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Abstract 

After an episode of repetitive mild traumatic brain injury (rmTBI), many cellular and 

molecular cascades are initiated that result in the disruption of the structural and chemical 

integrity of the components in the brain, leading to the development of various cognitive 

deficits.  The goal of this thesis was to evaluate a mouse model of concussion in order to 

study the relationship between rmTBI, GSK3β and tau phosphorylation, and behavioural 

outcomes in a transgenic mouse line expressing solely human tau.  We found that there was 

increased phosphorylation of the two main regulatory sites on GSK3β, Tyr216 and Ser9, in 

the C57BL/6 mice.  When investigating the pathology and behaviour in the MAPT KI mice, 

there was positive silver staining, pathological tau staining (AT8), and increased Iba1 

staining compared to shams, with animals displaying cognitive deficits upon behavioural 

testing.  Overall, this study supports the use of MAPT KI transgenic mice in rmTBI studies. 
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Summary for Lay Audience 

Traumatic brain injuries (TBIs) are injuries that affect the structural integrity of the brain 

which, in turn, has a negative impact on brain functions and influences the behaviour of those 

affected.  The least severe form of TBIs, known as mild TBIs (mTBIs) includes concussions 

and sub-concussive closed head injuries.  When the exposure to mTBIs becomes repetitive, 

in other words repetitive mild traumatic brain injuries (rmTBI), there is an increased risk for 

the development of a neurodegenerative disease known as Chronic Traumatic 

Encephalopathy (CTE).  The main characteristic of this disease is the presence of abnormal 

tau protein aggregates in the brain.  One protein that has been implicated in the process of 

formation of these abnormal protein aggregates is called glycogen synthase kinase 3-beta 

(GSK3β).   

There is always the struggle of taking results from scientific studies involving animal models 

and then applying them to human beings.  However, technological advancements have 

allowed the development of genetic tools that have been applied to rodents in order to create 

ideal models with greater clinical relevance to human disease.  In this thesis I investigate a 

novel mouse model in which the entire mouse tau gene has been replaced with the human tau 

gene.  I use this mouse model to characterize the structural damage, at the cellular and 

molecular levels, that occur post-rmTBI, as well as the behavioural outcomes, in order to 

validate the use of this model in future research.   

 This study demonstrates that the novel mouse model is capable of developing the cellular 

and molecular injuries typical of rmTBIs.  The mice also demonstrate behavioural deficits 

that correlate with rmTBI injury, similar to that seen in humans.  Overall, this study supports 

the use of these mice for future rmTBI studies, as these mice are more clinically relevant and 

therefore more desirable models.  This study will hopefully serve as a stepping stone for 

future studies of rmTBI with a focus on further characterizing the pathology and developing 

and applying potential therapeutics. 
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Chapter 1  

1 Introduction 

After an episode of repetitive mild traumatic brain injury (rmTBI), also referred to as 

concussions, many cascades are initiated that result in the deterioration of neurons, 

leading to degeneration within the brain and the development of cognitive deficits.  

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that develops 

from repetitive impacts sustained to the head causing concussions (Lucke-Wold et al., 

2014).  This has been observed in both athletes, those in contact sports, and military 

personnel (Lucke-Wold et al., 2014).  It is characterized as a tauopathy as one of the 

major defining features of the disease involves tau, a microtubule-associated protein.  

Abnormally phosphorylated tau within neurons begins to form aggregates, fibrils, and 

tangles, which disrupts normal cell functions such as microtubule assembly and the 

ability to maintain stable structure within the cell (Kolarova et al, 2012).  Abnormal 

phosphorylation of tau not only causes pathology within neurons, but it also results in 

cognitive impairments due to the degeneration within the brain itself (Kolarova et al, 

2012).  This leads to progressive cognitive impairments/dementia such as memory 

deficits, depression, and increased anxiety/anxiety related behaviours (Luo et al., 2014), 

observed in CTE.  I sought to develop a clinically relevant mouse model of 

concussion/rmTBI to study the pathophysiological mechanisms that lead to CTE.  One 

mechanism that has been put forward to explain the development of CTE following 

rmTBI focuses on the tau kinase, glycogen synthase kinase 3-beta (GSK3β) (Dash et al., 

2011; Moszczynski et al., 2018).  It has been proposed that GSK3β is responsible for the 

abnormal phosphorylation of tau in tauopathies, such as CTE (Hooper, Killick, and 

Lovestone, 2008).  This abnormal phosphorylation of tau is what leads to the pathological 

formation of aggregates/fibrils/tangles leading to neuronal death (Polydoro et al., 2009). 

A model of concussion needs to mimic the tell-tale features of human injury including the 

cellular pathologies, molecular pathologies, and behavioural outcomes post-injury.  The 

accumulation of all of these features is what ultimately leads to the eventual development 

of CTE.  It is the goal of this thesis to develop and evaluate a mouse model of concussion 
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in order to study the relationship between rmTBI, GSK3β activity, tau phosphorylation 

and the development of cognitive deficits in a transgenic mouse line expressing solely 

human tau. 

1.1 Concussion 

Traumatic Brain Injuries (aka Primary Injuries)   

Traumatic brain injuries (TBIs) are a devastating set of injuries that affect the structural 

and chemical integrity of the brain which, in turn, influences the behaviour of those 

affected (Bramlett & Dietrich, 2015; Kokiko-Cochran et al., 2018; Shultz et al., 2020).  

When severe, TBIs affect the rest of the central nervous system and cause permanent 

damage to the brain or even death (Ling et al., 2015).  TBIs have recently become of 

more interest due to the increasing awareness of the general public, as they are a huge 

health concern (Yap et al., 2017).  The complications that arise, post-TBI, create a ripple 

effect in the health care system, the economy, and cause strain in those closest to the 

individuals who are injured (Siebold et al., 2018).  Anyone can be affected by a TBI, 

however, some individuals are more at risk than others.  Individuals who partake in 

contact sports, are enrolled in the military, or have careers that increase the probability of 

injury, are all examples of individuals that are at a higher risk of incurring a TBI (McKee 

et al., 2009).    

TBIs may be classed based on their severity as mild, moderate or severe.  Several clinical 

assessment tools have been developed and used in order to assess the severity of a 

sustained TBI including various imaging techniques, timing and/or presence of loss of 

consciousness, presence and/or absence of amnesia, and finally the Glasgow Coma Scale 

(Siebold et al., 2018).  The least severe classification of TBIs, known as mild TBI 

(mTBI), includes injuries referred to as concussions and sub-concussive injuries, which 

involve acceleration, deceleration and rotational mechanical forces transmitted to the 

brain upon impact resulting in shearing of brain tissues (Montenigro et al., 2017).  

Concussions and sub-concussive injuries are typically closed head injuries which do not 

involve penetrating forces (Tagge et al., 2018).  Specifically, concussions can be defined 

as any impact that directly or indirectly involves the head producing a number of 
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symptoms which can recover over a variable length of time, depending on the 

individuals’ circumstance (Montenigro et al., 2017).  However, sub-concussions can be 

defined similarly to that of concussions, with the exception that sub-concussions fail to 

produce visible symptoms (Bailes et al., 2013; Erlanger, 2015; Montenigro et al., 2017). 

When repetitive, the pathological sequelae of rmTBIs can accumulate and activate 

secondary injury cascades and potentially the development of neurological disease 

(Bailes et al., 2013).  

There are many external factors that influence the severity of an mTBI.  It has been 

proposed that acceleration and deceleration forces play an important role in the outcome 

of the severity of injury (Ling et al., 2015).   These forces can act on the brain either in a 

linear or non-linear/rotational manner, depending on the mechanism or method of 

delivery for the injury (Ling et al., 2015).  The result is the brain, consisting of all of the 

neurons, glia cells, and other components, being mechanically disarrayed (Ling et al., 

2015).  The location of the insult, the magnitude of the force behind the injury, the 

amount of surface area affected, and the amount of freedom of the head to move during 

impact are also factors to consider (Bolton-Hall et al., 2019). 

There are instances in which individuals experience more than one mTBI in a given 

period of time, referred to as repetitive/repeated mild traumatic brain injury (Donovan et 

al., 2014).  Repetitive mTBI can potentially lead to the development of second-impact 

syndrome (SIS) (Cobb & Battin, 2004) in which there can be serious consequences 

including death.  It has been shown that there is a window of time in which the brain is 

more vulnerable to a second potential impact after the initial injury (Laurer et al., 2001; 

Longhi et al., 2005) contributing to the development of SIS.  With each injury, the 

pathological cascades and behavioural symptoms become additive (Cobb & Battin, 

2004).     

TBI is often described as having two components: a primary injury and a secondary 

injury.  The primary injury/TBI involves the physical disruption of the brain and includes 

various mechanical disruptions such as the shearing and stretching of axons (Cernak et 

al., 2004).  However, not all primary injuries/TBIs are the same and this makes treatment 
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difficult as the nature of these injuries are very heterogenous (Siebold et al., 2018; 

Washington et al., 2012).  The primary injury/TBI initiates many secondary injury 

cascades, such as, diffuse axonal injury, apoptosis, and ionic disturbances (Cernak et al., 

2004).  The intensity and duration of these secondary injury cascades depends ultimately 

on the severity of the initial injury.  

Secondary Injuries  

Secondary injuries are considered to be any and all pathological cascades that occur after 

the initial insult to the brain (Cernak et al., 2004).  Secondary injuries can roughly be 

sorted into two major categories: secondary cellular injuries and secondary molecular 

injuries, which both lead to the development of behavioural deficits (Krishnamurthy K & 

Laskowitz DT, 2016; Washington et al., 2012).  It is worthy to note that certain cases of 

cellular injury, such as immediate cell death or direct damage to brain tissues, can be 

considered by some to be primary injuries as they are a result originating directly from 

the impact (Abdul-Muneer et al., 2015).  Behavioural outcomes, on the other hand, are a 

result of the additive effects of both the secondary cellular and molecular injuries 

produced from the initial trauma (T. Chen et al., 2011; Davis, 2000).   

Secondary Cellular Injuries  

Secondary cellular injuries result in mechanical damage to the various structures within 

the brain (J. R. Hay et al., 2015), as well as damage to cells and/or organelles within the 

central nervous system (Haber et al., 2017; Mbye et al., 2008).  There have been several 

studies that have investigated the effect of TBIs on the integrity of the blood brain barrier 

(BBB) post-injury (J. R. Hay et al., 2015; Tomkins et al., 2011; Weissberg et al., 2014).  

Interestingly, one study investigating the effects of concussive and sub-concussive 

impacts on football players found that there was increased BBB permeability in both the 

gray and white matter areas in approximately 40% of the players that were analyzed 

(Weissberg et al., 2014).  The authors postulated that this could be influenced by repeated 

exposures to sub-concussive events that go unnoticed at the time of the injury, or due to 

neglected or unreported concussive events (Weissberg et al., 2014).  The vasculature 

within the brain is also at risk post-injury, as mTBIs cause damage to the blood vessels as 
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a whole and microstructural damage to the vascular cells which decreases and alters 

blood flow and brain function (Jullienne et al., 2016; Monson et al., 2019).  Depending 

on the severity of the TBI, the location of the injury and the method of delivery, a 

beneficial or a harmful/prolonged inflammatory response may develop (Burda et al., 

2016).  With the integrity of the BBB being compromised post-TBI, there is the 

possibility of the inflammatory response to be sustained by incoming neutrophils, 

monocytes, and lymphocytes (Ziebell & Morganti-Kossmann, 2010).   

The mechanical forces of TBIs also cause stretching, shearing and/or tearing of the 

neurons and axons of neurons within the brain which, in turn, results in diffuse axonal 

injuries (DAI) throughout the white matter (Yap et al., 2017).  DAI is considered to be a 

hallmark of TBIs and is of great concern as it results in the disruption of axonal transport, 

production of retraction bulbs, and in more severe cases, axonal loss and degeneration 

(Haber et al., 2017).  It was discovered that even under very mild axonal stretch 

conditions there was increased growth cone collapse and smaller growth cones within the 

tips of regenerative sprouts in developing axons (Yap et al., 2017).  Another study, 

investigating the relationship between diffusion tensor imaging (DTI) and DAI in a 

Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) mouse 

model of TBI, discovered that there were DTI abnormalities, post-injury, indicating 

damage to several white matter tracts such as the optic tract and the corpus callosum 

(Haber et al., 2017).  Silver staining of sections from injured brains was used to confirm 

the findings of the DTI results.  Unfortunately, when cellular damage occurs it can result 

in various components within the cell to be damaged as well.  Organelles, in particular 

the mitochondria which are essential to neuronal function, are also subject to injury upon 

TBI (Mbye et al., 2008).  Upon injury, many cascades are thrown into disarray (such as 

Ca2+ homeostasis, activation of calpains and caspases, increases in oxidative stress), 

which results in mitochondrial dysregulation, and ultimately neuronal death (G. Cheng et 

al., 2012).  All of these examples of cellular injury due to TBIs, and many more, are 

intimately related to various secondary molecular injuries that are initiated post-injury.      
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Secondary Molecular Injuries    

There are many molecular cascades and pathways that are activated post-TBI that are 

classified as secondary molecular injuries such as the generation of reactive oxygen 

species (ROS)/reactive nitrogen species (RNS), proapoptotic signals, activation of 

various enzymes, and production of inflammatory signals (Bramlett & Dietrich, 2015), 

and many more.  TBIs create an environment in which the balance of antioxidants and the 

generation of ROS/RNS becomes altered, favouring the production of the latter, thus 

resulting in oxidative stress (Abdul-Muneer et al., 2015).  The production of these free 

radicals, in this case ROS/RNS, poses a serious threat to the maintenance of cellular 

homeostasis as these radicals are capable of interacting and reacting with any cellular 

components, therefore compromising cellular function (Tyurin et al., 2000).  Oxidative 

stresses play a role in a number of other secondary injury processes, both cellular and 

molecular.  Oxidative stress has been implicated in the increased permeability of the BBB 

and brain vasculature, further facilitating inflammation by directly/indirectly initiating the 

production of various neuroinflammatory signals, and damage to proteins, DNA, and 

mitochondrial function (Abdul-Muneer et al., 2015; Ansari et al., 2008).  

