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Abstract 

 

The area under the receiver operating characteristic curve (AUC) is commonly used to quantify 

the discriminative ability of tests with ordinal or continuous test data. When planning a study to 

evaluate a new diagnostic test, it is important to determine a minimum sample size required to 

achieve a prespecified precision of estimating AUC. However, conventional sample size formulas 

do not consider the probability of achieving a prespecified precision, resulting in underestimation 

of sample sizes. To incorporate the assurance probability, asymptotic sample size formulas were 

derived using different variance estimators for AUC in this thesis. The precision of AUC 

estimations was quantified by either lower confidence limits or interval width. The performance 

of proposed sample size formulas was evaluated through simulation studies. Simulation results 

show that the formula based on lower limits with the nonparametric method performs best and can 

be used with both ordinal and continuous data. The methods are illustrated with examples from 

previously published data.  
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Summary for Lay Audience 

 

The area under the receiver operating characteristic curve (AUC) is a tool used for describing the 

discriminative ability of diagnostic tests. Discriminative ability must be evaluated before adopting 

a test and using it in practice. An important factor to consider when planning an evaluation study 

is the minimum required sample size, as too small a sample size would make it difficult to see 

desired results, and too large a sample size may cause resources to be wasted. Typically, sample 

sizes are calculated using sample size formulas, however, existing sample size formulas tend to 

underestimate the required sample size because they do not consider the assurance probability of 

achieving a prespecified level of precision. In this thesis, we derived sample size formulas that 

incorporate this prespecified assurance probability. As sample size formulas require the variance 

of the AUC, we chose three different variance formulas to use. Simulation studies were conducted 

to evaluate the performance of sample size formulas. The results show that the formula based on 

lower limits with nonparametric method performed best and can be used with both ordinal and 

continuous data.  
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Chapter 1 Introduction 

 
 
 
 

1.1 The Receiver Operating Characteristic curve 

Accurate diagnosis of a disease condition is crucial for successful treatment and management of 

the condition. Whether it may be for diagnosis or for screening, an accurate test may help patients 

with a disease get the treatment they need, and patients who do not have the disease will be free 

of unnecessary treatment. For a binary diagnostic test, there are two aspects of measures of 

accuracy: sensitivity and specificity. Sensitivity (or true positive rate) is the probability of correctly 

identifying an individual with the condition as positive, whereas specificity (or true negative rate) 

is the probability of correctly identifying an individual without the condition as negative 

(Yerushalmy, 1947). These two measures are negatively related. In other words, if a test were 

made to have very high sensitivity, it could potentially classify people free of the disease as 

positive because it would be much more conservative on classifying people as having the disease. 

Thus, it would be misleading to compare one measure without taking into consideration the other.  

Additionally, there are situations that require tests with higher sensitivity and lower 

specificity or vise versa. For instance, a test for screening may require a higher specificity because 

screening is typically used on an asymptomatic population where only a small proportion of people 

have a condition. Since there is such a low probability of someone in this population having the 

condition, it may be more important that people without the disease are correctly classified as 

negative. On the other hand, for diagnosis, a test is usually applied to a symptomatic population 

where everyone may be at high risk for a particular disease. Since there is a high probability of 

having the disease amongst this population, it would be more important to have higher sensitivity 
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so that if someone does have the disease then it can be detected for certain. Screening and diagnosis 

may be done on different populations for different reasons, but they are evaluated using the same 

statistics.  
 
True binary test results allow us to calculate sensitivity and specificity directly, but for test 

results that are continuous or ordinal, we must set various cut-off points in order to calculate the 

sensitivity and specificity. A tool that can visually display the discriminative ability of tests based 

on sensitivity and specificity through various cut-off points would be the Receiver Operating 

Characteristic (ROC) curve. The ROC curve is a useful tool because it plots sensitivity as a 

function of specificity based on all possible threshold values so the optimal trade-off between the 

two can be seen and adjusted. This allows us to evaluate the discriminative ability of tests as well 

as compare those of different tests.  

The ROC graph goes from 0 to 1 on both axes, and the sensitivity (true positive rate) is on 

the y-axis, while '1 − specificity' (false positive rate) is on the x-axis. A test with ideal 

discrimination ability would have its ROC curve going from the origin to (0,1) to (1,1), forming 

two straight lines. On the other hand, a test with virtually no discrimination ability between typical 

(people without a condition of interest) and atypical (people with a condition of interest) 

populations would have a ROC curve going from the origin to (1,1) directly, as its true positive 

rate and false positive rate would be equal. Thus, the closer the ROC curve is to the top left corner 

of the graph, the better the test is at discriminating between two populations, and the more accurate 

it is. To plot an ROC curve, the sensitivity and specificity must be calculated for a series of 

different thresholds, and these sensitivity-specificity pairs are the coordinates for the point on the 

graph. 
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1.2 Area under the ROC curve 

Moreover, test results can be continuous or ordinal. For example, high blood pressure is a condition 

that is not simply categorized as a positive and negative as it has many stages such as ‘normal’ and 

‘elevated’, followed by different stages of hypertension. When a condition has many levels of 

severity or is measured on a continuous scale, we can no longer quantify test accuracy with 

estimates of sensitivity or specificity without having to dichotomize data with well-defined 

thresholds. 

The area under the ROC curve (AUC) is useful in summarizing the accuracy of a test 

without needing to set various thresholds to dichotomize continuous or ordinal data. It quantifies 

the discriminative ability of tests and is commonly regarded as a global measure of accuracy. The 

AUC represents the probability that a randomly chosen value from one population would be 

greater than a randomly chosen value from another population, in other words, how well a test can 

discriminate between two different populations. The AUC of a test with ideal discrimination ability 

would be 1, as the area beneath this ROC curve would take up the entire plot. On the contrary, the 

ROC curve of a test without any discrimination ability would bisect the plot, making the area under 

this curve 0.5. As tests with better discriminative abilities are more favoured, the discriminative 

ability of a test can be interpreted on the basis of the AUC, using benchmarks such as those 

presented in Table 1.1 (El Khouli et al., 2010).  

 

Table 1.1: Benchmarks to describe a test's discriminative ability based on different AUC values 

by El Khouli et al. (2010). 

 
0.5 – 0.6 Failed 

0.6 – 0.7 Poor 
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0.7 – 0.8 Fair 

0.8 – 0.9 Good 

0.9 – 1.0 Excellent 

 

The area under the ROC curve has many applications in practice. Green and Swets (1966) 

found that there are two tasks equivalent to the AUC: the two-alternative forced choice task and 

the rating task. The two-alternative forced choice task is where two choices are presented, and an 

observer is forced to choose one of the choices. This is frequently used in signal detection theory 

and psychophysics, where a signal is presented in one of two observational intervals and noise is 

presented in both of the intervals. An observer must then determine which of the two intervals 

contains the signal (Green & Swets, 1966). The rating task has an observer rate a pair of randomly 

mixed stimuli on a scale, based on the strength of the stimulus. An example of this in the medical 

field would be when healthcare professionals evaluate a patient’s condition based on the medical 

images of that patient. These images are often rated on a five-point scale from “definitely normal" 

to “definitely abnormal” (Hanley & McNeil, 1982). In both the two-alternative forced choice task 

and the rating task, the AUC represents the probability that a difference between two items is 

detected—in the forced choice task, the signal is recognized as different from noise, and in the 

rating task, an atypical patient's medical image is rated differently from a typical patient's image.  
 
The area under the curve can be formally defined as the probability of correctly ranking a 

typical-atypical image pair. Let X and Y be the random variables denoting test values of typical 

and atypical subjects respectively, and 𝜃 denote the AUC, then 

θ = Pr(𝑋 < 𝑌) 

where higher AUC values suggest subjects are likely to be atypical. Bamber (1975) observed that 

this probability Pr(X < Y) is the one-to-one function of the Mann-Whitney U statistic. This test 
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statistic is nonparametric and tests the null hypothesis that the cumulative distributions of two 

random variables are equal (Mann & Whitney, 1947). In other words, it tests whether the 

distributions of two populations are the same by determining whether a randomly chosen value 

from one population would not be greater than nor less than a randomly chosen value from another 

population. Accordingly, the null hypothesis of the Mann-Whitney test is 𝐻 : Pr(𝑋 < 𝑌) = 0.5. 

Thus, the Mann-Whitney U statistic is the equivalent of the two-alternative forced choice task and 

the AUC, as all of them test whether two populations are different from one another. 

 We can express the area under the ROC curve as follows. When test results X and Y are 

assumed to be independent and normally distributed, with 𝑋~𝑁(𝜇 , 𝜎 ) and 𝑌~𝑁(𝜇 , 𝜎 ), then 

Pr(𝑋 < 𝑌) = Pr(𝑌 − 𝑋 > 0) 

= Pr
(𝑌 − 𝑋) − (𝜇 − 𝜇 )

𝜎 + 𝜎
>

−(𝜇 − 𝜇 )

𝜎 + 𝜎
 

= Pr 𝑍 >
−(𝜇 − 𝜇 )

𝜎 + 𝜎
 

= Pr 𝑍 <
𝜇 − 𝜇

𝜎 + 𝜎
 

= Φ
𝜇 − 𝜇

𝜎 + 𝜎
 . (1.1) 

The above definition can be extended to handle ties as  

θ = Pr(𝑋 < 𝑌) + 0.5 Pr(𝑋 = 𝑌) .
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1.3 Sample size estimation 

Assessment of diagnostic tests or indices are important before applying them to practice. When 

evaluating new tests, it is vital to determine if a test's accuracy is adequate through a study 

regarding its AUC.  

To design a research study evaluating test accuracy, three main factors need to be 

considered. First, the desired accuracy that is to be detected through the study needs to be 

determined. Next, determining a sample size is important. Larger sample sizes allow for the desired 

accuracy to be detected more easily, however, studies may have financial and time constraints so 

a large sample size may not always be plausible. The sample size also cannot be too small, as that 

may cause the desired accuracy to be difficult to detect. Finally, a level of power needs to be 

specified to ensure that the desired accuracy can be detected with a certain level of precision. Given 

any two of these factors, the third factor can easily be determined using a sample size formula. 

To design a study focusing on estimation rather than hypothesis testing, the common 

approach is to base sample size on expected confidence interval width. A confidence interval is a 

range of values likely to contain the true value of an unknown parameter with a certain confidence. 

Confidence intervals can also display the result of a hypothesis test by including or excluding the 

null value within the interval, and the width of a confidence interval is determined by a degree of 

confidence and the variance of the estimate. Since the variance is affected by the sample size, it is 

clear that confidence intervals are related to the sample size of a study group. 

The required sample size can actually be determined using the anticipated confidence 

interval width, along with a fixed percentage of confidence (Gordon, 1987). This is because sample 

size is closely related to confidence intervals, where greater sample sizes may be associated with 

smaller variances and narrower confidence intervals. However, if the expected width and 
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discriminatory power of the confidence interval are not simultaneously considered, then this 

method may underestimate the sample size (Greenland, 1988). Suppose a researcher would like to 

estimate the required sample size for a study to guarantee that if the true standard mortality ratio 

is 1, the expected upper confidence limit of a 95 percent confidence interval would be 1.2, and if 

the true standard mortality ratio is 0.7, there would be an expected upper confidence limit of 1 

(Gordon, 1987). To distinguish between two values of a parameter such as in this example where 

one of the two values is correct, typically, there is only a 50 percent chance in achieving the desired 

confidence interval width as there is an equal probability that "the observed interval will exclude 

the incorrect one of two parameter values if the other of the two values is correct" (Greenland, 

1988). In other words, if the true mortality ratio is 0.7, there would only be a 50 percent chance 

that the confidence interval excludes the incorrect value of 1, and if the true mortality ratio is 1, 

there is a 50 percent chance its confidence interval excludes 0.7. In order to increase this chance, 

we need to consider the probability of discriminating between these two values. This is actually 

equivalent to hypothesis testing: the power of a one-sided hypothesis test is equivalent to the 

probability that the confidence interval excludes the incorrect value. Therefore, we want to 

calculate a sample size such that there is a certain percent discriminatory power at a specific 

confidence level. 

Thus, both interval width and discriminatory power need to be considered, and this is 

similar to the consideration of significance and test power in hypothesis testing. We define the 

assurance probability as the probability of achieving a prespecified criteria of a confidence 

interval, be it the lower bound or the width of it. This assurance probability is like the power in 

hypothesis testing and is also denoted by 1 − 𝛽. In order to ensure that sample sizes are not 
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underestimated, a prespecified assurance probability can be incorporated into sample size 

formulas.  

 

1.4 Confidence intervals for AUC 

The Wald confidence interval is the simplest and most commonly used confidence interval. It is 

symmetrical around the estimate and based on the variance of the estimate. For a two-sided 

confidence interval for the AUC, at the α significance level, we have: 
 

𝜃 ± 𝑍 / 𝑣𝑎𝑟 𝜃       (1.2) 

where 𝜃 is the estimator of the AUC. 

 For a one-sided confidence interval above or below the estimate at the α level, we have 

𝜃 + 𝑍 𝑣𝑎𝑟 𝜃  

𝜃 − 𝑍 𝑣𝑎𝑟 𝜃  

where Zα is the critical value corresponding to the desired α level. 

There are many other types of confidence intervals, and they have different usages as well. 

For example, the Wilson's score confidence interval is commonly used for binomial proportions. 

In this thesis, we will use the Wald confidence interval when constructing confidence intervals for 

the AUC. 

 

1.5 Variance of AUC 

In order to construct confidence intervals for the AUC, we require the variance of its estimator. 

There are several different methods of estimating the variance and each method has its own 
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features which are explained in more depth in the Literature Review chapter. Some of the formulas 

may require actual data first, which would not be suitable for usage in planning studies. Thus, in 

this thesis, we focus on three main variance estimators that have components that can be easily 

determined during the planning stage. 
 
The three variance estimators we consider are based on the exponential model by Hanley 

and McNeil (1982), the binormal model by Obuchowski (1994), and the probit model by Rosner 

and Glynn (2009). These methods are parametric, and we chose these variance estimators because 

they are functions of the anticipated value of the AUC and do not require the observed data, which 

would work well for planning studies. The variance estimator from the exponential model is based 

on the anticipated area under the curve and size ratio between typical and atypical groups and uses 

the same probabilities as in the Mann Whitney U test. The variance estimator from the binormal 

model is based on the anticipated area under the curve and the standard deviation ratio between 

the typical and atypical groups. The variance estimator from the probit model uses the probit 

transformation and the assumption that shifting the distribution of the typical group by a certain 

value can allow us to obtain the distribution of the atypical group. 

 

1.6 Objective of thesis 

When evaluating new tests, studies involving the AUC of the test must be conducted to determine 

whether the accuracy of the test is adequate. In order to plan these studies, a sufficient sample size 

is required. However, conventional sample sizes are determined using confidence interval based 

methods which tend to underestimate the required sample size as they do not consider the 

probability of achieving a prespecified criteria of a confidence interval, whether it is the lower 

bound or width. A way of ensuring that sample sizes are not underestimated would be to consider 

this probability, which we call the assurance probability.  
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In this thesis, we want to determine new sample size formulas that incorporate this 

assurance probability so that sample sizes are not underestimated. Then we proceed to evaluate the 

performance of them by comparing the empirical assurance probability to a prespecified assurance 

probability. We start by deriving asymptotic sample size formulas that incorporate a prespecified 

assurance probability of achieving a desired confidence interval lower bound or width. These 

sample size formulas are derived using three different variance estimators for AUC and then a 

simulation study is conducted to evaluate the performance of the proposed sample size formulas. 

The empirical assurance probability is defined as the frequency of the lower bound of a confidence 

interval around the estimated AUC being no lower than a preset lower limit, or the half-width of a 

confidence interval around the estimated AUC being no wider than a preset width. We then 

evaluate the performance of the proposed sample size formulas by comparing the empirical 

assurance probability to the prespecified assurance, where the closer the two values are, the better 

the performance. We follow up with a third method based on pilot data by Wieand et al. (1989), 

where the AUC and variances of the pilot dataset are first determined and then used in a new 

sample size formula to estimate sample size. The performance of this proposed method is also 

evaluated by comparing the empirical assurance probability to the prespecified assurance.  

 

1.7 Organization of thesis 

Chapter 2 reviews existing literature regarding the definitions of ROC and AUC, methods of 

estimating the variance of AUC, and confidence interval based methods of estimating sample size. 

Chapter 3 presents details about the three methods for estimating the variance of AUC, shows 

derivations of sample size formulas based on large sample theory, and then introduces the delta 

method and logit transformation. The simulation study evaluating the sample size formulas is 
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described in Chapter 4. Illustration of the sample size formula applied to existing data is shown in 

Chapter 5, and finally, the discussion concludes the thesis in Chapter 6. 
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Chapter 2 Literature Review 

 

 

2.1 History of ROC curve 

The receiver operating characteristic curve originated from World War II, where it was used as a 

way to display the accuracy of distinguishing signals from noise signals. It was believed that the 

ideal was to identify as many signals as possible, however it was soon realized that such a 

conservative approach in decision making also came with an increase in false positives. Thus, the 

ROC curve became a tool that displayed the false positive rate against the true positive rate, helping 

to find a trade-off between false positives and false negatives. Later the ROC curve became 

commonly used in psychophysics, where it displayed one’s ability to distinguish various sensory 

stimuli such as physical and auditory stimuli. It is now commonly used to present the accuracy of 

diagnostic tools in the medical field. 

In psychophysics, the ROC curve was used to express the result of the two-alternative 

forced choice test. This test was employed on participants and its purpose was to measure one’s 

ability to detect whether a signal appeared or not when presented in the presence of noise. Green 

and Swets (1966) showed that the probability of correctly responding in this test is equivalent to 

the area under the ROC curve. It was shown that in these experiments, the stimulus and noise are 

unchanging while the only change that occurs is in the instructions, which may cause the 

observer’s behaviour to change. The behaviour of the observer may be more or less conservative 

based on the goal that is instructed—if the observer is rewarded for all their correct ‘yes’ responses 

then they might increase their hit rate, but also increase their false positive rate. If the observer is 

rewarded for correctly identifying ‘yes’ and ‘no’ responses, then they may decrease their hits and 
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be more conservative when answering. These changes in behaviour correspond to various 

thresholds of true and false positive rates. When the resulting hits and misses are plotted, an ROC 

curve is formed (Green & Swets, 1966). 

The rating task was also able to create ROC curves similarly to the two-alternative forced 

choice test. This task was used in medical imaging where images from patients with and without 

a condition would be presented to a rater who would then rate the images on a five-point scale 

from ‘very normal’ to ‘very abnormal’ (Hanley & McNeil, 1982). The images would be presented 

in typical-atypical pairs and the goal of this task was to correctly classify the two populations by 

rating the atypical image as more atypical than the typical image each time. The probability of 

correctly rating the images in this task was found to be equivalent to the area under the ROC curve 

as this probability is the same as the probability of correctly identifying a signal in the two-

alternative forced choice task.  

