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Abstract 

Neurodegenerative diseases are progressive, incurable conditions characterized by neuronal 

degeneration and protein aggregation, resulting in cognitive decline and/or motor 

dysfunction. Over half a million Canadians are affected with these diseases, and the number 

of cases is expected to rise as the aging population grows and average lifespans continue to 

increase. There are currently no curative treatments, and only few therapeutics are available 

to target disease symptoms or slow disease progression. Further, diagnosis can be 

challenging, relying on clinical features that are often highly heterogeneous between patients. 

Gaining a greater understanding of the full spectrum of genetic factors contributing to these 

diseases may offer the opportunity to more accurately assess risk of disease development, 

improve diagnosis, and identify potential therapeutic targets. By leveraging the unique study 

design of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) — a multi-

platform study characterizing neurodegenerative diseases and cerebrovascular disease (CVD) 

— I have made significant progress in the elucidation of overlapping genetic determinants 

across neurodegenerative diagnoses. Using a targeted next-generation sequencing (NGS) 

approach, I comprehensively genetically characterized the ONDRI cohort (n = 519), 

including participants diagnosed with: 1) Alzheimer’s disease (AD); 2) amyotrophic lateral 

sclerosis (ALS); 3) frontotemporal dementia (FTD); 4) mild cognitive impairment (MCI); 5) 

Parkinson’s disease (PD); and 6) CVD. I identified associations between common genotypes 

or haplotypes of high phenotypic effect and neurodegenerative disease presentation and 

features. I also assessed novel gene-disease relationships and the potential genetic overlap 

between neurodegenerative and cerebrovascular diagnoses through the assessment of rare 

genetic variation captured by the targeted NGS panel and gold-standard Sanger sequencing 

methods. Finally, I identified a novel association between Notch receptor 3 (NOTCH3) rare 

variants and CVD burden in participants with PD. The work presented throughout this 

Dissertation highlights the complexity of neurodegenerative disease genetic risk factors by 

demonstrating a large amount of overlap between specific diagnoses. The findings contribute 

to the longstanding effort to fully understand the genetic architecture of neurodegenerative 

diseases and improve therapeutic development, diagnostic tools, and progression prediction. 
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Summary for Lay Audience 

Neurodegenerative diseases are conditions characterized by progressive deterioration of brain 

cells resulting in memory loss, behavioural changes, and lack of muscle control. It was 

projected that more than 500,000 Canadians were affected with these diseases in 2016 — a 

number that will continue to rise in tandem with the aging population. Currently, 

neurodegenerative diseases lack treatment options with no ability to stop progression or even 

slow it to a manageable capacity, and accurate diagnosis can be difficult. To mitigate these 

issues, the Ontario Neurodegenerative Disease Research Initiative (ONDRI) study is aiming 

to gain a greater understanding of the risk factors and disease course of multiple 

neurodegenerative diseases including: 1) Alzheimer’s disease; 2) amyotrophic lateral 

sclerosis; 3) frontotemporal dementia; 4) mild cognitive impairment; and 5) Parkinson’s 

disease, as well as determining how cerebrovascular incidents, such as strokes, may influence 

neurodegeneration. Within this Dissertation, I present my work studying the DNA changes, 

or “genetic variants,” that may be increasing the participants’ risk of disease. To do this, I 

applied a DNA sequencing method to look for genetic changes within 80 genes that are 

known to contribute to the risk of neurodegenerative disease or stroke. In doing so, I 

determined that genetic risk for the various neurodegenerative diseases is complex, with 

some individuals carrying common variants that increase their disease risk and others 

carrying DNA variants that are much rarer. I also identified new associations between genetic 

variants in specific genes and individual neurodegenerative diseases. Finally, my results 

suggested that in addition to genetic variants that increase risk of disease, there may be 

genetic variants that cause individuals with the same diagnosis to present differently from 

one another. The application of my findings may provide further insight into what is causing 

neurodegenerative diseases on a molecular level and will allow for the development of new 

treatments and gene-sequencing-based early-diagnosis and risk-assessment tools. 
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Chapter 1 – Introduction 

1.1 Overview 

Neurodegenerative diseases are a collection of progressive and incurable conditions 

characterized by neuron degeneration and resulting in cognitive decline — also referred 

to as dementia — and/or motor dysfunction. It was projected that, in 2016, more than 

500,000 Canadians were affected by the diseases, and worldwide prevalence is predicted 

to double within the next 20 years ("Chapter 3: Mapping Connections: An understanding 

of neurological conditions in Canada – Scope (prevalence and incidence)," 2014; 

Dudgeon, 2010). Similarly, when considering dementia patients alone, care costs totaled 

over $10 billion in 2016 and are estimated to double by 2031, including direct costs to the 

healthcare system and out of pocket costs of patients and their loved ones. Aside from 

these financial burdens, caregivers of individuals with dementia performed a collective 

19.2 million hours of unpaid care across Canada in 2011 (Chambers, Bancej, & 

McDowell, 2016). Further, the World Health Organization has estimated that, by 2040, as 

the aging population is increasing, neurodegenerative diseases will overtake cancer as the 

second leading cause of death worldwide, only behind cardiovascular disease (Gammon, 

2014). 

Although encompassing a wide variety of specific diagnoses, all neurodegenerative 

diseases share common features, most notably, the greatest risk factor for the diseases’ 

developments — increasing age (Hou et al., 2019). The specific diagnoses can be 

categorized into two main subtypes: 1) motor/movement disorders and 2) cognitive 

and/or behavioural disorders. The former encompasses diseases characterized by motor 

impairment as a result of progressive neuronal loss, including amyotrophic lateral 

sclerosis (ALS) and Parkinson’s disease (PD). In contrast, cognitive and/or behavioural 

disorders are largely caused by protein aggregates within the brain and/or cerebral small 

vessel pathology and result in progressive cognitive decline, changes to personality, and 

language impairment. Alzheimer’s disease (AD), frontotemporal dementia (FTD), and 

vascular cognitive impairment (VCI), are all examples of common cognitive and/or 

behavioural disorders. 
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A second notable similarity between neurodegenerative diagnoses is the presence of 

misfolded proteins and their resultant aggregates within the brain and central nervous 

system. Although the specific proteins involved vary between diagnoses, all 

neurodegenerative diseases are characterized by these aberrant accumulations (Dugger & 

Dickson, 2017). Common examples of the protein inclusions include amyloid plaques, 

neurofibrillary tau tangles, and α-synuclein-based Lewy bodies. Importantly, the 

aggregates present within the brains of neurodegenerative disease patients are considered 

the best indication of an individual’s true diagnosis, as clinical presentations of the 

different diseases are highly variable with many overlapping features (Dugger & 

Dickson, 2017). Upon postmortem pathologic analysis, it is not uncommon to observe 

aggregates of multiple neurodegenerative diseases, indicating co-pathologies. Further, it 

is estimated that protein aggregation may begin 10–20 years prior to clinical onset of 

disease features (Katsuno, Sahashi, Iguchi, & Hashizume, 2018). 

While a considerable amount of effort has been put into understanding the pathogenesis 

of neurodegenerative diseases, there is still an absence of appropriate treatment options. 

Currently, no neurodegenerative diseases are curable, and the majority of available 

therapeutics are only able to target specific symptoms and slow disease progression to a 

minimal degree (Duraes, Pinto, & Sousa, 2018). It is postulated that the lack of 

appropriate treatment options is a direct result of a lack of full understanding regarding 

the neuropathologic mechanisms of the diseases (Duraes et al., 2018). 

Interestingly, neurodegenerative disease diagnosis also remains a challenge, particularly 

in the early stages, without the ability to accurately detect all protein aggregates while 

patients are still alive. Current diagnostic approaches rely on clinical features of disease; 

however, these are often highly variable with large amounts of heterogeneity within and 

between disease cohorts. As a result, misdiagnoses are, unfortunately, not uncommon 

(Beber & Chaves, 2013; Bicchi, Emiliani, Vescovi, & Martino, 2015; Selvackadunco et 

al., 2019). Yet, early and accurate diagnosis is critical, as the therapeutics that are 

available to patients must begin as early as possible to be most effective at mitigating 

symptoms and slowing disease progression (Agrawal & Biswas, 2015).  
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By elucidating the entire genetic landscape of the neurodegenerative disease continuum, 

we may not only identify more appropriate therapeutic targets by gaining a better 

understanding of the pathologic mechanisms involved, but we may also improve our 

ability to diagnose individuals, both early and accurately. Genetic analysis offers a 

promising opportunity for diagnosis, as heritability estimates — or the amount of risk 

estimated to be from genetic variation — across the diseases are relatively high 

(Bocchetta et al., 2016; Pang et al., 2017; Postuma et al., 2016; Strong et al., 2017). We 

may also be able to leverage an individual’s genetic profile to gain a better understanding 

of how they may progress through their disease. However, to utilize genetic testing for 

diagnosis or progression prediction, greater understanding regarding the types of 

variation that contribute to neurodegeneration is necessary. Additionally, the large 

amount of overlap between neurodegenerative disease intermediate phenotypes and 

neuropathological hallmarks suggests that we must thoroughly define the potential 

overlap of genetic risk factors contributing to multiple diagnoses. 

The Ontario Neurodegenerative Disease Research Initiative (ONDRI) is a longitudinal, 

observational cohort study that has aimed to fully elucidate the spectrum of 

neurodegenerative diseases, as well as the potential involvement of cerebrovascular 

disease (CVD) within the diagnoses (S. M. K. Farhan et al., 2017; Sunderland et al., 

2020). With the recognition that much remains to be known regarding the large amount 

of genetic and phenotypic heterogeneity within and between the different 

neurodegenerative diseases, ONDRI proposed a novel study design providing both a 

longitudinal nature of assessment and follow-up, as well as simultaneous analysis of 

patients across five neurodegenerative phenotypes, including AD, ALS, FTD, mild 

cognitive impairment (MCI), and PD. The model is in contrast to the majority of prior 

work within the field that has taken a reductionist approach, staying within individual 

diagnostic silos and failing to account for the entire spectrum of neurodegeneration. 

ONDRI also takes a multimodal approach with multiple assessment platforms, which 

include neuroimaging, neuropsychology, clinical assessment, gait and balance, ocular 

control and morphology, and genomics, allowing for large-scale collaborative efforts to 

characterize the full presentation of the diseases under the ONDRI mandate. 
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The genomics platform of ONDRI specifically aimed to begin mitigating the gaps in the 

current understanding of the genetic underpinnings of neurodegenerative diseases. By 

leveraging the broad range of neurodegenerative diseases under study, we may be able to 

identify overlapping genetic risk factors not previously considered by researchers 

studying only individual neurodegenerative disease cohorts, thereby accounting for a 

portion of the missing heritability. Further, the rich phenotypic assessment of participants 

may allow for the identification of genetic determinants contributing to the heterogenous 

phenotypic intermediates observed across neurodegenerative cohorts.  

1.2 Human genetics 

Human genetics encompasses the study of variation in human deoxyribonucleic acids 

(DNA), how that variation is inherited, and the contribution of DNA variation to traits 

and disease. By studying our DNA, not only are we able to gain a greater understanding 

of how the human body functions, but also a critical knowledge regarding why and how 

traditional human function can go wrong, leading to important breakthroughs in disease 

prediction, diagnosis, and treatment. 

The DNA molecule, often referred to as the building block of human life, is structured as 

a double-stranded helix composed of two strands of alternating phosphate and 

deoxyribose groups with nitrogen bases attached to each deoxyribose (Youssef, Budd, & 

Bielawski, 2019). There are four nitrogen groups, including adenine (A), cytosine (C), 

guanine (G), and thymine (T), and each base is able to form a specific covalent bond with 

another base, such that the two strands of DNA are held together. A always bonds with T, 

and C bonds with G. Together, the deoxyribose, phosphate, and base make up a single 

“nucleotide.” Importantly, the order in which the nucleotides appear within a strand of 

DNA is referred to as the “DNA sequence” (Youssef et al., 2019). 

Each cell in the human body contains two copies of DNA that, if stretched out, would be 

approximately 2 m in length; therefore, it is important that the DNA is effectively 

packaged within the cell nucleus. The molecules are tightly wound around histone 

proteins, forming chromatin that is further wound into chromosomes (Youssef et al., 

2019). Humans cells are “diploid,” meaning that the two copies of DNA are organized 
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into two sets of chromosomes. There are 22 autosomal chromosomes in each set, 

numbered one through 22, as well as a pair of sex chromosomes — two X in females and 

an X and a Y in males.  

A single copy of human DNA encompasses approximately 3,200,000,000 nucleotides, or 

“base pairs” (bp) (Piovesan et al., 2019). The nucleotides are organized such that certain 

regions are protein coding, otherwise referred to as “genes.” The genes are often 

separated by stretches of non-coding DNA of varying length, called “intergenic regions.” 

Within a gene, each triplet of nucleotides, or “codon,” encodes a specific amino acid, that 

when read together results in the production of a protein specific to the gene in question 

(Nirenberg & Matthaei, 1961). Notably, multiple different codons can encode the same 

amino acid, often referred to as “redundancy” in the genetic code. In this way, genes are 

transcribed into strands of messenger ribonucleic acid (mRNA) that are further translated 

into protein products. The resulting proteins will perform highly specific functions on a 

cellular level within the human body (Saier, 2019). 

There are approximately 24,000 protein-coding genes in the human genome that are 

further organized into multiple “exons,” referring to the regions of the gene that encode 

the protein product, and “introns,” which are non-coding regions and are spliced out of 

the mRNA before it is translated into a protein (International Human Genome 

Sequencing, 2004). During the process of mRNA splicing, certain exons may or may not 

also be included or excluded resulting in different mRNA isoforms that encode variations 

of the protein product, referred to as “alternative splicing” and resulting in “differential 

transcripts” (Figure 1.1) (Berget, Moore, & Sharp, 1977; Chow, Gelinas, Broker, & 

Roberts, 1977; Moraes & Goes, 2016). The human “exome” refers to all protein-coding 

exons of all genes in the human genome. 

In April 2003, the Human Genome Project was completed, which produced the first 

readout of nearly the entire human genome sequence, including the identification and 

mapping of almost all genes (International Human Genome Sequencing, 2004; Lander et 

al., 2001). The completion of this endeavour was monumental and resulted in a turning 

point in the field of human genetics. With the full sequence, researchers were finally able 
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to have a complete picture of the complexity of the human genome and could use it as a 

reference to aid in the identification of changes within the DNA sequence that could 

contribute to various traits and disease states. Although further studies were needed to fill 

in the small number of remaining gaps of the human genome since the Human Genome 

Project was released (Chaisson et al., 2015; Dolgin, 2009; Miga et al., 2020), and a recent 

preprint suggests the final components have now been completed (Nurk et al., 2021), 

multiple nearly complete versions of the human reference genome are widely available 

and considered highly accurate for use in human genetic studies. 

  



7 

 

 

Figure 1.1 Alternative mRNA splicing of transcribed precursor mRNA to produce 

differential mRNA transcripts. 

Genes are organized into multiple exons, which encode the resulting protein product, and 

introns, which are spliced out of the mRNA before it is translated into a protein. During 

the process of mRNA splicing, certain exons may be included or excluded resulting in 

different mRNA isoforms that encode variations of the protein product. The process is 

referred to as alternative splicing and results in differential transcripts.   
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1.2.1 Genetic variation 

Quite remarkably, a person’s DNA sequence shares > 99% similarity with any other 

person’s DNA sequence; however, the ~1% of differences within the genome distinguish 

individuals from one another (Auton et al., 2015). Deviations in a person’s DNA 

sequence from the generally accepted human reference genome are referred to as “genetic 

variants.” These variants exist on a spectrum of consequence ranging from no effect to 

lethality. Variants may contribute to a certain trait, cause or increase risk of disease, or 

even be protective against disease. Variants also exist in a variety of sizes — ranging 

from single nucleotide variations affecting only one base in the genome, to structural 

variants affecting multiple bases or entire exons, genes, or chromosomes — and 

frequencies in the general population (Auton et al., 2015). 

Although variants occurring in the intergenic region of the genome or intronic region of a 

gene may be of some consequence (F. Zhang & Lupski, 2015; Zou, Wu, Tan, Shang, & 

Zhou, 2020), they remain relatively difficult to interpret. In contrast, variants occurring in 

the human exome, or within ten nucleotides of an intron-exon junction (the “splicing 

region”) are considered those most likely to be of consequence due to their potential 

direct effect on the encoded protein.  

1.2.1.1 Single nucleotide variation 

A “single nucleotide variant” (SNV) consists of a single base pair that deviates from the 

expected nucleotide based on the human reference genome. SNVs are first classified into 

two categories: 1) “transitions” and 2) “transversions” (Shastry, 2009b). A transition is a 

substitution between the nucleotides A and G — the “purine” nucleotides — or between 

C and T — the “pyrimidine” nucleotides. Conversely, a transversion is a substitution 

from one purine nucleotide to a pyrimidine, or vice-versa. 

SNVs can be further classified based on their resulting “sequency ontology”, referring to 

the impact the SNV has on a protein product of a gene (Figure 1.2). Although SNVs 

located within the intronic region of a gene are often not of consequence, some can 

dysregulate mRNA splicing, particularly those occurring within the splicing region (Nik 

& Bowman, 2019; Pagani & Baralle, 2004). mRNA splicing variants located at the 
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beginning of an intron are referred to as “splice-donor” variants, and mRNA splicing 

variants located at the end of an intron are referred to as “splice-acceptor” variants (Anna 

& Monika, 2018). SNVs located within an exon can have a variety of consequences on 

the protein. Due to redundancy in the genetic code, an SNV may result in a 

“synonymous” variant that does not change the amino acid at the corresponding protein 

position (Saier, 2019). However, if the SNV results in a new codon that does not encode 

the same amino acid at the corresponding position in the protein, the variant is referred to 

as “nonsynonymous”. More specifically, a nonsynonymous SNV may be of three types: 

1) a “missense” variant resulting from the substitution of one amino acid for another; 2) a 

“nonsense” variant resulting from the substitution of the original amino acid for a 

premature stop codon, and therefore, a truncated protein product; or 3) a “nonstop” 

variant resulting from the substitution of the original stop codon for an amino acid, and 

therefore, a longer-than-normal protein product. 

SNVs that occur outside of the coding region or splicing region of a gene are also widely 

prevalent, including those within introns, untranslated regions (5’ and 3’ UTRs), 

promoters, enhancers, silencers, non-coding genes, or intergenic regions, but are much 

more difficult to interpret.  
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Figure 1.2 Various types of possible single nucleotide variants (SNVs), classified 

based on sequence ontology.  

Sequence ontology refers to the impact an SNV may have on the resulting protein. A) A 

splicing variant a variant is located in an intron of a gene, but is within 10 nucleotides of 

the nearest exon-intron junction. Splicing variants located at the beginning of an intron 

are splice-donor variants, and those located at the end of an intron are splice-acceptor 

variants. Importantly, these variants can result in changes to how mRNA is spliced, 

thereby resulting in mRNA that may be missing or including entire exons that the 

transcript would or would not normally have, respectively. B) Nonsynonymous variants 

refer to SNVs resulting in changes to the amino acid encoded at that location. Missense 

variants are SNVs that result in the change of a single amino acid to another amino acid. 

Nonsense variants are SNVs that result in the change of a single amino acid into a stop 

codon. Nonstop variants are SNVs that result in the change of a stop codon into an amino 

acid. C) Synonymous variants are SNVs that do not change the encoded amino acid due 

to the redundancy of the genetic code. 
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1.2.1.2 Structural variation 

Generally, all genetic variation can be included in the category of “structural variation”, 

aside from SNVs (Ku, Loy, Salim, Pawitan, & Chia, 2010). The umbrella term 

encompasses variants ranging from insertions or deletions of only a few nucleotides to 

large-scale insertions, deletions, or transversions of entire pieces of chromosomes 

(Figure 1.3). Structural variants may be “balanced,” such that the number of nucleotides 

is unchanged, but the location of the nucleotides changes (for example, in inversions and 

translocations) or the variants may be “unbalanced,” resulting in the loss or gain of 

nucleotides (for example, in insertions, deletions, tandem repeat expansions, or copy 

number variants (CNVs)). Typically, the structural variants occur as a result of 

inaccuracies during DNA replication or recombination (Hurles, Dermitzakis, & Tyler-

Smith, 2008). 

It is largely accepted that structural variants tend to be more deleterious than SNVs due to 

the greater number of nucleotides affected (Sudmant et al., 2015). In fact, the larger the 

variant, the more likely it is predicted to be deleterious, with the largest structural variants 

(>250,000 bp) almost exclusively occurring in the general population at frequencies of 

<1% (Conrad, Andrews, Carter, Hurles, & Pritchard, 2006). Structural variants are also of 

greater likelihood to be deleterious when encompassing protein-coding genes or 

regulatory regions. Yet, there remains many reports of structural variants that have no 

effect or protective effects against certain conditions (Feuk, Marshall, Wintle, & Scherer, 

2006). 
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Figure 1.3 Different types of potential structural variation. 

Structural variants generally encompass all variants aside from single nucleotide variants 

(SNVs). A) Insertion/deletions (InDels) range in size from 1–50 nucleotides and result in 

a gain or loss of nucleotides, respectively. B) Tandem repeats are a subset of repetitive 

DNA elements that consist of a repeating motif of bases in a localized region of the 

genome. Motifs of 1–6 nucleotides are called microsatellites, motifs > 6 nucleotides are 

called minisatellites. C) Copy number variants (CNVs) are large-scale deletions or 

duplications of DNA greater than 50 nucleotides in length. Duplications may occur in 

tandem, be interspersed to a different region of the same chromosome, or be considered 

complex and located on a different chromosome than the original sequence. Finally, D) 

inversions and E) translocations are balanced structural variants, such that copy number 

of the locus does not change, but the position does.   
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1.2.1.2.1 Insertions and deletions 

“Insertions” or “deletions” of nucleotides (InDels) can range in size from 1–50 bases; 

although, most common are those one to three nucleotides in length, which make up 

~70% of all InDels (Figure 1.3A) (Lin et al., 2017). Although there are multiple 

mechanisms that can cause InDels to occur within the genome, typically they are a result 

of polymerase slippage during DNA replication processes (Taylor, Ponting, & Copley, 

2004). 

As with all genetic variation, InDels can occur at any location, or “locus,” throughout the 

genome, but are of particular interest when located within an exonic region of a gene. In a 

coding region, if an InDel’s length is a multiple of three nucleotides, it is referred to as an 

“in-frame” variant, and it results in the insertion or deletion of one or more amino acids 

within a protein. In contrast, if the length of the InDel is not a multiple of three, it is 

called a “frameshift” variant, as all downstream nucleotides will be shifted in position 

resulting in disruption of the remaining codon sequence (Kuntzer, Eggle, Klostermann, & 

Burtscher, 2010). Ultimately, this results in variation with all downstream amino acids in 

the corresponding protein and often also introduces an unexpected stop codon. The 

premature termination of the protein may trigger a nonsense-mediated decay pathway 

during mRNA translation, which results in degradation of the mRNA and no production 

of the protein (Kuntzer et al., 2010). For these reasons, frameshift variants typically result 

in a large amount of biological consequence and are considered “loss-of-function” (LOF) 

variants. 

1.2.1.2.2 Tandem repeats 

Over 50% of the human genome is comprised of repetitive sequences of DNA, including 

many located within genes or regulatory regions (Liang, Tseng, Tsai, & Sun, 2015). 

“Tandem repeats” are a subset of repetitive DNA elements that consist of a repeating 

motif of bases in a localized region of the genome (Figure 1.3B). The repeats can be 

further subclassified into “microsatellites” with motifs of 1–6 bp and “minisatellites” 

with motifs of >6 bp (Hannan, 2018). 
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Tandem repeats are highly unstable, meaning they are prone to additional variation, 

typically encompassing increases or decreases to the number of repeated motifs (Fan & 

Chu, 2007). Although there are multiple events that may result in changes to the number 

of repeats, similarly to InDel variants, the main pathway is polymerase slippage during 

DNA replication. Briefly, during this process the two DNA strands are separated, but 

when they re-pair, one strand “slips” and mispairing occurs. This creates a loop of DNA 

at the mismatch site (Figure 1.4). The loops are often recognized by DNA repair 

systems; however, when those mechanisms fail, the number of repeats is altered (Fan & 

Chu, 2007). 

Tandem repeat disorders are caused by tandem repeats located in specific regions or 

genes that have exceeded lengths considered to be of generally accepted normalcy, 

although these thresholds vary based on a variety of factors. Often, the disorders do not 

present as binary phenotypes, rather are expressed across a spectrum of disease states, 

typically with more severe outcomes directly correlated to the length of the associated 

tandem repeat (Hannan, 2018). Section 1.2.1.1.1 will introduce a hexanucleotide tandem 

repeat expansion in the 5’ regulatory region of the chromosome 9 open reading frame 72 

gene (C9orf72) that is the most frequently inherited genetic cause of ALS and FTD 

(DeJesus-Hernandez et al., 2011; Renton et al., 2011). 
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Figure 1.4 Contraction and expansion of a tandem repeat during DNA replication. 

During DNA replication of an existing tandem repeat, when the DNA strands are 

separated, one of the strands may slip prior to re-annealing due to the inherent instability 

of these regions. Depending on which strand experiences the slippage, the tandem repeat 

will contract or expand in length. Adapted from (Bush & Moore, 2012). 
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1.2.1.2.3 Copy number variants 

CNVs are large-scale deletions or duplications of DNA of at least 50 nucleotides in 

length (Figure 1.3C) (Feuk, Carson, & Scherer, 2006). As previously described, humans 

are diploid, harbouring both a maternal and paternal copy of their nuclear genome. 

Deletions occur when there is a loss of DNA, or loss of copy number, in comparison to 

the reference genome, whereas duplications occur when there is repetition of DNA, or 

gain of copy number, in comparison to the reference genome. However, unlike tandem 

repeats, a CNV duplication does not always occur in tandem to the original DNA 

sequence — the duplication may be located in an entirely different region of the genome 

(Feuk, Carson, et al., 2006). Although approximately 12% of the human genome is 

comprised of CNVs, and they contribute to normal phenotypic variation between 

individuals (Redon et al., 2006), CNVs may also affect gene expression, organization, 

and dosage (Stranger et al., 2007). Therefore, particularly when involving genes, CNVs 

can increase susceptibility to disease (Shastry, 2009a). 

1.2.1.2.4 Chromosome alterations 

“Chromosomal alterations” were some of the first variants observed in the human 

genome, as identification did not require the availability of sequencing technology. 

Rather, the variants are identifiable using a microscope to examine all 46 chromosomes, 

otherwise referred to as a “karyotype” (Feuk, Carson, et al., 2006). Other cytogenetic 

techniques are also now routinely used to identify these variants, including fluorescent in 

situ hybridization (FISH), comparative genomic hybridization (CGH) (Thompson & 

Gray, 1993), and, more recently, next-generation sequencing (NGS) (Iacocca et al., 

2017). 

There are several types of chromosomal alterations including, but not limited to, 

aneuploidies and rearrangements. “Aneuploidy” refers to an abnormal number of 

chromosomes due to an extra or missing copy. The majority of aneuploidies are trisomic 

or monosomic and one third of miscarriages are due to aneuploidy, highlighting their 

high potential for clinical consequence (Hassold & Hunt, 2001). “Rearrangements” can 

be further subclassified into unbalanced rearrangements, such as deletions or insertions of 
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large chromosomal segments, or balanced rearrangements, such as inverted or 

translocated chromosomal regions (Figure 1.3D-E) (Morin, Eccles, Iturriaga, & 

Zimmerman, 2017).  

1.2.1.3 Frequency of variants 

The success of the Human Genome Project, combined with the quick advancement of 

genetic sequencing technologies over the last 20 years, has resulted in the identification 

of millions of variants of unknown clinical relevance. This rapidly led to the development 

of complete databases of genomic variation from large cohorts of ancestrally diverse 

individuals to fully understand the role of both common and rare variants in phenotypic 

presentation (Auton et al., 2015; Karczewski et al., 2020; Lek et al., 2016). Based on the 

frequency at which a variant is observed in each of these databases, it is assigned a 

“minor allele frequency” (MAF), defined as the percentage of the population that carries 

the variant. The use of minor in MAF refers to the second most common allele that may 

appear at a genetic locus, whereas the major allele refers to the first most common allele, 

or the allele displayed in the human reference genome. Depending on the database, or 

subpopulation within the database, the MAF may be in reference to the global population, 

a population of individuals with or without a particular trait or diagnosis, or a specific 

ancestral population (Auton et al., 2015; Guerreiro et al., 2018; Karczewski et al., 2020; 

Lek et al., 2016). 

MAFs vary widely throughout the genome, often dictated by the location of the variant, 

the deleteriousness of the variant, and evolutionary constraints (Subramanian & Kumar, 

2006). Within populations, there are also further factors at play, such as genetic selection, 

migration, and drift that may cause a variant to be more or less common in a specific 

ancestral group (Tishkoff & Verrelli, 2003; Zlotogora, 1994). For this reason, it is 

imperative that genetic analyses control for ancestral populations, particularly when 

performing genetic association analyses — which correlate differences in phenotypic 

frequencies to allele frequencies and are discussed further in Section 1.1.4.2 — as MAFs 

between ancestries can vary widely (Cardon & Palmer, 2003; Taioli, Pedotti, & Garte, 

2004).  



18 

 

Common variants are generally defined as those with an MAF > 1% in the general 

population and are often referred to as “polymorphisms.” Although polymorphisms exist 

in all variant types, a common SNV is given the specific designation of “single 

nucleotide polymorphism” (SNP). Typically, common variants are predicted to be of 

neutral or very low phenotypic effect, due to their general abundance in the genome 

(Figure 1.5) (Gibson, 2012); however, exceptions do exist, such as the apolipoprotein E 

(APOE) genotype and its high phenotypic effect in Alzheimer’s disease risk, which is 

discussed further in Section 1.2.2.1.1. 

In contrast, rare variants are classically defined as variants with an MAF ≤ 1%. Although 

individually not common, as a result of ancient population bottlenecks and the more-

recent rapid increase in population size, the majority of variants that have been identified 

in the general population are rare, as new variants are introduced with each generation 

(Lappalainen, Scott, Brandt, & Hall, 2019). It is generally accepted that the most 

deleterious of genetic variants are rare, due to the effects of natural selective pressures 

(Figure 1.5). More specifically, variants of high deleterious effect will undergo negative 

natural selection, as they are less advantageous to survival, and the variants will become 

less frequent in the general population (Karczewski et al., 2020). 
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Figure 1.5 Typical range of potential phenotypic effect size, based on a variant's 

minor allele frequency (MAF) in the general population. 

It is generally accepted that rare variants (MAF ≤ 0.01) tend to be of higher phenotypic 

effect, usually acting as highly penetrant monogenic disease-causing mutations. In 

contrast, common variants (MAF > 0.05) are typically considered to be of small 

phenotypic effect, as demonstrated by the low effect sizes associated with the variants in 

genome-wide association analyses. However, these generalizations do not always hold 

true and some rare variants may be of smaller phenotypic effect, yet their rarity and low 

impact cause them to be difficult to detect with typical genetic analytic approaches. In 

contrast, there are a few known cases of common variants that demonstrate high 

phenotypic effect, such as the apolipoprotein E (APOE) E4 genotype. Adapted from 

(Bush & Moore, 2012). 
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1.2.2 Transmission of genetic traits and disease 

As previously described, every somatic cell in the human body contains two copies of the 

genome — otherwise referred to as the diploid genome — of which one copy was 

maternally inherited and the other paternally inherited (Georgadaki, Khoury, Spandidos, 

& Zoumpourlis, 2016). During fertilization, an egg cell from the biological mother 

containing one copy of DNA and a sperm cell from the biological father containing one 

copy of DNA combine to form the diploid zygote. As the zygote replicates throughout 

human development to form each cell in the human body, the cells all retain the same two 

inherited copies of the human genome (Georgadaki et al., 2016). In this way, genetic 

variation is inherited from an individual’s biological parents. Any genetic variant present 

from the time the zygote was formed is called a “germline variant” and can be passed on 

to further offspring of an individual. 

During the formation of gamete cells within the gonads, or during the early stages of 

embryogenesis, genetic variants may occur spontaneously as a result of errors in DNA 

replication, DNA damage such as double-strand breaks, or crossover interference during 

gamete formation (Goldmann, Veltman, & Gilissen, 2019). The resulting variants are 

called “de novo variants” and while they were not present within the genome of the 

biological mother or father, they can still be passed on to an individual’s offspring. More 

simply stated, de novo variants are spontaneously developed within a single generation, 

but are able to be passed on to future generations (Goldmann et al., 2019). Prior to the 

introduction of large-scale sequencing techniques, the identification of disease-causing de 

novo variants was difficult, as they defy the typical inheritance patterns required when 

performing linkage analysis, as described further in Section 1.1.4.1. Importantly, 

incidence of de novo variants is very low, and for this reason, they are often considered to 

have a high likelihood of being pathogenic (Mani, 2017). 

Spontaneous variants may also occur in later stages of embryogenesis or throughout an 

individual’s development or lifespan. These “somatic variants” result in mosaicism, with 

only a subset of an individual’s cells harbouring the variant (Poduri, Evrony, Cai, & 

Walsh, 2013). In a similar manner to germline de novo variants, somatic variants may be 

a result of errors in DNA replication or DNA damage from either endogenous sources, 
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such as oxidation, or exogenous sources, such as ultra-violet radiation or exposure to 

certain chemicals (Saini & Gordenin, 2018). Although they are well known for their 

contribution to many cancers, somatic mutations can also contribute to non-cancerous 

diseases as well, depending on the genes affected and the cells in which they are 

harboured. 

1.2.2.1 Genotypes, haplotypes, and zygosity 

A selection of genetic information that defines a trait or disease is referred to as a 

“genotype,” while alternative variants of a gene, genotype, or variant, are called “alleles.” 

The allele that is present within the human reference genome is considered the “wild-

type” allele, or the “major allele.” When referring to the trait or disease influenced by a 

genetic marker, it is called a “phenotype.” Therefore, certain alleles of a genotype define 

a phenotype. 

In some instances, groups of alleles are inherited together at a genetic locus and are called 

a “haplotype.” Typically, haplotypes result from a lack of recombination occurring 

between the alleles upon gamete formation, which may be due to the close proximity of 

alleles. Although, some haplotypes can encompass tens of kilobases (Wall & Pritchard, 

2003). In particular, the phenomenon of non-random co-occurrence of alleles is known as 

“linkage disequilibrium” (LD) (Lewontin & Kojima, 1960). LD can reflect population 

histories, evolution, and patterns of geographic subdivision and has allowed for major 

advancements in the study of human genetics, particularly in linkage analysis and the 

defining of haplotype blocks, which have aided in the mapping of SNPs in large-scale 

association studies (Wall & Pritchard, 2003). Approaches to genetic analysis will be 

discussed further in Section 1.1.4. 

“Zygosity” refers to the degree to which the two alleles — each from one copy of the 

diploid genome — at a given locus are similar. If the two alleles are identical, the 

genotype is referred to as “homozygous,” whereas if they are different, the genotype is 

“heterozygous” (Winsor, 1988). In some cases, there may be two different variants 

inherited at the same genetic locus, such as within the same gene, but on different alleles 

in which case the genotype is referred to as a “compound heterozygote.” And finally, the 
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sex chromosomes offer interesting cases of zygosity called “hemizygosity,” which 

describes males carrying a variant on their single X chromosomes, or females carrying a 

loss of one of their X chromosomes. 

1.2.2.2 Monogenic inheritance of Mendelian phenotypes 

“Mendelian inheritance” derives its name from the first description of the pattern by 

Gregor Mendel, who proposed a model for genes and inheritance as a result of his studies 

on pea plants. Ultimately, his work resulted in the “Law of Segregation” and “Law of 

Independent Assortment” (Mendel, 1865; H. Zhang, Chen, & Sun, 2017). The Law of 

Segregation described that upon gamete formation, only one of two gene copies are 

passed on to potential offspring. Closely tied to that, the Law of Independent Assortment 

described that alleles of different genes are independently sorted into the gametes, 

resulting in potential offspring diversity. Mendel was also responsible for the coining of 

the terms “recessive” and “dominant,” which are still used today in the description of 

inheritance patterns ( Mendel, 1865; H. Zhang et al., 2017). 

Mendelian inheritance refers to a genotype at a single genetic locus driving phenotypic 

presentation, otherwise referred to as a “monogenic variant.” The monogenic variants 

may be inherited in the various zygosity states described previously; however, whether 

they result in presentation of a phenotype depends on the “inheritance pattern” of the 

genotype-phenotype relationship. Monogenic phenotypes may follow a variety of 

inheritance patterns, including dominant, recessive, co-dominant, and sex linked (Figure 

1.6). 

“Autosomal dominant” inheritance refers to phenotypes that present when an individual 

carries only one copy of the genetic variant. Typically, heterozygous variant would have 

been inherited from a single parent, who also would have presented with the associated 

phenotype (Winsor, 1988). Alternatively, autosomal dominant phenotypes may result 

from de novo genetic variants, as previously described, in which case neither of the 

parents carried the variant or presented with the associated phenotype. Multiple 

mechanisms may underlie the presentation of an autosomal dominant phenotype, 

including dominant negativity, haploinsufficiency, and increased gene dosage (Veitia, 
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Caburet, & Birchler, 2018). Both dominant negative and haploinsufficiency models are a 

result of heterozygous LOF variants, yet differ in pathogenic mechanism. In a “dominant 

negative” model, the heterozygous variant results in a protein product that actively 

interferes with the wild-type protein product, whereas in “haploinsufficiency” models a 

single wild-type copy of a protein product cannot compensate for the variant protein 

product that cannot perform its usual function. Conversely, “increased gene dosage” 

models are a result of gain-of-function variants that increase the production or 

functioning of a gene’s protein product. The excess protein production may result in 

dysregulation of mechanistic pathways or expression in inappropriate pathways or during 

inappropriate times of development (Veitia et al., 2018). 

“Autosomal recessive” inheritance refers to phenotypes that present when an individual 

carries two copies of the genetic variant as a result of the inheritance of one copy from 

each parent (Winsor, 1988). In this case, each parent harbouring a single copy of the 

variant would be referred to as a “carrier” of the variant, but neither would present with 

the phenotype as they would not be homozygous for the allele.  

“Autosomal co-dominant” inheritance is an interesting case in which both the variant 

allele and the wild-type allele are expressed. This may result in an intermediate 

phenotype in heterozygous carriers of the variant, otherwise known as “incomplete 

dominance,” and more severe phenotypes in homozygous carriers (Moldovan, Banescu, 

& Dobreanu, 2020). Alternatively, autosomal co-dominance can result in the presentation 

of both phenotypes simultaneously, such as in the case of ABO blood groups. 

“X-linked” inheritance refers to variants located on the X chromosome that contribute to 

a phenotype. X-linked inheritance may also be dominant or recessive, but it is important 

to recognize that these variants will have different effects in males and females (Winsor, 

1988). Females have two copies of the X chromosome, so if only one of their X 

chromosomes harbours a variant, they may only be a carrier if the phenotype is inherited 

in a recessive manner. However, males only have a single X chromosome, so no matter if 

the phenotype is inherited in a dominant or recessive manner, if they harbour a 

phenotype-associated variant on the X chromosome, there is no other wild-type copy of 



24 

 

the allele to compensate, and they will present with the phenotype (Winsor, 1988). 

Similarly, “Y-linked” inheritance is the result of genetic variants present on the Y 

chromosome. As only males have the Y chromosome, the variants can only be paternally 

passed on to all male offspring. 
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Figure 1.6 Potential inheritance patterns of Mendelian phenotypes from monogenic 

variants. 

The inheritance pattern of Mendelian phenotypes can be determined based on pedigrees 

of a family, which depict those that do and do not present with the phenotype of interest. 

A) Autosomal dominant phenotypes are those that present when an individual is 

heterozygous for the variant of interest. B) Autosomal recessive phenotypes are those that 

only present when an individual is homozygous for the variant of interest. All 

heterozygotes are considered variant carriers. C) Autosomal co-dominance refers to 

phenotypes that are influenced by the presence of both the variant and wild-type allele 

such that it may result in an intermediate phenotype in heterozygous carriers of the 

variant, otherwise known as incomplete dominance, or heterozygous carriers may display 

both phenotypes simultaneously. D) Y-linked refers to phenotypes that are caused by 

variants on the Y chromosome, whereas X-linked phenotypes are those caused by 

variants on the X chromosome and may be E) dominant or F) recessive.  
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1.2.2.2.1 Variable penetrance 

An important caveat when studying seemingly monogenic phenotypes is that there may 

be underlying genetic complexity complicating the analysis of phenotype-causing genetic 

variation, such as that introduced by incomplete penetrance. “Penetrance” is defined as 

the probability that individuals carrying a disease-causing genetic variant fully express 

the associated phenotype (Cooper, Krawczak, Polychronakos, Tyler-Smith, & Kehrer-

Sawatzki, 2013). “Complete penetrance” is the term used to describe a phenotype that 

always presents itself in an individual that carries the associated genetic variant. When 

penetrance is “incomplete” it means that individuals may carry a variant known to cause 

a certain phenotype, but they may not express the expected phenotype (Figure 1.7). 

Similarly, variable expressivity of a genetic variant can complicate the seemingly 

straight-forward model of monogenic inheritance. “Variable expressivity” is used to 

describe instances where multiple individuals carry the same genetic variant, but display 

varying degrees of phenotypic presentation, otherwise referred to as “phenotypic 

heterogeneity” (Figure 1.7) (Schacherer, 2016). Finally, “pleiotropy” refers to genes, or 

even specific variants, that cause or increase risk of multiple different phenotypes that 

may or may not be related (Hemani, Bowden, & Davey Smith, 2018).   

Variable penetrance and expressivity may be a result of a variety of mechanisms, 

including: influence from additional genetic variants, the age or sex of the individual, 

epigenetic changes, or environmental factors (Cooper et al., 2013). Due to the potential of 

influence from other genetic factors to variants displaying either of these phenomena, the 

variants begin to blur the line between true monogenic inheritance patterns and polygenic 

inheritance (Schacherer, 2016). For this reason, penetrance and expressivity introduce 

great complexity in the interpretation of genetic variants, which is an important 

component of genetic analyses and will be discussed further in Section 1.1.5. 
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Figure 1.7 Examples of incomplete penetrance and variable expressivity of a 

phenotype. 

Incomplete penetrance refers to phenotypes that are not always expressed when an 

individual carries the associated genetic variant, whereas variable expressivity refers to 

phenotypes that are expressed, but to varying degrees across individuals who carry the 

same associated genetic variant. It is also possible for a variant to exemplify both 

incomplete penetrance and variable expressivity.  
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1.2.2.3 Polygenic inheritance of complex disease 

In contrast to monogenic inheritance, “polygenic inheritance” refers to traits that are 

influenced by more than one genetic variant, which have an additive effect on phenotypic 

presentation. Typically, these phenotypes are referred to as “complex” and the many 

genetic variants that contribute to the trait or disease are located at a variety of loci 

throughout the genome (Dron & Hegele, 2018). A complex phenotype may also be 

considered “multifactorial” if influenced by both polygenic and environmental factors.  

Classically, polygenic phenotypes are considered to be influenced by SNPs of small 

phenotypic impact; however, variants contributing to complex traits or disease may be 

common or rare, and include both SNVs and structural variants. In general, rare variants 

tend towards larger phenotypic impact compared to common variants, yet exceptions do 

exist and variants of any frequency can contribute to the cumulative sum of phenotypic 

risk (Figure 1.5) (Crouch & Bodmer, 2020). The variants may also reside within coding 

regions of genes or in non-coding regions of the genome, and although variants located 

within coding regions often have larger phenotypic impact, complex phenotypes are often 

driven by noncoding variants that contribute to gene expression (Crouch & Bodmer, 

2020). 

One complication of polygenic inheritance models is the difficulty in assessing the 

functional impact of genetic variants and understanding their combined contribution to 

phenotypic presentation. Further, even when the additive impact of polygenic variants is 

considered, there often remains a large proportion of unexplained genetic variance, 

referred to as an issue of “missing heritability” (Boyle, Li, & Pritchard, 2017). 

To assess overall risk from polygenic contributors to disease, a “polygenic risk score” 

(PRS) can be employed. Although PRSs were not used for the purposes of this 

Dissertation, their importance in understanding overall genetic risk of disease cannot be 

discounted. Overall, they are a measure of genetic risk of a specific complex phenotype 

based on an individual’s accumulation of genetic risk variants. Typically, the weighted 

scores are calculated from the summation of effect size estimates of various SNPs 

associated with a phenotype of interest, obtained from large genome wide association 
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studies (GWASs) (Dron & Hegele, 2018). Although rare variants can also be included in 

a PRS, rare variants of small to moderate effect remain difficult to identify using GWAS, 

and therefore are largely unknown (Choi, Mak, & O'Reilly, 2020). The score can 

encompass tens to thousands of genetic variants, with larger scores often able to capture a 

greater amount of genetic risk. Although PRSs have allowed the ability to assess genetic 

risk from multiple small effect SNPs, they are not without their limitations. The design of 

a reliable PRS requires the results from many GWASs with large sample sizes, which 

still remain limited for many phenotypes. Further, it is imperative that PRSs have been 

replicated in multiple cohorts, as false positive claims of genetic risk using a PRS can be 

relatively common (Nalls et al., 2019). PRSs are also often specific to the ancestral 

population of the experimental cohorts with which they were designed, as common 

genetic architecture between ancestral populations can vary widely. Unfortunately, many 

of the currently designed PRSs were built using cohorts of European ancestry and fail to 

account for ancestral diversity (Martin et al., 2019). Finally, in many cases, PRSs have 

failed to fill the gap between the amount of heritability accounted for by monogenic 

variants’ contribution to disease and overall disease heritability estimates, leaving 

missing heritability, which will be discussed further below. Nonetheless, PRSs are 

becoming a promising tool to predict individual disease risk, and can also be employed to 

study overlap in genetic determinants of different diseases (Bellou, Stevenson-Hoare, & 

Escott-Price, 2020). 

1.2.2.3.1 Heritability 

“Heritability” is defined as the amount of phenotypic variance in a population that is 

attributable to genetic variance (Manolio et al., 2009). Typically, heritability is expressed 

by a number ranging from zero to one, where the former describes phenotypes that are 

not explained by genetics at all, and the latter describes phenotypes completely explained 

by genetics. If a complete understanding of the genetic contributors to a certain 

phenotype were understood, heritability would estimate how well we could predict a 

phenotype based on genetic factors. 

Unfortunately, many complex phenotypes still display a large gap between the estimated 

heritability determined by family-based studies, such as twin studies, and the phenotypic 
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variance explained by associated genetic variants, which is defined as the “missing 

heritability” (Uricchio, 2020). There are many potential explanations for missing 

heritability, including the proposition that there remain variants contributing to complex 

phenotypes that are yet to be discovered, such as common variants of smaller impact, rare 

variants of smaller impact that are difficult to detect even with large samples sizes, and 

ultra-rare variants of large impact. However, as phenotype-associated genetic variation is 

continuously discovered, other considerations have come to light. One hypothesis is that 

current heritability estimates may be inflated, potentially due to non-additive genetic 

effects or shared environmental influence in families. Others suggest that the non-

additive genetic effects of gene-gene interactions are difficult to capture and potentially 

account for the missing heritability (Manolio et al., 2009). Regardless, identifying the 

remaining genetic factors that contribute to complex traits is imperative as we 

continuously move towards a precision medicine model of diagnosis, progression 

prediction, and treatment for many complex phenotypes. 

1.2.3 Methods to identify genetic variation 

The ability to identify variation within the human genome is relatively new, with methods 

only being developed over the last 50 years. In 1977, Frederick Sanger published his 

methodology for DNA sequencing, later named “Sanger sequencing,” that to this day 

remains the gold-standard approach to obtain the exact readout of a selection of DNA 

(Sanger, Nicklen, & Coulson, 1977). The method also underwent important technological 

improvements during the completion of the Human Genome Project (Lander et al., 2001). 

Along with its conclusion, technological advances have allowed for a new era of genetic 

analysis encompassing high-throughput massively parallel DNA sequencing, referred to 

as NGS, as well as advancements in the ability to perform large-scale genotyping arrays.  

1.2.3.1 Sanger sequencing 

Sanger sequencing, otherwise referred to as “chain-termination” or the “dideoxy 

technique,” remains one of the most reliable sequencing approaches, even almost 50 

years after it revolutionized the field of human genetics (Sanger et al., 1977). 

Traditionally, the method utilizes analogues of the deoxyribunucleotides (dNTPs) found 
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in DNA that lack the 3’ hydroxyl group, called dideoxyribonucleotides (ddNTPs) that 

result in the inability to form bonds with the next dNTP in a sequence. Using these, four 

parallel polymerase chain reactions (PCR) are run, each containing only one set of 

radiolabeled ddNTPs corresponding to a single base — A, C, G, or T — and resulting in 

DNA strands of each possible length being produced. The DNA strands then undergo 

size-separation-based capillary gel electrophoresis, and the 5’ to 3’ DNA sequence can be 

read based on the radioactive label in the corresponding position on the gel (Heather & 

Chain, 2016).  

Over the years, methodologies have been improved, resulting in the ability to automate 

Sanger sequencing using machines, and the accuracy of the method remains a gold-

standard in the field. Yet Sanger sequencing does not come without its limitations, as 

even with automation, the use of the method remains tedious, time consuming, and cost 

prohibitive. Sanger sequencing lacks practicality when studying large sample sizes or 

regions of the genome much greater than 1 kb.  

1.2.3.2 Next-generation sequencing 

Following the completion of the Human Genome Project, there became a striking need 

for the ability to sequence large cohorts of individuals quickly and at low cost. In 2005, 

the shift to the “next-generation” of sequencing began under the basic premise that the 

methods sequence DNA in a massively parallel manner (Margulies et al., 2005; Shendure 

et al., 2005). By shearing the DNA into small overlapping fragments, or “reads,” millions 

of nucleotide sequences can be determined simultaneously. Not only does this speed up 

the process of sequencing and decrease cost, but it also results in high coverage, or “read 

depth”, at each sequenced nucleotide, thereby increasing the confidence of the 

sequencing calls made by NGS methods and allowing for the determination of allele 

zygosity and dosage. Further, while Sanger sequencing is restricted to identifying small-

scale SNVs and InDels in regions already known to be of interest, NGS offers the ability 

to identify a wide range of genetic variation, including large-scale CNVs (Iacocca et al., 

2017). NGS can also interrogate the human genome without the bias needed for Sanger 

sequencing, as full exomes or genomes may be sequenced at once (Behjati & Tarpey, 

2013). 
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NGS can be subcategorized based on specific technologies as well as the regions of the 

genome that are captured. Whole genome sequencing (WGS) refers to NGS of the entire 

human genome, providing an unbiased assessment of the genetic variation harboured by 

an individual. While there are obvious benefits to this approach, such as the ability to 

identify variants within intergenic, intronic, and regulatory regions of the genome, and 

the continuously decreasing costs of the sequencing itself, limitations also exist. Due to 

the length of the full human genome sequence, WGS data processing and analyses are 

computationally intensive, requiring the ability to store extremely large file sizes. Further, 

genetic variation located in non-coding regions of the genome remain difficult to 

interpret, and related genetic association analyses require very large sample sizes for the 

power to detect variants of interest. Alternatively, there is whole exome sequencing 

(WES), which targets the exonic regions of all genes in the human genome, resulting in 

~1% of the content than that covered by WGS (Rabbani, Tekin, & Mahdieh, 2014). 

While WES obviously limits the ability to detect genetic variation to the coding regions 

of the genome, it is predicted that between 60–85% of disease-associated genetic variants 

are restricted to these regions (Rabbani et al., 2014; Ross, Dion, & Rouleau, 2020), and 

the decreased content coverage of WES limits both the computational resources 

necessary for analysis, as well as the associated costs of the sequencing. WES can also 

produce sequencing data of greater read depth than WGS, providing a higher degree of 

confidence in allele calls (LaDuca et al., 2017; Sims, Sudbery, Ilott, Heger, & Ponting, 

2014). Read depth can be even greater if a targeted NGS approach is used. Targeted NGS 

refers to sequencing panels designed to target specific genomic content, including any 

genes or regions of particular interest. Targeted panels offer further decreases in cost and 

computational processing power, and are of particular benefit when certain genes are 

known or predicted to be associated with a phenotype of interest. 

While NGS offers its clear advantages, there are important limitations to consider. Due to 

the short-read lengths of the DNA fragments being sequenced, highly repetitive regions 

of the genome remain difficult to map back to the human reference genome, specifically 

when the repeats are longer than each individual read itself (Xuan, Yu, Qing, Guo, & Shi, 

2013). Further, GC-rich regions of the genome often result in decreased read depth of 

NGS data, and confidence in allele calls becomes uncertain (Chen, Liu, Yu, Chiang, & 
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Hwang, 2013). Yet, it is widely recognized that NGS approaches have revolutionized the 

study of human genetics and are continuously becoming more approachable. Not only are 

bioinformatics processes able to handle the data being refined, but costs continue to 

decrease, with the first genome sequence costing over $100,000,000 to complete and 

WGS now offered for under $1,000 per sample in some instances (Wetterstrand, 2020). 

1.2.3.3 Genotyping 

Unlike NGS, which sequences full genomic regions, “genotyping” is the targeting of 

specific genetic coordinates. Genotyping may be performed on a variety of known 

genetic loci at once using a microarray or may be performed on individual alleles using 

single SNP quantitative PCR (qPCR)-based assays, such as a TaqMan allelic 

discrimination assay. Although genotyping does not offer the ability to assess the full 

spectrum of genetic variants an individual may carry, targeting specific loci can offer the 

ability to scan a population for SNVs known to be pathogenic, to characterize the 

ancestry of a population, or to perform genome-wide association studies and identify 

novel phenotype-associated regions in the genome (Ragoussis, 2009). 

Microarrays offer a unique approach to genetic analysis, as they can cover up to millions 

of SNVs. Often considered an intermediate between cytogenic analysis of chromosomal 

karyotypes and complete DNA sequencing, microarrays provide a scan of the entire 

genome to identify genomic variation (Page et al., 2007). Further, the phenomenon of LD 

allows for the imputation of additional SNVs that are within the same haplotype blocks of 

alleles that have been genotyped. The coverage of such a large amount of the genome 

allows for the detection of CNVs based on the signal intensity of the data; however, the 

locations of the SNVs on the microarray limit resolution and CNV breakpoints must be 

further discerned (Coughlin, Scharer, & Shaikh, 2012). Microarrays also offer the 

opportunity to perform GWAS, which are used to identify novel loci associated with 

phenotypes of interest (Ragoussis, 2009). GWAS will be discussed further in Section 

1.1.4.2.1. 
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1.2.3.4 Repeat-primed PCR 

When studying tandem repeats, obtaining an accurate detection of expansion size is 

imperative, as there are often well-defined thresholds for the number of repeats that cause 

a phenotype. But it is difficult to detect these variants with Sanger sequencing and NGS, 

due to the imbalances they often introduce in GC content or their inherent length. 

Although there are many alternatives to detect these variants — such as capillary 

electrophoresis, Southern blot analysis, or mass spectrometry — the most commonly 

used approach is repeat-primed PCR, due to its relative simplicity and feasibility (Liu, 

Zhang, Wang, Gu, & Wang, 2017). 

Briefly, repeat-primed PCR utilizes a pair of reverse primers that can bind at various 

locations throughout the tandem repeat, amplifying DNA of various lengths, along with a 

fluorescently labelled forward primer. The resulting DNA fragments are then able to be 

analyzed using the fluorescence trace, creating a “ladder” and allowing for the 

identification of large pathogenic repeats (Renton et al., 2011; Warner et al., 1996). 

Unfortunately, the method is limited to only determine the length of a tandem repeat up 

to a certain size, for example 60 copies of a hexanucleotide repeat; however, it is still able 

to determine that the number of repeats are above the length threshold. 

1.2.4 Approaches to identify genetic contributors of disease 

The analytic approaches used to map genetic loci to associated human phenotypes can be 

largely categorized by two main groups, including: 1) “linkage analysis” that relies on co-

segregation of genotype and phenotype throughout a pedigree and 2) “population 

genetics”, also referred to as “association analyses”, which study genetic variation in 

large populations of unrelated individuals. The approaches each have their own 

advantages and limitations, and the choice of which to utilize is dictated by the data 

available, the phenotype severity and transmission pattern, and the goals of the study.  

1.2.4.1 Linkage analysis 

As previously described, Mendel’s Laws stated that alleles at different loci will segregate 

independently during gamete formation; however, there are genes — typically in close 
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proximity on the same chromosome — that are “linked”, resulting in phenotypes being 

inherited together. Linkage analysis relies on these exceptions to Mendel’s law in order to 

identify genetic markers that are linked to genes driving a phenotype, and to ultimately 

map genes to their associated phenotype ( Mendel, 1865; Elston, 1998). 

Prior to the availability of large-scale sequencing methods, the identification of genes 

contributing to a phenotype of interest relied on the use of SNPs with known positions 

within the genome and analyzing co-segregation of the SNPs throughout a family’s 

pedigree (Morton, 1955). Specifically, “co-segregation” refers to genotypes that are only 

carried by individuals in a pedigree that also present with the phenotype being studied. A 

map of the SNP positions within the genome can then be generated and, based on the 

SNPs that co-segregated, regions of interest likely to be associated with the phenotype 

can be identified (Elston, 1998). 

Classically, linkage analyses were used for the identification of rare, monogenic variants 

of high penetrance, and this application is still widely accepted, as the inherent rarity of 

these variants result in detection difficulty with other methods, such as GWAS (Bush & 

Haines, 2010). The wide-availability of NGS data coupled with linkage analysis now 

allows for a narrowed approach to identifying genetic markers of disease by directing 

which genomic loci should be prioritized for further analysis (Ott, Wang, & Leal, 2015). 

Although linkage analysis has been successful in mapping disease-causing genes for 

decades, it is still important to recognize its limitations. Most importantly, the approach 

relies on the availability of genetic and phenotypic data of entire families, with larger 

pedigrees being most optimal (Bush & Haines, 2010). Unfortunately, large pedigrees 

with family members all willing and available to be involved in genetic analyses can be 

difficult to find, particularly in diseases with onset later in adult life. Additionally, there 

is always the, albeit unlikely, potential that linked genetic loci will experience 

recombination between them and the region will be eliminated from consideration. 