Apoptosis, a form of programmed cell death, can be an early or delayed post-injury 

response that ultimately results in neuronal death (Uzan et al., 2006; X. Zhang et al., 

2004).  The initiation of apoptosis can occur via a number of different pathways, all of 

which able to interact with one another (X. Zhang et al., 2004) to result in the completion 

of apoptosis.  One method of apoptosis induction is through the activation of caspases, a 

family of proteases, initiated through intrinsic and/or extrinsic routes.  Intrinsic activation 

signals consist of various stress signals from mitochondria contained within the cell, 

however, extrinsic signals consist of a number of signals binding to their respective 

receptors (Uzan et al., 2006).  Both intrinsic and extrinsic pathways initiate the 

proteolytic cleavage of members of the caspase family which allow the enzymes to be 

able to interact with their substrates, resulting in DNA fragmentation, cytoskeletal 

disintegration, and ultimately apoptosis (X. Zhang et al., 2004).  Another method of 

regulation for the process of apoptosis is through the balance of members of the B-cell 

lymphoma-2 (Bcl-2) family.  The Bcl-2 family consists of both pro- and anti- cell death 
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signals, and the balance of these signals influence whether or not apoptosis will occur 

(Wong et al., 2005). Events, such as TBIs, can tip the scales in favour of apoptosis 

through the activation/imbalance of any of these pathways resulting not only in neuronal 

death, but the death of various glial cells as well (X. Zhang et al., 2004).                    

Once a TBI has occurred, there are many molecular pathways that are involved in the 

inflammatory process that are activated and are able to influence various cellular changes 

that occur throughout the inflammatory response (Ghirnikar et al., 1998).  Some of these 

pathways include the release of several mediators such as prostaglandins, free radicals 

(ROS/RNS), and cytokines which facilitate the expression of chemokines (Ghirnikar et 

al., 1998).  The production and levels of cytokines and chemokines play a role in the 

neuropathological outcome after TBIs.  There is controversy surrounding the therapeutic 

value of inflammation post-injury, due to the fact that inflammation can benefit the 

central nervous system by clearing out damaged cells and debris, while a pro-longed 

inflammatory response can be detrimental (Morganti-Kossmann et al., 2001).  In 

particular, cytokines involved in the inflammatory process can be divided into two 

subgroups, one being cytokines with pro-inflammatory properties and the other being 

cytokines with anti-inflammatory properties (T. Chen et al., 2011).  One study 

investigating the effects of administration of salvianolic acid B (SalB) on TBI found that 

SalB blocked the activities of pro-inflammatory cytokines, thus preventing the infiltration 

of incoming inflammatory cells while increasing the expression of anti-inflammatory 

cytokines (T. Chen et al., 2011).  The treatment with SalB resulted in various 

improvements post-TBI in the form of decreased lesion volumes, brain edema, and 

behavioural deficits with decreases in motor functional and spatial learning/memory 

impairments (T. Chen et al., 2011).          

Behavioural Outcomes  

There are many cognitive, behavioural, and emotional conditions that arise post-

TBI/TBIs due to the accumulated actions of secondary cellular and molecular injury 

processes (Davis, 2000; Washington et al., 2012).  The intensity, the number, and the 
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nature of the TBIs can influence the prevalence of these conditions post-injury 

(Washington et al., 2012).   

The most common behavioural outcome occurring after TBIs is the development of 

depression, with a higher percentage of individuals developing some level of depression 

post-injury compared to anxiety (Leong Bin Abdullah et al., 2018; Mauri et al., 2014).  

One study investigating the prevalence of Axis I and II disorders (mental 

health/substance use disorders versus personality/mood disorders), post-TBI, discovered 

that the development of major depression was present at both the acute and chronic time 

points of the study, all the way up to the 30 year follow up checkpoint (Koponen et al., 

2002).  The onset of depression post-TBI can be attributed to the damage from the initial 

injury itself, various secondary injury pathways (example: decreased glucose 

metabolism), and external lifestyle factors (Fann et al., 2009).  There is a possibility that 

individuals who experience TBIs, and develop depression, can also develop anxiety as 

well, on top of the depression, making treatment even more difficult (Barker-Collo et al., 

2018). 

Anxiety disorders are another common behavioural outcome after TBIs.  There is an 

increased risk for the development of several anxiety disorders post-injury including 

generalized anxiety disorder (GAD), obsessive compulsive disorder (OCD), panic 

disorder, and others (Hiott & Labbate, 2002).  In one study, the authors sought to 

investigate anxiety/anxiety-like behaviours in a rodent mild blast TBI model and aimed to 

correlate the behavioural outcomes to possible changes at the genetic level (Blaze et al., 

2020).  In this study there were significant increases in anxiety/anxiety-like behaviour at 

the acute time points studied and, while not statistically significant, there was a trend 

towards increased anxiety at chronic time points.  This study also showed that there were 

significant changes in gene expression in the amygdala post-TBI at chronic time points 

by transcriptomic analyses (Blaze et al., 2020).  Other reports have indicated changes in 

the structural features of the amygdala as well as differences in various molecular 

processes, such as levels of mRNA and protein expression (Almeida-Suhett et al., 2014; 

Tate et al., 2016).   
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The relationship between TBIs and posttraumatic stress disorder (PTSD) is both 

controversial and complex (Y.-F. Chen & Zhao, 2019).  Scientists have proposed that in 

some circumstances TBIs, in particular mTBIs/rmTBIs, can be an important risk factor 

for the development of this anxiety disorder (Hoge et al., 2008).  This could be in large 

part due to the fact that individuals who suffer mTBIs/rmTBIs in a traumatic scenario are 

able to remember the traumatic event due to lack of loss of consciousness and are more 

likely to develop PTSD  (Gil et al., 2005).  Situations that typically give rise to PTSD 

tend to also involve the potential for incurring TBIs, such as active military personnel or 

abuse victims (Y.-F. Chen & Zhao, 2019).  Both TBIs and PTSD lead to the development 

of several undesirable and harmful behavioural traits including depression, violence, 

substance abuse, and suicidal tendencies (Y.-F. Chen & Zhao, 2019). 

Cognition, memory, and learning processes are all negatively affected by TBIs.  There is 

decreased spatial information processing, and decreased learning and memory 

processing, all of which are dependent on the hippocampus (Pierce et al., 1998; Rola et 

al., 2006).  There are many underlying pathological pathways that are initiated, post-TBI, 

that could play a role in the cognitive/learning/memory deficits observed.  In particular, 

one study looking into the effects of TBIs on neurogenesis in the hippocampus found 

evidence of cell loss/death, changes in cell fates, and evidence of persisting inflammation 

(Rola et al., 2006).  Another study revealed that TBI increases the production of ROS 

(corresponding to oxidative stress) and decreases antioxidant and synaptic protein levels 

(Ansari et al., 2008), most likely contributing to cellular dysfunction/cell death in the 

hippocampus and behavioural deficits. Overall, the nature of TBIs is quite heterogeneous 

as is the patient population therefore making behavioural deficits difficult to predict.         

Outcomes Post-Concussion 

Ultimately there are four possible outcomes after an episode(s) of TBI. First, a concussed 

individual can have symptoms acutely that then resolve within days or weeks (Alexander, 

1995).  Second, a concussed individual may develop post-concussive syndrome (PCS), in 

which the symptoms take longer, months or even years, to resolve (Maroon et al., 2012).  

PCS is a very complex phenomenon in which the composition of symptoms can vary 
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within the same individual over time (Maroon et al., 2012).  Third, an unfortunate 

subgroup of concussed individuals may go on to develop a neurodegenerative disease 

known as Chronic Traumatic Encephalopathy (CTE) (McKee et al., 2013).  Concussions 

have been shown to be a risk factor for the development of CTE in several studies 

(McKee et al., 2009, 2013; Roberts et al., 1990).  There is also a possibility to further 

develop other neurodegenerative characteristics or diseases alongside CTE such as CTE 

with Alzheimer’s Disease (AD) (Turner et al., 2016; Yuan & Wang, 2018), CTE with 

Amyotrophic Lateral Sclerosis (ALS) (Moszczynski et al., 2018; Walt et al., 2018), and 

CTE with other pathological protein deposits, such as transactive response DNA-binding 

protein of 43 kDa (TDP-43) (Heyburn et al., 2019; McKee et al., 2010).  The fourth 

possible outcome after TBI is death, either from complications post-injury, SIS (Cobb & 

Battin, 2004), and eventual death from the development of CTE.   

1.2 Chronic Traumatic Encephalopathy  

History of Chronic Traumatic Encephalopathy  

In 1928, an initial description of what is now known to be CTE was first described by Dr. 

Martland as he analyzed the brain pathology and behaviours of boxers known to be 

“punch drunk” who had developed both mild and severe symptoms (Martland, 1928).  He 

proposed that the development of the “punch drunk” syndrome was the result of multiple 

injuries to the head (Martland, 1928).  In 1934, Dr. Parker expanded upon the work of Dr. 

Martland and referred to the syndrome as “traumatic encephalopathy” (Parker, 1934).  

Dr. Parker confirmed that repeated injuries to the head sustained during the sporting 

careers of boxers leads to the development of numerous symptoms, which he referred to 

as a ‘medley’ of symptoms (Parker, 1934).  Later, in 1937, another scientist named 

Millspaugh observed similar symptoms and behaviours as Martland, mostly in boxers, 

and used a different term, “dementia pugilistica” (Baugh et al., 2012).  Many other 

scientists and researchers over time have looked into this phenomenon and many names 

were put forward (Stein et al., 2014).  It was during the 1940s that the term “Chronic 

Traumatic Encephalopathy” (CTE) was coined, and it is now widely used and accepted 

(Montenigro et al., 2015).  Since then, the study of CTE has advanced and the natural 

progression of CTE has been characterized (McKee et al., 2013).       
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Risk Factors for Chronic Traumatic Encephalopathy  

Both environmental and genetic risk factors, and the interaction between these risk 

factors, play a role in the development of CTE (Gavett et al., 2010). The most obvious 

environmental risk factor for the development of CTE is the exposure to rmTBIs  (Gavett 

et al., 2010, 2011; McKee et al., 2009).  As mentioned previously, individuals who 

participate in contact sports, are enrolled in the military, suffer from domestic abuse, or 

have any instance where exposure to repeated concussive or sub-concussive impacts is 

increased, have a greater risk of developing CTE (Baugh et al., 2012).  Individuals who 

experience frequent falls, vehicular accidents, or have epilepsy are also populations at 

risk for the development of CTE (Gavett et al., 2010).     

Genetic background also plays a role in the recovery from TBI and may explain some of 

the variability seen in the recovery process (McAllister, 2010).  Candidate genes and their 

respective alleles, as well as various epigenetic factors acting on these genes, can act 

alone or interact and therefore influence the outcome(s) post-injury (McAllister, 2010).  

There are several known genetic risk factors associated with a poorer outcome post-injury 

(J. Hay et al., 2016).  Individuals with the APOE Ɛ4 allele and/or the longer microsatellite 

polymorphism repeat located in the promoter in the neprilysin gene (NEP) are subject to 

a greater risk for the development of amyloid beta (Aβ) plaques, and neurological 

impairment post-TBI (J. Hay et al., 2016).  Polymorphisms in TP53, angiotensin-

converting enzyme (ACE), and calcium channel subunit gene (CACNA1A), are also 

associated with a poorer outcome post-TBI (McAllister, 2010).  The involvement of 

many genes in the molecular cascades activated by secondary injury mechanisms is 

believed to explain why so many genes may influence the level of risk for developing 

neurodegenerative disease following TBI (McAllister, 2010).                   

Progression of Chronic Traumatic Encephalopathy  

In 2013, McKee and colleagues set out to characterize the progression and spectrum of 

the neuropathological changes associated with CTE (McKee et al., 2013).  The results 

demonstrate that the brains of concussed subjects analyzed could be sorted into one of 

four stages with a distinct pattern of pathological protein and other microscopic changes.  
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Stage I is the mildest of the stages of CTE progression.  Brains classified as stage I CTE 

show little ventricular enlargement with focal perivascular pathological tau protein 

located in the depths of cortical sulci.  Brains classified as stage II (mild CTE) show 

ventricular enlargement, increases in pathological tau protein that penetrate the 

superficial layers of the cortex, and small amounts of pathological tau in areas such as the 

hippocampus, entorhinal cortex, and thalamus.  Brains classified as stage III (moderate 

CTE) show areas of brain atrophy, axonal loss in subcortical white matter, and increased 

pathological tau spread throughout the cortices, hippocampus, entorhinal cortex and 

amygdala.  The final stage of CTE, Stage IV, is the most severe stage.  This stage 

includes significant brain atrophy in several brain areas, decreased overall brain weight, 

significant ventricular enlargement, significant neuronal death and widely distributed 

pathological tau protein.  The complete characterization of the progression of CTE can be 

found in the paper of McKee et al. (2013), with more information found in the work of 

Stein and fellow colleagues (Stein et al., 2014).  Overall, the pathology of CTE increases 

as the stages progress from Stage I (very mild) to Stage IV (severe).  Although CTE can 

be present alongside other neurodegenerative diseases and have other pathological 

proteins/processes present, CTE is characterized as a tauopathy due to the fact that the 

main pathological hallmark is the deposition of pathological phopho-tau aggregates.  

1.3 Tau 

The Microtubule-Associated Protein Tau (MAPT) 

Tau proteins are members of the microtubule-associated protein (MAP) family (Binder et 

al., 1985; Brandt et al., 2005).  The main function of tau is to help stabilize, bind, and 

regulate microtubule dynamics in the axons of neurons (Arendt et al., 2016). However, 

there are many other functions of tau within cells, such as interacting with other cellular 

components, like the mitochondria and the plasma membrane, and potentially playing a 

role in various signaling processes (Kolarova et al., 2012).        

Tau proteins are expressed both in the peripheral nervous system and in the central 

nervous system (Arendt et al., 2016), with trace amounts of tau mRNA in several 

peripheral tissues (Buée et al., 2000). Within the central nervous system, tau proteins are 
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expressed predominantly in neurons (Kolarova et al., 2012). Tau can also be found both 

within oligodendrocytes (Arendt et al., 2016) as well as in astrocytes (Arena et al., 2020).  

In healthy neuronal cells tau is localized in the axonal compartment, where it’s primary 

function is to interact with microtubules (M Goedert & Jakes, 1990). With regard to 

human tau proteins, the single gene responsible for the production of all of the tau family 

members is located on chromosome 17, position 17q21 (Kolarova et al., 2012). There are 

a total of 16 exons contained within this gene, of those, 11 are involved in alternative 

splicing (Brandt et al., 2005; M Goedert et al., 1988).  Three of the exons are not 

transcribed in the brain at all, specifically, exons 4A, 6 and 8 (Park et al., 2016).  The 

alternative splicing generates six unique tau isoforms that differ with respect to the 

number of binding domain repeats at the C-terminal end and either the presence or 

absence of two N-terminal amino acid inserts (Arendt et al., 2016).  Specifically, the 

regions subjected to alternative splicing, that create the unique isoforms in the brain, are 

encoded by exons 2, 3, and 10 (M Goedert et al., 1989; Park et al., 2016).  Exons 2 and 3 

can be spliced so that neither of them, exon 2, or both exon 2 and 3 can be included in the 

structure of the isoforms, resulting in a 0N, 1N, or 2N isoform (Arendt et al., 2016; Park 

et al., 2016).  The alternative splicing of exon 10 results in either the exclusion of this 

exon, 3R tau isoforms, or the inclusion of this exon, resulting in 4R tau isoforms (Brandt 

et al., 2005).  As a result, of these combined alternative splicing’s, six tau isoforms are 

generated and are referred to as 0N3R, 1N3R, 2N3R, 0N4R, 1N4R, and 2N4R (Kolarova 

et al., 2012).  It is important to note that the previously described tau isoforms apply to 

the tau isoforms located in the central nervous system, as the peripheral nervous system 

has an additional tau isoform, referred to as “big tau” (Brandt et al., 2005; M Goedert et 

al., 1992).  