Green and Moses (1966) also conducted a recognition memory test as a variation of the 

rating task, where participants were given a list of material to memorize, and later given another 

list with a mix of old and new items. The participants were then asked to rate the items on the new 

list based on how confident they were about whether each item had been on the old list, on a six-

point scale from +3 (very certain it was on the old list) to -3 (very certain it was not on the old 

list). Since the probability of correctly rating each item is fundamentally about being able to 

distinguish between the old and new items, Green and Moses (1966) verified that this probability 

is equivalent to the area under the ROC curve. 
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2.2  AUC and Mann-Whitney statistic 

Bamber (1975) noted that the area under the ROC curve is similar to the area above the ordinal 

dominance (OD) graph. The OD graph plots the probability of random variable X being equal to 

or less than a constant c on the x-axis, and on the y-axis is the probability of random variable Y 

being equal to or less than c (−∞ < 𝑐 < +∞). Like the ROC curve, the OD graph ranges from 0 

to 1 on both axes. If X and Y are continuous then the area 𝐴(𝑋, 𝑌)  above the OD graph can be 

defined as:  

𝐴(𝑋, 𝑌) =  𝑃(𝑋 ≤ 𝑐) 𝑑𝑃 (𝑌 ≤ 𝑐) 

= 𝑃(𝑋 ≤ 𝑐) 𝑓 (𝑐) 𝑑𝑐 

= 𝑃(𝑋 ≤ 𝑌) 

where 𝑓  is the probability density function of Y. The first integration from 0 to 1 is over the 

probability of 𝑌 ≤ 𝑐, which is on the Y-axis of the OD graph. The second integration is over the 

constant 𝑐 for all values of 𝑐 (−∞ < 𝑐 < +∞), which is the OD curve that bounds the other side 

of this area.   

It was shown that since the area above the OD graph is equivalent to the probability that X 

is less than or equal to Y, this area can be used as a measure of the probability of discriminating 

between two populations, such as a population with a condition and a population without a 

condition. Since the signal detection task is also used to discriminate between two items—a signal 

and a noise—the probabilities in these two tasks should be the same, and thus the area under the 

ROC curve should be equivalent to the area above the OD graph (Bamber, 1975). 

Bamber then related the probability of correctly ranking the typical-atypical paired images 

to the Mann-Whitney test statistic. The Mann-Whitney test was proposed in 1947 based on the test 
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by Wilcoxon (1945). The method is commonly known as the Wilcoxon Mann-Whitney test today, 

as both the Wilcoxon test and the Mann-Whitney test are non-parametric for two group 

comparisons that test the null hypothesis that two distributions are the same (Mann & Whitney, 

1947; Wilcoxon, 1945). However, the explicit methods for calculating the Wilcoxon statistic and 

the Mann-Whitney statistic are slightly different. Additionally, Wilcoxon also proposed a signed-

rank test for correlated samples in the same paper (Wilcoxon, 1945). 

The null hypothesis of the Wilcoxon-Mann Whitney test is 

𝐻 : Pr(𝑋 > 𝑌) = Pr(𝑋 < 𝑌) = 0.5 

where X and Y are two random variables that are independent and continuous. The Mann-Whitney 

U test then tests if the probability that a randomly chosen value from X will be greater than a 

randomly chosen value from Y is different from the probability that a randomly chosen value from 

X will be smaller than a randomly chosen value from Y (Mann & Whitney, 1947). The test statistic 

U is calculated using ranks, where all the values of X and Y must be arranged in order and then the 

number of times a Y value comes before an X value for each population is counted as 

𝑈 = 𝑚𝑛 +  
𝑚(𝑚 + 1)

2
− 𝑅  

𝑈 = 𝑚𝑛 +  
𝑛(𝑛 + 1)

2
− 𝑅  (2.1) 

where 𝑈  and 𝑈  are the Mann Whitney U statistics for the atypical and typical populations 

respectively, n is the number of X samples, m is the number of Y samples, and R1 and R2 are the 

sums of the ranks of X and Y values, respectively. The smaller value of 𝑈  and 𝑈  is compared 

against a critical value corresponding to a certain level of significance and sample size. If this U 

is larger than the critical value the null hypothesis would be supported, and if U is smaller than the 

critical value then the null hypothesis would be rejected. 
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Since the Mann-Whitney test is for distinguishing between two populations, Bamber 

(1975) noticed that the image rating task must be closely related to it. The rating task is ultimately 

about being able to distinguish that one population is higher ranked (more likely to have a disease) 

than the other, and thus, the probability of distinguishing between two images should be the same 

as what the Mann-Whitney statistic measures (Bamber, 1975).  

Hanley and McNeil (1982) expanded on this connection and added in the equivalence of a 

third factor. A connection was shown between the AUC representing the probability of correctly 

ranking a typical-atypical pair of images, and the Wilcoxon statistic also measuring this 

probability. This was clear as the explicit method of calculating the Wilcoxon statistic already 

makes the same comparisons as the experimental tasks. The Wilcoxon statistic is formed by 

comparing each possible combination of X-Y pairs and scoring them based on how their values 

compare: 

 

𝑆(𝑋, 𝑌) =  

1       𝑖𝑓 𝑋 > 𝑌
1/2  𝑖𝑓 𝑋 = 𝑌
0      𝑖𝑓 𝑋 < 𝑌

 

where S is the score. Then these values are averaged to receive the Wilcoxon statistic W 

𝑊 =  
1

𝑛𝑚
𝑆 𝑋 , 𝑌  (2.2) 

where n and m are the number of people in the atypical and typical populations respectively, and 

𝑋  and 𝑌  are the test scores of the atypical and typical populations, respectively. W is the proportion 

of how frequent the values from X are greater than values from Y, and is ranged between 0 and 1. 

Thus, Hanley and McNeil (1982) showed that the Wilcoxon statistic is equivalent to both the area 

under the curve and the image rating task, giving us the AUC formula that is commonly used today 

𝜃 =
𝑈

𝑛𝑚
 . 
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2.3 Variance of AUC 

There are several methods to calculate the variance of an AUC estimator. Bamber (1975) not only 

related the AUC to the OD graph and to the Mann-Whitney statistic but also derived a variance 

formula for the AUC. This variance formula is based on the formula by Noether (1967), which 

does not assume that patient scores X and Y are continuous. Two elements of the formula, 𝐵  

and 𝐵  must be estimated: 𝐵  is the probability that two randomly chosen values from the Y 

distribution would be both greater than or less than a randomly chosen value from the X 

distribution, minus the probability that the value from X is in between the two values from Y. 𝐵  

is defined similarly but with two values from the X distribution, and one from the Y distribution.  

In addition to the discovery of the three-way equivalence, Hanley and McNeil (1982) 

illustrated that the variance of the AUC would be an important factor in making comparisons of 

independent AUCs. Thus, a variance estimate of the AUC was developed based on the negative 

exponential distribution. 

Hanley and McNeil (1983) also extended the previous result to include a different situation: 

comparing multiple AUCs generated from the same patient. Since these AUCs would be 

correlated, the standard error of the difference between two AUCs cannot be calculated by a 

summation of their individual standard errors. A formula for the correlation between AUCs was 

developed based on the average correlation between ratings of typical and atypical groups and the 

average AUCs. The standard error of the difference between correlated AUCs was then derived 

using this correlation, and its performance was evaluated through an experiment using phantoms. 

This formula performed well when the data was continuous and Gaussian distributed. 

DeLong et al. (1988) developed a nonparametric method for comparing the areas under 

correlated ROC curves. This nonparametric method incorporated the method of structural 
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components by Sen (1960) to estimate a covariance matrix of U-statistics and used this to develop 

a statistical test that is asymptotically chi-squared distributed. The validity of the nonparametric 

method rests on the asymptotic normality established by Hoeffding (1948) and the consistency of 

variance-covariance estimators proved by Sen (1960). This nonparametric method has become 

widely used for comparing ROC curves and is implemented in common software such as SAS.  

Obuchowski (1994) evaluated the variance estimator based on the exponential distribution 

by Hanley and McNeil (1982) and investigated how this variance may be affected by extreme 

standard deviation ratios between typical and atypical patient groups. The exponential model was 

tested for standard deviation ratios more extreme than 1:0.71, as well as different numbers of rating 

categories. The results revealed that the variance estimated from the exponential model was not 

conservative when the standard deviation ratio is very small. 

Obuchowski (1994) proposed another method for calculating the variance of AUC that 

yielded more conservative results than the exponential model. The proposed method used a two-

parameter binormal distribution that considers both the anticipated area under the curve as well as 

the standard deviation ratio between study groups. The results of this method tended to be close to 

the empirical variances but were conservative when the standard deviation ratio is 1, meaning that 

the standard deviations of typical and atypical patient groups are the same. As the standard 

deviation ratio decreases (more variability in the atypical group compared to the typical group), 

the variance obtained from the binormal model would underestimate the empirical variance. 

Rosner and Glynn (2009) derived a new variance formula for the AUC using the probit 

transformation. First the Wilcoxon-Mann Whitney U test was compared to the shift model 

alternative hypothesis described by Lehmann (1956), which defines the null and alternative 

hypotheses of comparing two tests as: 
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𝐻 : 𝐹 = 𝐹  

𝐻 : 𝐹 (𝑦) = 𝐹 (𝑦 − Δ) 

for all 𝑥, where X and Y are scores of patients from continuous distributions 𝐹  and 𝐹 . This implies 

that the distribution 𝐹  can be obtained by altering 𝐹  by the amount Δ (Lehmann, 1956). Rosner 

and Glynn (2009) evaluated the asymptotic relative efficiency (ARE) of both of those methods 

and then developed a different type of shift alternative for estimation of the Wilcoxon-Mann 

Whitney U test when sample sizes are small. This new shift alternative uses the probit 

transformation: 

𝐻 : 𝐻 = 𝐻 = 𝐻  

𝐻 : 𝐻 = 𝐻 + 𝜇 

where 𝑌  is a counterfactual variable where a study group receives a control treatment,  𝐻 =

Φ (𝐹 ) where 𝐻  is the probit corresponding to X and Φ is the cumulative distribution function 

(cdf) of a standard normal distribution. An explicit expression for the power of the Wilcoxon-

Mann Whitney U test under this shift alternative was developed, as well as its variance estimate.  

 

2.4 Sample size estimation based on confidence intervals 

Traditionally, the required sample size can be estimated based on confidence intervals when 

planning a study. However, Greenland (1988) pointed out that using confidence intervals would 

often lead to an underestimation of the sample size. This is because the probability of achieving 

the desired confidence interval is not considered. Suppose one intends to construct a confidence 

interval with an upper bound below a prespecified upper limit. This confidence interval would be 

centered around an expected value, but its width is not considered which means there is only a 50 

percent chance of the interval's upper bound excluding that prespecified upper limit. If a study 
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incorporated an 80 percent assurance probability, the constructed confidence interval would have 

an 80 percent chance at excluding the prespecified value. A sample size would be considered 

adequate if its observed confidence interval excludes the prespecified value (Greenland, 1988). 

Kupper and Hafner (1989) also evaluated popular sample size formulas based on large sample 

theory and found that these formulas would often underestimate the sample size in small sample 

situations. 

Although confidence interval based methods tend to underestimate the required sample 

size, Daly (1991) showed that confidence interval based methods could still be used if they are 

interpreted differently. Since there is a relationship between significant tests and confidence 

intervals, the power of a significance test should be translated to the probability of achieving a 

desired confidence interval given that it excludes the null value. This would ensure that sample 

sizes are not underestimated. 

Zou (2012) improved the idea of considering confidence interval widths when calculating 

sample size estimations by deriving sample size formulas that directly incorporated a prespecified 

probability of achieving the desired confidence interval width or lower bound. These formulas 

were utilized to attain a large enough sample size for studies involving the intraclass correlation 

coefficient (ICC). The prespecified assurance probability was paired with a prespecified 

confidence interval width or lower bound, and simulation studies were conducted to evaluate the 

performance of the sample size formulas.  
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Chapter 3 Methods 

 

 

3.1 Introduction 

When planning studies for estimating the area under the characteristic operating curve (AUC), 

using traditional confidence interval based methods to estimate a required sample size often leads 

to inadequate sample sizes. This is because the methods only consider the expected interval width 

without incorporating the probability of actually achieving that width (Daly, 1991). Thus, there is 

only a 50 percent chance of the expected confidence interval excluding a prespecified value that 

is to be excluded (Greenland, 1988). The underestimated sample size may lead to studies being 

unable to reach study objectives. Therefore, in order to plan studies with sufficient sample sizes, 

the probability of achieving the desired confidence interval (assurance probability) must be 

considered.  

In this section, we incorporate the assurance probability into sample size formulas to 

address two research questions—what is the required sample size if we want a confidence interval's 

lower bound to be above a certain preset lower limit? And what is the required sample size if we 

want a confidence interval's width to be narrower than a certain preset width? We also introduce 

the three variance estimators which are needed to form confidence intervals around the AUC. 
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3.2 Existing variance formulas 

Several variance formulas for the AUC have been proposed in the literature for the purpose of 

sample size estimation. However, these methods are mostly concerning hypothesis testing and 

comparisons of multiple AUCs. Hanley and McNeil (1982) proposed a variance estimator based 

on the exponential distribution and calculated required sample sizes for detecting differences 

between various pairs of AUCs. Based on the bivariate normal distribution, Obuchowski (1994) 

derived a variance estimator that is more conservative than the exponential based variance.  Lastly, 

the variance estimator based on the probit transformation by Rosner and Glynn (2009) gives an 

explicit expression for the shift alternative variance of AUC.  

 

3.2.1 The variance estimator based on the exponential distribution 

After the discovery of three-way equivalence between the forced choice task, rating experiments, 

and the Wilcoxon Mann-Whitney U test by Hanley and McNeil (1982), the importance of the area 

under the curve became apparent and a formula for calculating its variance was developed. The 

method by Hanley and McNeil (1982) assumes test data follow a negative exponential distribution, 

and this method was shown to provide more conservative variance estimates than the method based 

on the Gaussian distribution. This formula was purely based on the anticipated area under the curve 

𝜃, and is shown as: 

var 𝜃 =
𝜃(1 − 𝜃) + (𝑛 − 1)(𝑄 − 𝜃 ) + (𝑚 − 1)(𝑄 − 𝜃 )

𝑚𝑛
(3.1) 

where 

𝑄 =
𝜃

2 − 𝜃
 

𝑄 =
2𝜃

1 + 𝜃
 . 
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𝑄  and 𝑄  are similar to the terms used in the variance formula by Bamber (1975): 𝑄  is the 

probability that two randomly chosen values from the atypical population will be ranked higher 

than a random chosen value from the typical population, 𝑃 𝑋 < 𝑌  and 𝑋 < 𝑌 . 𝑄  is the 

probability that one randomly chosen value from the atypical population will be ranked higher 

than two randomly chosen values from the typical population, 𝑃 𝑋 < 𝑌  and 𝑋 < 𝑌 . 

As we can see, this variance formula only requires the anticipated area under the curve θ, 

the number of patients with the condition n, and the number of patients without the condition m. It 

is not based on observed data which makes this method useful when planning studies or when 

there is not much information about the data and only an anticipated area under the curve is known.  

We simplified all the variance formulas first in order to derive the sample size formula in 

the next section, as the derivation requires the variance formula to have an N term factored out. 

We started by expanding the original formula 

var(𝜃) =  
1

𝑛𝑚
[𝜃(1 − 𝜃) + (𝑛 − 1)(𝑄 − 𝜃 ) + (𝑚 − 1)(𝑄 − 𝜃 )] 

=  
1

𝑛𝑚
[𝜃(1 − 𝜃) + 𝑛(𝑄 − 𝜃 ) + 𝑚(𝑄 − 𝜃 ) − (𝑄 + 𝑄 − 2𝜃 )] . 

Then we make use of the relationships between total sample size N and the individual group sizes 

n and m, as well as the relationship between group sizes 𝑚 = 𝑟𝑛 to give us 

𝑛 =
1

1 + 𝑟
𝑁 

𝑚 =
𝑟

1 + 𝑟
𝑁 . 

Substituting these into the variance formula gives us 

 

var 𝜃 =
(1 + 𝑟)

𝑟𝑁

𝑄

𝑟
+ 𝑄 − 𝜃

1

𝑟
+ 1  . 
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Substituting in 𝑄  and 𝑄  and cancelling out the N term gives us the variance component that we 

will use in the next section. Let us call this 𝑓(𝜃) 

𝑓(𝜃) = (1 + r)
𝜃

𝑟(2 − 𝜃)
+

2𝜃

1 + 𝜃
− 𝜃

1

𝑟
+ 1  . 

 

3.2.2 The variance estimator based on the bivariate normal distribution  

Obuchowski (1994) wanted to improve on the exponential model of variance as it had not been 

evaluated on typical to atypical group standard deviation ratios (B) more extreme than 1:0.71. A 

new estimate of variance was developed based on normal data where data of typical subjects are 

normally distributed and have mean 𝜇  and variance 𝜎 , and data of atypical subjects follow a 

normal distribution with mean 𝜇  and variance 𝜎 . Using the fact that  

𝜃 = Φ
𝜇 − 𝜇

𝜎 + 𝜎
 

Obuchowski applied the delta method to derive the variance for 𝜃. This binormal based variance 

estimate was developed on the basis of considering the standard deviation ratio between study 

groups B, as well as the anticipated area under the curve.  

The formula for calculating the variance estimate based on the binormal model is 

var 𝜃 =  (2𝜋)  𝑒  
𝑉

𝑊
+ (𝐴𝐵)

𝑉

𝑊
(3.2) 

where 
 

𝐴 = (1 + 𝐵 ) Φ (𝜃)  

𝐵 =
𝜎

𝜎
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𝑊 = 1 + 𝐵      

𝑉 =  
1

𝑛
+

𝐵

𝑚
+

𝐴

2𝑛
 

𝑉 =
𝐵

2

1

𝑛
+

1

𝑚
 . 

The binormal based variance formula was also simplified similarly, substituting in  

𝑛 =
1

1 + 𝑟
𝑁 

𝑚 =
𝑟

1 + 𝑟
𝑁 

and factoring out and cancelling the N term to get the variance component that will be used for 

sample size calculation in the next section. Again, let us call this 𝑓(𝜃) 

𝑓(𝜃) = (1 + 𝑟)
1

2𝜋
𝑒

𝑉

𝑊
+ (𝐴𝐵)

𝑉

𝑊
 

where the individual terms are the same except 

𝑉 =  1 +
𝐵

𝑟
+

𝐴

2
 

𝑉 =
𝐵

2
1 +

1

𝑟
 . 

 

3.2.3 The variance estimator based on the probit transformation 

Rosner and Glynn (2009) developed a method for calculating the variance of the AUC which was 

based on Lehmann’s (1975) shift alternative but uses the probit transformation. This is a location 

shift of distributions for typical and atypical subjects, which is rank preserving. By using the 

property that the transformed values are normal, Rosner and Glynn showed that  

𝑃 𝑋 < 𝑌  and 𝑋 < 𝑌  
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= 𝑃 𝑋 < 𝑌  and 𝑋 < 𝑌  

= Φ Φ (𝜃), Φ (𝜃),
1

2
 

where Φ is the cdf of a standard normal distribution, and Φ  is a two-dimensional normal cdf given 

by: 

Φ (𝑐 , 𝑐 , 𝜌) = Pr 𝑍 ≤ 𝑐  and 𝑍 ≤  𝑐 |(𝑍 , 𝑍 )~ 𝑁
0
0

,
1 𝜌
𝜌 1

 

and where 𝑃 𝑋 < 𝑌  and 𝑋 < 𝑌  is the probability that two randomly chosen values from the 

atypical population will be ranked higher than a random chosen value from the typical population, 

and 𝑃 𝑋 < 𝑌  and 𝑋 < 𝑌  is the probability that one randomly chosen value from the atypical 

population will be ranked higher than two randomly chosen values from the typical population.  