Finally, although not impossible, the identification of common genetic variants of small 

or modest phenotypic impact remains difficult with linkage analysis, due to the often 

lower penetrance of these variants (Bush & Haines, 2010). 
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1.2.4.2 Association analyses 

Association analyses encompass a wide-range of approaches all aimed at detecting 

associations between genetic variants and phenotypes of interest at a population level. 

Importantly, they rely on the use of populations of unrelated individuals and the same 

genetic markers contributing to a phenotype across the various individuals (Rodriguez-

Murillo & Greenberg, 2008). Association analyses have risen in popularity over the last 

two decades due to the availability and feasibility of large-scale NGS sequencing and 

genome-wide microarrays. The approaches are advantageous, as family data is often 

difficult to obtain, and the analyses offer a high level of granularity to detect variants of 

relatively small phenotypic impact, while simultaneously producing quantitative 

estimates of that impact (Rodriguez-Murillo & Greenberg, 2008). 

An important caveat to association analyses is the need to accurately account for 

differential ancestry within the population under study. As early humans spread around 

the world and settled into different geographic locations, they faced differential 

environments, catastrophic events, and geographic isolation often resulting in gene pool 

isolation and, in some cases, interbreeding. All of these factors resulted in highly 

differential MAFs across different populations (Hellwege et al., 2017). Therefore, when 

performing association analyses, it is important to either have ancestrally homogenous 

cohorts to compare or to apply corrections for the effects of population stratification, as 

not to identify false positive genetic associations that are actually a result of confounding 

from population heterogeneity. To stratify a cohort into differential populations, 

statistical methods such as principal component analysis (PCA) can be used to assess the 

variance in SNPs harboured by individuals within a population and determine their 

ancestral “distance” from one another (Hellwege et al., 2017).  

1.2.4.2.1 Genome wide association studies 

GWAS are aimed at identifying associations between SNPs and complex traits and 

diseases in large population-based studies. Over the past 15 years the approach has 

revolutionized the study of the small phenotypic impacts of relatively common genetic 

variation (Visscher, Brown, McCarthy, & Yang, 2012).  
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The method builds upon the long acknowledged understanding that genes can be 

effectively mapped by relying on population-based LD; however, it has done so by 

leveraging the insights of the human genome brought forth by the Human Genome 

Project (Visscher et al., 2012). More specifically, the subsequent HapMap project 

(International HapMap, 2005) investigated the degree of LD between SNPs throughout 

the genome. The map of LD can now be exploited to ensure that the SNPs analyzed 

across a GWAS analysis are not redundant, as SNPs in LD would give the same signal in 

the analysis. 

The GWAS itself requires large populations comprised of both individuals with a 

phenotype of interest and controls, all genotyped using a genome-wide SNP array. 

Analyses are then able to identify SNPs highly associated with the trait of interest, based 

on their frequency in the cases in comparison to the controls, and produce an effect size 

relative to how much impact the SNP contributes to the phenotype under study (Bush & 

Moore, 2012). Following the identification of significant SNPs, the results may be further 

analyzed to determine if the association was ‘direct’, meaning as a result of the SNP 

genotyped itself, or ‘indirect’, meaning as a result of another genetic variant in high LD 

with the SNP that was genotyped (Bush & Moore, 2012). 

Any direct associations identified using GWAS contribute to the common-disease-

common-variant hypothesis. It is unclear who the true founders of this hypothesis were, 

as multiple researchers first proposed the theory in the mid- to late-1990s (Chakravarti, 

1999; Lander, 1996; Risch & Merikangas, 1996). Briefly, the hypothesis proposes that all 

common diseases, with a population frequency >1–5% are driven by common genetic 

variation. The common variation may exhibit monogenic inheritance, such is the case 

with APOE and AD, or polygenic inheritance with many SNPs of small-to-modest 

phenotypic effect driving phenotypic presentation. Yet, further research over the last 20 

years has proven there are very few complex phenotypes that can be substantially 

explained solely by common variation, leading to missing heritability and giving rise to 

the competing common-disease-rare-variant hypothesis (Gibson, 2012). 
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1.2.4.2.2 Rare variant association analysis 

In contrast to the common-disease-common-variant hypothesis, the rare variant 

counterpart suggests that rare genetic variants of high phenotypic impact are driving 

phenotypic presentation (Gibson, 2012). The theory has also been expanded by some to 

include the possibility that there are many rare variants of small-to-modest phenotypic 

impact that are unable to be easily detected with GWAS or linkage approaches and may 

account for some of the missing heritability of disease. In turn, this hypothesis has led to 

the development of rare variant association analysis (RVAA). 

As previously explained, GWAS are largely underpowered to detect rare, disease-

associated variants without extravagant sample sizes, unless a variant’s phenotypic 

impact is very large. Further, there is difficulty performing indirect association mapping 

on GWAS identified disease-associated SNPs to rare variants, as two variants must have 

similar MAFs to be in high LD (Asimit & Zeggini, 2010). In contrast, RVAAs capitalize 

on the understanding that although rare variants are individually infrequent, when binned 

together, they may be common enough to harness the statistical power for novel 

associations to be made. When performing RVAA, rare variants are collapsed into variant 

groups, which can be dictated by a variety of factors, including, but not limited to: 

general genomic region, individual genes, pathways of interest, MAFs, or functional 

consequence (Asimit & Zeggini, 2010). Importantly, when rare variants are binned based 

upon specific genes or pathways, novel disease-associations may be identified.  

Akin to GWAS, RVAAs also utilize large populations of individuals both with a 

phenotype of interest and controls; however, in contrast to GWAS, typically RVAAs 

employ NGS data, as microarrays cannot capture the full breadth of possible rare 

variation in a population (Asimit & Zeggini, 2010). Following NGS, variants are 

prioritized using quality control metrics, MAFs, in silico prediction algorithms, and/or 

previous disease associations — all of which are discussed further in Section 1.1.5. Rare 

variants are then binned into their respective groups, and various methods can be used to 

identify associations between the rare variant groups and the phenotype of interest. The 

methods vary widely and can include various types of univariate or multivariate 

regression models customized for the individual study, or standardized models, such as 
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burden tests or the optimal unified sequence kernel association test (SKAT-O) (Lee, 

Emond, et al., 2012). 

Burden tests collapse rare variants based on genomic region under the assumption that 

the rare variants all contribute to the phenotype in the same direction (i.e. they all 

increase risk for the phenotype). The approach can be useful when the genes under study 

are known to contribute to the phenotype in a similar manner, but it is generally accepted 

that at least a portion of variants, if not the general majority identified in a region, will 

have little to no phenotypic impact. Unfortunately, this can introduce noise in the 

analysis, as well as a loss of statistical power (Wu et al., 2011). On the contrary, sequence 

kernel association testing (SKAT) uses a kernel function and variance component tests to 

identify phenotypic associations with rare variants binned, again, based on genomic 

region, but also accounts for variants with differential phenotypic impact magnitudes and 

directions (Wu et al., 2011). The approach was further refined to produce SKAT-O, 

which was used in the methodology of Chapter 4, and builds upon SKAT by including 

the ability to identify the optimal testing strategy between burden tests and SKAT to 

maximize statistical power. More specifically, when the effects of variants are correlated, 

SKAT-O will employ a burden method, rather than the SKAT approach (Lee, Wu, & Lin, 

2012).  

1.2.5 Genetic variant interpretation 

When studying how genetic variation can contribute to disease, an important aspect to 

consider is interpretation of the variants. As described above, prior to RVAAs, variants 

are prioritized to identify those that are rare in the general population (commonly MAF < 

1%), and may be further filtered based on the goals of the study. Additionally, following 

the identification of gene-disease associations using linkage analysis or association 

analysis, assessing the deleteriousness of different variants within a gene becomes the 

new challenge, particularly when there is interest in implementing clinical genetic testing. 

One of the first steps in this process is the interpretation of identified gene-disease 

relationships themselves. With such rapid advances in genomic technologies, there has 

been an exponential increase in gene-disease correlations, yet the levels of evidence 
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behind these correlations may differ widely. Online Mendelian in Man (OMIM) ("Online 

Mendelian Inheritance in Man, OMIM®,") is a freely available resource that has 

amalgamated information regarding human genes and associated phenotypes in a 

comprehensive manner. Although the compendium only originally included genes 

definitively carrying Mendelian disease-causing variants, the collection has broadened to 

include genes with varying degrees of disease-association evidence. While this is an 

excellent resource to clinicians and researchers alike, standard guidelines were necessary 

for evaluating the strength of gene-disease correlations, especially for use in the clinical 

setting. In 2017, the NIH-funded Clinical Genome Resource (ClinGen) published a 

standard framework for the evaluation of these gene-disease correlations and efforts are 

ongoing to classify gene associations across many diseases by Gene Curation Expert 

Panels (GCEPs) (Strande et al., 2017). 

When interpreting genetic variants themselves, there are multiple approaches that may be 

taken. A customized approach may be used, based on the goals of a study, or a validated 

framework may be applied, such as the American College of Medical Genetics and 

Genomics (ACMG) Standards and Guidelines for Interpretation of Sequence Variants 

(Richards et al., 2015), which is beneficial in clinical settings. Customized strategies tend 

towards variant filtration to prioritize those likely-to-be or known-to-be disease causing 

or risk associated, whereas the ACMG guidelines classify all variants using the 

framework of: “benign,” “likely benign,” “uncertain significance,” “likely pathogenic,” 

and “pathogenic.” 

In addition to the approach, many different factors go into interpreting genetic variants, 

including, but not limited to, variant zygosity, sequence ontology, MAFs, in silico 

prediction scores, and previous disease associations. To begin, it is important to consider 

the zygosity of the variants of interest, as for an established gene-disease association 

there is often an accepted inheritance model for the relationship, such as autosomal 

dominant or autosomal recessive, especially in cases of Mendelian inheritance. Sequence 

ontology refers to the type of genetic variation, typically defined by the resulting change 

to the protein encoded by the gene of interest. Sequence ontologies are binned into two 

general categories: 1) nonsynonymous, or variants that change the resulting protein code 
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and 2) synonymous, or variants that do not change the resulting protein code. 

Nonsynonymous variants can be further subdivided, based on sequence ontology, to 

include: 1) putative LOF variants, including nonsense, splicing, and frameshift InDels; 2) 

missense variants, referring to those that change a single amino acid in the protein to a 

new amino acid; and 3) in-frame InDels. MAFs have heretofore been comprehensively 

covered in this Dissertation, but it is important to recognize that these variant frequencies 

can be obtained from a variety of population databases. The first example of a general 

population database is the 1000 Genomes Project (1000G) (Auton et al., 2015), which 

launched in 2008 and aimed to identify most common genetic variation within 

populations from across the world using WGS. In total, the final 1000G dataset is 

comprised of 2,504 samples that have all been well defined ancestrally, allowing the data 

to be quite useful when performing genetic ancestral estimation. Another example of a 

general population database is the Exome Aggregation Consortium (ExAC) (Lek et al., 

2016), which was produced by the Broad Institute of MIT and Harvard and included the 

WES data from over 60,000 samples. The database was later updated into the Genome 

Aggregation Database (gnomAD) (Karczewski et al., 2020), to reflect the inclusion of 

WGS data. Version 2.1.1 of gnomAD includes SNV and InDel data from WES of over 

125,000 samples and structural variation data from WGS of over 15,000 samples. 

Version 3.1 of gnomAD includes SNV and InDel variant data from WGS of over 76,000 

samples. Although larger datasets provide the obvious advantage of a greater ability to 

capture a wider range of human genetic variation, the choice of general population 

database is dependent on the specifications of the study. For example, while ExAC is a 

smaller dataset than either version of gnomAD, it does not include samples from 

individuals with neurological conditions, whereas gnomAD does include some 

individuals with these conditions. In silico predictions are algorithms that are able to 

predict how deleterious a nonsynonymous variant may be by considering the 

conservation of the affected amino acid(s) and/or the biochemical properties and location 

of the amino acid change. When employing in silico predictions, it must be understood 

that they are not able to definitively determine variant pathogenicity, rather they provide 

a prediction of how deleterious a variant may be. In fact, in many cases different in silico 

prediction algorithms may not agree and one must consider the factors contributing to 
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each individual algorithm in order to assess validity of prediction calls. Examples of in 

silico algorithms used within this Dissertation include: Polymorphism Phenotyping v2 

(PolyPhen-2) (Adzhubei et al., 2010), Sorting Intolerant from Tolerant (SIFT) (Kumar, 

Henikoff, & Ng, 2009), and Combined Annotation Dependent Depletion (CADD) 

(Kircher et al., 2014). Finally, when interpreting genetic variation, we must consider 

previous disease associations of the individual variants, which may be described within 

the relevant literature, or captured by databases such as ClinVar (Landrum et al., 2014). 

1.3 Neurodegenerative disease 

Neurodegenerative diseases are a collection of progressive, debilitating conditions 

characterized by the degeneration of neurons, either within the brain or peripheral 

nervous system. Upon pathological examination, neurodegenerative disease patients 

present with protein aggregates within the brain that classically define their diagnosis 

(Table 1.1). Although clinical presentations differ widely between different 

neurodegenerative disease diagnoses, features do tend to overlap, and even within single 

neurodegenerative disease cohorts, such as AD, presentations between patients is highly 

heterogenous. Further, very few individuals have pure forms of their diagnosis; rather, 

many exist on a continuum of neurodegenerative phenotypes, and mixed pathologies are 

common (Dugger et al., 2014). Importantly, the greatest risk factor for neurodegenerative 

disease development is increasing age. 

Neurodegenerative diseases are largely grouped into two categories: 1) motor/movement 

disorders and 2) cognitive and/or behavioural disorders. The former includes motor 

neuron diseases, such as ALS, and parkinsonisms, such as PD (Trojsi, Christidi, 

Migliaccio, Santamaria-Garcia, & Santangelo, 2018). As the name suggests, 

motor/movement disorders principally affect a patient’s mobility, including decreased 

motor control, apraxia, and speech/swallowing difficulties, although cognitive features or 

mixed pathologies with cognitive and/or behavioural disorders are not infrequent. In a 

similar manner, cognitive and/or behavioural disorders are mainly defined by the 

presentation and progression of decline in cognitive functioning across a variety of 

domains and/or severe changes in behaviour. Yet, again, patients may also present with 

features of impaired movement (Trojsi et al., 2018). 
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A third group of neurodegenerative diseases that is often discounted, or even ignored, is 

vascular cognitive impairments (VCIs). Although not always defined as a 

neurodegenerative disease, it is important to account for the role that cerebrovascular 

disease (CVD) plays in neurodegeneration phenotypes. In fact, Alois Alzheimer himself, 

who first defined AD, suggested involvement of the circulatory system in the disease’s 

pathology (Raz, Knoefel, & Bhaskar, 2016). Further, damage within the neuro-

vasculature has been observed across neurodegenerative diagnoses, including white 

matter hyperintensities, cerebrovascular lesions, cerebral amyloid angiopathy (CAA), and 

enlarged perivascular spaces (Ramirez et al., 2015; Raz et al., 2016). However, VCIs are 

defined as cognitive dysfunction as a direct result of vascular dysfunction and include 

diagnoses such as vascular dementia and cerebral autosomal dominant arteriopathy with 

subcortical infarcts and leukoencephalopathy (CADASIL).  

For the purposes of this Dissertation, five neurodegenerative diseases will be described in 

detail (Table 1.1), as well as the potential involvement of CVD in neurodegeneration 

pathology and presentation.  
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Table 1.1 Breakdown of the general characteristics of various neurodegenerative disease diagnoses. 

Neurodegenerative 

disease 

Prevalence 

(per 1000) 

Early-onset 

age (years) 

Late-onset 

age (years) 
Common features 

Classical neuropathology 

hallmarks 

Alzheimer’s disease 

(AD) 
13.81,2 < 65  ≥ 656 

Cognitive decline and memory 

impairment disrupting daily 

functioning 

Amyloid-β plaques; neurofibrillary 

tau tangles; in some cases, Lewy 

bodies, cerebral amyloid 

angiopathy, and TDP-43 inclusions 

Amyotrophic lateral 

sclerosis (ALS) 
0.0443 < 45 ≥ 45  

Loss of upper and lower motor 

neurons resulting in progressive 

muscle weakness and eventual 

paralysis; in some cases, 

concurrent FTD 

TDP-43 ubiquitinated inclusions; 

FUS ubiquitinated inclusions; p62 

ubiquitinated inclusions 

Frontotemporal 

dementia (FTD) 
0.5911,4 < 65  ≥ 65 

Frontal and anterior temporal lobe 

atrophy resulting in severe 

behaviour changes, language 

impairment, and cognitive 

decline; in some cases, concurrent 

ALS 

TDP-43 ubiquitinated inclusions; 

hyper-phosphorylated tau; in rare 

cases, FUS ubiquitinated inclusions 

Mild cognitive 

impairment (MCI) 
1605 < 65  ≥ 65 

Memory impairment and/or 

impaired language and executive 

function that does not disrupt 

daily functioning 

Amyloid-β plaques; neurofibrillary 

tau tangles 

Parkinson’s disease 

(PD) 
4.21 < 40 ≥ 60 

Loss of dopaminergic neurons, 

resulting in bradykinesia, rigidity, 

resting tremor, and postural 

instability; in some cases, 

dementia 

Lewy bodies (with α-synuclein 

aggregates); amyloid-β plaques; 

neurofibrillary tau tangles 

Presented prevalences were per 1000 people. The AD, FTD, and PD prevalences were all based on individuals over the age of 40 years. The ALS prevalence was 

based on individuals of any age. The MCI prevalence was based on individuals over the age of 50 years.  
1(Ng et al., 2015); 2("2020 Alzheimer's disease facts and figures," 2020); 3("Chapter 3: Mapping Connections: An understanding of neurological conditions in 

Canada – Scope (prevalence and incidence)," 2014); 4(Hogan et al., 2016); 5(R. Roberts & Knopman, 2013).  

Abbreviations: FUS, Fus RNA binding protein; p62, nucleoporin 62; TDP-43, TAR DNA-binding protein 43. 
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1.3.1 Motor/movement disorders 

1.3.1.1 Amyotrophic lateral sclerosis (ALS) 

ALS is a neuromuscular disorder characterized by the loss of upper and lower motor 

neurons, referring to the neurons connecting the cortex and brainstem/spinal cord and the 

neurons connecting the spinal cord and muscles/glands, respectively. Generally, the 

neuronal degeneration results in progressive, severe muscle weakness and eventual 

paralysis, although presentation is highly heterogeneous with mixed features of muscle 

atrophy, fasciculations, and spasticity. With a mean age of onset of roughly 61 years, 

classic cases display a median survival period of 2–4 years (Grad, Rouleau, Ravits, & 

Cashman, 2017). ALS is also considered relatively uncommon compared to other 

neurodegenerative diseases, with prevalence estimate of 0.044 per 1,000 individuals, 

although this considers individuals of any age ("Chapter 3: Mapping Connections: An 

understanding of neurological conditions in Canada – Scope (prevalence and incidence)," 

2014). Upon neuropathological analysis, a classic feature of ALS is the identification of 

ubiquitinated inclusions in the motor neuron cytoplasm, yet the etiology and components 

of the inclusions can vary, with some heterogeneity attributable to specific monogenic 

genetic variants. In turn, potential mechanisms of disease are quite complex and may also 

vary between patients, suggesting a spectrum of phenotypes under the umbrella of ALS 

(Mejzini et al., 2019). 

Generally, ALS onset begins with muscle weakness within the face, arms, and/or legs, 

and steadily spreads and advances throughout the body. The majority of typical ALS 

patients present with a spinal form of the disease with asymmetrical muscle weakness 

onset in the distal or proximal upper or lower limbs; however, muscle weakness spreads 

rather quickly to other limbs, as well as bulbar symptoms affecting speech and 

swallowing, and eventually respiratory symptoms, although order of onset may vary 

(Wijesekera & Leigh, 2009). The development of limb spasticity is also common, and 

bladder dysfunction and behavioural or cognitive impairments have also been reported. In 

fact, a report by Strong et al. found that based on clinically accepted diagnostic criteria, 

over 50% of ALS patients present with a form of FTD or other dementia, such as AD 

(Strong et al., 2017). 
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1.3.1.1.1 Genetic determinants of ALS 

ALS cases are largely classified as either familial (fALS) or sporadic (sALS), referring to 

the ~10% of cases with a family history and ~90% of cases without a family history, 

respectively. Interestingly, only 40–55% of fALS cases can be explained by dominant 

monogenic variants in known ALS-associated genes, with variants in the genes 

superoxide dismutase (SOD1), C9orf72, FUS RNA binding protein (FUS), and TAR 

DNA binding protein (TARDBP) being most common (Mejzini et al., 2019). A small 

fraction of sALS patients have also been found to harbour monogenic variants in fALS-

associated genes, yet over 90% of cases remain genetically unexplained in spite of sALS 

heritability estimates of ~60% (Mejzini et al., 2019). Importantly, patient neuropathology 

and clinical presentation is highly dependent on the genetic factors contributing to their 

ALS diagnosis, although presently, genetics fail to account for all disease heterogeneity. 

1.3.1.1.1.1 Monogenic determinants of ALS 

For the purposes of brevity, the effects of variants in the four most common genes 

associated with fALS will be discussed further; however, there are many other genes that 

have now been associated with the phenotype.  

Monogenic variants in SOD1 account for approximately 20% of fALS cases and are 

thought to induce excitotoxicity, oxidative stress, endoplasmic reticulum stress, 

mitochondrial disfunction, and prion-like propagation, although exact pathological 

mechanisms are still under study (Mejzini et al., 2019). Neuropathological analysis has 

identified aggregates of SOD1 within immunoreactive inclusions of the motor neurons of 

ALS patients harbouring SOD1 pathogenic variants, yet the aggregates have also been 

observed in sALS patients without SOD1 variants and in patients carrying a C9orf72 

repeat expansion or variants in other ALS-associated genes (Bosco et al., 2010; Mejzini 

et al., 2019). TARDBP encodes the protein TDP-43, which is the main component of 

ubiquitinated inclusions in ALS patients that are distributed in neurons throughout the 

central nervous system. Normally, TDP-43 is involved in mRNA stability, processing, 

and transport, but when mutated the protein no longer localizes to the nucleus and instead 

aggregates in the cytoplasm. Yet, these aggregates are not unique to those carrying 
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TARDBP variants and TDP-43 inclusions are now considered a hallmark of a majority of 

ALS cases (Mejzini et al., 2019). In contrast, ALS patients carrying pathogenic FUS 

variants do not typically present with TDP-43 inclusions, rather they harbour unique FUS 

aggregation within ubiquitinated neuronal cytoplasmic inclusions throughout the central 

nervous system. FUS shares many gene expression roles with TDP-43, although with 

different targets. FUS variants have also been implicated in cases of concurrent ALS and 

FTD (Mejzini et al., 2019; Saberi, Stauffer, Schulte, & Ravits, 2015; Snowden et al., 

2011).  

The C9orf72 gene contains a hexanucleotide repeat expansion (GGGGCC) in its non-

coding region, and an expansion on at least one allele of >30 copies — although more 

often the pathogenic repeats are present in hundreds to thousands of copies — accounts 

for one of the most commonly inherited forms of ALS in Europeans, including cases of 

sALS. The repeat expansion also increases risk of FTD development, both with or 

without ALS (DeJesus-Hernandez et al., 2011; Renton et al., 2011; Shatunov et al., 

2010). Again, exact mechanisms are unclear, but patients present with ubiquitinated 

TDP-43 aggregates in neuronal cells; however, repeat expansion carriers are unique as 

the TDP-43 positive inclusions are outnumbered by nucleoporin 62 ubiquitinated 

neuronal inclusions, as well as dipeptide repeats protein aggregates most commonly 

found within the frontal, occipital, temporal, and motor cortices (Saberi et al., 2015).  

As previously described, sALS cases remain mostly genetically undefined, yet 

heritability estimates are ~60%; therefore, there is a large amount of missing heritability 

for this phenotype. GWAS analyses have been used to account for some of this missing 

heritability, but many have only identified genes associated with fALS or rare subtypes of 

the disease (Rich, Roggenbuck, & Kolb, 2020). RVAAs have also been used to identify 

genes harbouring rare variation that may be contributing to the phenotype (S. M. K. 

Farhan et al., 2019; Nicolas et al., 2018). Yet replication of associations remains difficult, 

and relatively small sample sizes of ALS cohorts are likely limiting the ability to identify 

novel genetic associations, such as ultra-rare SNVs or structural variants in novel disease 

genes (Theunissen et al., 2020). 
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1.3.1.1.1.2 Polygenic contributors to ALS 

The aforementioned GWAS analyses of ALS have also successfully identified a selection 

of common SNPs with small contributions to genetic risk (Nicolas et al., 2018). 

Unfortunately, there are relatively few of these studies, as obtaining large cohorts of ALS 

patients, along with appropriate replication cohorts, remains difficult. In time, enough 

associated SNPs may be identified that the generation of an accurate PRS score is 

possible, particularly for the sporadic forms of disease with a large amount of remaining 

missing heritability. With that said, an interesting pattern has emerged in the literature 

with regard to the identification of polygenic contributors to phenotypic modifiers of 

ALS, rather than the disease state itself. For example, a SNP in the gene Unc-13 

Homolog A (UNC13A) was associated with cognitive decline, prefrontal and temporal 

cortex degeneration, and burden of hyperphosphorylated TDP-43 in patients with ALS 

and FTD (Placek et al., 2019), while another recent study created a PRS for cognitive 

dysfunction in ALS that also predicted atrophy severity in the frontal and temporal lobes 

(Placek et al., 2021). Overall, these studies suggest that in addition to polygenic 

contributors to overall ALS diagnosis, variants of small to moderate effect — both 

common and rare — may contribute to the heterogeneous presentation between ALS 

patients as well. 

1.3.1.2 Parkinson’s disease (PD) 

PD is the most common movement disorder, with a prevalence of 4.2 per 1,000 

individuals over the age of 40 in Ontario (Ng et al., 2015). The phenotype is 

characterized by loss of dopaminergic neurons in the substantia nigra pars compacta, 

resulting in motor features, such as bradykinesia, rigidity, resting tremor, and postural 

instability (Kalia & Lang, 2015). Presentation between PD patients is highly 

heterogeneous and sub-typing is not uncommon — for example, differentiating tremor-

dominant PD from non-tremor dominant PD. Non-motor features are also not uncommon 

in PD patients and may present before or after the onset of motor features. Cognitive 

impairment and dementia, psychiatric disorders, sleep disruptions, and olfactory 

dysfunction can all appear up to 12–14 years prior to the motor symptoms of PD, yet 

often remain unexplained until diagnosis (Kalia & Lang, 2015). Additionally, although 
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there are therapies that can manage disease symptoms, such as dopamine replacement 

therapy, patients’ conditions continue to worsen. With an average disease duration of 17 

years, late-stage patients present with severe, debilitating treatment-resistant symptoms, 

including freezing of gait and falls, dysphagia, speech impairment, urinary incontinence, 

and dementia (Kalia & Lang, 2015).  

As with other neurodegenerative diseases, PD displays a hallmark of protein aggregates, 

most notably aggregates of α-synuclein that form inclusions within neurons called “Lewy 

bodies” (Spillantini et al., 1997). Lewy bodies do not stay centralized to the brain, but can 

also be found in both the spinal cord and peripheral nervous system, and it is 

hypothesized that these inclusions induce the onset of motor symptoms. It is also well 

established that Lewy bodies contribute to late-stage cognitive phenotypes within PD 

patients, and the inclusions are often used to define “Lewy body diseases” under the PD 

spectrum, including Lewy body dementia and PD dementia (Gomperts, 2016). In addition 

to α-synuclein, other proteins are also known to aggregate in the neurons of PD patients, 

including amyloid-β plaques and neurofibrillary tau tangles, both of which contribute to 

an earlier onset of dementia symptoms. Aside from the protein aggregates, PD pathology 

has been found to involve dysfunction in the ubiquitin-proteosome system, mitochondrial 

function, the lysosome-autophagy pathway, protein trafficking, synaptic response, and, of 

course, dopamine neurotransmission (Kalia & Lang, 2015).  

1.3.1.2.1 Genetic determinants of PD 

Approximately 20% of PD cases are considered familial, although only 5–10% of all PD 

cases have a known monogenic cause, leaving most of the remaining familial cases 

genetically undefined (Ohnmacht, May, Sinkkonen, & Kruger, 2020). Genetic risk 

factors of low penetrance and polygenic risk factors have also been associated with a 

small fraction of sporadic PD cases. Including all PD cases, both seemingly familial and 

sporadic, heritability estimates are approximately 30%, which may increase as 

understanding of the complex nature of PD continues to develop (Keller et al., 2012; 

Nalls et al., 2014). Therefore, a relatively large amount of heritability remains 

unaccounted for. Importantly, PD associated genetic variants often display a large 
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amount of variable expressivity, including variation in age of onset, features of disease, 

and rates of progression. 

1.3.1.2.1.1 Monogenic determinants of PD 

More than 20 years ago, the first gene to be associated with PD was identified as 

synuclein alpha (SNCA), which encodes the α-synuclein protein and has a role in synaptic 

vesicle trafficking (Polymeropoulos et al., 1997). Rare pathogenic variants in the gene 

result in autosomal dominant PD; however, common non-coding variants have also been 

identified at the locus attributable to sporadic PD (Maraganore et al., 2006; Simon-

Sanchez et al., 2009). All PD patients harbouring monogenic SNCA variation display 

hallmarks of Lewy bodies, Lewy neurites, and dopaminergic neuronal loss, yet clinical 

manifestation of disease can vary widely depending on the variant. Although many of the 

variants within SNCA previously associated with PD are nonsynonymous SNVs, 

duplications and triplications of the entire gene are also causative of the disease (Lunati, 

Lesage, & Brice, 2018). Autosomal dominant variants in the genes leucine-rich repeat 

kinase 2 (LRRK2), VPS35 retromer complex component (VPS35), GTP cyclohydrolase 1 

(GCH1), and Ataxin 2 (ATXN2) also display well-established associations with PD.  

Other genes have been identified that display an autosomal recessive inheritance pattern 

for PD; listed in order of variant frequency in PD, the genes include parkin RBR E3 

ubiquitin protein ligase (PARK2), PTEN induced kinase 1 (PINK1), and parkinsonism 

associated deglycase (DJ1) (Lunati et al., 2018). PD patients carrying homozygous 

variants in these genes typically present with an early-onset form of disease (<40 years). 

Additionally, all three genes are involved in mitochondrial quality control, and 

pathogenic variants within the genes result in mitochondrial and mitophagy dysfunction 

(Ryan, Hoek, Fon, & Wade-Martins, 2015). Many other genes have been identified 

through both family studies and GWAS as potentially associated with either autosomal 

dominant or autosomal recessive PD, yet a large portion have yet to be fully validated. 

Generally accepted as the most common genetic risk factor for PD is variation in the 

glucocerebrosidase gene (GBA). Originally, the gene was associated with autosomal 

recessive Gaucher’s disease; however, patients were identified that presented with 
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generalized parkinsonism, and, upon further review, family members of patients with 

Gaucher’s disease displayed increased incidence of PD, and many were identified as 

heterozygous GBA variant carriers (Halperin, Elstein, & Zimran, 2006; Tayebi et al., 

2001). Aside from a lower frequency of resting tremor and a much greater risk of 

cognitive impairment and motor dysfunction, GBA variant carriers display relatively 

“typical” sporadic PD presentation (Sidransky et al., 2009). The variants themselves have 

been associated with lysosomal dysfunction, ultimately resulting in increased α-synuclein 

aggregation. Neuroinflammation and mitochondrial dysfunction have also been observed 

in these patients (Gegg & Schapira, 2018). The association between GBA and PD will be 

explored further in Chapter 6.  

1.3.1.2.1.2 Polygenic contributors to PD 

Although there are a small portion of PD patients that have monogenic forms of disease, 

largely patients are considered complex, with likely polygenic inheritance models. Recent 

estimates indicate that heritability of PD attributable to common variants may be between 

16–36% (Goldman et al., 2019; Nalls et al., 2019). Specifically, 90 SNPs have now been 

associated with PD; however, the PRS that was created using these SNPs was predicted 

to lead to a high rate of false positive associations if applied to a general population, 

creating concerns for the clinical application of a PRS in PD (Nalls et al., 2019). Yet, 

further analysis of polygenic contributors to PD may allow for the development of a more 

accurate PRS. 

In a similar manner to ALS, polygenic contributors have also been identified in PD to 

modify classical disease presentation. Shared genetic loci have been identified to 

associate with both PD and schizophrenia, suggesting common mechanisms underlying 

clinical features of the diseases (Smeland et al., 2021). Further, a weighted PRS of 23 

GWAS identified SNPs was associated with faster cognitive and motor decline in patients 

with PD (Paul, Schulz, Bronstein, Lill, & Ritz, 2018). Again, these studies suggest that 

genetic variants with small to moderate phenotypic impact may not only contribute to 

risk of PD, but to the differential presentation between PD patients.  
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1.3.2 Cognitive and/or behavioural disorders 

1.3.2.1 Alzheimer’s disease (AD) 

As the most common neurodegenerative disease, AD has a prevalence across Ontario of 

13.8 per 1,000 individuals over the age of 40 years and up to 50.4 per 1,000 individuals 

over the age of 65 years ("2020 Alzheimer's disease facts and figures," 2020; Ng et al., 

2015). The disease is characterized by progressive cognitive decline and severe memory 

impairment that disrupts daily functioning. As patients progress through the course of 

AD, they become more dependent on external care and may experience behavioural 

changes, mobility impairment, and/or psychosis. The mean age of diagnosis is ~75 years 

— with early-onset (EOAD) cases defined as onset < 65 years of age and late-onset 

(LOAD) defined as onset ≥ 65 years of age — and the disease has an average duration of 

~8.5 years, although duration is often longer in early-onset and/or familial cases (Jost & 

Grossberg, 1995). Similar to most neurodegenerative diseases, available treatments and 

interventions are only able to marginally slow disease progression and mitigate 

symptoms (Weller & Budson, 2018).  

AD neuropathology is largely defined by amyloid-β plaques and neurofibrillary tau 

tangles. Amyloid-β plaques are extracellular inclusions of amyloid-β-40 and amyloid-β-

42, which are the by-products of aberrant amyloid precursor protein (APP) metabolism, 

and the latter of which is of higher abundance in resulting plaque deposits (Tiwari, Atluri, 

Kaushik, Yndart, & Nair, 2019). The amyloid-β first forms fibrils that oligomerize and 

diffuse into the extracellular space. There, the fibrils interrupt synaptic signaling and 

polymerize further to form plaques. Interestingly, the accumulation of amyloid-β plaques 

activates the hyperphosphorylation of microtubule-associated tau proteins, resulting in 

the formation of neurofibrillary tau tangles (Tiwari et al., 2019). While amyloid-β 

plaques have long been associated with AD, deposition of amyloid-β has also been 

observed in cognitively normal elderly individuals, suggesting amyloid-β cannot drive 

disease presentation in singularity; in contrast, neurofibrillary tau tangle load has been 

directly associated with degree of cognitive impairment (Lane, Hardy, & Schott, 2018). 

Although it is well established that amyloid-β and neurofibrillary tau tangles have a large 

role in AD pathology, precise mechanisms are yet to be elucidated. Neuropathological 
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markers such as neuropil threads, dystrophic neurites, and CAA, or co-pathologies such 

as vascular disease, Lewy bodies, or TDP-43 inclusions are also not uncommon in AD 

patients (Lane et al., 2018). 

1.3.2.1.1 Genetic determinants of AD 

The dichotomy between EOAD and LOAD loosely translates to whether the disease is 

considered familial or not, with most EOAD cases considered as familial, and most 

LOAD cases considered sporadic. Therefore, it is unsurprising that EOAD displays 

heritability estimates of 90–100%. Yet, LOAD heritability remains unexpectedly high at 

70–80% (Cacace, Sleegers, & Van Broeckhoven, 2016). However, even with such high 

heritability, ~90% of EOAD cases remain genetically unexplained, as do a large majority 

of LOAD cases. 

1.3.2.1.1.1 Monogenic determinants of AD 

There are three main genes — APP, presenilin 1 (PSEN1), and presenilin 2 (PSEN2) — 

that in aggregate are known to account for 5–10% of EOAD cases, all of which were 

identified by linkage analysis to contribute to the disease in an autosomal dominant 

manner (Cacace et al., 2016). APP was the first gene associated with AD and the protein 

product is thought to be involved in synaptic development (Priller et al., 2006). As 

previously described, APP is also cleaved by secretases into by-products that eventually 

contribute to amyloid-β plaque formation. Both rare SNVs and structural variants have 

been identified as pathogenic in APP for EOAD, likely contributing to the phenotype 

through the overproduction of amyloid-β-42 and resulting in increased amyloid plaque 

pathology (Shao, Peng, & Wang, 2017). APP has also been associated with CAA, 

characterized by cerebrovascular amyloid deposition and resultant dementia and/or 

stroke. PSEN1 and PSEN2 encode proteins involved in the secretase in the 

amyloidogenic pathway implicated in cleaving APP (Cacace et al., 2016). PSEN1 is the 

most frequently mutated out of the three main EAOD genes, whereas variants within 

PSEN2 are considered rarer. Within PSEN1 there have been a wide range of variants 

identified, including SNVs and structural variants, and almost all are considered highly 

penetrant; however, while both SNVs and structural variants have been associated with 
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EOAD in PSEN2, penetrance is more variable and variable expressivity has been 

observed (Cacace et al., 2016). 

Of high importance, genetic risk of AD could not be discussed without describing APOE, 

the strongest genetic risk factor for sporadic LOAD. The association was originally 

discovered through linkage analysis and has been further replicated in many case-control 

studies. Interestingly, APOE is associated with increased risk of EOAD, particularly in 

individuals with a family history of AD (van Duijn et al., 1994). APOE encodes the apo E 

glycoprotein, which is responsible for carrying and distributing cholesterol, both in the 

periphery and the brain, and has roles in neuronal growth, nerve regeneration, and 

immunoregulation. Notably, there are two variants within the gene, located at amino acid 

positions 130 and 176 — or 112 and 158, respectively, if the pro-peptide sequence is 

excluded — that give rise to three apo E isoforms: apo E2, apo E3, and apo E4 (Figure 

1.8) (Zannis et al., 1982). While the wild-type gene is encoded by the E3 genotype, the 

E4 genotype increases risk of AD in a dose dependent manner, with approximate 

increased risks of three times in heterozygous carriers and 12 times in homozygous 

individuals. The E4 genotype is relatively common in the general population, with an 

MAF of ~0.14, although frequencies vary between ancestral populations (Heffernan, 

Chidgey, Peng, Masters, & Roberts, 2016). In contrast, the less common E2 genotype 

(MAF ~ 0.07) has been associated with protective effects against AD development. 

Although the exact mechanism by which APOE contributes to AD risk is unclear, it is 

seemingly involved in many potentially pathogenic pathways (Munoz, Garner, & Ooi, 

2019). Not only has apo E been observed within amyloid-β plaques, but it may have a 

direct role in amyloid-β fibril formation and amyloid plaque clearing within the brain. 

The E4 isoform is less effective at preventing the fibril formation and potentially less 

effective at clearing amyloid plaques (Munoz et al., 2019). However, apo E is also 

observed within neurofibrillary tangles, and overexpression of apo E increases tau 

hyperphosphorylation. Apo E4 also prevents synaptic protein expression and is 

associated with increased α-synuclein pathology (Zhao et al., 2020; Zhao, Liu, Qiao, & 

Bu, 2018).  
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Figure 1.8 Schematic of the apolipoprotein (apo) E protein, demonstrating the 

location of the variants resulting in the differential apo E isoforms. 

APOE encodes the apo E glycoprotein, which is responsible for carrying and distributing 

cholesterol. Two variants within the gene, located at amino acid positions 130 and 176, 

give rise to three apo E isoforms: apo E2, apo E3, and apo E4. E3 is considered the wild-

type isoform, and E2 and E4 each have differential receptor binding affinity. Specifically, 

the apo E4 isoform results in a domain interaction that reduces the protein’s binding 

affinity, and is the greatest genetic risk factor for the development of Alzheimer’s 

disease. Adapted from (Yu, Tan, & Hardy, 2014).  
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1.3.2.1.1.2 Polygenic contributors to AD 

Aside from APOE, there have been over 20 common variants identified through GWAS 

associated with LOAD. Current efforts are being put forth to create an accurate, 

replicable polygenic risk score to account for the potentially polygenic risk of AD; 

however, NGS association studies have also since identified rare variants in GWAS 

identified loci, as well as within other genes of potential interest, that may contribute 

moderate risk of disease (Raghavan & Tosto, 2017).  

Interestingly, PRSs have been created for AD with relatively large predictive power for 

disease (Escott-Price, Myers, Huentelman, & Hardy, 2017; Escott-Price et al., 2015), but 

it has since been determined that a large amount of the predictive power from these 

scores is encompassed by the inclusion of the APOE E4 allele(s) (Escott-Price, Myers, 

Huentelman, Shoai, & Hardy, 2019). Yet, recent analyses have demonstrated that even 

when E4 carriers are excluded from PRS analyses, predictive power remains promising, 

although only in cohorts of pathologically confirmed AD cases. In clinical cohorts of AD, 

likely with an admixture of misdiagnosed individuals, the predictive power of the PRSs 

in non E4 carriers is reduced (Escott-Price et al., 2019; Escott-Price et al., 2015). The 

results are concerning, as the clinical utility of the currently available PRSs may not be 

generally applicable in AD clinics or in the offices of general practitioners, which are 

highly accessed by neurodegenerative disease patients living in rural areas. 

1.3.2.2 Frontotemporal dementia (FTD) 

FTD defines a collection of conditions, all characterized by atrophy of the frontal and 

anterior temporal lobes, and resulting in progressive behavioural changes and/or language 

dysfunction (Devenney, Ahmed, & Hodges, 2019). Overall, the disease displays a 

prevalence in Ontario of 0.591 per 1,000 individuals over the age of 40 and 1.944 per 

1,000 individuals over the age of 65 (Hogan et al., 2016; Ng et al., 2015). FTD subtypes 

include: behavioural variant FTD (bvFTD), corticobasal syndrome (CBS), progressive 

supranuclear palsy (PSP), and primary progressive aphasia (PPA). BvFTD displays an 

average age of onset of ~58 years and is characterized by severe changes in social 

conduct and personality, including apathy, lack of inhibition and empathy, mental 
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rigidity, and deficits in executive function (Devenney et al., 2019). In contrast, CBS 

involves asymmetric motor features, such as limb rigidity, dystonia, or myoclonus and 

can sometimes present alongside other forms of FTD or dementia (Olney, Spina, & 

Miller, 2017). PSP is largely defined by vertical supranuclear gaze palsy or slow vertical 

saccades, as well as postural instability leading to falls, with onset after the age of 40 

years. Patients may also present with the cognitive features common to many FTD sub-

types, including personality changes, executive dysfunction, and reduced mental speed. 

Similar to CBS, PSP can co-exist with the other FTD sub-types (Olney et al., 2017). 

Finally, PPA is generally characterized by language impairment, but can be further 

subdivided into non-fluent and semantic variants. The non-fluent variant encompasses 

patients that present with severe difficulties with speech, whereas semantic variant 

patients present with language-based difficulties and issues with semantic knowledge 

(Olney et al., 2017). 

It is also important to recognize the considerable overlap between FTD and ALS, 

specifically in regards to neuropathology and genetic associations. As previously 

described, between 40–50% of patients with ALS present with clinical features of FTD, 

such as behavioural changes, language impairment, and impaired executive function 

(Karch et al., 2018). It is also estimated that ~40% of FTD patients display a degree of 

motor dysfunction. If certain diagnostic criteria are met, patients may actually be 

diagnosed with concurrent ALS and FTD (ALS-FTD), accounting for ~15% of all FTD 

cases (Bennion Callister & Pickering-Brown, 2014; Strong et al., 2017). 

Over 90% of FTD cases present with protein inclusions composed of 

hyperphosphorylated tau protein or ubiquitinated TDP-43; however, FUS positive 

inclusions and ubiquitin proteosome pathology are also observed in rare cases (Devenney 

et al., 2019). To some extent, neuropathology is dependent on FTD subtype, as well as 

any genetic contribution to disease, although correlations are not perfect. The majority of 

bvFTD cases present with heterogeneous inclusions containing at least one of: 

hyperphosphorylated tau, ubiquitinated TDP-43, or FUS. In cases of CBS and PSP, 

hyperphosphorylated tau is the predominant neuropathology, but in CBS, accumulation is 

in the cortex and basal ganglia, and in PSP, accumulation is observed in the basal ganglia, 
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brainstem, and cerebellum. Semantic variant PPA cases almost exclusively display TDP-

43 inclusion pathology, whereas non-fluent variant PPA may present with either 

hyperphosphorylated tau or ubiquitinated TDP-43 (Devenney et al., 2019). 

1.3.2.2.1 Genetic determinants of FTD 

As previously stated, the genetic contributors to FTD influence patients’ differential 

neuropathology and, in turn, the differential sub-types. Between 20–50% of FTD cases 

are considered familial, although frequencies differ dependent upon the FTD sub-type 

(Greaves & Rohrer, 2019). The remaining FTD cases are considered sporadic. Overall, 

FTD is considered highly heritable, yet a genetic cause has been identified in <20% of 

cases (Sieben et al., 2012).     

1.3.2.2.1.1 Monogenic determinants of FTD 

Three genes are able to account for the genetic predisposition to 60% of familial FTD 

cases, including microtubule associated protein tau (MAPT), granulin precursor (GRN), 

and C9orf72; the last of which refers to the hexanucleotide repeat expansion described in 

Section 1.2.1.1.1. In fact, the C9orf72 expansion accounts for up to 25% of familial FTD 

cases alone and has also been observed in cases of seemingly sporadic FTD and ALS-

FTD (Bennion Callister & Pickering-Brown, 2014). 

MAPT was the first gene associated with familial FTD and was discovered through 

linkage analysis (Hutton et al., 1998; Poorkaj et al., 1998; Spillantini, Crowther, 

Kamphorst, Heutink, & van Swieten, 1998). The gene encodes the protein tau — the 

main component of hyperphosphorylated tau inclusions within neuron and glial cells in 

FTD. Normally, tau is involved in the stability of microtubules; however, when mutated, 

tau may become more abundant resulting in greater aggregation in the cytoplasm, may 

have an increased rate of phosphorylation, or may undergo alternative splicing resulting 

in imbalanced isoform ratios (Fenoglio, Scarpini, Serpente, & Galimberti, 2018). Carriers 

of MAPT pathogenic, rare variants with FTD most commonly present with the bvFTD, 

CBS, or PSP subtypes, and, unsurprisingly, carriers present with neuropathological 

hyperphosphorylated tau inclusions (Olszewska, Lonergan, Fallon, & Lynch, 2016). CBS 

and PSP have also been associated with common variation within MAPT, specifically in 
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reference to the MAPT haplotype. MAPT falls within the largest region of LD across the 

human genome, spanning ~1.8 Mb, inside of which 900 kb have been inverted, including 

the entire MAPT gene resulting in differential haplotypes, namely H1 and H2 (Figure 

1.9) (Caffrey & Wade-Martins, 2007). Due to the large amount of LD throughout the 

region, the haplotype can be defined with only single SNPs that can be genotyped 

through methods such as TaqMan allelic discrimination assay, as will be applied in 

Chapter 2. Although the H1 haplotype is rather common in the general population, it has 

been associated with both CBS and PSP. Within the H1 haplotype, duplicated regions 

have also been discovered that can be defined by specific tagging SNPs, of which the 

H1C sub-haplotype has been associated with PSP (Caffrey & Wade-Martins, 2007). 

GRN encodes progranulin, a protein involved in growth regulation, wound repair, and 

inflammation. Although variants within GRN are largely associated with familial FTD 

cases, there have been pathogenic rare variants identified in the gene in seemingly 

sporadic cases as well (Fenoglio et al., 2018). The variants result in haploinsufficiency, as 

the majority of known pathogenic variants result in premature termination of the protein 

and result in non-sense mediated decay. Missense variants have also been observed in 

GRN in FTD patients, yet their mechanism of pathogenicity remains unclear. GRN 

variants are associated with ubiquitinated TDP-43 inclusions and patients tend to have the 

bvFTD or non-fluent PPA sub-types (Miller & Llibre Guerra, 2019). 

There are many other genes that have been associated with FTD, and its subtypes, in 

more rare instances, including TARDBP and FUS, indicating a large amount of genetic 

overlap between FTD and ALS (Bennion Callister & Pickering-Brown, 2014). Although 

monogenic inheritance of FTD is considered relatively uncommon, known Mendelian 

variants sufficiently account for disease risk in many cases and are, therefore, important 

markers to consider targeting in the development of novel therapeutics.  

  



60 

 

 

Figure 1.9 The 900 kilobase (kb) inversion on chromosome 17 (17q21) that results in 

two differential microtubule associated protein tau (MAPT) haplotypes. 

MAPT falls within a ~1.8 megabase (Mb) region of linkage disequilibrium that includes 

900 kb of inverted sequence, including the entire MAPT gene. The inversion results in 

differential haplotypes, namely H1 and H2. The H1 haplotype has been previously 

associated with subtypes of frontotemporal dementia. Adapted from (Caffrey & Wade-

Martins, 2007).  
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1.3.2.2.1.2 Polygenic contributors to FTD 

GWAS analyses are beginning to identify loci of interest associated with FTD, and 

attempts are being made to produce accurate polygenic risk scores to account for a 

portion of the remaining missing heritability (Ferrari et al., 2014; Hagenaars et al., 2018). 

Unfortunately, similar to GWAS of ALS, the large sample sizes required for these 

analyses have likely resulted in lower yield thus far, as FTD is considered a rarer type of 

dementia (Manzoni & Ferrari, 2021). While recent GWASs of AD have included 

>90,000 cases, the largest FTD GWAS to date has only included ~3,500 cases 

(Hagenaars et al., 2018; Kunkle et al., 2019). Further research into the genetic 

contributors to FTD with small to moderate phenotypic impact is warranted to account 

for the obvious missing heritability of the disease. 

1.3.2.3 Mild cognitive impairment 

MCI is a prodromal stage of dementia, characterized by memory impairment that does 

not disrupt daily functioning. Although some patients may not progress beyond the MCI 

diagnosis, over 50% will continue on to develop AD, vascular dementia, or other forms 

of dementia (Mitchell & Shiri-Feshki, 2009). As expected, MCI is highly heterogenous, 

and cases can be largely divided into two subtypes: 1) amnestic and 2) non-amnestic. 

Amnestic MCI is grossly characterized by memory impairment, whereas the non-

amnestic form may present with intact memory, but impaired attention, language, or 

executive functioning. The former is more likely to progress to a classical AD 

presentation, while the latter may progress to other forms of neurodegeneration, such as 

FTD or PD dementia (Giau, Bagyinszky, & An, 2019).  

1.3.2.3.1 Genetic determinants of MCI 

Due to the large amount of heterogeneity within the MCI diagnosis, neuropathology 

varies. However, it is generally accepted that amyloid-β plaques and neurofibrillary tau 

tangle loads correlate with the likelihood that MCI will progress to AD or other 

dementias (Anderson, 2019). Similarly, the APOE E4 allele has been associated with 

both increased risk of MCI development, as well as increased risk of progression from 
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MCI to AD, yet any remaining genetic risk factors for MCI are undefined 

(Elcoroaristizabal Martin et al., 2011; Fleisher et al., 2007). 

1.3.3 Cerebrovascular disease (CVD) 

Not only does the brain consume 20% of cardiac output and require 20% of the body’s 

available oxygen and glucose, but it is not able to store energy for the long-term and, 

therefore, requires a constant and dependable blood flow from its vascular system 

(Lendahl, Nilsson, & Betsholtz, 2019). It is unsurprising that when issues arise within the 

brain’s intrinsic vasculature, or when blood flow to the brain is restricted, damage can be 

catastrophic. CVD is defined as any condition that affects the blood vessels within or the 

blood flow to the brain and encompasses both acute events, such as ischemic or 

hemorrhagic strokes, or CVD neuropathology, such as white matter hyperintensities, 

CAA, and enlarged perivascular spaces. Although CVD may solely drive 

neurodegenerative disease, as is the case with vascular dementia (VaD), it may also be a 

concurrent pathology with existing neurodegenerative disease, or act as one of many 

contributors to a neurodegenerative pathology, such as in AD or vascular PD (Seidel, 

Giovannetti, & Libon, 2012). 

VCI broadly defines all forms of dementia with a vascular component, ranging from 

vascular MCI to VaD. The term can also encompass mixed pathologies, such as 

concurrent vascular disease and AD pathology. Generally, any individual displaying 

cognitive dysfunction along with the presence of CVD can be included under the VCI 

umbrella (Dichgans & Leys, 2017). While the prevalence of CVD in individuals over the 

age of 65 across Ontario is 37.8 per 1,000 individuals (Ng et al., 2015), it remains 

difficult to define prevalence of VCI, as inclusion criteria may vary across clinical and 

research cohorts. Additionally, it is not uncommon for cerebrovascular pathology and 

acute events to go unnoticed by patients and clinicians until brain imaging is employed. 

Yet, it is suggested that over 50% of dementia cases present with CVD features 

(Schneider, Arvanitakis, Bang, & Bennett, 2007). Further, CVD is not uncommon when 

considering motor/movement disorders (Chondrogianni et al., 2018; Mehanna & 

Jankovic, 2013). 
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Overall, it is continuously more accepted that neurodegenerative diseases are not only 

characterized by neuronal cell loss, but also by cerebrovascular injury. In the context of 

AD, approximately 40% of patients present with vascular changes and cerebral blood 

flow is largely reduced in many patients, suggesting a mixed dementia pathology 

(Lendahl et al., 2019). Further, blood-brain-barrier breakdown is common in AD, as well 

as in MCI, resulting in greater levels of immune cells in the brain and neuroinflammation, 

which is known to promote both neurodegenerative disease and CVD pathology. 

Amyloid-β has also been observed to accumulate within the cerebrovasculature resulting 

in CAA in more than 80% of AD cases (Lendahl et al., 2019). In contrast, there is much 

less evidence for a role of CVD in FTD, although white matter changes in the frontal and 

temporal lobes of FTD patients have been observed (Thal et al., 2015). And while 

dementia is the first consideration when discussing CVD and neurodegenerative disease 

co-morbidities, as stated above, motor/movement disorders are not excluded. Not only 

have CVD risk factors been associated with subsequent diagnosis of PD, but vascular PD 

has been estimated to account for between 3–12% of parkinsonism cases (Kummer et al., 

2019; Mehanna & Jankovic, 2013). Additionally, a few cases of ALS have now been 

associated with cerebral arteriovenous malformations, and aspects of CVD, such as 

atherosclerosis and ischemic heart disease, may be associated with greater risk of ALS 

(Chondrogianni et al., 2018; Kioumourtzoglou et al., 2016). 

When considering VaD, large and small cerebral vessel disease are considered causal, 

rather than a co-pathology. Pathology of VaD is largely defined by diminished cerebral 

blood flow, resulting in hypoxia, blood brain barrier dysfunction, and ultimately 

neurotoxic effects and/or amyloid deposition. VaD can be further subclassified into: 1) 

multi-infarct dementia, 2) strategic infarct dementia, 3) subcortical ischemic dementia, 

hemorrhagic dementia, 4) hypoperfusion dementia, and 5) other arteriopathies, such as 

CAA or CADASIL (Dichgans & Leys, 2017). 

1.3.3.1 Genetic determinants of CVD and resultant 
neurodegenerative disease 

Compared to the specific neurodegenerative diseases outlined throughout Sections 1.2.1 

and 1.2.2, few genetic determinants of VCI have been identified. Although, those that 
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have been discovered have been found to either contribute to specific VaD diagnoses or 

to co-pathologies encompassed by the VCI umbrella term. 

The most frequent form of monogenic cerebral small vessel disease is CADASIL, caused 

by heterozygous pathogenic variants in the Notch receptor 3 gene (NOTCH3) (Joutel et 

al., 1996). Although clinically heterogeneous, most CADASIL patients present with 

recurrent ischemic attacks, migraines with aura, cognitive decline and dementia, and, in 

some cases, mood disorders. Identification of white matter hyperintensities (WMHs) 

upon magnetic resonance imaging (MRI) is also a hallmark of the disease (Tikka et al., 

2014). The Notch3 protein — a transmembrane receptor in smooth muscle cells — 

contains 34 extracellular epidermal growth factor (EGF)–like repeats, each containing 

cysteine residues integral to the protein structure. Variants affecting these cysteine 

residues are pathogenic for CADASIL, as they result in Notch3 protein misfolding and 

aggregation in the smooth muscle cells, including those within the brain’s vasculature 

(Joutel et al., 1997; Opherk et al., 2009). Cerebral autosomal recessive arteriopathy with 

subcortical infarcts and leukoencephalopathy (CARASIL), although much rarer, presents 

in a very similar manner to CADASIL; however, it is caused by homozygous pathogenic 

variants in the high‐temperature requirement A serine peptidase 1 gene (HTRA1) (Hara et 

al., 2009; Tikka et al., 2014). Interestingly, heterozygous variants within HTRA1 have 

also been associated with cerebral small vessel disease, although presentation is less 

severe than that of CARASIL (Bianchi et al., 2014; Y. Chen et al., 2013; Mendioroz et 

al., 2010).  

In addition to genes contributing to monogenic forms of VaD, there are also genes that 

increase risk of stroke or other cerebrovascular accidents, such as collagen type IV alpha 

1 (COL4A1) and collagen type IV alpha 2 (COL4A2). While these genes are pleiotropic 

for multiple conditions, including glaucoma and myopathy, pathogenic variants in 

COL4A1 and COL4A2 increase risk of hemorrhagic stroke. Other vascular conditions, 

such as pseudoxanthoma elasticum (PXE) caused by autosomal recessive variants in the 

ATP Binding Cassette Subfamily C Member 6 gene (ABCC6), can present with features 

of CVD as well and are important to continue to investigate in respect to how they may 

influence neurodegenerative disease pathology (Sunmonu, 2021). In fact, heterozygous 
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variants in ABCC6 have also been observed in rare cases of PXE (Hu et al., 2003). Based 

on the previous associations between CVD and neurodegeneration, it is possible that 

variants within these genes may also contribute to increased risk of neurodegenerative 

disease presentation. 

