavioural context (top-down) 

influence how sensory information from the hand is integrated. Indeed, the neural state of 

S1 is influenced by the planning of upcoming hand actions (Ariani, Andrew Pruszynski, 

and Diedrichsen 2020; Gale, Randall Flanagan, and Gallivan 2021), but it is unknown if 

this change in state primes the neural substrate in S1 for context-specific somatosensory 

integration. 

5.6 Conclusion 

Humans possess an unmatched ability for dexterous control of the hand. The results of 

this thesis have further elucidated how two cortical regions, M1 and S1, support this 

dexterity. First, neural populations in M1 are predicted to be organized in functional units 

that control opposing muscular patterns, allowing for fast coordinate of fine finger 

movements. Second, neural populations in S1 provide the neural substrate for rich, non-

linear integration of somatosensory information across fingers. The work in this thesis 

additionally demonstrates how fMRI can be used to make inferences about how brain 

regions are functionally organized to compute information and enable behaviour in the 

world. More broadly, future work can build on the research efforts here to probe how M1 

and S1 operate in synchrony to promote flexible hand control during object manipulation. 
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Figure 5.1: Slipping stimulator device 

(A) Stimulator device that is designed to provide independent slipping stimulation to each of the 

five fingers of the right hand. Top panel shows a hand grasping the device. Bottom panels show 

the left and right views of the device, respectively. Each finger rests on a different “key”. The 

blue arrows indicate the possible movement directions of each key. By applying different patterns 

of key movements, it is possible to mimic sensations of object slip and rotation in the hand. 

(B) Pattern of stimulation that mimics an object slipping out and away from the hand. 

(C) Pattern of stimulation that mimics an object rotating in the hand. The length of each arrow 

reflects how far each key travels. 
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