The variance formula based on the probit transformation was derived by 

var 𝜃 =
𝜃(1 − 𝜃) + (𝑚 + 𝑛 − 2) Φ Φ (𝜃), Φ (𝜃),

1
2

− 𝜃

𝑚𝑛
 . (3.3) 

We also simplified this variance formula by substituting in  

𝑛 =
1

1 + 𝑟
𝑁 

𝑚 =
𝑟

1 + 𝑟
𝑁 

to give us 

  

var 𝜃 =
1

𝑟𝑁
1 + 𝑟

𝑁
1 + 𝑟

𝜃(1 + 𝜃) +
𝑟𝑁

1 + 𝑟
+

𝑁

1 + 𝑟
− 2 Φ Φ (𝜃), Φ (𝜃),

1

2
. 

Then after factoring out and cancelling the N term, we get the final form 𝑓(𝜃): 

𝑓(𝜃) =  
(𝑟 + 1)

𝑟
Φ Φ (𝜃), Φ (𝜃),

1

2
− 𝜃  . 
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3.3 Delta method for logit transformation 

In this thesis, we used the Wald confidence interval. Since the calculation of the Wald interval is 

formed using the AUC estimate and the variance of the AUC estimate, it is possible to get a range 

that lands outside the domain of our variable. In this case, we did not want a confidence interval 

for the AUC to be less than 0 or greater than 1 because it is not possible for the AUC to be outside 

of that domain, as it is a probability measure. Hence, we used the logit transformation to construct 

confidence intervals as the sampling distribution for the logit transformed estimate approaches 

normality faster than on the raw scale. Then it can be transformed back onto the probability scale. 

Since the logit transformation is monotonic, probabilities are preserved. By doing this, we can 

ensure that the confidence interval we get is not outside the desired range of (0,1). 

To approximate the asymptotic distributions of the logit transformed variables, the use of 

the delta method is required. The delta method is a way of finding asymptotic variances based on 

the Taylor series and is often used to approximate means and variances. 
  
Suppose 𝑔 is a function that has a derivative 𝑔′. Then for random variable X with mean µ, 

we can approximate the function 𝑔(𝑋) at 𝜇 using the first order Taylor series expansion: 

 
𝑔(𝑋) = 𝑔(𝜇) + 𝑔 (𝜇)(𝑋 − 𝜇)     

then 𝑔(𝑋) asymptotically follows the normal distribution with the mean and variance  

𝐸[𝑔(𝑋)] = 𝑔(𝜇)      

var[𝑔(𝑋)] = 𝑔ඁ(𝜇) var(𝑋) .    

The delta method was used to apply the logit transformation to the variances calculated 

using each of the three methods. Using the variance of the AUC estimate, var(𝜃), calculated using 

each respective method, the variance of the logit transformed AUC can be obtained with:  
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𝑔(𝜃) =  ln
𝜃

1 − 𝜃
  

𝑔ඁ(𝜃) = −
1

𝜃(1 − 𝜃)
 

var ln
𝜃

1 − 𝜃
=

var(𝜃)

𝜃 (1 − 𝜃)
 . 

Based on the above, a typical logit transformed Wald confidence interval would be constructed as 

such 

ln
𝜃

1 − 𝜃
− 𝑍 /

var(𝜃)

𝜃 1 − 𝜃
, ln

𝜃

1 − 𝜃
+ 𝑍 /

var(𝜃)

𝜃 1 − 𝜃
 . 

Then substituting in the variance forms that are used in this thesis, we get the confidence interval  

⎝

⎛ln
𝜃

1 − 𝜃
− 𝑍 /

𝑓 𝜃

𝜃 1 − 𝜃 √𝑁
, ln

𝜃

1 − 𝜃
+ 𝑍 /

𝑓 𝜃

𝜃 1 − 𝜃 √𝑁
⎠

⎞ 

where the variance of the AUC estimator is estimated by 

𝑓(𝜃)

𝑁
 . 

To transform the interval back onto the raw scale, the back logit transformation 

exp(𝑥)

1 + exp (𝑥)
 

is applied to the lower and upper bounds. After performing this transformation, the confidence 

interval for the AUC is obtained as 
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⎝

⎜
⎜
⎜
⎜
⎜
⎛ exp

⎝

⎛ln
𝜃

1 − 𝜃
− 𝑍 /

𝑓 𝜃

𝜃 1 − 𝜃 √𝑁
⎠

⎞

1 + exp

⎝

⎛ln
𝜃

1 − 𝜃
− 𝑍 /

𝑓 𝜃

𝜃 1 − 𝜃 √𝑁
⎠

⎞

,

exp

⎝

⎛ln
𝜃

1 − 𝜃
+ 𝑍 /

𝑓 𝜃

𝜃 1 − 𝜃 √𝑁
⎠

⎞

1 + exp

⎝

⎛ln
𝜃

1 − 𝜃
+ 𝑍 /

𝑓 𝜃

𝜃 1 − 𝜃 √𝑁
⎠

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 . 

The transformed variances and AUCs are used in the simulation study in the Chapter 4. 

 The delta method was also used in deriving the sample size formulas in the next section. 

 

3.4 Sample size estimation 

When planning studies, we need to determine the sample size, the desired effect to be detected, 

and the amount of confidence that the effect will be detected. In order to do this, we will need a 

sample size formula that ties these three factors together. On top of those, we incorporate a 

prespecified assurance probability of achieving a prespecified lower bound and a prespecified 

confidence interval half-width to derive two formulas that would allow us to examine the assurance 

probability in those two conditions in the subsequent sections. Additionally, we perform a logit 

transformation on the AUC estimate and its variance so that the confidence interval around the 

AUC does not exceed the possible range of (0,1).  

 

3.4.1 Sample size formula with a prespecified lower limit 

To derive a sample size formula with a prespecified lower limit based on the logit transformation, 

which we denote by lgt θ, the logit transformation is  

lgt 𝜃 = ln
𝜃

1 − 𝜃
 

we first start with the assurance probability 
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1 − 𝛽 = Pr 𝜃 ≥ 𝜃  

= Pr lgt 𝜃 − 𝑍 / var lgt(𝜃) ≥ lgt 𝜃  

= Pr ln
𝜃

1 − 𝜃
− 𝑍 / var ln

𝜃

1 − 𝜃
≥ ln

𝜃

1 − 𝜃
 

where 𝜃  is the lower bound of the two-sided confidence interval for the AUC, 𝜃  is the 

prespecified lower bound, and 1 − 𝛽 is the prespecified assurance probability. Note that the logit 

transformation is strictly monotonic, so the probabilities are preserved.  

After cancelling out the N terms from the three variance estimators in Section 3.2, we can 

substitute those into our sample size formula derivation. For the variance estimator based on the 

exponential distribution, we have the simplified form 𝑓(𝜃): 

𝑓(𝜃) = (1 + r)
𝜃

𝑟(2 − 𝜃)
+

2𝜃

1 + 𝜃
− 𝜃

1

𝑟
+ 1  . 

If we substitute in 𝑓(𝜃) for the variance in our derivation, we get 

1 − 𝛽 = Pr

⎝

⎛lgt 𝜃 − 𝑍 /

𝑓(𝜃)
𝑁

𝜃(1 − 𝜃)
≥ lgt 𝜃

⎠

⎞ 

= Pr lgt 𝜃 ≥ lgt 𝜃 + 𝑍 /

𝑓(𝜃)

𝜃(1 − 𝜃)√𝑁
 . 

Using the delta method, we can get the mean and variance of lgt 𝜃 

E lgt 𝜃 = lgt 𝜃 

var lgt 𝜃 ≈  (lgt 𝜃)  var 𝜃  

= ln
𝜃

1 − 𝜃

𝑓(𝜃)

𝑁
 



 

   

 

31 

 

=
𝑓(𝜃)

𝜃 (1 − 𝜃) 𝑁
 . 

Then, by the central limit theorem, 

lgt 𝜃~ 𝑁 lgt 𝜃,
 𝑓(𝜃)

𝜃 (1 − 𝜃) 𝑁
 . 

We can substitute this information into the equation to standardize it 

1 − 𝛽 = Pr

⎝

⎜
⎛ lgt 𝜃 − lgt 𝜃

𝑓(𝜃)

𝜃(1 − 𝜃)√𝑁

≥

lgt 𝜃 − lgt 𝜃 + 𝑍 /  
𝑓(𝜃)

𝜃(1 − 𝜃)√𝑁

𝑓(𝜃)

𝜃(1 − 𝜃)√𝑁 ⎠

⎟
⎞

 . 

This gives us the expression for assurance probability: 

𝑍 =

−lgt 𝜃 + lgt 𝜃 − 𝑍 /

𝑓(𝜃)

𝜃(1 − 𝜃)√𝑁

𝑓(𝜃)

𝜃(1 − 𝜃)√𝑁

 

where 𝑍  is the upper 𝛽 quantile of the standard normal distribution. After isolating N, we get the 

sample size formula 

𝑁 =
𝑍 + 𝑍 /

lgt 𝜃 − lgt 𝜃

𝑓(𝜃)

𝜃 (1 − 𝜃)
 . (3.4) 

 

3.4.2 Sample size formula with prespecified interval width 

To derive a sample size formula with a prespecified confidence interval half-width 𝜔 based on the 

logit transformation, we must first find the corresponding half-width for the confidence interval 

on the logit scale, denoted 𝜔∗. We start by letting the prespecified width (2𝜔) be equal to the 

confidence interval width calculated from the back transformation of the confidence interval in the 

logit scale. As we construct the confidence interval in the logit scale as  
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(lgt 𝜃 − 𝜔∗, lgt 𝜃 + 𝜔∗) 

with the inverse logit transformation  

exp(𝑥)

1 + exp (𝑥)
 

then 2𝜔, the total width of the confidence interval for 𝜃 in the original scale is expressed as 

2𝜔 =

𝜃 exp(𝜔∗)
1 − 𝜃

𝜃 exp (𝜔∗)
1 − 𝜃

+ 1
− 

𝜃
(1 − 𝜃) exp(𝜔∗)

𝜃
(1 − 𝜃) exp(𝜔∗)

+ 1
 . 

Solving for 𝜔∗ gives us  

𝜔∗ = ln
2𝜔(1 − 𝜃) + 𝜃

(1 − 2𝜔)𝜃(1 − 𝜃)
+

2𝜔(1 − 𝜃) + 𝜃

(1 − 2𝜔)𝜃(1 − 𝜃)
−

4(2𝜔 + 1)

2𝜔 − 1
− ln 2 . 

We then express the assurance probability in terms of the confidence interval half-width in the 

logit scale with the specified half-width in the logit scale, 𝜔∗ as follows: 

1 − 𝛽 = Pr 𝑍 / var(lgt 𝜃) ≤ 𝜔∗  

and replacing the variance with 𝑓(𝜃), we get 

1 − β = Pr

⎝

⎛𝑍 /

𝑓 𝜃

𝜃 1 − 𝜃 √𝑁
≤ 𝜔∗

⎠

⎞ 

= Pr

⎝

⎛
𝑓 𝜃

𝜃 1 − 𝜃
≤

𝜔∗√𝑁

𝑍 /

⎠

⎞ . 

Then we use the delta method to find the asymptotic distribution of 

𝑓 𝜃

𝜃 1 − 𝜃
 . 
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By the delta method, 

E

⎣
⎢
⎢
⎡ 𝑓 𝜃

𝜃 1 − 𝜃
⎦
⎥
⎥
⎤

=
𝑓(𝜃)

𝜃(1 − 𝜃)
 

var

⎝

⎛
𝑓 𝜃

𝜃 1 − 𝜃
⎠

⎞ ≈  
𝑓(𝜃)

𝜃(1 − 𝜃)
 var θ  

=
𝑓 (𝜃)

2 𝑓(𝜃)𝜃(1 − 𝜃)
−

𝑓(𝜃)(1 − 2𝜃)

𝜃 (1 − 𝜃)

𝑓(𝜃)

√𝑁
 

=
1

2√𝑁

𝑓 (𝜃)

𝜃(1 − 𝜃)
−

2𝑓(𝜃)(1 − 2𝜃)

𝜃 (1 − 𝜃)
 

=
𝑓∗

2√𝑁
 

where 

𝑓∗ =
𝑓 (𝜃)

𝜃(1 − 𝜃)
−

2𝑓(𝜃)(1 − 2𝜃)

𝜃 (1 − 𝜃)
 . 

Thus, by the central limit theorem,  

𝑓 𝜃

𝜃 1 − 𝜃
~N

𝑓(𝜃)

𝜃(1 − 𝜃)
,

𝑓∗

2√𝑁
 . 

Substituting this in, we can continue with the derivation: 

1 − β = Pr

⎝

⎜
⎜
⎜
⎛

𝑓 𝜃

𝜃 1 − 𝜃
−

𝑓(𝜃)

𝜃(1 − 𝜃)

𝑓∗

2√𝑁

≤

𝜔∗√𝑁
𝑍 /

−
𝑓(𝜃)

𝜃(1 − 𝜃)

𝑓∗

2√𝑁

⎠

⎟
⎟
⎟
⎞

 . 

Thus we get for the assurance level formula 
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𝑍 =  

𝜔∗√𝑁
𝑍 /

−
𝑓(𝜃)

𝜃(1 − 𝜃)

𝑓∗

2√𝑁

 . 

And after solving for N, we get the sample size formula 

𝑁 =

⎝

⎜
⎜
⎛

𝑓(𝜃)

𝜃(1 − 𝜃)
+  

𝑓(𝜃)
𝜃 (1 − 𝜃)

+
2𝜔∗𝑍 𝑓∗

𝑍 /

2𝜔∗

𝑍 /

⎠

⎟
⎟
⎞

. (3.5) 

The sample size formula (3.5) can be used with each of the three variance estimators, with 𝑓(𝜃) 

being the respective variance component without the N term, and 𝑓∗ being the expression that 

requires the first derivative of 𝑓(𝜃) with respect to 𝜃, denoted by 𝑓′(𝜃). In what follows, we 

present the first derivative of the variance component derived for each variance estimator.  

The first derivative of the variance estimator based on the exponential model is  

𝑓 (𝜃) = (1 + 𝑟)
𝑄

𝑟
+ 𝑄 − 2𝜃

1

𝑟
+ 1  

where 𝑄  and 𝑄  represent the first derivative with respect to 𝜃 of 𝑄  and 𝑄 , respectively, as 

follows 

𝑄 =
(1 + 𝑄 )

2 − 𝜃
=

2

(2 − 𝜃)
 

𝑄 =
4𝜃 − 𝑄

1 + 𝜃
=

4𝜃 + 2𝜃

(1 + 𝜃)
 . 

The first derivative of the variance estimator based on the binormal model is  

𝑓 (𝜃) =
1 + 𝑟

2𝜋

−2𝐴𝐴

𝑊
exp −

𝐴

𝑊

𝑉

𝑊
+ (𝐴𝐵)

𝑉

𝑊

+
1 + 𝑟

2𝜋
exp −

𝐴

𝑊

𝑉

𝑊
+ 2 𝐴 𝐵 𝐴 

𝑉

𝑊
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where 𝐴  and 𝑉  represent the first derivatives with respect to 𝜃 of 𝐴 and 𝑉 , respectively, and are 

expressed with the standard normal density function 𝜙(𝑥) as follows 

𝐴 =
√1 + 𝐵

𝜙 Φ (𝜃)
 

𝑉 = 𝐴 𝐴 . 

Lastly, the first derivative of the variance estimator based on the probit model is derived as 

𝑓 (𝜃) =
(𝑟 + 1)

𝑟

𝜕

𝜕𝜃
Φ (Φ (𝜃), Φ (𝜃), 0.5) − 2𝜃  . 

Letting 𝑥 = 𝑦 = Φ (𝜃) and using the chain rule, we can obtain 

  𝑓 (𝜃) =
(𝑟 + 1)

𝑟

𝜕Φ (𝑥, 𝑦, 0.5)

𝜕𝑥
 
𝜕𝑥

𝜕𝜃
+

𝜕Φ (𝑥, 𝑦, 0.5)

𝜕𝑦
 
𝜕𝑦

𝜕𝜃
− 2𝜃  

=
(𝑟 + 1)

𝑟
2

𝜕Φ (𝑥, 𝑦, 0.5)

𝜕𝑥
 
𝜕𝑥

𝜕𝜃
− 2𝜃   

=
( )

(2𝐹(Φ (𝜃)|Φ (𝜃)) − 2𝜃) .Here the first derivative of the bivariate normal 

distribution function is obtained as the product of the conditional distribution and the standard 

normal density function as follows 

𝜕Φ (𝑥, 𝑦, 0.5)

𝜕𝑥
= 𝐹(𝑦|𝑥; 0.5) 𝜙(𝑥) 

 

where 𝐹(𝑦|𝑥; 0.5) is the conditional distribution function of 𝑌 given 𝑋 = 𝑥 with 𝑌|𝑋 =

𝑥~𝑁(𝜌𝑥, 1 − 𝜌 ) when 𝑋 and 𝑌 follow a bivariate normal distribution with the distribution 

function Φ (𝑥, 𝑦;  𝜌). 𝜙(𝑥) is the standard normal density function and  

𝜕𝑥

𝜕𝜃
=

𝜕Φ (𝜃)

𝜕𝜃
=

1

𝜙(𝑥)
 . 
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3.4.3 Sample size estimation based on pilot data 

The three variance formulas presented in previous sections are based on parametric assumptions 

and only use summary statistics. We now propose a nonparametric method for estimating the 

sample size based on available pilot data from which we can use to estimate the variance needed 

for sample size estimation. We first describe the method then apply it to the data presented by 

Wieand et al. (1989) involving two biomarkers for detecting pancreatic cancer. This data set 

contains 91 subjects with pancreatic cancer and 50 subjects without the disease.  

 Consider a study with a total of N observations, with m denoting the number of subjects 

without disease and n denoting the number of subjects with disease. Let 𝑋  (𝑖 = 1, 2, . . . , 𝑚) be the 

test results for the sample of m subjects without disease and 𝑌  (𝑗 = 1, 2, . . . , 𝑛) be the test results 

for the sample of n subjects with disease. Recall the area under the receiver operating characteristic 

curve is defined as  

AUC = Pr (𝑋 < 𝑌) 

which can be modified to handle ties as 

AUC = Pr(𝑋 < 𝑌) + 0.5 Pr(𝑋 = 𝑌) . 

We can estimate AUC by considering the placement value for each observation. The 

placement value for an observation 𝑌 , 𝑗 = 1, 2, . . . , 𝑛, is the percentage of 𝑋 , 𝑖 = 1, 2, . . . , 𝑚, 

observations that it exceeds (Hanley & Hajian-Tilaki, 1997; Zou, 2021). In other words, we 

consider the percentile in the sample X that observation 𝑌  takes up. The mean of the placement 

values is the nonparametric estimator for AUC. We can easily compute placement values using 

ranks.    