There are also genes previously associated with neurodegeneration that have overlapping 

influence with CVD. The most prominent example of this is APOE. Along with its strong 

association with AD, the E4 allele has been associated with ischemic CVD, as well as 

increased neuronal damage from CVD events (Laskowitz et al., 1997; McCarron, 

Delong, & Alberts, 1999). Further, the apo E4 isoform contributes to the accumulation of 

amyloid-β in the capillaries, resulting in increased rates of CAA in cases of AD, and the 

risk variant has been associated with increased WMH volumes in AD patients (Love & 

Miners, 2016). Recent analyses also suggest that APOE E4 contributes to blood-brain-

barrier breakdown, resulting in cognitive decline independent of AD pathology 

(Montagne et al., 2020). Interestingly, although the APOE E2 allele is typically 

considered protective for AD, the allele is associated with increased WMH volume in 

CADASIL patients, as well as increased CAA in parenchymal and meningeal 

cerebrovasculature (Gesierich et al., 2016; Nelson et al., 2013).  

1.3.4 Diagnosis and neurodegenerative disease heterogeneity 

As can be gathered from the descriptions of different neurodegenerative diseases above, 

presentation across the diagnoses is highly heterogeneous. Not only can patients within 

one disease type, such as AD, present quite differently from one another, but patients 

with different diagnoses often have overlapping features. Particularly, early in disease 

presentation misdiagnosis can be quite common. 

When considering motor/movement disorders, it is clearly recognized that patients also 

often present with features of cognitive or behavioural dysfunction. Over 40% of patients 

with ALS present with features of FTD, and common early features of PD include non-

motor phenotypes, such as cognitive impairment, psychiatric disorders, and sleep 

disruptions (Kalia & Lang, 2015; Karch et al., 2018). In the early stages of disease, when 

motor features are mild or not yet manifested, these cognitive features can lead to 
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alternative diagnoses and mislead clinical care (Bicchi et al., 2015). Further, the 

motor/movement disorders themselves are known to have overlapping features, as 

parkinsonism has been observed in patients with ALS (Calvo et al., 2019). Although both 

conditions have clearly defined diagnostic criteria — based on clinical examination, 

nerve conduction studies, electromyography, and laboratory tests — if early signs of 

disease are considered abnormal, as is quite common, appropriate tests may not be 

ordered. Similarly, cognitive and behavioural disorders may present with features of 

movement dysfunction, or overlapping cognitive features between the differential 

diagnoses, perhaps to an even greater extent than the motor/movement disorders. 

Misdiagnosis as AD is particularly common, possibly due to its high prevalence — if a 

patient is displaying features of dementia that include memory impairment, AD is often 

first assumed, rather than considering the possibility of FTD with memory dysfunction or 

that the patient might have experienced silent CVD resulting in VCI (Beber & Chaves, 

2013; Doran et al., 2007; Selvackadunco et al., 2019). 

Unfortunately, current diagnostic processes are rather slow across neurodegenerative 

diseases, allowing for further progression of pathology and associated symptoms before 

potential interventions can be applied. For example, the average ALS patient will wait 9–

12 months for a diagnosis following initial onset of symptoms, which is quite striking for 

a disease with a survival period of only 2–4 years (Hulisz, 2018; Mehta et al., 2017). 

Additionally, by the time even early symptom onset occurs, irreversible neuropathology 

changes may have begun 10–20 years before. In the case of PD, by the onset of motor 

symptoms, it is estimated that more than 50% of dopaminergic neurons have already been 

lost (Katsuno et al., 2018). As currently available treatments and interventions are only 

able to marginally slow disease progression and manage symptoms, rather than 

preventing progression or reversing damage, it is imperative that these are initiated as 

soon as possible to preserve patient’s function ("The Need for Early Detection and 

Treatment in Alzheimer's Disease," 2016). 

Although there are many emerging methods for neurodegenerative disease diagnosis, 

such as MRI algorithms and biomarker testing of cerebral spinal fluid or plasma 

(Sancesario & Bernardini, 2018; Shen et al., 2020; X. Y. Zhang, Yang, Lu, Yang, & 



67 

 

Zhang, 2017), definitive diagnosis requires postmortem neuropathological analysis. 

Genetics may offer another avenue for definitive diagnosis, but current clinical genetic 

tests for neurodegeneration screen only for variants known to cause the familial forms of 

the diseases, limiting their utility. Comprehensibly, the basis for this is the lack of 

understanding regarding the many genes that have now been linked to neurodegenerative 

diseases and the high occurrence of uninterpretable variation during genetic screening (J. 

S. Roberts, Patterson, & Uhlmann, 2020). However, it cannot be denied the profound 

effect wide-spread, accurate genetic diagnostics would have in the field of 

neurodegenerative disease. Not only would it offer definitive diagnosis for patients, but it 

would also offer the ability for pre-emptive screening in family members interested in 

knowing their risk of disease development. 

1.3.5 Non-genetic risk factors for neurodegenerative disease 

The most well-established risk factor for all neurodegenerative diseases is age. The root 

of this association is likely multifaceted, as many cellular mechanisms are known to 

breakdown with age. Suggested pathways include, but are not limited to: genomic 

instability resulting in DNA damage, epigenetic changes such as increased DNA 

methylation, mitochondrial dysfunction, cellular senescence, defects in telomere 

maintenance, and a lack of stem cell rejuvenation (Hou et al., 2019). Further, there are 

often prominent differences in risk between sexes for neurodegenerative disease 

development, but the differences tend to be specific to the particular diagnosis. For 

example, males have a greater risk of ALS, PD, and potentially FTD, while females have 

a greater risk of AD. Presentation of the diseases can also differ between sexes 

(Hanamsagar & Bilbo, 2016; Miller & Llibre Guerra, 2019). 

There are a large number of environmental risk factors for neurodegenerative diseases 

that may vary between diagnoses, as well. Across most diagnoses common risk factors 

include traumatic brain injury, smoking, and chemical or heavy metal exposure 

(Delamarre & Meissner, 2017; Hulisz, 2018; Killin, Starr, Shiue, & Russ, 2016). 

Additionally, as described in Section 1.2.3, CVD is an imperative risk factor across all 

neurogenerative diseases. Of course, it is important to have an understanding of how 

environmental factors may influence risk of neurodegenerative disease development, as 
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lifestyle modification may be able to mitigate risk to a certain degree. Yet, the large 

amount of heritability attributable to neurodegeneration still suggests a dire need for 

effective therapeutics to slow, cease, and reverse disease progression.  

1.4 The Ontario Neurodegenerative Disease 
Research Initiative 

To date, many large consortia have been formed to study the factors contributing to and 

progression of neurodegenerative diseases, such as the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), the Parkinson Progression Marker Initiative (PPMI), 

and Project MinE; yet these studies remain in their silos of specific diagnoses, studying 

AD, PD, and ALS, respectively. Without consistent assessments, enrollment criteria, and 

data processing, analyzing the participants across these studies remains difficult and they 

cannot account for the large amounts of heterogeneity and overlap between 

neurodegenerative diagnoses. 

To gain a better understanding of the occurrence and progression of various 

neurodegenerative diseases and their respective similarities and differences, the Ontario 

Neurodegenerative Disease Research Initiative (ONDRI) was formed, funded through the 

Ontario Brain Institute (OBI) (ondri.ca). The longitudinal, province-wide, observational 

cohort study aims to characterize multiple neurodegenerative diseases, including: 1) AD; 

2) ALS; 3) FTD (bvFTD, CBS, PSP, and PPA [non-fluent and semantic variants]); 4) 

amnestic MCI; and 5) PD, as well as a cohort of individuals with CVD with or without 

cognitive impairment (CVD ± CI). ONDRI takes a multimodal approach with multiple 

assessment platforms and its novel study design provides a longitudinal nature of 

evaluation, including follow-up and simultaneous analysis of patients across the five 

phenotypes using the same phenotypic and genotypic markers. Goals of the study 

included identifying markers that could be applied to early and accurate prediction tools 

for neurodegeneration, as well as thoroughly analyzing the contribution of cerebral small-

vessel pathology to neurodegenerative phenotypes. For the purposes of brevity, only 

relevant details regarding the general experimental design, enrollment criteria, data 

management, and assessment platforms will be outlined herein. Full details have been 

https://ondri.ca/
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previously described by Farhan et al. and Sunderland et al. (S. M. K. Farhan et al., 2017; 

Sunderland et al., 2020). 

Participant recruitment took place between June 2014 and March 2017. Although ONDRI 

originally aimed to enroll 600 participants across the various disease cohorts, final 

enrollment was capped at 520 participants, including 41 AD participants, 40 ALS 

participants, 161 CVD ± CI participants, 53 FTD participants, 85 MCI participants, and 

140 PD participants. Upon original study design, the AD and MCI participants were 

binned into a single AD/MCI cohort, but were later divided, which is reflected in certain 

analyses in this Dissertation. AD participants included those with either amnestic and 

non-amnestic presentation and MCI participants may have had either single- or multi-

domain amnestic presentation. Importantly, all AD/MCI participant MRI scans were 

assessed by a research neurologist to confirm absence of significant cerebrovascular 

pathology that may suggest non-Alzheimer cognitive impairment; if evidence of small 

vessel disease was observed, participants were instead enrolled into the CVD ± CI cohort. 

ALS participants may have had possible, probable, or definite ALS. Of the FTD 

participants, 21 were diagnosed with bvFTD (39.6%), 3 with CBS (5.7%), 16 with PSP 

(30.2%), 8 with non-fluent PPA (15.1%), and 5 with semantic variant PPA (9.4%). All 

PD participants were considered idiopathic and may or may not have had cognitive 

impairment. Full enrollment criteria and enrollment deviations were outlined by 

Sunderland et al. (Sunderland et al., 2020). 

All participants were assessed across seven platforms, including: 1) clinical; 2) genomics; 

3) neuropsychology; 4) gait and balance; 5) eye tracking; 6) neuroimaging; and 7) retinal 

imaging. There is also a neuropathology platform that is conducting neuropathological 

analysis postmortem on select participants and a neuroinformatics platform that acts as a 

structural backbone providing data processing, data structuring, and statistical support. 

All platforms’ data are deposited in Brain-CODE (braincode.ca), allowing for a secure 

and central location to collect, store, and share data. The use of this portal is imperative 

as, in accordance with ONDRI’s agreement with the OBI and the Ontario Government, 

all non-identifying data will be made available to the greater scientific community on 

https://www.braincode.ca/
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request. It is the hope that this open-science effort will allow for eventual collaboration 

with other consortium-based efforts to obtain larger sample sizes and to replicate results. 

1.4.1 Genetic analysis of neurodegenerative disease patients 

Largely, this Dissertation encompasses the work of the genomics platform of ONDRI, 

specifically focusing on the data produced using the ONDRISeq targeted NGS panel. 

However, multiple methods were employed within ONDRI to genetically characterize 

participants, including the aforementioned ONDRISeq panel, the NeuroX array, repeat-

primed PCR, TaqMan allelic discrimination assay, and Sanger sequencing. 

ONDRISeq was custom-designed for the ONDRI study, and was used to sequence the 

protein-coding regions of 80 genes that were previously associated with the 

neurodegenerative diseases encompassed by ONDRI’s mandate (Table 1.2; Appendix 

D). With this methodology, we are able to harness high-quality NGS data in a focused 

and efficient manner. The design and validation of the ONDRISeq panel with multiple 

concordance studies was previously described, for which the ONDRISeq panel was able 

to identify novel, rare variants of possible clinical significance in 72.2% of 216 ONDRI 

participants used for panel validation (S.M.K. Farhan et al., 2016). As described in 

Section 1.1.3.2, WGS evaluates the entire genomic content of an individual, while WES 

involves sequencing only the protein-coding regions of the genome. Targeted sequencing, 

in contrast, focuses on specific regions of the genome based on relatively few specific 

loci linked by common pathological mechanisms or known clinical phenotype. Therefore, 

targeted sequencing can be an excellent approach when there is already a foundation of 

candidate genes known to be associated with the disease of interest, as is the case with 

neurodegenerative disease (Dilliott et al., 2018). Targeting specific regions of the genome 

also allows for elimination of superfluous and irrelevant genetic variation that can cloud 

or distract from data interpretation. While WGS and WES both produce high-quality 

data, the large amount of data can be overwhelming, and at the time of the ONDRI 

experimental design, cost for WGS and WES remained prohibitive.  

To design ONDRISeq, 25 molecular genetics experts, including scientists and clinicians 

within ONDRI, were consulted to select the 80 genes included on the panel (S.M.K. 
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Farhan et al., 2016). Not only did the ONDRISeq panel include known monogenic genes, 

such as SOD1, SNCA, APP, and NOTCH3, but the method also targeted genes with less-

established genetic associations, such as those within known neurodegeneration pathways 

and those identified through GWASs (Table 1.2). Detailed methodology of the 

bioinformatics pipeline to process the data from the ONDRISeq panel is included in 

Appendix J. Unfortunately, certain genes of interest had to be excluded from the 

ONDRISeq panel due to technological limitations. For example, the GBA gene — which 

has a pseudogene located downstream that causes NGS read misalignment — and the 

C9orf72 repeat expansion could not be accurately assessed with ONDRISeq. 

In addition to the ONDRISeq panel, all participants were genotyped using the NeuroX 

genotype array. NeuroX consists of both the Illumina Human Exome array, as well as a 

selection of variants located throughout the genome that have been previously associated 

with neurological disease. The majority of the variants are rare (~200,000), with fewer 

common variants (~25,000) (Nalls et al., 2015). Although the data produced from 

NeuroX were not used for the purposes of this Dissertation, it is important to highlight 

that the validation of the ONDRISeq panel relied heavily on this method, as it was able to 

validate the calls of all 122 non-synonymous variants identified as part of the NGS 

panel’s proof of concept analysis (S.M.K. Farhan et al., 2016). 

In addition to the ONDRISeq panel and NeuroX array, all ONDRI participants were 

genotyped for the two defining SNPs of the APOE genotype, rs429358(CT):p.Cys130Arg 

and rs7412(CT):p.Arg176Cys, using TaqMan allelic discrimination assay. Although the 

SNPs were also captured by the ONDRISeq panel and NeuroX array, the array’s results 

were found to be of low quality, and it was necessary to confirm the allele calls obtained 

using NGS with another methodology. Further, all participants were Sanger sequenced 

for the protein-coding regions of the GBA gene. 

Although 520 participants were enrolled in ONDRI, only 519 were included in the 

ONDRI genomics platform, as one PD participant’s blood sample did not arrive at 

Robarts Research Institute in London, ON for DNA isolation, and the participant was not 
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able to provide a replacement sample upon follow up. Demographics of all participants 

included in the ONDRI genomics analyses are outline in Table 1.3. 
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Table 1.2 Genes included on the ONDRISeq next-generation sequencing gene panel, 

broken down based on clinical diagnosis and mode of inheritance. 

Neurodegenerative 

disease 
Clinical diagnosis 

Mode of 

inheritance 
Gene(s) 

Alzheimer’s disease 

(AD) 

Early-onset AD 
ADm 

APP, PSEN1, PRNP, 

PSEN2 

AR APP 

Late-onset AD 

ACD APOE 

ADm APOE, APP, SORL1 

AR APOE, APP 

RF 

ABCA7, BIN1, CD2AP, 

CD33, CLU, CR1, MAPT, 

MS4A4E, MS4A6A, 

PICALM, PLD3, TREM2 

Early-onset dementia ADm CSF1R, DNMT1, ITM2B 

Juvenile-onset 

dementia 
AR TYROBP 

Late-onset dementia 
ADm CSF1R, DNMT1, ITM2B 

RF TREM2 

Amyotrophic lateral 

sclerosis (ALS) 

Early-onset ALS 
ADm 

HNRNPA2B1, OPTN, 

PFN1, SOD1, VAPB, VCP 

AR OPTN, PNPLA6, SOD1 

Juvenile-onset ALS 

ADm SETX, SOD1 

AR ALS2, SETX, SIGMAR1 

X-Linked Dm UBQLN2 

Late-onset ALS 

ADm 

ANG, ARHGEF28, 

ATXN2, CHMP2B, DAO, 

DCTN1, FIG4, FUS, 

HNRNPA1, NEFH, PRPH, 

SOD1, SQSTM1, TAF15, 

TARDBP, VAPB 

AR ARHGEF28, FUS, SOD1 

RF CENPV, MAPT, UNC13A 

X-Linked Dm UBQLN2 

ALS-FTD 

ADm 
CHMP2B, FUS, SQSTM1, 

TARDBP, UNC13A, VCP 

RF MAPT 

X-Linked Dm UBQLN2 

Cerebrovascular 

disease with or 

without cognitive 

impairment  

(CVD ± CI)ᶧ 

Pseudoxanthoma 

elasticum 

ADm ABCC6 

AR ABCC6 

Hemorrhage RF COL4A1, COL4A2 

Brain small vessel 

disease 
ADm COL4A1, COL4A2 

CADASIL ADm HTRA1, NOTCH3 

CARASIL AR HTRA1 

Aicardi-Goutieres 

syndrome 5 
AR SAMHD1 

ADm TREX1 
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Aicardi-Goutieres 

syndrome 1 
AR TREX1 

Vasculopathy, retinal, 

with cerebral 

leukoencephalopathy 

and systemic 

manifestations 

ADm TREX1 

Frontotemporal 

dementia (FTD) 

Early-onset FTD ADm TARDBP 

FTD 

ADm 

CHMP2B, FUS, MAPT, 

OPTN, SIGMAR1, 

SQSTM1, TARDBP, VCP 

AR OPTN 

RF DCTN1 

X-Linked Dm UBQLN2 

IBMPFD2 RF HNRNPA2B1, VCP 

Progressive 

supranuclear palsy 
ADm MAPT 

Ubiquitin-positive FTD ADm GRN 

Parkinson’s disease 

(PD) 

Early-onset PD 

ADm 
HTRA2, LRRK2, PINK1, 

SNCA, VPS35 

AR 
FBX07, PANK2, PARK7, 

PINK1, PLA2G6 

RF 
ATP13A2, GCH1, 

GIGYF2, HTRA2, LRRK2 

Juvenile-onset PD 
ADm UCHL1 

AR PARK2, UCHL1 

Late-onset PD 

ADm 

DNAJC13, EIF4G1, 

HTRA2, LRRK2, PARK2, 

VPS35 

AR PLA2G6 

RF 

ADH1C, ATP13A2, 

ATXN2, GAK, GIGYF2, 

HTRA2, LRRK2, MAPT, 

MC1R, NR4A2, PM20D1, 

RAB7L1 

- BM PARL 

Abbreviations: ACD, autosomal co-dominant; ADm, autosomal dominant; AR, autosomal recessive; BM, 
biological mechanistic association; CADASIL, cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy; CARASIL, cerebral autosomal recessive arteriopathy with subcortical 

infarcts and leukoencephalopathy; IBMPFD2, inclusion body myopathy with Paget disease of the bone and 

frontotemporal dementia; RF, risk factor; X-Linked Dm, X-linked dominant. 
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Table 1.3 Demographics of the enrolled ONDRI participants that were included in 

the genomics analyses. 

Cohort Cases 
Mean age 

(years ± sd) 

Min. age 

(years) 

Max. age 

(years) 
Male:Female 

ONDRI 519 68.9 ± 7.7 40.1 87.8 345:174 

AD 41 71.8 ± 8.0 54.4 87.8 24:17 

ALS 40 62.0 ± 8.7 40.1 77.2 24:16 

CVD ± CI 161 69.2 ± 7.4 54.9 85.4 110:51 

FTD 53 67.8 ± 7.0 49.7 80.9 34:19 

      bvFTD 21 65.9 ± 8.8 49.7 80.9 14:7 

      nfPPA 8 68.4 ± 5.9 59.6 75.1 5:3 

      PSP 16 69.8 ± 6.0 60.0 80.1 10:6 

MCI 85 70.6 ± 8.3 53.4 87.2 45:40 

PD 139 67.9 ± 6.3 55.1 85.9 108:31 

Demographics of the FTD subtypes corticobasal syndrome and semantic variant primary progressive 

aphasia cohorts are not displayed due to the small sample sizes of the groups (n ≤ 5), as they may 

compromise confidentiality.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; bvFTD, behavioural variant 

frontotemporal dementia; CVD ± CI, cerebrovascular disease with or without cognitive impairment; FTD, 

frontotemporal dementia; Max., maximum; MCI, mild cognitive impairment; Min., minimum; nfPPA, non-

fluent primary progressive aphasia; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; sd, 

standard deviation.   
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1.5 Thesis outline 

1.5.1 Overall aim and objectives 

Genetic factors increase one’s risk of developing neurodegeneration considerably and 

influence disease features. Yet, heretofore, many studies have aimed to identify the full 

spectrum of genetic variation contributing to each individual neurodegenerative disease, 

and they have failed to consider a holistic approach to studying neurodegeneration by not 

taking into account the vast amount of clinical and pathological overlap between the 

various diagnoses. It is imperative that we are able to gain a full understanding of the 

genetic determinants contributing not only to risk of the diseases themselves, but to the 

vast amount of heterogeneity observed within diagnoses, to gain a full understanding of 

how genetic determinants influence all neurodegenerative diseases and their presentation. 

By leveraging the unique study design of ONDRI and its rich dataset, efforts can be made 

to elucidate the overlapping genetic determinants between the various neurodegenerative 

diagnoses. Further, by focusing on the intrinsic goals of ONDRI we may establish an 

understanding of the genetic contribution to cerebral small-vessel pathology and its 

influence on neurodegenerative phenotypes. 

The aim of my PhD research was to genetically characterize the full ONDRI cohort, and 

leverage the data to gain a greater understanding of the genetic overlap between the 

various neurodegenerative diseases, including AD, ALS, FTD, MCI, and PD, as well as 

CVD, largely using the data generated with the ONDRISeq panel.  

The first objective of my work was to identify associations between common genetic 

variants of high phenotypic impact and the neurodegenerative diseases encompassed by 

ONDRI’s mandate. Although the APOE genotype is a well-established risk factor for the 

development of AD, it was imperative to replicate the association within the ONDRI 

cohort to contribute to validation of the AD diagnoses, as well as assess whether the 

genotype was contributing to any of the other disease cohorts. MAPT haplotype of each 

ONDRI participant was also determined to assess contributions to disease presentation. 

The details of these analyses, which compared variant frequencies in each ONDRI cohort 

to a cognitively normal, elderly control cohort, are outlined in Chapter 2. The APOE 
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genotype has also controversially been associated with deficits in various cognitive 

domains within different individual neurodegenerative disease cohorts; therefore, I 

leveraged ONDRI’s robust neuropsychology dataset to assess the contribution of the 

APOE genotype to cognitive deficits in five domains, across the diagnoses. The analysis 

and its results are included in Chapter 3. 

The second objective of my PhD research was to assess the contribution of a spectrum of 

rare genetic variants to the neurodegenerative diseases encompassed by ONDRI’s 

mandate. As previously described, there exists a gap in the literature accounting for the 

potential overlapping impact of genetic factors known to contribute to specific 

neurodegenerative diagnoses within other neurodegenerative phenotypes. To begin 

characterizing this heterogeneity, I identified all rare SNVs within the ONDRI samples in 

the 80 genes previously associated with neurodegenerative disease using the NGS 

targeted sequencing panel, ONDRISeq. I then performed rare variant association analyses 

on both binned gene sets, as well as individual genes to identify signals of variant 

enrichment and elucidate potential overlapping genetic factors across the 

neurodegenerative diagnoses, which is presented in Chapter 4. In Chapter 5, I leveraged 

the ONDRISeq NGS data to identify rare, large-scale CNVs within the ONDRI cohort 

using a recently developed depth-of-coverage approach. Finally, to account for variation 

that could not be captured using the ONDRISeq panel due to technical limitations, 

Chapter 6 outlines the Sanger sequencing analysis of all exons of GBA in the ONDRI 

participants and the identification of rare, nonsynonymous variants of interest within the 

gene and associations with the individual neurodegenerative disease cohorts. 

Finally, the third objective of my work was to identify associations between rare genetic 

variants within ONDRI and the presentation and features of the neurodegenerative 

disease patients. Along with the sequencing of GBA presented in Chapter 6, I also outline 

a multivariate multiple regression analysis to assess the effects of GBA rare variants on 

age of onset, generalized cognition, and motor impairment across all neurodegenerative 

disease and CVD cohorts. Further, Chapter 7 highlights a novel association between 

NOTCH3 rare variants and cerebrovascular disease burden in PD patients carrying 

variants in the gene. Although only focusing on two genes for this objective, the analyses 
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highlight a proof of concept that rare variants of possible moderate phenotypic impact 

may influence the presentation of neurodegenerative diseases not typically associated 

with the gene of interest, thereby accounting for some of the phenotypic heterogeneity 

observed in these disease cohorts. 

1.5.2 Hypothesis 

Susceptibility to neurodegenerative diseases and their heterogenous intermediate 

phenotypes display a complex genetic landscape with a combination of influence from 

rare and common genetic variation, including small-scale SNVs and large-scale CNVs. 

1.5.3 Summary 

This Dissertation describes my research elucidating the genetic determinants of patients 

with various neurodegenerative diseases, as well as patients with cerebrovascular disease. 

Not only does my work aim to characterize the genetic factors contributing to disease 

presentation overall, but it begins the important investigation into how genetics may 

contribute to the heterogenous features of neurodegenerative disease. Importantly, the 

research detailed herein also adds important data to ONDRI, which will become available 

to the greater scientific community in the coming years. To achieve these goals, I utilized 

the data generated using the ONDRISeq targeted NGS panel, which covers 80 genes 

previously associated with neurodegenerative and cerebrovascular phenotypes, along 

with other methodologies, such as Sanger sequencing, to account for the limitations of 

the NGS panel. Not only did my work validate previously identified genetic associations 

with the neurodegenerative diseases under study, such as the association between APOE 

E4 and AD, but it identified novel genetic associations between neurodegenerative 

disease associated genes and other neurodegenerative disease cohorts and patterns in 

clinical presentation. Importantly, the work presented highlights the need for a greater 

understanding of the complex genetic architecture contributing to neurodegeneration. 
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Chapter 2 – The influence of APOE and MAPT to a 
spectrum of neurodegenerative disease phenotypes. 

The work presented in Chapter 2 has been edited from the original publication in the 

Canadian Journal of Neurological Sciences for brevity and consistency throughout the 

entire Dissertation. 
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2.1. Abstract 

Background/Objective: Apolipoprotein E (APOE) E4 is the main genetic risk factor for 

Alzheimer’s disease (AD). Due to the consistent association, there is interest as to 

whether E4 influences the risk of other neurodegenerative diseases. Further, there is a 

constant search for other genetic biomarkers contributing to these phenotypes, such as 

microtubule associated protein tau (MAPT) haplotypes. Here, participants from the 

Ontario Neurodegenerative Disease Research Initiative were genotyped to investigate 

whether the APOE E4 allele or MAPT H1 haplotype are associated with multiple 

neurodegenerative diseases: 1) AD; 2) mild cognitive impairment (MCI); 3) amyotrophic 

lateral sclerosis; 4) frontotemporal dementia (FTD); and 5) Parkinson’s disease, as well 

as cerebrovascular disease (CVD) with or without cognitive impairment.  

Methods and Results: Genotypes were mapped to their respective APOE allele and 

MAPT haplotype calls for each participant and logistic regressions were performed to 

identify associations with the disease cohorts. Our work confirmed the association of the 

E4 allele with a dose-dependent increased presentation of AD, and an association 

between the E4 allele alone and MCI; however, the other four diseases were not 

associated with E4. Further, the APOE E2 allele was associated with decreased 

presentation of both AD and MCI. No associations were identified between MAPT 

haplotype and the disease cohorts, but following subtyping of the FTD cohort, the H1 

allele was significantly associated with progressive supranuclear palsy.  

Conclusion: This is the first study to concurrently analyze association of APOE isoforms 

and MAPT haplotypes with five neurodegenerative diseases and CVD using consistent 

enrollment criteria and broad phenotypic analysis.  
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2.2. Introduction 

With the aging of populations, the burden of neurodegenerative diseases is increasing, 

and substantial effort is directed towards identification of genetic biomarkers with the 

objective of improved disease prediction and the long-term goal of discovering 

therapeutic targets. In particular, molecular genetics efforts have focused on identifying 

common single nucleotide polymorphisms (SNPs) that contribute to disease risk 

(Lambert et al., 2013; Nalls et al., 2014; Simon-Sanchez et al., 2009). Although these 

types of markers usually account for only a small proportion of disease risk, two closely 

linked common SNPs on chromosome 19 have been identified to jointly impart a 

relatively large effect on the risk of a particular neurodegenerative phenotype, namely the 

apolipoprotein E (APOE) E4 allele and Alzheimer’s disease (AD) (Bertram, McQueen, 

Mullin, Blacker, & Tanzi, 2007). 

Apo E is found in chylomicrons, very low-density lipoproteins, intermediate-density 

lipoproteins and high-density lipoproteins; it provides structural support to these particles 

and also governs the catabolism of triglyceride rich lipoproteins through its role as a 

receptor ligand. Importantly, apo E is the principal cholesterol carrier in the brain 

(Mahley & Rall, 2000). There are three common protein isoforms of apo E — E2, E3, 

and E4 — historically designated based on protein mobility in isoelectrophoretic focusing 

gels (Kane & Gowland, 1986). At the DNA level, these three isoforms are encoded by 

two nonsynonymous SNPs within the APOE gene, occurring at amino acid positions 130 

and 176 (also numbered as 112 and 158, respectively, if the pro-peptide sequence is 

excluded), and each involving cysteine or arginine as alternate residues (Zannis et al., 

1982). The E4 allele, which has arginine at both positions 130 and 176, is the most 

common genetic risk factor for the development of late-onset AD and contributes to 

disease risk in a dose-dependent manner (Ward et al., 2012). Meta-analyses show that 

one and two copies of the E4 allele raise AD risk by ~3- to 4- and ~12-fold, respectively 

(Corder et al., 1993; Saunders et al., 1993). Due to the replicated high risk association 

from several meta-analyses of AD and APOE (Farrer et al., 1997; Liu et al., 2015; Ward 

et al., 2012), researchers have attempted to determine whether the E4 allele is also 

associated with other neurodegenerative diseases, including amyotrophic lateral sclerosis 
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(ALS) (Y. J. Li et al., 2004; Mui, Rebeck, McKenna-Yasek, Hyman, & Brown, 1995), 

frontotemporal dementia (FTD) (Agosta et al., 2009; Geschwind, Karrim, Nelson, & 

Miller, 1998), and Parkinson’s disease (PD) (Ezquerra et al., 2008; Huang, Chen, & 

Poole, 2004; Pankratz et al., 2006), as well as cerebrovascular disease with or without 

cognitive impairment (CVD ± CI) (Baum et al., 2006; Chuang et al., 2010; Davidson et 

al., 2006), so far with mixed and inconsistent results. 

Another gene less consistently associated with AD risk is the microtubule associated 

protein tau gene (MAPT), which encodes the protein tau (Myers et al., 2005). It remains 

to be established whether the MAPT is associated with other neurodegenerative diseases. 

Within the MAPT gene an ancestral inversion of ~900kb has resulted in two distinct 

haplotypes, H1 and H2, and creates a large region of linkage disequilibrium. Apart from 

the few associations found between H1 MAPT and AD, there has been debate as to 

whether the haplotype is associated with PD (Seto-Salvia et al., 2011) and with the FTD 

subtype progressive supranuclear palsy (Baker et al., 1999; Ferrari et al., 2017).  

The Ontario Neurodegenerative Disease Research Initiative (ONDRI) is a multi-platform, 

provincial-wide, observational cohort study aiming to characterize multiple attributes of 

five neurodegenerative diseases, namely: 1) AD; 2) mild cognitive impairment (MCI); 3) 

ALS; 4) FTD; and 5) PD, as well as CVD ± CI (S. M. K. Farhan et al., 2017). In addition 

to genomic analysis, ONDRI incorporates a comprehensive phenotypic assessment on 

each participant. The large dataset, combined with the consistent enrollment criteria 

allows for the unique opportunity to assess the association of APOE genotype and MAPT 

haplotype across the respective neurodegeneration phenotypes. Here, we aim to replicate 

the known associations of the APOE E4 allele, APOE E4/4 genotype, and MAPT H1 

haplotype with AD, in addition to assessing whether APOE E4 and MAPT H1 confer risk 

to ALS, FTD, PD, and CVD ± CI within the ONDRI cohort. 

2.3. Methods 

2.3.1. Study participants 

Blood samples were collected from 519 ONDRI participants after informed consent was 

obtained, in accordance with the Research Ethics Boards at Hamilton General Hospital 
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(Hamilton, Ontario, Canada); McMaster (Hamilton, Ontario, Canada); Parkwood 

Hospital (London, Ontario, Canada); London Health Sciences Centre (London, Ontario, 

Canada); The Ottawa Hospital (Ottawa, Ontario, Canada); University Health Network- 

Elizabeth Bruyère Hospital (Ottawa, Ontario, Canada); Baycrest Centre for Geriatric 

Care (Toronto, Ontario, Canada); Centre for Addiction and Mental Health (Toronto, 

Ontario, Canada); St Michael's Hospital (Toronto, Ontario, Canada); Sunnybrook Health 

Sciences Centre (Toronto, Ontario, Canada); and Toronto Western Hospital (Toronto, 

Ontario, Canada). Formal diagnoses and demographic data were obtained by participants’ 

clinicians upon enrollment in the study, in accordance with ONDRI standard operating 

protocols (S. M. K. Farhan et al., 2017). 

2.3.2. DNA preparation and genotyping 

Genomic DNA was isolated from blood samples collected from each participant as 

described previously (S.M.K. Farhan et al., 2016). DNA samples were also obtained from 

189 cognitively normal controls from the GenADA study (H. Li et al., 2008). All samples 

underwent targeted next-generation sequencing using the ONDRISeq neurodegenerative 

disease gene panel. Full methodology of DNA isolation, sequencing with the ONDRISeq 

panel (S.M.K. Farhan et al., 2016), and raw sequencing data processing were previously 

described  (Dilliott et al., 2018). 

Allele calls for the APOE risk alleles rs429358(CT):p.Cys130Arg and 

rs7412(CT):p.Arg176Cys were extracted from the ONDRISeq data files and mapped to 

their respective APOE genotype for each participant using a customized Annotate 

Variation (Wang, Li, & Hakonarson, 2010) script. Allele calls and mapped genotypes 

were validated with TaqMan allelic discrimination assay (Koch et al., 2002), as 

previously described (S.M.K. Farhan et al., 2016). 

TaqMan was also used to determine the MAPT haplotype of the ONDRI participants and 

control samples. DNA samples were genotyped for the intronic SNP rs1800547, which is 

not covered by the ONDRISeq panel. Based on a region of linkage disequilibrium, allele 

calls were mapped to their respective MAPT haplotype (Lai et al., 2017).  
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2.3.3. Statistical analysis 

Statistical analyses were performed using SAS v9.4 (SAS Institute, Cary, NC). The 

Wilcoxon Mann-Whitney U test was utilized to determine the difference between the 

ages of the control cohort compared to the five disease cohorts of interest. Chi-squared 

analyses were used to determine the difference between the control cohort and disease 

cohorts’ male:female ratios. Odds ratios and confidence intervals were obtained using 

logistic regression, adjusting for participants’ age and sex.  

2.4. Results 

2.4.1. Study participants 

Table 2.1 displays the demographics of the 519 ONDRI participants included in this 

study, as well as the cognitively normal controls. Of the ONDRI participants, 83.0% self-

reported their ethnicity as Caucasian. The ALS cohort had the lowest mean age (62.0 ± 

8.7 years), and the control cohort had the highest mean age (74.0 ± 8.2 years), which was 

significantly different from the mean age of the five ONDRI disease cohorts (p < 1.0x10-

4). Additionally, the male:female ratio of the control cohort was significantly different 

from that of the overall ONDRI cohort (p < 1.0x10-4).  
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Table 2.1 Demographics of the 519 ONDRI participants and 189 controls genotyped 

for APOE and haplotyped for MAPT. 
 ONDRI AD/MCI ALS FTD PD CVD ± CI Controls 

Cases 519 126 40 53 139 161 189 

Mean Age  

(years ± sd) 
68.6 ± 7.7 71.0 ± 8.2 62.0 ± 8.7 67.8 ± 7.0 67.9 ± 6.3 69.2 ± 7.4 74.0 ± 8.2 

Min. Age 

(years) 
40.1 53.4 40.1 49.7 55.1 54.9 48.0 

Max. Age 

(years) 
87.8 87.8 77.2 80.9 85.9 85.4 92.0 

Male:Female 345:174 69:57 24:16 34:19 108:31 110:51 77:112 

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment; ALS, amyotrophic lateral 

sclerosis; APOE, Apolipoprotein E gene; CVD ± CI, cerebrovascular disease with or without cognitive 

impairment; FTD, frontotemporal dementia; MAPT, microtubule associated protein tau; Max, maximum; 

Min, minimum; ONDRI, Ontario neurodegenerative disease research initiative; PD, Parkinson’s disease; 

sd, standard deviation. 
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2.4.2. APOE genotype associations 

Calls of the APOE alleles were obtained using the ONDRISeq panel and validated using 

the TaqMan allelic discrimination assay with 100% concordance. Allele and genotype 

frequencies were calculated for the disease cohorts and the controls (Table 2.2). As 

expected, the AD/MCI cohort displayed the highest APOE E4 allele frequency (31.7%) 

and E4/4 genotype frequency (14.3%), compared to 14.6% and 3.7%, respectively in 

controls. The AD/MCI cohort also displayed the lowest APOE E2 allele frequency 

(2.4%), compared to 10.3% in controls. The lowest APOE E4 allele and E4/4 genotype 

frequencies were observed in the PD cohort (12.6% and 1.4%, respectively), differing 

marginally from the respective frequencies in controls. 

Allele and genotype calls were compared between each ONDRI disease cohort and the 

control cohort, while adjusting for both age and sex of participants (Figure 2.1). The E4 

allele was significantly associated with increased presentation of AD/MCI compared to 

controls (OR = 2.76, 95% CI = 1.85–4.11, p < 1.0x10-4). Similarly, the E4/4 genotype 

significantly increased the presentation of AD/MCI when compared to controls (OR = 

4.13, 95% CI = 1.64–10.37, p = 2.5x10-3). As expected, the E2 allele was associated with 

a significantly decreased presentation of AD/MCI when compared to controls after 

adjusting for age and sex (OR = 0.21, 95% CI = 0.08–0.50, p = 5.0x10-4; Figure 2.2). No 

association with APOE was found with the other four phenotypes in the ONDRI dataset. 

The AD/MCI cohort was split into participants presenting with AD (n=41) and those 

presenting with MCI (n = 85) and APOE analyses were repeated. The AD and MCI sub 

cohorts displayed E4 allele frequencies of 46.3% and 24.7% and E4/4 genotype 

frequencies of 26.8% and 8.2%, respectively. Indeed, the E4 allele was significantly 

associated with both AD and MCI compared to controls (OR = 5.24, 95% CI = 3.07–

8.92, p < 1.0x10-4 and OR = 1.94, 95% CI = 1.22–3.07, p = 4.9x10-3, respectively) and 

the E2 allele was significantly associated with decreased presentation of both AD and 

MCI compared to controls (OR = 0.10, 95% CI = 0.01–0.77, p = 0.0268 and OR = 0.26, 

95% CI = 0.10–0.68, p = 5.8x10-3, respectively). The E4/4 genotype was also 

significantly associated with increased presentation of AD (OR = 10.36, 95% CI = 3.55–
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30.19, p < 1.0x10-4); however, the genotype did not significantly increase presentation of 

MCI.
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Table 2.2 APOE allele and genotype frequencies in 519 ONDRI participants and 189 controls.  
APOE Genotype [n (%)] APOE Alleles [n (%)]  

E2/2 E3/2 E4/2 E3/3 E4/3 E4/4 E2 E3 E4 

AD/MCI 0 5 (4.0) 1 (0.8) 59 (46.8) 43 (34.1) 18 (14.3) 6 (2.4) 166 (65.9) 80 (31.7) 

ALS 0 6 (15.0) 0 21 (52.5) 12 (30.0) 1 (2.5) 6 (7.5) 60 (75.0) 14 (17.5) 

FTD 1 (1.9) 6 (11.3) 0 26 (49.0) 18 (34.0) 2 (3.8) 8 (7.5) 76 (71.7) 22 (20.8) 

PD 1 (0.7) 19 (13.7) 3 (2.2) 86 (67.9) 28 (20.1) 2 (1.4) 24 (8.6) 219 (78.8) 35 (12.6) 

CVD ± CI 0 21 (13.0) 2 (1.2) 100 (62.1) 34 (21.1) 4 (2.5) 23 (7.1) 255 (79.2) 44 (13.7) 

Controls 2 (1.1) 29 (15.3) 6 (3.2) 110 (58.2) 35 (18.6) 7 (3.7) 39 (10.3) 284 (75.1) 55 (14.6) 
All study participants were genotyped using both the ONDRISeq panel and TaqMan allelic discrimination assay. 

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment; ALS, amyotrophic lateral sclerosis; APOE, Apolipoprotein E gene; CVD ± CI, 

cerebrovascular disease with or without cognitive impairment; FTD, frontotemporal dementia; ONDRI, Ontario neurodegenerative disease research initiative; 

PD, Parkinson’s disease. 
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Figure 2.1 Forest plots of the relationship between APOE and risk of each of the 

diseases encompassed by ONDRI. 

Logistic regressions adjusting for participant age and sex analyzed the APOE E4 allele 

and E4/4 genotype status of the ONDRI cohorts when compared to controls. A. Forest 

plot of the APOE E4 allele and associated risk of each ONDRI disease cohort. B. Forest 

plot of the APOE E4/4 genotype and associated risk of each ONDRI disease cohort. 
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Figure 2.2 Forest plot of the relationship between the APOE E2 allele and risk of 

each of the diseases encompassed by ONDRI. 

Logistic regressions adjusting for participant age and sex analyzed the APOE E2 allele 

status of the ONDRI cohorts when compared to controls. 
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2.4.3. MAPT haplotype associations 

Allele calls of the intronic MAPT variant, rs1800547, were mapped to their respective 

MAPT haplotype for each DNA sample. The ALS cohort had the highest frequencies of 

H1 haplotype and H1/H1 diplotype (87.5% and 75.0%, respectively), whereas the FTD 

cohort displayed the lowest frequencies (75.5% and 60.4%, respectively; Table 2.3). 

There were no significant associations found between MAPT and any of the disease 

phenotypes in ONDRI when compared to controls following adjustment for both age and 

sex. 

Due to its previous associations with the PSP subtype of FTD, the FTD cohort was split 

into its respective subtypes, including behavioural variant FTD (bvFTD; n = 22), 

corticobasal syndrome (CBS; n = 3), progressive non-fluent aphasia (PNFA; n = 8), PSP 

(n=15), and semantic dementia (SD; n = 5), and MAPT analyses were repeated. 

Interestingly, the SD sub cohort displayed the greatest MAPT H1 haplotype frequency 

and the CBS sub cohort displayed the lowest, at 90.0% and 50.0% respectively. 

Similarly, the SD sub cohort, along with the PSP sub cohort, displayed the greatest H1H1 

diplotype frequency of 80.0%, while the CBS sub cohort displayed the lowest of 33.3%. 

We also observed that the H1 haplotype was significantly associated with increased PSP 

prevalence (OR = 7.46, 95% CI = 2.39–23.29, p = 5.0x10-4) following adjustment for age 

and sex; however, the H1H1 diplotype did not display significant associations with PSP 

presentation. In addition, there were no significant associations between MAPT and any 

of the other FTD subtypes. 
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Table 2.3 MAPT haplotype and diplotype frequencies in 519 ONDRI participants 

and 189 controls.  
MAPT Haplotype [n (%)] MAPT Diplotype [n (%)]  

H1 H2 H1/H1 H1/H2 H2/H2 

AD/MCI 200 (79.4) 52 (20.6) 75 (59.5) 50 (39.7) 1 (0.8) 

ALS 70 (87.5) 10 (12.5) 30 (75.0) 10 (25.0) 0 

FTD 80 (75.5) 26 (24.5) 32 (60.4) 16 (30.2) 5 (9.4) 

PD 227 (81.7) 51 (18.3) 93 (66.9) 41 (29.5) 5 (3.6) 

VCI 264 (82.0) 58 (18.0) 108 (67.1) 48 (29.8) 5 (3.1) 

Controls 293 (77.5) 85 (22.5) 111 (58.7) 71 (37.6) 7 (3.7) 
All study participants were genotyped for the intronic SNP rs1800547 using TaqMan allelic discrimination 

assay and results were mapped to their respective haplotype. 

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment; ALS, amyotrophic lateral 

sclerosis; CVD ± CI, cerebrovascular disease with or without cognitive impairment; FTD, frontotemporal 

dementia; MAPT, microtubule associated protein tau gene; ONDRI, Ontario neurodegenerative disease 

research initiative; PD, Parkinson’s disease. 
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2.5. Discussion 

This is the first genetic characterization of the ONDRI cohort, which is important for 

upcoming multimodal, multi-year, prospective observational studies of the five 

phenotypes (e.g. APOE/MAPT-based stratification). The principal findings from the 

current study are: 1) a dose-dependent association of the APOE E4 allele with AD and an 

association between E4 and MCI; 2) an inverse association of the APOE E2 allele with 

AD and MCI presentation; 3) a lack of associations between the APOE alleles and other 

diseases included in the ONDRI mandate (ALS, FTD, PD or CVD ± CI); and 4) no 

associations between any of the disease cohorts and the MAPT H1 haplotype, but an 

association between H1 and the PSP subtype of FTD. 

Our study design offers a unique opportunity to analyze individuals each with one of five 

neurodegenerative diseases or CVD ± CI enrolled with strict inclusion criteria and 

evaluated across a wide-range of platforms (S. M. K. Farhan et al., 2017). Because of this 

robust workflow, we can investigate the effect of the APOE alleles and genotypes and 

MAPT haplotypes across multiple diseases with common assessment. The control cohort 

had a significantly older mean age than the ONDRI disease cohorts, as well as a 

significantly different male:female ratio. For this reason, logistic regression was applied 

to obtain odds ratios adjusted for both the age and sex of participants.  

The E4 allele frequency in previously reported AD patients is 28–37%, while in controls 

it is 8–14% (Farrer et al., 1997; Heffernan, Chidgey, Peng, Masters, & Roberts, 2016). 

The results presented here are comparable to these literature values, with E4 allele 

frequencies of 31.7% and 14.5% in the AD/MCI and control cohorts, respectively. More 

specifically, we observed an APOE E4 allele frequency of 46.3% in individuals with AD 

and 24.7% in individuals with MCI. Although the E4 allele frequency was significantly 

increased in cohorts of MCI compared to controls, the increase is not as great as that seen 

in those with AD only. Interestingly, the E4 allele has been shown to be a predictive risk 

factor for the clinical conversion from MCI to AD (Elcoroaristizabal Martin et al., 2011; 

Fleisher et al., 2007; Petersen et al., 2005), which, coupled with the increased E4 allele 

frequency in the MCI sub cohort, may indicate that a portion of the individuals enrolled 

in ONDRI with MCI will experience disease progression to AD. The longitudinal nature 
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of the ONDRI study will permit follow up of the individuals with MCI to determine 

whether their APOE status predicts possible progression to AD, and to evaluate the 

phenotypic measures most severely affected by their status. 

In accordance with previous literature (Corder et al., 1993), we identified that APOE E4 

was associated with AD in a dose-dependent manner following adjustment for age and 

sex. The presence of the E4 allele produced an approximately 5-fold increased risk of 

having AD/MCI, which was marginally greater than estimates previously found. 

However, we identified the E4/4 genotype to increase risk just over 10-fold, marginally 

lower than the commonly reported 12-fold (Corder et al., 1993; Saunders et al., 1993). 

The slight discrepancies are likely due to the modest number of individuals enrolled in 

ONDRI with AD. 

Previous studies have also suggested that the E2 allele decreases risk of AD, which we 

also observed with our AD/MCI cohort (Corder et al., 1994; Farrer et al., 1997). It is 

hypothesized that the stability provided by the cysteine-to-arginine variant at amino acid 

176 may be contributing to this protective effect (Zhong & Weisgraber, 2009) and allows 

the isoform to more effectively clear amyloid-β (Yang, Smith, Zhou, Gandy, & Martins, 

1997), protect against synaptic degeneration (Dumanis et al., 2009), and facilitate anti-

oxidant activity (Miyata & Smith, 1996).  However, because of the small sample sizes 

within ONDRI, no individuals in the AD/MCI cohort harboured the E2/2 genotype and 

precise genotypic risk associations could not be evaluated. Due to this absence of 

individuals with the E2/2 genotype in the AD/MCI cohort, it is expected that two copies 

of the E2 allele would incrementally decrease the risk of the disease in a dose-dependent 

manner, particularly in those with AD, but larger cohorts would be needed to validate this 

hypothesis. 

Although an association was not observed between MAPT H1 and the total FTD cohort, 

we did observe an association between the haplotype and increased presentation of PSP, 

as has been previously identified (Baker et al., 1999). Yet, we were not able to replicate 

the previously observed increased prevalence of PSP associated with the H1H1 diplotype, 

again possibly as a result of the modest number of individuals with PSP. Interestingly, the 
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SD sub cohort of FTD displayed the highest MAPT H1 haplotype frequency and the same 

H1H1 diplotype frequency as the PSP sub cohort, but was not significantly associated 

with MAPT. We expect that the very low number of individuals enrolled in ONDRI with 

SD may be driving factor in the lack of association observed here and believe that further 

analysis into the association between MAPT H1 and SD is warranted with larger sample 

sizes. 

Due to the strong association between both the E4 allele and E4/4 genotype and AD 

status, many studies have attempted to identify associations with other neurodegenerative 

disorders (Verghese, Castellano, & Holtzman, 2011). However, these studies have 

reported inconsistent results regarding the risk associated with APOE E4 and either onset 

and/or progression of the other four diseases studied in ONDRI, namely ALS (Y. J. Li et 

al., 2004; Mui et al., 1995), FTD (Agosta et al., 2009; Geschwind et al., 1998), PD 

(Ezquerra et al., 2008; Huang et al., 2004; Pankratz et al., 2006), and CVD ± CI (Baum et 

al., 2006; Chuang et al., 2010; Davidson et al., 2006). Within the ONDRI cohort, no 

associations were identified for the other disease phenotypes. Similarly, no associations 

were identified between the MAPT H1 haplotype or H1/H1 diplotype and any of the five 

complete neurodegenerative disease cohorts or the CVD ± CI cohort. Absence of 

associations could have been due to small sample sizes, and thus false negative 

inferences, or to the true lack of a biological effect of E4 and H1 in these conditions. 

Associations previously reported may have been due to the diagnostic challenges 

associated with neurodegenerative diseases. Admixture of AD pathology in individuals 

with other neurodegenerative diseases, including CVD associated neurodegenerative 

diseases such as vascular dementia, may produce false positive associations with E4, and 

co-pathologies within neurodegenerative diseases are far more common than previously 

appreciated (Robinson et al., 2018). Due to the spectrum of overlapping features that can 

be observed across neurodegenerative phenotypes it will be important to identify those 

that are associated with the APOE E4 allele and MAPT H1 haplotype to better understand 

patient prognosis. Future analyses will utilize ONDRI’s robust assessment of structural 

and cognitive measures to identify whether common phenotypes across the various 

diseases are influenced by APOE and MAPT. 
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While ONDRI is unique in terms of the number of different clinical conditions evaluated 

simultaneously within the process, there is still a limitation due to modest sample sizes. 

Larger cohorts may produce results that align more closely with those previously 

reported. Additionally, an important limitation to this study is the lack of correlation with 

cognitive status within the disease cohorts. Assessments of cognitive impairment are 

ongoing, and future studies will incorporate these measures from the participants in order 

to assess the effects of the APOE E4 allele and MAPT haplotype on cognitive status 

within all five disease cohorts. 

2.6. Conclusion 

In conclusion, E4 allele carriers in the ONDRI study displayed a dose-dependent 

increased risk of AD/MCI, specifically in those diagnosed with AD, which is consistent 

with current APOE literature. Similarly, this study was concordant with recent evidence 

that the APOE E2 allele decreases risk of AD/MCI. Further, the MAPT H1 haplotype was 

significantly associated with the PSP subtype of FTD. The work also confirmed that risks 

of the other four diseases evaluated within ONDRI, namely ALS, FTD, PD and CVD ± 

CI are not associated with the E4 allele or E4/4 genotype and that none of the complete 

disease cohorts are associated with the MAPT H1 haplotype or H1/H1 diplotype. To our 

knowledge this is the first study to analyze APOE genotypes and MAPT haplotypes 

across these five neurodegenerative diseases and CVD using common enrollment criteria 

and comprehensive phenotypic analysis. Future studies will investigate the structural and 

cognitive symptoms of neurodegeneration influenced by the E4 allele and H1 haplotype 

and the contributions of other genetic factors to these phenotypes. 

  



119 

 

2.7. References 

Agosta, F., Vossel, K. A., Miller, B. L., Migliaccio, R., Bonasera, S. J., Filippi, M., . . . 

Gorno-Tempini, M. L. (2009). Apolipoprotein E epsilon4 is associated with 

disease-specific effects on brain atrophy in Alzheimer's disease and 

frontotemporal dementia. Proc Natl Acad Sci U S A, 106(6), 2018-2022. 

doi:10.1073/pnas.0812697106 

Baker, M., Litvan, I., Houlden, H., Adamson, J., Dickson, D., Perez-Tur, J., . . . Hutton, 

M. (1999). Association of an extended haplotype in the tau gene with progressive 

supranuclear palsy. Hum Mol Genet, 8(4), 711-715. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/10072441 

Baum, L., Lam, L. C., Kwok, T., Lee, J., Chiu, H. F., Mok, V. C., . . . Ng, H. K. (2006). 

Apolipoprotein E epsilon4 allele is associated with vascular dementia. Dement 

Geriatr Cogn Disord, 22(4), 301-305. doi:10.1159/000095246 

Bertram, L., McQueen, M. B., Mullin, K., Blacker, D., & Tanzi, R. E. (2007). Systematic 

meta-analyses of Alzheimer disease genetic association studies: the AlzGene 

database. Nat Genet, 39(1), 17-23. doi:ng1934 [pii] 10.1038/ng1934 

Chuang, Y. F., Hayden, K. M., Norton, M. C., Tschanz, J., Breitner, J. C., Welsh-

Bohmer, K. A., & Zandi, P. P. (2010). Association between APOE epsilon4 allele 

and vascular dementia: The Cache County study. Dement Geriatr Cogn Disord, 

29(3), 248-253. doi:10.1159/000285166000285166 [pii] 

Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., 

Gaskell, P. C., Jr., . . . et al. (1994). Protective effect of apolipoprotein E type 2 

allele for late onset Alzheimer disease. Nat Genet, 7(2), 180-184. 

doi:10.1038/ng0694-180 

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., 

Small, G. W., . . . Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E 

type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 

261(5123), 921-923. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/8346443 

Davidson, Y., Gibbons, L., Purandare, N., Byrne, J., Hardicre, J., Wren, J., . . . Mann, D. 

M. (2006). Apolipoprotein E epsilon4 allele frequency in vascular dementia. 

Dement Geriatr Cogn Disord, 22(1), 15-19. doi:10.1159/000092960 

Dilliott, A. A., Farhan, S. M. K., Ghani, M., Sato, C., Liang, E., Zhang, M., . . . Hegele, 

R. A. (2018). Targeted Next-generation Sequencing and Bioinformatics Pipeline 

to Evaluate Genetic Determinants of Constitutional Disease. J Vis Exp(134). 

doi:10.3791/57266 

https://www.ncbi.nlm.nih.gov/pubmed/10072441
http://www.ncbi.nlm.nih.gov/pubmed/8346443


120 

 

Dumanis, S. B., Tesoriero, J. A., Babus, L. W., Nguyen, M. T., Trotter, J. H., Ladu, M. J., 

. . . Hoe, H. S. (2009). ApoE4 decreases spine density and dendritic complexity in 

cortical neurons in vivo. J Neurosci, 29(48), 15317-15322. 

doi:10.1523/JNEUROSCI.4026-09.2009 

Elcoroaristizabal Martin, X., Fernandez Martinez, M., Galdos Alcelay, L., Molano 

Salazar, A., Bereincua Gandarias, R., Ingles Borda, S., . . . de Pancorbo, M. M. 

(2011). Progression from amnesic mild cognitive impairment to Alzheimer's 

disease: ESR1 and ESR2 polymorphisms and APOE gene. Dement Geriatr Cogn 

Disord, 32(5), 332-341. doi:10.1159/000335541000335541 [pii] 

Ezquerra, M., Campdelacreu, J., Gaig, C., Compta, Y., Munoz, E., Marti, M. J., . . . 

Tolosa, E. (2008). Lack of association of APOE and tau polymorphisms with 

dementia in Parkinson's disease. Neurosci Lett, 448(1), 20-23. 

doi:10.1016/j.neulet.2008.10.018S0304-3940(08)01401-8 [pii] 

Farhan, S. M. K., Bartha, R., Black, S. E., Corbett, D., Finger, E., Freedman, M., . . . 

Strong, M. J. (2017). The Ontario Neurodegenerative Disease Research Initiative 

(ONDRI). Can J Neurol Sci, 44(2), 196-202. doi:10.1017/cjn.2016.415 

S0317167116004157 [pii] 

Farhan, S. M. K., Dilliott, A. A., Ghani, G., Sato, C., Liang, E., Zhang, M., . . . Hegele, 

R. A. (2016). The ONDRISeq panel: custom-designed next-generation 

sequencing of genes related to neurodegeneration. NPJ Genom Med(16032), 1-11.  

Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., . . . 

van Duijn, C. M. (1997). Effects of age, sex, and ethnicity on the association 

between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. 

APOE and Alzheimer Disease Meta Analysis Consortium. JAMA, 278(16), 1349-

1356. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9343467 

Ferrari, R., Wang, Y., Vandrovcova, J., Guelfi, S., Witeolar, A., Karch, C. M., . . . 

Desikan, R. S. (2017). Genetic architecture of sporadic frontotemporal dementia 

and overlap with Alzheimer's and Parkinson's diseases. J Neurol Neurosurg 

Psychiatry, 88(2), 152-164. doi:10.1136/jnnp-2016-314411 

Fleisher, A. S., Sowell, B. B., Taylor, C., Gamst, A. C., Petersen, R. C., & Thal, L. J. 