The Structure and Developmental Expression of Tau 

Tau is a natively unfolded protein with little secondary structure (Arendt et al., 2016; 

Kolarova et al., 2012).  However, the differences between the various tau isoforms dictate 

the functional outcome of each of the proteins, and therefore influence their interactions 

with microtubules, especially during development (Kolarova et al., 2012).  During 

development, the tau isoforms are differentially regulated and expressed (Kosik et al., 



14 

 

1989). In the fetal brain, only 3R isoforms are expressed, whereas in the adult human 

brain, both 3R and 4R isoforms are expressed equally at a ratio of approximately 1:1 (M 

Goedert & Jakes, 1990; Hanes et al., 2009).  It has been demonstrated that the 4R isoform 

is capable of binding microtubules more efficiently than their 3R counterparts (M 

Goedert & Jakes, 1990). This seems to reflect the change in plasticity within the brain as 

it ages, as 3R tau’s weak binding to microtubules will allow for greater neuroplasticity 

during neuronal development while the strong microtubule binding of 4R tau will 

decrease neuroplasticity by enhancing microtubule stability (Arendt et al., 2016).  

Post-Translational Modifications of Tau 

Tau proteins are not only regulated by alternative splicing throughout development, but 

also by various post-translational modifications. These modifications influence tau’s 

ability to bind and stabilize microtubules (Sergeant et al., 2005). Tau can be modified 

through the process of O-glycosylation, glycation, ubiquitination, SUMOylation, 

nitration, methylation, acetylation, truncation, and more, all of which affect tau’s ability 

to function and potentially become pathogenic (Arendt et al., 2016).  The most studied 

and well-known modification of tau is its phosphorylation at regulatory sites. Tau itself is 

considered a phosphoprotein (Trinczek et al., 1995), as there are approximately 80 sites 

available for potential phosphorylation on the longest tau isoform (Sergeant et al., 2005). 

Pathological phosphorylation of tau leads to the deposition of tau aggregates and disease.  

Tau and Tauopathies 

Tauopathies are a group of heterogeneous neurodegenerative diseases characterized by 

filamentous tau aggregates consisting of hyperphosphorylated tau proteins (Kovacs, 

2018; V. M.-Y. Lee et al., 2001).  Tauopathies may be classified based on the unique 

composition of their tau aggregates (Sergeant et al., 2005).  Tauopathies can be further 

subdivided into either sporadic or familial tauopathies, in which sporadic tauopathies 

arise spontaneously and familial tauopathies arise due to inherited mutations (Arendt et 

al., 2016). Tauopathies may also be classified as either primary or secondary, depending 

on how significant the tau pathology is, and the severity of other coincident pathological 

features (Kovacs, 2018).  Each tauopathy is unique, as the distribution of tau, isoforms 
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present, isoform ratio balance, and presence/absence of other pathological features is 

specific to each respective disease (Arendt et al., 2016; Sergeant et al., 2005).   

Familial Tauopathies 

Over 30 genetic mutations have been implicated in the development of familial 

tauopathies (Engel et al., 2006; Michel Goedert & Jakes, 2005).  Missense, deletion, and 

silent mutations involving the exons of the tau gene can influence the outcomes of 

alternative splicing, as can various mutations in the intron sequences (Niblock & Gallo, 

2012).  When the regulation of alternative splicing becomes altered, the production of 3R 

and 4R tau isoforms becomes unbalanced, affecting the normal physiological isoform 

ratio (Niblock & Gallo, 2012).  Besides mutations to the introns, exons, or both the 

introns and exons, there can also be genetic alterations involving the entire sequence of 

the tau gene.  The genetic inversion of the DNA region containing the tau MAPT gene 

results in the production of two haplotypes, H1 and H2, with the H1 haplotype having 

several sub-haplotypes, some of which are associated with the development of 

tauopathies (Niblock & Gallo, 2012; Sánchez-Juan et al., 2019). 

Sporadic Tauopathies  

Typically, sporadic tauopathies originate in a vulnerable area of the brain and 

subsequently the pathological tau aggregates spread throughout the rest of the brain 

through the neuronal pathways connecting them (Sergeant et al., 2005).  When the ratios 

of 3R:4R isoforms become unbalanced or the modifications influencing tau’s activity 

become dysregulated, or external triggers, such as substance abuse or brain injuries, 

occur, sporadic tauopathies may emerge (Arendt et al., 2016; Irwin et al., 2013).    

Tau as a Prion Protein 

A proposed mechanism for the propagation of pathological tau throughout the brain is via 

a prion-like mechanism.  This mechanism involves the corruption of native proteins into 

pathological proteins and aggregates using a template-dependent manner from 

pathological tau (Kumar & Udgaonkar, 2018).  The forms of pathological tau, in this 

case, are referred to as “strains” and each strain has a distinct fibrillar structure (Sanders 
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et al., 2014).  The characteristics of each strain determines the characteristics of the 

disease that manifests.  These strains of pathological tau are stable and are able to 

propagate from cell-to-cell through synapses (Mudher et al., 2017).  This could explain 

how tau is able to spread from vulnerable brain regions to connecting brain areas.  

Imbalance of Post-translational Phosphorylation of Tau  

There have been several studies that have investigated various post-translational 

modifications of tau and how these modifications play into aggregate formation and/or 

disease progression (Arendt et al., 2016; Morris et al., 2015).  Of particular interest is the 

post-translational phosphorylation of tau. As mentioned above, tau is known to be a 

phosphoprotein in which the level of phosphorylation naturally influences and regulates 

tau function (Buée et al., 2000; Trinczek et al., 1995).  However, diseases may arise when 

tau becomes pathologically hyperphosphorylated (Kolarova et al., 2012).  It has been 

proposed that an imbalance in the activities and regulations of protein kinases and 

phosphatases results in the hyperphosphorylation of tau, either through an increase in 

kinase activity or a decrease in phosphatase activity (Buée et al., 2000).  

1.4 Glycogen Synthase Kinase 3  

Overview 

Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed proline-directed 

serine/threonine kinase that is constitutively active (Beurel et al., 2015; Hooper et al., 

2008).  It consists of two important functional domains: a primed substrate binding 

domain and a kinase domain (Beurel et al., 2015).  Initially discovered in the 1970s for its 

role in the phosphorylation and regulation of glycogen synthase, GSK3 has since been 

implicated in many other cellular and signaling pathways (Cohen & Goedert, 2004).  

GSK3 is involved in glycogen metabolism, gene transcription, apoptosis, inflammation, 

and microtubule stability, just to name a few cellular processes (Cohen & Goedert, 2004; 

Hooper et al., 2008). There are two unique aspects to GSK3 activity: 1) GSK3 is 

constitutively active and 2) GSK3 may phosphorylate both primed and un-primed 

substrates (Beurel et al., 2015; Hooper et al., 2008).  The “priming” of the substrates 
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involves the phosphorylation of a site approximately 4 residues to the C-terminal side of 

the target site, which allows the substrate to bind to the GSK3 primed substrate binding 

domain (Beurel et al., 2015).  GSK3 is regulated by a number of kinases and 

phosphatases and the breakdown of these regulations has been implicated in the increased 

risk of disease (Hooper et al., 2008).       

Regulation of Glycogen Synthase Kinase 3 

There are many post-translational regulatory mechanisms that keep the activity of GSK3 

in check.  Post-translational modifications, substrate priming, association with protein 

complexes, and regulation of expression and degradation are all mechanisms that are 

capable of regulating GSK3 (Beurel et al., 2015).  Post-translational acetylation of GSK3 

can influence whether GSK3 activity is increased or decreased.  When acetylated, the 

activity of GSK3 proteins is suppressed, however, when the proteins become 

deacetylated, the levels of activity increase (Monteserin-Garcia et al., 2013).  Much more 

work needs to be done in order to tease apart the effect that other non-phosphorylation 

dependent post-translation modifications have on GSK3 activity (Beurel et al., 2015).  

Substrate priming is another method of controlling the levels of activity of GSK3.  This 

method is more complex than mere post-translational modifications, as not only does the 

substrate have to be pre-phosphorylated at the correct site, thus being primed for GSK3 

proteins, but activated GSK3 proteins must be in the vicinity of the primed substrate 

(Beurel et al., 2015).  The priming of the substrate requires that other signaling pathways 

be active and phosphorylating the desired substrate at approximately 4 residues C-

terminal to the target motif (Beurel et al., 2015).  One way to directly influence the 

activities of GSK3 phosphorylation is to incorporate GSK3 into a number of different 

protein complexes, depending on the desired substrates and outcomes.  For example, one 

of the most well known protein complexes involving GSK3 is the destruction complex of 

the Wnt signalling pathway (Kim et al., 2009).  GSK3 forms a destruction complex with 

various other proteins in order to phosphorylate and target β-catenin for degradation (Kim 

et al., 2009).  In addition to these methods of regulating GSK3 activity, GSK can also be 

regulated by its cellular sequestration to the mitochondria, the nucleus or the cytosol, of 

the cell (Beurel et al., 2015).  In the next section I will discuss the regulation of GSK3 
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activity by phosphorylation of GSK3’s main regulatory sites that vary depending on the 

isoform/paralog of interest (Beurel et al., 2015).       

Isoforms of Glycogen Synthase Kinase 3 

There are two major paralogs, sometimes referred to as isoforms, of GSK3, one is 

glycogen synthase kinase 3-alpha (GSK3α) and the other is glycogen synthase kinase 3-

beta (GSK3β) which are each produced from their respective genes (Beurel et al., 2015; 

Soutar et al., 2010).  There is a final form of GSK3, which is the product of a splice 

variant of GSK3β, a protein known as GSK3β2.  This splice variant is known to be 

enriched within the neurons of the central nervous system, in particular the brain (Soutar 

et al., 2010).  The activity of GSK3α and GSK3β can be regulated by several different 

mechanisms, however, the phosphorylation of two specific residues, a tyrosine residue 

and a serine residue, are of the greatest importance.  When tyrosine 279 (Tyr279) is 

phosphorylated (pTyr279) in GSK3α the activity of GSK3α is increased and when serine 

21 (Ser21) is phosphorylated (pSer21) the activity is decreased (Fang et al., 2000; 

Medina & Wandosell, 2011). Similarly, if tyrosine 216 (Tyr216) on GSK3β is 

phosphorylated (pTyr216) the activity is increased, and when the serine 9 (Ser9) residue 

is phosphorylated (pSer9) the activity is decreased (Fang et al., 2000; Krishnankutty et 

al., 2017).  Although the isoforms are similar, they have distinct substrate preferences 

(Soutar et al., 2010).  GSK3β has the most predicted substrates than any other kinase, 

with over 500 predicted substrates (Beurel et al., 2015; Linding et al., 2007).  One of the 

substrates of interest, tau (the microtubule-associated protein), has been shown to be a 

substrate for GSK3β, and in the case of disease development, the hyperphosphorylation 

of this protein by GSK3β has been associated with increased pathological outcomes 

(Avila et al., 2012).        

1.5 Glycogen Synthase Kinase 3-beta and Tau 

Phosphorylation of Tau by Glycogen Synthase Kinase 3-beta 

Many studies have investigated the relationship of tau, its phosphorylation by GSK3β, 

and the risk of disease.  In tauopathies, tau is abnormally phosphorylated, above the 
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physiological levels resulting in the production of toxic conformations which form 

aggregates leading to neurofibrillary tangle (NFTs) development (Hanger et al., 2009).  

GSK3β is capable of phosphorylating tau at both primed and un-primed sites (Cho & 

Johnson, 2003), therefore creating more opportunity for increased tau phosphorylation.  

GSK3β displays more activity towards tau and is known to co-localize with 

hyperphosphorylated tau proteins (Tsujio et al., 2000).  The overall levels of GSK3 are 

also increased within Alzheimer’s diseased brains by at least 50% (Tsujio et al., 2000).  

One study investigated the activities of kinases acting on recombinant tau using 

nanoelectrospray mass spectrometry and demonstrated that GSK3β is capable of 

phosphorylating tau at several known sites contained within paired helical filament (PHF) 

tau aggregates (Reynolds et al., 2000).  A desirable goal might be to disrupt or halt the 

process of tau phosphorylation entirely by administering inhibitors to block kinase 

activity (Hanger et al., 2009).        

Inhibitors Prevent Kinase Activity  

The foregoing discussion of GSK3’s role in tau phosphorylation and the role of 

pathological tau phosphorylation in disease suggests that GSK3 inhibition might be an 

attractive strategy for the treatment or prevention of tauopathies.  GSK3β inhibitors can 

be classified into two main categories, one being ATP competitive inhibitors, and the 

other being non-ATP competitive inhibitors (Eldar-Finkelman et al., 2010).  Since ATP 

binding sites are very highly conserved domains in kinases, it is ideal to use non-ATP 

competitive inhibitors in order to increase the specificity for GSK3 proteins and 

minimizing any off-target effects (Eldar-Finkelman et al., 2010).  The most appealing 

non-ATP competitive inhibitors for targeting GSK3 proteins are ones that compete with 

GSK3 substrates for binding, termed substrate competitive inhibitors (Eldar-Finkelman et 

al., 2010).  However, the production of GSK3 inhibitors includes many types of 

chemicals with many different modes of action.  Some of the main groups of inhibitors 

are the maleimides derivatives, aminopyrimidines, the amino thiazoles, and the 

thiadiazolidinones (TDZD) (Cohen & Goedert, 2004; Eldar-Finkelman et al., 2010).  One 

group investigating the effects of GSK3 inhibition on a double transgenic mouse line that 

develops AD-like pathology found that upon inhibition of GSK3β with NP12 (a TDZD, 
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non-ATP competitive), there were decreased levels of phosphorylated tau, and decreased 

cell death (Serenó et al., 2009) among other molecular, cellular, and cognitive benefits.  

Another study investigated the mechanism of GSK3β activation, through the 

phosphorylation of tau at Thr175, that leads to the subsequent phosphorylation of tau at 

Thr231, fibril formation, and cell death (Moszczynski et al., 2015).  Four inhibitors of 

GSK3β were used; lithium chloride, AR-A014418, Tideglusib (aka NP12), and TWS-

119; all of which successfully prevented pathological fibril formation and cell death 

(Moszczynski et al., 2015).         