 The overall rank of a given observation 𝑌  is denoted by 𝑅  in the combined sample of both 

X and Y. One less than the overall rank is the number of times 𝑌  is no less than the rest of the 𝑚 +



 

   

 

37 

 

𝑛 − 1 observations. But the interest here is the number of times 𝑌  is no less than the 𝑚 

observations for subjects without disease. This can be achieved by 𝑅 − 1 where 𝑅  is the rank of 

𝑌  in the sample Y with size n. Finally, the placement value for a single observation 𝑌  is given by  

𝑝 =
(𝑅 − 1) − (𝑅 − 1)

𝑚
=

𝑅 − 𝑅

𝑚
, 𝑗 = 1, 2, … , 𝑛 . 

Similarly, we can obtain the placement values for 𝑋  as 

𝑞 =
𝑅 − 𝑅

𝑛
,         𝑖 = 1,2, … , 𝑚 

where 𝑅  is the rank of 𝑋  in the combined sample of X and Y, and 𝑅  is its rank in the sample of 

X with size m. Note that the mean of 𝑝  is the AUC, and the mean of 𝑞  is 1 − AUC. The variance 

of the AUC estimate can be estimated by  

var 𝜃 =  
var(𝑞 )

𝑚
+

var(𝑝 )

𝑛
 

where  

var(𝑝 ) =  
∑ 𝑝 −  �̅�

𝑛 − 1
 

and  

var(𝑞 ) =  
∑ (𝑞 −  𝑞)

𝑚 − 1
 

where �̅� and 𝑞 are the means of the placement values 𝑝  and 𝑞 , respectively. Note that this variance 

estimator is identical to the one proposed by DeLong et al. (1988). 

If we define 𝑟 =  then we have, 𝑚 = 𝑟𝑛 and 𝑁 = 𝑚 + 𝑛, and thus 

𝑚 =
𝑟

1 + 𝑟
𝑁 

𝑛 =
1

1 + 𝑟
𝑁 . 
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Substituting these into our variance formula gives 

var 𝜃 =  
1

𝑁

1 + 𝑟

𝑟
var(𝑞 ) + 𝑟 var(𝑝 )  . 

Now let 𝑓(𝜃) be the variance without the 1/N term 

𝑓(𝜃) =
1 + 𝑟

𝑟
var(𝑞 ) + 𝑟 var(𝑝 )  . 

To derive the sample size formula with a prespecified lower bound and assurance probability using 

the logit transformation, we first start with the equivalence 

1 − 𝛽 = Pr(lgt 𝜃 ≥ lgt 𝜃 ) 

= Pr lgt 𝜃 − 𝑍 var lgt 𝜃 ≥ lgt 𝜃  

= Pr lgt 𝜃 ≥ lgt 𝜃 + 𝑍
𝑓(𝜃)

√𝑁𝜃(1 − 𝜃)
 . 

After standardizing, we get the formula for assurance probability: 

𝑍 =

−lgt 𝜃 + lgt 𝜃 − 𝑍 /

𝑓(𝜃)

√𝑁𝜃(1 − 𝜃)

𝑓(𝜃)

√𝑁𝜃(1 − 𝜃)

 . 

Solving for N and then substituting 𝑓(𝜃) with the individual variances gives us the total sample 

size formula 

𝑁 =
(𝑟 + 1)

𝑟

𝑍 / + 𝑍

lgt 𝜃 −  lgt 𝜃

𝑟 var 𝑝 + var(𝑞 )

𝜃  (1 − 𝜃)
 . (3.6) 

We only considered the case of estimating sample size with a prespecified lower limit 

because a larger upper bound is always better as this means a test or tool would be more accurate. 

Thus, limiting the upper bound is generally not a concern, so we decided to focus on obtaining a 

sample size estimate with precision when a lower limit is prespecified.  
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Chapter 4 Simulation 

 
 
 
 

The sample size formulas in Chapter 3 were derived based on large sample theory, and in this 

chapter, we evaluated their performance in finite samples via simulation studies. Simulation 

studies allow us to compare the empirical assurance probability of each variance model to a 

prespecified assurance probability. Sample size estimates were first determined using the 

proposed sample size formulas, using either a prespecified lower bound or confidence interval 

half-width. Then data was then generated based on this sample size and the AUC and its 

variance for the generated data were estimated, and confidence intervals were be constructed 

around this AUC estimate. The empirical assurance probability was obtained based on how 

many of those confidence intervals exclude the prespecified lower bound or are narrower than 

the prespecified width. This empirical assurance probability was then compared to the 

prespecified assurance probability of 50, 80, and 90 percent. SAS 9.4 was used to perform the 

simulation study.  

 

4.1 Achieving a prespecified lower limit 

The first part of our simulation study was to evaluate the performance of the proposed sample size 

formula when a prespecified lower bound is incorporated, and when three different variance 

estimators are used. We determined a sample size with prespecified assurance such that the lower 

bound of a confidence interval around the AUC is no less than a certain preset limit.  
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4.1.1 Study design 

To resemble the most realistic scenarios in the real world, we used a ratio of typical patients to 

atypical patients (r) of 0.5 to 2, as there may be more or less atypical patients than typical patients 

depending on where the sample may be acquired. We set true values of AUC (𝜃) in the range of 

0.7 to 0.9 with increments of 0.1, while the required lower limits (𝜃 ) between 0.5 and 0.85. The 

ratio of standard deviations (B) between the typical and atypical groups was set to be 0.5 to 1, 

which is under the assumption that the variability amongst the atypical group may be larger than 

that of the typical group. Lastly, we used a prespecified assurance probability of 0.5, 0.8, and 0.9. 

The empirical assurance probability (EAP) was defined as the number of times the 

lower bound of a 95 percent one-sided confidence interval around AUC estimate 𝜃 would be 

no less than a prespecified lower bound 𝜃 . The empirical coverage percentage was also 

considered and defined as the number of times the true AUC 𝜃 is within the 95 percent 

confidence interval around the estimate 𝜃. In order to be considered as good performance, the 

coverage must be close to 95 percent and the EAPs must be as close to the desired assurance 

probability as possible or greater than it. 

The 50 percent assurance level would be our control group, as this is the amount of 

assurance we would get from a traditional confidence interval based methods. This would mean 

that there is no assurance of achieving the desired confidence interval, only that it is assumed to 

be correct.   
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4.1.2 Data generation 

First, we determined a minimum sample size to generate data. Thus, we took various combinations 

of 𝜃, 𝜃 , r, and B and used each of the three variance formulas to calculate the variance component 

𝑓(𝜃) based on these combinations. They were then used in our sample size formula (Equation 

3.4): 

𝑁 =
𝑍 + 𝑍 /

lgt 𝜃 − lgt 𝜃

𝑓(𝜃)

𝜃 (1 − 𝜃)
 . 

After N was determined using the sample size formulas derived in Chapter 3, we used this sample 

size to generate 10000 data sets. The data in the typical group were generated from a normal 

distribution with a mean of 0 and a variance of 1, while the data in the atypical group were from a 

normal distribution with a mean of 𝜇  and a variance of  .  

The mean and variance of the two groups can be arbitrary because it is their relation to 

each other that creates a ROC curve. Any mean can be used as a starting point as long as the 

AUC that is created from these two populations would be based off of a desired AUC of 𝜃. 

The mean of the atypical group 𝜇  was calculated to achieve the desired AUC of 𝜃 as follows: 

 

Pr(𝑋 < 𝑌) = 𝛷
𝜇 − 𝜇

𝜎 + 𝜎
 

𝜃 = 𝛷

⎝

⎛
𝜇

1
𝐵

+ 1⎠

⎞ 

𝛷 (𝜃) =
𝜇

1
𝐵

+ 1

 

⇒ 𝜇 = 1 +  
1

𝐵
   𝛷 (𝜃) 
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where 𝜇  and 𝜇  are the means of the typical and atypical groups, respectively, and 𝜎  and 𝜎  

are their standard deviations.  

Datasets of size N were generated, and the simulation was run 10000 times for each sample 

size. Afterwards, we estimated the area under the ROC curve 𝜃, and its variance, from the 

generated data using the nonparametric method by DeLong et al. (1988). The nonparametric 

formula for the variance of this AUC is  

var 𝜃 =  
var(𝑞 )

𝑚
+

var(𝑝 )

𝑛
 

where  

var(𝑝 ) =  
∑ 𝑝 −  �̅�

𝑛 − 1
 

var(𝑞 ) =  
∑ 𝑞 −  𝑞

𝑚 − 1
 

similar to the method described in Section 3.3.3. Then logit transformed Wald confidence intervals 

were constructed around the AUC estimate 𝜃 so that the confidence intervals would not be beyond 

the AUC range of (0,1). The lower bound of a logit transformed two-sided 95 percent confidence 

interval is 

 lgt 𝜃 − 𝑍 / var(lgt 𝜃) 

where  

var lgt 𝜃 =
var(𝜃)

𝜃 (1 − 𝜃)
 

by the delta method. 

Finally, the confidence interval was transformed back onto the raw scale in order to be 

compared to the prespecified lower bound, 𝜃 . The empirical assurance probability was calculated 
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as the number of times this lower bound was greater than the prespecified lower bound, 𝜃 . The 

coverage probability was also calculated as the number of times the true AUC value 𝜃 was within 

the 95 percent confidence interval around 𝜃. 

 

4.1.3 Results 

The simulation results for the sample sizes for achieving a prespecified lower limit based 

on three variance formulas are summarized in Tables 4.1a to 4.3c. Tables 4.1a to 4.1c display the 

results of the simulation at the 50 percent assurance level, Tables 4.2a to 4.2c are at the 80 percent 

assurance level, and Tables 4.3a to 4.3c are at the 90 percent assurance level. The first table of 

each assurance level (a) contains results when 𝜃 = 0.9, the second (b) contains results when 𝜃 =

0.8, and the third (c) contains results when 𝜃 = 0.7. The coverage probabilities for all sections are 

very close to 95 percent, indicating that these confident intervals were properly constructed. 

There are a few general trends that can be seen within the sample size and the empirical 

assurance probability. In terms of sample size, it is noticeable that the required sample size tends 

to be larger when the difference between 𝜃 and lower limit 𝜃  is small. For example, this can be 

seen in Table 4.1a, where 𝑁 = 197 when 𝜃 = 0.9 and 𝜃 = 0.85, compared to 𝑁 = 64 when 𝜃 =

0.9 and 𝜃 = 0.8, holding both 𝑟 = 0.5 and 𝐵 = 0.5 constant. This pattern is expected because in 

general, when a clinical difference is larger and easier to detect, the required sample size is smaller.  

Tables 4.1a to 4.3c show that the ratio standard deviations (B) of the typical to atypical 

groups has no effect on the sample sizes based on the exponential model or the probit model. This 

is because the exponential and probit models do not incorporate the standard deviation ratio in 

their respective variance formulas. However, we can see that the standard deviation ratio does 

affect the sample size of the binormal model's variance formula. As the standard deviation ratio B 
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increases, the sample size calculated using the binormal based variance formula tends to increase 

as well. In all of our simulation runs, this sample size turned out to be greatest when B = 1 and 

smallest when B = 0.5. For instance, this can be seen in Table 4.1b when 𝜃 = 0.8, 𝜃 = 0.75, 𝑟 =

0.5 are held constant and B is the only variable changing, the value of N increases from 341 to 395 

to 452 as B increases from 0.5 to 0.75 to 1, respectively.  

The group size ratio r also has an effect on the required sample size. As r increases, the 

minimum sample size N tends to increase for the exponential and binormal variance methods (see 

Tables 4.1a to 4.3c). For example, when 𝜃 = 0.9, 𝜃 = 0.85, B = 0.5, and r = 0.5 (Table 4.2a), the 

N of the exponential based variance starts at 401 but then increases to 461, 545, and 635 as group 

size ratio r increases from 0.5 to 1 to 2. For the variance estimator based on the probit model, the 

sample size is actually smallest when group size ratio 𝑟 = 1 and tends to be greater when r is not 

1. This exception can also be seen in the exponential based variance model only when 𝜃 = 0.7, as 

the sample size calculated using the binormal based variance becomes smallest when 𝑟 = 1 and 

greatest when r is far from 1 (Tables 4.1c, 4.2c, and 4.3c).  

Sample sizes also decrease as the prespecified assurance probability decreases—the 

required sample sizes were smallest for the 50 percent assurance condition (see Tables 4.1a to 

4.1c), and greatest for the 90 percent assurance condition (see Tables 4.3a to 4.3c). This is to be 

expected as a greater sample size is needed for greater precision when conducting studies so that 

a desired outcome can be found with more assurance. The results also show that for the same 

difference of 0.1 between 𝜃 and 𝜃 , the required sample sizes are small when 𝜃 is closer to 1, and 

large when 𝜃 is closer to 0.5. This can be seen in Tables 4.1a and 4.1b where the exponential based 

variance requires sample sizes between 64 to 102 when 𝜃 = 0.9 and 𝜃 = 0.8, but increase to 97 

to 131 when 𝜃 = 0.8 and 𝜃 = 0.7. This pattern matches the findings by Hanley and McNeil 
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(1982) where it was noticed that "a difference of 10% is more easily detected if it is a difference 

between 80% and 90% than if it is a difference between 70% and 80%" (Hanley & McNeil, 1982). 

Although this finding was for comparison of multiple AUCs, we can see that it also applies to a 

single AUC estimation as well. 

In terms of trends in the EAPs, the standard deviation ratio B seems to have an impact on 

the empirical assurance probability for all three variance formulas. As the standard deviation ratio 

increases, the EAP tends to increase as well such that it is greatest when B = 1 and smallest when 

B = 0.5. The exception to this pattern is seen in the exponential and probit based variance formulas 

when 𝑟 = 0.5. When group size ratio r = 0.5, the EAPs for these two methods are actually largest 

when standard deviation ratio B = 0.5 and are smallest when B = 1. For example, this can be seen 

in Table 4.1c—the EAP of the exponential based variance starts at 53.46 percent when group size 

ratio r = 0.5 and standard deviation ratio B = 0.5 but drops to 46.29 percent when r = 0.5 and B = 

1. For all other values of group size ratio r, the usual pattern is seen where the EAP is greatest 

when B = 1, and smallest when B = 0.5. This may be because the sample size N is not changing 

with respect to B for the exponential and probit variance models, and thus B would only affect the 

standard deviations of the generated data. With a skewed standard deviation ratio, the variance 

calculated using a nonparametric method may be larger, and thus cause the EAP to be smaller.  

The 50 percent assurance level is the same amount of assurance that traditional confidence 

interval based methods use. Therefore, we simulated results for this level in order to act as a control 

that would allow us to more easily compare the performance of the three different variance 

formulas. First, we examined the empirical assurance probabilities of the three models at the most 

neutral condition, when group size ratio r = 1 and standard deviation ratio B = 1. Under these 

conditions, it is clear that the EAP calculated from the sample size formula using the binormal 
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based variance is noticeably greater than the others, especially when 𝜃 is large. In fact, when 𝜃 is 

0.9 and 0.8 and 𝜃  is 0.05 less than 𝜃, the binormal model’s EAP tends to surpass the 50 percent 

mark, as seen in Table 4.1a and 4.1b. However, as 𝜃 decreases, the binormal model’s EAP drops 

slightly and becomes closer to 50 percent (see Table 4.1c). On the other hand, the exponential 

based variance and probit based variances tend to be fairly consistent across all values of 𝜃. The 

EAPs of all three variance models tend to be smallest when B is small, and largest when B is large.  

At the 80 percent assurance level, all three methods generally perform decently since their 

EAPs are all very close to the prespecified assurance probability of 80 percent. The binormal 

model appears to have EAPs overshoot the 80 percent mark quite frequently when 𝜃 is large, with 

its EAP going above 80 percent and sometimes into the 90 percent range, as shown in Table 4.2a 

and 4.2b. This could be an indication that the binormal based estimate of variance may be too 

conservative. Notably, the binormal based variance formula tends to make the EAP overshoot 

when standard deviation ratio B ≠ 0.5. This goes along with the findings by Obuchowski (1994) 

that the binormal based variance estimate is conservative when the standard deviation ratio is 1, 

however it decreases as B decreases. In our simulation study, the binormal based variance causes 

EAPs to overshoot and performs quite conservatively when standard deviation ratio B = 1 and B 

= 0.75, making the required sample size as well as EAP increase. On the other hand when B = 0.5, 

a non-conservative variance means the required sample size is smaller and thus EAP also tends to 

be slightly smaller. 

Similarly, the EAPs from the exponential and probit based variance formulas surpass 80 

percent, as shown in Tables 4.2a to 4.2c. When group size ratio r = 0.5 and standard deviation ratio 

B = 0.5 and 0.75, the probit model's EAP appears steady at 80 percent and higher. On the other 
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hand, the EAP of the exponential model appears to surpass the 80 percent mark when the standard 

deviation ratio is larger, like B = 1 and sometimes B = 0.75. 

At the 90 percent assurance level, we can see some of the same patterns as with the other 

assurance levels. The binormal model’s EAPs overshoot a lot more than at 50 and 80 percent 

assurance, especially when 𝜃 is large, as seen in Table 4.3a and 4.3b. As 𝜃 decreases, as shown in 

Table 4.3c, the binormal model’s EAPs decrease as well and tend to go beyond 90 percent only 

when standard deviation ratio B ≠ 0.5, once again matching what was illustrated by Obuchowski 

(1994). In general, the cases that surpassed 80 percent in the previous condition also tend to surpass 

90 percent in this condition. However, there are even more EAPs at the 90 percent assurance level 

that surpass 90 percent (see Table 4.3a). Additionally, the required sample sizes are much larger 

here than for the previous assurance levels (see Tables 4.3a to 4.3c). This is expected since the 90 

percent assurance level is the most precise and would require a larger sample size to ensure that 

small clinical differences are detected with confidence. 

Overall, the sample size formula with three different variance models perform similarly. 