(2007). Clinical predictors of progression to Alzheimer disease in amnestic mild 

cognitive impairment. Neurology, 68(19), 1588-1595. 

doi:01.wnl.0000258542.58725.4c [pii]10.1212/01.wnl.0000258542.58725.4c 

Geschwind, D., Karrim, J., Nelson, S. F., & Miller, B. (1998). The apolipoprotein E 

epsilon4 allele is not a significant risk factor for frontotemporal dementia. Ann 

Neurol, 44(1), 134-138. doi:10.1002/ana.410440122 

Heffernan, A. L., Chidgey, C., Peng, P., Masters, C. L., & Roberts, B. R. (2016). The 

Neurobiology and Age-Related Prevalence of the epsilon4 Allele of 

http://www.ncbi.nlm.nih.gov/pubmed/9343467


121 

 

Apolipoprotein E in Alzheimer's Disease Cohorts. J Mol Neurosci, 60(3), 316-

324. doi:10.1007/s12031-016-0804-x 

Huang, X., Chen, P. C., & Poole, C. (2004). APOE-[epsilon]2 allele associated with 

higher prevalence of sporadic Parkinson disease. Neurology, 62(12), 2198-2202. 

Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15210882 

Kane, J. W., & Gowland, E. (1986). A method for the identification of apolipoprotein E 

isoforms employing chemical precipitation and flat bed isoelectric focusing in 

agarose. Ann Clin Biochem, 23 ( Pt 5), 509-513. 

doi:10.1177/000456328602300504 

Koch, W., Ehrenhaft, A., Griesser, K., Pfeufer, A., Muller, J., Schomig, A., & Kastrati, 

A. (2002). TaqMan systems for genotyping of disease-related polymorphisms 

present in the gene encoding apolipoprotein E. Clin Chem Lab Med, 40(11), 

1123-1131. doi:10.1515/CCLM.2002.197 

Lai, M. C., Bechy, A. L., Denk, F., Collins, E., Gavriliouk, M., Zaugg, J. B., . . . Caffrey, 

T. M. (2017). Haplotype-specific MAPT exon 3 expression regulated by common 

intronic polymorphisms associated with Parkinsonian disorders. Mol 

Neurodegener, 12(1), 79. doi:10.1186/s13024-017-0224-6 

Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., 

. . . Amouyel, P. (2013). Meta-analysis of 74,046 individuals identifies 11 new 

susceptibility loci for Alzheimer's disease. Nat Genet, 45(12), 1452-1458. 

doi:10.1038/ng.2802ng.2802 [pii] 

Li, H., Wetten, S., Li, L., St Jean, P. L., Upmanyu, R., Surh, L., . . . Roses, A. D. (2008). 

Candidate single-nucleotide polymorphisms from a genomewide association 

study of Alzheimer disease. Arch Neurol, 65(1), 45-53. doi:2007.3 

[pii]10.1001/archneurol.2007.3 

Li, Y. J., Pericak-Vance, M. A., Haines, J. L., Siddique, N., McKenna-Yasek, D., Hung, 

W. Y., . . . Siddique, T. (2004). Apolipoprotein E is associated with age at onset 

of amyotrophic lateral sclerosis. Neurogenetics, 5(4), 209-213. 

doi:10.1007/s10048-004-0193-0 

Liu, Y., Yu, J. T., Wang, H. F., Han, P. R., Tan, C. C., Wang, C., . . . Tan, L. (2015). 

APOE genotype and neuroimaging markers of Alzheimer's disease: systematic 

review and meta-analysis. J Neurol Neurosurg Psychiatry, 86(2), 127-134. 

doi:10.1136/jnnp-2014-307719jnnp-2014-307719 [pii] 

Mahley, R. W., & Rall, S. C., Jr. (2000). Apolipoprotein E: far more than a lipid transport 

protein. Annu Rev Genomics Hum Genet, 1, 507-537. doi:1/1/507 

[pii]10.1146/annurev.genom.1.1.507 

https://www.ncbi.nlm.nih.gov/pubmed/15210882


122 

 

Miyata, M., & Smith, J. D. (1996). Apolipoprotein E allele-specific antioxidant activity 

and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat 

Genet, 14(1), 55-61. doi:10.1038/ng0996-55 

Mui, S., Rebeck, G. W., McKenna-Yasek, D., Hyman, B. T., & Brown, R. H., Jr. (1995). 

Apolipoprotein E epsilon 4 allele is not associated with earlier age at onset in 

amyotrophic lateral sclerosis. Ann Neurol, 38(3), 460-463. 

doi:10.1002/ana.410380318 

Myers, A. J., Kaleem, M., Marlowe, L., Pittman, A. M., Lees, A. J., Fung, H. C., . . . 

Hardy, J. (2005). The H1c haplotype at the MAPT locus is associated with 

Alzheimer's disease. Hum Mol Genet, 14(16), 2399-2404. doi:ddi241 

[pii]10.1093/hmg/ddi241 

Nalls, M. A., Pankratz, N., Lill, C. M., Do, C. B., Hernandez, D. G., Saad, M., . . . 

Singleton, A. B. (2014). Large-scale meta-analysis of genome-wide association 

data identifies six new risk loci for Parkinson's disease. Nat Genet, 46(9), 989-

993. doi:10.1038/ng.3043ng.3043 [pii] 

Pankratz, N., Byder, L., Halter, C., Rudolph, A., Shults, C. W., Conneally, P. M., . . . 

Nichols, W. C. (2006). Presence of an APOE4 allele results in significantly earlier 

onset of Parkinson's disease and a higher risk with dementia. Mov Disord, 21(1), 

45-49. doi:10.1002/mds.20663 

Petersen, R. C., Thomas, R. G., Grundman, M., Bennett, D., Doody, R., Ferris, S., . . . 

Thal, L. J. (2005). Vitamin E and donepezil for the treatment of mild cognitive 

impairment. N Engl J Med, 352(23), 2379-2388. doi:NEJMoa050151 

[pii]10.1056/NEJMoa050151 

Robinson, J. L., Lee, E. B., Xie, S. X., Rennert, L., Suh, E., Bredenberg, C., . . . 

Trojanowski, J. Q. (2018). Neurodegenerative disease concomitant 

proteinopathies are prevalent, age-related and APOE4-associated. Brain, 141(7), 

2181-2193. doi:10.1093/brain/awy146 

Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-

Vance, M. A., Joo, S. H., . . . et al. (1993). Association of apolipoprotein E allele 

epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 

43(8), 1467-1472. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8350998 

Seto-Salvia, N., Clarimon, J., Pagonabarraga, J., Pascual-Sedano, B., Campolongo, A., 

Combarros, O., . . . Kulisevsky, J. (2011). Dementia risk in Parkinson disease: 

disentangling the role of MAPT haplotypes. Arch Neurol, 68(3), 359-364. 

doi:10.1001/archneurol.2011.1768/3/359 [pii] 

Simon-Sanchez, J., Schulte, C., Bras, J. M., Sharma, M., Gibbs, J. R., Berg, D., . . . 

Gasser, T. (2009). Genome-wide association study reveals genetic risk underlying 

Parkinson's disease. Nat Genet, 41(12), 1308-1312. doi:10.1038/ng.487ng.487 

[pii] 

http://www.ncbi.nlm.nih.gov/pubmed/8350998


123 

 

Verghese, P. B., Castellano, J. M., & Holtzman, D. M. (2011). Apolipoprotein E in 

Alzheimer's disease and other neurological disorders. Lancet Neurol, 10(3), 241-

252. doi:10.1016/S1474-4422(10)70325-2S1474-4422(10)70325-2 [pii] 

Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of 

genetic variants from high-throughput sequencing data. Nucleic Acids Res, 

38(16), e164. doi:10.1093/nar/gkq603gkq603 [pii] 

Ward, A., Crean, S., Mercaldi, C. J., Collins, J. M., Boyd, D., Cook, M. N., & Arrighi, H. 

M. (2012). Prevalence of apolipoprotein E4 genotype and homozygotes (APOE 

e4/4) among patients diagnosed with Alzheimer's disease: a systematic review 

and meta-analysis. Neuroepidemiology, 38(1), 1-17. 

doi:10.1159/000334607000334607 [pii] 

Yang, D. S., Smith, J. D., Zhou, Z., Gandy, S. E., & Martins, R. N. (1997). 

Characterization of the binding of amyloid-beta peptide to cell culture-derived 

native apolipoprotein E2, E3, and E4 isoforms and to isoforms from human 

plasma. J Neurochem, 68(2), 721-725. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/9003062 

Zannis, V. I., Breslow, J. L., Utermann, G., Mahley, R. W., Weisgraber, K. H., Havel, R. 

J., . . . Blum, C. (1982). Proposed nomenclature of apoE isoproteins, apoE 

genotypes, and phenotypes. J Lipid Res, 23(6), 911-914. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/7130859 

Zhong, N., & Weisgraber, K. H. (2009). Understanding the association of apolipoprotein 

E4 with Alzheimer disease: clues from its structure. J Biol Chem, 284(10), 6027-

6031. doi:10.1074/jbc.R800009200 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/9003062
http://www.ncbi.nlm.nih.gov/pubmed/7130859


124 

 

Chapter 3 – Association of apolipoprotein E variation with 
cognitive impairment across multiple neurodegenerative 

diagnoses. 
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3.1. Abstract 

Background/Objective: For many years, there has been uncertainty regarding how 

apolipoprotein E (APOE) E2 and E4 variants may influence overlapping features of 

neurodegeneration, such as cognitive impairment. We aimed to identify whether the 

APOE variants are associated with cognitive function across various neurodegenerative 

and cerebrovascular diagnoses (n=513).  

Methods and Results: Utilizing a comprehensive neuropsychology battery, multivariate 

multiple regression was used to assess the influence of APOE carrier status and disease 

cohort on performance across five cognitive domains. Irrespective of disease cohort, E4 

carriers had significantly lower performance in verbal memory and visuospatial domains 

than those with E3/3, while E2 carriers’ cognitive performance was not significantly 

different. However, E2 carriers with frontotemporal dementia (FTD) performed 

significantly worse than those with E3/3 in the attention/working memory, executive 

function, and visuospatial domains.  

Conclusion: Our results highlight that the influence of APOE variation on cognition is 

complex, in some cases varying based on diagnosis and possibly underlying disease 

pathology. 
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3.2. Introduction 

Apolipoprotein E (APOE) is located on chromosome 19q13 and encodes a lipoprotein 

component responsible for the transportation of cholesterol, both in plasma and within 

the central nervous system. The formed apo E protein exists as one of three isoforms — 

E3, otherwise considered the wild-type isoform, E2, and E4 — defined by two single 

nucleotide polymorphisms within the gene at amino acid positions 130 and 176 (Zannis 

et al., 1982). Importantly, the APOE E4 allele displays a high-risk association with 

sporadic Alzheimer’s disease (AD), in a dose dependent manner (Ward et al., 2012). 

Previously, we analyzed the contribution of the variant to multiple neurodegenerative 

phenotypes (Dilliott et al., 2019). Consistent with previous studies, we reported an 

association with AD. We also observed an association between E4 and amnestic mild 

cognitive impairment (MCI) presentation; however, we did not observe associations 

between APOE and the other neurodegenerative diseases under study, including 

amyotrophic lateral sclerosis (ALS), cerebrovascular disease (CVD; previously referred 

to as vascular cognitive impairment), frontotemporal dementia (FTD), or Parkinson’s 

disease (PD).  

While the association between APOE and sporadic AD is well established, the exact 

mechanism of pathology is not fully understood. Apo E is an amyloid-β (Aβ) chaperone 

and modulates its metabolism, aggregation, and deposition by directly binding to the Aβ 

peptide (T. C. Dickson, Saunders, & Vickers, 1997; Kanekiyo, Xu, & Bu, 2014), and 

controlling its production by regulating neuronal cholesterol levels (Osenkowski, Ye, 

Wang, Wolfe, & Selkoe, 2008). However, these functions are influenced by the isoform 

of apo E. Apo E4 has been found to promote Aβ oligomer aggregation and prevent its 

clearance, thereby resulting in Aβ accumulation into amyloid plaques (Deane et al., 2008; 

T. Hashimoto et al., 2012; Liu et al., 2017). In addition to its effects on Aβ, apo E4 has 

also been proposed to contribute to neurodegenerative disease pathology by increasing 

tau aggregates in brains with existing Aβ pathology (Farfel, Yu, De Jager, Schneider, & 

Bennett, 2016), as well as tau phosphorylation in mouse models (Brecht et al., 2004; Shi 

et al., 2017), indicating that the isoform may also play a role in the presentation of 

tauopathies. Similarly, in individuals with Lewy body disease, apo E4 was associated 
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with increased α-synuclein pathology, irrespective of tau and Aβ, suggesting a role in 

synucleinopathies as well (D. W. Dickson et al., 2018). In contrast, although apo E2 is 

well known for its reduced binding affinity for the low-density lipoprotein receptor, 

causing hyperlipoproteinemia type III when inherited in the homozygous state (Rall, 

Weisgraber, Innerarity, & Mahley, 1982), the isoform was also associated with increased 

tau pathology in mouse models of FTD (Zhao et al., 2018). 

Although a large amount of effort has been put forth in determining the contribution of 

APOE genotypes to neurodegenerative disease development and pathology, how the 

variants influence features of disease has long been a source of uncertainty (Swartz, 

Black, & St George-Hyslop, 1999), and still remains to be fully elucidated. In particular, 

how APOE may contribute to overlapping features of neurodegeneration — such as 

cognitive impairment ― remains unclear with previous analyses reporting conflicting 

results. Specifically, researchers have reported that the E4 allele is associated with 

reduced performance on measures of verbal and episodic memory, executive function, 

and speed of processing in healthy elderly cohorts (O'Donoghue, Murphy, Zamboni, 

Nobre, & Mackay, 2018); memory and attention in probable AD patients (M. Hashimoto 

et al., 2001; Lehtovirta et al., 1996; Marra et al., 2004; van der Vlies et al., 2007); 

executive function in amnestic MCI patients (Seo et al., 2016); and memory, attention, 

and executive function in patients with PD (Mata et al., 2014). However, other studies 

have reported no difference in cognition between APOE E4 carriers and non-carriers in 

healthy elderly cohorts (O'Donoghue et al., 2018), or AD (Lehtovirta et al., 1996; van der 

Vlies et al., 2007; Wolk, Dickerson, & Alzheimer's Disease Neuroimaging, 2010) and PD 

(Mengel et al., 2016) patients. 

In contrast, the APOE E2 allele — commonly accepted as protective against the 

development of AD (Dilliott et al., 2019) — has been associated with increased risk of 

FTD, specifically tauopathies, such as progressive supranuclear palsy (PSP) and 

corticobasal degeneration (CBD) (Verpillat et al., 2002; Zhao et al., 2018). It is also 

associated with an increased co-occurrence of FTD with a primary diagnosis of ALS 

(ALS-FTSD) (Chio et al., 2016). To date, studies have also presented inconsistent 

findings regarding the relationship between APOE status and ischaemic stroke outcomes 
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(Klages, Fisk, & Rockwood, 2005; Pendlebury et al., 2020; Verghese, Castellano, & 

Holtzman, 2011), including emerging evidence of a potentially complex interaction 

between APOE E4, cerebrovascular burden, and cognition that may offer a new lens 

through which to examine the effect of APOE status in these groups (Mirza et al., 2019). 

The Ontario Neurodegenerative Disease Research Initiative (ONDRI) is a prospective 

longitudinal cohort study with the aim of developing deep phenotypes of 1) AD; 2) ALS; 

3) CVD; 4) FTD; 5) amnestic MCI; and 6) PD, and understanding potential 

cerebrovascular disease contributors to neurodegeneration (Farhan et al., 2017; 

Sunderland et al., 2020). The ONDRI protocol includes a comprehensive 

neuropsychological battery (McLaughlin et al., 2020) and well-established clinical 

diagnostic criteria, affording the opportunity to examine APOE variants cross-sectionally 

in rigorously characterized cohorts using converging information across genetics, 

clinical, and neuropsychological platforms. In doing so, we overcome limitations of other 

studies that report APOE associations using a) a singular disease cohort that are unable to 

identify overlapping features of neurodegeneration and b) cognitive characterizations 

based on a restricted set of domains and sub-clinical standards for determining 

impairment (i.e., use of a single test to label a domain as impaired) that may 

underestimate the nature of and degree of cognitive impairment.  

In this paper, we aimed to identify whether carriers of the APOE E2 or E4 variants 

display differing cognitive function across multiple domains compared to those with the 

wild-type APOE E3/3 genotype across neurodegenerative and cerebrovascular diseases.  

3.3. Methods 

3.3.1. Study participants 

In total, 520 participants previously clinically diagnosed with a neurodegenerative or 

cerebrovascular disease were recruited into ONDRI from 14 tertiary care centers across 

Ontario. Diseases included: 1) AD; 2) ALS; 3) CVD; 4) FTD (including behavioural 

variant FTD [bvFTD], corticobasal syndrome [CBS], PSP, and primary progressive 

aphasia (PPA, including non-fluent and semantic variant); 5) amnestic MCI; and 6) PD. 
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Based on the Montreal Cognitive Assessment (MoCA) administered during an initial 

study screening visit, the CVD and PD cohorts aimed to include a mix of individuals with 

(<26) and without (≥26) cognitive impairment. MoCA scores across disease cohorts are 

outlined in Table 3.1. Ethics approval was obtained from each of the participating sites. 

Descriptions of the inclusion/exclusion criteria of ONDRI participants were previously 

reported (Farhan et al., 2017; Sunderland et al., 2020). All participants provided informed 

written consent.  
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Table 3.1 Distribution of general cognition in all enrolled ONDRI participants, as 

determined by MoCA score. 

Cohort 
Total number of 

participants 

Mean MoCA 

(score ± sd) 
Max. MoCA Min. MoCA 

ONDRI 520ᶧ 24.4 ± 3.4 30 13 

AD 41 20.9 ± 2.8 26 15 

ALS 40ᶧ 25.5 ± 2.8 30 19 

CVD  161 25.2 ± 3.0 30 18 

FTD 53 21.5 ± 3.9 29 13 

MCI 85 23.5 ± 2.7 30 18 

PD 140ᶧᶧ 25.8 ± 2.6 30 18 

ᶧOne participant did not complete MoCA testing.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD ± CI, cerebrovascular 

disease with or without cognitive impairment; FTD, frontotemporal dementia; Max., maximum; MCI, mild 

cognitive impairment; Min., minimum; MoCA, Montreal Cognitive Assessment; ONDRI, Ontario 

neurodegenerative disease research initiative; PD, Parkinson’s disease; sd, standard deviation. 
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3.3.2. APOE genotyping 

Participant blood samples were obtained and genomic DNA was isolated from blood and 

subsequently sequenced using ONDRISeq, a custom-designed next-generation 

sequencing gene panel that targets 80 genes previously associated with the disease 

cohorts in ONDRI (Dilliott et al., 2018; Farhan et al., 2016).  

APOE genotypes were obtained from the ONDRISeq data using a customized Annotate 

Variation (ANNOVAR) script to extract allele calls for the APOE variants 

rs429358(CT):p.Cys130Arg and rs7412(CT):p.Arg176Cys and map to the respective 

genotype for each participant (Dilliott et al., 2019; Dilliott et al., 2018). All APOE 

genotypes were subsequently validated using a TaqMan allelic discrimination assay. 

Genotypes were used to bin participants into three groups based on carrier status: 1) E2 

carriers (E2/2, E3/2); 2) E3/3; and 3) E4 carriers (E4/3, E4/4). All participants harbouring 

an E4/2 genotype were excluded from the study. 

3.3.3. Neuropsychology assessment 

Participants completed a comprehensive neuropsychological battery (McLaughlin et al., 

2020) that included 23 measures from 14 neuropsychological tests across five cognitive 

domains: 1) attention/working memory; 2) executive function; 3) language; 4) verbal 

memory; and 5) visuospatial abilities (Table 3.2). Cognitive domains and associated test 

measures were grouped together based on general neuropsychology conventions (Lezak, 

Howieson, Loring, Hannay, & Fischer, 2004) and consensus agreement among the 

ONDRI Clinical Neuropsychologists. 

Domain scores were created by averaging the standardized residuals of a linear model for 

each raw test score with age, sex, years of education, and, where necessary, assessment 

version as main effects, across variables within a domain. All timed scores were 

multiplied by -1 such that faster response times (higher scores) reflected better 

performance. 
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Prior to creating domain scores, missing neuropsychology data were imputed using a 

regularized iterative principal component analysis (PCA) process from the missMDA 

package in R (Josse & Husson, 2016). Briefly, using the standardized residuals starting 

values were imputed and a PCA was performed. From the PCA, a set of fitted values was 

derived, and a new PCA was performed using the fitted values as updated imputed 

values. The number of components retained for calculating the fitted values was 

determined based on the minimum mean square predicted error of the observed values. 

The process was repeated until the overall change in fitted values was negligible. 

Starting values were the observed variable mean (adjusted for age, sex, and years of 

education of the participant) for values missing for reasons unrelated to the participant, 

and the extreme score when the participant was unable to complete the task because of 

difficulty understanding the task instructions or performing the task as intended.  

Both the APOE and Neuropsychology datasets underwent rigorous quality assurance and 

quality control processes to ensure accuracy (Dilliott et al., 2018; McLaughlin et al., 

2020; Sunderland et al., 2019). 
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Table 3.2 Binning strategy of the neuropsychological tests into cognitive domains. 

Cognitive Domain 
Attention and Working 

Memory 
Executive Function Language Verbal Memory 

Visuospatial 

Awareness 

Neuropsychological 

Tests 

Symbol Digit Modality Test 

(coding) 

Trail Making Test – Part A 

(time) 

WAIS-III: Digit Span 

Forward (longest span) 

WAIS-III: Digit Span 

Backward (longest span) 

WAIS-III: Digit Span Total 

DKEFS: Color naming 

(time) 

DKEFS: Word reading 

(time) 

Trail Making Test – Part 

B (time) 

DKEFS: Interference 

(time) 

DKEFS: Inhibition/ 

Switching (time) 

DKEFS: Letter Fluency 

DKEFS: Category 

Fluency 

WASI-II: Matrix 

Boston Naming – 15 

Item (pro-rated) 

TAWF: Verb Naming 

BDAE: Semantic 

Probe  

WASI-II: Vocabulary 

RAVLT: Immediate 

RAVLT: Long-delay 

RAVLT: 

Recognition 

Discrimination 

 

Judgement of Line 

Orientation 

VOSP: Incomplete 

Letters 

BVMT-R: Copy Trial 

(raw) 

Abbreviations: BDAE, Boston Diagnostic Aphasia Examination; BVMT-R, Brief Visuospatial Memory Test-Revised; DKEFS, Delis-Kaplan Executive Function 

System; RAVLT, Rey Auditory Verbal Learning Test; VOSP, Visual Object and Space Perception Battery; WAIS-III, Wechsler Adult Intelligence Scale – Third 

Edition; WASI-II, Wechsler Abbreviated Scale Intelligence – Second Edition. 
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3.3.4. Statistical analysis 

A multivariate multiple regression model was used to estimate effects across the five 

cognitive domains as a function of APOE carrier status and disease cohort, while 

accounting for interactions between the two predictor variables (Johnson & Wichern, 

2001). Wilks’ lambda assessed predictor contributions of the five parallel equations, 

where significance indicated that the predictor contribution was non-zero for at least one 

of the five cognitive domains. To determine the extent to which domain(s) a predictor 

contributed, the individual coefficients were examined. 

Participant APOE carrier statuses were transformed into dummy variables with E3/3 as 

the reference category. Participant disease cohorts were transformed with weighted-effect 

coding, using the wec R package (v0.4-1) (Nieuwenhuis et al., 2017). With weighted-

effect coding, the point of reference is the sample mean of all participants, regardless of 

cohort. While the parameter for one cohort (in this case, CVD was chosen) must be 

excluded from the model to avoid statistical redundancy, the coefficient estimate can still 

be calculated (te Grotenhuis et al., 2017a, 2017b). Significance for the multivariate 

multiple regression model was measured at an alpha-level of 5.0e-2, although non-

significant trends were reported in the results at p < 7.5e-2. 

Statistical analyses were performed using the R statistical software 3.6.0 (R Core Team, 

2014) in R Studio 1.1.463 and data visualization was performed using the ggplot2 R 

package (v3.3.s) (Wickham, 2009). 

3.4. Results 

3.4.1. Study participants 

In total, 519 of the 520 participants enrolled in ONDRI were included in the genetic 

analysis, as one participant did not complete the genomics assessment. Of the 519, six 

with the APOE E4/2 genotype were excluded. Of the 513 participants remaining, we 

identified that 292 (56.9%) participants harboured the E3/3 genotype, 59 (11.5%) 
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participants were APOE E2 carriers, and 162 (31.6%) participants were APOE E4 carriers 

(Table 3.3). Neuropsychology data were imputed using a regularized iterative PCA for 

176 missing values (1.5% of all cells) across 100 participants (19.5%) that were 

distributed amongst the six cohorts.  
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Table 3.3 Demographics and APOE carrier status of the ONDRI participants included in the APOE cognitive impairment 

analysis. 

Cohort 
Participants included 

in APOE analysis 

Mean age 

(years ± sd) 
Male:Female APOE E3/3 

APOE E2 

carriers 

APOE E4 

carriers 

ONDRI 513 68.6 ± 7.6 341:172 292 (56.9%) 59 (11.5%) 162 (31.6%) 

AD 40 71.9 ± 8.1 23:17 14 (35.0%) 0 26 (65.0%) 

ALS 40 62.0 ± 8.7 24:16 21 (52.5%) 6 (15.0%) 13 (32.5%) 

CVD 159 69.2 ± 7.4 109:50 100 (62.9%) 21 (13.2%) 38 (23.9%) 

FTD 53 67.8 ± 7.1 34:19 26 (49.1%) 7 (13.2%) 20 (37.7%) 

 bvFTD 21 65.9 ± 8.8 14:7 11 0 10 

 nfPPA 8 68.4 ± 5.9 5:3 4 1 3 

 PSP 15 69.7 ± 6.2 10:6 6 6 4 

MCI 85 70.6 ± 8.3 45:40 45 (52.9%) 5 (5.9 %) 35 (41.2%) 

PD 136 67.8 ± 6.4 106:30 86 (63.2%) 20 (14.7%) 30 (22.1%) 
APOE E2 carriers are those harbouring the E3/2 or E2/2 genotypes, whereas APOE E4 carriers are those harbouring the E4/4 or E4/3 genotypes. Individuals 

harbouring the APOE E4/2 genotype were excluded from the cognitive analysis. The patient diagnosed with bvFTD and PSP was included in the PSP cohort. 

Demographics and APOE carrier status of the CBS and svPPA cohorts are not displayed due to the small sample sizes of the groups (n ≤ 5). 

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; APOE, Apolipoprotein E gene; bvFTD, behavioural variant frontotemporal 

dementia; CBS, corticobasal syndrome; CVD ± CI, cerebrovascular disease with or without cognitive impairment; FTD, frontotemporal dementia; MCI, mild 

cognitive impairment; nfPPA, non-fluent primary progressive aphasia; ONDRI, Ontario neurodegenerative disease research initiative; PD, Parkinson’s disease; 

PSP, progressive supranuclear palsy; sd, standard deviation; svPPA, semantic variant primary progressive aphasia. 
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3.4.2. Influence of APOE across all neurodegenerative diseases 

All coefficient estimates and standard errors obtained by the multivariate multiple 

regression model are summarized in Table 3.4. A Wilks’ lambda test on the multivariate 

multiple regression analysis confirmed contribution to the model from APOE carrier 

status (Λ = 0.937, p = 3.58e-4), disease cohort (Λ = 0.705, p < 2.20e-16), and their 

interaction (Λ = 0.874, p = 1.81e-2).  

Figure 3.1 shows the magnitude of difference in cognition of participants carrying E4 or 

E2 in relation to E3 homozygotes across ONDRI as a whole and all disease cohorts 

individually for each cognitive domain. To better illustrate these changes, disease effects 

were removed. 

Combining all participants in a single group revealed that APOE E4 carriers had 

significantly lower performance in verbal memory (p = 9.22e-3; Figure 3.1I) and 

visuospatial abilities (p = 2.20e-2; Figure 3.1J) compared to those with the APOE E3/3 

genotype. In contrast, APOE E2 carriers displayed similar cognitive performance across 

domains to those with the APOE E3/3 genotype.  

Including an interaction term in the model also allowed us to compare cognitive 

performance of the two APOE variant carrier groups (E4 and E2) to the APOE E3/3 

carriers in each individual disease cohort to identify differences between APOE carrier 

status and disease group. 
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Table 3.4 Coefficient estimates (SE) of z-score transformed cognitive domain scores for participants in each neurodegenerative 

disease cohort, and in the total cohort, based on APOE carrier status obtained using multivariate multiple regression. 

Cognitive Domain 
Attention and 

Working Memory 

Executive 

Function 
Language Verbal Memory 

Visuospatial 

Abilities 

Intercept 0.013 (0.040) -0.012 (0.044) -0.020 (0.050) 0.057 (0.047)* 0.056 (0.043) 

APOE E2 -0.041 (0.097) -0.0801 (0.107) 0.081 (0.121) 0.014 (0.114) -0.147 (0.104) 

APOE E4 -0.036 (0.070) -0.029 (0.077) -0.024 (0.087) -0.215 (0.082)*** -0.173 (0.0752)* 

AD -0.222 (0.170) -0.340 (0.188) -0.730 (0.211)*** -0.475 (0.199)** -0.070 (0.182) 

AD x APOE E2 NA NA NA NA NA 

AD x APOE E4 0.056 (0.196) 0.049 (0.217) 0.384 (0.245) -0.419 (0.230) -0.158 (0.211) 

ALS 0.076 (0.140) 0.181 (0.155) -0.004 (0.175) 0.062 (0.165) 0.080 (0.151) 

ALS x APOE E2 0.482 (0.294) 0.623 (0.325) 0.447 (0.366) 0.054 (0.345) 0.279 (0.315) 

ALS x APOE E4 -0.116 (0.228) -0.199 (0.252) 0.058 (0.284) 0.219 (0.238) 0.166 (0.245) 

FTD -0.642 (0.124)*** -0.767 (0.137)*** -0.854 (0.154)*** -0.649 (0.145)*** -0.213 (0.133) 

FTD x APOE E2 -0.827 (0.268)** -0.605 (0.296)* 0.779 (0.334)* 0.260 (0.314) -1.051 (0.287)*** 

FTD x APOE E4 -0.100 (0.187) -0.076 (0.207) 0.190 (0.233) 0.486 (0.219)* 0.145 (0.201) 

MCI 0.050 (0.091) 0.005 (0.101) 0.135 (0.113) -0.190 (0.107) -0.085 (0.098) 

MCI x APOE E2 0.328 (0.304) 0.175 (0.336) 0.036 (0.379) 0.574 (0.357) 0.385 (0.327) 

MCI x APOE E4 0.052 (0.134) 0.132 (0.148) -0.101 (0.167) -0.093 (0.157) 0.081 (0.144) 

PD 0.230 (0.064) 0.238 (0.070)*** 0.184 (0.079)* 0.254 (0.075)*** 0.086 (0.068) 

PD x APOE E2 -0.062 (0.135) -0.238 (0.150) -0.224 (0.169) -0.265 (0.159) 0.033 (0.145) 

PD x APOE E4 -0.021 (0.133) -0.080 (0.147) -0.155 (0.166) 0.113 (0.156) -0.227 (0.143) 

CVD +/- CI 0.027 (0.057) 0.090 (0.064) 0.239 (0.072) 0.205 (0.067) 0.040 (0.062) 

CVD +/- CI x APOE E2 0.119 (0.130) 0.209 (0.143) -0.183 (0.162) 0.014 (0.152) 0.148 (0.139) 

CVD +/- CI x APOE E4 0.023 (0.117) 0.017 (0.129) -0.166 (0.146) -0.048 (0.137) 0.080 (0.125) 
APOE carrier statuses were transformed into dummy variables with E3/3 as the reference. Participant disease cohorts were transformed using weighted-effect 

coding using the CVD ± CI cohort as the reference. The model was rerun using the ALS cohort as the reference in the weighted-effect coding to obtain 

coefficient estimates for the CVD ± CI cohort, as displayed below the line. *p-value < 0.05; **p-value < 0.005; ***p-value < 0.0005.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; APOE, Apolipoprotein E gene; CVD ± CI, cerebrovascular disease with or without 

cognitive impairment; FTD, frontotemporal dementia; MCI mild cognitive impairment; PD, Parkinson’s disease; SE, standard error. 
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3.4.3. Influence of APOE in the individual disease cohorts 

Considering individual disease cohorts, direction of association based on the APOE E4 

allele was not uniform across disease cohorts. E4 carrier status was significantly 

associated with better verbal memory performance in the FTD cohort relative to those 

harbouring the E3/3 genotype (p = 2.72e-2; Figure 3.1I). In contrast, in the AD cohort 

poorer verbal memory performance by APOE E4 carriers approached significance (p = 

6.97e-2; Figure 3.1I). No other differences of interest were observed between APOE E4 

and E3/3 across disease cohorts. 

The only significant interaction effect of APOE E2 was observed in the FTD cohort. FTD 

patients harbouring the E2 allele performed significantly better in the language domain (p 

= 2.00e-2; Figure 3.1C), yet significantly worse in the attention/working memory (p = 

2.12e-3; Figure 3.1A), executive function (p = 4.17e-2; Figure 3.1B), and visuospatial 

domains (p = 2.37e-4; Figure 1E), compared to patients harbouring the E3/3 genotype. In 

the ALS cohort, better executive function performance by APOE E2 carriers approached 

significance (p = 5.58e-2; Figure 3.1B). 
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Figure 3.1 Estimates based APOE variant carrier status in the neurodegenerative 

disease cohorts encompassed by ONDRI with respect to performance on 

neuropsychology tests binned into cognitive domains. 

From the neuropsychology core dataset, 23 raw scores were binned into five cognitive 

domains, raw scores were standardized into z-scores, and mean z-scores were derived for 

each cognitive domain per participant. Multivariate multiple regression analysis was used 

to model performance across the cognitive domains as a function of APOE carrier status, 

disease cohort, and interactions between the predictor variables. Estimates for differences 

between groups were calculated based on the intercept, coefficient estimates from APOE 

carrier status, and coefficient estimates from the APOE carrier status and disease cohort 

interaction effect. *p-value < 0.05; **p-value < 0.005; ***p-value < 0.0005.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; APOE, 

Apolipoprotein E gene; CVD ± CI, cerebrovascular disease with or without cognitive 

impairment; E2, E2 carriers; E3, E3/3 carriers; E4, E4 carriers; FTD, frontotemporal 

dementia; MCI mild cognitive impairment; ONDRI, Ontario Neurodegenerative Disease 

Research Initiative; PD, Parkinson’s disease. 
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3.5. Discussion 

Here, we investigated the influence of the APOE E4 and E2 alleles on cognitive 

functioning in multiple cognitive domains across neurodegenerative and cerebrovascular 

disease cohorts.  

Generally, carriers of the E4 allele had an estimated significantly lower performance in 

the verbal memory and visuospatial domains than those with E3/3. Multiple studies have 

reported associations between the APOE E4 allele and poor memory performance, 

including adults who were considered cognitively normal for their age (Baxter, Caselli, 

Johnson, Reiman, & Osborne, 2003; Caselli et al., 2009; Caselli et al., 2007). Combined 

with the results that we observed across all participants regardless of cohort in the verbal 

memory domain, this suggests that APOE E4 may influence memory performance 

regardless of disease status, independent of age and sex. Two hypotheses have been put 

forth in the literature to account for these findings (O'Donoghue et al., 2018). The first 

suggests that APOE E4 carriers are in a prodromal stage of AD, with the Apo E4 isoform 

increasing the deposition of early-AD pathology, such as Aβ and tau, thereby indirectly 

influencing memory function. The second hypothesis suggests that the Apo E4 isoform 

directly influences cognition, in a mechanism unrelated to AD pathology – possibly via a 

role of Apo E in synaptic plasticity and neurotoxicity. Perhaps both mechanisms 

contribute, but this must be further elucidated (O'Donoghue et al., 2018). Our data 

showed an intriguing exception in the FTD cohort, where participants with E4 performed 

better than those with the E3/3 genotype; a reverse effect than what was observed in the 

E4 group effect. Yet, FTD patients carrying an E4 allele still performed below the group 

average for APOE E4 carriers across all ONDRI samples in the verbal memory domain 

(Table 3.4). In addition, while we observed poorer performance in E4 carriers in 

comparison to E3/3 AD patients, the interaction term did not reach statistical 

significance, as we expected it to (M. Hashimoto et al., 2001; Lehtovirta et al., 1996; 

Marra et al., 2004; van der Vlies et al., 2007). Due to the high proportion of E4 carriers in 

the AD cohort (65%) and the large influence from an AD diagnosis and E4 individually 

(β = -0.475, p = 1.73e-2 and β = -0.215, p = 9.22e-3, respectively), there may not have 
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been enough power to achieve statistical significance despite the relatively large 

interaction estimate (β = -0.419). 

In the FTD cohort, carriers of the APOE E2 allele performed significantly worse in 

multiple cognitive domains, including attention/working memory, executive function, 

and visuospatial abilities. Zhao et al. identified an association between APOE E2 and 

increased neurofibrillary tau pathology (Zhao et al., 2018), which is a hallmark of certain 

subtypes of FTD — including PSP, CBD, and FTD with tau pathology ― and is a risk 

factor for increased cognitive impairment (Koga et al., 2017). Further, the APOE E2/2 

genotype was previously directly associated with increased risk of PSP and CBD (Zhao 

et al., 2018) and the E2 allele with increased risk of ALS-FTSD (Chio et al., 2016). 

Within ONDRI, of the seven FTD patients carrying an E2 allele, five were diagnosed 

with PSP (the Richardson phenotype, PSP-RS) and one was diagnosed with both bvFTD 

and PSP (Table 3.3). Individuals with PSP often present with a high degree of cognitive 

impairment, particularly in executive function and speed of processing, verbal fluency, 

and visuospatial abilities (Bak, Crawford, Hearn, Mathuranath, & Hodges, 2005). 

Therefore, it is possible that we observed an increased presence of the PSP subtype ― 

and cognitive impairment ― as a result of increased neurofibrillary tau pathology in 

individuals carrying APOE E2. Unfortunately, neuropathology data are currently 

unavailable for ONDRI patients to assess tau pathology; however, the PSP-RS phenotype 

is highly predictive of underlying tau pathology (Kovacs et al., 2020). In contrast, E2 

carriers in the FTD cohort performed significantly better than patients with APOE E3/3 

on memory measures. No other disease cohorts displayed significant interaction effects 

on cognitive function between the E2 allele and disease diagnosis; however, the effects 

could not be assessed in the AD cohort due to a lack of E2 carriers. This observation was 

expected as the E2 allele is commonly accepted as protective against AD (Dilliott et al., 

2019). 

We recognize this study’s limitations, including the relatively modest sample sizes of the 

individual disease cohorts, which limited the ability to further analyze the subtypes of 

heterogenous diseases, as was observed in the FTD cohort. Despite this, a goal of the 

analysis was to evaluate across all neurodegenerative diagnoses and account for 
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overlapping disease features. The cross-cohort analysis was made possible by ONDRI’s 

rigorous and consistent enrollment criteria and cross-platform assessment. It is important 

for this study to be replicated with larger sample sizes, particularly of FTD patients. 

Limitations were also introduced by not accounting for progression of the ONDRI 

patient’s cognitive impairment over time and the lack of access to post-mortem 

neuropathology to confirm diagnoses, although these analyses may be revisited in the 

future if data are available. Finally, we utilized a theory-based framework derived from 

published guidelines to reduce our neuropsychological measures into five cognitive 

domains. This theory-driven data reduction approach has inherent limitations, such that 

some tests may not contribute solely to one domain and there is debate as to how tests 

should be binned; however, the use of a comprehensive assessment was prioritized as 

previous analyses on APOE have mostly utilized only a limited number of tests 

accounting for fewer cognitive domains per investigation or introducing single test 

biases. 

3.6. Conclusion 

In summary, our study allowed for simultaneous analysis of the influence of APOE on 

multiple cognitive domains across various neurodegenerative diseases and CVD with 

rigorous data collection and a comprehensive neuropsychological assessment protocol. 

Considering all neurodegenerative and cerebrovascular disease patients as a group, we 

identified an association between the APOE E4 allele and worse performance on 

measures of verbal memory and visuospatial processing. Further, we identified a 

potential association between the APOE E2 allele and poor performance on measures of 

attention/working memory, executive function, and visuospatial abilities in patients with 

FTD, which may add to the previously observed associations between the variant and 

PSP and tau pathology. Future work incorporating the longitudinal ONDRI 

neuropsychology data will be imperative for understanding how APOE influences disease 

progression. Additionally, including other biomarkers obtained in ONDRI, such as 

neuroimaging data, may further elucidate the mechanisms by which APOE influences 

cognition across the disease cohorts. Gaining a greater understanding of the contributions 

of genetic risk factors, such as APOE variation to features of neurodegenerative disease, 
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may present the opportunity for genetic testing to become a progression prediction tool 

for these typically heterogenous phenotypes.  
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Chapter 4 – Contribution of rare variant associations to 
neurodegenerative disease presentation in the Ontario 
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4.1. Abstract 

Background/Objective: Genetic factors contribute to neurodegenerative disease, with 

high heritability estimates across diagnoses; however, a large portion of this genetic 

influence remains poorly understood. Many previous studies have attempted to fill the 

gaps by performing linkage analyses and association studies in individual disease cohorts 

but have failed to consider the clinical and pathological overlap observed across 

neurodegenerative diseases and the potential for genetic overlap between the phenotypes. 

Here, we leveraged rare variant association analyses (RVAA) to elucidate the genetic 

overlap among multiple neurodegenerative diagnoses, including Alzheimer’s disease, 

amyotrophic lateral sclerosis, frontotemporal dementia (FTD), mild cognitive 

impairment, and Parkinson’s disease (PD), as well as cerebrovascular disease, using the 

data generated with a custom-designed neurodegenerative disease gene panel in the 

Ontario Neurodegenerative Disease Research Initiative (ONDRI). 

Methods and Results: As expected, only ~3% of ONDRI participants harboured a 

monogenic variant likely driving their disease presentation. Yet, when genes were binned 

based on previous disease associations, we observed an enrichment of putative loss-of-

function variants in PD genes across all ONDRI cohorts. Further, individual gene-based 

RVAA identified significant enrichment of rare, non-synonymous variants in PARK2 in 

the FTD cohort, and in NOTCH3 in the PD cohort. 

Conclusion: The results indicate that there may be greater heterogeneity in the genetic 

factors contributing to neurodegeneration than previously appreciated. Although the 

mechanisms by which these genes contribute to disease presentation must be further 

explored, we hypothesize they may be a result of rare variants of moderate phenotypic 

effect contributing to overlapping pathology and clinical features observed across 

neurodegenerative diagnoses. 
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4.2. Introduction 

Neurodegenerative diseases are characterized by neuronal degeneration resulting in 

cognitive decline and/or motor dysfunction. Mainly manifesting in late adulthood, 

neurodegenerative diseases are often tightly correlated with the deposition of protein 

aggregates, such as amyloid-β and neurofibrillary tau tangles in Alzheimer’s disease 

(AD) and α-synuclein in Parkinson’s disease (PD) (Kovacs, Botond, & Budka, 2010). 

Although diagnoses are typically based on clinical presentation, definitive diagnosis 

requires post-mortem pathologic analysis to identify the pathogenic protein aggregates in 

situ. Further, neurodegenerative disease presentation is highly heterogeneous, and it is 

increasingly accepted that diagnoses exist along a spectrum, with a greater amount of 

mixed pathology — and overlapping clinical features — than previously thought (Kovacs 

et al., 2013). 

Genetic factors are known to increase risk of neurodegeneration and influence expression 

of disease features (Bocchetta et al., 2016); however, only ~10% of neurodegenerative 

disease patients are considered to have familial forms of disease, a fraction of which are 

caused by known rare, highly penetrant genetic variants. Similarly, while genome-wide 

association studies (GWASs) have identified many common GWAS-significant single 

nucleotide polymorphisms (SNPs) in neurodegenerative disease cohorts and thus have 

advanced the field considerably (Lambert et al., 2013; Nalls et al., 2014; Simon-Sanchez 

et al., 2009), such variants account for only a small amount of heritable risk (Keller et al., 

2014; Ridge, Mukherjee, Crane, & Kauwe, 2013; Singleton & Hardy, 2016). Even after 

considering the collective effects of both Mendelian large-effect rare mutations and 

common disease-associated SNPs, a considerable portion of heritability across 

neurodegenerative diseases remains unexplained (Ciani et al., 2019; Ridge et al., 2013; 

Van Damme, 2018). 

Recent studies have reported enrichment of rare variants in genes typically considered 

only in early-onset, familial neurodegenerative disease cases in cohorts with sporadic 

forms of disease, likely constituting a moderate effect on disease risk. For example, rare 

variants have been identified in patients with late-onset sporadic AD in amyloid precursor 

protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) (Cruchaga et al., 2012); 
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in patients with both late- and early-onset sporadic PD in α-synuclein (SNCA), parkin 

RBR E3 ubiquitinated protein ligase (PARK2), leucine-rich repeat kinase 2 (LRRK2), and 

VPS35 retromer complex component (VPS35) (Lesage & Brice, 2012; Robak et al., 

2017); and in patients with both familial and sporadic ALS in superoxide dismutase 

(SOD1), FUS RNA binding protein (FUS), and DnaJ heat shock protein family (Hsp40) 

member C7 (DNAJC7) (S. M. K. Farhan et al., 2019). In addition, the explanation for 

heterogeneity of phenotypic expression of neurodegeneration among individuals with 

identical rare variants is unclear, as is the potential influence of genetic factors on the 

overlapping clinical and pathological features of different neurodegenerative diagnoses. 

Such gaps in knowledge reinforce how much remains to be learned regarding genetic risk 

of neurodegeneration, even with respect to known neurodegenerative disease genes. 

While rare variants likely account for at least a portion of the missing heritability of 

neurodegenerative diseases, as well as the phenotypic heterogeneity between diseases, 

they remain difficult to detect. Rare variants with large effect sizes are individually very 

uncommon and require large samples sizes to obtain the statistical power necessary for 

detection — even some of the largest GWASs, with sample sizes >100,000, are still 

unable to detect rare disease-associated variants. However, by binning variants into gene-

based groupings of their original disease associations — or by analyzing each gene 

individually — rare variant association analyses (RVAAs) may identify gene-disease 

associations and explain additional disease risk even with modest sample sizes (Lee, 

Abecasis, Boehnke, & Lin, 2014). 

Here, we utilize targeted next-generation sequencing (NGS) data coupled with a RVAA-

based binning strategy to identify the contribution of rare genetic variants in participants 

from the Ontario Neurodegenerative Disease Research Initiative (ONDRI) to multiple 

neurodegenerative disease phenotypes, including: 1) AD; 2) amnestic MCI; 3) ALS; 4) 

frontotemporal dementia (FTD); and 5) PD, as well as cerebrovascular disease (CVD) (S. 

M. K. Farhan et al., 2017; Sunderland et al., 2020). By binning variants into disease-

association-based gene groupings and individual gene-based groupings, and comparing 

variant enrichment to that of a cognitively normal, elderly control cohort, we seek to 

identify whether rare variants significantly contribute to disease presentation in ONDRI 
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participants. Furthermore, by studying six phenotypes concurrently, we can determine 

whether associations exist across disease phenotypes, and whether these might account 

for the overlapping features often observed across neurodegenerative diseases. 

4.3. Methods 

4.3.1. Study participants 

In total, 520 individuals passed ONDRI preliminary screening (S. M. K. Farhan et al., 

2017). Of those, 519 participants had a blood sample collected, from which genomic 

DNA was extracted. Study ethics approval was obtained from the Research Ethics Boards 

at Baycrest Centre for Geriatric Care (Toronto, Ontario, Canada); Centre for Addiction 

and Mental Health (Toronto, Ontario, Canada); Elizabeth Bruyère Hospital (Ottawa, 

Ontario, Canada); Hamilton General Hospital (Hamilton, Ontario, Canada); McMaster 

(Hamilton, Ontario, Canada); London Health Sciences Centre (London, Ontario, 

Canada); Parkwood Hospital (London, Ontario, Canada); St Michael's Hospital (Toronto, 

Ontario, Canada); Sunnybrook Health Sciences Centre (Toronto, Ontario, Canada); The 

Ottawa Hospital (Ottawa, Ontario, Canada); and University Health Network-Toronto 

Western Hospital (Toronto, Ontario, Canada). All participants provided written, informed 

consent in accordance with the Research Ethics Boards and regulatory requirements. 

DNA was also obtained from 189 cognitively normal control genomic DNA samples 

from the GenADA study (Li et al., 2008). 

4.3.2. DNA preparation and sequencing 

All DNA samples were sequenced using the targeted NGS panel, ONDRISeq, on the 

Illumina MiSeq Personal Genome Sequencer (Illumina, San Diego, CA, United States) 

and raw sequencing data were processed with a custom bioinformatics workflow. Briefly, 

FASTQ files were imported into CLC Bio Genomics Workbench v10 (CLC Bio, Aarhus, 

Denmark) to perform pre-processing and variant annotation, which produced a variant 

calling format (VCF) file and binary alignment map (BAM) file for each participant. 

Detailed methodology outlining DNA isolation, DNA sequencing, and sequencing 

analysis has been previously described (Dilliott et al., 2018). 
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4.3.3. Identification of variants likely contributing to Mendelian 
disease 

ONDRISeq VCF files of the ONDRI cases were imported into VarSeq® (Golden Helix, 

Bozeman, MT, United States) and variants were annotated with sequence ontologies. 

Minor allele frequencies (MAFs) were obtained from the Genome Aggregation Database 

(gnomAD v.2.0.1v3 non-neuro) (Karczewski et al., 2020). Rare (MAF < 0.01), 

nonsynonymous variants were prioritized. Further assessment of variants was performed 

to identify those in genes known to contribute to Mendelian forms of the patient’s disease 

of diagnosis and those classified as pathogenic or likely pathogenic in ClinVar (Landrum 

et al., 2014), Online Mendelian Inheritance in Man (OMIM) ("Online Mendelian 

Inheritance in Man, OMIM®,"), and/or the Alzforum Mutation Database ("Alzforum 

Mutations,"). All identified variants were considered those likely to be contributing to 

Mendelian forms of disease. 

All samples were genotyped for chromosome 9 open reading frame 72 (C9orf72) using 

both amplicon length analysis and repeat-primed polymerase chain reaction (PCR), as 

previously described (Xi et al., 2012). Harbouring > 30 repeats is a commonly accepted 

genetic cause of ALS and FTD (Xi et al., 2015; Xi et al., 2012), and therefore was the 

cutoff used to determine those with pathogenic repeat expansions. 

4.3.4. Ancestry matching and estimation 

The ONDRISeq VCF files of all cases and controls were merged and filtered to include 

only SNPs within exonic and splicing regions with a MAF > 0.005 in the Genome 

Aggregation Database (gnomAD v.2.0.1v3) using VarSeq®. Variants that were located 

on the sex chromosomes or within the MAPT gene were excluded, due to potential 

influence from the cohort’s sex distribution and a common haplotype variation found 

across the gene, respectively. The filtered, merged VCF was processed with a bash-based 

tool that contains a collection of scripts necessary to run region-based RVAA, 

“Exautomate” (Davis, Dron, Robinson, Hegele, & Lizotte, 2019), to produce PLINK 

compatible MAP and PED files. SNP & Variation Suite v8.8.3 (SVS; Golden Helix Inc.) 
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was used to perform linkage disequilibrium (LD) pruning (threshold = 0.5) and a 

principal component analysis (PCA) was performed to identify the genetic ancestry. 

In accordance with standard quality control in genomic studies, a logistic regression 

analysis was performed within R on the generated principal components to identify 

individuals with divergent ancestries to minimize false discoveries due to population 

stratification. A multidimensional outlier analysis (multiplier = 1.5) was performed 

within SVS using the significant components to identify outlier samples based on 

ancestral variation and batch effects, which were not included in the RVAAs described 

below. 

To predict the genomic ancestry of the samples, we used the whole genome sequences 

from the 1000 Genomes Project (1000G; N = 2693), which are binned into ancestral 

groups, including: African, Admixed American, East Asian, European, and South Asian 

(Auton et al., 2015). The 1000G VCFs were merged and filtered to include only SNPs 

within the exonic and splicing regions captured by the ONDRISeq panel with an MAF > 

0.005 in gnomAD. The resulting filtered merged VCF was processed using “Exautomate” 

to produce MAP and PED files and a PCA was performed using the SNPRelate 

Bioconductor R package (v1.22.0; LD pruning threshold = 0.5) (Zheng, Gogarten, 

Laurie, & Weir, 2015). The SNP loadings from this PCA and the PED file of the ONDRI 

cases and controls were used to project the ONDRI cases and controls onto the 

components of the 1000G PCA (Zheng et al., 2012). 

4.3.5. Rare variant association analysis 

The VCF files of all ancestry matched ONDRI cases and controls were imported into the 

variant annotation software, VarSeq®. Variants were annotated with sequence 

ontologies, MAFs from gnomAD, and in silico prediction scores from Combined 

Annotation Dependent Depletion (CADD; v1.3) (Kircher et al., 2014), Sorting Intolerant 

from Tolerant (SIFT) (Kumar, Henikoff, & Ng, 2009), and Polymorphism Phenotyping 

v2 (PolyPhen-2) (Adzhubei et al., 2010). Variants were prioritized and variants with a 

sequence ontology of nonsense, stop-loss, splicing acceptor, splicing donor, frameshift, 

or missense, and a MAF < 0.01 in the Exome Aggregation Consortium (ExAC v1.0) were 
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included in subsequent analyses. Both heterozygous and homozygous variants were 

retained for RVAAs. Variants were binned into three groups: 1) putative loss-of-function 

variants (LOF; including nonsense, stop-loss, frameshift, splice acceptor, and splice 

donor sequence ontologies); 2) missense variants; and 3) possibly deleterious missense 

variants (including missense variants with either a CADD Phred ≥ 20 or a likely 

damaging/damaging prediction from both SIFT and PolyPhen-2). Carriers of these 

variants were considered ‘variant positive’ and ‘variant negative’, respectively. 

Variants were also binned into groups based on the previous disease association of the 

gene in which the variant was located. In total, the 80 genes encompassed by the 

ONDRISeq panel were binned into four disease-association groups: 1) AD/MCI-

associated genes; 2) ALS/FTD-associated genes; 3) PD-associated genes; and 4) CVD-

associated genes based on the most well-established previous disease association, as 

determined by Farhan et al. (Figure 4.1) (S.M.K. Farhan et al., 2016). 

RVAAs were performed using multinomial logistic regression models. A model was 

produced for each variant subgroup (putative LOF, missense, and possibly deleterious 

missense) to compare the number of variant-positive individuals in each of the ONDRI 

disease cohorts to the cognitively normal control cohort, while correcting for age and sex. 

In addition, participants were weighted to better reflect disease prevalence in the general 

elderly population, accounting for potential inference bias as a result of the non-

probability sampling mechanism ("2020 Alzheimer's disease facts and figures," 2020; 

"Chapter 3: Mapping Connections: An understanding of neurological conditions in 

Canada – Scope (prevalence and incidence)," 2014; Hogan et al., 2016; Mehta et al., 

2018; Ng et al., 2015; Roberts & Knopman, 2013). The brglm2 R package (v0.6.2) 

(Kosmidis, 2020) was used to fit the regression models and apply a mean bias reduction 

(Kosmidis, Kenne Pagui, & Sartori, 2020) that accounts for the low variant positive 

counts. 

A gene-based RVAA, the optimal unified Sequence Kernel Association Test (SKAT-O), 

was also performed using the script package “Exautomate” (Davis et al., 2019). This 

method identified specific genes covered by ONDRISeq with an increased frequency of 
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nonsynonymous, rare variants (MAF < 0.01, ExAC) in the disease cohorts compared to 

controls, and in the disease cohorts compared to each other. To maximize sample sizes, 

the AD and amnestic MCI cohorts were combined for SKAT-O analyses. As SKAT-O 

was not able to account for multi-nucleotide variants, follow-up analyses were performed 

on SKAT-O results with a detected signal using Firth logistic regression, adjusting for 

age and sex, using the brglm2 R package. Genes that had total rare variant counts 

between the two cohorts of <5, or with zero rare variants in one of the cohorts were 

excluded from analyses. 

Analyses were performed using R statistical software 3.6.0 (Team, 2014) in R Studio 

1.1.463 and data visualization was performed using the ggplot2 R package (v3.3.s) 

(Wickham, 2009). Significance for all regression analyses was measured at an alpha-level 

of p < 0.050, although regression results with p < 0.075 were still reported. 
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Figure 4.1 Binning of genes included on the ONDRISeq next-generation sequencing 

panel based on their previous disease associations for use in the rare variant 

association analyses. 

Genes were binned based on the most well-established previous disease association, as 

determined by Farhan et al. (S.M.K. Farhan et al., 2016). 
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4.4. Results 

4.4.1. Variants likely contributing to Mendelian disease 

In the total cohort of 519 ONDRI cases (Table 4.1), seven participants harboured non-

synonymous rare variants likely contributing to a Mendelian form of disease with each 

harbouring a unique variant of interest (Table 4.2), including one participant with AD, 

two participants with CVD, one participant with MCI, and three participants with PD, 

each harbouring a unique variant of interest (Table 4.3). Further, seven participants 

carried pathogenic repeat expansions within C9orf72 (Table 4.2), including four 

participants with ALS, two participants with FTD, and one participant with AD. Overall, 

monogenic variants were observed at a frequency of ~3% both before and after ancestral 

outlier analysis (0.027 [0.015–0.045] and 0.030 [0.016–0.052] in the total ONDRI cohort 

and ancestry matched cohort, respectively). All participants were retained for subsequent 

analyses. 
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Table 4.1 Demographics of the total ONDRI cohorts and cognitively normal control cohort at baseline and the demographics 

of the cohorts following multivariate outlier analysis. 