1.6 Models of Traumatic Brain Injury  

Invertebrate Models 

Caenorhabditis elegans (C. elegans) are nematodes that are considered to be a valued 

model organism (Hill et al., 2000). These metazoans have had their entire genome 

completely sequenced in the 1990s, therefore making genetic studies possible and easily 

accessible (Hill et al., 2000).  One group has studied the effects of surface acoustic waves 

(SAW) in producing similar pathologies in C. elegans comparable to blast induced TBIs 

seen in military and civilians affected by war (Miansari et al., 2019).  This group saw that 

there was decreased mobility and short-term memory impairment upon SAW injury.  

Another model organism are the flies known as Drosophila melanogaster (Adams et al., 

2000).  One team of researchers set out to develop a closed head model of TBI using 

Drosophila melanogaster and discovered that these flies face similar post-TBI injuries 

compared with humans that have suffered from TBI  (Katzenberger et al., 2013).  These 

models offer the benefits of being cheap to maintain, time efficient (with short lifespans), 

and significant knowledge of their genetic backgrounds has been developed 

(Katzenberger et al., 2013; Miansari et al., 2019).  Although these models of TBI have 

useful insights into pathological mechanisms and molecular and cellular cascades that are 

initiated post-injury, there are several drawbacks that must be considered.  For example, 

there are limited tests available to evaluate complex behaviours in these organisms (Shah 

et al., 2019).  Second, these model organisms are too small to administer potential 

therapeutic drugs and observe the effects on behavioural outputs, thereby limiting their 

clinical relevance (Shah et al., 2019).   
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Vertebrate Models 

The effects of TBIs have been investigated using different methods of delivering injuries 

(fluid percussion injury, FPI; controlled cortical impact injury, CCI; weight drop models, 

and blast injuries) and using different animal models (cats, dogs, sheep, rabbits, pigs, 

ferrets, and monkeys) (Xiong et al., 2013). Although the possible combinations may offer 

a lot of insight into the mechanisms behind the pathology of TBIs and disease 

development, there are some drawbacks to consider in using large animal models.  For 

instance, it is difficult to find suitable equipment in order to deliver consistent, precise 

injuries to larger animals. It is also difficult to find enough space to house the animals 

(Cernak, 2005).  Larger animals also mean larger costs for proper housing, care and 

enrichment.  Large animal experiments in TBI may also raise more ethical issues 

(Cernak, 2005).     

Rodent Models  

There is always the struggle of taking results from scientific studies involving animal 

models and then applying them to human beings (Risling et al., 2019).  However, 

technological advancements have allowed the development of genetic tools that have 

been applied to rodents in order to create ideal transgenic models with greater clinical 

relevance to human disease.  Rodents are also ideal models due to the fact that they are 

small, and therefore space efficient, and also able to quickly increase their numbers 

through reproduction to repeatedly run morphological, cellular, biochemical, and 

behavioural analyses (Cernak, 2005).  Several transgenic mouse models have already 

been created in order to tease apart the interactions between rmTBI, GSK3β, and tau.  

The downside of the previous transgenic models is that they fail to express all tau 

isoforms in the same proportions as found in humans, a ratio of 1:1 for 3R:4R 

respectively (Hanes et al, 2009).  As previously mentioned, the balance of the 3R:4R 

ratio of tau isoforms is critical for models of tauopathies, as a disruption to this balance 

can result in tau pathology, without the addition of other factors, and ultimately CTE 

(Hanes et al, 2009; Sergeant, Delacourte, and Buée, 2005).  A rat model of hypertension 

was shown to have different ratios of 3R:4R tau isoforms depending on the brain area of 
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interest (Cortex 1:9, Hippocampus 1:7, and Brainstem 1:6) (Hanes et al, 2009) compared 

to the htau mouse model with an isoform imbalance leaning towards more 3R tau than 4R 

tau (Andorfer et al., 2003).  However, a group of scientists have created a brand new, 

improved mouse model of tauopathy, the MAPT knock-in mouse (MAPT KI mice) (Saito 

et al, 2019).  Overall, the new mouse strain was created by replacing the entire murine 

Mapt genetic sequence with the human MAPT sequence (exons 1-14) through 

homologous recombination.  The targeting construct, including the neomycin-resistant 

gene (neo) flanked with loxP sites, was injected into ES-R1 cells, and once selected the 

positive clones were injected into C57BL/6 blastocysts.  The resulting chimeric mice 

were then crossbred with EIIa CRE mice in order to get rid of the neo gene, and the mice 

were then backcrossed with C57BL/6 mice for 5 generations.  This mouse strain was 

developed in order to express all six human tau isoforms without any expression of 

murine tau, resulting in a tau isoform ratio of approximately 1:0.66 3R:4R (Saito et al, 

2019), which is much closer to that seen in humans.  Therefore, this new mouse strain 

serves as an ideal model for studying the mechanisms of tau phosphorylation in 

tauopathies, and potential avenues for therapeutic targets.  In order to ensure that this 

study is able to capture a more realistic outcome of tau pathology in humans, and 

therefore be more clinically relevant, the MAPT KI mouse strain (Saito et al, 2019) will 

be used.   

1.7 Rationale, Goals and Aims for Thesis  

Rationale  

Repetitive mild traumatic brain injury (rmTBI) is known to be a risk factor for the 

development of neurodegenerative diseases such as Chronic Traumatic Encephalopathy 

(CTE) (Ojo et al., 2013).  It is also known to influence the activity of glycogen synthase 

kinase 3-beta (GSK3β), a kinase with many functions, one of which is to phosphorylate 

tau (Moszczynski et al, 2018).  Previous studies have shown that the activation of 

GSK3β, as a result of brain injury, leads to many detrimental cascades including 

abnormal increases in tau phosphorylation (Moszczynski et al, 2018).  These increases in 

tau phosphorylation are above the natural levels found within cells, and lead to the 

pathology seen in diseased states.  Hyperphosphorylated tau is prone to misfolding, 
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aggregation, fibril formation, and tangle formation, leading to neuron death and other 

pathologies (Polydoro et al., 2009).  The need for a more clinically relevant model of 

rmTBI is an important milestone that must be reached.  By using the newly generated 

humanized MAPT KI mice in this model of closed skull/closed skin rmTBI, we are taking 

one step further towards better understanding the relationships between all of these 

phenomena.     

Goals and Aims for this Thesis  

The overarching goal of this thesis is to validate and characterize a closed skull, closed 

skin model of rmTBI using the MAPT KI mouse. This work will set the stage for future 

studies to evaluate the pathophysiology of rmTBI and to test possible therapeutic 

strategies.   

Goal 

To develop and evaluate a mouse model of concussion in order to study the relationship 

between rmTBI, GSK3β activity, tau phosphorylation, and the development of cognitive 

deficits in a transgenic mouse line expressing solely human tau. 

Aims 

1. To investigate the time course of GSK3β activity in different regions of the brain 

in wildtype rmTBI mice.   

2. To characterize the cellular and molecular pathology in rmTBI MAPT KI mice. 

3. To characterize the behavioural outcomes of rmTBI in the MAPT KI mice, using 

the Elevated Plus Maze (to test for anxiety/anxiety-like behaviours) and the 

Morris Water Maze (to test for spatial learning/memory).  
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Chapter 2  

2 Materials and Methods  

2.1 Animals 

All experiments were approved by the Western University Animal Care Committee 

which adheres to the Canadian Use of Experimental Animal Guidelines. Male and female 

C57BL/6 mice were purchased from Charles River (Quebec, Canada). Male and female 

MAPT KI mice, obtained from Dr. Hashimoto et al. (2019), were bred in house. All mice 

were kept on a 12 hour light : 12 hour dark cycle, and had free access to food and water. 

All experiments were performed during the light cycle. Mice were housed together, with 

a maximum of four mice per cage. 

2.2 Repetitive Mild Traumatic Brain Injury Procedure  

To model concussion in mice in a clinically relevant way, we performed an injury in 

which the skin and skull were kept intact. Mice were randomly assigned to receive either 

a repetitive mild traumatic brain injury (rmTBI), a sham procedure, or to act as naïve 

controls. Before any injuries were delivered, the controlled cortical impact (CCI) device 

(TBI 0310, Precision Systems and Instrumentation) was calibrated to the desired 

experimental parameters.  Mice were then anesthetized using 3% isoflurane for induction 

and maintained on 2% isoflurane using a nose-cone.  The hair on the scalp was shaved 

before the concussion or sham procedure and the mice, along with the nose-cone for 

anesthetic administration, were transferred directly under the CCI device (TBI 0310, 

Precision Systems and Instrumentation) that was used to deliver a mild traumatic brain 

injury.  The tip of the impactor was aligned with the approximate center of bregma. The 

impact was then delivered with a custom-made silicone impactor tip of 4 mm diameter, at 

a programmed velocity of 3.5 m/s, at 1.0 mm depth, and with 500 msec dwell time.  Mice 

were subjected to 5 concussions with a 24 hour inter-injury interval time in order to 

achieve an rmTBI model.  Sham mice underwent 5 minutes of isoflurane anesthesia each 

day for 5 days with a 24 hour interval between sham procedures.  Naïve mice were not 
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manipulated.  Mice were sacrificed at various time points after the final concussion or 

sham procedure.  

2.3 Silver Staining 

The silver staining procedure followed was provided by the manufacturer of the FD 

NeurosilverTM Kit II (FD NeuroTechnologies, Ellicott City, MD). After the coronal brain 

sections (50 m thickness) were stained, they were then promptly mounted on VWR 

microslides (25x75 mm, 1.0 mm thick) and allowed to air dry in the fume hood. Once 

dry, the slides were rinsed in a xylene solution three times, for three minutes each time, 

and then sealed by a cover-slip.  Two slides per animal, containing approximately five 

sections per slide, were selected for analysis.  In total, approximately 3-4 sections per 

animal were visually inspected for positive silver staining.  Slides were imaged using an 

Olympus BX50 brightfield microscope.  Images were taken along the corpus callosum.  

Images were taken for all animals in each experimental group (n’s specified in the 

experimental timelines below).   

2.4 Tissue Preparation for Western Blots 

The mice that were assigned to be used for Western blot analyses were transcardically 

perfused using a chilled saline solution.  Once perfused, brains were extracted and the 

regions of interest, the cortex and the hippocampus, were dissected free of the rest of the 

brain.  The cortex and hippocampus samples were sonicated in RIPA lysis buffer 

supplemented with Halt protease and phosphatase inhibitor cocktail (Life Technologies; 

#78440) at a dilution of 1:100.  The sonicated mixture was then centrifuged at 6000 rpm 

for 20 minutes at 4 °C.  Afterwards, the supernatants were aliquoted into separate tubes 

for storage at -80 °C.  Protein concentrations were determined by a Bradford protein 

assay for each sample in order to load an equal concentration of protein to each lane in 

the Western blots (10 g/lane).    

2.5 Glycogen Synthase Kinase 3 Western Blots  

Mice were sacrificed at various time points after the last impact/sham injury was 

delivered (Refer to Figure 1 and Table 2). A group of naïve mice were also sacrificed to 
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provide an additional control. A standard Western blot protocol was followed (Abcam), 

in which a 10% acrylamide gel was used as the resolving gel, with a 4% acrylamide 

stacking gel. The protein gels ran for approximately one hour at 80 V until samples 

entered the bottom resolving, gel, at which time the voltage was increased to 100 V. 

Western blots were then transferred from the gel to Millipore Immobilon-FL PVDF 

membranes for approximately 1.5-2 hours at 110 V. Membranes were then dried, 

trimmed, and stored at 4 °C overnight. Membranes were then blocked in Intercept 

Blocking Buffer (TBS) from LI-COR for approximately an hour, and then incubated in a 

primary antibody overnight.  To detect β-actin we used either a rabbit anti-β-actin from 

LI-COR Biosciences (#926-42210; Waller et al., 2017) or a mouse anti-β-actin from LI-

COR (#926-42212; Almanzar et al., 2016), each at a dilution of 1:5000, depending on the 

primary antibody used to detect the GSK3β proteins.  To detect total GSK3 (GSK3 TOT) 

we used a mouse anti-GSK3β from BD Transduction Laboratories at a dilution of 1:5000 

as the primary antibody (Lucas et al., 2001).  To detect GSK3β phosphorylated on 

tyrosine 216 (pTyr216) we used a mouse anti-GSK3β pTyr216 from BD Transduction 

Laboratories at a dilution of 1:1000 as the primary antibody (Bhat et al., 2000).  To detect 

GSK3β phosphorylated on Serine 9 (pSer9) we used a rabbit anti-GSK3β pSer9 from 

Biorad at a dilution of 1:1000 as the primary antibody (Stambolic & Woodgett, 1994).  

Membranes were then washed in TBST three times, ten minutes each time, and incubated 

in secondary antibody (either a donkey anti-mouse (680; red) or a donkey anti-rabbit 

(800; green) antibody (LI-COR Bioscience) as appropriate) for an hour. Afterwards, 

membranes were washed in TBST three times (ten minutes each time), and TBS for ten 

minutes. Membranes were imaged using the Odyssey Imaging System (LI-COR 

Bioscience) imaging software.  The relative optical densities of the proteins of interest 

were quantified using ImageStudio Plus software.  Densitometric values for target 

proteins (GSK3 TOT, pTyr216, pSer9) were normalized to the densitometric values for 

β-actin, and then compared to the values obtained for naïve animal samples that were 

present on each blot. Each set of animals, shams and injured, were run on the same set of 

gels. Each set of gels were produced with alternating orders of samples to prevent 

position bias within the gels, which were referred to as “Formats”. Each gel that was 
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produced had the same naïve sample to act as a control across all blots to ensure that 

results could be compared across all gels, and therefore across all time points.  

2.6 Tissue Preparation for Immunohistochemistry  

MAPT KI mice were sacrificed at various time points after the last impact or sham 

procedure (Refer to Figure 2, Table 3, and Table 4). A group of naïve mice were also 

sacrificed to provide an additional control. Mice were perfused with saline, followed by 

4% paraformaldehyde. Brains were dissected and post-fixed in 4% paraformaldehyde 

overnight at 4 °C and then transferred to 20% sucrose solution the next day and left in at 

4 °C overnight. Brains were then patted dry, transferred into plastic brain moulds, 

immersed in OCT, and then stored in the -80 °C freezer. 