The binormal based variance seems to perform slightly better than the other two as it provides 

more conservative estimates. Although it tends to overestimate the prespecified assurance 

probability more frequently than the exponential and probit based variances, it is also the most 

conservative variance estimator as the sample sizes are larger than the ones from the other two 

methods.  
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Table 4.1 a: Empirical assurance probabilities at the 50% assurance level for three variance 
formulas such that the lower bound of a two-sided 95% confidence interval for the AUC is not 
below the prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.9. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 

𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP
0.9 0.85 0.5 0.5 197 49.97 95.29 218 54.39 94.73 224 54.79 94.72

 0.75 49.00 94.85 256 60.67 95.13 54.45 95.31
 1 45.80 95.05 301 63.88 95.25 50.83 94.97
 1 0.5 226 48.83 94.96 258 53.70 94.62 199 42.94 95.08
 0.75 54.16 94.90 278 64.28 95.24 48.68 95.08
 1 56.14 95.06 305 70.23 95.14 51.01 95.03
  
 1.5 0.5 267 48.59 94.94 309 56.16 94.85 207 38.44 94.71
 0.75 56.62 94.88 321 66.40 95.20 45.92 94.90
 1 61.76 94.99 341 74.68 94.95 50.31 94.95
 2 0.5 311 49.05 94.81 363 56.01 94.70 224 36.03 94.95
 0.75 58.97 94.76 369 67.42 94.89 44.68 95.19
 1 66.11 95.14 385 75.93 95.64 51.56 94.90
  

0.8 0.5 0.5 64 46.31 95.44 71 53.20 95.39 73 55.06 95.43
 0.75 47.07 95.20 84 60.82 95.26 54.34 95.41
 1 43.99 95.11 98 64.00 95.15 50.07 94.85
 1 0.5 74 47.19 94.35 84 54.34 94.82 65 41.29 94.43
 0.75 54.20 95.10 91 65.98 94.68 47.11 94.82
 1 55.14 95.56 100 72.18 95.62 49.10 95.23
  
 1.5 0.5 87 48.23 93.84 101 55.58 94.23 68 34.50 93.39
 0.75 57.47 94.61 105 66.60 94.52 43.90 94.22
 1 63.58 95.55 111 75.99 95.16 48.85 95.25
 2 0.5 102 46.91 93.48 118 55.76 93.70 73 33.41 93.07
 0.75 59.15 94.12 120 68.97 94.33 43.94 94.45
 1 66.47 94.86 126 76.91 95.28 50.22 94.68

 
Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is 
the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size 
of the typical and atypical populations, B is the ratio between their standard deviations, and N is 
the total sample size from the two populations.
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Table 4.1 b: Empirical assurance probabilities at the 50% assurance level for three variance formulas 
such that the lower bound of a two-sided 95% confidence interval for the AUC is not below the 
prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.75 0.5 0.5 339 51.62 95.37 341 50.97 95.50 385 56.06 95.38
 0.75  49.41 94.83 395 55.28 95.29 54.42 95.35
 1  45.50 95.48 452 57.59 94.93 50.84 95.21
 1 0.5 355 46.76 95.51 393 51.94 95.21 342 45.39 95.10
 0.75  51.51 95.31 411 56.54 95.00 49.75 95.31
 1  52.21 94.61 436 61.08 95.07 49.53 94.91
   
 1.5 0.5 403 46.04 95.20 466 51.40 95.17 357 40.88 94.75
 0.75  51.98 95.28 466 57.70 94.89 46.36 94.87
 1  54.65 95.34 475 62.34 95.25 50.86 95.68
 2 0.5 460 44.60 94.82 544 50.78 95.01 385 38.00 95.05
 0.75  51.74 95.13 530 58.53 94.8 44.92 94.94
 1  57.96 94.74 528 63.50 94.93 50.17 94.80
   

0.7 0.5 0.5 97 50.43 95.62 97 49.91 95.69 110 55.27 95.57
 0.75  47.89 95.07 113 54.67 95.07 52.93 95.68
 1  43.24 94.98 129 56.92 95.83 50.05 95.20
 1 0.5 102 45.68 95.61 112 51.14 95.35 98 44.68 95.19
 0.75  49.85 95.78 118 56.88 95.05 48.28 95.39
 1  51.87 95.33 124 59.85 95.35 48.87 95.12
   
 1.5 0.5 115 43.67 94.85 133 51.54 95.10 102 39.32 94.94
 0.75  51.32 95.24 133 58.53 95.38 45.09 95.06
 1  53.83 95.59 136 63.25 95.35 49.68 95.22
 2 0.5 131 43.23 94.65 155 49.99 95.31 110 36.87 95.17
 0.75  51.73 95.07 151 58.96 94.77 44.03 94.60
 1  56.41 95.40 151 65.46 95.17 49.58 95.30

 
Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of the 
typical and atypical populations, B is the ratio between their standard deviations, and N is the total 
sample size from the two populations.
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Table 4.1 c: Empirical assurance probabilities at the 50% assurance level for three variance formulas 
such that the lower bound of a two-sided 95% confidence interval for the AUC is not below the 
prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.7. 

 

    

Exponential 
Based 

Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.65 0.5 0.5 460 53.46 94.71 411 48.50 95.11 503 57.21 95.09
 0.75 49.94 95.22 471 51.45 95.01 53.27 94.88
 1 46.29 95.19 528 52.10 95.11 49.99 95.10
 1 0.5 452 46.39 95.26 465 48.48 95.25 447 45.74 95.09
 0.75 49.58 95.16 475 51.94 95.11 49.69 95.06
 1 50.63 94.90 488 53.25 94.40 50.24 95.12
   
 1.5 0.5 497 44.60 95.22 546 48.41 94.84 466 42.26 94.96
 0.75 49.16 94.83 530 52.03 95.32 46.71 94.85
 1 53.02 94.92 520 53.55 94.70 49.87 95.30
 2 0.5 556 43.59 95.15 635 47.51 94.76 503 38.97 95.05
 0.75 49.35 94.92 597 51.32 95.45 45.63 95.16
 1 53.64 95.38 570 54.74 95.36 50.45 94.90
   

0.6 0.5 0.5 123 51.75 95.41 110 47.44 95.10 135 55.82 95.71
 0.75 49.19 95.41 126 50.15 95.35 52.94 95.42
 1 45.96 95.48 141 52.18 94.74 50.00 95.24
 1 0.5 121 45.89 95.13 124 46.65 95.19 120 45.75 95.14
 0.75 48.81 95.19 127 51.87 95.14 48.45 95.21
 1 50.29 95.62 131 53.21 95.04 48.81 95.47
   
 1.5 0.5 133 43.76 94.96 146 46.73 94.90 125 41.64 95.39
 0.75 48.70 95.61 142 50.08 94.94 45.56 95.09
 1 53.01 95.41 139 53.88 95.00 48.80 95.16
 2 0.5 149 42.51 95.34 170 47.28 95.42 135 38.03 95.33
 0.75 48.84 95.29 160 52.04 95.37 44.50 95.41
 1 53.16 95.35 152 54.49 95.23 48.44 95.16         

Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of the 
typical and atypical populations, B is the ratio between their standard deviations, and N is the total 
sample size from the two populations. 
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Table 4.2 a: Empirical assurance probabilities at the 80% assurance level for three variance 
formulas such that the lower bound of a two-sided 95% confidence interval for the AUC is not 
below the prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.9. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.9 0.85 0.5 0.5 401 82.55 94.94 444 86.50 95.04 457 87.41 94.91
 0.75 81.06 94.79 524 90.89 95.05 86.99 95.17
 1 77.98 95.22 615 92.63 94.95 83.78 95.25
 1 0.5 461 80.96 95.30 527 86.62 94.98 406 76.86 94.59
 0.75 86.53 95.02 568 92.84 94.90 81.85 95.08
 1 88.12 95.21 623 95.33 94.88 83.73 94.93
   
 1.5 0.5 545 80.99 94.92 631 86.54 94.56 423 68.91 94.90
 0.75 88.34 94.95 655 93.97 95.26 79.35 94.88
 1 91.89 94.79 697 96.89 95.11 83.48 95.15
 2 0.5 635 81.09 95.12 741 86.91 94.65 457 66.35 95.03
 0.75 89.50 95.42 754 93.77 94.79 77.07 95.13
 1 93.28 94.86 787 97.48 94.98 83.30 94.93
   

0.8 0.5 0.5 131 84.64 95.31 145 88.39 95.20 149 89.38 95.56
 0.75 83.32 95.01 171 93.00 95.06 88.39 95.15
 1 79.04 95.02 200 93.91 94.91 85.09 94.77
 1 0.5 150 83.56 95.08 172 88.69 95.06 133 78.56 95.41
 0.75 87.46 95.00 185 94.52 95.12 83.55 94.90
 1 89.22 95.12 203 96.77 95.04 85.07 95.23
   
 1.5 0.5 178 82.43 94.45 206 87.97 94.43 138 71.43 94.30
 0.75 89.67 94.91 214 95.22 95.21 80.17 94.79
 1 93.61 95.25 227 98.05 95.47 85.75 95.20
 2 0.5 207 83.06 94.71 242 89.13 94.64 149 68.37 94.54
 0.75 91.01 94.80 246 95.18 95.13 78.25 94.34
 1 94.48 95.00 256 98.06 94.75 84.56 94.77         

Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is 
the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size 
of the typical and atypical populations, B is the ratio between their standard deviations, and N is 
the total sample size from the two populations.
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Table 4.2 b: Empirical assurance probabilities at the 80% assurance level for three variance formulas 
such that the lower bound of a two-sided 95% confidence interval for the AUC is not below the 
prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.75 0.5 0.5 692 82.58 95.28 696 82.72 94.98 787 86.46 94.89
 0.75 79.46 95.05 807 85.42 94.96 85.47 95.22
 1 75.46 95.13 924 87.92 95.12 81.05 94.92
 1 0.5 725 77.83 95.29 803 81.95 94.91 699 76.47 94.88
 0.75 81.69 95.15 840 87.52 94.97 80.07 94.96
 1 82.77 95.11 890 89.71 94.92 81.02 95.05
   
 1.5 0.5 824 77.28 95.07 952 82.87 95.06 728 72.16 95.13
 0.75 83.00 95.11 952 88.25 94.85 78.14 94.74
 1 86.41 95.06 970 91.10 95.39 81.48 95.15
 2 0.5 939 75.95 95.06 1111 82.57 94.98 787 67.37 95.20
 0.75 83.15 95.02 1083 88.70 95.22 76.23 95.17
 1 88.32 95.10 1078 91.80 95.07 81.55 95.07
   

0.7 0.5 0.5 197 83.04 94.84 199 83.83 95.26 224 88.36 94.91
 0.75 80.10 95.23 230 86.74 95.32 86.01 94.92
 1 77.20 95.15 264 87.64 94.83 82.43 95.28
 1 0.5 207 79.27 95.08 229 83.84 95.07 200 77.73 95.69
 0.75 82.74 95.25 240 88.52 95.04 81.10 95.49
 1 84.03 95.03 254 90.85 95.11 82.81 95.28
   
 1.5 0.5 235 77.61 95.16 272 83.97 95.22 208 70.94 95.03
 0.75 83.99 95.56 272 89.17 94.96 78.74 94.73
 1 87.11 95.14 277 91.75 95.09 82.65 95.57
 2 0.5 268 76.25 94.84 317 84.46 95.09 224 68.22 95.17
 0.75 84.21 94.98 309 89.74 95.16 77.39 95.27
 1 88.83 95.19 307 92.93 95.19 82.10 95.08         

Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of the 
typical and atypical populations, B is the ratio between their standard deviations, and N is the total 
sample size from the two populations.
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Table 4.2 c: Empirical assurance probabilities at the 80% assurance level for three variance formulas 
such that the lower bound of a two-sided 95% confidence interval for the AUC is not below the 
prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.7. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.65 0.5 0.5 940 83.96 94.94 839 78.47 94.78 1027 86.13 95.25
0.75 80.99 94.97 961 81.90 94.97 84.34 94.76

1 77.28 94.47 1079 82.89 95.16 81.44 95.42
1 0.5 922 77.89 95.08 949 78.40 95.03 913 76.73 94.61

0.75 80.80 94.59 969 81.76 95.18 79.82 94.96
1 80.94 94.87 997 84.53 95.02 80.74 94.90

  
1.5 0.5 1015 74.77 94.94 1115 78.44 95.12 951 71.77 94.74

0.75 80.26 95.01 1082 82.46 94.76 77.45 94.90
1 83.31 95.22 1062 84.54 95.28 81.47 94.94

2 0.5 1135 72.80 94.76 1296 78.69 95.12 1027 69.03 94.88
0.75 79.68 94.79 1220 82.80 94.92 76.56 95.04

1 84.85 94.90 1164 85.10 94.82 81.39 95.12
  

0.6 0.5 0.5 251 84.05 94.94 224 79.86 94.89 274 87.27 95.04
0.75 81.02 95.31 257 82.14 95.21 84.55 95.52

1 77.39 95.56 288 82.65 95.02 80.75 95.01
1 0.5 247 78.14 95.55 254 78.96 95.21 244 76.47 94.97

0.75 81.61 95.31 259 82.57 95.11 79.98 94.95
1 81.34 94.73 266 84.77 95.56 81.36 94.72

  
1.5 0.5 271 75.11 95.36 298 79.20 95.02 254 72.45 94.79

0.75 80.19 95.15 289 82.56 95.05 77.93 95.07
1 83.35 95.19 284 85.20 95.24 81.28 95.23

2 0.5 303 73.25 95.29 346 79.01 95.27 274 68.39 95.24
0.75 80.49 95.30 326 82.71 95.20 76.50 94.99

1 84.64 95.06 311 85.56 95.04 80.74 94.83         
Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of the 
typical and atypical populations, B is the ratio between their standard deviations, and N is the total 
sample size from the two populations.
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Table 4.3 a: Empirical assurance probabilities at the 90% assurance level for three variance 
formulas such that the lower bound of a two-sided 95% confidence interval for the AUC is not 
below the prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.9. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.9 0.85 0.5 0.5 537 92.64 95.16 594 94.56 95.18 612 94.61 94.69
 0.75 91.71 94.99 701 96.99 94.95 94.91 95.00
 1 88.82 95.01 823 97.71 94.76 92.21 94.94
 1 0.5 616 91.39 95.01 705 94.96 95.26 544 87.94 95.19
 0.75 94.92 95.24 760 98.16 95.28 91.31 94.88
 1 95.46 95.20 834 99.00 95.09 92.57 95.04
   
 1.5 0.5 729 91.32 94.91 845 95.31 94.7 566 82.86 94.94
 0.75 95.79 95.24 877 98.09 94.94 89.74 94.96
 1 97.43 95.20 932 99.39 94.95 92.6 95.05
 2 0.5 850 91.37 95.07 992 94.72 94.97 612 79.06 95.04
 0.75 96.34 95.06 1009 98.14 94.99 88.33 95.09
 1 98.03 94.93 1053 99.39 94.60 92.54 95.31
   

0.8 0.5 0.5 175 93.48 94.62 194 95.94 95.58 199 96.82 95.59
 0.75 93.55 95.27 228 98.01 95.54 96.2 95.20
 1 90.76 95.01 268 98.72 95.23 94.11 94.96
 1 0.5 201 93.45 94.91 230 96.38 95.17 177 89.51 95.00
 0.75 96.13 95.21 248 98.65 95.43 93.39 95.19
 1 96.29 95.04 272 99.49 95.26 93.73 94.58
   
 1.5 0.5 238 93.08 94.67 275 96.09 94.52 185 84.87 94.93
 0.75 96.71 94.92 286 98.92 95.21 91.15 94.84
 1 98.15 95.19 304 99.66 95.38 93.99 95.13
 2 0.5 277 92.65 94.87 323 96.26 95.10 199 80.57 94.28
 0.75 97.27 94.63 329 99.15 95.18 90.20 95.09
 1 99.00 95.20 343 99.72 95.34 94.02 95.26         

Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is 
the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size 
of the typical and atypical populations, B is the ratio between their standard deviations, and N is 
the total sample size from the two populations
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Table 4.3 b: Empirical assurance probabilities at the 90% assurance level for three variance formulas 
such that the lower bound of a two-sided 95% confidence interval for the AUC is not below the 
prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.8. 

 

    

Exponential 
Based 

Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.75 0.5 0.5 926 91.28 95.10 931 91.78 94.99 1053 94.41 94.46
 0.75 90.49 94.90 1080 93.97 95.10 93.56 95.17
 1 87.55 94.72 1236 95.03 95.39 91.35 95.17
 1 0.5 970 88.80 94.89 1075 91.69 94.94 936 88.10 94.83
 0.75 91.55 94.91 1125 95.03 95.13 90.47 95.13
 1 91.93 95.11 1191 96.33 95.06 91.14 94.97
  
 1.5 0.5 1103 88.06 94.99 1275 91.75 94.81 975 83.12 95.06
 0.75 92.37 95.00 1274 95.39 94.74 88.70 95.06
 1 94.19 94.98 1298 97.15 95.46 91.37 95.05
 2 0.5 1257 86.11 95.05 1488 92.01 95.17 1053 80.59 94.85
 0.75 92.56 95.13 1450 95.59 95.01 87.12 94.96
 1 95.59 95.25 1443 97.43 95.42 91.44 95.15
  

0.7 0.5 0.5 264 92.67 95.17 266 92.84 95.04 300 95.22 94.87
 0.75 91.17 94.90 308 94.88 95.42 94.10 94.94
 1 87.80 95.34 353 95.63 95.17 92.05 94.81
 1 0.5 277 89.76 94.84 307 93.33 95.01 267 88.63 94.94
 0.75 92.95 95.50 321 95.38 94.75 91.50 95.05
 1 93.37 95.35 340 97.17 95.41 92.27 95.03
  
 1.5 0.5 314 88.51 94.74 363 93.07 94.92 278 84.58 95.22
 0.75 93.08 95.05 363 96.11 95.28 89.78 94.89
 1 95.11 95.53 370 97.52 94.83 92.01 95.07
 2 0.5 358 87.90 95.07 424 92.78 95.08 300 81.83 94.85
 0.75 93.86 95.09 413 96.46 95.24 87.74 95.24
 1 95.76 95.15 411 97.95 95.38 92.02 94.97         

Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of the 
typical and atypical populations, B is the ratio between their standard deviations, and N is the total 
sample size from the two populations. 
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Table 4.3 c: Empirical assurance probabilities at the 90% assurance level for three variance 
formulas such that the lower bound of a two-sided 95% confidence interval for the AUC is not 
below the prespecified lower limit 𝜃  when the true AUC 𝜃 = 0.7. 

 

    

Exponential 
Based 

Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜃  r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.65 0.5 0.5 1258 92.44 94.94 1123 89.61 94.93 1374 94.40 94.79
 0.75 90.82 95.01 1287 91.26 95.06 92.96 94.87
 1 88.31 95.21 1444 92.31 95.12 90.36 95.09
 1 0.5 1235 88.71 94.64 1270 89.15 95.26 1222 87.91 94.83
 0.75 90.68 94.89 1298 92.43 95.3 90.17 95.17
 1 90.99 95.49 1334 92.76 94.82 90.49 95.03
  
 1.5 0.5 1358 86.53 95.02 1493 89.04 94.87 1273 83.68 94.49
 0.75 90.24 95.00 1448 92.04 95.02 88.68 95.28
 1 92.13 95.09 1421 93.18 94.90 90.52 94.56
 2 0.5 1519 84.74 94.55 1735 89.19 94.97 1374 80.50 95.32
 0.75 89.97 94.71 1633 92.51 95.09 87.34 94.37
 1 93.12 94.93 1558 93.86 95.18 90.58 94.91
  

0.6 0.5 0.5 336 93.11 95.28 300 90.34 95.32 367 94.71 94.94
 0.75 91.02 94.94 344 91.63 94.64 93.19 94.99
 1 88.17 95.36 386 92.02 94.81 90.88 95.14
 1 0.5 330 89.14 95.51 339 89.12 95.06 326 88.25 95.27
 0.75 90.66 95.41 347 92.35 94.99 90.76 94.84
 1 91.47 95.05 356 93.40 95.37 90.40 95.18
  
 1.5 0.5 363 86.21 95.15 399 89.72 95.13 340 84.61 95.25
 0.75 90.46 94.83 387 92.30 94.81 89.05 95.16
 1 92.63 95.04 380 93.84 95.22 91.11 95.25
 2 0.5 406 85.56 95.06 463 89.76 95.04 367 81.82 94.98
 0.75 90.68 94.97 436 92.55 95.09 87.35 94.98
 1 93.73 95.36 416 93.75 95.14 90.89 95.13

 
Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is above the prespecified lower bound of 𝜃 . Empirical coverage probability (ECP) is 
the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size 
of the typical and atypical populations, B is the ratio between their standard deviations, and N is 
the total sample size from the two populations.
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4.2 Achieving a prespecified confidence interval width 

In the second simulation study, we investigated the performance of the sample size formula for 

achieving a prespecified confidence interval half-width with prespecified assurance. The same 

three variance estimators were used in the sample size formula. We determined a sample size with 

prespecified assurance such that the half-width of a confidence interval for the AUC is no wider 

than a certain preset half-width.  