 Total Participants Ancestry Matched Participants 

Cohort Samples Mean age (years ± sd) Male:Female Samples  Mean age (years ± sd) Male:Female 

ONDRI 519 68.6 ± 7.6 341:172 396 68.7 ± 7.9 268:128 

AD 41 71.8 ± 8.0 24:17 33 71.4 ± 7.9 19:14 

ALS 40 62.0 ± 8.7 24:16 32 61.9 ± 9.2 23:9 

CVD  161 69.2 ± 7.4 109:50 124 69.6 ± 7.6 87:37 

FTD 53 67.8 ± 7.1 34:19 39 67.5 ± 7.3 25:14 

MCI 85 70.6 ± 8.3 45:40 59 71.9 ± 8.3 29:30 

PD 139 67.8 ± 6.4 106:30 109 67.5 ± 6.3 85:24 

Controls 189 74.0 ± 8.2 77:112 164 74.0 ± 7.9 68:96 
The common variation (MAF > 0.005) captured by the ONDRISeq next-generation sequencing panel was used to perform principal component analysis on the 

ONDRI cases and controls accounting for variance introduced by differential ancestry and batch effects. Multivariate outlier analysis was performed using the 

first 8 principal components. Ancestry matched refers to all samples that were not removed by the outlier analysis.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD, cerebrovascular disease; FTD, frontotemporal dementia; MCI, mild cognitive 

impairment; ONDRI, Ontario neurodegenerative disease research initiative; PD, Parkinson’s disease; sd, standard deviation. 
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Table 4.2 ONDRI participants harbouring rare variants likely contributing to Mendelian forms of neurodegenerative disease 

and cerebrovascular disease. 

 Total Participants Ancestry Matched Participants 

Cohort Samples 
Monogenic 

rare variants 

C9orf72 

expansion 
Samples 

Monogenic 

rare variants 

C9orf72 

expansion 

ONDRI 519 7 7 396 5 7 

AD 41 1 1 33 1 1 

ALS 40 0 4 32 0 4 

CVD  161 2 0 124 1 0 

FTD 53 0 2 39 0 2 

MCI 85 1 0 59 1 0 

PD 139 3 0 109 2 0 
Ancestry matched refers to all samples that were not removed by the outlier analysis following principal component analysis on common variation (MAF > 

0.005) captured by the ONDRISeq next-generation sequencing panel. Monogenic rare variants refers to individuals harbouring variants with a MAF < 0.01 in 

gnomAD v.2.1.1 (non-neuro) in a gene known to contribute to Mendelian forms of the disease of patient diagnosis and that was classified as likely 

pathogenic/pathogenic in ClinVar, OMIM, and/or the AlzForum mutations database. C9orf72 expansions refers to individuals harbouring the G4C2-expansion, 

which were genotyped using amplicon length analysis and repeat primed PCR; all expansions were > 60 repeats in length.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; C9orf72, chromosome 9 open reading frame 72 gene; CVD, cerebrovascular 

disease; FTD, frontotemporal dementia; MCI, mild cognitive impairment; ONDRI, Ontario neurodegenerative disease research initiative; PD, Parkinson’s 

disease. 
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Table 4.3 Nonsynonymous rare variants likely contributing to Mendelian forms of neurodegenerative disease and 

cerebrovascular disease identified in the total ONDRI cohort. 

Gene cDNA alteration 
Protein 

alteration 

Reference 

SNP identifier 

Sequence 

ontology 

MAF 

(gnomAD) 

CADD 

Phred 

Previous 

disease 

association 

Participants 

harbouring 

variant (cohort) 

APP c.2137G>A p.Ala713Thr rs63750066 Missense 2.88e-5 34.0 AD1 1 (AD) 

GCH1 c.671A>G p.Lys224Arg rs41298442 Missense 4.70e-5 13.9 PD2 1 (PD) 

LRRK2 c.6055G>A p.Gly2019Ser rs34637584 Missense 2.26e-4 35 PD3 1 (PD) 

NOTCH3 c.544C>T p.Arg182Cys rs28933697 Missense 4.70e-5 31.0 CADASIL4 1 (CVD) 

NOTCH3 c.580T>C p.Cys194Arg rs1568361818 Missense NA 23.5 CADASIL5 1 (CVD) 

PSEN1 c.118_120delGAC p.Asp40del rs759538127 
In-frame 

deletion 
1.40e-4 14.1 AD6 1 (MCI) 

SNCA c.150T>G p.His50Gln rs201106962 Missense 8.28e-5 4.9 PD7 1 (PD) 
1(Armstrong, Boada, Rey, Vidal, & Ferrer, 2004; Carter et al., 1992; Pera et al., 2013); 2(Leuzzi et al., 2002; Saunders-Pullman et al., 2004; Trender-Gerhard et 

al., 2009); 3(Di Fonzo et al., 2005; Zabetian et al., 2006); 4(Joutel et al., 2001; Joutel et al., 1997); 5(Kalimo, Ruchoux, Viitanen, & Kalaria, 2002); 6(Nygaard, 

Lippa, Mehdi, & Baehring, 2014); 7(Khalaf et al., 2014) 

Nonsynonymous rare variants likely contributing to Mendelian forms of neurodegenerative disease were considered variants with a MAF < 0.01 in gnomAD 

v.2.1.1 (non-neuro) in a gene known to contribute to Mendelian forms of the disease of patient diagnosis and that was classified as likely pathogenic/pathogenic 

in ClinVar, OMIM, and/or the AlzForum mutations database.  

Abbreviations: AD, Alzheimer's disease; APP, amyloid precursor protein gene; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts 

and leukoencephalopathy; CADD Phred, combined annotation dependent depletion Phred; cDNA, coding DNA; COL4A2, collagen type IV alpha 2 chain 

protein; CVD, cerebrovascular disease; GCH1, GTP cyclohydrolase 1 gene; LRRK2, leucine rich repeat kinase 2 gene; MAF, minor allele frequency; MCI, mild 

cognitive impairment; NA, not applicable; NOTCH3, notch receptor 3 gene; PD, Parkinson’s disease; PSEN1, presenilin 1 gene; SNCA, α-synuclein gene; SNP, 

single nucleotide polymorphism. 

  



164 

 

4.4.2. Principal component analysis 

Ancestry of the ONDRI cases and cognitively normal control samples was estimated by 

projecting their SNP loadings onto a PCA of the 1000G population (Figure 4.2). The 

large degree of overlap observed between the ONDRI cases, as well as the cognitively 

normal controls, and the European cohort of the 1000G population suggests that the 

participants within our study were largely of European descent. To produce a 

homogenous genetic dataset, which minimizes any false discoveries due to population 

stratification in accordance with standard genomics quality control best practices, we 

performed a logistic regression of the ONDRI case and control principal components and 

identified the first eight components as significantly contributing to variance in the 

samples. Following multidimensional ancestral outlier analysis and outlier removal, the 

data consisted of 396 ONDRI cases and 164 cognitively normal controls (Table 4.1). 
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Figure 4.2 Ancestry estimate of the ONDRI cases and cognitively normal control cohort using a principal component analysis 

(PCA) of data from the 1000 Genomes Project. 

Whole genome sequencing VCFs from 1000G were merged and filtered to include SNPs (MAF > 0.005, gnomAD) within the exonic 

and splicing regions captured by the ONDRISeq panel. A PCA was run using the SNPRelate Bioconductor R package (LD pruning 

threshold = 0.5). SNP loadings from the PCA were used to project the ONDRI cases and controls onto the components to estimate the 

participant’s ancestries. Abbreviations: ONDRI, Ontario Neurodegenerative Disease Research Initiative; PC, principal component.  
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4.4.3. Disease association based RVAA 

All regression coefficients and standard errors obtained by the multinomial logistic 

regression models are summarized in Appendix E. Combined analysis of 

neurodegenerative disease cohorts revealed that ONDRI participants were significantly 

more likely to carry a putative LOF variant in PD-associated genes in comparison to the 

normal controls (OR = 7.322, p = 0.031; Figure 4.3). Interestingly, similar significant 

associations were observed within many individual disease cohorts when compared to 

controls, including for the AD (OR = 12.307, p = 0.023), ALS (OR = 127.744, p = 

0.013), and FTD (OR = 51.832, p = 0.031) cohorts. Although not significant, the 

remaining disease cohorts displayed trends towards association in the same manner, 

including the CVD (OR = 10.698, p = 0.071), MCI (OR = 6.273, p = 0.053), and PD (OR 

= 30.821, p = 0.061) cohorts (Figure 4.3). 

In addition, ALS and MCI cases were significantly more likely to carry rare putative LOF 

variants in ALS/FTD-associated genes, compared to the control cohort (OR = 33.169, p = 

0.045 and OR = 2.905, p = 0.044, respectively; Figure 4.3). The ALS cases were also 

more likely to carry rare putative LOF variants in AD- and CVD-associated genes, 

although results were not significant (OR = 25.572, p = 0.072 and OR = 57.857, p = 

0.074, respectively; Figure 4.3). 

No differences in odds of carrying rare missense variants or possibly deleterious missense 

variants were observed between the participants in the neurodegenerative disease cohorts 

and the controls (Appendix F). 
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Figure 4.3 Rare variant association analysis comparing the enrichment of putative 

loss-of-function (LOF) rare variants in four disease-associated gene groupings in the 

ONDRI cohorts compared to cognitively normal controls. 

Multinomial logistic regressions adjusted for age, sex, and disease prevalence were 

performed to analyze enrichment of putative LOF variants (including nonsense, stop loss, 

frameshift, splice acceptor, and splice donor sequence ontologies) identified in the 80 

genes encompassed by the ONDRISeq panel, which were binned into four disease-

associated gene groupings: AD associated genes, ALS/FTD associated genes, CVD 

associated genes, and PD associated genes, across the ONDRI cohorts compared to the 

control cohort. Only ancestry matched participants were included in the analyses. The 

brglm2 R package was used to fit the regression model and apply a mean bias reduction 

accounting for the low variant positive counts. *p-value < 0.05. Abbreviations: AD, 

Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD, cerebrovascular disease; 

FTD, frontotemporal dementia; LOF, loss-of-function; MCI mild cognitive impairment; 

ONDRI, Ontario Neurodegenerative Disease Research Initiative; PD, Parkinson’s 

disease. 
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4.4.4. Gene-based RVAA using SKAT-O 

Following gene-based RVAA using SKAT-O, 11 genes were identified to be likely 

enriched in nonsynonymous rare variants in the ONDRI cohorts compared to the controls 

that also had sufficient total rare variant counts for subsequent analysis. Firth logistic 

regression, which was used to accommodate for the limitations of SKAT-O, revealed 

significant differences in nonsynonymous rare variant enrichment in three genes in the 

ONDRI cohorts compared to the controls (Table 4.4), including charged multivesicular 

body protein 2B (CHMP2B) across the combined neurodegenerative disease ONDRI 

cohort (OR = 0.080, p = 0.0008), neurofilament heavy chain (NEFH) in the CVD cohort 

(OR = 0.360, p = 0.036), and PARK2 in the FTD cohort (OR = 11.602, p = 0.023). 

Similarly, SKAT-O revealed 6 genes likely enriched in nonsynonymous rare variants in 

the individual ONDRI disease cohorts compared to each other that also had sufficient 

total rare variant counts for subsequent analysis. Firth logistic regression identified two 

genes with a significantly different enrichment of nonsynonymous rare variants in one 

cohort when compared to another (Table 4.5), including an enrichment of variants in 

Notch receptor 3 (NOTCH3) in the PD cohort compared to the combined AD and MCI 

cohort (OR = 2.986, p = 0.009), and an enrichment of variants in NEFH in the combined 

AD and MCI cohort compared to the CVD cohort (OR = 0.272, p = 0.011). 
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Table 4.4 Gene-based rare variant association analyses using Firth logistic regression comparing rare variant enrichment in 

the ONDRI cohorts compared to the control cohort, in genes identified as having differing enrichment by SKAT-O. 

Cohort Gene 
Previous disease 

association 

Odds 

ratio 

Lower 

CI 

Upper 

CI 
P-value 

 

ONDRI ABCA7 AD 1.630 0.768 3.460 0.204  

ONDRI CHMP2B ALS/FTD 0.080 0.018 0.351 0.0008  

AD/MCI ABCA7 AD 2.042 0.862 4.838 0.105  

AD/MCI SETX ALS/FTD 2.085 0.744 5.843 0.162  

CVD NEFH ALS/FTD 0.360 0.138 0.936 0.036  

CVD PARK2 PD 3.129 0.397 24.669 0.279  

CVD PINK1 PD 2.278 0.382 13.600 0.366  

CVD SETX ALS/FTD 0.567 0.213 1.512 0.257  

FTD ALS2 ALS/FTD 3.543 0.708 17.721 0.123  

FTD PARK2 PD 11.602 1.395 96.519 0.023  

PD ABCA7 AD 2.155 0.831 5.590 0.114  

 

 

 

Due to limitations of SKAT-O and to account for the effects of age and sex, a Firth logistic regression was performed on each gene identified by SKAT-O to 

compare the enrichment of rare variants in the respective ONDRI cohorts in comparison to a cognitively normal control cohort. Only ancestry matched 

participants were included in the analyses. Genes that had total rare variant counts <5, or with zero rare variants in one of the cohorts were excluded from 

analyses. Statistical analyses were performed using the R statistical software 3.6.0 in R Studio 1.1.463. *p-value < 0.05; **p-value < 0.005; ***p-value < 0.0005. 

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CI, confidence interval; CVD, cerebrovascular disease; FTD, frontotemporal 

dementia; MCI, mild cognitive impairment; ONDRI, Ontario neurodegenerative disease research initiative; PD, Parkinson’s disease; SKAT-O, the optimal 

unified Sequence Kernel Association Test.
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Table 4.5 Gene-based rare variant association analyses using Firth logistic regression comparing rare variant enrichment 

between the individual ONDRI cohorts, in genes identified as having differing enrichment by SKAT-O. 

Reference 

Cohort 

Comparison 

Cohort 
Gene 

Previous disease 

association 

Odds 

ratio 

Lower 

CI 

Upper 

CI 

P-

value 

 

AD/MCI PD NOTCH3 CVD 2.986 1.310 6.806 0.009  

AD/MCI CVD NEFH ALS/FTD 0.272 0.100 0.739 0.011  

CVD FTD NEFH ALS/FTD 2.392 0.630 9.092 0.200  

PD CVD ALS2 ALS/FTD 3.092 0.442 21.630 0.256  

PD FTD PARK2 PD 2.563 0.592 11.085 0.208  

 

 

 

Due to limitations of SKAT-O and to account for the effects of age and sex, a Firth logistic regression was performed on each gene identified by SKAT-O to 

compare the enrichment of rare variants between the individual ONDRI disease cohorts. Only ancestry matched participants were included in the analyses. Genes 

that had total rare variant counts <5, or with zero rare variants in one of the cohorts were excluded from analyses. Statistical analyses were performed using the R 

statistical software 3.6.0 in R Studio 1.1.463. *p-value < 0.05; **p-value < 0.005; ***p-value < 0.0005.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CI, confidence interval; CVD, cerebrovascular disease; FTD, frontotemporal 

dementia; MCI, mild cognitive impairment; ONDRI, Ontario neurodegenerative disease research initiative; PD, Parkinson’s disease; SKAT-O, the optimal 

unified Sequence Kernel Association Test.  
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4.5. Discussion 

As previously described, a large amount of missing heritability remains across 

neurodegenerative diagnoses and little is known regarding the contribution of rare genetic 

factors to the heterogenous presentation of these diseases. Due to the established 

infrequency of Mendelian forms of neurodegenerative phenotypes (Ghasemi & Brown, 

2018; Reed, Bandres-Ciga, Blauwendraat, & Cookson, 2019; Takada, 2015; Van 

Cauwenberghe, Van Broeckhoven, & Sleegers, 2016), it was not surprising that few 

ONDRI participants harboured monogenic variants likely driving their disease 

presentation, including seven carriers of likely monogenic non-synonymous, rare variants 

— defined as variants previously reported as pathogenic within relevant mutations 

databases and the literature in respect to the participant’s diagnosis — and seven carriers 

of the pathogenic C9orf72 repeat expansion. Yet, the low frequency of monogenic 

variants observed in our cohorts has highlighted the need to investigate the contribution 

of rare variants in genes previously associated with neurodegeneration to the presentation 

of the entire spectrum of neurodegenerative and CVD diagnoses utilizing RVAA. 

Associations between specific neurodegenerative diagnoses and known 

neurodegeneration genes were identified with SKAT-O and subsequent logistic 

regression, as well as with disease-association based RVAA. Our principal findings 

included associations between: 1) nonsynonymous rare variants in PARK2 and the FTD 

cohort; 2) nonsynonymous rare variants in NOTCH3 and the PD cohort; 3) rare, putative 

LOF variants in PD-associated genes across the entire ONDRI cohort; and 4) rare, 

putative LOF variants in ALS/FTD-associated genes in the ALS and MCI cohorts. 

Nonsynonymous rare variants in PARK2 were enriched in the FTD cohort. While PARK2 

is well-established to be associated with autosomal recessive familial PD (Abbas et al., 

1999) and potentially with autosomal dominant sporadic PD (Jeon, Kim, Lee, Hattori, & 

Mizuno, 2001; Tan et al., 2005), it has not been previously associated with FTD. 

However, both PD and FTD are influenced by lysosome dysfunction, which can be 

exacerbated by mutated PARK2 (Wallings, Humble, Ward, & Wade-Martins, 2019). The 

variants identified in the FTD cohort were all of heterozygous zygosity, and two had been 

previously reported as variants of uncertain significance in ClinVar (i.e. p.Arg402Cys 
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and p.Pro437Leu). Although the variants may have contributed to the FTD diagnoses in 

our cohort, it remains possible that the variants had a moderate phenotypic effect and/or 

decreased penetrance. If so, our result may be consistent with some of the heterogeneity 

and overlap often seen across neurodegenerative disease presentations, therefore 

highlighting the potential impact of unexpected rare variation to features of disease, 

which is an area of neurogenetics that must be further explored. 

One example of how rare variants may contribute to intermediate phenotypes of 

neurodegeneration, rather than a diagnosis itself, is demonstrated for rare variants in 

NOTCH3 among participants with PD. Typically, rare variants within NOTCH3 are 

associated with a monogenic subtype of CVD called cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). 

Leukoencephalopathy associated with CADASIL can be manifested as white matter 

hyperintensities seen on T2-weighted MRI scans. We previously observed that PD 

participants harbouring rare NOTCH3 variants had double the volume of white matter 

hyperintensities than those that did not (Dilliott et al., 2020). Herein, we did not observe 

an association between PD and NOTCH3 when compared to the controls, but the history 

of CVD in the control cohort was unknown. An association was observed between PD 

and NOTCH3 when compared to the combined AD and MCI cohort, which was of 

particular interest as ONDRI excluded participants from the AD and MCI cohorts who 

had significant evidence of vascular pathology (Sunderland et al., 2020). Therefore, this 

result seemingly supports the hypothesis that rare NOTCH3 variation may be contributing 

to cerebrovascular features within patients with PD (Dilliott et al., 2020). 

The gene-based RVAA also identified CHMP2B as having significantly fewer variants in 

the entire ONDRI cohort compared to controls, and NEFH as having significantly fewer 

variants in the CVD cohort compared to the controls or the combined AD/MCI cohort. 

These results could be interpreted as protection against neurodegenerative diseases and 

cerebrovascular phenotypes from rare variants in CHMP2B and NEFH, respectively. 

However, the association within CHMP2B was likely driven by a single splicing variant 

(c.34+8C>T) harboured by the only three ONDRI participants with rare CHMP2B 

variants and five of the eight controls with rare CHMP2B variants. The variant had a 
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MAF in ExAC of 2.80E-3 and was previously reported in ClinVar as benign. It is 

possible that the variants in CHMP2B and NEFH may have gain-of-function protective 

effects, explaining the unexpected signal; however, functional assays are needed for 

confirmation. Based on the large amount of influence from single variants in these 

potentially protective results, specifically in the case of CHMP2B, and no previously 

established protective effects for either gene within the literature, further interpretation 

remains unclear. 

No ‘expected’ rare variant associations were observed between the individual 

neurodegenerative disease cohorts and genes previously associated with the disease 

cohorts in the gene-based analysis. For example, there were no associations between rare 

variants in APP, PSEN1, or PSEN2 with the combined AD and MCI cohort. Although 

this was unsurprising due to the low frequency of monogenic variants we identified in the 

ONDRI cohorts (Table 1.2), it suggests there may be other genetic determinants driving 

disease presentation and progression. So, to maximize analytic power, we also assessed 

rare variant frequency in groups of genes, based on the disease with which the genes have 

been most commonly associated. Across all neurodegenerative diagnoses, rare, putative 

LOF variants in PD-associated genes were enriched when compared to the control cohort. 

Although unsurprising in the PD cohort, this interesting trend was observed in all five 

remaining neurodegenerative disease cohorts individually, as well as in the combined 

ONDRI cohort. 

When we examined the individual genes that contributed to the association, eight of the 

13 putative LOF PD-associated variant positive participants (61.5% of variant positive 

participants) harboured variants in melanocortin 1 receptor (MC1R). Specifically, the 

putative LOF variants in MC1R were identified in the CVD, FTD, MCI, and PD cohorts, 

as well as in one control participant. MC1R on chromosome 16 encodes a receptor 

typically involved in the regulation of melanin pigment within the skin, but is also 

expressed in the periaqueductal gray matter of the brain (Xia, Wikberg, & Chhajlani, 

1995). The gene was originally associated with PD in a study by Tell-Marti et al. (Tell-

Marti et al., 2015), in which a common missense variant (p.Arg160Trp) was associated 

with the disease in a Spanish population. Previous research has also suggested an 
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association between both red hair and melanoma — for which MC1R variants are a risk 

factor — and PD (Chen, Feng, Schwarzschild, & Gao, 2017; Liu, Gao, Lu, & Chen, 

2011). The MC1R protein was also found to be neuroprotective in dopaminergic neurons, 

which are integral to PD pathology. Unfortunately, the association between MC1R and 

PD is controversial, with multiple studies unable to replicate the finding (Gan-Or et al., 

2016; Lorenzo-Betancor, Wszolek, & Ross, 2016), and to date, no strong evidence 

linking MC1R variation to any other neurodegenerative disease exists. 

We also observed a significant enrichment of rare, putative LOF variants in ALS/FTD-

associated genes in the ALS and MCI cohorts. No single gene stood out in the analysis 

and it is important to recognize that the number of participants in each cohort harbouring 

rare putative LOF variants was low, so we are cautious to not draw conclusions from 

these results given the small sample sizes. However, it cannot be discounted that the 

enrichment signal within the MCI cohort may suggest the participants’ potential to 

progress to FTD, rather than AD. Typically, we anticipate that amnestic MCI patients 

will progress to an AD phenotype or will not progress at all, yet the possibility remains 

that presentation will develop into a variant of FTD and follow up of the MCI 

participants in ONDRI remains imperative. 

Our study did have limitations that deserve comment. The analysis was largely limited by 

modest sample sizes, particularly after accounting for variance resulting from differential 

ancestry and batch effects. Combined with the inherent rarity of the variants, the number 

of variant-positive participants in each cohort remained small. Yet, the study still 

identified interesting signals that are reasonable contenders for replication within larger 

cohorts and hypothesis generating for further analyses. Further, apart from basic 

demographic information and Montreal Cognitive Assessment scores to define the 

control cohort as cognitively normal upon enrollment, no further data were available. 

Therefore, it is unclear whether control participants had any history of CVD without 

cognitive impairment and analyses may not have been sensitive to signals from the CVD-

associated genes on the ONDRISeq panel, as highlighted by the association between 

NOTCH3 and PD when compared to the AD/MCI cohort, but not the controls. Our 

analyses were also limited to individuals of probable European ancestry and replication in 
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other populations is necessary. Finally, our results were restricted to the 80 genes covered 

by our custom, targeted NGS panel (S.M.K. Farhan et al., 2016) and identification of 

novel genes associated with neurodegenerative disease was not possible. Despite this, we 

still identified associations between specific neurodegenerative diagnoses and known 

neurodegeneration genes, such as the enrichment of PARK2 variants in FTD. 

4.6. Conclusion 

Our analyses allowed us to observe considerable heterogeneity in the genetic contribution 

underlying neurodegenerative disease presentation. While we could not conclude that the 

rare variants observed were driving diagnoses in all instances, it is reasonable to assume 

that some of the variability observed in neurodegenerative disease presentation may be 

driven by the rare variants in ‘atypical’ neurodegenerative disease genes. Future analyses 

are required to replicate our findings; however, our study demonstrates the potential for 

RVAA as an approach to identify genes in which rare variants may have moderate and 

somewhat unanticipated phenotypic effects in certain neurodegenerative disease cohorts, 

either by directly influencing disease pathology or by potentially contributing to the 

overlapping features across neurodegenerative disease. Overall, this may suggest a more 

complex genetic architecture of neurodegeneration than the familiar simple monogenic 

model of inheritance in which a variant fully explains a clinical phenotype.  
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5.1. Abstract 

Background/Objective: Neurodegenerative diseases are a range of conditions affecting 

the aging population that are caused by neuronal loss and result in heterogenous 

presentations of motor impairment and cognitive and/or behavioural dysfunction. 

Although genetic factors are known to contribute to neurodegenerative disease 

susceptibility, there remains a large amount of heritability unaccounted for across the 

diagnoses. Copy number variants (CNVs) throughout the genome contribute to these 

phenotypes, but their presence and influence on disease state remains relatively 

understudied. Here, we addressed this gap by leveraging the recent improvements in the 

bioinformatics analysis of next-generation sequencing and applying a depth of coverage 

approach to detect CNVs in 80 genes previously associated with neurodegenerative 

disease within participants of the Ontario Neurodegenerative Disease Research Initiative 

(ONDRI). 

Methods and Results: In total, we identified and validated four CNVs in the ONDRI 

cohort, including: 1) a heterozygous deletion of exon 5 in OPTN in an Alzheimer’s 

disease participant; 2) a duplication of exons 1–5 in PARK7 in an amyotrophic lateral 

sclerosis participant; 3) a duplication of >3 Mb, which encompassed ABCC6, in a 

cerebrovascular disease (CVD) participant; and 4) a duplication of exons 7–11 in 

SAMHD1 in a mild cognitive impairment participant. We also identified two duplications 

with high confidence in the genes ABCA7 and ATP13A2, each carried by an additional 

CVD participant. To our knowledge, all six CNVs were novel with respect to their 

association with the disease phenotype of the carrier. 

Conclusion: The identification of CNVs across our study of neurodegenerative disease 

suggest that a portion of the apparent missing heritability of the phenotypes may be due 

to these structural variants, and thus their assessment is imperative for a thorough 

understanding of the genetic spectrum of neurodegeneration. 
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5.2. Introduction 

Neurodegenerative diseases are a collection of progressive conditions characterized by 

neuronal degeneration and protein aggregation within the brain. Although typically 

defining behavioural and/or cognitive phenotypes, such as Alzheimer’s disease (AD), 

frontotemporal dementia (FTD), and mild cognitive impairment (MCI) or motor 

phenotypes, such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD), 

the umbrella term may also encompass neurodegenerative phenotypes that result from, or 

present alongside, cerebrovascular disease (CVD). 

Age is the strongest risk factor for neurodegeneration; however, another important risk 

factor encompasses genetic variation that contributes to the diseases. It is known that 

genetic factors increase one’s risk of developing neurodegenerative disease considerably, 

with relatively high heritability estimates across the various diagnoses (Cacace, Sleegers, 

& Van Broeckhoven, 2016; Greaves & Rohrer, 2019; Mejzini et al., 2019). However, our 

existing understanding of the genetic contributors to neurodegenerative disease fails to 

reach these estimates, leaving a large amount of missing heritability (Cacace et al., 2016; 

Hagenaars et al., 2018; Keller et al., 2012; Mejzini et al., 2019). 

Copy number variants (CNVs) are large-scale deletions or duplications of DNA of at 

least 50 base pairs in length. While CNVs are generally common across the human 

genome (Redon et al., 2006), when encompassing genes, these structural variants often 

have large phenotypic impacts, including affecting gene expression, organization, and 

dosage (Stranger et al., 2007). CNVs have been shown to contribute to neurodegenerative 

disease presentation, including in individuals with AD (Cuccaro, De Marco, Cittadella, & 

Cavallaro, 2017; Ghani et al., 2012; Hooli et al., 2014); ALS (Morello et al., 2018); and 

PD (Nuytemans, Theuns, Cruts, & Van Broeckhoven, 2010). Yet studies identifying 

these variants in neurodegenerative disease cohorts are sparse, potentially due to the 

previous intricacies of accurately detecting CNVs. It is therefore hypothesized that some 

of the missing heritability of neurodegeneration may be accounted for by these large-

scale variants. 



186 

 

Recently, the development of new bioinformatics algorithms have made the identification 

of CNVs more accessible, with the ability to detect variants using next-generation 

sequencing (NGS) and a depth of coverage (DOC) assessment (Iacocca et al., 2017).  

Here, we leveraged this approach to identify CNVs across the participants of the Ontario 

Neurodegenerative Disease Research Initiative (ONDRI), a multi-cohort study aiming to 

characterize a selection of neurodegenerative diseases, including AD, ALS, FTD, MCI, 

and PD, as well as CVD and its potential influence on neurodegeneration. Previously, the 

ONDRI cohort was genetically sequenced using the ONDRISeq NGS targeted panel, 

which covers 80 genes known to contribute to neurodegenerative disease (Dilliott et al., 

2018; S.M.K. Farhan et al., 2016). Following the identification of CNVs using a DOC 

approach, we also aimed to validate a subset of CNVs to determine appropriate metrics 

by which DOC analysis can define CNVs of high confidence when evaluating 

ONDRISeq data. 

5.3. Methods 

5.3.1. Study participants 

ONDRI enrolled 520 individuals that passed preliminary screening and were each 

clinically diagnosed with one of the following conditions: 1) AD; 2) ALS; 3) CVD; 4) 

FTD; 5) MCI; and 6) PD. Research ethics board approval was obtained from each 

participating site. Descriptions of the inclusion/exclusion criteria of ONDRI participants 

were previously reported (S. M. K. Farhan et al., 2017; Sunderland et al., 2020). All 

participants provided informed written consent. Clinical diagnoses and demographic data 

were obtained during participant screening and baseline assessment. When possible, 

participants provided clinical longitudinal follow-up assessment yearly, for up to three 

years (S. M. K. Farhan et al., 2017; Sunderland et al., 2020).  

5.3.2. Next-generation targeted sequencing 

Of the 520 enrolled participants, 519 participants had a blood sample collected, from 

which genomic DNA was extracted. DNA was also obtained from 189 cognitively 

normal elderly controls from the GenADA study (Li et al., 2008). 
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All ONDRI participant and control DNA samples were subjected to targeted NGS using 

the ONDRISeq neurodegenerative disease gene panel, as previously described (Dilliott et 

al., 2018). DNA samples were pooled and paired-end NGS was performed using the 

MiSeq Personal Genome Sequencer (Illumina, San Diego, CA, United States) and MiSeq 

Reagent Kit v3. Raw sequencing data FASTQ files were imported into CLC Bio 

Genomics Workbench v10 (CLC Bio, Aarhus, Denmark) to perform pre-processing and 

variant annotation, which produced a variant calling format (VCF) file and binary 

alignment map (BAM) file for each participant. Read mapping was performed using the 

human reference genome GRCh37/hg19. 

5.3.3. Copy number variant detection 

The CNV Caller tool, an application within VarSeq® (v1.4.3; Golden Helix, Bozeman, 

MT), was used to detect CNVs from ONDRISeq-generated data. The CNV Caller tool 

employs a normalized depth of coverage algorithm, such that an increase in sample 

coverage in comparison to a set of reference samples suggests a gain of copy number, and 

a decrease in coverage suggests a loss of copy number. 

The ONDRISeq browser extensible data (BED) file was imported into VarSeq®, as well 

as the VCF and BAM files of the 189 control samples from which the algorithm selected 

48 samples to use as a reference set with the lowest percent difference in coverage data 

compared to each ONDRI sample. The algorithm excluded control samples in the 

reference set if they displayed a >20% difference in coverage compared with the samples 

of interest. The matched reference sets also corrected for GC-content bias and accounted 

for any regions exhibiting inaccurate mapping. By comparing to the reference set, the 

CNV Caller tool was used to identify CNVs across the 519 ONDRI participants. A DOC 

ratio and z-score were computed for each target region covered by the NGS panel within 

each ONDRI sample. The DOC ratios measured the normalized DOC of the sample of 

interest compared to the normalized mean DOC of the reference set, whereas z-scores 

measured the number of standard deviations of each target region’s DOC from the 

normalized mean DOC of the reference set. In addition to the DOC algorithm, the CNV 

Caller tool examined single nucleotide polymorphism (SNP) heterozygosity by 
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examining variant allele frequencies across target regions to provide further evidence for 

suspected CNVs, as previously described (Iacocca et al., 2017). The CNV Caller tool 

assigned each suspected CNV an average DOC ratio, average z-score, and a p-value. 

CNVs detected using ONDRISeq data are referred to as “potential CNVs”. 

5.3.4. Deletion confirmation using breakpoint analysis 

To verify the presence of a partial optineurin (OPTN) gene deletion, primers were 

designed to flank regions surrounding putative deletion breakpoints and used for PCR 

amplification of the mutant allele. The Expand 20kbplus PCR system was used for DNA 

amplification (Roche, Basel, Switzerland). Forward (F3) and reverse (R1) primers 

flanking the deletion junction were: F3 5’-GTGACTCCATCACTCTGAACCTCC and 

R1 5’-CGAGTCTTCCTTCACATACGTGCC. Gel electrophoresis of the PCR product 

provided a visual confirmation of the mutant allele. 

Once deletion breakpoints were identified, confirmation primers (P1:5’-

TCCCTTGACATTTGCAGTGGAATC, P2: 5’-

ACTGAGAGAACAGACAAGGTCAAC, P4: 5’-

GGTCACTTAGGGAACAAGATAGTC) spanning proximal and distal breakpoints were 

designed for PCR and Sanger sequencing to verify the deletion breakpoint sequences for 

the wild type and mutant alleles. Thirty seconds of extension time for PCR cycles were 

used to achieve amplification of the normal allele using primer pair P1 and P2, while 

primer pair P1 and P4 amplified the mutant allele. Electropherograms were analyzed 

using the Applied Biosystems SeqScape Software version 2.6 (Thermo Fischer Scientific, 

Waltham, MA, USA) with the reference sequence obtained from the National Center for 

Biotechnology Information (NCBI) GenBank database 

(https://www.ncbi.nlm.nih.gov/genbank/). 

5.3.5. Duplication confirmation using whole exome sequencing 

To validate the presence of potential CNV duplications detected using the ONDRISeq 

data, six samples each with at least one potential duplication were selected for whole-

exome sequencing (WES). DNA samples were sent to the McGill University and 

https://www.ncbi.nlm.nih.gov/genbank/


189 

 

Genome Quebec Innovation Centre (MUGQIC) for WES using the HiSeq 4000 

instrument (Illumina) and Roche Nimblegen chemistry (Roche, Basel, Switzerland). 

FASTQ files were again imported into CLC Bio Genomics Workbench v10 (CLC Bio) to 

perform pre-processing and variant annotation to produce a VCF file and BAM file for 

each participant. 

VCF and BAM files of the six ONDRI participants and the BED file that defined the 

Roche Nimblegen chemistry target regions were imported into VarSeq®, along with VCF 

and BAM files from WES of eight reference samples obtained from cognitively normal 

individuals diagnosed with atrial fibrillation and sequenced on the same HiSeq 4000 run 

at the MUGQIC as the six ONDRI cases. Five reference samples were selected by the 

algorithm based on similarity of the normalized coverage to the samples of interest, as 

described above. Again, the CNV Caller tool applied a DOC approach and computed a 

DOC ratio, z-score, and p-value for each detected CNV. 

5.4. Results 

5.4.1. Study participants and ONDRISeq copy number variant 

analysis 

Using the VarSeq® CNV Caller tool, at least one potential CNV was detected in 44 of 

the total 519 ONDRI participants screened (8.5%). A total of 47 potential CNVs were 

detected among the 44 participants, including 37 duplications and ten heterozygous 

deletions (Appendix G). The CNVs ranged in size from 150 to 74,407 bp. 

5.4.2. Deletion confirmation using breakpoint analysis 

Of the ten potential heterozygous deletions identified, one was chosen for breakpoint 

analysis based on our high confidence in the variant call, as determined by the metrics 

produced by the CNV Caller algorithm (DOC ratio = 0.487; z-score = -6.851; p = 1.10E-

12). Specifically, the chosen heterozygous deletion encompassed exon 5 of OPTN. 

Sanger sequencing across the CNV breakpoints confirmed the presence of a 4,969 bp 

deletion in OPTN that encompassed all of exon five, with proximal and distal breakpoints 
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at chr10: 13,152,598 and chr10: 13,157,566, respectively (Figure 5.1). The deletion was 

carried by subject 1, who was diagnosed with AD (Table 5.1). The remaining nine 

heterozygous deletions did not undergo breakpoint analysis due to lower confidence in 

the reliability of the CNV calls, as determined by the CNV’s individual metrics and/or 

relatively short span. 
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Figure 5.1 Validation of single-exon deletion in OPTN of subject 1 with Alzheimer’s 

disease (AD). 

(A) Screen capture of ONDRISeq-generated data from subject 1 processed by the 

VarSeq® v1.4.3 CNV Caller tool identified a potential heterozygous deletion, as 

indicated by a drop in DOC ratio. The bottom section shows the OPTN gene and location 

of primers used to confirm and sequence across the breakpoint. (B) Sanger sequencing 

results for the deletion junction. Results from a cognitively normal control are presented 

on the top, with results from subject 1 on the bottom. Internal sequence missing in the 

deleted allele is written in grey. (C) Gel electrophoresis of PCR products across the 

deletion breakpoint. The top gel shows amplification products generated using F3 and 

R1. The normal sequence distance between primer pair F3 and R1 generated a product 

size of 6116 bp; however, PCR amplification of subject 1’s genomic DNA using F3 and 

R1 generated a product size of 1147 bp, suggesting a 4969 bp deletion. The bottom gel 

contains amplification products generated using primer pairs (i) P1, located in the 

proximal side of the suspected breakpoint, and P2, located within the deleted fragment, as 

well as (ii) P1 and P4, located on the distal side of the suspected breakpoint. Both the 

normal control (N) and proband (P) demonstrate amplification (367 bp) for the proximal 

primer pair. Amplification (291 bp) with P1 and P4 is seen in the proband, but not the 

normal control. For individuals without the deletion, the span between P1 and P4 would 

be too large to amplify under standard conditions; thus, if amplification occurred, it 

confirms the presence of a large deletion between the primer pair.   
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Table 5.1 Demographics and clinical data of the six ONDRI participants identified to have CNVs of high confidence in the 80 

neurodegenerative disease genes covered by the ONDRISeq panel. 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 

Diagnosis AD ALS CVD MCI CVD CVD 

ASO (years) 73 55 70 57 73 63 

Sex Male Male Male Female Male Male 

MoCA 19 26 29 23 26 30 

Other 

relevant 

clinical 

information 

Exhibited cataracts in 

both eyes. No 

evidence of motor 

impairment reported. 

Exhibited slight kinetic 

tremor; fasciculation of 

the torso, arms, and legs; 

brisk deep tendon reflex; 

and diffuse denervation of 

the lower motor neurons. 

No signs of parkinsonism 

were reported (H&Y = 0). 

Experienced right-sided, 

anterior, large-artery 

atherosclerosis. Exhibited 

coronary artery disease, 

hypertension, and high 

cholesterol and previously 

had undergone coronary 

artery bypass graft surgery. 

Although symptom 

onset was 15 years 

ago, the subject has 

not progressed to 

AD. No history of 

significant CVD. 

Experienced right-

sided, anterior, 

small-artery 

occlusion. Exhibited 

hypertension, atrial 

fibrillation, and 

diabetes. 

Experienced right sided, 

posterior, large-artery 

atherosclerosis. Exhibited 

hypertension and high 

cholesterol. No signs of 

parkinsonism were reported 

(H&Y = 0) or other motor 

symptoms. 

Relevant 

family 

history 

N/A N/A 

Both parents and one 

sibling exhibited heart 

disease. 

N/A N/A 

Mother experienced 

peripheral vascular disease, 

father experienced a stroke, 

and one half-sibling was 

diagnosed with ALS. 

CNV 

Identified 

Heterozygous 

deletion of exon 5 

in OPTN 

Duplication of exons 

1–5 in PARK7 

Duplication of all exons 

of ABCC6 as well as 42 

other genesa 

Duplication of 

exons 7–11 in 

SAMHD1 

Duplication of the 

latter part of exon 

16 in ABCA7 

Duplication of exon 16 

in ATP13A2 

Span (bp) 4,969b 9,810 3,233,228c 8,802 276 707 

Genomic 

region 

chr10: 13,152,598– 

13,157,566 

~chr1:8,021,464–
8,031,273 

~chr16:15,185,138–

18,418,365c 

~chr20:35,539,371–
35,548,172 

~chr19:1,047,628

–1,047,903 

~chr1:17,319,874–
17,320,580 

Validation Breakpoint WES WES WES N/A N/A 

DOC ratio -6.851 6.816 6.371 5.872 9.287 7.175 

z-score 0.487 1.455 1.482 1.474 3.221 1.430 

p-value 1.10E-12 0 0 1.70E-21 3.14E-13 2.02E-8 

Clinical data was obtained during participant screening and baseline analysis. Span, genomic region, DOC ratio, z-score, and p-value were based on the 

ONDRISeq CNV analysis, unless otherwise indicated. aOther genes encompassed by the duplication are outlined in Table 5.2. bThe span presented is based on 

the breakpoint analysis of the heterozygous duplication. cThe span and genomic region presented is based on the WES analysis of the duplication. 

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; ASO, age of symptom onset; bp, base pairs; chr, chromosome; CNV, copy number 

variant; CVD, cerebrovascular disease; DOC, depth of coverage; H&Y, Hoehn and Yahr; MCI, mild cognitive impairment; MoCA, Montreal Cognitive 

Assessment; N/A, not applicable; WES, whole exome sequencing. 
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5.4.3. Duplication confirmation using whole-exome sequencing 

Of the participants harbouring the 37 potential duplications, six were identified as CNVs 

of relatively high confidence, as determined by their DOC ratios, z-scores, and p-values. 

Following WES of the samples and subsequent analysis with the CNV Caller tool, we 

identified and validated three participants as carriers of large-scale duplications (Table 

5.1). Subject 2 was diagnosed with ALS and harboured a duplication spanning 9,810 bp 

that encompassed the first five exons of parkinsonism associated deglycase (PARK7). 

Subject 3 was diagnosed with CVD and harboured a duplication encompassing the 

entirety of ATP binding cassette subfamily C member 6 (ABCC6), which was detected 

using the ONDRISeq analysis; however, WES revealed the duplication also encompassed 

42 other neighbouring genes, including 15 protein-coding genes, 12 pseudogenes, 11 

microRNA encoding genes, and 4 non-coding RNA genes (Table 5.2). In total, the 

duplication spanned over 3 Mb. Finally, subject 4 was diagnosed with MCI and 

harboured a duplication of exons 7–11 of SAM and HD domain containing 

deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1). 

One of the six samples sent for WES exhibited unmappable and incorrectly mapped 

reads, failing to pass the quality control standards of the CNV Caller tool algorithm. 

Validation of the duplication carried by this individual remains inconclusive. 
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Table 5.2 Genes encompassed by the >3 Mb duplication harboured by Subject 3. 

Gene type Genes 

MicroRNA 

encoding genes 

MIR1972-1; MIR6511B2; MIR3180-4; MIR6506; MIR484; 

MIR3179-2; MIR3670-2; MIR3180-2; MIR6511A2; MIR6770-2; 

MIR6511A3;  

Non-coding RNA 

encoding genes 
LOC100505915; PKD1P6-NPIPP1; PKD1P1; LOC102723692  

Protein-coding 

genes 

PDXPC1; NTAN1; RRN3; NPIPA5; MPV17L; C16orf45; 

KIAA0430; NDE1; MYH11; FOPNL; ABCC1; ABCC6; 

NOMO3; NPIPA7; XYLT1; NPIPA8 

Pseudogenes 

LOC728138; NPIPP1; PKD1P6; RNU6-213P; RPL15P20; 

RPL17P40; PKD1P2; LOC100133127; LOC441750; 

LOC100421029; RPL7P47; LOC100133137 
Whole-exome sequencing confirmation of a full gene duplication of ABCC6 revealed that the duplication 

also encompassed 42 other neighbouring genes. 
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5.4.4. Copy number variants of high confidence 

Based on the ONDRISeq analysis average DOC ratios, average z-scores, and p-values of 

the CNVs that we were both able and unable to validate, we identified two additional 

CNVs of high confidence (Table 5.1). The first duplication encompassed part of exon 16 

of ATP binding cassette subfamily A member 7 (ABCA7) and had an average DOC ratio 

of 3.221 and average z-score of 9.961. It was found in subject 5, who was diagnosed with 

CVD. The second duplication encompassed all of exon 16 of ATPase cation transporting 

13A2 (ATP13A2), with a DOC ratio of 1.430 and an average z-score of 7.175, and was 

found in subject 6, who was also diagnosed with CVD. Although these CNVs have not be 

formally validated, the CNV Caller tool metrics suggest that they are true positives. 

Importantly, none of the confirmed CNVs, nor the CNVs of high confidence, were 

identified in any of the 189 cognitively normal elderly control samples. The six CNV 

carriers did not harbour additional pathogenic single nucleotide variants in the 

neurodegenerative disease associated genes encompassed by ONDRISeq relevant to their 

diagnoses. Clinical case information of subjects 1–6 can be found in Table 5.1. 

5.5. Discussion 

Of the 519 individuals diagnosed with neurodegenerative disease and/or CVD enrolled in 

the ONDRI study, we identified 44 individuals (8.5%) with potential CNVs in the 80 

neurodegenerative disease associated genes covered by the ONDRISeq panel, of which 

six CNVs, each in a different participant (1.2%), were validated or determined to be of 

high confidence. Breakpoint analysis confirmed the presence of a heterozygous deletion 

in OPTN harboured by an individual with AD, and WES confirmed the presence of 

duplications in PARK7, ABCC6, and SAMHD1, in individuals diagnosed with AD, CVD, 

and MCI, respectively. We were also able to identify two additional CNVs from the 44 

detected that were deemed to be CNVs of high confidence, which were duplications in 

ABCA7 and ATP13A2 also in individuals diagnosed with CVD. To our knowledge, all six 

CNVs were novel with respect to each carrier’s diagnosis. 
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Among the validated CNVs, the heterozygous deletion of exon 5 in OPTN was the only 

CNV we confirmed using Sanger-based breakpoint analysis, and it was identified in a 

participant with AD. OPTN encodes optineurin, and pathogenic variants in the gene are 

associated with both autosomal dominant, adult-onset glaucoma and ALS (Maruyama et 

al., 2010; Schilter, Reis, Sorokina, & Semina, 2015). Interestingly, two studies have 

reported similar heterozygous deletions of exon 5 of OPTN in Japanese ALS cohorts 

(Iida et al., 2012; Maruyama et al., 2010). It has been hypothesized that there may be a 

relationship between OPTN, glaucoma, and AD, due to the high rate of co-morbidity 

between glaucoma and AD, as well as the observation of optineurin in neurofibrillary tau 

tangles — a hallmark of AD pathology (Liu & Tian, 2011). Yet, AD patients with 

pathogenic OPTN variants have not been previously observed. Herein, subject 1 

exhibited gradual cognitive decline but did not demonstrate ALS-associated motor 

symptoms. Although no glaucoma diagnosis was documented and the participant’s 

intraocular pressure was within the normal range for both eyes (10–21 mm Hg) at 

baseline and upon one-year follow-up, the participant did report vision loss and presented 

with cataracts at baseline assessment. It remains unclear whether the observation of the 

partial OPTN heterozygous deletion suggests a novel relationship between the gene and 

AD, or whether the variant may be contributing to the participant’s ocular phenotypes. 

We confirmed the presence of a duplication spanning exons 1–5 of PARK7 in a 

participant diagnosed with ALS, although breakpoints could not be determined using 

WES. PARK7, otherwise referred to as DJ-1, encodes a conserved protein belonging to 

the peptidase C56 family and is thought to help inhibit aggregation of α-synuclein — a 

hallmark of PD pathology — as well as protect neurons against oxidative stress and cell 

death (Lev, Roncevic, Ickowicz, Melamed, & Offen, 2006). Mutations in PARK7 cause 

autosomal recessive early-onset PD (EOPD) (Bonifati et al., 2003). Previously, 

duplications of the first five exons of PARK7 have been associated with EOPD (Macedo 

et al., 2009), and small-scale variants in the gene have been associated with autosomal 

recessive Guamanian ALS/EOPD, which presents with a heterogeneous symptoms 

including muscular atrophy, cognitive decline, and tremor or rigidity (Annesi et al., 2005; 

Hanagasi et al., 2016). However, no previous associations of PARK7 duplications have 

been reported in patients diagnosed with ALS alone. While the participant presented 
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herein did report slight tremors at baseline, which progressed to moderate tremors upon 

three-year follow-up based on the MDS Unified Parkinson's Disease Rating Scale (MDS-

UPDRS), they had no further clinical signs of parkinsonism and had a Hoehn and Yahr 

score of zero both at baseline and follow-up. Yet the involvement of PARK7 in ALS 

cannot be ruled out, as the DJ-1 protein is involved in sensing oxidative stress (Lev et al., 

2006), and PARK7 variants may therefore increase risk of oxidative stress, which is 

implicated as a major component in ALS pathologic mechanisms (Barber & Shaw, 2010). 

Our study is the first to report a case in which a structural variant affecting PARK7 may 

have a role in a non-parkinsonism condition; however, functional analyses are required 

for further investigation of this relationship. 

Furthermore, a CVD participant presented with a full-gene duplication of ABCC6. 

Confirmation of the duplication using WES found the CNV actually spanned over 3 Mb 

encompassing 43 total genes. Pathogenic variants within ABCC6, including CNVs, cause 

pseudoxanthoma elasticum (PXE), a rare autosomal recessive disorder characterized by 

elastic tissue fragmentation and arterial calcification (Bergen et al., 2000; Kringen et al., 

2015; Ringpfeil, Lebwohl, Christiano, & Uitto, 2000). It is not uncommon for PXE 

patients to present with cerebral artery calcification, and studies have shown that 

ischemic CVD is highly prevalent in patients with PXE (Kauw et al., 2017; Pavlovic et 

al., 2005). Here, the participant carrying the ABCC6 duplication exhibited symptoms 

characteristic of PXE, including hypertension, atherosclerosis, stroke, mood disorders, 

and ocular features such as cataracts. The participant also reported that all immediate 

family members had a history of heart disease, albeit segregation analysis of the 

duplication was not possible. Although the specific CNV we identified has not been 

previously reported, a full gene duplication of ABCC6 was reported in gnomAD (v2.1.1 

non-neuro; https://gnomad.broadinstitute.org/) (Karczewski et al., 2020). The duplication 

was identified in 18 gnomAD samples (allele frequency = 1.08E-3); however, all 

individuals were under the age of 60 years, and it remains unclear whether any of the 

individuals presented with features of CVD. To our knowledge, this is the first reporting 

of a large-scale duplication involving ABCC6 in an individual with CVD. Although this 

CNV spanned 42 other genes (Table 5.2), there is currently no evidence suggesting that 

https://gnomad.broadinstitute.org/
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structural variation of these other genes contributed to the participant’s disease 

presentation. 

We also identified and validated a duplication of exons 7–11 in SAMHD1 in a subject 

with MCI, and identified duplications of high confidence in exon 16 of both ABCA7 and 

ATP13A2 in two different participants with CVD. Previous studies have associated large 

duplication events in ABCA7 and SAMHD1 with developmental delay and autism (Coe et 

al., 2014; Cooper et al., 2011); however, no reports of neurodegenerative symptoms have 

been made in patients demonstrating similar CNVs. Additionally, small-scale 

duplications within exon 16 of ATP13A2 have been linked to Kufor-Rakeb syndrome, a 

juvenile-onset condition characterized by parkinsonism and dementia, although full 

duplications of exon 16 have not been previously described (Ramirez et al., 2006). 

Subject 6, who harboured the ATP13A2 duplication, was diagnosed with CVD and did 

not present with clinical features of PD at baseline, nor upon two-year follow-up. Further 

evaluation of these CNVs will be needed to gain a better understanding of their 

contribution to neurodegeneration and CVD. 

Although we have high confidence in the presence of six CNVs across the ONDRI 

participants, we were able to confirm the exact breakpoints of only one, namely the 

deletion of exon 5 in OPTN. Identification of CNVs using NGS is limited to only 

determine which NGS probes are affected by the structural variant, thereby requiring 

further analysis to determine CNV breakpoints. However, breakpoint analysis remains 

challenging for duplications, as it is unclear whether the duplicated sequence will appear 

in tandem with the original sequence, or will be inserted unpredictably into a distal region 

of the genome. Therefore, we were unable to determine the exact location of the 

identified duplications and whether they may be interrupting other important genomic 

sequences that could contribute to the neurodegenerative phenotypes. Further, 41 CNVs 

identified using DOC analysis of ONDRISeq data remain unvalidated with average DOC 

ratios, average z-scores, and p-values of unknown confidence. Confirmation of these 

CNVs using alternative methods will be required. Despite these limitations, DOC CNV 

detection with targeted NGS continues to produce comprehensive, high-quality data, 

while remaining more time- and cost-effective than the ‘gold-standard’ Sanger 
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sequencing or multiplex ligation-dependent probe amplification (MLPA) approaches 

(Iacocca et al., 2017). 

5.6. Conclusion 

In summary, we were able to identify potentially pathogenic, novel CNVs with high 

confidence in 6 individuals who were diagnosed with neurodegenerative disease or CVD. 

Further, we present an additional 41 potential CNVs that will be candidates for future 

replication studies. Although functional analyses are still required to determine how the 

CNVs may contribute to pathologic mechanisms of disease, the results highlight the need 

for further investigation into structural variants and their impact on neurodegenerative 

and cerebrovascular phenotypes, as they may account for a portion of the missing 

heritability observed across the individual diagnoses. Assessing the full spectrum of 

potential variants that can contribute to the disease states is imperative for a complete 

understanding of the genetic etiology of these highly prevalent and progressive 

conditions, which, in due course, will contribute to more accurate genetic diagnostic 

screening and therapeutic targeting. 
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Chapter 6 – Rare variation within GBA and its associations 
across multiple neurodegenerative diseases. 

The work presented in Chapter 6 has been edited from the original manuscript currently 

under review at Parkinsonism & Related Disorders for brevity and consistency 

throughout the entire Dissertation. 
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6.1. Abstract 

Background/Objective: Pathogenic homozygous variants in GBA are well known to 

cause Gaucher’s disease, while heterozygous variants are the most common genetic risk 

factor for Parkinson’s disease (PD). However, it is increasingly recognized that some 

neurodegenerative diseases may show overlap in terms of both clinical expression and 

underlying pathology, suggesting overlap of underlying genetic risk factors. Yet GBA has 

not been assessed in cohorts with neurodegeneration other than classic synucleinopathies. 

Here, we aimed to assess rare, likely pathogenic GBA variants across the six disease 

cohorts encompassed by the Ontario Neurodegenerative Disease Research Initiative 

(ONDRI), and determine whether GBA variants were associated with disease 

presentation. 

Methods and Results: We found that likely pathogenic GBA variants were significantly 

enriched in the PD cohort versus other ONDRI disease cohorts. However, we observed a 

high frequency of GBA variants across the entire sample, including among participants 

with Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal 

dementia (FTD), mild cognitive impairment (MCI), and cerebrovascular disease with or 

without cognitive impairment (CVD ± CI), compared to previously reported control 

cohorts, potentially indicative of underlying Lewy body co-pathologies previously 

unrecognized in the ONDRI participants. We also identified novel collections of rare 

variants in GBA exons five and six across all ONDRI disease phenotypes. However, GBA 

variant status was not associated with clinical phenotypes across the cohorts. 

Conclusion: Our findings indicate that diverse neurodegenerative diagnoses may have 

common underlying genetic risk factors — in this case, rare GBA variants — which could 

help with understanding the pathogenesis of these diseases and possible interventions. 
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6.2. Introduction 

The glucosylceramidase beta gene (GBA), located on chromosome 1q21, encodes the 

lysosomal enzyme glucocerebrosidase (GCase) that cleaves glucosylceramide within the 

cell membrane. Bi-allelic pathogenic GBA mutations cause Gaucher’s disease, an 

autosomal recessive disorder characterized by a range of non-neurological and 

neurological features, including dementia and parkinsonism. Moreover, mono-allelic or 

heterozygous GBA variants are a common risk factor for developing Parkinson’s disease 

(PD), with 5–25% of affected individuals carrying a pathogenic GBA variant (Sidransky 

et al., 2009). Pathogenic variants in GBA are also enriched in cohorts of patients with 

Lewy body disease (Mata et al., 2008; Shiner et al., 2016). 

PD is a widely prevalent neurodegenerative disease characterized by both motor 

symptoms, such as bradykinesia, resting tremor, postural instability, and rigidity, and 

non-motor symptoms, such as cognitive impairment, depression, autonomic dysfunction, 

impaired sleep, and hyposmia, although presentation is highly heterogeneous (Poewe et 

al., 2017). A signature brain pathology of PD is the presence of Lewy bodies — 

intraneuronal inclusions containing aggregates of α-synuclein — the accumulation of 

which may lead to neurotoxicity and depending on distribution can contribute to 

dementia in PD patients (Burre, Sharma, & Sudhof, 2015; Poewe et al., 2017). 

Although exactly how GBA variation contributes to the risk of PD development is 

unknown, a few hypotheses are being explored. First, GCase is a lysosomal hydrolase 

involved in the endolysosomal pathway, often implicated in PD pathology (Klein & 

Mazzulli, 2018), and its substrate, glucocerebroside, can accumulate in dopaminergic 

neurons, leading to cellular stress and possible interruption of dopamine production. 

Additionally, dysregulated GCase has also been associated with accumulation of α-

synuclein (Mazzulli et al., 2011). Compared to patients with idiopathic PD, GBA PD 

patients tend to develop onset of clinical symptoms at an earlier age, have a greater motor 

decline, and are more likely to present with non-motor symptoms, such as cognitive 

impairment (Blauwendraat, Nalls, & Singleton, 2020; Gan-Or, Liong, & Alcalay, 2018). 
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GBA is currently considered to be an important target for PD and Lewy body disease 

therapeutics, with one small positive open label trial of a GCase pharmacological 

chaperone published and several phase 2 clinical trials underway (ClinicalTrials.gov: 

NCT02941822; NCT02914366; NCT04588285) (Mullin et al., 2020); yet it remains 

unclear whether variants within the gene contribute to other neurodegenerative diagnoses. 