The fixed brains were sectioned in the coronal plane on a cryostat. For silver staining 

floating sections at 50 µm thickness were collected. For immunohistochemistry 18 µm 

thick sections were thaw-mounted directly onto slides. Thirty slide sections and ten 

floating sections were collected in an alternating fashion until the desired amount of 

sections were collected.  Floating sections were stored in six-welled plates in 8% 

sucrose/0.5% sodium azide solution and later transferred to 4% paraformaldehyde once 

all of the brains were processed. The floating sections were then processed according to 

the silver staining protocol, mounted on slides, and allowed to dry overnight in the fume 

hood before being sealed by a cover-slip (see above for more details).  Slide sections 

were stored in a labelled box in the -80 °C freezer until they were used for 

immunohistochemical staining.  

2.7 Immunohistochemistry 

AT8, GFAP and IBA1 

Slides were removed from the -80 °C in order to thaw to room temperature for 30 

minutes.  Once thawed, slides were washed in 1xPBS (Phosphate Buffered Saline) twice 

for five minutes each. Slides were then covered in blocking medium (1xPBS, Goat 

Serum, Triton-X-100) for approximately 2 hours and left at room temperature.  The 

primary antibodies, which were diluted in blocking medium, were applied. To detect 
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pathologically phosphorylated tau (phospho-tau (Ser202, Thr205) monoclonal mouse 

AT8 (1:100 dilution) from Invitrogen was used (Y. Zhang et al., 2019).  To detect glial 

fibrillary acidic protein (GFAP) a marker of activated astrocytes a mouse anti-GFAP 

(1:500 dilution) from Sigma was used (Lazarus et al., 2015).  To detect Iba1, a marker of 

microglia, a rabbit anti-Iba1 (1:1000 dilution) from Novus Biologicals was used (Schultz 

et al., 2018). The slides were then “cover-slipped” with a section of parafilm and 

incubated at 4 °C.  The following day, the slides were washed in 1xPBS, three times, for 

30 minutes each.  The slides were then incubated in the appropriate secondary antibody 

(either donkey anti-mouse 595 (Life Technologies) or donkey anti-mouse 488 

(Invitrogen) or donkey anti-rabbit 594 (Invitrogen)) for 45 minutes at a 1:500 

concentration while “cover-slipped” with a new section of parafilm.  After the incubation, 

the slides were washed in 1xPBS three times for 30 minutes each time.  The slides were 

briefly washed in double distilled water before applying VectaShield Hardset Antifade 

Mounting Medium with DAPI (Vector Laboratories, Inc.) and stored at 4 °C.   

Image Analyses 

Two slides, containing approximately five sections per slide, were made for each animal 

in each treatment group.  Out of those sections, 2-3 sections were visually analyzed for 

positive staining.  Slides were imaged using an Olympus BX50 brightfield microscope.  

Images of the prefrontal cortex area were visually analyzed for positive AT8 staining.  

Images of the corpus callosum were visually analyzed for positive GFAP/Iba1 staining.  

All images were taken at 40x magnification, and images were taken of all animals in each 

experimental group (n’s specified in experimental timelines and in related figures).  Dr. 

Kathy Xu of the Brown Lab generously donated representative images of both sham and 

injured C57BL/6 male mice for comparison against the MAPT KI mice.      

2.8 Elevated Plus Maze Test 

Behaviours in both male and female MAPT KI mice were evaluated by the Elevated Plus 

Maze (EPM) test in order to assess anxiety/anxiety-like behaviours (Broussard et al., 

2018).  Eight and a half weeks after the last concussion injury or sham procedure mice 

were placed in the centre of the maze platform facing one of the closed arms and allowed 
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to freely explore for a total of five minutes.  Each mouse had one trial and after the trial 

was concluded the maze was sanitized with 70% ethanol.  The behaviour of each mouse 

in the maze was video recorded and then analyzed using ANY-Maze (Stoelting Co. 

Wood Dale, IL) for the time spent in each of the 3 defined areas (closed arms, open arms, 

centre) as well as the speed, and distance travelled.      

2.9 Morris Water Maze Test 

During the ninth week after the last concussion injury or sham procedure both male and 

female MAPT KI mice underwent evaluation of spatial learning and memory using the 

Morris Water Maze (MWM) (Mannix et al., 2014; Xu et al., 2021).  Training on the 

MWM occurred on four consecutive days (4 trials per training day per mouse).  Each day 

of training had four trails that each had a different starting position corresponding to each 

of the four quadrants in the maze.  The order of the starting positions was changed 

randomly on each training day to prevent repetition.  Mice were placed in the water, 

facing the wall of the maze and allowed to freely swim/explore for a minute per trial. The 

goal of the maze is to locate the hidden transparent platform, placed 1 cm under the 

water, located in quadrant 4.  Successful trials concluded when the mouse located the 

hidden platform and was removed from the maze. Unsuccessful trials, trials in which the 

mouse was unable to find/locate the hidden platform, concluded with the mouse being 

placed on the hidden platform for approximately 20 seconds and then being removed 

from the maze. After the four days of training was completed, a Probe Trial was 

conducted on the fifth day in which the hidden platform was removed from the pool and 

the mice were allowed to freely swim around the pool for one minute. One week after the 

first probe test, mice underwent a retention trial, again with the platform removed, and 

were allowed to swim freely for one minute. For both the probe and retention trials mice 

were placed in quadrant 2, across from the target quadrant, and were only tested for that 

one trial.  The testing information was recorded with a video camera placed above the 

pool area, and analysis was conducted by the ANY-Maze software (Stoelting Co. Wood 

Dale, IL).    
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2.10 Experiment 1: Pilot Study 

Five C57BL/6 mice were used for this study, 2 naïve mice and 3 rmTBI mice (Table 1).  

A depth of 1.0 mm was used during the pilot study in order to determine if this would be 

sufficient enough to cause the desired effect of a mild traumatic brain injury, without 

fracturing the skull. Silver staining was performed in order to assess physical axonal 

damage.  Slides were imaged using an Olympus BX50 brightfield microscope.  The 

corpus callosum was imaged and later assessed, visually, for positive silver staining.  

Table 1. Table outlining the experimental plan for the Pilot Study. 

Group # Tests Sample Size (n) Timepoints Age 

I IHC 2 naïve 2-3 month 

II IHC 3 10 day rmTBI 2-3 month 
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2.11 Experiment 2: GSK3 Study 

 

Figure 1. Timeline of the GSK3 Study. Timeline showing the various timepoints at 

which the male C57BL/6 mice were sacrificed, along with their relative sample sizes 

(n’s).  

  

67 male C57BL/6 mice were used in this study, 6 naïve, 28 sham, and 33 rmTBI mice.  

The outline of the experimental groups can be seen in both Figure 1 and Table 2.  Mice 

were sacrificed at various timepoints, after the last impact or sham procedure, and 

Western blots were used to assess the total amount of GSK3β protein (GSK3 TOT), the 

activation of GSK3β (pTyr216), and the inactivation of GSK3β (pSer9).  Data 

organization was possible with the use of excel spreadsheets.  Statistical analyses were 

performed using Graphpad Prism 8, and data is presented as mean ± SEM.  Western blot 

data were analyzed using a One-way ANOVA test in order to compare across the 

multiple time points that were assessed post-last injury.  Correction for multiple 

comparisons was done using a Tukey’s post hoc test. Statistical significance was set as p 

≤ 0.05.    
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Table 2. Table outlining the experimental plan for the GSK3 Study.  

Group # Tests Sample Size (n) Timepoints Age 

I Western blots 6 naïve naïve 2-3 months 

II, III Western blots 6 sham, 7 rmTBI 8hr 2-3 months 

IV, V Western blots 4 sham, 7 rmTBI 24hr 2-3 months 

VI, V11 Western blots 6 sham, 7 rmTBI 48hr 2-3 months 

VIII, IX Western blots 6 sham, 6 rmTBI 1wk 2-3 months 

X, XI Western blots 6 sham, 6 rmTBI 3wk 2-3 months 
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2.12 Experiment 3: MAPT KI Study 

 

Figure 2. Timeline of the MAPT KI Study. Timeline showing the various timepoints at 

which the male and female MAPT KI mice were sacrificed, along with their relative 

sample sizes (n’s).   

102 MAPT KI mice were used in this study, 8 naïve, 46 sham, and 48 rmTBI mice.  The 

outline of the experimental groups can be seen in both Figure 2 and Table 3.  Mice were 

sacrificed at various timepoints, after the last impact or sham procedure, and various 

immunohistochemical staining were used to assess cellular and molecular pathology.  

Slides were imaged using an Olympus BX50 brightfield microscope and later assessed, 

visually, for positive silver staining/immunohistochemical staining.  Groups 9, 10, 13, 

and 14 underwent evaluation through the use of various behavioural tests in order to 

assess possible changes in behavioural outcomes post-injury in addition to the various 

immunohistochemical staining.  Data organization was possible with the use of excel 

spreadsheets.  Statistical analyses were performed using Graphpad Prism 8, and data is 

presented as mean ± SEM.  Elevated Plus Maze results were compared using unpaired 

Student’s t-test.  The Morris Water Maze learning curves were analyzed using a Two-

way ANOVA, whereas the time spent in the quadrants was analyzed using a One-way 

ANOVA.  Correction for multiple comparisons was done using a Tukey’s post hoc test. 

Statistical significance was set as p ≤ 0.05. 
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Table 3. Table outlining the experimental plan for the MAPT KI Study.    

Group # Tests Sample Size (n) Timepoints Age 

I 

 II 

IHC Male: 6 naïve   

Female: 2 naïve  

naïve Male: 5-6 months 

Female: 5-6 months 

III, IV IHC Male: 6 sham, 6 rmTBI 24hr Male: 5-6 months 

 

V, VI IHC Male: 6 sham, 6 rmTBI 

 

1wk Male: 5-6 months 

 

V11, V111 

XI, XII 

IHC Male: 6 sham, 6 rmTBI 

Female: 10 sham, 10 rmTBI 

4wk Male: 5-6 months 

Female: 3-5 months 

IX, X 

X111, XIV 

IHC Male: 7 sham, 8 rmTBI 

Female: 11 sham, 12 rmTBI 

10wk Male: 3-5 months 

Female: 3-5 months  
EPM 

MWM 

7 aged MAPT KI mice (5 males and 2 females) and 3 aged C57BL/6 mice (2 males and 1 

female) were used in this study.  The outline of the experimental groups can be seen in 

Table 4.  Slides were imaged using an Olympus BX50 brightfield microscope and later 

assessed, visually, for positive silver staining/immunohistochemical staining.    
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Table 4. Table outlining the experimental plan for the aged MAPT KI and C57BL/6 

mice.    

Group # Tests Sample Size (n) Age Strain, Sex 

I IHC 5 14 months MAPT KI, male 

II IHC 1 12 months MAPT KI, female 

III IHC 2 14 months C57BL/6, male 

IV IHC 1 14 months C57BL/6, female  
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Chapter 3  

3 Results  

3.1 Pilot Study: To validate a closed head, closed skin model 

of rmTBI 

The goal of this thesis was to characterize a mouse model of concussion that is as 

clinically relevant as possible. In order to accomplish this, it was important that both the 

skull and the skin of the mice remained intact during the entire procedure. Previously 

reported models of TBI in mice were either open skull, requiring a craniotomy (Popovitz 

et al., 2019) or a craniectomy (Giarratana et al., 2019), or closed skull but open skin 

(Bolton & Saatman, 2014; Rehman et al., 2019; Xu et al., 2021).  While these methods 

have the advantage of allowing the site of injury to be precisely located, the fact that the 

skull and skin are not intact in these models makes them less clinically relevant than 

desired.  The Brown laboratory has previously characterized a closed skull, open skin 

model of rmTBI in C57BL/6 mice (Xu et al., 2021). In this model, mice were placed in a 

Kopf mouse anesthesia mask under a traumatic brain injury device (TBI 0310, Precision 

Systems and Instrumentation, LLC). Following a 10 mm midline incision, the skin and 

fascia were reflected. Then the mice received a mild controlled cortical impact directly 

onto the skull, centered on the bregma, with a custom-made, 4mm-diameter pliant 

silicone tip. The impact device was programmed to impact at a depth of 1.0 mm at a 

velocity of 3.5 m/sec with a 500 millisecond dwell time. Each mouse in that study 

received 5 mTBIs (one a day for 5 consecutive days). The purpose of this pilot study was 

to determine if the same injury protocol, without the skin incision, would produce a 

similar level of injury as the open skin rmTBI as assessed by silver staining of the brain 

to detect diffuse axonal injury.   

C57BL/6 mice (n = 3) were subjected to 5 mTBIs (one a day for 5 days) and sacrificed 10 

days post-last injury.  A group of unmanipulated mice (n = 2) acted as naïve controls.  An 

examination of tissue sections from injured and naïve mice demonstrated that the injured 

mice had significant levels of silver stained axons within the corpus callosum (Figure 3C) 

and even more so in the optic tract (Figure 3D) compared to the naïve controls (Figure 
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3A and B).  When compared to the mice injured in the same way but with the scalp 

reflected away (Figure 3E and F), there was less silver staining in the corpus callosum 

and more robust staining in the optic tract. This suggested that the rmTBI with closed 

skin produces a similar injury as the open skin injury with the impact device settings of 

1.0 mm depth, 3.5 m/sec velocity and 500 millisecond dwell time, just in different 

regions of the brain.  Therefore, the rmTBI with the skin intact, was shown to produce 

sufficient physical damage, as assessed by the silver staining.  
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Figure 3. Silver staining during the pilot study. (A) Silver staining of the corpus callosum 

of a naïve animal (n=2). (B) Silver staining of the optic tract of a naïve animal. (C) Silver 

staining of the corpus callosum of a closed skin injured animal (n=3). (D) Silver staining 

of the optic tract of a closed skin injured animal.  (E) Silver staining of the corpus 

callosum of an open skin injured animal.  (F) Silver staining of the optic tract of an open 

skin injured animal.  All images were taken at 40x.  
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3.2 Aim #1: To determine the kinetics of GSK3β 

phosphorylation post-rmTBI in the C57BL/6 mice 

GSK3β has been identified as a kinase critical to the pathological phosphorylation of tau 

(Hooper et al., 2008; Moszczynski et al., 2018).  In vitro GSK3β inhibition prevents 

pathological tau phosphorylation and promotes cell survival (Moszczynski et al., 2015). 

The regulation of GSK3β depends on the phosphorylation status of two regulatory sites, 

Tyr216 and Ser9.  When Tyr216 becomes phosphorylated (pTyr216), the activity of 

GSK3β is increased, however, when Ser9 becomes phosphorylated (pSer9), the activity 

of the kinase is blocked (Soutar et al., 2010).  As one of the ultimate goals of this model 

development, to test whether GSK3 inhibition may be a strategy to prevent pathological 

tau accumulations in the concussed brain, we sought to describe the kinetics of GSK3β 

phosphorylation on both the Tyr216 and the Ser9 sites at various time points after rmTBI. 