 

4.2.1 Study design 

The study design for this simulation was very similar to the previous simulation. We used the same 

values and definitions of r, 𝜃, and B. This time instead of a lower bound, we used a preset 

confidence interval half-width 𝜔, and to keep things consistent with the first simulation, 𝜔 was set 

to be 0.1 or 0.05. The assurance probabilities were also kept at 50 percent, 80 percent, and 90 

percent. The empirical assurance probability was defined as the number of times the half-width of 

a two-sided 95 percent confidence interval around 𝜃 is smaller than a prespecified half-width 𝜔. 

The empirical coverage percentage was also obtained from the number of times the true AUC 𝜃 is 

within the 95 percent confidence interval around the estimate 𝜃. In order to be considered as good 

performance, the coverage must be close to 95 percent and the EAPs must be as close to the desired 

assurance probability as possible or greater than it. 

 

4.2.2 Data generation 

First we used the sample size formula (Equation 3.5) to calculate the required sample size based 

on the values of all the variables. Recall Equation 3.5: 
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The three different variance estimators were used in this sample size formula. After determining 

N, we generated 10000 data sets with N as the sample size. The typical group had the same mean 

of 0 and variance of 1, while the atypical group had a mean of 𝜇  and a variance of  just like the 

previous simulation. The nonparametric method by DeLong et al. (1988) was used to estimate the 

AUC and its variance, then logit transformed 95 percent confidence intervals were constructed. 

The logit transformed intervals were then transformed back onto the raw scale to be compared 

with the prespecified half-width 𝜔, and the empirical assurance probability (EAP) was then 

calculated as the proportion of times the confidence interval half-width was smaller or equal to the 

prespecified width 𝜔. 

 

4.2.3 Results 

Tables 4.4a to 4.6c show that the results for this simulation do not seem to follow the trends like 

the previous section did, especially within the empirical assurance probabilities. The coverage 

appears to be within range of 95 percent, which indicate that the confidence intervals were properly 

constructed. Just like the previous simulation, the sample sizes calculated using the exponential 

and binormal variance formulas seem to increase as the group size ratio r increases, however the 

sample size based on the probit variance is smallest when group size ratio 𝑟 = 1 and greatest when 

r is far from 1.  However, in terms of the EAPs, there are many instances where the EAP jumps 

up much higher than the prespecified assurance probability or is drastically lower than it. When 
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the standard deviation ratio B = 0.5, the EAPs tends to be much lower than when 𝐵 ≠ 0.5, typically 

when 𝑟 ≠ 0.5 (see Tables 4.4a to 4.6c). The dramatic drops in EAPs tend to occur more within the 

exponential and probit models of variance, while the binormal model's EAP has extreme 

overshooting. The extreme overshooting occurs mainly when 𝐵 ≠ 0.5, and this occurs in the 

exponential model's EAPs too although they are not as extreme as in the other two variance models.  

When the prespecified assurance level is 50 percent, the EAPs for all three variance 

formulas have dramatic jumps, ranging from as high as 99.84 (Table 4.4a) to as low as 0.16 (Table 

4.4c). These extreme EAPs tend to occur more when 𝜃 is small (Table 4.4c) but also appear when 

𝜃 is large (see Table 4.4a). Even at the control conditions of group size ratio r = 1 and standard 

deviation ratio B = 1, there are some extreme EAPs regardless of the value of 𝜃. For example, in 

Table 4.4a, the binormal based variance’s EAP reaches 98.70 when 𝜃 = 0.9, 𝜔 = 0.05, r = 1, and 

B = 1.  

At the 80 percent assurance level, there are many cases when the empirical assurance prob-

ability is much lower than the prespecified assurance probability, with numbers as low as 0.78 

(Table 4.5c). The dramatic drops occur when 𝜃 is small and especially when B = 0.5. It is 

interesting that for the same conditions that produce such low EAPs for one variance formula, a 

different variance formula may get an EAP as high as 100.  

At the 90 percent assurance level, the required sample sizes are larger than at the 80 percent 

level, which is expected (see Tables 4.6a to 4.6c). However, as with the 80 percent assurance level, 

there are also atypical EAPs especially in the probit variance model when 𝜃 is small, as seen in 

Table 4.6c. The same pattern as found in the previous condition is found here—when standard 

deviation ratio B = 0.5 the EAPs often end up being abnormally low or very high. There are quite 
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a few cases that ended up with an EAP of 100, especially in the binormal variance model's EAPs, 

as shown in Table 4.6a to 4.6c. 

The results were not expected though there may be some explanations as to why this sample 

size formula performed poorly in this simulation. One reason could be that for some cases, the 

atypical group may be the smaller group when it has a greater variance. When B = 0.5, this means 

that the standard deviation of the atypical group is twice the size of the standard deviation of the 

typical group. When r = 2, this means that the typical group is twice the size of the atypical group. 

If we put these together, that would create a large amount of variability amongst the atypical group, 

thus making the simulated group’s distribution very wide and unpredictable. This may lead to 

confidence intervals that are much larger than the prespecified confidence interval half-width, 

which would in turn lead to very small or negligible EAPs. 

Another possibility lies within the variance formula that was used to calculate the variance 

of the simulated data. Our simulation study generated data that was normally distributed, then we 

used the nonparametric method by DeLong et al. (1988) to calculate the AUC estimate and 

variance estimate. Nonparametric methods may work well on all types of data, but parametric 

methods may work even better when we know that the data is normally distributed. Thus, using 

the nonparametric method on the generated data could potentially cause the variance may be larger, 

and the confidence intervals to be wider than expected, and thus lead to very small EAPs. 
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Table 4.4 a: Empirical assurance probabilities at the 50% assurance level for three variance 
formulas such that the half-width of a two-sided 95% confidence interval for the AUC is not greater 
than the prespecified width 𝜔 when the true AUC 𝜃 = 0.9. 

 

    
Exponential 

Based  
Variance 

Binormal 
Based  

Variance 

Probit 
Based  

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.9 0.05 0.5 0.5 143 42.88 95.42 158 58.50 95.25 162 63.63 94.80
 0.75  43.25 95.18 186 81.81 94.83 60.98 94.88
 1  32.28 95.31 218 88.49 95.12 46.96 94.87
 1 0.5 164 40.37 95.15 187 61.13 94.85 144 26.89 94.58
 0.75  60.54 95.21 202 90.36 94.73 41.82 94.98
 1  66.66 95.06 221 98.70 95.47 46.43 95.24
   
 1.5 0.5 193 40.77 94.94 224 62.89 94.61 150 18.64 94.69
 0.75  68.78 94.82 233 92.39 95.11 34.17 94.65
 1  85.51 95.39 247 99.59 95.18 46.30 94.85
 2 0.5 226 41.68 94.37 263 61.99 94.87 162 15.73 94.42
 0.75  74.55 94.90 268 93.36 95.08 30.62 94.36
 1  92.87 95.49 279 99.84 94.98 47.99 95.09
   

0.1 0.5 0.5 40 38.17 94.95 44 47.05 94.65 45 49.91 94.73
 0.75  40.95 95.00 52 69.10 95.31 49.80 95.07
 1  38.55 94.93 61 74.73 95.25 46.19 94.90
 1 0.5 46 39.64 93.64 52 51.08 93.75 40 31.37 93.31
 0.75  50.48 94.78 56 74.13 95.27 37.76 94.58
 1  53.94 95.29 62 88.00 95.23 40.43 94.90
   
 1.5 0.5 54 42.32 92.54 62 53.22 93.44 42 31.19 91.89
 0.75  59.81 94.58 65 77.73 94.45 38.76 94.57
 1  70.24 95.12 69 93.26 95.26 41.88 95.43
 2 0.5 63 42.25 91.42 73 56.18 93.40 45 30.58 90.68
 0.75  60.87 93.76 74 78.53 93.86 39.32 93.90
 1  75.66 94.97 78 93.89 95.02 45.83 94.52         

Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 
percent CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of 
the typical and atypical populations, B is the ratio between their standard deviations, and N is the 
total sample size from the two populations.
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Table 4.4 b: Empirical assurance probabilities at the 50% assurance level for three variance formulas 
such that the half-width of a two-sided 95% confidence interval for the AUC is not greater than the 
prespecified width 𝜔 when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP
0.8 0.05 0.5 0.5 288 48.86 95.17 289 51.13 95.23 327 91.10 95.17

 0.75 34.94 95.27 335 83.19 95.11 76.09 95.12
 1 16.37 95.08 384 90.01 94.70 45.25 95.20
 1 0.5 301 24.39 94.86 334 53.99 94.81 291 17.68 95.38
 0.75 50.08 95.43 349 93.40 95.09 39.20 95.28
 1 57.00 95.25 370 99.31 95.00 46.21 95.12
  
 1.5 0.5 342 17.99 95.00 396 55.91 94.81 303 5.08 95.08
 0.75 57.57 95.54 396 94.88 94.92 23.89 94.66
 1 84.06 95.28 403 99.82 95.17 44.61 95.49
 2 0.5 390 14.99 94.98 462 55.11 95.15 327 3.04 95.33
 0.75 60.60 94.77 450 94.31 94.83 17.82 94.88
 1 93.01 95.11 448 99.93 95.15 46.20 95.33
  

0.1 0.5 0.5 72 40.17 95.38 73 45.67 95.71 82 68.91 95.25
 0.75 34.09 95.41 84 60.32 95.14 58.55 95.58
 1 24.58 95.32 97 72.51 94.79 43.80 95.44
 1 0.5 76 30.60 95.32 84 44.97 95.70 73 26.88 95.86
 0.75 41.51 95.29 88 70.64 94.99 37.20 95.19
 1 44.76 95.40 93 87.58 95.34 40.45 95.71
  
 1.5 0.5 86 28.91 95.21 100 47.44 95.24 76 17.76 95.19
 0.75 50.28 95.45 99 74.88 95.04 31.13 95.35
 1 64.15 95.18 101 91.58 95.00 41.80 95.20
 2 0.5 98 26.91 94.91 116 48.69 94.99 82 14.44 95.10
 0.75 50.31 95.36 113 77.08 95.38 28.00 95.13
 1 73.96 94.91 113 92.79 95.34 44.09 95.51         

Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 percent 
CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the coverage of the 
95 percent CI based on a 10000 run simulation. r is the ratio between the size of the typical and atypical 
populations, B is the ratio between their standard deviations, and N is the total sample size from the 
two populations.
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Table 4.4 c: Empirical assurance probabilities at the 50% assurance level for three variance formulas 
such that the half-width of a two-sided 95% confidence interval for the AUC is not greater than the 
prespecified width 𝜔 when the true AUC 𝜃 = 0.7. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based  

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP
0.7 0.05 0.5 0.5 421 87.26 95.16 376 20.43 95.19 460 99.97 95.48

 0.75 47.89 94.99 431 60.86 94.92 93.17 95.00
 1 10.62 95.28 483 70.47 94.86 46.04 94.90
 1 0.5 413 11.13 94.79 425 18.39 95.35 409 8.43 95.36
 0.75 40.24 94.71 434 69.57 95.21 34.05 95.53
 1 50.71 95.21 446 92.97 95.34 43.73 94.97
  
 1.5 0.5 455 2.64 95.35 500 18.41 95.36 426 0.54 95.36
 0.75 36.41 95.23 484 74.96 95.13 12.47 95.06
 1 82.31 94.87 476 97.04 94.64 44.35 95.25
 2 0.5 508 1.36 95.01 580 20.75 95.01 460 0.16 95.39
 0.75 35.99 94.76 546 73.45 94.93 6.72 95.05
 1 93.16 95.10 521 97.46 95.23 45.77 95.22
  

0.1 0.5 0.5 104 61.89 95.35 93 22.39 95.34 114 91.37 95.04
 0.75 40.56 95.27 106 46.39 95.14 67.75 95.39
 1 21.14 95.04 119 52.87 95.47 38.74 95.30
 1 0.5 102 19.39 95.35 105 27.28 95.24 101 19.57 95.59
 0.75 33.38 95.47 107 51.10 95.15 33.75 95.20
 1 37.79 95.24 110 64.51 95.22 37.81 95.27
  
 1.5 0.5 112 12.81 95.25 123 28.73 95.40 105 7.87 95.47
 0.75 34.59 95.30 120 53.54 95.28 20.59 95.03
 1 58.76 95.12 117 73.77 95.25 36.24 95.46
 2 0.5 126 10.56 95.18 143 28.29 95.29 114 5.43 95.18
 0.75 35.73 95.06 135 54.70 95.55 17.78 95.02
 1 69.43 95.52 129 76.06 95.46 38.66 95.12        

 
Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 percent 
CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the coverage of the 
95 percent CI based on a 10000 run simulation. r is the ratio between the size of the typical and atypical 
populations, B is the ratio between their standard deviations, and N is the total sample size from the 
two populations. 
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Table 4.5 a: Empirical assurance probabilities at the 80% assurance level for three variance 
formulas such that the half-width of a two-sided 95% confidence interval for the AUC is not greater 
than the prespecified width 𝜔 when the true AUC 𝜃 = 0.9. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP
0.9 0.05 0.5 0.5 162 63.63 94.80 180 81.68 94.82 218 98.39 95.15

 0.75 60.98 94.88 213 96.26 95.00 96.96 95.20
 1 46.96 94.87 252 98.17 95.11 88.81 94.86
 1 0.5 190 63.48 94.82 215 83.39 94.87 194 67.09 95.24
 0.75 83.81 95.03 233 98.98 95.53 86.29 95.31
 1 88.15 95.02 257 99.97 95.05 90.33 95.13
  
 1.5 0.5 226 63.67 94.76 258 83.80 94.75 202 47.15 94.77
 0.75 90.37 95.14 270 99.25 94.97 75.24 95.08
 1 97.46 94.71 289 100.00 95.60 89.85 95.06
 2 0.5 265 63.64 94.57 303 84.40 94.60 218 36.40 94.86
 0.75 92.87 95.25 311 99.31 94.74 69.17 94.76
 1 99.34 94.93 327 100.00 95.01 89.34 95.02
  

0.1 0.5 0.5 50 63.28 95.23 56 80.55 95.18 73 98.83 95.40
 0.75 62.65 95.37 66 93.00 95.49 97.25 95.72
 1 55.00 95.21 78 95.57 94.76 91.04 94.84
 1 0.5 59 67.64 94.19 66 82.58 94.08 65 79.31 93.82
 0.75 82.02 95.05 72 97.13 95.19 90.92 95.12
 1 84.79 95.10 80 99.75 95.00 93.27 95.17
  
 1.5 0.5 71 69.94 93.34 80 84.44 94.02 68 61.45 92.91
 0.75 87.63 94.93 84 97.74 94.72 81.73 94.69
 1 95.00 94.96 90 99.85 95.18 91.19 95.01
 2 0.5 83 68.32 93.01 94 82.77 92.98 73 55.52 92.30
 0.75 89.23 93.81 97 97.52 94.13 78.09 93.68
 1 96.88 94.75 102 99.95 94.97 91.00 94.77         

Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 
percent CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of 
the typical and atypical populations, B is the ratio between their standard deviations, and N is the 
total sample size from the two populations.
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Table 4.5 b: Empirical assurance probabilities at the 80% assurance level for three variance formulas 
such that the half-width of a two-sided 95% confidence interval for the AUC is not greater than the 
prespecified width 𝜔 when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based  

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.05 0.5 0.5 302 68.36 95.03 311 78.36 95.21 376 99.96 95.14
 0.75 50.27 95.04 362 96.62 95.11 99.02 95.37
 1 26.30 95.04 416 98.82 95.51 87.32 95.02
 1 0.5 321 42.09 94.96 361 80.76 95.30 335 55.65 94.78
 0.75 71.88 95.13 379 99.48 95.34 84.85 95.40
 1 79.30 95.61 404 100.00 95.11 89.95 95.32
   
 1.5 0.5 367 32.62 95.08 428 80.88 95.13 348 21.42 94.81
 0.75 78.86 95.10 431 99.68 95.32 63.22 94.78
 1 96.01 94.54 442 100.00 95.26 89.11 95.17
 2 0.5 420 28.13 94.80 501 82.69 95.09 376 11.27 94.80
 0.75 82.12 95.17 491 99.54 94.91 51.10 94.56
 1 98.90 94.72 493 100.00 95.29 86.68 95.15
   

0.1 0.5 0.5 80 61.61 95.60 84 77.21 95.26 106 99.69 95.01
 0.75 52.38 95.45 97 88.87 95.66 97.04 94.87
 1 37.79 95.23 112 93.57 95.20 86.94 95.43
 1 0.5 86 49.56 95.02 97 76.41 95.30 95 71.40 94.89
 0.75 66.68 95.43 103 96.35 95.49 86.8 95.34
 1 69.86 95.12 110 99.83 95.57 89.97 95.36
   
 1.5 0.5 98 47.33 94.99 116 78.64 94.92 98 46.38 95.02
 0.75 74.87 95.20 117 96.26 95.35 74.32 95.35
 1 87.79 95.49 121 99.92 95.46 87.84 95.02
 2 0.5 113 44.19 95.28 135 78.42 94.86 106 36.37 95.25
 0.75 75.75 95.26 133 96.76 95.47 66.05 95.18
 1 93.94 95.04 135 99.87 95.33 87.13 95.43         

Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 percent 
CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the coverage of the 
95 percent CI based on a 10000 run simulation. r is the ratio between the size of the typical and atypical 
populations, B is the ratio between their standard deviations, and N is the total sample size from the 
two populations.
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Table 4.5 c: Empirical assurance probabilities at the 80% assurance level for three variance formulas 
such that the half-width of a two-sided 95% confidence interval for the AUC is not greater than the 
prespecified width 𝜔 when the true AUC 𝜃 = 0.7. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.05 0.5 0.5 430 95.01 95.32 392 42.16 95.30 495 100.00 95.13
 0.75 61.04 95.15 450 86.81 94.74 99.93 94.73
 1 17.32 95.10 507 93.72 95.26 83.75 94.90
 1 0.5 427 20.44 95.33 445 41.30 95.20 440 33.88 95.33
 0.75 60.59 94.91 456 94.59 95.14 78.43 95.44
 1 72.21 95.03 472 99.88 95.03 87.53 95.16
  
 1.5 0.5 472 6.09 94.90 524 42.44 95.09 458 3.27 94.77
 0.75 57.71 94.55 511 95.13 94.56 41.35 94.91
 1 95.70 94.83 505 99.98 95.00 87.00 95.21
 2 0.5 530 3.17 95.19 609 43.61 94.79 495 0.78 95.21
 0.75 58.23 94.66 577 95.01 95.06 23.7 95.01
 1 98.74 94.80 554 99.90 94.72 83.6 95.05
  

0.1 0.5 0.5 108 73.20 95.42 101 51.02 95.63 131 100.00 95.28
 0.75 48.46 95.48 116 76.24 95.50 98.39 95.86
 1 26.96 95.20 131 82.51 95.78 81.05 95.19
 1 0.5 109 36.26 94.77 115 53.69 95.24 116 54.30 95.55
 0.75 57.50 95.04 118 88.60 95.23 77.85 95.38
 1 64.32 95.17 123 97.94 95.24 84.06 95.33
  
 1.5 0.5 121 24.74 95.19 135 55.70 95.21 121 25.06 94.86
 0.75 60.65 95.14 132 85.35 95.50 60.01 95.43
 1 85.44 95.82 132 98.72 95.05 85.10 95.15
 2 0.5 136 20.58 95.46 157 55.21 95.39 131 15.21 94.91
 0.75 60.80 95.20 150 89.34 95.27 47.60 95.31
 1 91.66 95.76 145 98.24 95.22 82.03 95.21         

Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 percent 
CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the coverage of the 
95 percent CI based on a 10000 run simulation. r is the ratio between the size of the typical and atypical 
populations, B is the ratio between their standard deviations, and N is the total sample size from the 
two populations.
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Table 4.6 a: Empirical assurance probabilities at the 90% assurance level for three variance 
formulas such that the half-width of a two-sided 95% confidence interval for the AUC is not greater 
than the prespecified width 𝜔 when the true AUC 𝜃 = 0.9. 