Furthermore, the substantial overlap between features of non-PD neurodegenerative 

diseases and the frequent co-occurrence of neuropathology — including α-synuclein 

(Cairns et al., 2015) — suggests potentially common genetic mechanisms such as GBA. 

As GBA has not been systematically studied in neurodegenerative diseases other than 

synucleinopathies its involvement in the presentation of various neurodegenerative 

diseases is not known (Gan-Or et al., 2018). 

To study the association of GBA variants with a range of neurodegenerative phenotypes, 

we used Sanger sequencing to identify all likely pathogenic non-synonymous rare 

variants in GBA harboured by individuals from the Ontario Neurodegenerative Disease 

Research Initiative (ONDRI) affected by: PD, Alzheimer’s disease (AD), amyotrophic 

lateral sclerosis (ALS), frontotemporal dementia (FTD), mild cognitive impairment 

(MCI), and cerebrovascular disease with or without cognitive impairment (CVD ± CI). 

Furthermore, we investigated the relationship between GBA variants and clinical features 

in these patient cohorts. 

6.3. Methods 

6.3.1. Study participants 

ONDRI enrolled 520 participants with neurodegenerative disease who provided informed 

consent, most of whom were in the early stages of disease progression (Farhan et al., 

2017; Sunderland et al., 2020). Of those participants, 519 provided blood samples, from 

which genomic DNA was isolated as previously described (Dilliott et al., 2018). Study 

ethics approval was obtained from the Research Ethics Boards at all recruitment sites. All 

participants provided written, informed consent in accordance with the Research Ethics 

Boards and regulatory requirements. Clinical data were obtained upon participant 

enrollment including demographics, ages of symptom onset, Montreal Cognitive 
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Assessment (MoCA), and Movement Disorder Society-Unified Parkinson’s Disease 

Rating Scale (MDS-UPDRS). 

Using the MDS-UPDRS, axial scores were calculated to represent motor severity across 

the disease cohorts. The score encompassed the summation of subscales, including those 

pertaining to difficulties with speech, swallowing, turning over in bed, freezing of gait, 

arising from chairs, gait, postural stability, and generalized posture (MDS-UPDRS 

subsections: 2.1, 2.3, 2.9, 2.13, 3.9, 3.10, 3.11, 3.12, and 3.13) (Bohnen et al., 2017; 

O'Gorman Tuura, Baumann, & Baumann-Vogel, 2018). Although there is no single scale 

fully appropriate for this purpose across diagnoses, the MDS-UPDRS was available for 

most participants and, aside from freezing of gait, all other metrics encompassed in the 

subscales can be observed in the full range of neurodegenerative diseases. 

6.3.2. Sanger sequencing 

All exons of GBA were Sanger sequenced in the ONDRI participants. Briefly, 

polymerase chain reaction (PCR) amplifications were carried out, yielding three 

amplicons that contained: 1) exons 1–4; 2) exons 5–7; and 3) exons 8–11; the most 

highly specific of previously published primers were used to provide specificity for 

isolating GBA (Mata et al., 2016). Sanger sequencing of each exon of GBA was 

performed using previously established primer sets (Mata et al., 2016). All 11 exons of 

GBA were sequenced, including 100 base pairs at each intron-exon boundary. Primer 

sequences are listed in Appendix H. 

6.3.3. Variant annotation and prioritization 

Variants were mapped to their genomic, mRNA, and protein coding positions using the 

NG_009783.1, NM_000157.4, and NP_000148.2 reference sequences, respectively 

(https://www.ncbi.nlm.nih.gov/gene/). Minor allele frequencies (MAFs) were obtained 

using the Genome Aggregation Database (gnomAD; v2.1 non-neuro; N = 114,704) 

(Karczewski et al., 2020). In silico predictions of variant deleteriousness were obtained 

from Combined Annotation Dependent Depletion Phred scoring (CADD Phred) (Kircher 

et al., 2014) and variant pathogenicity was investigated using ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/). 

https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/clinvar/
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All non-synonymous and splicing region variants were prioritized to identify those most 

likely to be pathogenic. Variants were first prioritized to include only those that were 

rare, with a MAF < 0.01 in gnomAD. Variants were further prioritized to identify those 

with at least one of the following: a) a CADD Phred score >15; b) a classification of 

likely pathogenic or pathogenic in ClinVar; or c) a sequence ontology of putative loss-of-

function (frameshift, splice-site donor, splice-site acceptor, and nonsense variants). All 

prioritized variants were referred to as “likely pathogenic variants.” Individuals who did 

and did not harbour likely pathogenic variants were referred to as “variant positive” and 

“variant negative,” respectively. 

6.3.4. Statistical analyses 

To determine whether individuals with the GBA likely pathogenic variants were more 

likely to be diagnosed with PD than one of the other ONDRI diseases, we used logistic 

regression, adjusted for age and sex. 

The contribution of GBA variant status to clinical outcomes was also compared between 

variant positive and variant negative participants across the ONDRI cohorts. A 

multivariate multiple regression model was used to estimate the influence of GBA variant 

status within the disease cohorts, adjusting for age and sex, on age of symptom onset, 

total MoCA score, and MDS-UPDRS axial score (Johnson & Wichern, 2001). The 

interaction terms between the two predictor variables of interest were included to identify 

any disease-specific effects of GBA carrier status. To use the sample mean of all 

participants, regardless of cohort, as a point of reference, disease cohorts were 

transformed using weighted-effect coding with the wec R package (v0.4-1) (Nieuwenhuis 

et al., 2017) as previously described (Dilliott et al., 2021; Te Grotenhuis et al., 2017). A 

multivariate regression, assessing the clinical outcomes between variant positive and 

variant negative participants in only the PD cohort confirmed results in the singular 

disease cohort. Wilks’ lambda assessed predictor contributions across the three clinical 

outcomes, where significance indicated that the corresponding predictor contribution was 

non-zero for at least one of the three outcomes. 
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Significance for the regression analyses was evaluated at an alpha-level of 0.05. All 

statistical analyses were performed using the R statistical software 3.6.0 (R Core Team, 

2014) in R Studio 1.1.463 and data visualization was performed using GraphPad Prism 9. 

6.4. Results 

6.4.1. Likely pathogenic GBA variants 

GBA was successfully sequenced in 515 of the 519 participants (Table 6.1), although 

data from at least one exon was missing for 12 of the sequenced participants (Appendix 

I). Of the sequenced participants, 195 (38%) harboured at least one of 47 unique GBA 

variants. Following variant prioritization, 74 participants were found to harbour at least 

one of 18 unique GBA likely pathogenic heterozygous variants (Table 6.2; Figure 6.1). 

Eight of the likely pathogenic variants were exclusively found within exons 5 and 6 and 

were each identified in a relatively high number of ONDRI participants (n = 4–46), 

resulting in ONDRI-wide MAFs ranging from 0.008–0.089, although each variant had an 

MAF in gnomAD ≤ 8.17E-05. Therefore, the variants were considered common among 

ONDRI participants. Further, 47 participants across all ONDRI cohorts harboured at least 

two of these variants together, hereafter referred to as complex variants (Figure 6.1). Of 

the seven identified complex variants, one consisted of two rare likely pathogenic 

variants (c.681T>G, p.N227K and c.689T>G, p.V230G), which was exclusively present 

in 15 PD participants. An additional two complex variants were each identified in a 

single PD patient. The remaining four complex variants were found within patients across 

the five other ONDRI cohorts, excluding PD (Table 6.3). 

Aside from the variants present within exons five and six, the most common variants 

found within the ONDRI cohort were c.C1223T, p.T408M and c.A1226G, p.N409S, 

which were present in ten and nine participants, respectively (ONDRI-wide MAFs = 

0.019 and 0.017, respectively; Table 6.2). 

Although GBA likely pathogenic variants were identified in all ONDRI cohorts, logistic 

regression confirmed that participants carrying GBA likely pathogenic variants were more 

likely to be in the PD cohort compared to the AD, ALS, CVD, FTD, and MCI cohorts 
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combined (OR = 1.793 [1.061–3.031], p = 0.0293). However, GBA complex variants 

were not found to display the same associations (OR = 1.614 [0.852–3.057], p = 0.1416). 
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Table 6.1 Demographics of the 515 ONDRI participants successfully sequenced for GBA and their clinical outcomes. 

  Participants  

[n (%)] 

Percent 

male (%) 

Age  

(mean ± sd) 

Participants with 

clinical data (n) 

Age of onset  

(mean ± sd)ᶧ 

MoCA  

(mean ± sd)ᶧ 

Axial score  

(mean ± sd)ᶧ 

AD        

 GBA (+) 4 (9.8%) 100 72.8 ± 4.7 4 68.3 ± 7.2 20.0 ± 2.9 1.75 ± 2.9 

 GBA (-) 37 (90.2%) 54.1 71.7 ± 8.3 35 67.0 ± 8.6 21.0 ± 2.7 1.31 ± 2.0 

ALS        

 GBA (+) 6 (15.4%) 50 65.8 ± 6.1 4 65.1 ± 4.3 24.5 ± 2.9 3.75 ± 4.9* 

 GBA (-) 33 (84.6%) 60.6 61.3 ± 9.2 26 59.4 ± 9.5 25.7 ± 2.9 7.73 ± 5.7 

CVD ± CI        

 GBA (+) 15 (9.3%) 73.3 67.5 ± 6.9 15 65.2 ± 8.0 25.5 ± 2.1 1.07 ± 1.8 

 GBA (-) 146 (90.7%) 67.8 69.4 ± 7.5 145 67.3 ± 8.5 25.2 ± 3.1 1.77 ± 2.5 

FTD        

 GBA (+) 8 (15.7%) 62.5 69.6 ± 5.0 8 65.3 ± 5.7 23.1 ± 3.5 7.12 ± 7.8 

 GBA (-) 43 (84.3%) 62.8 67.4 ± 7.5 42 62.5 ± 7.7 21.1 ± 4.0 5.57 ± 7.1 

MCI        

 GBA (+) 12 (14.3%) 75 69.9 ± 7.1 10 68.9 ± 6.6 23.4 ± 3.6 1.00 ± 2.2 

 GBA (-) 72 (85.7%) 50 70.8 ± 8.5 63 67.0 ± 9.5 23.3 ± 2.7 0.86 ± 1.6 

PD        

 GBA (+) 28 (20.1%) 71.4 66.9 ± 6.4 28 61.3 ± 6.6 25.7 ± 2.7 4.89 ± 3.5 

 GBA (-) 111 (79.9%) 79.3 68.1 ± 6.3 111 61.6 ± 6.7 25.9 ± 2.5 4.45 ± 3.4 

Clinical data were not available for all participants. ᶧdenotes clinical variables calculated based on the sample sizes outlined in “Participants with clinical data.” 

Axial scores were derived from the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale part three (MDS-UPDRS) with lower scores referring 

to less motor impairment. Multivariate multiple linear regression was used to assess the association between GBA variant status and age of symptom onset, 

MoCA scores, and axial scores. *p-value < 0.05. 

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD ± CI, cerebrovascular disease with or without cognitive impairment; FTD, 

frontotemporal dementia; GBA, glucosylceramidase beta gene; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment; n, sample size; PD, 

Parkinson’s disease; sd, standard deviation. 
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Table 6.2 Rare, likely deleterious variants identified within the GBA gene harboured by ONDRI participants. 

Variant 
Protein 

alteration 

Reference 

SNP identifier 
Exon 

Sequence 

ontology 

MAF 

(gnomAD) 

CADD 

Phred 

ClinVar 

(LP/P) 

Number of 

carriers 

c.115+1G>A NA rs104886460 2 Splice Donor 7.42E-05 32.0 GD and PD 1 

c.C475T p.R159W rs439898 5 Missense NA 25.1 GD 29 

c.T667C p.W223R rs61748906 6 Missense 9.63E-06 22.0 GD 4 

c.T681G p.N227K rs381418 6 Missense 8.17E-05 13.25 GD 19 

c.680_681delinsGG p.N227R NA 6 Missense NA NA Phenotype NP 28 

c.T689G p.V230G rs381427 6 Missense 1.44E-05 13.40 GD* 46 

c.T703C p.S235P rs1064644 6 Missense 9.61E-06 14.61 GD 31 

c.G721A p.G241R rs409652 6 Missense 3.84E-05 23.5 GD 31 

c.T754A p.F252I rs381737 6 Missense 4.36E-05 22.5 GD and PD* 32 

c.G887A p.R296Q rs78973108 7 Missense 4.36E-05 25.90 
LBD, PD, and 

GD 
1 

c.C1073T p.P358L NA 8 Missense NA 26.9 NA 1 

c.C1223T p.T408M rs75548401 8 Missense 5.89E-03 22.2 PD* 10 

c.A1226G p.N409S rs76763715 9 Missense 1.86E-03 23.8 LBD, PD, GD 9 

c.T1249G p.W417G rs1450426641 9 Missense NA 27.80 NA 1 

c.1265–1319del p.L422Pfs3X NA 9 
Frameshift 

deletion 
NA NA NA 1 

c.T1448C p.L483P rs421016 10 Missense 1.28E-03 23.6 NA 2 

c.G1483C p.A495P rs368060 10 Missense 1.44E-04 17.68 NA 1 

c.G1495C p.V499L rs369068553 10 Missense 5.77E-05 18.57 GD 1 

*Phenotype not explicitly listed as likely pathogenic or pathogenic in ClinVar, but the ClinVar entry includes many publications that indicate potential 

pathogenicity of the phenotype. “Phenotype NP” refers to the variant having a ClinVar designation of likely pathogenic or pathogenic, but no definitive 

phenotype being specified. 

Abbreviations: CADD Phred, Combined annotation dependent depletion Phred score; GBA, glucosylceramidase beta gene; GD, Gaucher’s disease; gnomAD, 

Genome Aggregation Database (v2.1 non-neuro); MAF, minor allele frequency; LBD, Lewy body dementia; LP, likely pathogenic; NA, not applicable; NP, not 

provided; ONDRI, Ontario Neurodegenerative Disease Research Initiative; PD, Parkinson’s disease; P, pathogenic; SNP, Single nucleotide polymorphism.  
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Table 6.3 Complex variants identified within GBA exons five and six harboured by ONDRI participants according to disease 

cohort. 

  Variant carriers in ONDRI 

Complex Variant AD ALS CVD ± CI FTD MCI PD 

c.681T>G, p.N227K; c.689T>G, p.V230G 0 0 0 0 0 15 

c.475C>T, p.R159W; c.680_681delinsGG, p.N227R;  

c.689T>G, p.V230G; c.703T>C, p.S235P; 

c.721G>A, p.G241R; c.754T>A, p.F252I 

1 4 9 4 7 0 

c.475C>T, p.R159W; c.680A>G, p.N227S; 

c.689T>G, p.V230G; c.703T>C, p.S235P; 

c.721G>A, p.G241R; c.754T>A, p.F252I 

0 0 0 0 1 0 

c.681T>G, p.N227K; c.689T>G, p.V230G; 

c.703T>C, p.S235P; c.721G>A, p.G241R; 

c.754T>A, p.F252I 

0 0 0 0 0 1 

c.681T>G, p.N227K; c.689T>G, p.V230G; 

c.754T>A, p.F252I 
0 0 0 0 0 1 

c.681T>G, p.N227K; c.703T>C, p.S235P; 

c.721G>A, p.G241R; c.754T>A, p.F252I 
0 0 1 0 0 0 

c.475C>T, p.R159W; c.667T>C, p.W223R; 

c.680_681delinsGG, p.N227R; 

c.689T>G, p.V230G; c.703T>C, p.S235P; 

c.721G>A, p.G241R; c.754T>A, p.F252I 

0 0 1 0 2 0 

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD ± CI, cerebrovascular disease with or without cognitive impairment; FTD, 

frontotemporal dementia; GBA, glucosylceramidase beta gene; MCI, mild cognitive impairment; ONDRI, Ontario Neurodegenerative Disease Research 

Initiative; PD, Parkinson’s disease. 
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Figure 6.1 Schematic of the likely pathogenic variants identified in GBA across 515 ONDRI participants. 
GBA variation was assessed using gold-standard Sanger sequencing. Variants were prioritized to identify those that were non-

synonymous, rare (MAF < 0.01, gnomAD v2.1 non-neuro), and displayed at least one of the following: a) a CADD Phred score >15; 

b) a classification of likely pathogenic or pathogenic in ClinVar or Franklin; or c) a sequence ontology of putative loss-of-function 

(frameshift, splice-site donor, and nonsense variants). Each box in the schematic represents an exon of GBA. “Component of complex 

variant” refers to variants that were identified in exons five and six in various combinations with each other in a relatively high 

number of ONDRI participants. Figure was made using https://proteinpaint.stjude.org/.   

https://proteinpaint.stjude.org/
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6.4.2. Associations with clinical outcomes 

Data for all three clinical outcomes were available for 491 of the ONDRI participants 

who had been sequenced for GBA (Table 6.1). The Wilks’ lambda test confirmed that the 

contribution of the disease cohort and GBA variant status interaction was significant (Λ = 

0.928, p = 0.0021); among participants in the ALS cohort, variant positive status 

negatively associated with MDS-UPDRS axial scores (β = -4.670, SE = 1.870, p = 

0.0129). There were no further associations between GBA variant status and the clinical 

outcomes within the ONDRI cohorts, nor any associations between GBA complex variant 

status and the clinical outcomes. 

6.5. Discussion 

Here, we evaluated the contribution of GBA genetic variation across a spectrum of 

neurodegenerative disease and CVD phenotypes. We found that: 1) GBA-likely 

pathogenic variants were associated with diagnosis and enrollment in the PD cohort 

compared to the other ONDRI disease cohorts; 2) GBA likely pathogenic variants were 

still identified across all ONDRI disease cohorts; 3) there were intriguing clusters of GBA 

likely pathogenic variants in exons five and six — referred to as “complex variants” — 

across all ONDRI participants; and 4) there was not an obvious relationship between 

GBA and clinical phenotypes across the neurodegenerative cohorts. 

Of the 18 likely pathogenic variants identified, eight were previously associated with 

only Gaucher’s disease, one was previously associated with only PD, and four were 

previously associated with both Gaucher’s disease and PD (Table 6.2). Individuals 

carrying GBA likely pathogenic variants were more likely to be in the PD cohort of 

ONDRI compared to the remaining five ONDRI disease cohorts. Nonetheless, likely 

pathogenic variants were identified across all study participants. Thus, the variants may 

represent novel genetic associations for neurodegenerative disease. 

Although control samples sequenced with the same methodology were unavailable for 

these analyses, all variants were considered rare in the gnomAD non-neurological cohort 

(MAF < 0.01) and previous reports have suggested that the frequency of heterozygous 
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likely pathogenic/pathogenic GBA variants range from 0–4.0% in elderly control cohorts, 

dependent on ancestry and spectrum of variants screened (Sato et al., 2005; Sidransky et 

al., 2009). By comparison, the cohort with the lowest GBA variant frequency in ONDRI 

was the CVD ± CI cohort with a frequency of 9.3%, over double that of the highest 

frequency in previously reported controls (Sato et al., 2005; Sidransky et al., 2009), 

leaving us to hypothesize that the GBA likely pathogenic variants identified herein are 

likely contributing to the spectrum of neurodegenerative diseases. 

The markedly high frequency of GBA likely pathogenic variants across all ONDRI 

disease cohorts suggests possible undetected pathologic connections between these 

disease cohorts. Importantly, when GBA is mutated, decreased function of the encoded 

GCase — a lysosomal hydrolase — causes lysosomal dysfunction, a pathway implicated 

in the pathologic mechanism of many neurodegenerative diseases (Root, Merino, 

Nuckols, Johnson, & Kukar, 2021), and suggests the variants we observed in GBA may 

be contributing to disease risk across the neurodegenerative diagnoses. Additionally, 

pathogenic GBA variants were previously associated with increased prominence of Lewy 

bodies in PD patients, as well as increased risk of Lewy body dementia (Mata et al., 

2008; Nalls et al., 2013). Many cases of co-pathology between various neurodegenerative 

diagnoses and Lewy body dementia have been identified — including Lewy bodies and 

general α-synuclein aggregation in patients with AD (Cairns et al., 2015; Savica et al., 

2019), ALS (Ayaki et al., 2018; Doherty, Bird, & Leverenz, 2004), and FTD (Forrest et 

al., 2019) — which can remain undetected until post-mortem pathologic analysis. 

Patients with confirmed AD and Lewy body dementia co-pathology are significantly 

more likely to carry GBA mutations than controls (Tsuang et al., 2012). Therefore, while 

it remains possible that the GBA variants increase vulnerability to multiple 

neurodegenerative diseases through common pathogenic mechanisms such as lysosomal 

dysfunction, the variants may also suggest a higher admixture of co-pathology than was 

previously appreciated. Post-mortem analyses will be necessary for validation of this 

hypothesis. 

Of the GBA variants identified, a particularly interesting — and relatively novel — 

pattern arose in exons five and six, resulting in seven distinct complex variants identified 
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across 47 participants. One of the complex variants was observed in 15 patients with PD, 

namely the combination of p.N227K and p.V230G. While the variant p.N227K has 

previously only been associated with Gaucher’s disease (Germain, Puech, Caillaud, 

Kahn, & Poenaru, 1998; Stone et al., 2000), p.V230G has been associated with Gaucher’s 

disease and has also been observed in individuals with PD and with Lewy body dementia 

(Du, Ding, Chen, Guo, & Wang, 2018; Mitsui et al., 2009). Whether both variants or only 

one are contributing to PD development remains to be determined. Interestingly, both 

variants were also observed in combination with other GBA variants in ONDRI 

participants in other disease cohorts, as well as in the two other PD participants carrying 

complex variants. 

Four complex variants were only identified in the AD, ALS, CVD, FTD, and MCI 

cohorts. Although the complex variants found among the ONDRI participants have not 

been previously reported in the specific combinations identified, similar patterns of 

complex variants in exons five and six have been observed on occasion in patients with 

both Gaucher’s disease (Sheth et al., 2019) and PD (Mitsui et al., 2009). Yet, the high 

frequency and complex patterns of these variants in ONDRI subjects remains novel. 

Importantly, a pseudogene located downstream of GBA — glucosylceramidase beta 

pseudogene 1 (GBAP) — might affect primer alignment during sequencing, resulting in 

false positive variant calls. However, because exons 5 through 7 were amplified together 

in a single fragment with highly specific PCR primers, and no complex variants included 

likely pathogenic variants in exon 7, despite the exon’s dissimilarity of sequence with 

GBAP, we are confident that the results are not due to artefacts related to sequencing of 

the pseudogene. The Sanger sequencing method employed was limited in its ability to 

discern whether the identified variants within each complex variant were in cis or trans, 

although variants in trans — i.e. compound heterozygous variants — might have been 

expected to result in Gaucher’s disease. The self-reported ethnicities and family disease 

histories of all participants harbouring the complex variants were reviewed and no 

distinct patterns stood out. It has previously been proposed that other complex variants 

within GBA, particularly within exons 9 and 10, could be the result of small-scale 

rearrangements between GBA and GBAP, which may be a potential mechanism 

underlying the complex variants we observed herein (Eyal, Wilder, & Horowitz, 1990). 
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Ultimately, whether the complex variants indicate a rearrangement and how they may 

contribute to the spectrum of neurodegenerative diseases must be further explored. 

Although we expected GBA variation might be associated with clinical phenotypes, such 

as earlier symptom onset, lower cognitive performance, and increased motor impairment, 

no definitive differences were observed between variant positive and variant negative 

ONDRI participants. Surprisingly, these results were similarly not observed within the 

PD cohort when assessed alone (Blauwendraat et al., 2020; Gan-Or et al., 2018), although 

follow up analyses with longitudinal data are necessary to determine whether variant 

positive participants will progress through their disease course differently than those 

variant negative. The absence of association was potentially a result of our relatively 

small sample sizes. The only significant result observed among quantitative intermediate 

traits was a lower axial score, corresponding to less motor impairment, in GBA variant 

positive participants with ALS compared with variant negative participants. However, 

only four ALS participants were variant-positive and standard deviation of the axial score 

was relatively large, so we are cautious not to draw conclusions from this result. Further 

analysis of the contribution of GBA variation to the clinical spectrum of various 

neurodegenerative diseases using larger sample sizes is required. 

We recognize that this analysis has a few limitations. Control samples were not available 

for the analyses to compare GBA variant enrichment in the ONDRI cohorts to healthy 

elderly individuals. Yet all of the GBA likely pathogenic variants reported herein were 

rare in the general population and estimates of variant frequencies in other studies’ 

control samples were readily available (Sato et al., 2005; Sidransky et al., 2009). Further, 

the entire GBA gene could not be sequenced in four ONDRI participants, and individual 

exons could not be sequenced in 12 additional participants. At least one clinical metric 

was missing for 24 participants who were subsequently excluded from the intermediate 

phenotype analysis. The majority of missing variables were due to lack of relevant 

variables from the MDS-UPDRS Part 3 (95.8% of missing data), and most of the 

individuals missing the clinical data were from the AD, MCI, or ALS cohorts (91.7% of 

participants missing data). Finally, a subset of likely pathogenic variants has not been 

previously associated with PD, or other neurodegenerative diseases, and functional 
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analyses are required to validate the variants’ pathogenicity; however, a portion of these 

variants has been previously associated with Gaucher’s disease, and the remaining 

variants were determined to be putative loss-of-function variants, or have an in silico 

prediction indicating they are likely deleterious (CADD Phred score > 15). 

6.6. Conclusion 

The analyses presented herein demonstrate that potentially deleterious GBA variation 

may be more prevalent among various neurodegenerative conditions than previously 

known. Although individuals with GBA likely pathogenic variants were significantly 

more likely to be in the PD cohort than the other ONDRI disease cohorts, variant 

frequencies in all ONDRI cohorts were remarkably high in contrast to previously 

reported elderly control cohorts (Sato et al., 2005; Sidransky et al., 2009). We 

hypothesize that this enrichment of GBA variation may indicate underlying Lewy body 

co-pathologies previously unrecognized among ONDRI participants or common 

pathogenic mechanisms such as lysosomal dysfunction. We also report a relatively high 

frequency of complex variants observed in GBA exons 5 and 6 across the 

neurodegenerative disease and CVD cohorts, which may indicate small-scale 

rearrangements with the GBA pseudogene and warrant further exploration. Our findings 

highlight the complexity and overlap of genetic factors contributing to various 

neurodegenerative diagnoses.  
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7.1. Abstract 

Background/Objective: White matter hyperintensities (WMH) on MRI may influence 

clinical presentation in patients with Parkinson’s disease (PD), although their significance 

and pathophysiological origins remain unresolved. Studies examining WMH have 

identified pathogenic variants in NOTCH3 as an underlying cause of inherited forms of 

cerebral small vessel disease. 

Methods and Results: We examined NOTCH3 variants, WMH volumes, and clinical 

correlates, in 139 PD participants in the Ontario Neurodegenerative Disease Research 

Initiative (ONDRI) cohort. We identified 13 PD participants (~9%) with rare (<1% of 

general population), non-synonymous NOTCH3 variants. Bayesian linear modelling 

demonstrated a doubling of WMH between variant negative and positive participants (3.1 

vs. 6.9mL), with large effect sizes for periventricular WMH (d=0.8) and lacunes (d=1.2). 

Negative correlations were observed between WMH and global cognition (r=-0.2). 

Conclusion: The NOTCH3 rare variants in PD may significantly contribute to increased 

WMH burden, which in turn may negatively influence cognition. 
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7.2. Introduction 

White matter hyperintensities (WMH), commonly associated with aging and cerebral 

small vessel disease (Wardlaw et al., 2013), have been observed on MRI of Parkinson’s 

disease (PD) patients (Bohnen & Albin, 2011); however, their exact role in clinical 

presentation and disease progression remains controversial. Although some studies 

demonstrate WMH to be significantly associated with greater burden of motor 

dysfunction, mild cognitive impairment, and progression to dementia (Dunet et al., 2019; 

Foo et al., 2016; Kandiah et al., 2013; Slawek et al., 2013; Toda, Iijima, & Kitagawa, 

2019), other studies have found no independent association beyond that of normal aging 

(Acharya, Bouchard, Emery, & Camicioli, 2007; Hanning et al., 2019; Mak et al., 2015; 

Pozorski et al., 2019; Ten Harmsen et al., 2018; Vesely, Antonini, & Rektor, 2016). 

Cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL) is a monogenic form of cerebral small vessel disease 

with hallmark signs of WMH. CADASIL is caused by heterozygous pathogenic 

mutations in the Notch Receptor 3 gene (NOTCH3) located on chromosome 19p13 

(Joutel et al., 1996), which encodes a transmembrane receptor in smooth muscle cells and 

pericytes (Joutel et al., 2000). The protein’s extracellular domain comprises 34 epidermal 

growth factor (EGF)-like repeats that each have six cysteines forming disulphide bonds 

integral to Notch3’s tertiary structure and overall function (Sakamoto, Chao, Katsube, & 

Yamaguchi, 2005). Traditionally, pathogenic variants for CADASIL were considered 

those that occurred in an EGF-like repeat — most commonly, EGF-like repeats 1–6 — 

and contributed to the loss or gain of a cysteine residue (Joutel et al., 1997). These 

variants disrupt disulphide bridging, leading to protein misfolding, and ultimately Notch3 

protein aggregation in smooth muscle cell walls, including within the brain’s vasculature 

(Joutel et al., 2010; Opherk et al., 2009). However, NOTCH3 variants pathogenic for 

diffuse WMH and the CADASIL phenotype have also been discovered within EGF-like 

repeats not affecting cysteine residues (Muino et al., 2017). In addition, variants outside 

the 34 EGF-like repeats may contribute to milder cerebrovascular disease (Schmidt et al., 

2011). There is also evidence that some CADASIL patients can present with late-onset, 

slowly progressive parkinsonism. In general, these cases are not levodopa responsive, 
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have more falls, and display greater levels of cognitive impairment (Ragno et al., 2013). 

However, the contribution of NOTCH3 variants to idiopathic PD has not been previously 

described. 

Here we examine the presence of NOTCH3 variants and WMH volumes, along with their 

clinical correlates, in PD participants from the Ontario Neurodegenerative Disease 

Research Initiative (ONDRI) cohort.  

7.3. Methods 

7.3.1. Study participants and clinical assessments 

Participants were recruited from ONDRI (http://ondri.ca/) (S. M. K. Farhan et al., 2017), 

a multi-centre cohort study that included PD participants who met criteria for idiopathic 

PD defined by the United Kingdom’s Parkinson’s Disease Society Brain Bank clinical 

diagnostic criteria at the time of enrollment (Hughes, Daniel, Kilford, & Lees, 1992). 

Participants had a good and sustained response to dopaminergic therapy and had a Hoehn 

and Yahr stage 1–3 in the “on” medication state. Study participants gave written 

informed consent in accordance with each site’s institutional Research Ethics Board. 

Standard clinical and demographic assessments including the Movement Disorder 

Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008), 

the Montreal Cognitive Assessment tool (MoCA) (Nasreddine et al., 2005), hemoglobin 

A1C (HbA1C), high- and low-density lipoproteins (HDL/LDL), seated/standing systolic 

and diastolic blood pressure (BP), hip/waist ratio, and clinical history of diabetes and 

hypertension, were all collected and underwent thorough quality control processes 

(Sunderland et al., 2019). 

7.3.2. Genetic analysis 

Blood-derived genomic DNA samples were sequenced using ONDRISeq, a custom-

designed next-generation sequencing panel that targets 80 genes associated with 

Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, PD, and/or 

cerebrovascular disease (e.g. NOTCH3). Importantly, the ONDRISeq panel has been 

http://ondri.ca/
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previously validated (S.M.K. Farhan et al., 2016), and detailed sequencing and quality 

control methodology has been described (Dilliott et al., 2018). 

Variants identified within NOTCH3 with an allelic depth of at least 10x were prioritized 

if they were nonsynonymous in sequence ontology, were of either heterozygous or 

homozygous zygosity, and appeared at a minor allele frequency (MAF) of less than 1% 

in the Exome Aggregation Consortium database (ExAC) (Lek et al., 2016). Variants were 

further prioritized if they displayed evidence of being likely deleterious, either with an in 

silico Combined Annotation Dependent Depletion (CADD) Phred score of >20 (top 1% 

of deleterious variants in the human genome) or if previously associated with disease by 

the Human Gene Mutation Database (HGMD) (Stenson et al., 2014) or ClinVar 

(Landrum et al., 2016). Individuals that carried at least one prioritized NOTCH3 variant 

are hereafter referred to as NOTCH3 variant positive, whereas those who did not carry a 

variant are referred to as NOTCH3 variant negative. 

Due to the association between the apolipoprotein E (APOE) E2 allele and increased 

WMH volume in individuals with CADASIL (Gesierich et al., 2016), APOE genotypes 

were obtained from the ONDRISeq data. A customized ANNOVAR script was used to 

extract calls for the APOE variants rs429358(CT):p.Cys130Arg and 

rs7412(CT):p.Arg176Cys and map to the respective APOE genotype for each participant, 

as previously described (Dilliott et al., 2019). 

7.3.3. Neuroimaging 

Harmonized with the Canadian Dementia Imaging Protocol (Duchesne et al., 2019), 3T 

MRI was performed at each ONDRI site and included the following sequences: 3D T1-

weighted (T1), T2-weighted fluid attenuated inversion recovery (FLAIR), and an 

interleaved T2-weighted (T2) and proton density. MRI scans were fully evaluated by a 

neuroradiologist (S.S.) for incidental findings. MRI-based volumetrics were acquired 

using previously published methods, which included quantification of WMH volumes 

and an individualized measure of head size obtained from the supra-tentorial intracranial 

volume (ST-TIV) (Ramirez et al., 2020; Ramirez et al., 2014). 
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7.3.4. Statistical analysis 

Our primary aims were to determine the prevalence of NOTCH3 variants in the ONDRI 

PD cohort, and to test the hypothesis that WMH volumes were significantly higher in the 

participants with NOTCH3 variants, after controlling for hypertension, diabetes, age, sex 

and the presence of the APOE E2 allele (Adib-Samii, Brice, Martin, & Markus, 2010). 

Individual differences in head size and the highly skewed distribution of WMH volumes 

were adjusted for with a natural log transform and ST-TIV volumes (DeCarli et al., 2005; 

Ramirez et al., 2016). To account for conventional risk factors and presence of the APOE 

E2 allele (Raz, Yang, Dahle, & Land, 2012), we found significant bivariate associations 

with age, male sex, and clinical history of hypertension and diabetes (odds ratios ranging 

from 0.72 to 1.41). Based on associations between these variables, we calculated an 

aggregate of the presumed risk factors. In order to estimate the magnitude of association 

between NOTCH3 variation and WMH volume, we fit a Bayesian linear model (Sturtz, 

Ligges, & Gelman, 2005). Graphical diagnostics were examined to ensure successful 

convergence of the simulation. Thus, the outcome measure was log-transformed, head-

size adjusted total WMH volume. Regressor variables included an aggregate of the risk 

factors, an APOE E2 allele indicator variable, and a NOTCH3 variant indicator variable. 

An uninformative prior normal distribution (μ = 0, σ = 1,000) was specified for each of 

the intercept and regression coefficients and a gamma distribution for residual variance. 

Cohen’s d and Cramér's ф (for categorical variables) effect sizes according to NOTCH3 

status were estimated for MRI-derived whole brain volumetrics and clinical measures 

(HbA1C, HDL/LDL, BP, hip/waist). Across the entire sample, Pearson r correlations 

between WMH and tremor, postural instability/gait, and motor phenotype (tremor 

dominant vs. postural instability/gait disorder) were also examined (Stebbins et al., 

2013). Statistical analyses were performed using the R package and R2WinBUGS 

package (R Core Team, 2014; Sturtz et al., 2005). Data visualization was performed 

using RStudio version 1.2.1335 (RStudio, Inc., Boston, MA) and ITKSnap (Yushkevich 

et al., 2006).   
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7.4. Results 

7.4.1. Study participants and NOTCH3 variants 

ONDRI enrolled 139 PD participants that had blood samples obtained for DNA isolation. 

Participant demographics, MRI-derived whole brain volumetrics, clinical measures, and 

effect sizes according to NOTCH3 status are compared in Table 7.1.  

In total, 13 of the 139 (9%) PD participants harboured rare, non-synonymous, likely 

deleterious NOTCH3 variants. Twelve participants each harboured a single variant, and 

one participant harboured two variants (c.3704A>T: p.His1235Leu and c.6201dupC: 

p.Gly2068Argfs). In total, there were thirteen unique variants, with only one variant 

identified in two different individuals (Table 7.2). Eight of the prioritized variants were 

previously associated with disease according to HGMD or ClinVar. Importantly, three of 

the variants were cysteine modifying — one identified in EGF-like repeat 14 and two 

identified in EGF-like repeat 31. 
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Table 7.1 Study participant demographics, raw whole brain volumetrics obtained 

from MRI, and clinical measures commonly associated with vascular risk. 

  

NOTCH3  

Variant Negative 

NOTCH3 

Variant Positive 

Effect 

Size † 

Demographics       

N 126 13 -- 

Sex, M/F 99/27 9/4 0.07 

Age 67.7 (6.4) 69.4 (6.3) 0.27 

Education, years 15.5 (2.7) 15.5 (2.5) 0.02 

MoCA 25.7 (2.6) 27.1 (1.9) 0.13 

Modified Rankin Score 1.7 (0.7) 1.6 (0.7) 0.53 

Whole brain volumetrics       

Total Intracranial Capacity, mL 1313.7 (126.1) 1335.1 (139.4) 0.17 

White matter, mL 446.0 (61.3) 446.8 (65.0) 0.01 

Gray matter, mL 573.6 (47.3) 583.0 (46.8) 0.20 

Sulcal cerebrospinal fluid, mL 251.2 (53.1) 257.6 (54.5) 0.12 

Ventricular cerebrospinal fluid, mL 38.2 (19.6) 38.2 (17.9) 0.00 

Periventricular WMH, mm3 4079.0 (5140.9) 8379.2 (8473.1) 0.78* 

Deep WMH, mm3 484.4 (764.3) 657.8 (909.1) 0.22 

Lacunes, mm3 82.5 (183.1) 485.0 (947.2) 1.22* 

Enlarged PVS, mm3 52.3 (52.9) 59.6 (80.8) 0.13 

Clinical measures       

TD/PIGD Ratio (MDS-UPDRS)a 1.1 (0.2) 1.1 (0.2) 0.15 

Blood glucose: HbA1C, % 5.7 (0.8) 5.7 (0.3) 0.07 

Cholesterol, mmol/L 4.6 (1.1) 4.6 (1.1) 0.01 

Low density lipoprotein, mmol/L 2.6 (0.9)b 2.5 (0.8) 0.12 

High density lipoprotein, mmol/L 1.4 (0.4)b 1.6 (0.4) 0.45 

Cholesterol/HDL ratio 3.4 (0.9)b 2.9 (0.4) 0.59 

BP Systolic (seated) 131.1 (20.0) 136.6 (19.5) 0.28 

BP Diastolic (seated) 78.0 (10.6) 78.0 (8.3) 0.01 

BP Systolic (standing) 126.1 (20.4) 126.2 (15.3) 0.00 

BP Diastolic (standing) 78.3 (11.6) 76.3 (8.3) 0.17 

Hip/Waist Ratio 1.8 (3.9)a 2.2 (5.5) 0.04 
Note that raw volumes are reported for transparency, statistical analyses were performed on risk adjusted, 

head-size adjusted, normalized values. 

† Cohen's d for continuous variables, Cramér's ф for the sex variable. Large effect sizes are bold and 

highlighted with an asterisk (*).  
a Tremor dominant (TD) vs postural instability/gait difficulty (PIGD) ratio.34 
b Data available in 125/126 individuals. 

Abbreviations: MoCA, Montreal Cognitive Assessment tool; PVS, perivascular spaces; MDS-UPDRS, 

Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; HbA1C, hemoglobin A1C; BP, 

blood pressure. 
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Table 7.2 Prioritized non-synonymous rare variants identified within the NOTCH3 gene carried by 13 individuals with PD. 

cDNA 

Alteration 

Protein 

Alteration 

Reference SNP 

Identifier 
Exon EGFr 

Sequence 

Ontology 

MAF 

(ExAC) 

CADD 

Phred 

Previous 

Disease 

Association 

Participants 

Harbouring 

Variant 

c.884T>G p.Leu295Arg rs143117018 6 7 Missense 1.89E-04 22.9 NA 1 

c.1490C>T p.Ser497Leu rs114207045  9 12 Missense 5.69E-03 23.3 WML1 1 

c.1732C>T p.Arg578Cys rs769773673 11 14 Missense 4.12E-05 30 CADASIL2,3 1 

c.1931T>A p.Val644Asp rs148046938 12 16 Missense 7.00E-04 24.2 WML4 1 

c.2978C>T p.Thr993Met rs371278091 18 25 Missense 8.28E-06 26.5 NA 1 

c.3664T>G p.Cys1222Gly rs199638166 22 31 Missense 7.41E-05 25.6 CADASIL5 1 

c.3691C>T p.Arg1231Cys rs201680145 22 31 Missense 9.88E-04 30 CADASIL2,5 1 

c.3704A>T p.His1235Leu rs55882518 22 NA Missense 3.95E-03 14.8 WML1 1 

c.4552C>A p.Leu1518Met rs141320511 25 NA Missense 3.17E-03 27.8 WML1 1 

c.5510G>A p.Arg1837His rs138265894 30 NA Missense 8.48E-04 35 NA 1 

c.5854G>A p.Val1952Met rs115582213 32 NA Missense 8.47E-03 34 AD modifier6 2 

c.6025C>T p.Arg2009Trp rs151322770 33 NA Missense 4.12E-05 33 NA 1 

c.6201dupC p.Gly2068Argfs NA 33 NA 
Frameshift 

insertion 
NA 32 NA 1 

1(Schmidt et al., 2011); 2(Joutel et al., 1997); 3(Yoon et al., 2015); 4(Ungaro et al., 2009); 5(Rutten et al., 2016); 6(Guerreiro et al., 2012). 

Abbreviations: AD, Alzheimer’s disease; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; cDNA, 

coding DNA; EGFr, epidermal growth factor-like repeat; ExAC, Exome Aggregation Consortium; MAF, minor allele frequency; NA, not applicable; WML, 

white matter lesions. Previous disease associations were defined based on the Human Gene Mutation Database. 
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7.4.2. Associations between NOTCH3 and cerebrovascular burden  

Periventricular WMH volumes were greater in the NOTCH3 variant positive group 

(8379.2mm3 vs. 4079.0mm3, Cohen’s d = 0.78). Lacunar volumes were also greater in 

the NOTCH3 variant positive group (485.0 mm3 vs. 82.6mm3, Cohen’s d = 1.22). The 

FLAIR MRI of a NOTCH3 variant positive PD participant with diffuse WMH is shown 

in Figure 7.1. 

There was an association between the aggregate risk factor and WMH volumes (Figure 

7.2). There were two NOTCH3 variant positive participants — one harbouring c.884T>G: 

p.Leu295Arg and one harbouring c.1931T>A: p.Val644Asp — with high aggregate risk 

factor and relatively low WMH. They might be expected to exert a negative bias on the 

estimate of the magnitude of association between NOTCH3 and WMH. In order to 

estimate the strength of evidence for a conditional association between NOTCH3 and log-

adjusted WMH, we calculated Bayes factor using the BayesFactor package in R. The 

magnitude of the multiplicative effect of NOTCH3 on WMH volume was about 2.2 

(between 1.2 and 3.7, 95% probability). An approximate doubling of total WMH volume 

between NOTCH3 variant negative (mean ~3.1 mL) and NOTCH3 variant positive (mean 

~6.9 mL) was determined at the midpoint of the aggregate risk factor. 

Scatter plots showing log WMH volumes (head size corrected) versus clinical factors for 

the entire PD sample are shown in Figure 7.3. There was an inverse correlation between 

WMH volume and global cognition (r=-0.19, C.I: -0.32, -0.02), but no other significant 

associations were demonstrated. 

Upon follow-up, comprehensive clinical assessment resulted in the revision of the original 

diagnosis of one NOTCH3 variant negative participant who was subsequently removed 

from the study. Re-analysis of the data did not significantly impact the findings: epsilon 

changed from 0.8–1.3, to 0.8–1.4; medians and credible regions describing associations 

between NOTCH3, risk score, and APOE E2 and head-size adjusted total WMH volume 

were unchanged. 
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Figure 7.1 Axial view of fluid-attenuated inversion recovery (FLAIR) MRI showing 

multiple diffuse WMH (bright) in a NOTCH3 variant positive Parkinson’s disease 

participant from the Ontario Neurodegenerative Disease Research Initiative 

(ONDRI). 

White matter hyperintensities (WMHs) are indicated by the red arrows. 
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Figure 7.2 Scatter plot of WMH (head-size adjusted) versus aggregate risk score. 

NOTCH3 variant positive participants are indicated in red; non-parametric smoothers 

(solid) and additive linear fit (dotted) are superimposed. 
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Figure 7.3 Scatter plots showing head-size corrected log WMH volume (x-axis) by 

global cognition (A), tremor (B), motor phenotype (tremor dominant vs. postural 

instability/gait disorder; C), and postural instability/gait (D). 
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7.5. Discussion 

The main finding of this study was that PD participants carrying prioritized NOTCH3 

variants had double the WMH volumes compared to NOTCH3 variant negative 

participants. These findings were based on data adjusted for head size, age, vascular risk 

factors and the presence of the APOE E2 allele. To our knowledge, this is the first report 

suggesting that rare NOTCH3 variants may be relevant in the neuropathology associated 

with idiopathic PD. 

The 13 unique NOTCH3 variants identified have not undergone functional analysis to 

confirm pathogenicity. However, using a non-synonymous, rare variant prioritization 

strategy, along with pathogenicity predictions based on in silico analysis or previous 

association with disease, we aimed to select variants most likely to contribute to disease 

presentation. Only one variant had a CADD Phred score below 20 (top 1% of deleterious 

variants) and eight of the variants were previously identified in individuals with 

CADASIL, WMH or Alzheimer’s disease. Yet, ten of the variants were not cysteine-

modifying and six were located outside of the EGF-like repeats, both of which would be 

atypical for CADASIL-related variants. Previously, it was hypothesized that these 

atypical NOTCH3 variants may contribute to more mild presentations of CADASIL and 

cerebrovascular disease (Muino et al., 2017; Ragno et al., 2013; Ungaro et al., 2009). 

Rather than contributing to the patients’ PD pathology directly, NOTCH3 variants may 

modify disease presentation by influencing WMH burden, but further analysis is 

required. 

Three individuals carried cysteine-modifying NOTCH3 variants within an EGF-like 

repeat that have been previously associated with the CADASIL phenotype (Rutten et al., 

2016; Yoon et al., 2015). These participants were individually analyzed and only one 

(carrier of c.3691C>T: p.Arg1231Cys) stood out as having more severe cerebrovascular 

burden, consistently appearing in the top 10 worst cases of total, periventricular and deep 

WMH, and with a higher burden of lacunes and enlarged perivascular spaces. 

Interestingly, the individual with the greatest amount of vascular burden carried a variant 
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in EGF-like repeat 25 that is not cysteine-altering (c.2978C>T: p.The993Met) and has not 

been previously associated with disease. Further, this individual harboured an APOE 

E3/3 genotype. Additional analysis regarding the pathogenicity of this NOTCH3 variant 

is needed. 

Although the sample size and variability limited our statistical ability to analyze 

differences in periventricular/deep WMH, lacunes, and enlarged perivascular spaces 

(PVS), the effect sizes shown in Table 7.1 suggest NOTCH3 variant positive participants 

had greater burden of periventricular (8.4mL vs. 4.1mL, Cohen’s d = 0.78) but not deep 

WMH, and lacunes (485mm3 vs. 82.6mm3, Cohen’s d = 1.22) but not PVS. Apart from 

some limited case reports (Mestre et al., 2014), previous studies have not examined 

lacunes and PVS burden in PD. Future studies with larger sample sizes are needed to 

validate these observations in our study sample. 

The inverse correlation between WMH and cognition across the entire sample lends some 

support to previous studies that suggest WMH influence the cognitive presentation of PD; 

however, in the absence of a control group and long-term follow-up data, our correlations 

should be interpreted with caution. A recent cross-sectional analysis of the Dutch 

PROPARK cohort (n=163) demonstrated a relationship between visuospatial functioning 

and periventricular WMH in PD patients (de Schipper et al., 2019), while a retrospective 

analysis of a different Dutch cohort (n=204) found no relationship with self-reported 

cognition (Ten Harmsen et al., 2018). Longitudinally, the PPMI study reported that 

higher baseline WMH burden was associated with future cognitive decline and cortical 

thinning over a four year period (Dadar et al., 2018), while the DeNoPa study reported no 

modifying effects on cognitive function with a two year follow-up period (Hanning et al., 

2019). Another smaller study found various relationships with WMH and brain atrophy, 

but age-adjustment eliminated the correlations, further emphasizing the well-established 

finding that WMH are an age-related phenomenon (Acharya et al., 2007). The 

heterogeneity of these reports is further aggravated by the difficulty interpreting findings 

from studies using different cognitive assessments tools and approaches to measure 

WMH burden (Dunet et al., 2019; Vesely et al., 2016).   
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The main strength of our study was the ability to draw data from ONDRI’s study design. 

ONDRI implemented a standardized multi-centre, multi-platform approach which 

enabled the volumetric analysis of MRI-based neurovascular biomarkers and genomic 

information using validated quantification methods in their respective fields. As 

previously mentioned, the main limitations include the limited statistical power, the lack 

of a normative sample, and the cross-sectional nature of the study. 

7.6. Conclusion 

Here, we present the first report of rare NOTCH3 variants potentially influencing 

cerebrovascular sub-phenotypes in individuals with idiopathic PD. As ONDRI’s 

longitudinal data becomes available, serial MRI processing and long-term disease 

tracking, combined with a more comprehensive analysis of the neuropsychological 

profile of our participants, will be possible. The findings reported here should encourage 

further studies on the occurrence of NOTCH3 variants in PD and their clinical, imaging 

and pathological correlates. 
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Chapter 8 – Discussion 

8.1. Overview 

Within this Dissertation, I have comprehensively characterized the genetic contributors to 

various neurodegenerative diseases, including: 1) Alzheimer’s disease (AD); 2) 

amyotrophic lateral sclerosis (ALS); 3) frontotemporal dementia (FTD); 4) mild 

cognitive impairment (MCI); and 5) Parkinson’s disease (PD), as well as their genetic 

overlap with cerebrovascular disease (CVD). Throughout this work I have contributed a 

vast amount of data to the Ontario Neurodegenerative Disease Research Initiative 

(ONDRI) and leveraged the data I produced using the ONDRISeq next-generation 

sequencing (NGS) targeted gene panel to elucidate the genetic contributors to the 

participants’ diagnoses. Specifically, I assessed the contribution of common genotypes 

and haplotypes, rare single nucleotide variants (SNVs), and copy number variants 

(CNVs) to the various diagnoses and their clinical intermediate phenotypes to gain a 

greater understanding of the spectrum of genetic variation that can contribute to disease 

presentation.  

8.2. Summary of research findings 

Throughout this Dissertation, I have genetically characterized 519 participants from 

ONDRI. A summary of the relevant genetic contributors to each ONDRI disease cohort, 

as determined by the analyses presented herein are summarized in Figure 8.1. 
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Figure 8.1 Summary of the relevant genetic factors carried by participants of the 

Ontario Neurodegenerative Disease Research Initiative (ONDRI) that were found to 

be associated with the disease cohorts. 

In total, genetic characterization was performed on 519 participants enrolled in ONDRI, 

including individuals diagnosed with: 1) Alzheimer’s disease (AD); 2) amyotrophic 

lateral sclerosis (ALS); 3) frontotemporal dementia (FTD); 4) mild cognitive impairment 

(MCI); 5) Parkinson’s disease (PD); and 6) cerebrovascular disease with or without 

cognitive impairment (CVD ± CI). To identify contributors to disease presentation, all 

participant DNA samples underwent targeted next-generation sequencing using the 

ONDRISeq panel, TaqMan genotyping to define MAPT haplotypes, repeat-primed PCR 

to identify C9orf72 repeat expansions, and Sanger sequencing to identify variants within 

the gene GBA.  
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“APOE E4 carrier” refers to individuals harbouring at least one copy of the APOE E4 

allele within the AD or MCI cohorts. “C9orf72 expansion” refers to individuals with ALS 

or FTD harbouring a pathogenic repeat expansion in C9orf72. “CNV” refers to 

individuals harbouring a copy number variant (CNV) of high confidence in a gene 

encompassed by the ONDRISeq panel. “Enriched rare variant” refers to individuals 

harbouring a variant within a gene or gene set found to be association with the cohort of 

interest using rare variant association analysis. “GBA variant” refers to individuals 

harbouring a likely pathogenic variant in GBA; GBA variation within all cohorts was 

assessed based on the relatively high number of likely pathogenic variants identified 

across ONDRI participants and despite the lack of comparison to a control cohort. 

“MAPT H1 carrier” refers to individuals diagnosed with FTD harbouring at least one 

copy of the H1 MAPT haplotype. “Monogenic rare variants” refers to individuals 

harbouring a rare single nucleotide variant known to cause the disease of interest. 

“Polygenic” refers to individuals carrying multiple genetic factors likely contributing to 

their disease presentation. 
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8.2.1. Common genetic contributors to neurodegenerative 
diseases and their intermediate phenotypes 

Although it is generally accepted that common genetic variants tend to contribute small 

phenotypic effects to disease risk, there are a few prominent examples of these variants 

that have moderate-to-large impact on risk of neurodegenerative disease. The most 

notable example is the apolipoprotein E (APOE) genotype. The results described in 

Chapters 2 and 3 highlight the contribution of common genetic variants to various 

neurodegenerative diseases and cerebrovascular disease, as well as to clinical 

intermediate phenotypes of the diagnoses (Dilliott et al., 2019; Dilliott et al., 2021). 

As described in Chapter 1, Section 1.2.2.1.1, APOE genotype is the strongest genetic risk 

factor for the development of AD. There are three possible genotypes — E3, E2, and E4 

— corresponding to the wild-type allele, protective allele for AD, and risk allele for AD, 

respectively (Bertram, McQueen, Mullin, Blacker, & Tanzi, 2007). Due to its high 

importance in the risk of AD, it was imperative that all ONDRI participants were 

genotyped for APOE and that we replicated the association between AD and E4 in the 

study cohort as a means to validate the AD diagnoses across the patient cohort. Further, 

various previous studies have attempted to identify whether APOE variation is associated 

with any other neurodegenerative diseases. ONDRI’s concurrent and consistent 

assessment of multiple diagnoses offered a unique opportunity to pursue this analysis, 

and specifically to determine whether APOE E4 or E2 conferred risk to other 

neurodegenerative diagnoses. The results of this analysis were included in Chapter 2. 

Within the AD cohort, 65.9% of participants carried at least one copy of the E4 allele. 

Unsurprisingly, the allele accounted for the largest percentage of genetic explanation 

across any single ONDRI disease cohort (Figure 8.1). When allele frequencies were 

compared to a cognitively normal, elderly control cohort, I identified an expected dose-

dependent association between the APOE E4 allele and AD presentation, such that the E4 

allele itself increased odds of AD presentation by 5.24 (p < 1.0E-4) and the E4/4 

genotype increased odds of AD presentation by 10.36 (p < 1.0E-4). I also identified an 

association between MCI presentation and the E4 allele, with an increased odds of MCI 
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presentation by 1.94 (p = 4.9E-3). No other ONDRI cohorts showed any association with 

the APOE E4 allele.  

I also analyzed the APOE E2 allele, as previous studies had shown a protective effect of 

the variant for AD presentation. Indeed, I was able to again replicate this result in the 

ONDRI cohort. The allele was associated with a significantly decreased odds of 

presenting with either AD or MCI (OR = 0.10, p = 2.7E-2 and OR = 0.26, p = 5.8E-3, 

respectively), when compared to the cognitively normal, elderly control cohort. 

Interestingly, no AD or MCI participants in the ONDRI study harboured an E2/2 

genotype. While the genotype is considered relatively uncommon in the general 

population, this observation may also have been due to the incremental decrease in AD or 

MCI risk that would result from two copies of the allele. 

Although the results of the study were not novel and acted as validation of previous work, 

to our knowledge, it was the first study to concurrently analyze APOE genotypes across 

such a broad spectrum of neurodegenerative diagnoses and cerebrovascular disease 

phenotypes. Further, our results acted as an important validation of the accurate diagnosis 

of the ONDRI AD and MCI participants, as the APOE allele frequencies we observed 

were relatively similar to those previously reported in the literature (Farrer et al., 1997; 

Heffernan, Chidgey, Peng, Masters, & Roberts, 2016). APOE genotypes are also an 

important variable for future analyses within ONDRI, as is it often a critical correction 

factor due to its associations with AD and intermediate phenotypes of neurodegeneration 

and cerebrovascular disease. For example, in the study of the influence of rare Notch 

receptor 3 (NOTCH3) genetic variants in PD in Chapter 7, the analysis was corrected for 

the presence of the APOE E2 allele. Pathogenic NOTCH3 variants are typically 

associated with a monogenic cerebrovascular disease called Cerebral Autosomal 

Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), 

and we studied whether variants in the gene could also modify the presentation of PD 

patients, specifically by increasing their cerebrovascular disease burden. Importantly, 

APOE E2 has been previously associated with increased white matter hyperintensity 

(WMH) volume in CADASIL patients; therefore, it was an important correction factor in 
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our analysis of PD patients, as well. I anticipate that the APOE genotype data will be a 

critical component in ONDRI analyses for years to come. 

While we did not observe any novel associations between APOE and the other 

neurodegenerative diseases encompassed by ONDRI’s mandate, I also aimed to 

determine whether variation in the gene may influence the clinical presentation of 

neurodegenerative disease patients. As previously described, there is considerable 

overlap among presenting features of various neurodegenerative diseases, such as those 

with motor impairments (PD and ALS) presenting with cognitive dysfunction (Kalia & 

Lang, 2015; Karch et al., 2018). And even within single neurodegenerative cohorts, 

presentations can be highly heterogenous between patients (Beber & Chaves, 2013; 

Doran et al., 2007; Selvackadunco et al., 2019). The rigorous assessment of ONDRI 

participants, particularly with a detailed neuropsychology battery, offered a unique 

opportunity to assess whether APOE E2 or E4 variants contributed to differing 

functioning across multiple cognitive domains in the ONDRI cohorts, as presented in 

Chapter 3.  