In this study Western blots were used to assess the levels of GSK3β protein (GSK3 

TOT), pTyr216, and pSer9 in the cortex and hippocampus of naïve, sham, and rmTBI 

mice (n= 4-7 per group). The levels of GSK TOT, pTyr216 and pSer9 were analyzed 

relative to the levels of -actin.  The levels of pTyr216 and pSer9 were also analyzed as a 

ratio to GSK TOT. 

Western blot analyses of cortical samples when protein levels were normalized to -actin 

Western blot analyses of total amount of GSK3β protein in naïve, sham and rmTBI 

cortices revealed that the levels of GSK3 TOT were higher in shams than in naïves at 8 h 

and 1 week post-injury (Figure 4A). Similarly, the levels of GSK3 TOT were higher in 

rmTBI mice than in naïves at 8 h, 1 week and 3 week post-injury (Figure 4A). The 

Western blot analyses also showed higher pTyr216 levels in both shams and rmTBI mice 

compared to naïves across all time points with the exception of shams at 8 h post-

procedure (Figure 4B).  The Western blot analyses also showed increased levels of pSer9 

in shams at 3 weeks post-procedure compared to naïves and at 48 h and 3 week post-

injury in the rmTBI group compared to naïves (Figure 4C).  There were no time points at 

which GSK TOT or pTyr216 levels were significantly different between sham and rmTBI 
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mice, however, pSer9 levels were significantly higher in rmTBI mice compared to shams 

at 48 h post-injury. 

 

Figure 4. Western blot data for the cortex samples across all timepoints. (A) Graph 

shows all treatment groups (naïve, sham and injured) for each timepoint looking at the 

total amount of GSK3β, GSK3 TOT, relative to β-actin and then compared to the naïve 

sample. (B) Graphs focus on the amount of phosphorylation at the Tyr216 site on GSK3β 

relative to β-actin and then compared to the naïve sample. (C) Graphs focus on the 

amount of phosporylation at the Ser9 site on GSK3β relative to β-actin and then 

compared to the naïve sample.  (D) Respresentative Western blots (n=naïve, s=sham, 

h=hit).  Data were presented as mean±SEM. SEM was presented as the error bars. One-

way ANOVA statistical tests were performed with Tukey’s multiple comparisons test, 

p<0.05.  “*” represents treatment groups that significantly differ from the naïve animals. 

“#” represents significant differences between the sham and injured groups of the same 

timepoint. 
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Western blot analyses of hippocampal samples when protein levels were normalized to -

actin 

Western blot analyses of total amount of GSK3β protein in naïve, sham and rmTBI 

hippocampi revealed that the levels of GSK3 TOT were higher in sham and rmTBI 

hippocampi than in naïve hippocampi at 24 h post-injury or sham procedure (Figure 5A). 

The Western blot analyses also showed higher pTyr216 levels in both shams and rmTBI 

mice compared to naïves across all time points with the exception of the 3 week time 

point post-procedure (Figure 5B).  Compared to naïves the levels of pSer9 was higher in 

shams at 48 h and 1 week post-sham procedure and in rmTBI mice at 1 week post-injury 

(Figure 5C).  There were no time points at which GSK TOT or pTyr216 levels were 

significantly different between sham and rmTBI mice, however, pSer9 levels were 

significantly lower in rmTBI mice compared to shams at 1 week post-injury. 
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Figure 5. Western blot data for the hippocampal samples across all timepoints. (A) 

Graph shows all treatment groups (naïve, sham and injured) for each timepoint looking at 

the total amount of GSK3β, GSK3 TOT, relative to β-actin and then compared to the 

naïve sample. (B) Graphs focus on the amount of phosphorylation at the Tyr216 site on 

GSK3β relative to β-actin and then compared to the naïve sample. (C) Graphs focus on 

the amount of phosporylation at the Ser9 site on GSK3β relative to β-actin and then 

compared to the naïve sample.  (D) Respresentative Western blots (n=naïve, s=sham, 

h=hit).  Data were presented as mean±SEM. SEM was presented as the error bars. One-

way ANOVA statistical tests were performed with Tukey’s multiple comparisons test, 

p<0.05.  “*” represents treatment groups that significantly differ from the naïve animals. 

“#” represents significant differences between the sham and injured groups of the same 

timepoint. 

Western blot analyses of cortical samples when protein levels were normalized to GSK 

 

To evaluate the relative level of GSK3 activation in the cortex we also examined the 

ratio of pTyr216 levels to GSK TOT levels in cortical protein samples.   These analyses 
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revealed that the levels of pTyr216, when normalized to GSK TOT levels, was 

significantly reduced by approximately 2-fold, in sham and rmTBI mice compared to 

naïves at all time points studied (except for the shams at 3 week post-procedure) (Figure 

6A).  To evaluate the relative level of GSK3 inhibition we also examined the ratio of 

pSer9 levels to GSK TOT levels in cortical protein samples.   We found that pSer9 levels 

in sham mice, when normalized to GSK TOT levels were significantly reduced (by 5 – 10 

fold) compared to naïves at 8 h, 24 h, 48 h and 1 week post-procedure (Figure 6B).  The 

pSer9 levels in the rmTBI mice, when normalized to GSK TOT levels, were significantly 

reduced (by 5 – 10 fold) compared to naïves at 8 h and 24 h, post-injury (Figure 6B). 

Western blot analyses of hippocampal samples when protein levels were normalized to 

GSK  

To evaluate the relative level of GSK3 activation in the hippocampus we examined the 

ratio of pTyr216 levels to GSK TOT levels in the hippocampal protein samples.   This 

analyses revealed that the levels of pTyr216, when normalized to GSK TOT levels, was 

significantly reduced by approximately 4-5-fold, in sham and rmTBI mice compared to 

naïves at all time points studied (except for the 3 week post-injury or procedure time 

point) (Figure 6C).  To evaluate the relative level of GSK3β inhibition we also examined 

the ratio of pSer9 levels to GSK TOT levels in cortical protein samples.   We also found 

that pSer9 levels in sham mice, when normalized to GSK TOT levels were significantly 

reduced (by 25 - 100 fold) compared to naïves at all time points (Figure 6D).   
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Figure 6. Western blot data comparing the amount of phosphorylation at the regulatory 

sites on GSK3β to the total amount of GSK3β protein. (A) Cortex samples for all 

treatment groups across all the timepoints analyzed focusing on the amount of 

phosphorylation at the Tyr216 regulatory site, relative to the total amount of protein. (B) 

Cortex samples for all treatment groups across all the timepoints analyzed focusing on 

the amount of phosphorylation at the Ser9 regulatory site, relative to the total amount of 

protein.  (C) Hippocampus samples for all treatment groups across all the timepoints 

analyzed focusing on the amount of phosphorylation at the Tyr216 regulatory site, 

relative to the total amount of protein.  (D) Hippocampus samples for all treatment 

groups across all the timepoints analyzed focusing on the amount of phosphorylation at 

the Ser9 regulatory site, relative to the total amount of protein.  (E) Hippocampus 

samples from (D) excluding the naïve animals.  Data were presented as mean±SEM. 

SEM represented as the error bars. One-way ANOVA statistical tests were performed 
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with Tukey’s multiple comparisons test, p<0.05. “*” represents treatment groups that 

significantly differ from the naïve animals. “#” represents significant differences between 

the sham and injured groups of the same timepoint. 

3.3 Aim #2: To characterize the cellular and molecular 

pathology triggered by rmTBI in the MAPT KI mice 

MAPT KI mice 

As discussed in the introduction to this thesis (Chapter 1, pages 1-23), using MAPT KI 

mice to study rmTBI increases the clinical relevance of this model of rmTBI. The MAPT 

KI mice carry a fully humanized tau gene in place of the murine tau gene. Thus, 

pathological consequences of concussion due to the effects of rmTBI on tau would be 

predicted to be more reflective of human pathological changes consequent to concussion 

in the MAPT KI mice compared to C57BL/6 mice.  

A COVID19 impact note concerning the histopathological and behaviour analyses below 

During the analyses phase of this study it became apparent that the controlled cortical 

impactor was not performing up to specifications, despite being calibrated by myself and 

others in the laboratory. There was a problem with the impactor itself, in that the speed 

and/or depth programming of the machine was incorrect and highly variable. The 

impactor was sent back to the company (Precision Instruments) for recalibration but was 

damaged in transit back to the Robarts Research Institute and we now are awaiting a 

replacement. I wanted to repeat the experiment with a properly calibrated impactor 

however, the combined effects of the COVID-19 restrictions on animal work instituted in 

March of 2020 and the impactor malfunction delayed my progress by 6 – 8 months 

making it impossible for me to repeat.  Thus, I present my findings below with the 

admission that there was great variability in the injuries carried out in the MAPT KI 

mice that makes interpretations of the data challenging at best.  However, I carried out 

the histopathological and behavioural analyses to the best of my ability and have, at the 

very least, provided baseline measurements for shams and naïves that will be useful when 

this project continues upon receipt of a new impactor. 
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Histopathological analyses 

To assess MAPT KI mice for histological changes after rmTBI that reflect diffuse axonal 

injury (DAI) we performed silver staining of brain sections from MAPT KI mice taken at 

various time points after injury using the FD NeurosilverTM Kit II silver staining kit (FD 

NeuroTechnologies, Ellicott City, MD) as previously described (Xu et al., 2021).  Images 

of the corpus callosum were taken using a brightfield microscope at 40x and were 

visually inspected for black silver staining (Figure 7-10).  

Short term analyses (naïve, 1 and 7 days) 

Naïve animals had no intervention during the experiment, and as expected, had no 

evidence of silver stained axons when looking at the corpus callosum (Figure 7A). At 1 

day and 7 days post-injury, brain sections from injured male MAPT KI (Figure 7C and E) 

demonstrated some silver staining, compared to shams (Figure 7B and D) that was 

particularly evident at high power magnification (insets in Figure 7C and E).   
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Figure 7. Silver staining for the short term timepoints of the MAPT KI study. (A) Silver 

staining of the corpus callosum of a naïve animal (n=6). (B) Silver staining of the corpus 

callosum of a sham animal sacrificed at the 1 day timepoint.  (C) Silver staining of the 

corpus callosum of an injured animal sacrificed at the 1 day timepoint.  (D) Silver 

staining of the corpus callosum of a sham animal sacrificed at the 7 day/1 week 

timepoint.  (E) Silver staining of the corpus callosum of an injured animal sacrficed at the 

7 day/1 week timepoint.  All images were taken at 40x.  
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Long term analyses (4 and 10 weeks)  

Sections from both male and female injured MAPT KI mice demonstrated some silver 

staining at 4 and 10 week post-injury compared to their sham counterparts (Figure 8).  

High power magnifications showed that the silver stained axons had the characteristic 

tortuous appearance suggestive of axonal damage (Shitaka et al., 2011).   

 

Figure 8. Silver staining for the longer term timepoints of the MAPT KI study. (A) Silver 

staining of the corpus callosum of a sham male sacrificed at the 4 week timepoint. (B) 

Silver staining of the corpus callosum of an injured male sacrificed at the 4 week 

timepoint.  (C) Silver staining of the corpus callosum of a sham female sacrificed at the 4 

week timepoint.  (D) Silver staining of the corpus callosum of an injured female 

sacrificed at the 4 week timepoint.  (E through H) Same order of images as the ones 

above, except taken from the animals sacrifced at the 10 week timepoint. All images were 

taken at 40x.  

Variability in injury  

While the histopathological staining of rmTBI MAPT KI mice showed the presence of 

silver-stained axons their number per section seemed greatly reduced compared to the 

number of silver-stained axons in the pilot project described above.  Furthermore, we also 

observed a great degree of variability in the amount of silver staining in different mice.   

This variability can be seen in the images in Figure 9.  Figure 9 shows the results of silver 

staining in sections from 4 different males and 4 different females 10 weeks after their 
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injury.  Despite receiving the same injury, the silver staining revealed great variability in 

the number of silver stained axons between animals. Most of the animals studied had 

minimal silver staining (Figure 9A, B, C, E, F and G) suggesting lighter concussive hits, 

whereas a handful of injured animals had greater amounts of silver staining suggesting 

that they sustained more severe injuries (Figure 9D and H), resulting in more pathology. 

Naïve animals did not show signs of positive silver staining.  This histopathology was the 

first inkling that the impactor was malfunctioning – a problem that was subsequently 

verified and prompted a return of the impactor to Precision Instruments for recalibration 

and repair. 

 

Figure 9. Silver staining of the variabliltiy of the injuries delivered by the controlled 

cortical impactor (CCI). (A through D) Snippets of the corpus callosum of the injured 

male animals sacrifficed at the 10 week timpoint. (E through H) Snippets of the corpus 

callosum of the injured females sacrifced at the 10 week timepoint. Images on the left 

most side have negligible silver staining and as the images move towards the right most 

side there is significant amounts of silver staining. Images in the middle vary in the 

degree of silver staining. Images were taken at 40x. 

Silver staining in sections from Aged MAPT KI mice  

To fully characterize the usefulness of the MAPT KI mice for chronic studies of rmTBI 

there was a need to establish baseline histopathological measures in uninjured aged 

MAPT KI mice.  All aged animals received no intervention during these experiments.  

Male MAPT KI mice were raised until they reached 14 months of age and were then 
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sacrificed.  A single female MAPT KI mouse was raised until it reached 12 months of age 

and was then sacrificed.  Greater numbers of MAPT KI mice were not available due to 

COVID-19 restrictions on animal breeding.  Both aged male and female MAPT KI mice 

displayed minimal silver staining (Figure 10A and B) that was comparable to the amount 

of silver staining observed in aged (14 month old) C57BL/6 mice (Figure 10C and D).   

 

Figure 10. Silver staining of the aged animals. (A) Silver staining of the corpus callosum 

of an aged MAPT KI male sacrificed at 14 months old. (B) Silver staining of the corpus 

callosum of an aged MAPT KI female sacrificed at 12 months old.  (C) Silver staining of 

the corpus callosum of an aged C57BL/6 male sacrificed at 14 months old.  (D) Silver 

staining of the corpus callosum of an aged C57BL/6 female sacrificed at 14 months old. 

All images were taken at 40x.  

Staining for pathologically phosphorylated tau in injured MAPT KI animals 

Abnormal phosphorylation of tau has been reported in human brain samples from 

subjects with a history of concussion (McKee et al., 2009, 2013; Tagge et al., 2018) and 
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in rmTBI mice (Tagge et al., 2018; Xu et al., 2021).  To characterize the levels of 

pathologically phosphorylated tau in rmTBI MAPT KI mice we immunostained sections 

from naïve, sham and rmTBI mice at 10 weeks post-injury or sham procedure with the 

AT8 antibody that recognizes phospho-tau (Ser202, Thr205) (Y. Zhang et al., 2019). 