 

    

Exponential 
Based 

Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.9 0.05 0.5 0.5 172 74.27 95.09 191 89.21 95.08 245 99.85 95.25
 0.75 72.13 95.21 227 98.26 95.03 99.54 95.36
 1 56.67 94.96 268 99.22 94.94 97.16 94.92
 1 0.5 203 74.60 94.73 229 90.71 94.99 218 84.51 95.08
 0.75 91.68 94.91 249 99.81 95.12 96.16 94.78
 1 94.72 95.33 275 100.00 95.39 98.18 95.00
  
 1.5 0.5 242 74.06 95.00 275 91.20 94.64 227 64.91 94.79
 0.75 95.28 94.79 288 99.89 94.95 89.94 94.78
 1 99.15 95.09 310 100.00 95.18 97.52 95.14
 2 0.5 284 73.64 95.09 323 90.50 94.47 245 51.84 95.17
 0.75 96.84 95.32 333 99.89 95.08 84.56 94.79
 1 99.87 94.90 351 100.00 95.48 97.14 95.02
  

0.1 0.5 0.5 55 77.93 95.42 61 89.10 95.52 87 99.95 94.78
 0.75 75.15 95.33 73 97.21 95.55 99.84 95.01
 1 65.90 94.71 86 98.01 94.86 97.88 94.84
 1 0.5 66 79.93 94.22 73 90.81 94.37 77 94.12 94.43
 0.75 90.28 94.96 80 99.48 95.13 98.74 94.93
 1 93.22 95.30 89 99.98 95.54 99.47 95.36
  
 1.5 0.5 79 81.13 93.83 88 91.50 93.95 80 80.53 93.37
 0.75 94.62 94.59 93 99.49 94.98 95.02 94.85
 1 98.45 95.24 100 100.00 95.15 98.68 95.16
 2 0.5 92 79.80 93.15 104 91.41 93.72 87 72.40 92.72
 0.75 95.35 94.60 107 99.21 94.54 91.14 94.41
 1 99.33 94.76 114 100.00 94.81 97.96 94.84

 
Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 
percent CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of 
the typical and atypical populations, B is the ratio between their standard deviations, and N is the 
total sample size from the two populations.
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Table 4.6 b: Empirical assurance probabilities at the 90% assurance level for three variance formulas 
such that the half-width of a two-sided 95% confidence interval for the AUC is not greater than the 
prespecified width 𝜔 when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.05 0.5 0.5 309 75.58 95.01 322 87.65 94.70 401 100.00 95.01
 0.75 57.59 95.13 375 98.95 95.17 99.91 94.83
 1 30.57 95.01 432 99.58 94.82 96.63 95.07
 1 0.5 331 51.24 95.03 375 90.08 95.25 356 75.29 95.51
 0.75 81.51 95.05 395 99.92 94.84 95.31 95.31
 1 87.08 95.33 422 100.00 94.97 97.36 94.61
  
 1.5 0.5 380 42.23 95.31 445 90.17 94.78 371 35.91 95.32
 0.75 87.32 94.82 449 99.93 94.98 82.39 95.15
 1 98.59 95.11 462 100.00 94.99 97.21 95.24
 2 0.5 436 38.29 94.78 520 89.00 94.84 401 19.62 95.32
 0.75 90.73 94.89 512 99.95 94.98 69.60 95.04
 1 99.80 95.29 516 100.00 94.43 96.30 94.96
  

0.1 0.5 0.5 83 71.65 95.58 89 85.81 95.61 118 100.00 95.28
 0.75 60.78 95.40 104 95.96 95.29 99.82 95.42
 1 44.10 95.39 120 97.88 94.94 96.85 95.06
 1 0.5 91 62.87 95.06 104 89.09 95.08 105 89.21 95.51
 0.75 80.16 95.54 110 99.27 95.03 97.34 95.04
 1 83.61 95.71 118 99.97 95.37 98.60 95.14
  
 1.5 0.5 105 56.02 95.01 124 88.97 95.59 109 65.33 95.22
 0.75 83.76 95.09 126 99.38 95.02 90.14 95.28
 1 94.52 95.53 130 99.99 95.52 97.58 95.23
 2 0.5 120 53.55 95.01 145 89.03 95.39 118 53.08 95.20
 0.75 85.27 95.07 144 99.38 95.16 84.69 95.31
 1 97.05 95.15 146 100.00 95.29 97.43 95.30

 
Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 percent 
CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the coverage of the 
95 percent CI based on a 10000 run simulation. r is the ratio between the size of the typical and atypical 
populations, B is the ratio between their standard deviations, and N is the total sample size from the 
two populations.
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Table 4.6 c: Empirical assurance probabilities at the 90% assurance level for three variance 
formulas such that the half-width of a two-sided 95% confidence interval for the AUC is not greater 
than the prespecified width 𝜔 when the true AUC 𝜃 = 0.7. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.05 0.5 0.5 434 96.83 95.11 401 57.21 95.20 512 100.00 94.50
 0.75 66.14 94.71 460 93.37 95.25 99.99 95.16
 1 18.82 94.93 519 97.42 95.29 94.78 95.29
 1 0.5 433 27.48 95.21 455 56.23 94.74 456 55.63 95.23
 0.75 70.50 94.68 468 98.86 95.03 94.02 94.98
 1 80.28 95.14 485 100.00 95.08 97.70 95.13
  
 1.5 0.5 481 9.49 95.43 536 56.46 95.46 475 7.00 95.17
 0.75 70.71 94.99 524 98.46 94.82 61.89 95.01
 1 98.40 95.21 519 100.00 94.95 96.72 95.04
 2 0.5 541 5.39 95.16 624 57.05 95.21 512 1.69 95.19
 0.75 70.46 94.66 592 98.27 94.64 39.89 94.95
 1 99.69 94.96 571 100.00 95.10 94.53 95.00
  

0.1 0.5 0.5 110 82.99 94.99 105 69.36 95.52 139 100.00 95.32
 0.75 58.58 95.42 121 88.63 95.77 99.90 95.14
 1 32.22 95.29 137 91.92 95.21 94.83 95.43
 1 0.5 112 41.35 95.11 120 72.51 95.26 124 78.09 95.38
 0.75 65.18 95.34 124 97.54 94.95 95.78 95.64
 1 71.52 95.12 129 99.97 95.47 98.03 95.34
  
 1.5 0.5 125 28.88 95.47 141 69.11 95.12 129 38.74 95.57
 0.75 66.19 94.86 139 95.84 95.36 79.60 95.40
 1 90.90 95.43 139 99.92 95.18 96.38 95.32
 2 0.5 142 28.21 95.47 164 67.28 94.97 139 24.34 95.73
 0.75 75.00 94.92 157 95.30 94.89 67.35 95.22
 1 97.23 95.18 153 99.76 95.37 94.88 95.36         

Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 
percent CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio between the size of 
the typical and atypical populations, B is the ratio between their standard deviations, and N is the 
total sample size from the two populations.
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4.2.4 Test of robustness 

A source of error for the simulation involving confidence interval width may have been due to use of 

the nonparametric method by DeLong et al. (1988). As using a nonparametric method on a normally 

distributed data set may cause the method to lose power, we conducted an alternate simulation study 

where instead of using the nonparametric method to calculate the variance of the AUC estimate of the 

generated data, the three parametric variance estimators that were used to estimate the sample size 

were used again to construct confidence intervals. To ensure consistency, the same variance estimator 

that was used to determine the sample size would also be the one that is used in the second step. This 

way, we can test the robustness of the proposed sample size formulas.  

This simulation study used the same settings as the previous simulation study for confidence 

interval width, with the only difference being the variance estimator that was used to calculate the 

variance of the AUC estimate, 𝜃. The results of this method are in summarized in Tables 4.7a to 4.9c. 

Based on these results, it is clear that using the same parametric variance formula to calculate the 

variances and confidence intervals of the generated data provides better empirical assurance 

probabilities. While the nonparametric formula resulted in many EAPs that were very high or very 

low, using the parametric formulas ensures that the EAPs are much more consistent, and they are 

generally close to the prespecified assurance probability. For instance, when 𝜃 = 0.7, 𝜔 = 0.05, 𝑟 =

1.5, 𝐵 = 0.5, using the probit based variance gives an EAP of 50.28 (Table 4.7c) compared to using 

the nonparametric method to calculate the variance which gives an EAP of 0.54 (Table 4.4c). There is 

still some overshooting of the EAPs when the binormal and probit based variance estimators are used, 

but these EAPs are much more consistent than when using the nonparametric formula. Overall, the 

results are better than when using the nonparametric method to calculate the variance of the AUC 

estimate. This aligns with our hypothesis that using a nonparametric method on normally distributed 

data may cause it to lose power, thus resulting in inconsistent EAPs.  
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Table 4.7 d: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 50% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.9. 

 

    
Exponential 

Based  
Variance 

Binormal 
Based  

Variance 

Probit 
Based  

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP 

0.9 0.05 0.5 0.5 143 51.52 95.22 158 52.35 95.38 162 49.60 96.15 
 0.75  51.41 94.98 186 53.17 96.98  49.69 95.96 
 1  51.07 93.66 218 51.43 97.48  50.24 95.52 
 1 0.5 164 50.97 94.85 187 51.47 95.66 144 48.88 92.96 
 0.75  50.60 96.44 202 53.39 97.62  49.71 94.34 
 1  51.77 96.94 221 51.71 98.40  50.42 95.74 
     
 1.5 0.5 193 49.72 94.66 224 51.58 95.67 150 50.38 91.04 
 0.75  50.24 96.66 233 52.62 98.17  49.83 93.63 
 1  50.49 97.69 247 51.99 98.66  50.69 94.64 
 2 0.5 226 51.59 94.38 263 50.71 95.95 162 51.50 89.27 
 0.75  50.63 97.05 268 52.94 98.08  50.32 93.36 
 1  50.48 98.04 279 52.00 98.83  50.96 95.10 
     

0.1 0.5 0.5 40   48.55 97.05 44 54.60 95.05 45 49.74 96.63 
 0.75  50.00 97.33 52 56.24 96.89  48.99 97.04 
 1  49.37 96.68 61 58.01 97.13  49.45 96.05 
 1 0.5 46 51.68 96.85 52 55.78 95.54 40 49.48 94.49 
 0.75  51.55 97.28 56 54.80 97.33  48.93 96.04 
 1  51.52 97.64 62 57.21 98.21  48.76 96.23 
     
 1.5 0.5 54 48.99 96.24 62 50.80 95.52 42 48.82 92.15 
 0.75  48.90 97.70 65 55.52 97.68  49.21 95.59 
 1  48.19 97.92 69 53.42 98.66  47.91 96.37 
 2 0.5 63 53.05 96.07 73 54.02 95.58 45 51.67 91.24 
 0.75  53.09 97.42 74 50.70 97.66  50.72 94.43 
 1  52.72 98.18 78 56.85 98.72  49.70 96.86          

Note: Empirical assurance probability (EAP) is the frequency of times the half-width of the 95 percent 
CI is smaller the prespecified width 𝜔. Empirical coverage probability (ECP) is the coverage of the 
95 percent CI based on a 10000 run simulation. r is the ratio between the size of the typical and atypical 
populations, B is the ratio between their standard deviations, and N is the total sample size from the 
two populations. 
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Table 4.7 e: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 50% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.05 0.5 0.5 288 49.48 95.25 289 51.46 95.21 327 50.38 96.48
 0.75 50.17 95.10 335 52.45 96.26 49.87 95.64
 1 49.99 93.68 384 52.90 96.56 49.89 94.97
 1 0.5 301 48.73 94.00 334 51.39 95.36 291 50.18 93.82
 0.75 49.55 95.34 349 50.59 96.68 49.92 94.91
 1 48.89 95.67 370 52.56 97.07 50.48 95.25
  
 1.5 0.5 342 47.62 93.61 396 50.80 95.57 303 50.45 91.85
 0.75 48.04 95.48 396 52.21 96.57 50.65 94.37
 1 47.48 96.53 403 52.08 97.56 49.52 94.81
 2 0.5 390 50.72 93.23 462 51.52 95.51 327 49.94 90.84
 0.75 49.90 95.62 450 52.14 96.72 50.25 93.33
 1 49.65 96.86 448 51.31 97.77 50.25 94.93
  

0.1 0.5 0.5 72 47.80 95.86 73 53.56 95.63 82 51.56 96.76
 0.75 48.61 95.47 84 53.22 96.02 51.66 95.77
 1 48.76 94.08 97 58.91 96.74 51.40 95.04
 1 0.5 76 49.03 94.48 84 53.27 95.55 73 48.36 93.39
 0.75 48.98 95.40 88 54.01 96.49 47.75 94.80
 1 51.38 95.65 93 53.02 97.04 48.67 94.97
  
 1.5 0.5 86 47.79 93.94 100 54.45 95.40 76 48.13 91.93
 0.75 47.77 95.66 99 49.65 96.95 48.58 93.92
 1 46.94 96.91 101 50.97 97.44 47.89 94.78
 2 0.5 98 46.56 93.55 116 49.12 95.32 82 48.40 90.61
 0.75 46.59 95.81 113 49.35 96.82 49.16 93.61
 1 46.35 97.27 113 52.12 97.53 48.54 95.20      51.56  

 
Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations. 
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Table 4.7 f: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 50% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.7. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based  

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.05 0.5 0.5 421 50.26 95.84 376 52.91 94.05 460 50.40 96.65
 0.75 49.62 94.73 431 53.85 95.39 50.66 96.10
 1 50.23 94.17 483 52.06 95.59 51.47 95.02
 1 0.5 413 48.45 94.08 425 48.99 94.46 409 49.30 94.10
 0.75 49.68 95.04 434 51.86 95.37 49.40 95.01
 1 47.66 95.14 446 50.64 95.74 50.04 95.00
  
 1.5 0.5 455 49.78 93.29 500 53.22 94.11 426 50.28 91.74
 0.75 50.82 94.87 484 49.03 95.72 49.12 94.21
 1 49.90 95.86 476 53.35 96.58 49.12 94.81
 2 0.5 508 48.62 92.20 580 48.95 94.14 460 48.73 91.46
 0.75 47.53 94.85 546 52.89 95.93 49.28 93.30
 1 47.74 96.05 521 51.30 96.53 50.19 94.92
  

0.1 0.5 0.5 104 49.46 95.81 93 54.32 94.22 114 49.59 96.36
 0.75 50.06 94.97 106 56.24 95.45 49.85 96.05
 1 50.44 94.08 119 56.10 95.84 49.95 94.94
 1 0.5 102 49.26 93.99 105 50.02 94.42 101 49.36 93.89
 0.75 49.06 95.14 107 50.9 95.46 48.63 94.99
 1 48.35 95.52 110 52.77 96.02 48.83 94.87
  
 1.5 0.5 112 45.19 93.46 123 49.37 94.57 105 48.50 92.60
 0.75 43.75 94.89 120 57.04 95.36 49.22 94.22
 1 44.37 96.02 117 49.28 96.10 49.09 94.84
 2 0.5 126 50.18 92.96 143 46.10 94.16 114 50.38 91.37
 0.75 50.06 94.77 135 58.19 95.87 50.33 93.32
 1 51.59 96.51 129 61.65 96.46 50.44 95.11        

 
Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations. 
  



 

   

 

75 

 

Table 4.8 d: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 80% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.9. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.9 0.05 0.5 0.5 162 71.23 95.04 180 76.02 95.39 218 93.69 96.17
 0.75 71.04 94.67 213 79.22 97.13 93.53 96.18
 1 70.26 94.18 252 81.68 97.66 92.55 95.07
 1 0.5 190 77.98 94.93 215 77.64 95.25 194 90.71 93.13
 0.75 79.12 96.17 233 82.48 97.52 92.14 94.60
 1 79.41 96.80 257 85.79 98.30 92.81 94.91
  
 1.5 0.5 226 80.04 94.63 258 77.56 95.65 202 88.61 90.85
 0.75 82.08 96.58 270 83.30 97.85 91.53 94.17
 1 82.85 97.58 289 87.95 98.71 92.38 95.23
 2 0.5 265 81.21 94.79 303 78.86 96.10 218 87.66 89.14
 0.75 84.13 96.95 311 83.79 98.00 90.97 93.40
 1 86.73 98.19 327 89.71 98.75 92.38 95.12
  

0.1 0.5 0.5 50 76.36 97.41 56 83.53 95.20 73 96.88 95.88
 0.75 76.60 97.14 66 86.32 96.86 97.02 96.35
 1 74.75 96.22 78 88.62 97.51 96.40 95.52
 1 0.5 59 81.93 96.76 66 85.07 95.59 65 94.47 93.21
 0.75 83.48 97.37 72 89.53 97.67 95.75 94.69
 1 83.77 97.56 80 93.50 98.13 95.81 95.04
  
 1.5 0.5 71 86.66 96.38 80 86.83 95.97 68 94.16 91.36
 0.75 88.21 97.38 84 90.73 98.00 95.33 94.27
 1 89.57 97.83 90 95.75 98.49 96.12 95.51
 2 0.5 83 86.68 96.15 94 85.44 95.72 73 92.54 89.21
 0.75 89.36 97.27 97 91.90 98.12 94.39 93.08
 1 90.95 98.35 102 96.78 98.71 95.39 95.22         

Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations. 
 