Irrespective of disease cohort, I found that E4 carriers had significantly lower 

performance in verbal memory and visuospatial domains than those with the E3/3 

genotype (p = 9.2E-3 and p = 2.2E-2, respectively). Although the results may be 

suggesting that the participants carrying the E4 allele are in a prodromal stage of AD with 

increased deposition of early-AD pathology, the influence of APOE E4 on cognition 

appears to be irrespective of AD pathology, rather relative to synaptic plasticity or 

neurotoxicology. The influence of the E4 allele on verbal memory was also compounded 

in the AD cohort, with an interaction observed between the diagnosis and the allele, 

although power limitations likely prevented this result from reaching statistical 

significance (p = 6.8E-2). In contrast, the E2 allele did not display significant association 

with cognition across the ONDRI cohorts, although E2 carriers in the FTD cohort 

displayed significantly worse attention/working memory, executive function, and 

visuospatial abilities (p = 2.1E-3, p = 4.2E-2, and p = 2.4E-4, respectively). Interestingly, 

the majority of the E2 carriers in the FTD cohort were diagnosed with the progressive 

supranuclear palsy (PSP) subtype, which presents with a hallmark of tau pathology, as 
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well as a relatively high degree of cognitive dysfunction. APOE E2 has been previously 

associated with increased tau pathology and so whether the association we observed 

between E2 and lower cognition in the FTD cohort was a direct effect or whether it was 

indicative of an increase in tau pathology — and resultant PSP — remains unclear. 

Nonetheless, my results demonstrate the complex influence of APOE on cognition and 

highlight that genetic factors may be contributing to the vast heterogeneity observed 

across the presentation of patients with identical diagnoses. 

The results presented in Chapter 2 also display the distribution of microtubule-associated 

protein tau (MAPT) haplotypes across the ONDRI cohort. MAPT is located within a large 

region of linkage disequilibrium (LD), inside of which a 900 kb portion of the genome 

has been inverted, resulting in two haplotypes of MAPT, specifically H1 and H2. 

Interestingly, I did not identify any associations between the haplotypes and any of the 

full ONDRI cohorts in comparison to the cognitively normal, elderly control cohort, 

irrespective of previous associations identified between H1 and AD, PD, and FTD 

(Ferrari et al., 2017; Myers et al., 2005; Seto-Salvia et al., 2011). However, there was an 

association between the H1 haplotype and the presentation of PSP. Again, these results 

were not novel, but replicated a previously observed association with the phenotype 

(Baker et al., 1999). Within the H1 haplotype, there have also been duplicated regions 

identified that define MAPT sub-haplotypes. Due to the small sample sizes of ONDRI, 

we chose not to pursue further genotyping to define these sub-haplotypes, as statistical 

analyses would have had markedly limited power. Therefore, it remains unknown 

whether the lack of associations between MAPT and AD or PD were merely a 

consequence of not further defining the common variants under study. 

Although the results of Chapter 2 did not identify novel associations between APOE or 

MAPT and the neurodegenerative diseases or CVD, the lack of associations were an 

important addition to the literature. The associations that I replicated between APOE 

variation and AD/MCI and MAPT and PSP acted as a proof of concept for the strength of 

the analysis and integrity of the approach and study design; the findings allow us to 

confidently rule out any further associations of moderate to large phenotypic impact with 

the genes, which have been controversially proposed previously in the literature (Baum et 
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al., 2006; Huang, Chen, & Poole, 2004; Myers et al., 2005). Furthermore, Chapter 3 

demonstrates the importance in considering known neurodegenerative disease associated 

genes, such as APOE, not only when studying disease risk, but also when endeavoring to 

account for the large amount of heterogeneity among the clinical features of 

neurodegeneration. 

8.2.2. Rare genetic contributors to neurodegenerative diseases 
and their intermediate phenotypes 

Throughout the literature, it is well documented that rare monogenic variants contribute a 

relatively large amount of risk to neurodegenerative diseases; however, across the 

spectrum of diagnoses, a large amount of missing heritability remains. Not only is this 

missing heritability likely due to rare variants of small to moderate phenotypic effect that 

are difficult to identify using traditional linkage analysis or genome-wide association 

analysis (GWAS) approaches, but the presence and influence of structural variants 

remain relatively understudied in neurodegeneration. Throughout Chapters 3–7, I 

assessed the contribution of rare genetic factors to the diseases encompassed by the 

ONDRI mandate, particularly to fill the gap of the potential overlapping impact of rare 

genetic factors to multiple neurogenerative diagnoses. 

I began by assessing the number of ONDRI participants that carried rare, small-scale 

variants such as SNVs and repeat expansions that were likely causes for Mendelian forms 

of disease. Unsurprisingly, only ~3% of participants harboured either pathogenic SNVs 

in a gene covered by the ONDRISeq panel or a pathogenic chromosome 9 open reading 

frame 72 (C9orf72) repeat expansion. The ALS cohort had the highest frequency of these 

variants, with four participants carrying a pathogenic repeat expansion in C9orf72, 

equating to a frequency of 10% across the cohort (Figure 8.1). Although this frequency is 

relatively low compared to the 40–60% typically observed in familial cohorts of ALS, it 

is relatively similar to the 5–10% frequency estimates of cohorts with sporadic ALS 

(Umoh et al., 2016). Within ONDRI, the majority of ALS participants were considered to 

be sporadic cases, with only two participants self-reporting a family history of the 

disease, one of whom carried the C9orf72 repeat expansion. In fact, the low frequency of 

familial cases was observed across all ONDRI cohorts, and many participants presented 



255 

 

with later-onset, more mild forms of the disease as a result of the strict enrollment criteria 

(Sunderland et al., 2020). Therefore, it was expected that the frequency of participants 

carrying monogenic rare variants would remain relatively low. 

Nonetheless, sporadic forms of neurodegeneration are also known to have a genetic 

component, with heritability estimates of up to 80% (Cacace, Sleegers, & Van 

Broeckhoven, 2016; Keller et al., 2012; Mejzini et al., 2019), although much of the 

genetic risk is largely unexplained. I hypothesized that some of the missing heritability of 

these conditions may result from the lack of analysis across neurodegenerative disease 

cohorts and consideration of pleiotropic genes. To assess this possibility, I performed rare 

variant association analyses (RVAAs) to identify genes, and sets of genes, covered by the 

ONDRISeq panel that were enriched for rare variants across the neurodegenerative 

diseases and CVD.  

Using an individual gene-based RVAA approach, I identified a novel association between 

nonsynonymous rare variants in Parkin RBR E3 ubiquitin protein ligase (PARK2) and the 

FTD cohort (OR = 11.602 [1.395–96.519], p = 2.3E-2). Typically, pathogenic variants in 

PARK2 cause autosomal recessive familial PD; however, variants within the gene 

specifically contribute to lysosomal dysfunction — a pathogenic mechanism known to 

contribute to both PD and FTD (Wallings, Humble, Ward, & Wade-Martins, 2019). 

Therefore, the finding may suggest that the variants are indeed contributing to increased 

risk of FTD. An association was also identified between nonsynonymous rare variants in 

NOTCH3 and the PD cohort (OR = 2.986 [1.310–6.806], p = 9.0E-3). Homozygous rare 

variants in NOTCH3 cause CADASIL, a Mendelian disease characterized by small vessel 

damage and dementia; although, there is evidence that some CADASIL patients present 

with a late-onset, slowly progressive parkinsonism (Ragno et al., 2013; Ragno et al., 

2016). Together with the RVAA results, this may suggest that NOTCH3 rare variants 

increase risk of PD. 

To maximize analytic power, I also created gene sets based on the most well-established 

previous disease associations of the genes encompassed by the ONDRISeq panel. 

Interestingly, an association was observed between rare, putative loss-of-function (LOF) 
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variants in PD-associated genes and the entire ONDRI cohort (OR = 7.322 [1.196–

44.826], p = 3.1E-2). The association of putative LOF variants in PD-associated genes 

was largely driven by variants in the gene melanocortin 1 receptor (MC1R). While the 

gene has been controversially associated with increased risk of PD (Gan-Or et al., 2016; 

Lorenzo-Betancor, Wszolek, & Ross, 2016; Tell-Marti et al., 2015), it has also been 

associated with red hair and melanoma (Chen, Feng, Schwarzschild, & Gao, 2017). 

Although the MC1R protein is neuroprotective within dopaminergic neurons, it remains 

unclear how the variants may contribute to pleiotropic risk across neurodegenerative 

diseases and CVD. An association was also observed between rare, putative LOF variants 

in ALS-associated genes and the ALS and MCI cohorts. The association between the 

genes and ALS was anticipated, but the association with MCI remained novel. Caution 

was taken so as to not draw inappropriately large conclusions from the results, since 

sample sizes of variant positive participants and controls were small. However, it was 

still recognized that the association between putative LOF variants in ALS-associated 

genes and MCI may suggest potential for a portion of the participants in the MCI cohort 

to progress to FTD, rather than the anticipated AD. 

The ONDRISeq data was further leveraged to identify large-scale CNVs, such as 

deletions and duplications, among the ONDRI participants. Heretofore, these structural 

variants have remained under-studied across neurodegenerative disease and CVD cohorts 

due to the previous technological challenges involved in their detection. I hypothesized 

that some of the missing heritability of the diseases may be accounted for by undetected 

CNVs. Recent bioinformatics advances allowed for the utilization of a depth-of-coverage 

(DOC) method for CNV detection, which I applied in Chapter 5. Following DOC 

analysis of the ONDRISeq data across all ONDRI participants, we applied breakpoint 

analysis to confirm the presence of a heterozygous deletion in optineurin (OPTN) 

harboured by an individual with AD, as well as WES to confirm the presence of 

duplications in parkinsonism associated deglycase (PARK7), ATP binding cassette 

subfamily C member 6 (ABCC6), and SAM and HD domain containing deoxynucleoside 

triphosphate triphosphohydrolase 1 (SAMHD1), in individuals diagnosed with ALS, 

CVD, and MCI, respectively (Figure 8.1). I also identified two additional duplications of 

high confidence in ATP binding cassette subfamily A member 7 (ABCA7) and ATPase 
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cation transporting 13A2 (ATP13A2) each in an individual with CVD. Although all 

CNVs identified were novel, and functional analyses are required to confirm their 

pathogenicity, the identification of CNVs in genes previously associated with 

neurodegeneration and cerebrovascular disease across the ONDRI cohorts highlights the 

need for further analysis of the impact of structural variants to these phenotypes. 

The glucosylceramidase beta (GBA) gene could not be adequately evaluated with 

traditional NGS techniques applied using the ONDRISeq panel due to a pseudogene 

located 16 kb downstream, namely glucosylceramidase beta pseudogene 1 (GBAP). 

However, we were able to capture the full coding sequence of the gene by applying a 

gold-standard Sanger sequencing approach with carefully designed primers. From the 

GBA sequences of all ONDRI participants, variants were identified and prioritized to 

identify those most likely to be pathogenic. Unfortunately, controls were unavailable for 

this analysis, preventing the ability to perform traditional RVAA. Yet the analysis was 

still able to yield novel results, as displayed in Chapter 6. Interestingly, I identified likely 

pathogenic, rare GBA variants, not only in the PD cohort, but in all other cohorts of 

ONDRI as well (Figure 8.1). In fact, the cohort with the lowest variant frequency — 

namely the CVD cohort with a frequency of 9.3% of participants carrying a variant — 

still had a frequency that was more than double that of the of the highest frequencies in a 

previously reported control cohort (~4%) (Sidransky et al., 2009). Across the ONDRI 

cohorts, there were also 47 participants identified that harboured distinctive collections of 

variants, referred to as “complex variants,” within exons 5 and 6 of GBA, which may 

have resulted from small-scale rearrangements with GBAP. The relatively high frequency 

of variants across the ONDRI cohorts may suggest that GBA is indeed contributing to risk 

of multiple neurodegenerative diseases. The results may also suggest that GBA variant 

carriers within ONDRI not diagnosed with PD have unrecognized α-synuclein co-

pathology, as GBA variants are also known to increase the presence of Lewy bodies, the 

main component of which are aggregates of α-synuclein (Mata et al., 2008; Nalls et al., 

2013). In turn, the co-pathology may be influencing the presentation of the individuals, 

and therefore may account for some of the heterogeneity between patients observed in the 

presentation of neurodegenerative disease and CVD. 
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In an effort to determine whether the likely pathogenic GBA variants influenced disease 

presentation, I assessed the difference in age of symptom onset, general cognition, and 

basic motor phenotype in the variant positive individuals in comparison to those variant 

negative, but no conclusions could be drawn from the analysis. Nevertheless, with the 

relatively high frequencies of GBA variation observed across the ONDRI cohorts, it will 

be important to continue assessing the influence the variants may have on clinical 

presentation of the participants. For example, in a similar manner to the analysis of 

APOE’s influence on cognition presented in Chapter 3, utilizing the rich 

neuropsychology dataset may allow for a more sensitive analysis of how GBA variation 

influences cognition across multiple domains. Similarly, the gait performance data may 

allow for a more robust analysis of motor phenotypes across the ONDRI cohorts. 

As with the differential possible interpretations of the GBA data, the RVAA results from 

Chapter 4 may also not be suggesting pleiotropic effects of the genes significantly 

enriched for rare variants. Rather, the enrichment of variants in these genes may actually 

be a result of rare variants of moderate phenotypic effect that influence overlapping 

clinical features of disease between the diagnoses. As previously stated, this is an area of 

neurodegenerative disease and CVD research that remains relatively understudied, yet 

understanding the factors influencing differential presentation of neurodegeneration and 

CVD is imperative for a full appreciation of the genetic factors that influence these 

complex phenotypes. 

An excellent example of rare genetic variation contributing to different intermediate 

phenotypes of neurodegenerative disease was encompassed in the comprehensive 

analysis of NOTCH3 in the PD cohort. Upon early analysis of the PD participants’ 

ONDRISeq NGS data, I observed a relatively high frequency of likely pathogenic rare 

variation within the NOTCH3 gene, with 13 participants carrying a nonsynonymous, rare 

variant of interest (~9%). As explained previously, heterozygous pathogenic variants in 

NOTCH3 are causative for CADASIL, a monogenic form of vascular dementia (VaD). 

Therefore, the identification of potentially pathogenic rare variants in the NOTCH3 gene 

in PD participants was notable. Further collaboration with the ONDRI imaging platform, 

outlined in Chapter 7, resulted in an analysis through which we identified a doubling of 
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WMHs volumes in NOTCH3 variant positive participants, compared to variant negative 

participants. Additionally, NOTCH3 genetic variation was associated with significantly 

increased periventricular WMHs and increased lacune volumes. Although small sample 

sizes likely limited the ability to identify differences in generalized cognition or motor 

phenotypes and the genetic variants, we hypothesize that the increased WMHs observed 

in the PD participants harbouring NOTCH3 variants likely contribute to differential 

disease presentation, warranting further analysis. 

The association between NOTCH3 and cerebrovascular phenotypes in PD patients was 

also supported by the results of the gene-based RVAAs performed in Chapter 4. As 

described, NOTCH3 was found to be enriched for rare variants in the PD cohort, albeit in 

comparison to the combined AD and MCI cohorts rather than the cognitively normal 

control cohort. Importantly, while the control cohort was known to be cognitively 

normal, whether they had any form of CVD remained unknown. In contrast, the AD and 

MCI cohorts’ enrollment criteria excluded any participants with significant evidence of 

vascular pathology (Sunderland et al., 2020), which resulted in the combined cohort 

likely acting as a more appropriate control for the detection of enriched variants in a 

VaD-associated gene. The result seemingly supports the observations in Chapter 7 and 

suggests that rather than contributing to PD pathogenesis, NOTCH3 rare variants may be 

altering the presentation of the PD participants carrying the variants.  

Similarly, it cannot be denied that the association between PARK2 and FTD observed in 

Chapter 4 may actually be a result of variants of moderate phenotypic effect and/or 

decreased penetrance influencing intermediate features of disease, rather than directly 

contributing to FTD risk. As this possibility demonstrates, the novel genetic associations 

I have identified throughout my Dissertation are hypothesis generating and the 

comprehensive ONDRI dataset will allow for unique cross-platform assessments to 

further elucidate how the genetic variants may be contributing to disease risk and 

differential disease presentation. Overall, my work has provided an important tangible 

contribution to the elucidation of the entire spectrum of genetic variation contributing to 

neurodegenerative disease and CVD phenotypes. 



260 

 

8.2.3. Contributions to the goals of ONDRI 

Upon its conception, ONDRI set out with goals to identify markers applicable to early 

and accurate diagnostic and progression prediction tools for neurodegeneration, as well as 

to thoroughly analyze the contribution of cerebral small-vessel pathology to 

neurodegenerative phenotypes. The work I have presented throughout this Dissertation 

clearly demonstrates progress towards both of these goals. Additionally, my PhD work 

has encompassed data generation that will be continue to be made available through the 

ONDRI consortium, allowing for continued analysis and, potentially, further discoveries 

in the field of neurodegeneration. 

The data collected through ONDRI are stored in a secure database, run by the Ontario 

Brain Institute (OBI), called Brain-CODE (braincode.ca). The centralized portal was 

designed to house the data produced by more than 160 researchers located at over 20 

clinical sites across Ontario. Not only has Brain-CODE allowed for effective 

collaboration, but all non-identifying data will be made available to the greater scientific 

community on request through this portal. Therefore, it was imperative that all data being 

produced through ONDRI go through rigorous data cleaning and standards checks prior 

to upload to Brain-CODE. Upon completion of my PhD, the work presented herein will 

have contributed to four genomic platform datasets — collectively encompassing over 

675,000 data points — which contain the APOE genotypes, MAPT haplotypes, C9orf72 

repeat expansions, ONDRISeq panel annotated small-scale variants, ONDRISeq panel 

CNVs, and GBA small-scale variants. These data will continue to be accessed by ONDRI 

researchers for further genomics analyses, as well as by collaborators from across the 

globe. 

In addition to the data produced through my PhD, this Dissertation also reflects 

successful steps towards the goals of ONDRI. In particular, ONDRI was designed with 

its unique cross-disease and cross-platform approach, in hopes of breaking down the silos 

typically observed in the field of neurodegenerative disease research. While Chapters 2, 

4, 5, and 6 demonstrated cross-disease analyses with the study of APOE, rare variant 

enrichment, CNVs, and GBA variation, respectively, Chapter 7 demonstrated cross-

platform analyses in the study of neuroimaging metrics in reference to NOTCH3 

https://www.braincode.ca/
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variation. Most notably, Chapter 3 clearly demonstrates the application of both cross-

disease and cross-platform analysis and can act as a proof of concept for the unique study 

design of ONDRI moving forward. 

Finally, ONDRI aimed to gain a better understanding of the contribution of cerebral small 

vessel disease to neurodegenerative phenotypes. Although without functional analyses 

the results of the RVAA analysis and NOTCH3 rare variant analysis in PD cannot make 

definitive pathologic connection between the NOTCH3 variants and CVD in PD patients, 

the results still suggest an important co-pathology for the participants carrying these 

variants. Furthermore, the novel findings may now be further explored to better 

understand how the increased small vessel disease influences the presentation of 

neurodegenerative disease patients with NOTCH3 variants. Therefore, my results 

represent the first large step in achieving one of the core goals of ONDRI. 

8.3. Dissertation strengths and limitations 

Throughout this Dissertation, study-specific strengths and limitations have been 

presented within each relevant data chapter. Here, I will present strengths and limitations 

relevant to all data and analyses included in Chapters 2–7 in context to the overall results 

of the Dissertation.  

8.3.1. Strengths 

A distinct strength of this Dissertation is the unique study design of ONDRI. Upon 

conceptualization of the consortium, priority was placed on the interdisciplinary research 

model. It was well known that there were many experts in their respective fields studying 

neurodegenerative diseases and treating neurodegenerative disease patients, but many 

have traditionally remained in their respective silos. Further, the large size of the 

province of Ontario posed a challenge to the coordination of collaborative efforts without 

detailed protocols in place. ONDRI brought together experts in the field, including both 

scientists and clinicians, for a concerted effort to tackle the large amount left to be 

understood regarding neurodegenerative and cerebral small vessel diseases. Priority was 

placed on recruiting a diverse cohort of participants from throughout the province to 

effectively represent the general population, and on deeply phenotyping participants to 
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gain an all-encompassing depiction of neurodegenerative disease presentation. Further, 

the longitudinal nature of evaluation would allow for investigation into the progression of 

individuals diagnosed with these incurable diseases. 

Throughout my Dissertation, I leveraged ONDRI’s study design to perform analyses 

across the neurodegenerative disease cohorts. Not only was this quite novel in the field of 

neurogenetics, but it allowed for the unique opportunity to identify overlapping genetic 

risk factors concurrently for all diseases of interest. Many previous studies have only 

focused on single disease cohorts, or multiple disease cohorts, but then only applied 

GWAS-based methodology, thereby limiting utility (Karch et al., 2018). In contrast, the 

work I reported in Chapters 2–6 encompassed five neurodegenerative diagnoses, as well 

as cerebrovascular disease, and greatly expanded the range of applied methodologies in 

order to gain a deeper understanding of the full spectrum of genetic variants contributing 

to these phenotypes. In Chapters 2, 4, 5, and 6, I sought to identify novel gene-disease 

associations within known neurodegenerative disease genes. This approach proved 

successful based on the novel associations found between PARK2 rare variation and 

FTD, NOTCH3 rare variation and PD, and all neurodegenerative diseases and LOF 

variants in PD-associated genes. I also identified CNVs in genes that were not typically 

associated with the diagnoses of the individuals carrying the large-scale variants, as well 

as a large amount of likely pathogenic GBA variation occurring across all ONDRI 

cohorts. Additionally, I took advantage of ONDRI’s unique study design by driving 

strong collaborative projects with other ONDRI platforms, as displayed in Chapters 3 and 

7, which ultimately resulted in the identification of novel associations between APOE and 

cognitive impairment (Dilliott et al., 2021), as well as between NOTCH3 and small vessel 

disease in PD patients (Dilliott et al., 2020). 

Another strength of this Dissertation was the use of the ONDRISeq NGS targeted gene 

panel. The custom-designed panel allowed for the sequencing of 80 genes previously 

associated with the neurodegenerative and cerebral small vessel diseases encompassed by 

ONDRI’s mandate. From these data, we accurately extracted the genotyping data 

necessary to map APOE genotypes, identify rare variants of various pathogenicity, and 

capture large-scale CNVs. Upon validation of the ONDRISeq panel, its strengths were 
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highlighted, as we observed that variant calls using the NGS method were more reliable 

than those obtained from the NeuroX microarray, as confirmed using Sanger sequencing 

(S.M.K. Farhan et al., 2016). Furthermore, although NeuroX captured >250,000 SNVs 

exome-wide (Nalls et al., 2015), ONDRISeq allowed for the identification of novel 

variants, which may be contributing to disease presentation, as well as the subsequent 

gene-based binning and RVAAs. During the conceptualization of ONDRI, whole-

genome sequencing (WGS) and whole-exome sequencing (WES) methodologies were 

also explored; however, the costs remained prohibitive, and the computational power 

necessary for data processing posed a challenge at the time. In contrast, ONDRISeq 

offered a targeted approach to further explore genes known to contribute to 

neurodegenerative and cerebrovascular phenotypes in diseases not typically associated 

with the genes. Combined with the cross-cohort strengths of the ONDRI design, 

ONDRISeq allowed for analyses to detect genes that may have pleiotropic effects across 

diseases or may contribute to overlapping disease features, without the noise and added 

statistical power reduction that would be introduced by unrelated genetic loci captured by 

WGS or WES. 

8.3.2. Limitations 

Expectedly, this Dissertation is not without its limitations that must be considered when 

interpreting the results and conclusions presented. The most fundamental limitation is the 

relatively modest sample sizes of the ONDRI cohort. Upon study conception, ONDRI 

aimed to recruit 600 participants evenly distributed across the six disease cohorts (S. M. 

K. Farhan et al., 2017). However, neurodegenerative disease studies often experience 

difficulties in patient recruitment, particularly when a large degree of engagement is 

expected from the enrolled individuals. Due to the deep phenotyping performed on each 

participant, and the longitudinal nature of the follow up, enrolling in ONDRI proved to be 

a substantial commitment on the part of the participants and their essential study partners. 

Obtaining the intended cohort proved difficult. Further, ONDRI had strict enrollment 

criteria that each participant was required to meet, including successfully completing an 

analysis by magnetic resonance imaging (MRI), which proved to be burdensome for 

many participants, particularly those with cognitive and/or behavioural phenotypes that 
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were relatively advanced. Even so, attaining the intended 600 participants would still 

have left a relatively small sample for subsequent genetic analyses. Typically, genetic 

analyses require larger sample sizes in order to provide enough statistical power to 

identify novel genetic associations, especially when studying rare variants. To mitigate 

this limitation, I prioritized the RVAAs to bin variants into larger groups to maximize 

power. Yet, in some instances, lack of significant results may have occurred due to 

ONDRI’s small sample sizes. Additionally, the available sample sizes limited in the 

ability to further sub-classify participants in an attempt to gain a clearer understanding of 

potential neurodegenerative disease sub-phenotypes. A clear example of this is evident in 

Chapter 3, in which I was unable to further elucidate whether the contribution of APOE 

E2 to cognitive dysfunction in FTD was a result of the PSP sub-phenotype, which 

represented an exceedingly small subgroup (Dilliott et al., 2021). Nonetheless, the work 

presented throughout this Dissertation offers a proof of concept for the overall strategy 

and analytic approaches, which can be applied to larger sample sizes in the future.  

Additionally, the demanding recruitment model of ONDRI, and the existing ethnic 

distribution of elderly Ontarians in the general population, resulted in inherent biases 

within our total cohort. Most notably, the ONDRI cohort displayed a large bias to 

individuals of European descent, as displayed in Chapter 4. This resulted in the inability 

to assess genetic factors likely contributing to the phenotypes of interest in individuals of 

diverse ancestral backgrounds, which remains a long-standing concern in the field of 

genomics (Sirugo, Williams, & Tishkoff, 2019). Further, the demands of being involved 

in our study introduced biases towards individuals with milder disease presentation, as 

well as towards individuals with attainment of greater education levels and of higher 

socioeconomic status (Sunderland et al., 2020). Finally, our cohort displayed an apparent 

male bias, which we have hypothesized may have been a result of the need for a study 

partner — a role that, according to anecdotal evidence, females in a heterosexual 

domestic partnership with the participant were most willing to serve.  

Select analyses presented throughout this Dissertation were also limited by the available 

control cohort. Unfortunately, ONDRI did not include an internal control cohort in its 

study design; however, the genomics platform sought out control samples for the 
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purposes of our analyses. We obtained 189 control samples from cognitively normal, 

elderly individuals recruited by the GenADA study (Li et al., 2008). We subsequently 

sequenced the samples using ONDRISeq, and genotyped the samples using the NeuroX 

array and TaqMan allelic discrimination assays to validate the APOE genotypes and 

obtain the MAPT haplotypes. But due to financial constraints, we were unable to perform 

Sanger sequencing of GBA on the control samples, resulting in no control cohort for the 

study presented in Chapter 6. Furthermore, the control cohort samples from the GenADA 

study had limited phenotypic data, only comprised of age, sex, and Montreal Cognitive 

Assessment (MoCA) score. Therefore, I was unable to use the controls for cross-platform 

ONDRI analyses, including those presented in Chapters 3 and 7. It also remained 

unknown whether the control cohort had underlying neurodegenerative pathology, yet 

remained asymptomatic, as neuropathology can appear many years prior to 

neurodegenerative symptom onset (Katsuno, Sahashi, Iguchi, & Hashizume, 2018). 

Finally, the lack of phenotypic data on the controls resulted in uncertainty regarding how 

appropriate the cohort was for analyses of cerebral small vessel disease and its associated 

genes. While the controls were considered cognitively normal, it was not known whether 

any had experienced CVD. An example of how this may have impacted analyses is 

demonstrated in the RVAA results presented in Chapter 4, in which an association 

between NOTCH3 rare variation and PD was observed when compared to the combined 

AD and MCI cohorts, but not when compared to the control cohort. 

Some variables also remained unknown among the ONDRI participants, such as their 

underlying neuropathology. Until neuropathological analyses can be performed on our 

participants — either through post-mortem analysis or potentially through emerging 

methods of plasma biomarker assessment (Shen et al., 2020) — diagnoses remain 

presumptive. As described in Chapter 1, Section 1.2.4, although clinical diagnoses are 

possible, the rates of misdiagnoses remain relatively high. ONDRI attempted to mitigate 

these issues with strategies such as excluding participants from the AD and MCI cohorts 

who had displayed significant amount of cerebral small vessel disease, but it remains 

unclear whether those participants indeed had AD or MCI, or whether they were 

experiencing a form of VaD. During enrollment, there were also instances of patient 

enrollment that may not have fully complied with inclusion criteria — for example, some 
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participants were enrolled in the PD cohort with large stroke volumes and others with 

staging below the inclusionary cut-off. Additionally, some individuals enrolled in the 

original vascular cognitive impairment (VCI) cohort were subsequently found not to have 

objective cognitive impairment upon completion of the neuropsychology battery, and this 

resulted in the cohort being reclassified as CVD ± CI.  If ONDRI did contain 

misdiagnosed participants, it may have introduced noise into the genetic analyses and 

prevented true associations from being detected, particularly when combined with the 

reduced statistical power as a consequence of ONDRI’s small sample sizes.  

It is also important to recognize the limitations of the ONDRISeq panel; although, it was 

considered a strength of the studies presented herein as described in Section 8.2.1. 

ONDRISeq was designed by an expert panel of scientists and clinicians in 2012–2013, 

and, at the time, it was considered to include all relevant genes known or thought to 

contribute to neurodegenerative disease and VaD phenotypes. However, in the near 

decade since these design decisions were made, the panel is now recognized to be 

missing more recently discovered genes of importance, including those identified through 

GWAS, such as ADAM metallopeptidase domain 10 (ADAM10) and angiotensin I 

converting enzyme (ACE) that are associated with AD (Kunkle et al., 2019), and those 

identified through RVAA, such as DnaJ heat shock protein family (Hsp40) member C7 

(DNAJC7) that is associated with ALS (S. M. K. Farhan et al., 2019). Additionally, 

targeted gene panels are by design limited to evaluate only specific regions of the 

genome, which impairs the ability to discover novel loci that have previously not been 

associated with the diseases under study. The ONDRISeq panel also did not include 

probes covering intronic or intergenic SNPs, previously associated with 

neurodegenerative disease or CVD through GWAS analysis, thereby limiting the ability 

to assess the contributions of common variation of small to moderate phenotypic effect to 

the diseases encompassed by ONDRI’s mandate. The inclusion of associated SNPs on the 

ONDRISeq panel may have allowed for the design of novel, or the assessment of 

previously designed, polygenic risk scores (PRSs) within the ONDRI cohorts. 

Finally, two important caveats must be considered when interpreting the results of the 

studies presented throughout this Dissertation. The first caveat is that the analyses were 
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only comprised of a discovery cohort, and results were not replicated. Replication cohorts 

are particularly important in genomics studies to account for the possibility of spurious 

associations resulting from random chance or not controlling for variables of importance 

(Kraft, Zeggini, & Ioannidis, 2009). However, as previously described, recruitment of 

neurodegenerative disease patients for large-scale studies remains a challenge, and by 

introducing our results into the literature without internal replication, we offer the 

opportunity for other research groups to replicate our findings in their own study cohorts. 

The second caveat is that the novel genetic associations presented throughout the 

Dissertation have not yet been validated with functional analyses to verify the gene-

disease associations and identify the pathologic mechanisms involved. Although 

considered beyond the scope of my PhD work, these follow-up studies will be imperative 

to validate the results. For example, it will be important to further explore the relationship 

between NOTCH3, CVD, and PD to determine whether the NOTCH3 variants are only 

modifying disease presentation, or whether they are directly contributing to the PD 

phenotype through a vascular mechanism. 

8.4. Applications and future directions 

The work I have presented contributes to the elucidation of the genetic determinants of 

neurodegenerative diseases and CVD, including identifying genetic risk factors for 

disease presentation and investigating how genetic factors may influence the 

heterogeneous features of neurodegeneration. The knowledge I have generated can be 

combined with the existing literature to direct further neurogenetic studies and can be 

applied towards clinical applications to improve the diagnosis, progression prediction, 

and treatment of patients.  

8.4.1. Genomics-based diagnostic tools 

As we continue to gain a better understanding of the genetic factors that contribute to 

neurodegenerative phenotypes, we may be able to begin addressing some pervasive 

issues in neurodegenerative diagnostics. Unfortunately, many neurodegenerative 

diagnostic processes remain relatively slow, allowing the often quickly developing 

disease states to further progress prior to being able to intervene with the few therapeutics 
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available to slow disease progression (Hulisz, 2018; Katsuno et al., 2018). As 

therapeutics currently available cannot completely prevent disease progression or reverse 

damage, it is imperative that treatments are initiated as soon as possible to preserve 

patient’s function. Further, misdiagnosis is relatively common due to the large amount of 

phenotypic overlap between neurodegenerative diagnoses (Beber & Chaves, 2013; Doran 

et al., 2007). Definitive diagnoses currently require post-mortem neuropathologic 

analysis; however, genomics could also offer an avenue of definitive diagnoses as we 

continue to expand our understanding of genetic risk of disease. 

Currently, genetic sequencing is suggested in the diagnostic pathways of some early-

onset familial cases of neurodegenerative disease, yet even individuals with seemingly 

sporadic forms of disease may harbour underlying genetic variation driving their disease 

presentation (Bennion Callister & Pickering-Brown, 2014; Maraganore et al., 2006; 

Mejzini et al., 2019; Sidransky et al., 2009). Therefore, it may be beneficial to expand 

genetic analysis to a greater number of neurodegenerative disease cases. It is also 

imperative that a wide range of genetic variant types are considered, particularly 

structural variation, which was identified as being of potential importance in Chapter 5, 

yet can be overlooked in clinical genetic diagnostics. 

8.4.2. Influence of genetic variation on neurodegenerative disease 
progression 

Gaining a greater understanding of the genetic spectrum of neurodegeneration and CVD 

may also allow for more accurate progression prediction. Currently, it remains unclear 

how individuals may progress through their disease upon diagnoses, as features of 

disease can vary widely from patient to patient. However, as the results of Chapter 7 

displayed, genetics may provide a lens through which progression could be predicted, 

although my analyses only found that genetic variation contributes to features of disease 

presentation at a single point in time. ONDRI includes a longitudinal nature of 

assessment, following participants for up to three years. It will be important for further 

analyses to prioritize the use of the longitudinal ONDRI data to study how genetic 

variants may influence disease progression, including the degree to which individuals 

may progress and at what rate.  
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It will also be interesting to investigate whether certain genetic variants increase the risk 

of relatively atypical presentation, such as the co-occurrence of cognitive and/or 

behavioral impairments in individuals diagnosed with a form of motor impairment. In 

this manner, in combination with genetic diagnostic tools, progression predications tools 

may be developed, such that an individual’s entire genetic profile can not only offer an 

accurate diagnosis, but can predict the clinical features a patient might experience, as 

well as how quickly those phenotypes may develop. Ultimately, in the study of such 

complex diseases, this will be an important component for future personalized medicine 

efforts.  

8.4.3. Identification of novel gene-disease relationships 

Although novel gene-disease associations were identified using RVAA in Chapter 4, it is 

recognized that these associations remain to be replicated, which may be possible through 

collaborative efforts with other consortia, such as the Parkinson’s Progression Marker 

Initiative (PPMI), and validated using functional studies. My analysis, as well as previous 

studies, focused on gene-wide approaches to prevent analytic biases in the RVAAs; 

however, it is important to consider that variant frequencies can vary within genes and 

variant enrichment may be localized to functional domains in the encoded protein 

(Richardson et al., 2016). Therefore, it may be beneficial to repeat the RVAA performed 

herein, but instead specifically prioritize rare variants that are located within the 

functional domains of proteins. If a gene were to exhibit similar rare variant frequencies 

between cases and controls, but different distributions of variants, specifying the analysis 

using a domain-based approach may detect additional novel gene-disease relationships. 

Similarly, as described in Section 8.2.2, a limitation of this Dissertation was a result of 

the use of ONDRISeq and its inability to identify novel neurodegenerative disease and/or 

CVD associated genes. However, ONDRI is currently pursuing WGS of all ONDRI 

participants, with the exception of the CVD ± CI cohort, as well as a relatively small (n ≈ 

50) elderly control cohort. Ideally, this would allow for exome-wide RVAAs to be 

performed, although the low statistical power resulting from the small sample sizes of 

ONDRI and the control cohort will remain a limitation. Yet, the use of the data could 

offer the opportunity to identify novel gene-disease associations, again applying both 
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gene-wide and domain-based enrichment analyses. One opportunity to maximize 

statistical power could be by applying a gene-set approach by binning genes into 

functional sets, based on the pathways in which they may contribute to neurodegenerative 

pathology, such as a set of genes encoding mitochondria-associated proteins, based on 

their potential involvement in ALS or PD (Khalil & Lievens, 2017; Park, Davis, & Sue, 

2018). This could mitigate the effects of genes unrelated to the neurodegenerative 

phenotypes and their potential influence on power reduction. If significant signals were 

observed in these gene sets, the genes may be further explored to identify whether a 

single gene was driving the association. 

8.4.4. Cerebrovascular changes in neurodegenerative disease 

One of the pillars of ONDRI’s rationale and design was to gain a greater understanding 

of the contribution of cerebral small vessel disease to neurodegenerative disease risk and 

presentation. It is now well recognized that the co-occurrence of cerebrovascular injury 

with neurodegeneration is relatively common (Kummer et al., 2019; Lendahl, Nilsson, & 

Betsholtz, 2019; Thal et al., 2015), but the exact mechanisms by which CVD may 

contribute to pathology remains unclear. Here, I initiated these efforts in the analysis of 

NOTCH3 genetic variation, WMH volume, and PD in Chapter 7, which now offers an 

opportunity for expansion. WMHs are also not uncommon among other 

neurodegenerative diseases, such as AD and FTD, but their effects on disease features are 

not fully understood (Brickman, Muraskin, & Zimmerman, 2009; Kandel et al., 2016; 

Woollacott et al., 2018). Further, multiple genes on the ONDRISeq panel have been 

previously associated with various features of CVD burden. ONDRI’s simultaneous 

analysis of patients across multiple neurodegenerative phenotypes using consistent 

assessment offers the unique opportunity to extend the novel NOTCH3 finding across 

multiple disease cohorts and genes. Efforts are currently underway to assess the influence 

of rare, likely pathogenic variants within all CVD-associated genes of the ONDRISeq 

panel (Appendix D) on CVD defining brain volumetrics across all ONDRI cohorts in 

collaboration with the imaging platform. Functional analyses will remain imperative to 

confirm that variants within the CVD genes are influencing features of cerebrovascular 

pathology within the participants, and to determine whether the small vessel damage is 



271 

 

contributing to the diseases’ pathogenic mechanisms or to differential disease 

presentation. 

8.4.5. Estimation of gene-environment interactions 

Although genetic factors contribute a clear risk to neurodegenerative disease and CVD 

presentation, it is also important to recognize the large amount of influence from 

environmental factors to the risk of neurodegeneration. The most important risk factor for 

the diagnoses is age, potentially due to mechanisms involving DNA damage, epigenetic 

changes such as increased DNA methylation, mitochondrial dysfunction, cellular 

senescence, and telomere maintenance (Hou et al., 2019). However, these cellular 

pathways are also highly influenced by genetic factors (Atzmon et al., 2010; Coutts et al., 

2019; Larsen, Hanss, & Kruger, 2018), leading to a potential for interaction between risks 

associated with both aging and genetic variation. In fact, brains of neurodegenerative 

disease patients have displayed age-correlated variable gene expression (Cao, Chen-

Plotkin, Plotkin, & Wang, 2010), suggesting important gene-environment interactions, 

and certain pathogenic mutations causative of neurodegeneration have displayed age-

dependent effects (Ho et al., 2020; Longo et al., 2017). Similar gene-environment 

interactions have been observed in relation to pesticide exposures and other 

environmental toxins (Casarejos et al., 2006; Liu et al., 2017). 

This Dissertation did not address the potential for significant interactions between genetic 

and environmental risk factors, yet in order for the entire spectrum of neurodegenerative 

and cerebral small vessel disease risk to be assessed, we must obtain a comprehensive 

understanding of the genetic influences on disease. The novel genetic associations I 

identified demonstrate that there are still important discoveries to be made to contribute 

to the greater analysis of gene-environment interactions. Further, the identification of 

potentially pathogenic variation in individuals with unexpected diagnoses, such as the 

GBA variation observed across the non-PD diagnoses of ONDRI, may suggest that there 

are other genetic and/or environmental factors contributing to the differential phenotypes 

of these patients. Therefore, studying the potential influence from both environmental 

and genetic risk factors may prove itself necessary to truly understand disease risk 

moving forward. 
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8.4.6. Development of novel therapeutic targets 

A common goal for those studying the genetic determinants of neurodegeneration is 

addressing the considerable need for appropriate therapeutic targets and the development 

of treatments that may halt disease development or prevent its onset. Although there have 

been many attempts at this across neurodegenerative diagnoses, to date there remains few 

substantial breakthroughs in this quest. It is well-established that 85% of clinical trials 

fail, and neurodegenerative diseases are no exception to this rate (Olanow, Kieburtz, & 

Schapira, 2008; Oxford, Stewart, & Rohn, 2020; Petrov, Mansfield, Moussy, & Hermine, 

2017; Wong, Siah, & Lo, 2019). By gaining a greater understanding of the breadth of 

genetic variation that may contribute to disease risk, we may identify novel therapeutic 

targets specific to the underlying genetic risk factors. 

Furthermore, it is important to recognize that many of these efforts are currently 

underway, such as clinical trials of drugs specific to individuals diagnosed with PD that 

carry pathogenic GBA variation or individuals diagnosed with AD carrying the APOE E4 

genotype (Schneider & Alcalay, 2020; Yang, Kantor, & Chiba-Falek, 2021). However, 

the trials have yet to involve patients with different diagnoses, even though a substantial 

amount of genetic overlap has been observed across the diseases. A clear example of this 

overlap is displayed in Chapter 6, in which a relatively high frequency of likely 

pathogenic GBA variation is observed across all ONDRI cohorts. By applying these 

findings, if the clinical trials were to prove successful, it will be absolutely crucial that we 

gain a full understanding of the genetic overlap between neurodegenerative diseases and 

potential co-pathologies, as therapies may be useful to patients with seemingly different 

diagnoses.  

8.5. Conclusions 

Through the genetic analyses of individuals with neurodegenerative disease and CVD 

from the ONDRI study, I have contributed to the delineation of the complex genetic 

architecture of the phenotypes. My work has demonstrated the wide range of genetic 

variants that contribute to neurodegeneration and cerebral small vessel diseases and the 

potential overlap of genetic risk that has not previously been well defined. Specifically, I 
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leveraged the ability to concurrently evaluate patients with different neurodegeneration 

diagnoses using the ONDRISeq targeted NGS panel to characterize common genotypes 

and haplotypes, rare SNVs, and CNVs contributing to disease presentation and features. 

Chapters 2 and 3 demonstrated the important influence of APOE, not only to AD and 

MCI risk, but to cognitive impairment across all disease cohorts. Chapter 4 highlighted 

potentially novel gene-disease relationships and, along with Chapters 5 and 6, 

demonstrated that there may be a greater amount genetic overlap between 

neurodegenerative and cerebrovascular diagnoses than previously appreciated. Finally, 

the results of Chapter 7 supported the theory that aside from rare variants of high 

phenotypic effect that can drive diagnoses within a Mendelian model, there may also be 

rare variants of moderate phenotypic effect that are influencing neurodegenerative 

presentation and contributing to the large amount of phenotypic heterogeneity observed 

between patients with the same diagnoses and the phenotypic overlap between those with 

different diagnoses. Although I have applied robust methodologies to maximize the 

utility of the limited sample sizes within ONDRI, replication of the novel findings and 

functional analyses of novel variation are required to fully elucidate their contribution to 

disease pathogenesis. Nonetheless, to my knowledge, this Dissertation represents the first 

compendium to date of analyses of genetic associations across this number of 

neurodegenerative diseases at once with such deep, consistent phenotyping of 

participants. As the view of neurodegenerative diseases continues to evolve to consider 

diagnoses as sitting on a spectrum with mixed pathologies and overlapping etiologies, 

genetic factors will continue to become an ever more important indicator of presentation 

risk, particularly in regards to features and progression of disease.  
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Appendix C. The Ontario Neurodegenerative Disease Research Initiative (ONDRI) 
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Michael Borrie AD/MCI Recruitment 

Corinne Fischer AD/MCI Recruitment 
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John Turnbull ALS Recruitment 

Donna Kwan Clinical (Lead) 

Brian Tan  Clinical (Co-Lead) 

Jane Lawrence Dewar Clinical 

Richard H. Swartz CVD Recruitment (Lead) 

Leanne Casaubon CVD Recruitment 

Dar Dowlatshahi CVD Recruitment 

Ayman Hassan CVD Recruitment 

Jennifer Mandzia CVD Recruitment 

Demetrios Sahlas CVD Recruitment 

Gustavo Saposnik CVD Recruitment 

Susan Bronskill  Executive Member 

Doug Munoz Eye Tracking (Lead) 

Don Brien Eye Tracking  

Brian Coe Eye Tracking  

Ying Chen  Eye Tracking Scholar 

Elizabeth Finger FTD Recruitment (Lead) 

Carmela Tartaglia FTD Recruitment (Lead); AD/MCI Recruitment 

Bill McIlroy Gait and Balance (Lead) 

Manuel Montero-Odasso Gait and Balance (Lead) 

Karen Van Ooteghem  Gait and Balance 

Alanna Black  Gait and Balance  

Ben Cornish Gait and Balance  
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Frederico Faria Gait and Balance Scholar 
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Rob Hegele Genomics (Lead) 

Dennis Bulman Genomics 

Sali Farhan  Genomics 

Mahdi Ghani Genomics 

John Robinson Genomics 

Ekaterina Rogaeva  Genomics 
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Appendix D. Genes included on the ONDRISeq targeted next-generation sequencing panel. 

Gene 
Chromosomal 

location 
Affected protein 

RefSeq 

Transcript 
Associated phenotype Mode of inheritance 

Amyotrophic lateral sclerosis/frontotemporal dementia 
 

ALS2 2q33.1 Alsin NM_020919 ALS2 AR (HZ), juvenile onset 

ANG 14q11.2 Angiogenin NM_001145 ALS9 ADm, late onset 

ARHGEF28 5q13.2 Rho guanine nucleotide 

exchange factor 28 

NM_001080479 ALS and FTD AR (HZ) and ADm, late 

onset 

ATXN2 12q24.12 Ataxin 2 NM_002973 ALS13 ADm, late onset 

CENPV 17p11.2 Centromere protein V NM_181716 ALS Genetic association, late 

onset 

CHMP2B 3p11.2 CHMP family member 2B NM_014043 ALS17, FTD ADm, late onset 

DAO 12q24.11 D-amino acid oxidase NM_001917 ALS, schizophrenia ADm, late onset 

DCTN1 2p13.1 Dynactin 1 NM_004082 ALS, HMN7B, Perry 

syndrome 

ADm, late onset 

FIG4 6q21 FIG4 homolog, SAC1 lipid 

phosphatase domain 

containing 

NM_014845 ALS11, CMT disease, YV 

syndrome 

ADm, late onset; AR 

(HZ and CH), infantile 

onset; AR (HZ and CH), 

infantile onset 

FUS 16p11.2 Fused in sarcoma NM_004960 ALS6, FTD, HET4 AR (HZ), ADm, late 

onset 

GRN 17q21.31 Granulin precursor NM_002087 FTD, NCL ADm, late onset; AR 

(HZ), juvenile onset 

HNRNPA1 12q13.13 Heterogeneous nuclear 

ribonucleoprotein A1 

NM_002136 ALS20, inclusion body 

myopathy with early-onset 

Paget disease with/without 

FTD 3 

ADm, late onset; ADm, 

early onset 
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HNRNPA2B1 7p15.2 Heterogeneous nuclear 

ribonucleoprotein A2/B1 

NM_031243 Inclusion body myopathy 

with early-onset Paget 

disease with/without FTD 2 

ADm, early onset 

MAPT/STH 17q21.31 Microtubule-associated 

protein tau 

NM_001123066 ALS, FTD with 

parkinsonism, PD, AD, 

Pick disease, supranuclear 

palsy, tauopathy 

ADm, late and early 

onset 

NEFH 22q12.2 Neurofilament protein, heavy 

polypeptide 

NM_021076 ALS1 ADm, late onset 

OPTN 10p13 Optineurin NM_001008211 ALS12, glaucoma AR (HZ) and AD, early 

onset 

PFN1 17p13.2 Profilin 1 NM_005022 ALS18 ADm, earlier onset 

PNPLA6 19p13.2 Patatin-like phospholipase 

domain-containing protein 6 

NM_001166111 Spastic paraplegia, 

Boucher-Neuhauser 

syndrome 

AR (HZ and CH), early 

onset 

PRPH 12q13.12 Peripherin NM_006262 ALS1 ADm, late onset 

SETX 9q34.13 Senataxin NM_015046 ALS4, spinocerebellar 

ataxia 1 

ADm and AR, juvenile 

onset 

SIGMAR1 9p13.3 Sigma nonopioid 

intracellular receptor 1 

NM_001282208 ALS16, FTD AR (HZ); ADm, early 

onset 

SOD1 21q22.11 Superoxide dismutase 1 NM_000454 ALS1 AR (HZ and CH), ADm, 

age of onset varies from 

6–94 years old 

SQSTM1 5q35.3 Sequestosome 1 NM_001142298 Paget disease of bone ADm, late onset 

TAF15 17q12 TAF15 RNA polymerase II, 

TATA box binding protein 

associated factor 

NM_139215 Chondrosarcoma 
 

TARDBP 1p36.22 Tar DNA-binding protein NM_007375 ALS10, FTD ADm, late onset 

UBQLN2 Xp11.21 Ubiquilin 2 NM_013444 ALS15, FTD X-linked, juvenile and 

late onset 



297 

 

UNC13A 19p13.11 Unc-13 homolog A (C. 

elegans) 

NM_001080421 ALS Genetic association, late 

onset 

VAPB 20q13.33 Vesicle-associated 

membrane protein (VAMP)-

associated protein B and C 

NM_004738 ALS, spinal muscular 

atrophy (Finkel type) 

ADm, early and late 

onset 

VCP 9p13.3 Valosin-containing protein NM_007126 ALS14, FTD, inclusion 

body myopathy with early-

onset Paget disease 

with/without; FTD1 

ADm, early onset 

Alzheimer’s disease/mild cognitive impairment 
 

ABCA7 19p13.3 ATP-binding cassette, 

subfamily a, member 7 

NM_019112 AD Genetic association, late 

onset 

APOE 19q13.32 Apolipoprotein E NM_001302688 AD2, lipoprotein 

glomerulopathy, sea-blue 

histiocyte disease, macular 

degeneration 

ACD, ADm, AR (HZ 

and CH), late onset 

APP 21q21.3 Amyloid-β A4 precursor 

protein 

NM_000484 AD 1, cerebral amyloid 

angiopathy 

ADm and AR (HZ), 

early and late onset 

BIN1 2q14.3 Bridging integrator 1 NM_001320642 AD Genetic association, late 

onset 

CD2AP 6p12.3 CD2-associated protein NM_012120 AD Genetic association, late 

onset 

CD33 19q13.41 CD33 antigen NM_001772 AD Genetic association, late 

onset 

CLU 8p21.1 Clusterin NM_001831 AD Genetic association, late 

onset 

CR1 1q32.2 Complement component; 

receptor 1 

NM_000651 AD Genetic association, late 

onset 
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CSF1R  5q32 Colony-stimulating factor 1 

receptor 

NM_001349736 HDLS with dementia ADm, early and late 

onset 

DNMT1  19p13.2 DNA methyltransferase 1 NM_001130823 HSN1E with dementia ADm, early onset 

dementia 

ITM2B 13q14.2 Integral membrane protein 

2B 

NM_021999 Dementia ADm, early and late 

onset 

MS4A4E 11q12.2 Membrane-spanning 4-

domains, subfamily A, 

member 4E 

NM_011545418 AD Genetic association, late 

onset 

MS4A6A 11q12.2 Membrane-spanning 4-

domains, subfamily A, 

member 6A 

NM_152852 AD Genetic association, late 

onset 

PICALM 11q14.2 Phosphatidylinositol-binding 

clathrin assembly protein 

NM_007166 AD Genetic association, late 

onset 

PLD3 19q13.2 Phospholipase D family, 

member 3 

NM_012268 AD19 Genetic association, late 

onset 

PSEN1 14q24.2 Presenilin 1 NM_000021 AD3, dilated 

cardiomyopathy, FTD, Pick 

disease, acne inversa 

ADm, early onset 

PRNP  20p13 Prion protein NM_000311 Dementia ADm, early onset 

PSEN2 1q32.13 Presenilin 2 NM_000447 AD4, dilated 

cardiomyopathy 

ADm, early onset 

SORL1 11q24.1 Sortilin-related receptor NM_003105 AD ADm, combined gene 

burden, late onset 

TREM2 6p21.1 Triggering receptor 

expressed on myeloid cells 2 

NM_018965 AD Nasu-Hakola disease 

(dementia and psychotic 

symptoms) 

Genetic association, late 

onset 

TYROBP 19q13.12 Tyro protein tyrosine kinase-

binding protein 

NM_003332 Nasu-Hakola disease 

(dementia and psychotic 

symptoms) 

AR (HZ), juvenile onset 

Parkinson’s disease 
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ADH1C 4q23 Alcohol dehydrogenase 1C, 

gamma polypeptide 

NM_000669 PD, alcohol dependence 

protection 

Genetic association, late 

onset 

ATP13A2 

(PARK9) 

1p36.13 ATPase, type 13A2 NM_022089 PD, ceroid lipofuscinosis, 

dementia 

Genetic association, 

early onset and late 

onset 

DNAJC13 3q22.1 DNAJ/HSP40 homolog, 

subfamily C, member 13 

NM_001329126 PD ADm, late onset 

EIF4G1 3q27.1 Eukaryotic translation 

initiation factor 4-gamma 

NM_182917 PD18 ADm, late onset 

FBXO7 22q12.3 F-box only protein 7 NM_012179 PD15 AR (HZ and CH), early 

onset 

GAK 4p16.3 Cyclin G-associated kinase NM_005255 PD Genetic association, late 

onset 

GCH1 14q22.2 GTP cyclohydrolase I NM_000161 PD, dystonia Genetic association, 

early onset 

GIGYF2 2q37.1 GRB10-interacting GYP 

protein 2 

NM_015575 PD11 Genetic association, 

early and late onset 

HTRA2 2p13.1 HTRA serine peptidase 2 NM_013247 PD13 ADm and genetic 

association, early and 

late onset 

LRRK2 12q12 Leucine-rich repeat kinase 2 NM_198578 PD8 ADm and genetic 

association, early and 

late onset 

MC1R 16q24.3 Melanocortin 1 receptor NM_002386 PD; melanoma, UV 

induced skin damage 

Genetic association, late 

onset 

NR4A2 2q24.1 Nuclear receptor subfamily 

4, group A, member 2 

NM_006186 PD Genetic association, late 

onset 

PANK2 20p13 Pantothenate kinase 2 NM_001324191 Neurodegeneration AR (HZ and CH), early 

onset 



300 

 

PARK2 

(PRKN) 

6q26 Parkin NM_004562 PD2 AR (HZ and CH), 

juvenile onset; 

heterozygotes have late 

onset 

PARK7(DJ1) 1p36.23 Oncogene DJ1 NM_007262 PD7 AR (HZ and CH), early 

onset 

PARL 3q27.1 Presenilin-associated 

rhomboid-like protein 

NM_018622 PD (based on biological 

mechanisms, no linkage 

confirmed) 

NA 

PINK1 1p36.12 Pten-induced putative kinase 

1 

NM_032409 PD6 AR (HZ and CH), ADm, 

early onset 

PLA2G6 22q13.1 Phospholipase A2, group VI NM_001349867 PD14, NBIA2A, NBIA2B AR (HZ and CH), early 

and late onset 

PM20D1 1q32 Peptidase M20 domain, 

containing 1 

NM_152491 PD16 Genetic association, late 

onset 

RAB7L1 1q32.1 RAB7-like 1 NM_001135663 PD Genetic association, late 

onset 

SNCA 4q22.1 α-synuclein NM_000345 PD1, PD4, LBD ADm, early onset 

UCHL1 4p13 Ubiquitin carboxyl-terminal 

esterase L1 

NM_004181 PD5, neurodegeneration 

with optic atrophy 

ADm, AR (HZ), 

juvenile-onset 

VPS35 16q11.2 Vacuolar protein sorting 35 NM_018206 PD17 ADm, early and late 

onset 

Vascular cognitive impairment 
 

ABCC6 16p13.11 ATP-binding cassette, 

subfamily C, member 6 

NM_001171 Arterial calcification; 

pseudoxanthoma elasticum; 

pseudoxanthoma elasticum 

forme fruste 

AR (HZ), infantile 

onset; AR; ADm 

COL4A1 13q34 Collagen type IV, alpha-1 NM_001845 Angiopathy, brain small 

vessel disease, 

porencephaly 1, 

ADm, infantile onset 
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intracerebral haemorrhage 

susceptibility 

COL4A2 13q34 Collagen type IV, alpha-2 NM_001846 Porencephaly 2, 

intracerebral haemorrhage 

susceptibility 

ADm, infantile onset 

HTRA1 10q26.13 HTRA serine peptidase 1 NM_002775 CARASIL syndrome, 

macular degeneration 

AR (HZ), early onset 

NOTCH3 19p13.12 Notch homology protein 3 NM_000435 Infantile myofibromatosis 

2, CADASIL 

ADm, early onset 

SAMHD1 20q11.23 SAM domain and HD 

domain 1 

NM_015474 Aicardi-Goutieres 

syndrome 5, Chilblain 

lupus 2 

AR (HZ and CH),  AD, 

infantile onset 

TREX1 3p21.31 3-prime repair exonuclease 1 NM_016381 Aicardi-Goutieres 

syndrome 1, Chilblain 

lupus, Vasculopathy, 

retinal, with cerebral 

leukodystrophy 

AD, AR (HZ and CH), 

juvenile onset 

Age of onset was classified as ‘late onset’ if greater than 65 years of age. Figure adapted from Farhan, S., Dilliott, A., Ghani, M. et al. (2016) The ONDRISeq 

panel: custom-designed next-generation sequencing of genes related to neurodegeneration. npj Genomic Med 1, 16032. 

https://doi.org/10.1038/npjgenmed.2016.32 

Abbreviations: ACD, autosomal co-dominant; AD, Alzheimer’s disease; ADm, autosomal dominant; ALS, amyotrophic lateral sclerosis; AR, autosomal 

recessive; CARASIL syndrome, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; CADASIL, cerebral autosomal 

dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CH, compound heterozygous; CMT disease, Charcot-Marie-Tooth disease; FTD, 

frontotemporal dementia; HDLS, leukoencephalopathy, diffuse hereditary, with spheroids; HET4, hereditary essential tremor, 4; HMN7B, neuropathy, distal 

hereditary motor, type VIIB; HSN1E, hereditary sensory neuropathy type 1E; HZ, homozygous; LBD, Lewy body dementia; NCL, neuronal ceroid-

lipofuscinoses; NBIA2A, neurodegeneration with brain iron accumulation 2A; NBIA2B, neurodegeneration with brain iron accumulation 2B; NGS, Next-

generation sequencing; PD, Parkinson’s disease; YV syndrome, Yunis–Varon syndrome. 

https://doi.org/10.1038/npjgenmed.2016.32
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Appendix E. Regression coefficients (standard error) of the multinomial logistic 

regressions used for rare variant association analyses in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Multinomial logistic regressions adjusted for age, sex, and disease prevalence were performed to analyze 

enrichment of rare variants identified in the 80 genes encompassed by the ONDRISeq panel. The brglm2 R 

package was used to fit the regression model and apply a mean bias reduction accounting for the low 

variant positive counts. *p-value < 0.05.  