Figure 11 shows a series of photomicrographs taken in the cortical/prefrontal areas of 

these sections.  Naïve male MAPT KI did not display positive AT8 staining (Figure 11D).  

Injured male MAPT KI mice (Figure 11F) had significantly more AT8 positive staining 

compared to the shams (Figure 11E) and the naïve animals (Figure 11D) that was 

comparable to the AT8 staining seen in C57BL/6 rmTBI mice (Figure 11C).   

 

Figure 11. AT8 staining in the prefrontal cortex of the injured animals. (A) 

Representative ATLAS image of the brain sections that were stained and imaged. The 

black box represents the approximate area in which the photos were taken. AT8 staining 

is red and DAPI staining is blue. (B) Image of a C57BL/6 sham animal donated by Dr. 

Kathy Xu for comparison to the MAPT KI.  (C) Image of a C57BL/6 injured animal 

donated by Dr. Kathy Xu for comparison to the MAPT KI.  (D) Image of a naïve MAPT 

KI animal. (E) Image of a sham MAPT KI animal.  (F) Image of an injured MAPT KI 

animal.  Numbers in the top right corner represent the n’s for each group. All images 

were taken at 40x.  
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Staining for pathologically phosphorylated tau in uninjured aged MAPT KI animals 

To fully characterize the usefulness of the MAPT KI mice for chronic studies of rmTBI 

there was also a need to establish baseline levels for pathologically phosphorylated tau in 

aged MAPT KI mice.  We immunostained brain sections from aged uninjured MAPT KI 

mice with the AT8 antibody. Figure 12 shows photomicrographs taken from the 

cortical/prefrontal areas of these sections (Figure 12A).  Aged animals were not 

manipulated and left to age naturally over the course of this experiment.  C57BL/6 male 

and female mice were aged to 14 months old, male MAPT KI mice were aged to 14 

months old, and the sole female MAPT KI mouse was aged to 12 months.  Naïve animals 

did not show any positive AT8 staining (Figure 12D).  Uninjured, aged male and female 

C57BL/6 mice showed minimal AT8 staining (Figure 12B and C), whereas uninjured, 

aged male and female MAPT KI mice demonstrated more AT8 positive staining (Figure 

12E and F).   
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Figure 12. AT8 staining in the prefrontal cortex of the aged animals. (A) Representative 

ATLAS image of the brain sections that were stained and imaged. The black box 

represents the approximate area in which the photos were taken. AT8 staining is red and 

DAPI staining is blue. (B) Image of an aged C57BL/6 male sacrificed at 14 months old. 

(C) Image of an aged C57BL/6 female sacrificed at 14 months old.  (D) Image of a naïve 

MAPT KI animal. (E) Image of an aged MAPT KI male sacrificed at 14 months old. (F) 

Image of an aged MAPT KI female sacrificed at 12 months old. Numbers in the top right 

corner represent the n’s for each group. All images were taken at 40x.  

Inflammation in the MAPT KI mice after rmTBI  

To determine if the inflammatory response triggered by rmTBI in MAPT KI mice was 

similar to that triggered in rmTBI C57BL/6 mice we immunostained brain sections from 

rmTBI (C57BL/6 and MAPT KI) mice for GFAP and Iba1.  Figure 13 shows 

photomicrographs from the cortex of these stained sections (Figure 13A).  Injured male 

C57BL/6 and MAPT KI (Figure 13C and H) mice displayed increased levels of Iba1 

immunostaining compared to sham animals (Figure 13B, D, G and J).  Naïve male MAPT 

KI mice (and C57BL/6 mice, data not shown) did not show any significant Iba1 staining 

(Figure 13F), but did show moderate GFAP staining (Figure 13I) as did sections from 

sham (Figure 13D and J) and rmTBI mice (Figure 13E and K).   
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Figure 13. GFAP and Iba1 staining in the corpus callosum area for the injured animals. 

(A) Representative ATLAS image of the brain sections that were stained and imaged. 

The black box represents the approximate area in which the photos were taken. GFAP 

staining is green, Iba1 staining is red and DAPI staining is blue.  (B and D) Images of the 

GFAP and Iba1 staining for a C57BL/6 sham animal donated by Dr. Kathy Xu. (C and E) 

Images of the GFAP and Iba1 staining for a C57BL/6 injured animal donated by Dr. 

Kathy Xu. (F and I) Images of the GFAP and Iba1 staining for a naïve MAPT KI animal. 

(G and J) Images of the GFAP and Iba1 staining for a sham MAPT KI animal.  (H and K) 

Images of the GFAP and Iba1 staining for an injured MAPT KI animal.  Numbers in the 

top right corner represent the n’s for each group. All images were taken at 40x.      
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What does the GFAP and Iba1 staining look like in uninjured aged MAPT KI mice 

To fully characterize the usefulness of the MAPT KI mice for chronic studies of rmTBI 

we investigated the baseline GFAP and Iba1 levels in brain sections from uninjured aged 

MAPT KI mice. Brain sections from uninjured, aged MAPT KI mice were immunostained 

for GFAP and Iba1 expression.  Figure 14 shows photomicrographs taken from the cortex 

of these sections (Figure 14A).  While aged, uninjured C57BL/6 and MAPT KI mice 

demonstrated very little Iba1 expression (Figure 14B, C, G and H) they did demonstrate 

moderate levels of GFAP immunostaining (Figure 14D, E, I, J and K).   
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Figure 14. GFAP and Iba1 staining in the corpus callosum area for the aged animals. (A) 

Representative ATLAS image of the brain sections that were stained and imaged. The 

black box represents the approximate area in which the photos were taken. GFAP 

staining is green, Iba1 staining is red and DAPI staining is blue.  (B and D) Images of the 

GFAP and Iba1 staining of an aged C57BL/6 male. (C and E) Images of the GFAP and 

Iba1 staining of an aged C57BL/6 female. (F and I) Images of the GFAP and Iba1 

staining for a naïve MAPT KI animal. (G and J) Images of the GFAP and Iba1 staining of 

an aged MAPT KI male. (H and K) Images of the GFAP and Iba1 staining of an aged 

MAPT KI female. Numbers in the top right corner represent the n’s for each group. All 

images were taken at 40x.     
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3.4 Aim #3: To characterize the behavioural outcomes 

triggered by rmTBI in the MAPT KI mice 

The effects of rmTBI on behaviour of MAPT KI mice in the elevated plus maze  

It has been previously shown that rmTBI can be associated with anxiety and anxiety-like 

behaviours post-injury (Broussard et al., 2017).  We sought to investigate the potential 

effects of rmTBI on anxiety/anxiety-like behaviours at 8.5 weeks post-injury in the 

MAPT KI mice using the Elevated Plus Maze (EPM) test.  Mice were placed into the 

centre portion of the maze and allowed to freely explore the maze as their behaviours 

were videotaped for five minutes.  The amount of time each mouse spent in the closed 

arms, open arms, and in the centre of the maze was measured by ANY-Maze (Stoelting 

Co. Wood Dale, IL).  Male rmTBI MAPT KI mice spent a significantly longer amount of 

time in the closed arms compared to the shams (Figure 15A), which spent more time in 

the open arms of the maze (Figure 15B). There were no significant differences in the 

amount of time spent in the centre part of the maze (Figure 15C).  There were no 

significant differences in the mean speed, and total distance travelled between the male 

sham and rmTBI MAPT KI mice (Figure 16A and B). 

An analysis of female rmTBI and sham MAPT KI mice demonstrated there were no 

significant differences in the amount of time spent in the closed and open arms of the 

maze (Figure 15D and E), however, there were significant differences in the amount of 

time spent in the centre part of the maze (Figure 15F).  The female rmTBI mice spent a 

significantly longer time in the centre of the maze compared to shams.  There were 

significant differences in the mean speed and total distance travelled (Figure 16C and D) 

with the female sham mice travelling at a faster mean speed than the injured females and 

travelling a greater distance within the EPM compared to injured individuals.   
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Figure 15. Behavioural data from the Elevated Plus Maze (EPM) Test. (A) Time spent in 

the closed arms of the EPM for sham and injured MAPT KI males. (B) Time spent in the 

open arms of the EPM for sham and injured MAPT KI males. (C) Time spent in the 

centre area of the EPM for sham and injured MAPT KI males. (D) Time spent in the 

closed arms of the EPM for sham and injured MAPT KI females. (E) Time spent in the 

open arms of the EPM for sham and injured MAPT KI females. (F) Time spent in the 

centre area of the EPM for sham and injured MAPT KI females. Data were presented as 

mean±SEM. SEM was represented as the error bars. “*” represents significant 

differences between the treatment groups. Student’s t-test was performed for the EPM 

data, p<0.05   



59 

 

 

Figure 16. Mean speed and total distance travelled in the Elevated Plus Maze (EPM) 

Test. (A) Mean speed of sham and injured MAPT KI males. (B) Total distance travelled 

for sham and injured MAPT KI males. (C) Mean speed of sham and injured MAPT KI 

females. (D) Total distance travelled for sham and injured MAPT KI females. Data were 

presented as mean±SEM. SEM was represented as the error bars. “*” represents 

significant differences between the treatment groups. Student’s t-test was performed for 

the EPM data, p<0.05   

  

How does rmTBI influence spatial cognition and memory of MAPT KI mice?  

Repetitive mTBI has been previously linked to spatial cognition and memory deficits 

using the Morris Water Maze test (MWM) (Mannix et al., 2014; Xu et al., 2021).  The 

effects of rmTBI on spatial cognition and memory in male and female MAPT KI mice 

were assessed with the MWM.  Male sham and rmTBI MAPT KI mice had difficulty 

learning the task, as demonstrated by the learning curves in Figure 17A [F(3,48)=1.849, 

p=0.1510].  During the Probe Trial, conducted on Day 5, there were no significant 

differences in the amount of time spent in the target quadrant versus non-target quadrants 

as assessed by one-way ANOVA (Figure 17B).  There was a significant difference seen 
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in the mean swim speeds (m/sec) during the Probe Trial, with the injured males 

swimming significantly faster than the sham males (Figure 17C).   

The learning curves for the female sham and rmTBI MAPT KI mice demonstrate that 

both groups were able to learn the task, with no significant differences in learning 

between groups throughout the four training days (Figure 17D). On the Probe Trial there 

were no significant differences in the amount of time spent in the target quadrant versus 

non-target quadrants as assessed by one-way ANOVA (Figure 17E), for sham or rmTBI 

MAPT KI females. There were no significant differences for swim speeds between 

groups during the Probe Trial (Figure 17F).   

 

Figure 17. Behavioural data from the Morris Water Maze (MWM) Test. (A) Escape 

latency for each of the four training days of the MWM for both sham and injured MAPT 

KI males. (B) Time spend in both the non-target (Q1-3) and target (Q4) quadrants of the 

MWM during the probe trial for both sham and injured MAPT KI males. (C) Mean swim 

speed for sham and injured MAPT KI males. (D) Escape latency for each of the four 

training days of the MWM for both sham and injured MAPT KI females. (E) Time spend 

in both the non-target (Q1-3) and target (Q4) quadrants of the MWM during the probe 

trial for both sham and injured MAPT KI females. Data were presented as mean±SEM. 

SEM was represented as the error bars. “*” represents significant differences between the 

treatment groups. One-way ANOVA statistical tests were performed for A, B, D, and E 

with Tukey’s multiple comparisons test. Student’s t-test were performed for C and F, 

p<0.05. 
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Chapter 4  

4 Discussion and Conclusions 

The objectives of this study were to characterize a time course of GSK3β 

phosphorylation, using C57BL/6 mice, and to investigate the cellular/molecular 

pathology and behavioural outcomes in MAPT KI mice in order to validate their 

usefulness in concussion research as a more clinically relevant model.  This study is 

going to be one of few, if not the first of its kind, to use the MAPT KI transgenic mice 

created from Saito et al. (2019) in a model of repetitive mild traumatic brain injury.   

4.1 Pilot Study 

Before the study began, a pilot study was conducted in order to determine if the same 

injury protocol, minus the skin incision, would produce similar injury levels compared to 

the injury protocol including the skin incision previously used by the Brown Lab (Xu et 

al., 2021).  Silver staining revealed that both injury protocols produced abundant positive 

silver staining, but in different areas of the brain (Figure 3), proving that keeping the skin 

intact with the same injury parameters was sufficient to cause physical axonal damage. 

Clearly, the protocol excluding the skin incision was sufficient to produce some level of 

injury as indicated by the silver staining, however, in the future, there could be room for 

improvement.  For instance, the parameters of the hit could be adjusted to account for the 

thickness of the skin and/or adjust the intensity of the injury delivered.  One study 

investigating the physical and mechanical properties of mammalian skin in various 

animal models determined that smaller species, such as rodent models, have increased 

viscoelastic effects in the skin compared to larger species, such as humans (Wei et al., 

2017).  Other factors can also influence the properties of the skin, such as age, gender, 

and weight (Wei et al., 2017).  In terms of the actual injury parameters, both the depth 

and the speed of the injury delivered could be adjusted in order to increase the severity of 

the hit.  This could be done by increasing the depth or by increasing the speed, or by 

increasing both parameters at the same time.   
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4.2 Kinetics of GSK3β Phosphorylation triggered by rmTBI 

After an episode of rmTBI, many cascades are initiated that result in neurodegenerative 

changes that lead cognitive deficits.  It has been proposed that GSK3β is responsible for 

the abnormal phosphorylation of tau in tauopathies, such as CTE (Hooper, Killick, and 

Lovestone, 2008).  This abnormal phosphorylation of tau is what causes the pathological 

formation of aggregates/fibrils/tangles leading to neuronal death (Polydoro et al., 2009).  