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD, cerebrovascular 

disease; FTD, frontotemporal dementia; MCI mild cognitive impairment; ONDRI, Ontario 

Neurodegenerative Disease Research Initiative; PD, Parkinson’s disease. 

  

Cohort 

AD/MCI 

Associated 

Genes 

ALS/FTD 

Associated 

Genes 

CVD  

Associated 

Genes 

PD  

Associated 

Genes 

Putative loss-of-function variants 

ONDRI 0.423 (0.534) 0.725 (0.576) -0.194 (0.822) 1.991 (0.924)* 

AD -0.560 (1.601) 0.646 (1.014) 1.007 (1.233) 2.510 (1.107)* 

ALS 3.242 (1.805) 3.502 (1.747)* 4.058 (2.272) 4.850 (1.947)* 

CVD 0.904 (1.039) 1.156 (1.039) 0.680 (1.499) 2.370 (1.313) 

FTD 2.415 (1.591) 2.713 (1.607) 2.790 (2.049) 3.948 (1.833)* 

MCI 0.626 (0.575) 1.066 (0.529)* -1.125 (1.862) 1.836 (0.950) 

PD 2.039 (1.555) 2.420 (1.531) 2.196 (1.910) 3.428 (1.832) 

Missense variants 

ONDRI 0.047 (0.206) -0.183 (0.205) -0.116 (0.217) -0.051 (0.208) 

AD 0.240 (0.384) -0.239 (0.386) -0.355 (0.425) -0.350 (0.384) 

ALS 0.291 (1.113) -0.048 (1.115) 0.441 (1.125) -0.383 (1.119) 

CVD -0.088 (0.442) -0.384 (0.440) -0.248 (0.477) 0.047 (0.443) 

FTD 0.065 (0.986) 0.045 (0.987) 0.258 (1.013) -0.109 (1.001) 

MCI 0.107 (0.228) -0.056 (0.228) -0.028 (0.237) -0.065 (0.230) 

PD 0.242 (0.873) -0.339 (0.876) 0.229 (0.909) -0.083 (0.885) 

Possibly deleterious missense variants 

ONDRI -0.209 (0.235) -0.056 (0.216) -0.141 (0.236) 0.123 (0.210) 

AD 0.146 (0.420) 0.275 (0.391) -0.709 (0.512) -0.526 (0.439) 

ALS 1.010 (1.134) 0.345 (1.145) 0.615 (1.158) 0.324 (1.134) 

CVD -0.222 (0.513) -0.306 (0.480) -0.189 (0.523) 0.302 (0.444) 

FTD 0.478 (1.024) 0.299 (1.009) 0.263 (1.069) 0.670 (1.003) 

MCI -0.109 (0.262) 0.133 (0.237) -0.137 (0.261) 0.381 (0.230) 

PD 0.171 (0.943) 0.043 (0.905) 0.489 (0.934) 0.178 (0.907) 
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Appendix F. Rare variant association analysis comparing the enrichment of rare missense variants in four disease-associated 

gene groupings in the ONDRI cohorts compared to cognitively normal controls presented in Chapter 4. 

 
Multinomial logistic regressions adjusted for age, sex, and disease prevalence were performed to analyze enrichment of (a) 

missense variants, and (b) possibly deleterious missense variants identified in the 80 genes encompassed by the ONDRISeq panel, 

which were binned into four disease-associated gene groupings: AD associated genes, ALS/FTD associated genes, CVD associated 

genes, and PD associated genes, across the ONDRI cohorts compared to the control cohort. Only ancestry matched participants 

were included in the analyses. The brglm2 R package was used to fit the regression model and apply a mean bias reduction 

accounting for the low variant positive counts. Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD, 

cerebrovascular disease; FTD, frontotemporal dementia; MCI mild cognitive impairment; ONDRI, Ontario Neurodegenerative 

Disease Research Initiative; PD, Parkinson’s disease. 
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Appendix G. Copy number variants (CNVs) detected by the VarSeq® v1.4.3 CNV Caller tool in 519 ONDRI participants in 80 

neurodegenerative disease genes covered by the ONDRISeq panel in Chapter 5. 

Subject Phenotype CNV State Gene Exon(s) Span (bp) Z-score Ratio p-value Validation 

1 AD Het Deletion OPTN 5 2357 -6.851 0.487 1.10E-12 Yes (BA) 

2 ALS Duplicate PARK7 1–5 9810 6.816 1.455 0 Yes (WES) 

3 CVD Duplicate ABCC6 1–31 74407 6.371 1.482 0 Yes (WES) 

4 MCI Duplicate SAMHD1 7–11 8802 5.872 1.474 1.70E-21 Yes (WES) 

5 CVD Duplicate ABCA7 16 276 9.961 3.221 3.14E-13 N/A 

6 CVD Duplicate ATP13A2 16 707 7.175 1.430 2.02E-08 N/A 

7 CVD Duplicate ABCA7 4–5 611 4.156 1.357 3.51E-07 No (WES) 

7 CVD Het Deletion LRRK2 9 170 -3.990 0.636 4.09E-05 N/Aa 

7 CVD Duplicate PRPH 7–8 453 3.991 1.338 6.34E-05 No (WES) 

8 AD Duplicate ABCA7 15–16 630 4.454 1.845 4.63E-07 N/A 

9 CVD Het Deletion TREM2 4 156 -3.753 0.678 7.30E-07 N/A 

10 CVD Duplicate COL4A2 2 220 4.212 1.382 7.34E-07 N/A 

11 PD Duplicate UNC13A 36 530 6.097 1.356 8.18E-07 N/A 

12 CVD Duplicate SQSTM1 0 532 6.045 1.712 8.62E-07 N/A 

13 PD Duplicate ABCA7 16–17 1627 4.163 1.748 9.65E-07 N/A 

14 CVD Duplicate CLU 8 395 4.731 1.405 1.72E-06 N/A 

15 ALS Duplicate DNMT1 35–36 678 6.623 1.319 2.14E-06 N/A 

16 FTD Het Deletion TREM2 4 156 -3.980 0.653 3.77E-06 N/A 

17 CVD Duplicate ATP13A2 28 700 5.397 1.493 4.39E-06 N/A 

18 CVD Duplicate CENPV 1 972 5.323 1.441 5.14E-06 N/A 

18 CVD Duplicate PSEN2 1 578 4.559 1.350 9.32E-05 N/A 

19 CVD Duplicate NOTCH3 3–4 641 3.901 1.351 5.44E-06 N/A 

20 PD Duplicate GCH1 5 621 6.382 1.322 8.90E-06 N/Ab 

21 PD Duplicate UCHL1 0–1 150 4.799 2.454 9.01E-06 N/A 

22 PD Duplicate ALS2 34 2127 4.658 1.380 1.07E-05 N/A 
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23 MCI Duplicate TAF15 15 210 4.235 1.513 1.26E-05 N/A 

24 CVD Duplicate NOTCH3 4–6 944 3.946 1.304 1.33E-05 No (WES) 

25 MCI Het Deletion GAK 20–23 623 -5.521 0.567 1.35E-05 N/A 

26 CVD Duplicate ABCC6 3 265 4.652 1.786 1.40E-05 N/A 

27 CVD Duplicate PNPLA6 1–3 375 3.722 1.596 1.48E-05 N/A 

28 CVD Duplicate CD2AP 1 960 3.853 1.407 1.85E-05 N/A 

29 AD Duplicate UNC13A 36 530 5.228 1.304 2.72E-05 N/A 

30 ALS Duplicate COL4A2 7 3715 3.817 1.314 2.87E-05 N/A 

31 CVD Duplicate SOD1 1-2 4765 3.541 2.019 3.13E-05 N/A 

32 CVD Duplicate UNC13A 35 2216 4.415 1.374 3.21E-05 N/A 

33 CVD Het Deletion NEFH 1 571 -5.899 0.564 3.22E-05 N/A 

34 CVD Duplicate NOTCH3 21–24 1756 3.884 1.322 3.29E-05 N/A 

35 ALS Duplicate UCHL1 7–8 2361 3.981 1.301 3.55E-05 N/A 

36 CVD Duplicate NOTCH3 3–4 641 3.543 1.323 3.63E-05 N/A 

37 MCI Duplicate TARDBP 1 622 5.506 1.426 4.24E-05 N/A 

38 AD Duplicate ABCA7 13–16 1925 3.568 1.388 5.11E-05 N/A 

38 CVD Het Deletion SIGMAR1 1 351 -3.757 0.538 5.76E-05 N/A 

40 CVD Duplicate ATP12A2 1 700 5.030 1.460 6.29E-05 N/A 

41 MCI Duplicate PNPLA6 2–5 232 5.132 1.421 7.97E-05 N/A 

42 PD Het Deletion UNC13A 8 506 -4.214 0.598 8.88E-05 N/A 

43 MCI Het Deletion ABCC6 3–4 629 -3.744 0.516 9.89E-05 N/A 

44 PD Het Deletion ABCA7 8 222 -4.021 0.451 9.94E-05 N/A 

For multi-exon CNVs, the reported ratio and Z-score values are averaged across each affected region. A response of “No” in respect to validation indicated that 

the WES did not identify the CNV that had been identified using the ONDRISeq panel. aThe WES performed did not have probes adequately covering exon 9 of 

LRRK2. bWES exhibited unmappable and incorrectly mapped reads, failing to pass the quality control standards of the CNV Caller tool algorithm. 

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; BA, breakpoint analysis; bp, base pairs; CNV, copy number variant; CVD, 

cerebrovascular disease; FTD, frontotemporal dementia; Het, heterozygous; MCI, mild cognitive impairment; N/A, not applicable; PD, Parkinson’s disease; 

WES, whole exome sequencing.  
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Appendix H. Polymerase chain reaction (PCR) and Sanger sequencing primers used 

to capture the sequence of GBA in Chapter 6. 

The primers listed were used for PCR amplifications, yielding three amplicons that contained: 1) exons 1–

4; 2) exons 5–7; and 3) exons 8–11; the most highly specific of previously published primers were used to 

provide specificity for isolating GBA (Mata et al. Mov Disord, 2016). All 11 exons of GBA were Sanger 

sequenced, including 100 base pairs at each intron-exon boundary.  

Abbreviations: FWD, forward; GBA, glucosylceramidase beta gene; PCR, polymerase chain reaction; REV, 

reverse. 

  

Target 

Exon(s) 

PCR Primer 

Direction 

Sequencing 

Primer Direction 
Primer Sequence 

1 
FWD FWD GCCTCACTTCCTGTGTCATG 

- REV TTCCCACCCATTTCAACTTC 

2 
- FWD GTGGGCCTTGTCCTAATGAA 

- REV CAAAGGACTATGAGGCAGAA 

3–4 
- FWD CAAGGGGTGAGGAATTTTGA 

REV REV ACGAAAAGTTTCAATGGCTCT 

5–6 
FWD FWD GCAAGTGATAAGCAGAGTCC 

- REV CTAGGTTGAGGGTTGGGACA 

7 
- FWD AGGCTGTTCTCGAACTCCTG 

REV REV AGTTTGGGAGCCAGTCATTT 

8 
FWD FWD TGTGTGCAAGGTCCAGGATCAG 

- REV CTGGACAGGAAGGGCTTCTG 

9 
- FWD GCAACTCTGGGGAACCA 

- REV CATTGGGGTTTTCTGTTGCT 

10–11 
- FWD CAGGAGTTATGGGGTGGGTC 

REV REV TTCTAGGGGCCTCCAGCC 
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Appendix I. GBA exons unable to be sequenced in ONDRI participants stratified by 

disease cohort presented in Chapter 6. 

  Number of ONDRI participants 

Region unable to be 

sequenced 

AD 

(n=41) 

ALS 

(n=39) 

CVD ± CI 

(n=161) 

FTD 

(n=51) 

MCI 

(n=84) 

PD 

(n=139) 

Exons 1–4; 9–11 0 0 0 0 0 1 

Exon 2 0 1 1 0 0 0 

Exons 2–4; 8–11 0 0 0 0 0 1 

Exons 3–4 0 0 4 1 2 0 

Exon 4 0 0 0 0 1 0 

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CVD ± CI, cerebrovascular 

disease with or without cognitive impairment; FTD, frontotemporal dementia; GBA, glucosylceramidase 

beta gene; MCI, mild cognitive impairment; ONDRI, Ontario Neurodegenerative Disease Research 

Initiative; PD, Parkinson’s disease. 
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Appendix J. Targeted next-generation sequencing and bioinformatics pipeline to 

evaluate genetic determinants of constitutional disease. 

The work presented in Appendix J. has been used with permission from the Journal of 

Visualized Experiments. The video component of this article has accumulated over 

20,000 views and can be found at: https://www.jove.com/v/57266/targeted-next-

generation-sequencing-bioinformatics-pipeline-to  

 

Dilliott A.A., Farhan S.M.K., Ghani M., Sato C., Liang E., Zhang M., McIntyre A.D., 

Cao H., Racacho L., Robinson J.F., Strong M.J., Masellis M., Bulman D.E., Rogaeva 

E., Lang A., Tartaglia C., Finger E., Zinman L., Turnbull J., Freedman M., Swartz R., 

Black S., the ONDRI Investigators, and Hegele R.A. (2018). Targeted next-generation 

sequencing and bioinformatics pipeline to evaluate genetic determinants of 

constitutional disease. J Vis Exp, (134): e57266. 

 
  

https://www.jove.com/v/57266/targeted-next-generation-sequencing-bioinformatics-pipeline-to
https://www.jove.com/v/57266/targeted-next-generation-sequencing-bioinformatics-pipeline-to
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Abstract 

Next-generation sequencing (NGS) is quickly revolutionizing how research into the 

genetic determinants of constitutional disease is performed. The technique is highly 

efficient with millions of sequencing reads being produced in a short time span and at 

relatively low cost. Specifically, targeted NGS is able to focus investigations to genomic 

regions of particular interest based on the disease of study. Not only does this further 

reduce costs and increase the speed of the process, but it lessens the computational 

burden that often accompanies NGS. Although targeted NGS is restricted to certain 

regions of the genome, preventing identification of potential novel loci of interest, it can 

be an excellent technique when faced with a phenotypically and genetically 

heterogeneous disease, for which there are previously known genetic associations. 

Because of the complex nature of the sequencing technique, it is important to closely 

adhere to protocols and methodologies in order to achieve sequencing reads of high 

coverage and quality. Further, once sequencing reads are obtained, a sophisticated 

bioinformatics workflow is utilized to accurately map reads to a reference genome, to call 

variants, and to ensure the variants pass quality metrics. Variants must also be annotated 

and curated based on their clinical significance, which can be standardized by applying 

the American College of Medical Genetics and Genomics Pathogenicity Guidelines. The 

methods presented herein will display the steps involved in generating and analyzing 

NGS data from a targeted sequencing panel, using the ONDRISeq neurodegenerative 

disease panel as a model, to identify variants that may be of clinical significance. 
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 Introduction 

As defining the genetic determinants of various conditions takes on a higher priority in 

research and in the clinic, next-generation sequencing (NGS) is proving to be a high-

throughput and cost-effective tool to achieve these goals1,2,3. For almost 40 years, Sanger 

sequencing had been the gold standard for identifying genetic variants4; however, for 

diseases with genetic heterogeneity or unknown genetic etiology, many possible 

candidate genes must be evaluated, often concurrently. In this context, Sanger sequencing 

becomes expensive and time-consuming. However, NGS involves massive parallel 

sequencing of millions of DNA fragments, allowing for a cost and time efficient 

technique to simultaneously detect a wide range of genetic variation across various 

regions of the genome. 

There are three types of NGS for sequencing DNA: 1) whole-genome sequencing 

(WGS), 2) whole-exome sequencing (WES), and 3) targeted sequencing5. WGS evaluates 

the entire genomic content of an individual, while WES involves sequencing only the 

protein-coding regions of the genome6. Targeted sequencing, in contrast, focuses on 

specific regions of the genome based on relatively few specific genes linked by common 

pathological mechanisms or known clinical phenotype. Either the exons or introns, or any 

intergenic regions of a gene or specific group of genes can be specified using this 

approach. Therefore, targeted sequencing can be an excellent approach when there is 

already a foundation of candidate genes known to be associated with the disease of 

interest. Targeting specific regions of the genome allows for elimination of superfluous 

and irrelevant genetic variation that can cloud or distract from clinical interpretation. 

While WGS and WES both produce a large amount of high-quality data, the amount of 

data can be overwhelming. Not only does this large amount of data require 

computationally intensive bioinformatics analysis, but data storage can frequently present 

problems7. This challenge of data storage also adds additional costs to both WGS and 

WES, which is often not initially considered when calculating the expense of sequencing. 

Further, although it is decreasing, the cost of WGS and WES remain relatively high. 

Targeted sequencing can be a more cost-efficient option, particularly when sequencing of 

a large number of individuals is required. 
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The Ontario Neurodegenerative Disease Research Initiative (ONDRI) is a multi-platform, 

provincial-wide, observational cohort study characterizing five neurodegenerative 

diseases, including: 1) Alzheimer's disease and mild cognitive impairment, 2) 

amyotrophic lateral sclerosis, 3) frontotemporal dementia, 4) Parkinson's disease, and 5) 

vascular cognitive impairment8. The ONDRI genomics subgroup is aiming to elucidate as 

part of the baseline characterization of this cohort the often discounted, yet extremely 

important genetic landscape of these phenotypically and genetically heterogeneous 

diseases. Neurodegenerative diseases are thus appropriate candidates for NGS 

methodologies and for targeted sequencing in particular. 

We have custom-designed a targeted NGS panel, ONDRISeq, to sequence 528 

participants involved in ONDRI for the protein-coding regions of 80 genes that have been 

previously associated with the five diseases of interest. With this methodology, we are 

able to harness the high-quality NGS data in a focused and efficient manner. The design 

and validation of the ONDRISeq panel with multiple concordance studies has been 

previously described, for which the ONDRISeq panel was able to identify novel, rare 

variants of possible clinical significance in 72.2% of 216 cases used for panel validation9. 

Although NGS technology has advanced rapidly and remarkably in recent years, many 

researchers face a challenge when processing the raw data into a list of usable, annotated 

variants10. Further, interpretation of the variants can be complex, especially when faced 

with many that are rare or novel11. 

Here, we describe in a step-by-step manner, the methodology of targeted NGS and the 

associated bioinformatics workflow required for resequencing, variant calling, and 

variant annotation using the ONDRISeq study as an example. After the generation of 

NGS data, raw sequencing files must be aligned to the human reference genome in order 

to accurately call variants. Variants must then be annotated in order to perform 

subsequent variant curation. We will also explain our implementation of the American 

College of Medical Genetics' Standards and Guidelines to accurately classify variant 

pathogenicity. 
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 Protocol 

For the purposes of ONDRI, ethics protocols and informed consent were obtained based 

on the Research Ethic Boards at Baycrest Centre for Geriatric Care (Toronto, Ontario, 

Canada); Centre for Addiction and Mental Health (Toronto, Ontario, Canada); Elizabeth 

Bruyère Hospital (Ottawa, Ontario, Canada); Hamilton General Hospital (Hamilton, 

Ontario, Canada); London Health Sciences Centre (London, Ontario, Canada); McMaster 

(Hamilton, Ontario, Canada); The Ottawa Hospital (Ottawa, Ontario, Canada); Parkwood 

Hospital (London, Ontario, Canada); St Michael's Hospital (Toronto, Ontario, Canada); 

Sunnybrook Health Sciences Centre (Toronto, Ontario, Canada); and University Health 

Network-Toronto Western Hospital (Toronto, Ontario, Canada). 

1. DNA Isolation from Human Blood Samples 

1.1. Collect samples from sequencing participants in accordance with 

appropriate ethics protocols and informed consent. 

1.1.1. To obtain DNA of high quality, draw blood samples for the purposes of 

extraction. 

NOTE: DNA can also be extracted from saliva or buccal cells, ensuring that 

an appropriate DNA extraction kit is used. 

1.1.2. If extracting from blood, to obtain a high yield of DNA, collect the sample 

in three 4 mL EDTA K2 tubes, providing a sample of total volume ~12 ml. 

1.1.3. Centrifuge blood samples for 20 min at 750 x g to fraction into an upper 

phase of plasma, thin, middle phase of leukocytes, and a bottom phase of 

erythrocytes. 

1.2. Remove the plasma from the blood sample by pipetting it off the top of the 

sample with a disposable transfer pipette. Appropriately discard the plasma or 

dispense into multiple 500 µL aliquots for storage at -80 °C for future 

biochemical analyses. Ensure that a new, sterile pipette is used for each sample. 

1.3. Extract DNA from the blood sample with a blood extraction kit12 (Table of 

Materials) according to manufacturer's instructions. 

NOTE: If a sample of the volume described above is obtained, ~3 mL of 

leukocytes will be obtained to use in the DNA extraction. 
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1.4. Measure initial DNA concentration in ng/µL using a full-spectrum 

spectrophotometer13 (Table of Materials), according to manufacturer's 

instructions. 

1.5. Proceed directly to step 2. Alternatively, store DNA at 4 °C. 

2. Sequencing Library Preparation 

2.1. Perform serial dilutions on the DNA samples over the course of three days to 

obtain a final concentration of 5.0 ± 1.0 ng/µL. 

2.1.1. Dilute 1 M Tris buffer pH 8.5 to 10 µM with deionized water. 

NOTE: The volume diluted will depend on the number of DNA samples that 

will need to be diluted in the subsequent steps. 

2.1.2. If performing the DNA dilution directly after step 1.4, proceed to the 

following step. If not on the same day, measure the DNA concentration as 

was done in step 1.4. 

2.1.3. Based on the concentration measured, dilute 40 µL of the DNA to ~10 

ng/µL using 10 µM Tris buffer pH 8.5 and allow the sample to sit overnight 

at 4 °C. 

2.1.4. Measure DNA concentration with a fluorometer14 appropriate for the 

quantification of DNA (Table of Materials), according to manufacturer's 

instructions. 

NOTE: The concentration of the sample should be >10 ng/µL because of the 

lower sensitivity of the spectrophotometer used previously. 

2.1.5. Based on the concentration measured, dilute 20 µL of the DNA to 10 

ng/µL using 10 µM Tris buffer pH 8.5 and allow the sample to sit overnight 

at 4 °C. 

2.1.6. Measure DNA concentration with the fluorometer14, according to 

manufacturer's instructions. 

2.1.7. Based on the concentration measured, dilute 10 µL of the DNA to 5 ng/µL 

using 10 µM Tris-HCl pH 8.5 and allow the sample to sit overnight at 4 °C. 

2.2. Prepare sequencing library according to manufacturer's instructions with 

the targeted NGS panel's appropriate target enrichment kit15 (Table of 
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Materials). Ensure that the enrichment kit is appropriate for the NGS 

platform being used. 

2.2.1. Follow manufacturer's instructions16 regarding the plexity and pooling of 

libraries. 

NOTE: For ONDRISeq, libraries are composed of 12 DNA samples, pooled 

in sets of two, and run on the NGS desktop instrument (Table of Materials). 

The number of samples that can be run in a single reaction will depend on 

the sequencing kit and platform used. 

2.2.2. To achieve higher quality sequencing data, perform the optional step to 

validate the DNA library quality following tagmentation, described in 

manufacturer's instruction of the target enrichment kit15. 

2.2.2.1. Analyze each library in triplicate to ensure the quality of the 

library yield. 

2.2.3. If pooling libraries, measure DNA concentration with the fluorometer14, 

according to manufacturer's instructions. Use this concentration to determine 

the volume of each DNA library to pool to obtain the equimolar ratios 

recommended by the target enrichment kit being used. 

3. Next-generation Sequencing 

3.1. Sequence the library according to the NGS desktop instrument's reagent kit 

manufacturer's instructions17,18 (Table of Materials). 

3.1.1. Prepare a sample sheet according to manufacturer's instructions18 using the 

appropriate NGS technology software (Table of Materials), which will be 

imported into the NGS desktop instrument's workflow. 

NOTE: For the purposes of ONDRISeq, the application option chosen is 

'other', with only the FASTQ files requested (Figure J.1). Subsequent steps 

will process these FASTQ files, to allow for full customization of alignment 

and quality parameters. However, if targeted sequencing is chosen, some 

NGS instruments are able to process the sequencing data into VCF files 

themselves. The manufacturer's instructions18 may be consulted for a full 

selection of options. 
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3.1.2. If using a cloud-based computing environment19 (Table of Materials), log 

in when setting up the sequencing run. Do this after clicking "Sequencing" 

on the NGS desktop instrument home page. 

3.1.3. Following library denaturation18 according to the manufacturer's 

instructions, measure DNA library concentration with the fluorometer14. 

3.1.4. Validate the DNA library quality using an appropriate automated 

electrophoresis system and DNA quality analysis kit20 (Table of Materials), 

as per manufacturer's instructions. 

3.1.5. To convert the DNA concentration from ng/µL to nM, use the following 

formula16 

 

 

 

NOTE: Average library size will be specific to target enrichment kit being 

used, and can be obtained from the electrophoresis trace observed in step 

3.1.4. 

3.1.6. Dilute the sequencing library to a final concentration of 6–20 pM, as 

appropriate, and volume of 600 μL, according to manufacturer's 

instructions21. 

NOTE: The exact concentration needed is dependent on the sequencing kit 

used. Consult the enrichment kit manufacturer to determine the proper 

loading concentration. 

3.1.7. Dilute, denature, and include a positive control sequencing library21, 

according to the manufacturer's instructions. 

3.1.8. Keep a log of every sequencing run, which includes the DNA library 

concentration loaded (pM), the percentage of positive control added, reagent 

cartridge barcode, application chosen in step 3.1.1, number of index reads, 

enrichment kit used, read length(s), and the sample sheet name. 

NOTE: The run time of the NGS desktop instrument will depend on the 
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instrument, enrichment kit, and read lengths chosen (4–56 h for the 

sequencer used in this experiment22). 

3.2. Upon completion of the sequencing run, access the "Run Folder", which includes 

all outputs, by navigating to the NGS desktop instrument home page and clicking 

"Manage Files". Move the files to a local drive for later access. For a separate 

option, on a computer, find the files within the cloud-based computing 

environment19 by selecting "Runs" on the navigation panel. Select the 

appropriate sequencing run to navigate to the Run Summary page. Select 

"Download" to obtain data from the cloud. From the dialog box that appears, 

select the FASTQ files as the file type to download and click "Download". 

3.3. From the Run Summary page of the cloud-based computing 

environment19,23, navigate to "Charts" to analyze the quality of the 

sequencing run with the various figures produced by the computing 

environment. Refer to the manufacturer's instructions23 for details 

regarding each figure produced. 

3.3.1. From the Run Charts page, find the figure labeled "Data by Cycle". Under 

chart, select "Intensity" and under channel select "All Channels". Ensure that 

this signal intensity plot produced is similar to that produced by sequencing 

runs performed in the past with the same enrichment kit and NGS desktop 

instrument. 

NOTE: This reflects the percentage of intensity shown by each base across 

all 150 cycles. The figure can vary widely depending on the enrichment kit 

used, which is why it must be compared to past sequencing runs of the same 

panel. 

3.3.2. Select the "Indexing QC" tab within the run navigation panel to find the 

indexing quality control (QC) histogram, which is on the right-hand side of 

the page. Ensure that a relatively uniform distribution of % Reads Identified 

(PF) is observed across all samples. 

NOTE: If any samples have a much lower % Reads Identified (PF) than the 

rest of the samples, note that the quality of the sequencing data may be 

affected. 
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3.4. From the Run Summary page of the cloud-based computing environment, 

navigate to the quality metrics by clicking "Metrics" within the run 

navigation panel. 

NOTE: Metrics cut-offs will depend on the sequencing platform and enrichment 

kit being used. There are many metrics that can be utilized based on 

manufacturer's instructions23, with the following steps highlighting three that are 

highly recommended for quality control. 

3.4.1. Under "DENSITY (K/MM2)" ensure the cluster density is within the range 

recommended by the enrichment kit being used (in this case 1,200–1,400 

K/mm2). 

3.4.2. Under the total "%≥Q30" ensure that the value is ≥85%, reflecting the 

quality of the sequencing reads. 

NOTE: If lower than this threshold of 85%, note that the quality of the 

sequencing may be compromised. 

3.4.3. Under "ALIGNED (%)" ensure that the value is similar to the % of 

positive control that was included in the sequencing run. 

NOTE: This acts as a measure of positive control, such that only this 

percentage of total reads were found to align to the positive control genome. 

If 1% positive control was used it would be expected that the Aligned (%) 

would be ~1–5%. 
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Figure J.1: Screenshot of the NGS technology software's (Table of Materials) 

sample sheet creator application options.  

For the purposes of ONDRISeq, the FASTQ only application is used. However, if the 

user would like other files produced, such as VCF files, it is recommended that an 

application within the targeted resequencing category is used.  
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4. Resequencing and Variant Calling 

4.1. For data pre-processing, select appropriate software to align the raw FASTQ files 

to the human reference genome and to call variants (Table of Materials). 

4.2. Import FASTQ sequencing reads into the data pre-processing software. 

NOTE: For the purposes of ONDRISeq, the 48 FASTQ files produced from a 

single sequencing run of 24 samples are imported and processed through the 

software. The number of samples processed at once can vary depending on the 

needs of the researcher and size of the NGS panel. 

4.2.1. Within the "Navigation Area", right click and select "New Folder". Name 

the folder such that there is clarity as to the sequencing run that was 

performed. 

4.2.2. From the toolbar at the top, select "Import". From the dropdown list of 

sequencing platforms shown chose the platform with which the sequencing 

was performed. 

NOTE: For the purposes of ONDRISeq, "Illumina" is chosen. However, if 

using a different sequencing platform consult the manufacturer's instructions 

for the remainder of the FASTQ importing steps24. 

4.2.3. In the dialog box, navigate to and select the FASTQ files from the 

sequencing run that is being processed. Ensure that the files being imported 

are stored in and imported from the local drive, if using a computer with 

multiple servers. 

4.2.4. From the "General options" of the dialog box, click the box beside "Paired 

reads" if sequencing used paired end chemistries. 

NOTE: In this case, there should also be two FASTQ samples imported for 

each sample - one forward and one reverse. 

4.2.5. From the Paired read information of the dialog box, select "Paired-end 

(forward-reverse)" if the forward read FASTQ file appears before the reverse 

read in the file list. If the files appear in the opposite order, select "Mate-pair 

(reverse-forward)". Set the paired read minimum distance to 1 and maximum 

distance to 1000, to allow for the detection of small scale structural 

rearrangements within the sample sequences. 
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4.2.6. From the "Illumina options" of the dialog box, select "Remove failed 

reads", to remove the reads that failed sequencing. If the NGS desktop 

instrument de-multiplexed the data before exporting the FASTQ files do not 

select the "MiSeq de-multiplexing" box. 

4.2.7. From the "Quality score" dropdown list, select the NGS Pipeline that was 

utilized for sequencing. Select "Next" at the bottom of the dialog box. 

NOTE: The pipeline used will affect the format of the FASTQ file quality 

scores. For more information about which pipeline to select, consult the 

manufacturer's instructions24. 

4.2.8. From the new dialog box, select “Save” and “Create subfolders per bath 

unit to put each sample's FASTQ files into their own individual folder. 

Select "Next" at the bottom of the dialog box. 

4.2.9. From the new dialog box, choose the folder that was created in step 4.2.1. 

This is where the FASTQ files will be imported. Select "Finish" at the 

bottom of the dialog box and wait until the FASTQ files are imported. Click 

the "Processes" tab to see the status of the file import. 

4.3. Design a workflow within the software to perform resequencing and variant 

calling, according to manufacturer's instructions. 

NOTE: This workflow can vary based on the needs of the researcher, but the 

following steps encompass what is included for the purposes of ONDRISeq 

(Figure J.2). The steps in this workflow can be applied to other NGS 

resequencing and variant calling software as appropriate. All bioinformatics 

processing for the purposes of ONDRI is performed in reference to human 

reference genome GRCH37/hg19, for consistency of data processing and 

analysis. 

4.3.1. Map the sequencing reads to the reference genome. 

4.3.1.1. When configuring, choose the reference genome as appropriate, 

ensuring that it is the same reference genome that is used for all 

bioinformatics steps. 

4.3.1.2. From the masking mode drop-down list select "No masking" so 

that no regions of the reference sequence are masked. 
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4.3.1.3. Use the default mapping options assigned by the software. Review 

the manufacturer's instructions24 to verify that this is acceptable based 

on the purposes of the research. 

4.3.2. Include in the workflow local realignment to the human reference genome 

to resolve any read mapping errors, particularly surrounding insertion-

deletion variants. 

4.3.2.1. Use the default local realignment options assigned by the software. 

Review the manufacturer's instructions24 to verify that this is acceptable 

based on the purposes of the research. 

4.3.3. Remove duplicated mapped reads produced by PCR within the NGS 

protocol to reduce the effect of the PCR amplification bias, which may 

produce false positives25. 

4.3.3.1. Set the "Maximum representation of minority sequence (%)", 

based on the needs of the research. 

NOTE: A lenient setting, as used for the purposes of ONDRISeq, is 

5%; however, the software's default setting is more stringent 20%. 

When two reads are very similar, this setting determines if the sequence 

with fewer read counts should be considered a sequencing error from 

the PCR amplification bias. Therefore, by setting 5%, the minority read 

count must be ≤ 5% of the majority read count to be corrected to be 

identical to the majority read. 

4.3.4. Export statistics for the target regions in the form of a coverage summary 

text file from the read tracks generated in step 4.3.3. Ignore non-specific 

matches and broken pairs in the settings. Choose a destination on the local 

drive for these files. 

4.3.5. Export a binary sequence alignment map (BAM) file for each sample from 

the read tracks generated in step 4.3.3. This contains sequence alignment 

data, if needed in future analyses. Choose a destination on the local drive for 

these files. 

4.3.6. Choose a method of variant detection to call variants within the sequence. 

NOTE: When assumptions can be made about the ploidy of the samples, it is 
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recommended that a fixed ploidy variant detection algorithm be used, as is 

used for the purposes of ONDRISeq. If this assumption cannot be made, 

refer to the manufacturer's instructions24 to determine the best algorithm for 

the purposes of the research. 

4.3.6.1. When configuring, from the fixed ploidy variant parameters 

options set the ploidy as appropriate for the sample organism. Set the 

"required variant probability", or the probability that a variant has been 

correctly called in order for it to be retained, at 90.0%. 

4.3.6.2. Use the following recommended settings for the general filters: 

"Minimum coverage" of 10x, "Minimum count" of 2, "Minimum read 

frequency" of 20%, "Ignore broken pairs", ignore nonspecific matches 

based on "Reads", and "Minimum read length" of 20. 

NOTE: These parameters are based on the purposes of ONDRISeq. 

Refer to the manufacturer's instructions24 to ensure they are appropriate 

for the research being done. 

4.3.6.3. Use the following recommended settings for the noise filters: 

"Base quality filters" with a "Neighbourhood radius" mapping quality 

score of 5, "Minimum central quality" mapping score of 20, and 

"Minimum neighbourhood quality" mapping score of 15; a "Read 

direction filter" of 5.0%; and "Relative read direction filter" of 1.0% 

significance. 

NOTE: These parameters are based on the purposes of ONDRISeq. 

Refer to the manufacturer's instructions24 to ensure they are appropriate 

for the research being done. 

4.3.7. Filter the variants that have been called based on their overlap with the 

targeted panel's target regions as specified by the Browser Extensible Data 

(BED) file, allowing only variants occurring within the genomic regions 

selected for the targeted NGS panel to be retained. 

NOTE: The BED file will be unique to the targeted NGS panel that is being 

utilized, based on the regions of the genome that the panel is able to cover. 
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4.3.8. Export a variant report in a variant calling format (VCF) file from the 

variant track produced in step 4.3.7. Choose a destination on the local drive 

for these files. 

4.3.9. Save and install the workflow according to manufacturer's instructions24, 

to make it available in the software's "Toolbox". Ensure the workflow is 

named such that it is clear in the future what NGS panel it is appropriate for. 

4.3.9.1. In the dialog box with the "Exporting reference data" options 

during installation, set all options to "Bundle". 

4.3.9.2. In the dialog box with the "Install location" options during 

installation, click "Install the workflow on your local computer". 

4.4. Run imported FASTQ sequencing read files through the customized 

bioinformatics workflow designed in step 4.3, according to manufacturer's 

instructions24. 

4.4.1. Identify the workflow designed in step 4.3 in the software's "Toolbox" and 

double-click it. 

4.4.2. Within the dialog box that appears, locate the folders of FASTQ files that 

were imported in step 4.2 within the "Navigation Area". Highlight all folders 

by selecting them within the "Navigation Area" and then click the box 

beside "Batch". Use the right-facing arrow to move the files to "Selected 

elements". Click "Next" at the bottom of the dialog box. 

4.4.3. Within the dialog box, review the "Batch overview" to ensure the correct 

FASTQ files were selected and then click "Next". 

4.4.4. Review the following steps of the workflow within the dialog box to 

ensure the correct files and export locations were selected when designing 

the workflow in step 4.3: "Map Reads to Reference"; Remove Duplicate 

Mapped Reads"; "Create Statistics for Target Regions"; "Export BAM"; 

"Export Tab delimited text"; "Filter Based on Overlap"; and "Export VCF" 

4.4.5. Within the final step in the dialog box -"Result handling"- select the 

option "Save in input folder". Click "Finish" at the bottom of the dialog box. 

NOTE: This means that the files produced for each sample will be placed 
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into the same folder that stores the FASTQ file within the data pre-

processing software. 
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Figure J.2: Workflow for the resequencing and variant calling of FASTQ files within the data pre-processing software (Table 

of Materials) customized for the purposes of ONDRISeq.  

The steps in the workflow can be applied to other NGS resequencing and variant calling software based on the needs of the researcher. 
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5. Variant Annotation 

5.1. Download and customize the Annotate Variation (ANNOVAR)26 script to 

perform variant annotation upon the VCF file of each sample. 

5.1.1. Download the following databases from ANNOVAR to be included as 

annotations: 1) RefSeq27 (August 2015 update); 2) dbSNP13828 (September 

2014 update); 3) the Exome Aggregation Consortium29 (ExAC, version 0.3 

November 2015 update); 4) the National Heart, Lung, and Blood Institute 

Exome Sequencing Project European Cohort30 (ESP, March 2015 update); 5) 

the 1000 Genomes Project European Cohort31 (1KGP, August 2015 update); 

6) ClinVar32 (March 2016 update); and 7) Combined Annotation Dependent 

Depletion33 (CADD), Sorting Intolerant from Tolerant34 (SIFT), and 

PolyPhen-235. 

NOTE: Genome coordinates and all databases referenced by ANNOVAR 

referred to human genome build GRCh37/hg19. Additionally, the database 

versions listed are those used for the purposes of ONDRISeq, when 

downloading the databases use the most up to date versions available. 

5.1.2. If desired, customize ANNOVAR to output the complete list of annotated 

variants, as well as a reduced compilation of annotated variants using the --

filter operation26. 

NOTE: The reduced list can be customized based on the needs of the 

researcher. For the purposes of ONDRISeq, the reduced list of annotated 

variants does not include variants that occur further than 15 bases from the 

nearest exon or any variants with a minor allele frequency (MAF) >3% in 

any of the three databases: 1) ExAC; 2) ESP; and 3) 1KGP. This step is 

highly recommended. 

5.1.3. If desired, customize ANNOVAR to single out specific allele calls based 

on the needs of the researcher26. 

NOTE: For the purposes of ONDRISeq, ANNOVAR assesses the 

sequencing calls made for the APOE risk alleles rs429358(C>T):p.C130R 

and rs7412(C>T):p.R176C in order to output the overall APOE genotype, of 

which there are six possible combinations, including: 1) E2/E2; 2) E3/E2; 3) 
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E4/E2; 4) E3/E3; 5) E4/E3; 6) E4/E4. Of these six 

possible APOE genotypes, E4/E4 is the most commonly accepted genetic 

risk factor for developing late-onset Alzheimer’s disease36. 

5.2. Query disease mutation databases (Table of Materials) to determine if 

variants have been previously associated with disease, with reasonable 

evidence. Consider any variants that have not been previously reported as a 

novel variant. 

5.2.1. Assess the ANNOVAR annotations from ClinVar, such that the disease-

associated variants include any classified as likely pathogenic or pathogenic. 

5.3. Process splicing variants through the in silico prediction tools Splicing-based 

Analysis of Variants37 (SPANR) and Human Splicing Finder38 (HSF, version 

3.0). 

5.4. If processing a large number of samples, compare the variant calls within each 

sample to determine which variants are shared by various samples. Do this 

manually or with a custom-designed script, allowing for the detection of possible 

sequencing artifacts and contamination events. 

NOTE: For the purposes of ONDRI, a custom script is used to annotate the 

ANNOVAR output files by comparing them to one another. The script 

incorporates an annotation, per variant, with the subject ID of any other samples 

harboring the same variant, otherwise termed the variant's history in the study 

cohort. 

5.5. Classify variants based on the American College of Medical Genetics (ACMG) 

Pathogenicity Guidelines39, assigning each variant a classification as one of the 

following: 1) pathogenic; 2) likely pathogenic; 3) variant of uncertain 

significance; 4) likely benign; or 5) benign. 

NOTE: For the purposes of ONDRI, an in-house designed Python script is used 

to perform ACMG classification on a semi-automated basis. Although not used 

for this study, InterVar40 is a similarly designed tool that can be utilized in an 

analogous manner. 
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5.6. Sanger sequence any variants with a sequencing coverage of <30x and/or 

variants that have been identified in > 10% of the study cohort to validate that 

they are not sequencing artifacts41. 

Representative Results 

The methodologies described herein were applied to 528 participant DNA samples from 

individuals that have been enrolled in ONDRI. Samples were run on the ONDRISeq 

panel in 22 runs of 24 samples per run. Overall, sequencing data were determined to be of 

high quality with a mean sample coverage of 78 ± 13x and all individual runs expressed a 

mean sample coverage >30x. Further, on average, 94% of all target regions were covered 

at least 20x (Table J.1). 

A mean 95.6% of reads were mapped to the reference sequence and all ONDRISeq runs 

had >90% of reads mapped (Table J.1). Of the mapped reads, 92.0% had a Phred score 

≥Q30, with only one run having <80% of mapped reads meeting this quality metric. 

However, this run still displayed a mean coverage of 79x and 93% of target regions were 

covered at least 20x. 
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Table J.1: Sequencing quality metrics for 22 runs on ONDRISeq. 

Parameter Mean (±sd) Best performance Poorest performance 

Cluster Density (x103/mm2) 1424 (±269) 1347 1835 

Total Reads (106) 43.1 (±6.0) 48.7 47.4 

Mapped Reads (106) 40.1 (±6.0) 47.1 25.7 

Mapped Reads (%) 95.6 (±1.3) 96.8 92.6 

Phred Quality Score ≥Q30 (%) 92.0 (±6.0) 92 68.3 

Sample Coverage (x) 78 (±13) 99 51 
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Case Study: Identification of rare variants in a PD patient. 

To demonstrate the utility of our targeted NGS workflow, we present the example of a 68 

year-old, male, Parkinson's disease patient. The DNA sample was run on the NGS 

desktop instrument (Table of Materials) using the ONDRISeq panel alongside 23 other 

ONDRI samples. The run displayed a cluster density of 1,555 x 103/mm2. The patient's 

particular sample displayed a mean coverage of 76x, with 93.9% of the target regions 

covered at least 20x. 

After performing variant calling and annotation with the custom bioinformatics 

workflow, the patient was found to harbor 1351 variants within the exons and 

surrounding 250 bp of the 80 genes included on the ONDRISeq panel. However, the 

ANNOVAR pipeline was able to reduce the number of variants by considering variant 

sequence ontology and MAF, as described above. This produced a list of seven variants 

that underwent manual curation (Figure J.3). From these seven variants, two were 

identified as having possible clinical significance. This process is specific to the needs of 

ONDRI and was done by identifying those that are relatively rare in the general 

population and are nonsynonymous in ontology thereby causing a change in the protein. 

Whether the variant had been previously associated with disease, the in silico predictions 

of deleteriousness to the protein and the ACMG pathogenicity classification of the 

variants were also utilized in this process. 

The first identified from the reduced list was a heterozygous variant, 

namely LRRK2:c.T3939A, resulting in the nonsense variant p.C1313*. LRRK2 encodes 

the protein Leucine-Rich Repeat Kinase 2, which possesses both GTPase and kinase 

activity42. Further, mutations within this gene are known to be among the leading causes 

of familial Parkinson's disease43. This variant introduces a premature stop codon 

within LRRK2, thereby losing amino-acid residues 1,314–2,527. This prevents the 

translation of the protein's Ras of complex proteins (Roc), C-terminal of Roc (COR), and 

protein kinase domains, which are involved in functioning as an atypical Rho GTPase, 

GTP binding protein, and protein kinase, respectively, and was predicted to be damaging 

by the in silico analysis generated by CADD (CADD Phred = 36). This variant is also 
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rare with a MAF of 0.004% and 0.01% in ExAC and ESP, respectively, and is absent 

from the 1000G database. Additionally, this is the only patient out of all 528 sequenced 

who carries this variant, which is novel since it has not been previously described in 

disease mutation databases (Table of Materials). The confidence of the variant call was 

confirmed by its deep coverage of 109x. Finally, the variant was assessed with the 

AMCG Standards and Guidelines for pathogenicity and was classified as being 

pathogenic. 

The patient also carried a second heterozygous variant, NR4A2:c.C755A, resulting in the 

missense change p.P252Q. The protein encoded by NR4A2, Nuclear Receptor Subfamily 

4 Group A Member 2, is a transcription factor involved in the generation of dopaminergic 

neurons44 and mutations within this gene have been previously associated with 

Parkinson's disease45. The substitution of the non-polar proline to the polar glutamine was 

predicted to be damaging by the in silico prediction analysis generated by CADD (CADD 

Phred = 21.1), but not by the analysis generated by SIFT or PolyPhen-2. The variant is 

rare, with a MAF of 0.004% in ExAC and absence from both ESP and 1000G. The 

variant was also identified in an ONDRI participant diagnosed with vascular cognitive 

impairment, but has not been previously described in disease mutation databases. This 

variant had coverage of only 18x, however, Sanger sequencing will be performed in order 

to ensure its validity within the sequence. Finally, the variant was determined to be of 

uncertain significance when assessed with the ACMG Standards and Guidelines for 

pathogenicity. 

The ONDRISeq panel and bioinformatics pipeline is also able to determine 

the APOE genotype of each sample. This patient was determined to have 

the APOE genotype E3/E3. 
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Figure J.3: Example of a reduced output from ANNOVAR displaying manually curated, annotated variants.  

The reduced ANNOVAR output from the case study of a 68-year-old, male, patient with Parkinson's disease. Annotated variants are 

curated to identify those that are most likely to be of clinical significance, as denoted by the red boxes.   
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Discussion 

In the path from DNA sample extraction to identifying variants that may be of interest 

when considering a patient's diagnosis, disease progression, and possible treatment 

options, it is important to recognize the multifarious nature of the methodology required 

for both sequencing and proper data processing. The protocol described herein is an 

example of the utilization of targeted NGS and subsequent bioinformatic analysis 

essential to identify rare variants of potential clinical significance. Specifically, we 

present the approach taken by the ONDRI genomics subgroup when using the 

ONDRISeq custom-designed NGS panel. 

It is recognized that these methods were developed based on a specific NGS platform and 

that there are other sequencing platforms and target enrichment kits that may be used. 

However, the NGS platform and desktop instrument (Table of Materials) was chosen 

based on its early US Food and Drug Administration (FDA) approval46. This 

authorization reflects the high-quality sequencing that can be performed with the NGS 

protocols of choice and the reliability that can be placed on the sequencing reads. 

Although obtaining accurate sequencing reads with the depth of coverage is very 

important, the bioinformatics processing required for final rare variant analysis is vital 

and can be computationally intensive. Due to the many sources of errors that may occur 

within the sequencing process, a robust bioinformatics pipeline must correct for the 

various inaccuracies that can be introduced. They may arise from misalignments in the 

mapping process, amplification bias introduced by PCR amplification in the library 

preparation, and the technology producing sequencing artifacts47. No matter the software 

used to perform read mapping and variant calling, there are common ways to reduce 

these errors including local realignment, removal of duplicate mapped reads, and setting 

proper parameters for quality control when calling variants. Additionally, the parameters 

chosen during variant calling may vary based on what is most appropriate for the study at 

hand11. The minimum coverage and quality score of a variant and the surrounding 

nucleotides that were applied herein were chosen as to create a balance between 
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appropriate specificity and sensitivity. These parameters have been validated for the 

ONDRISeq panel based on variant calling concordance with three separate genetic 

techniques, as previously described, including: 1) chip-based genotyping; 2) allelic 

discrimination assay; and 3) Sanger sequencing9. 

Following accurate variant calling, in order to determine those of potential clinical 

significance, annotation and curation are essential. Due to its open access platform, 

ANNOVAR is an excellent tool for both annotation and preliminary variant screening or 

elimination. Beyond being easily accessible, ANNOVAR can be applied to any VCF file, 

no matter what sequencing platform is used, and is customizable based on the needs of 

the research26. 

After annotation, variants must be interpreted to determine if they should be considered 

to be of clinical significance. Not only does this process become complex, but it is often 

prone to subjectivity and human error. For this reason, the ACMG has set guidelines to 

assess the evidence for pathogenicity of any variant. We apply a non-synonymous, rare 

variant-based manual curation approach, which is constructed based on these guidelines 

and safeguarded by individually assessing each variant that is able to pass through the 

pipeline with a custom-designed Python script that classifies the variants based on the 

guidelines. In this way, each variant is assigned a ranking of pathogenic, likely 

pathogenic, uncertain significance, likely benign, or benign, and we are able to add 

standardization and transparency to the variant curation process. It is important to 

recognize that the specifics of variant curation, beyond the bioinformatics pipeline, will 

be individualized based on the needs of the research, and was therefore beyond the scope 

of the methodologies presented. 

Although the methods presented here are specific to ONDRI, the steps described can be 

translated when considering a large number of constitutional diseases of interest. As the 

number of gene associations increase for many phenotypes, targeted NGS allows for a 

hypothesis driven approach that can capitalize on the previous research that has been 

done in the field. Yet, there are limitations to targeted NGS and the methodology 

presented. By only focusing on specific regions of the genome, the areas of discovery are 
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limited to novel alleles of interest. Therefore, novel genes or other genomic loci beyond 

those covered by the sequencing targets, which could be revealed with WGS or WES 

approaches, will not be identified. There are also regions within the genome that can be 

difficult to accurately sequence with NGS approaches, including those with a high degree 

of repeated sequences48 or those that are rich in GC content49. Fortunately, when utilizing 

targeted NGS, there is a priori a high degree of familiarity with the genomic regions 

being sequenced, and whether these might pose technical challenges. Finally, detection of 

copy number variants from NGS data at present is not standardized50. However, 

bioinformatics solutions to these concerns may be on the horizon; new computational 

tools may help to analyze these additional forms of variation in ONDRI patients. 

Despite its limitations, targeted NGS is able to obtain high-quality data, within a 

hypothesis-driven approach, while remaining less expensive than its WGS and WES 

counterparts. Not only is this methodology appropriate for efficient and directed research, 

the clinical implementation of targeted NGS is growing exponentially. This technology is 

being used to answer many different questions regarding the molecular pathways of 

various diseases. It is also being developed into an accurate diagnostic tool at relatively 

low cost when opposed to WES and WGS. Even when compared to the gold-standard 

Sanger sequencing, targeted NGS can outcompete in its time- and cost-efficiency. For 

these reasons, it is important for a scientist or clinician who receives and uses NGS data, 

for instance, delivered as text in a laboratory or clinical report, to understand the complex 

"black box" that underlies the results. The methods presented herein should help users 

understand the process underlying the generation and interpretation of NGS data. 
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Table of Materials 

Name Company Catalog Number Comments 

4 mL EDTA K2 tubes Fisher Scientific 02-689-4  

1 M Tris Buffer 
Bio Basic Canada 

Inc. 
SD8141  

Gentra Puregene Blood 

Kit 
Qiagen 158389 

1,000 mL Kit. This is the blood extraction kit, referred to in step 

1.3. 

NanoDrop-1000 

Spectrophotometer 

Thermo Fisher 

Scientific 
ND-2000 

Replaced by the NanoDrop-2000 Spectrophotometer. This is the 

full-spectrum spectrophotometer, referred to in steps 1.4 and 2.1.2. 

Qubit 2.0 fluorometer Invitrogen Q32866 
This is a fluorometer appropriate for the quantification of DNA, 

referred to in steps 2.1.4, 2.1.6, 2.2.3, and 3.1.3. 

Nextera Rapid Custom 

Capture Enrichment Kit 
Illumina, Inc. FC-140-1009 

Specifically designed for the ONDRISeq panel, sequencing the 

exons of 80 genes, resulting in 971,388 base pairs of sequence in 

paired-end reads of 150 bases in length; 288 samples per kit. This is 

the target enrichment kit, referred to in steps 2.2, 2.2.2, 2.2.3, 3.1.5, 

3.1.6, 3.4.1, and the Discussion. 

2100 BioAnalyzer 
Agilent 

Technologies 
G2939BA 

This is an automated electrophoresis system, referred to in step 

3.1.4. 

High Sensitivity DNA 

Reagent Kit 

Agilent 

Technologies 
5067-4626 

110 Samples per kit; This is a DNA quality analysis kit, referred to 

in step 3.1.4. 

MiSeq Reagent Kit v3 Illumina, Inc. MS-102-3003 
600 Cycle Kit; This is the NGS desktop instrument reagent kit, 

referred to in step 3.1. 
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MiSeq Personal 

Genome Sequencer 
Illumina, Inc. SY-410-1003 

This is a NGS desktop instrument, referred to in steps 2.2.1, 3.1, 

3.1.1, 3.1.2, 3.1.8, 3.2, 4.2.6, the Representative Results, and the 

Discussion. 

Experiment Manager Illumina, Inc.  

This is NGS technology software, referred to in step 3.1.1 

and Figure J.1. 

https://support.illumina.com/sequencing/sequencing_software/exper

iment_manager/downloads.html 

BaseSpace Illumina, Inc. SW-410-1000 

This is a cloud-based computing environment, referred to in steps 

3.1.2, 3.2, 3.3, 3.3.1, 3.3.2, 3.4, 3.4.1, 3.4.2 and 3.4.3. 

https://basespace.illumina.com/ 

CLC Genomics 

Workbench 10.1.1 
Qiagen 832000 

Open source options for data pre-processing are also available that 

can model the workflow used in this protocol. This is the software 

used for data pre-processing, referred to throughout step 4 and 

in Figure J.2. 

Annotate Variation   http://annovar.openbioinformatics.org/en/latest/user-

guide/download/ 

RefSeq 

National Center for 

Biotechnology 

Information 

 https://www.ncbi.nlm.nih.gov/refseq/ 

dbSNP138 

National Center for 

Biotechnology 

Information 

 https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view

+summary=view+summary&build_id=138 

Exome Aggregation 

Consortium 
Broad Institute  http://exac.broadinstitute.org/ 



338 

 

National Heart, Lung, 

and Blood Institute 

Exome Sequencing 

Project European 

Cohort 

University of 

Washington and the 

Broad Institute 

 http://evs.gs.washington.edu/EVS/ 

ClinVar 

National Center for 

Biotechnology 

Information 

 https://www.ncbi.nlm.nih.gov/clinvar/ 

Combined Annotation 

Dependent Depletion 

University of 

Washington and 

Hudson-Alpha 

Institute for 

Biotechnology 

 http://cadd.gs.washington.edu/ 

Sorting Intolerant from 

Tolerant 

J. Craig Venter 

Instutite 
 http://sift.jcvi.org/ 

PolyPhen-2 

Brigham and 

Women's Hospital, 

Harvard Medical 

School 

 http://genetics.bwh.harvard.edu/pph2/ 

Human Gene Mutation 

Database 
Qiagen 834050 

This is a disease mutation database, referred to in step 5.2 and the 

Representative Results. https://portal.biobase-international.com/cgi-

bin/portal/login.cgi?redirect_url=/hgmd/pro/start.php 

Splicing-based 

Analysis of Variants 

Frey lab, University 

of Toronto 
 http://tools.genes.toronto.edu/ 

Human Splicing Finder 
Aix Marseille 

Université 
 http://www.umd.be/HSF3/HSF.shtml 
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Other materials    

Centrifuge    

Disposable transfer 

pipets 
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