Moszczynski et al (2018) demonstrated this process, in a rodent model of moderate TBI, 

showing that both the activation of GSK3β and tau pathology were increased 3 months 

post-injury.  Many studies have evaluated the effects of preventing the activation of 

GSK3β and abnormal tau phosphorylation (Dash et al., 2011).  To plan how we might 

best deliver a GSK3β inhibitor we sought to determine when and for how long, after 

rmTBI, GSK3β is activated.  In my study, several time points post-injury were analyzed 

to investigate the levels of phosphorylation on two of the main regulatory sites on 

GSK3β, pTyr216 and pSer9 (Fang et al., 2000; Krishnankutty et al., 2017), relative to 

total GSK3β.  Western blot analyses revealed that in both the cortical and hippocampal 

protein samples GSK3 TOT levels when normalized to β-actin were increased in rmTBI 

mice compared to naïves at several timepoints (Figure 4 and 5).  When looking at the 

relative phosphorylation on the regulatory sites compared to total GSK3β protein (Figure 

6), there is a higher ratio of pTyr216/GSK3 TOT compared to pSer9/GSK3 TOT, and, 

taken together with the increase in total GSK3β protein, these results suggest that there 

may be increased activation of GSK3β in the rmTBI groups.  However, these two 

regulatory sites are not the only regulatory mechanisms acting on GSK3β.  For example, 

there is another known inhibitory site on GSK3β, Ser389, that is phosphorylated by p38 

mitogen-activated protein kinase (MAPK) (Thornton et al., 2008).  In order to assess the 

actual activity of GSK3β, kinase activity assays would need to be conducted, similar to 

that seen in the Noble et al. study (Noble et al., 2005).  In the future, one could also 

assess the activity of multiple activation and inactivation pathways that converge on 

GSK3β in order to get a clearer, more complete picture as to how active GSK3β actually 

is during pathological processes.  Two of the main signaling pathways that result in the 

inactivation of GSK3 proteins are the insulin and Wnt pathways (Beurel et al., 2015).      
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GSK3β also requires substrate priming for the majority of its known substrates.  Priming 

of target substrates is a method of controlling the specificity and targeting action of 

GSK3β (Fiol et al., 1987).  This priming mechanism involves the phosphorylation of 

GSK3β substrates by another kinase at approximately 4 residues away from the target site 

for GSK3β phosphorylation (Frame & Cohen, 2001).  Therefore, it would be of great 

interest to investigate the priming kinases that phosphorylate before GSK3β, as these 

kinases must act first in order for GSK3β to perform the subsequent phosphorylation(s) 

(Frame & Cohen, 2001).     

Another method of assessing the contribution of GSK3β to the development of 

pathological hallmarks of disease would be to conduct inhibitory trials where the activity 

of GSK3β is hindered or completely blocked.  A potential candidate GSK3β inhibitor, 

such as lithium, could be administered in order to mitigate these pathological 

mechanisms/pathways from occurring and deter cognitive impairments associated with 

multiple mild traumatic head injuries (concussions) (Dash et al, 2011).  In a cell culture 

experiment using Neuro2A cells, Moszczynski et al (2015) demonstrated that lithium 

treated cultures showed reduced GSK3β activity, decreased tau phosphorylation, 

reducing fibril formation and cell death.   

It is worthy to note that other tau kinases may be responsible and contribute to the 

abnormal phosphorylation of tau.  Each kinase involved in the phosphorylation of tau 

phosphorylates specific target sites that consequently result in unique physiological 

effects, some of which may be pathological (Dolan & Johnson, 2010).  For example, a 

study investigating paired helical filament tau (PHF-tau) using mass spectrometry found 

that casein kinase 1 delta (CK1δ) phosphorylated approximately 15 sites implicated in 

PHF-tau (Hanger et al., 2007).  The number of sites that CK1δ was capable of 

phosphorylating on PHF-tau was comparable to that of GSK3β in this study, 

demonstrating that other tau kinases, or synergistic relationships between tau kinases, 

might be implicated in the generation of pathological tau aggregates (Hanger et al., 

2007).  Another kinase that may phosphorylate tau is cyclin dependent kinase 5 (cdk5) 

(Baumann et al., 1993).  In this study, investigators evaluated  cyclin dependent kinase 

(cdk) family members that are expressed within the brain and found a cdk-like kinase that 
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was able to phosphorylate tau in a similar manner to pathological tau present in 

Alzheimer’s disease (AD) (Baumann et al., 1993).  They discovered cdk5, confirming its 

presence with the use of cdk5 specific antibodies, and proposed that this kinase be 

considered as a serious contender for potential pathological phosphorylation of tau. Fyn, 

a tyrosine kinase, is also capable of phosphorylating human tau (at the tyrosine 18 

(Tyr18) residue) (G. Lee et al., 2004).  Fyn has been shown to co-localize with 

pathologically phosphorylated tau protein, in particular, PHF-tau that reacts positively 

with antibodies targeting the Tyr18 site (G. Lee et al., 2004).  Therefore, Fyn is another 

important candidate for causing or contributing to the abnormal phosphorylation of tau. 

It is important to recognize that both the sham and injured mice in this study displayed 

similar changes in the phosphorylation status of the two regulatory sites.  It was 

discovered, upon conducting a literature search, that the anesthetic that was used in this 

study, isoflurane, is capable of influencing the phosphorylation status of GSK3 proteins.  

One study, investigating the effects of anesthetics on global protein phosphorylation in 

adult mouse hippocampi, found that there were 318 significant phosphorylation events 

with respect to 237 different proteins, one of which was GSK3β (Kohtala et al., 2016).  

Another study using a rat model of Parkinson’s Disease (PD) that was investigating the 

effects of brief isoflurane exposure on the phosphorylation of GSK3β, found that there 

were increased levels of Ser9 phosphorylation in both the cortex and the striatum of the 

rats (Leikas et al., 2017).  The effects of the isoflurane must be taken into account when 

designing and conducting experiments due to the confounding effects of its use.  

Appropriate experimental design must include shams for each timepoint analyzed in 

order to better distinguish between the effects of the anesthetic and the effects of the 

treatment.                  

4.3 Characterization of Cellular and Molecular Pathology 

triggered by rmTBI 

In order to validate a clinically relevant model of concussion, rmTBI, we investigated 

whether the closed skin injury delivered by the CCI device generated diffuse axonal 

injury (DAI) using silver stained sections from rmTBI MAPT KI mice.  In terms of the 

short term timepoints investigated (naïve animals, 1 day and 7 day timepoints), and the 
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long term timepoints (4 weeks and 10 weeks), the silver staining showed little positive 

silver staining in the injured groups compared to the shams, which is less than we were 

expecting (Figure 7 and 8).  The variability in the injuries delivered by the CCI device 

can be seen in Figure 9, in which the level of silver staining in injured mice vary from 

very low levels to high levels of silver staining, despite the fact that all animals 

underwent the same injury protocol.  These highly variable results may be explained by 

the fact that the controlled cortical impactor device that I was using throughout the MAPT 

KI study had been malfunctioning, despite being calibrated by myself and others in the 

lab.  Although the outputs that were being read out by the machine itself were the desired 

parameters of the study, it was obvious that the machine was not matching those 

parameters, when the results were being analyzed, and the machine was then sent out to 

be re-calibrated.  Therefore, the rmTBI mice in this study experienced inconsistent 

injuries of variable severity – a fact that must be kept in mind when interpreting the 

results. 

When investigating the pathologically phosphorylated tau, recognized by the AT8 

antibody that recognizes phospho-tau at Ser202/Thr205 (Invitrogen), both 10 week 

injured MAPT KI and C57BL/6 male mice were analyzed.  Images were chosen to 

represent the average amount of staining for each group analyzed.  Pathologically 

phosphorylated tau levels were comparable between the two strains of mice within the 

injured group (Figure 11).  Similarly, both groups of injured mice had increased levels of 

Iba1 reactivity and comparable GFAP reactivity (Figure 13).  Another set of MAPT KI 

and C57BL/6 mice were naturally aged to 12-14 months old.  When analyzing the silver 

staining aged males and females had minimal positive silver staining which was 

comparable between the two strains (Figure 10).  However, when investigating the 

pathologically phosphorylated tau, aged MAPT KI male and female mice had greater 

AT8 staining compared to their C57BL/6 counterparts (Figure 12).  When analyzing the 

staining for the Iba1 and GFAP, there was minimal Iba1 staining and moderate GFAP 

staining for both aged MAPT KI and C57BL/6 animals (Figure 14).     

When this data is considered together, we conclude that the MAPT KI mice should be 

used for rmTBI studies over the C57BL/6 mice due to the observation that just as in aged 
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humans, abnormal tau phosphorylations increase with age in the MAPT KI mice.  This 

observation may be attributed to the tau isoforms expressed in C57BL/6 and the MAPT 

KI mice.  The C57BL/6 mice, do not express any 3R tau isoforms once adulthood is 

reached, with matured neurons expressing solely the 4R tau isoforms (Götz et al., 1995; 

Spillantini & Goedert, 1998).  Adult human brains express all six tau isoforms, where 

both 3R and 4R isoforms are expressed equally at a ratio of approximately 1:1 (M 

Goedert & Jakes, 1990; Hanes et al., 2009).  There are also some sequence differences 

between human and mouse tau that should be taken into consideration due to the fact that 

these sequence differences can have implications for tau function.  For example, the N-

terminal region of human tau contains 11 amino acids that are lacking in mouse tau 

(Hernández et al., 2020).  This variation in the length of the N-terminal region has an 

impact on the potential for tau to form the “paperclip” formation, with the longer human 

tau more likely to form this conformation that its mouse tau counterparts.  The 

“paperclip” conformation involves the folding of the C- and N-terminal ends into the 

microtubule binding repeat domains.  One study combined FRET pair mutants with 

various phospho-mimicking mutations, known to be hyperphosphorylated in AD (AT8, 

PHF1, AT100), in order to investigate the global folding of tau and how the level of 

phosphorylation influences this folding and subsequent conformations (Jeganathan et al., 

2008).  It was determined that the compaction of the paperclip conformation reacted 

positively with the MC1 antibody, an antibody that recognizes pathological 

conformations of tau in the early stages of AD, suggesting that this conformation of tau is 

in fact pathological. 

Improvements in the analysis of both the silver staining and immunohistochemistry could 

be implemented in the future.  In this study, qualitative analysis was conducted, in which 

the sections were visually examined for positive staining.  This approach was used seeing 

as the quantified data would have been variable due to the inconsistent injuries.  

However, using both qualitative and quantitative data would be desirable once the study 

has been repeated.  One could use a computer-assisted image analysis system, similar to 

Williams et al. (2006), in order to calculate the optical density (OD) of the silver staining 

in the sections of interest (Williams et al., 2006).  In terms of the immunohistochemical 

staining, one could use a program such as ImageJ, in order to analyze the photos taken 
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and calculate the percentage of positive staining in the sections of interest (Moszczynski 

et al., 2019).              

4.4 Characterization of the Behavioural Outcomes triggered 

by rmTBI 

The final aim of this study was to characterize the effect of rmTBI on the behaviour of 

MAPT KI mice using the Elevated Plus Maze (EPM) (to test for anxiety/anxiety-like 

behaviours) and the Morris Water Maze (MWM) (to test for spatial learning/memory).  In 

terms of the EPM, injured male MAPT KI mice spent significantly more time in the 

closed arms compared to the shams, although this difference was small; whereas, there 

were no significant differences seen in the behaviours in the female MAPT KI mice 

(Figure 15).  During the Probe Trial of the MWM, there were no significant differences 

in the amount of time spent in the target versus non-target quadrants for both the male 

and female MAPT KI mice (Figure 17), although a trend can be seen for the male and 

female shams to spend more time in the target quadrant.  Unfortunately, during this 

study, COVID-19 interrupted the progression of this work and the numbers of mice in the 

colonies had to be decreased, meaning that we did not have the desired numbers for the 

behavioural studies.  Coupled with the fact that the CCI device was malfunctioning, one 

must not over-analyze these results.  Ideally, these experiments would have been 

replicated with higher n’s and with a fully functioning CCI device.  However, these 

results (the increased anxiety, as seen in the rmTBI males of the EPM, and trends for 

troubled spatial cognition seen in the rmTBI males/females in the MWM), do agree with 

other studies investigating the effects of rmTBI on behaviour post-injury (Broussard et 

al., 2018; W. H. Cheng et al., 2019).  One study testing the hypothesis that rmTBI 

negatively impacts spatial memory and anxiety/anxiety-like behaviours suggested that 

rmTBI does indeed impair spatial memory, as assessed by the MWM, and increases 

anxiety/anxiety-like behaviours, as assessed by the EPM and the Open Field Tests (OFT) 

(Broussard et al., 2018).  Another study utilizing the Closed-Head Impact Model of 

Engineered Rotational Acceleration (CHIMERA) model of rmTBI found that there were 

deficits in the Barnes Maze (BM), another test of spatial learning and memory; however, 
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contrary to this study, there were decreases in anxiety levels in the EPM coinciding with 

increased risk taking behaviour (W. H. Cheng et al., 2019).   

4.5 Caveats of the Novel Mouse Model 

This new mouse model presents potential caveats that should be considered.  First, with 

the humanization of the tau gene, there is concern that the mice do not develop normally 

as they age.  Second, there is the potential for other abnormalities to present themselves 

as the animals age, for example, poor interaction of the human tau with the other mouse 

proteins or accelerated neurodegeneration.  However, there are currently a few papers 

published using these mice that can ease the concerns surrounding these potential 

limitations.  The first study that generated these mice found that neuroinflammation, cell 

death, and overall brain atrophy were not altered or accelerated with the humanization of 

the tau gene in mice aged to 24 months (Hashimoto et al., 2019).  The second paper to 

utilize these mice checked to see if the humanized tau protein was properly integrated 

into the nervous system of the mice.  This study found that the humanized tau protein was 

properly integrated into the nervous system, as it was localized in the axons of the 

neurons, similar to that of the wild type mice (Saito et al, 2019).         

4.6 Conclusions 

The results of this study support the use of MAPT KI mice for rmTBI studies.  

Implications of this study for the future could include applying these results in preclinical 

trials studying the pathophysiological mechanisms activated during recovery from 

rmTBI.  This model could also serve useful for testing inhibitors of GSK3β activity in a 

more clinically relevant model, as human tau is more prone to pathological processes 

compared to wild type mouse tau.  The MAPT KI mice can also be humanized further by 

targeting other genes of interest, such as β-amyloid, and mimicking the protocols used to 

humanize the tau gene.    

4.7 Significance  

Currently, CTE can only be properly diagnosed post-mortem (Turner et al, 2013), which 

is of no use to the individuals whose lives have already been lost.  In order to improve the 
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lives of those affected by neurodegenerative diseases such as CTE, and those of their 

families/loved ones, studies must turn their attention towards the mechanisms and 

pathways that initiate the detrimental cascades, leading to the development of the disease.  

The number of people being affected by repetitive mild traumatic brain injuries is on the 

rise, leading to an increase in the number of individuals developing CTE, additionally, 

causing an increase in the burden/cost to health care systems (Luo et al., 2014).  In order 

to effectively develop a treatment, the time course of pathological activity and 

contributing processes must first be established.  The time of treatment administration 

could then be designed to coincide with the time of peak pathological activity post-injury.  

For example, correctly timed administration of a GSK3β inhibitor might be predicted to 

prevent the abnormal phosphorylation of tau, the formation of tau 

aggregates/fibrils/tangles, and potentially the development of CTE later in life. This work 

is of significant value to both the health and scientific communities since it is one of the 

first, if not the very first, of its kind to explore concussion and tau pathology in a 

clinically relevant model of concussion using transgenic mice solely expressing human 

tau.  This study will hopefully serve as a stepping stone for future preclinical studies of 

rmTBI with a focus on pathophysiology and potential therapeutics.  
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