  



 

   

 

76 

 

Table 4.8 e: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 80% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based  

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.05 0.5 0.5 302 64.86 95.36 311 80.81 94.91 376 92.96 96.20
 0.75 65.37 94.75 362 84.07 96.08 93.35 96.12
 1 64.96 93.89 416 87.45 96.51 92.02 95.18
 1 0.5 321 71.67 93.92 361 84.58 95.35 335 90.02 93.57
 0.75 72.99 95.35 379 89.57 96.95 91.67 95.17
 1 73.20 95.61 404 95.29 97.27 91.51 94.86
   
 1.5 0.5 367 75.29 93.34 428 85.00 94.95 348 88.48 91.51
 0.75 77.21 95.63 431 91.50 96.93 90.09 94.13
 1 77.65 96.12 442 97.15 97.57 91.37 95.03
 2 0.5 420 79.25 93.58 501 86.05 95.36 376 87.16 90.73
 0.75 80.73 95.48 491 91.16 96.76 89.73 93.33
 1 82.56 96.93 493 97.87 97.77 91.06 95.20
   

0.1 0.5 0.5 80 67.34 95.27 84 85.99 95.22 106 95.74 96.60
 0.75 66.41 95.05 97 87.62 96.11 94.90 95.90
 1 66.32 94.07 112 91.58 96.48 93.98 94.77
 1 0.5 86 74.42 94.53 97 87.53 95.53 95 93.32 94.09
 0.75 75.57 95.72 103 94.42 96.43 93.77 94.79
 1 76.86 95.91 110 99.11 97.32 93.76 95.09
   
 1.5 0.5 98 77.57 94.03 116 89.85 95.20 98 90.79 91.73
 0.75 78.94 95.94 117 94.91 96.78 92.16 93.86
 1 80.36 97.02 121 99.70 97.55 92.81 95.19
 2 0.5 113 79.34 93.69 135 90.26 94.99 106 89.44 90.71
 0.75 81.16 96.06 133 95.83 97.04 91.43 93.60
 1 83.33 97.24 135 99.71 97.69 92.87 95.32   

Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations. 
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Table 4.5 f: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 80% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.7. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.05 0.5 0.5 430 61.99 96.07 392 84.46 94.81 495 93.11 96.67
 0.75 61.61 95.39 450 86.09 95.50 92.18 95.75
 1 61.02 94.07 507 91.02 95.67 91.26 94.89
 1 0.5 427 70.79 94.02 445 89.75 94.22 440 90.20 94.03
 0.75 71.70 94.92 456 96.16 95.25 91.10 95.05
 1 73.01 95.37 472 99.83 95.80 91.02 94.98
  
 1.5 0.5 472 75.81 93.00 524 91.28 94.58 458 87.98 92.06
 0.75 77.58 94.81 511 97.48 95.33 90.19 93.83
 1 78.21 96.02 505 99.91 96.08 90.51 94.92
 2 0.5 530 81.01 92.62 609 91.69 94.20 495 88.69 91.39
 0.75 82.41 94.42 577 97.20 95.73 89.79 93.68
 1 83.69 95.98 554 99.60 96.01 91.27 94.63
  

0.1 0.5 0.5 108 60.03 95.58 101 88.70 94.81 131 95.54 96.36
 0.75 60.44 95.18 116 90.62 95.25 95.91 96.17
 1 59.03 93.58 131 94.36 95.74 95.38 95.69
 1 0.5 109 71.24 93.81 115 94.30 94.17 116 92.66 93.65
 0.75 72.79 94.67 118 99.84 95.70 93.55 95.22
 1 72.43 95.42 123 100.00 96.00 93.43 95.41
  
 1.5 0.5 121 77.96 93.00 135 96.16 94.45 121 91.17 92.09
 0.75 80.02 95.31 132 98.47 96.18 91.96 93.87
 1 80.87 95.81 132 99.99 96.19 92.98 95.07
 2 0.5 136 82.86 92.57 157 94.31 94.74 131 90.00 91.62
 0.75 85.32 95.26 150 99.18 95.46 91.28 93.56
 1 86.65 95.90 145 99.89 96.48 92.96 95.14         

Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations.
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Table 4.9 d: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 90% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.9. 

 

    

Exponential 
Based 

Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.9 0.05 0.5 0.5 172 80.75 94.92 191 85.25 95.58 245 98.92 95.79
 0.75 80.60 95.01 227 88.14 96.76 99.21 96.29
 1 80.03 94.55 268 90.35 97.68 98.50 94.89
 1 0.5 203 87.51 94.62 229 87.86 95.91 218 97.98 92.79
 0.75 88.92 96.38 249 91.55 97.69 98.23 94.51
 1 89.54 96.81 275 94.70 98.30 98.61 94.89
  
 1.5 0.5 242 88.73 94.53 275 88.55 95.92 227 97.27 90.93
 0.75 91.69 96.91 288 92.47 97.83 98.15 93.95
 1 92.31 97.59 310 96.71 98.90 98.36 94.87
 2 0.5 284 90.61 94.46 323 87.95 95.92 245 96.45 89.63
 0.75 93.70 97.14 333 93.50 97.84 97.87 92.85
 1 94.38 98.10 351 97.57 99.02 98.54 95.12
  

0.1 0.5 0.5 55 85.44 97.07 61 91.78 95.41 87 99.77 96.30
 0.75 85.58 97.08 73 94.93 96.74 99.78 95.90
 1 84.34 96.42 86 96.58 97.75 99.65 95.10
 1 0.5 66 93.13 96.63 73 93.30 95.94 77 99.40 92.57
 0.75 94.68 97.47 80 97.46 97.69 99.73 94.87
 1 94.86 97.55 89 98.98 98.18 99.81 95.38
  
 1.5 0.5 79 94.58 96.35 88 94.09 95.47 80 98.90 90.61
 0.75 96.49 97.70 93 98.24 97.75 99.42 93.84
 1 96.83 97.99 100 99.70 98.70 99.58 95.19
 2 0.5 92 95.04 95.98 104 94.11 95.94 87 99.17 89.90
 0.75 97.62 97.98 107 97.96 97.95 99.58 93.45
 1 97.89 98.39 114 99.83 98.87 99.69 95.39

 
Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations. 
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Table 4.9 e: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 90% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.8. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.8 0.05 0.5 0.5 309 72.57 95.24 322 90.54 95.25 401 99.13 96.82
 0.75 71.48 94.75 375 92.60 96.08 98.70 95.95
 1 71.52 93.65 432 95.39 96.53 98.62 95.25
 1 0.5 331 81.58 94.47 375 94.39 95.56 356 97.66 93.71
 0.75 82.95 95.19 395 97.99 96.78 98.10 94.64
 1 82.82 95.62 422 99.79 97.29 98.51 94.74
  
 1.5 0.5 380 87.15 93.45 445 94.47 95.03 371 96.85 91.69
 0.75 88.84 95.31 449 98.50 96.52 97.70 93.56
 1 90.06 96.57 462 99.91 97.48 98.20 95.05
 2 0.5 436 89.31 93.27 520 94.78 95.12 401 96.13 89.72
 0.75 91.78 95.73 512 98.84 97.08 97.60 93.34
 1 92.89 96.94 516 99.96 97.82 98.29 94.88
  

0.1 0.5 0.5 83 73.80 95.47 89 94.19 94.85 118 99.70 96.35
 0.75 74.17 95.11 104 96.39 95.87 99.62 96.21
 1 72.75 93.70 120 98.32 96.65 99.56 95.33
 1 0.5 91 84.53 94.40 104 97.83 95.06 105 98.90 93.53
 0.75 85.60 95.42 110 99.74 97.12 99.35 95.17
 1 86.05 95.76 118 100.00 97.24 99.34 94.85
  
 1.5 0.5 105 91.02 93.86 124 97.97 95.51 109 98.54 92.12
 0.75 92.27 95.77 126 99.89 96.91 99.14 94.05
 1 92.83 96.87 130 100.00 97.72 99.27 95.23
 2 0.5 120 92.53 93.79 145 97.89 95.00 118 98.33 90.90
 0.75 94.22 95.94 144 99.88 96.95 99.14 93.82
 1 95.23 97.10 146 100.00 97.92 99.27 95.19

 
Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations. 
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Table 4.9 f: Comparisons of empirical assurance probabilities using the nonparametric (NP) and 
parametric methods at the 90% assurance level such that the half-width of a two-sided 95% confidence 
interval for the AUC is not greater than the prespecified width 𝜔 when the true AUC 𝜃 = 0.7. 

 

    
Exponential 

Based 
Variance 

Binormal 
Based 

Variance 

Probit 
Based 

Variance 
𝜃 𝜔 r B N EAP ECP N EAP ECP N EAP ECP

0.7 0.05 0.5 0.5 434 66.56 95.51 401 93.94 94.35 512 98.89 96.52
 0.75 66.00 95.26 460 95.44 95.27 98.83 96.04
 1 66.22 93.87 519 97.78 95.20 98.52 95.17
 1 0.5 433 79.80 94.13 455 98.26 94.74 456 98.21 93.86
 0.75 79.60 95.15 468 99.88 95.33 98.64 94.77
 1 80.09 95.18 485 100.00 96.18 98.75 95.01
  
 1.5 0.5 481 88.02 93.51 536 98.31 94.16 475 97.63 92.11
 0.75 88.70 94.41 524 99.94 95.60 98.39 94.27
 1 90.28 95.91 519 100.00 95.96 98.62 95.29
 2 0.5 541 92.88 92.79 624 99.00 94.61 512 96.50 91.02
 0.75 94.59 94.98 592 99.83 95.45 97.80 93.70
 1 95.08 95.88 571 99.99 96.64 98.22 94.96
  

0.1 0.5 0.5 110 66.10 95.88 105 96.55 94.45 139 99.98 96.68
 0.75 65.05 94.99 121 97.72 95.11 99.95 95.71
 1 65.21 93.93 137 99.21 95.73 99.94 94.81
 1 0.5 112 82.15 93.98 120 100.00 94.68 124 99.81 93.66
 0.75 82.32 95.19 124 100.00 95.47 99.81 94.66
 1 83.22 95.20 129 100.00 96.08 99.79 95.18
  
 1.5 0.5 125 90.95 92.91 141 99.92 94.54 129 99.45 91.92
 0.75 92.38 94.99 139 100.00 95.39 99.60 94.00
 1 93.85 95.96 139 100.00 96.03 99.79 94.93
 2 0.5 142 97.78 92.37 164 99.58 94.57 139 99.12 91.00
 0.75 98.58 95.28 157 99.99 95.57 99.62 93.95
 1 99.17 96.35 153 100.00 96.39 99.75 95.29         

Note: EAP is the frequency of times the half-width of the 95 percent CI is smaller the prespecified 
width 𝜔. ECP is the coverage of the 95 percent CI based on a 10000 run simulation. r is the ratio 
between the size of the typical and atypical populations, B is the ratio between their standard 
deviations, and N is the total sample size from the two populations. 
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4.3 Nonparametric method using pilot data 

Similar to the first simulation study that was designed to estimate sample sizes with precision when 

achieving a prespecified lower bound, we conducted a third simulation study using the method 

based on pilot data. This method used pilot data from Wieand et al. (1989), which is a data set 

taken from the Mayo clinic where a total of 141 patients were evaluated for their disease status 

and levels of CA 19-9 and CA 125 markers, two biological markers that are often associated with 

pancreatic cancer. Higher values for biomarkers indicate higher probability of the disease. 

We first estimated the AUC and variance of AUC for these two markers using the ranking 

method explained in Section 3.3.3. These values were then used in the proposed sample size 

formula to estimate required sample sizes based on the group size ratio r, the prespecified 

assurance probability 1 − 𝛽, and the lower bound 𝜃 . Data was generated based on this sample 

size by sampling the pilot data with replacement, and then a ROC test was performed in order to 

estimate the AUC, its variance, and confidence intervals. The simulation study was performed for 

1000 runs with similar settings as used in the previous simulation studies.  

 We kept the range of parameters similar to the first simulation to ensure consistency. The 

ratio of typical to atypical patients, r, was set to be 0.5 to 2. The lower bound was slightly different 

from the first simulation study because the AUC is fixed in this simulation, so we decided to use 

various lower bounds that are within the applicable range of an AUC. We used lower bounds 

between 0.55 and 0.65 for the simulation study based on the CA 19-9 biomarker, which has an 

AUC of 0.70, and we used lower bounds between 0.7 and 0.8 for the simulation study based on 

the CA 125 biomarker, which has an AUC of 0.86. We used a prespecified assurance probability 

of 0.5, 0.8, and 0.9.  
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4.3.1 Results 

The simulation results are summarized in Tables 4.10a and 4.10b, respectively for the simulation 

based on the CA 19-9 biomarker which has an AUC of 0.70, and the simulation based on the CA 

125 biomarker whose AUC is 0.86. The nonparametric method performed better than the previous 

methods. The general trends observed from the simulation study for the parametric methods can 

also be observed here.   

 As the prespecified assurance probability increases, the estimated sample size also 

increases, as seen in Table 4.7a, and as the lower bound decreases, the sample size also decreases, 

which matches what is expected as a bigger difference between the AUC and lower bound leads 

to a smaller required sample size. The sample size also changes according to the group size ratio 

r, where the smallest sample size estimates occur when 𝑟 = 1 and 𝑟 = 1.5, but the largest sample 

sizes occur when 𝑟 = 0.5 and 𝑟 = 2. This means that fewer subjects are needed for studies that 

have fairly even study group sizes as compared to very uneven or skewed study group sizes.  

 With the true AUC of 0.70, the empirical assurance probabilities are generally very close 

to the prespecified assurance probabilities. When the prespecified assurance probability is 50 

percent, the EAPs are within the range of 47 to 50 percent, with the majority of them being around 

49. When the prespecified assurance probabilities are 80 and 90 percent, the EAPs tend to 

overshoot more such that as the prespecified assurance increases, the EAPs are in the range of 80 

to 83 percent, and between 91 and 93 percent, respectively. 

 The second part of this simulation was based on the CA 125 biomarker, which has an AUC 

of 0.86. The same trends could be seen here with some slight differences. We can see that the 

sample sizes in Table 4.7b are similar to those estimated from data based on the CA 19-9 biomarker 

in Table 4.7a. However, as group size ratio r increases, the sample size also increases. For the 
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previous simulation, the sample sizes were highest when r was farthest away from 𝑟 = 1, implying 

that fewer subjects would be needed in a study if the study group sizes are fairly even. This trend 

is not seen for this simulation, as it appears that as the ratio r increases, more subjects would be 

required, with the smallest sample size resulting from when 𝑟 = 0.5.  

 The empirical assurance probabilities are also within a greater range than that seen in the 

previous simulation. When the prespecified assurance probability is 50 percent, the EAPs are 

generally close to 50 percent, in the range of 49 to 53. When the prespecified assurance is 80 

percent, the EAPs are ranged between 80.6 and 85.3 percent. EAPs tend to slightly overshoot when 

the lower bound is 0.7. This pattern also appears at the 90 percent prespecified assurance level, 

where EAPs are ranged between 91.3 to 95.2 percent. The largest EAPs around 94 to 95 percent 

occur when the lower bound is 0.7. 
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Table 4.10 a: Empirical assurance probabilities at three assurance levels such that the lower bound 
of a two-sided 95% confidence interval for the AUC is not greater than the prespecified lower limit 
𝜃 . Based on the AUC obtained from the CA 19-9 data by Wieand et al. 

 
    50% Assurance 80% Assurance 90% Assurance 

𝜃 θ r N EAP ECP N EAP ECP N EAP ECP
0.7 0.65 0.5 443 48.4 95.9 905 82.3 96.7 1211 92.2 96.0

0.60 131 47.0 95.1 268 83.2 96.0 359 92.2 96.0
0.55 64 50.7 93.6 130 82.1 95.3 174 91.4 95.9

    
0.65 1 382 49.8 95.2 779 80.7 97.0 1043 91.0 96.6
0.60 113 49.0 95.6 231 82.4 96.4 309 91.5 97.0
0.55 55 48.6 92.6 112 81.1 95.8 150 91.3 96.2

    
0.65 1.5 390 49.0 95.4 796 80.7 96.4 1066 91.6 94.9
0.60 116 49.6 95.7 236 81.8 96.4 316 92.1 95.7
0.55 56 48.9 92.6 115 81.7 95.5 153 92.0 96.0

    
0.65 2 416 48.9 96.1 849 80.0 95.9 1136 91.8 96.0
0.60 123 49.3 94.7 252 81.0 96.5 337 93.0 94.7
0.55 60 48.0 91.8 122 81.7 94.8 163 91.4 95.0       

 
Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is smaller the prespecified lower limit θ . Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 1000 run simulation. r is the ratio between the size of the 
typical and atypical populations, B is the ratio between their standard deviations, and N is the total 
sample size from the two populations. 
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Table 4.10 b: Empirical assurance probabilities at three assurance levels such that the lower bound 
of a two-sided 95% confidence interval for the AUC is not greater than the prespecified lower limit 
𝜃 . Based on the AUC obtained from the CA125 data by Wieand et al. 

 
    50% Assurance 80% Assurance 90% Assurance 

𝜃 θ r N EAP ECP N EAP ECP N EAP ECP
0.86 0.80 0.5 180 51.9 94.3 367 81.4 93.8 492 91.3 94.8

0.75 66 50.9 94.9 135 84.0 94.4 180 93.8 94.3
0.70 37 49.5 94.9 75 84.4 95.0 100 94.2 95.1

  
0.80 1 215 50.1 94.6 439 80.6 92.7 587 91.6 94.2
0.75 79 50.8 94.9 161 84.4 94.9 215 94.2 94.6
0.70 44 50.8 92.3 89 85.1 95.9 119 94.9 95.6

  
0.80 1.5 258 51.2 94.4 527 81.0 94.2 705 91.8 94.0
0.75 95 51.3 94.5 193 84.3 94.6 259 94.2 94.4
0.70 53 52.7 93.2 107 85.5 95.0 143 95.2 94.7

  
0.80 2 303 50.4 94.5 619 81.6 93.6 829 91.3 94.2
0.75 111 51.6 94.5 227 84.5 94.9 304 93.6 94.3
0.70 62 52.3 92.6 126 85.3 94.4 168 94.4 94.2        

 
Note: Empirical assurance probability (EAP) is the frequency of times the lower bound of the 95 
percent CI is smaller the prespecified lower limit θ . Empirical coverage probability (ECP) is the 
coverage of the 95 percent CI based on a 1000 run simulation. r is the ratio between the size of the 
typical and atypical populations, B is the ratio between their standard deviations, and N is the total 
sample size from the two populations. 
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4.4 Conclusion 

In this simulation study, we investigated the performance of three sample size formulas with an 

incorporated prespecified assurance probability of achieving a certain lower limit or confidence 

interval half-width. The sample size calculations required variances, and we used the variance 

estimators based on the exponential distribution, the binormal distribution, and the probit 

transformation, proposed by Hanley and McNeil (1982), Obuchowski (1994), and Rosner and 

Glynn (2009), respectively. The required sample sizes were then calculated, and data was 

generated according to these sample sizes and desired AUC. The AUC estimate and its variance 

were then calculated using the nonparametric method by DeLong et al. (1988), though three 

parametric variance formulas were used to calculate these in the test of robustness in Section 4.2.4. 

Confidence intervals for the AUC were constructed with this variance using the logit 

transformation to ensure that the confidence intervals did not go outside the bounds of (0,1). For 

the simulation study about achieving a prespecified lower bound, the empirical assurance 

probability was calculated by determining how many lower bounds of the 95 percent two-sided 

intervals were greater than the prespecified lower bound, 𝜃 . For the confidence interval half-width 

simulation study, the EAP was calculated based on how many half-widths of two-sided 95 percent 

confidence intervals were smaller than or equal to the prespecified half-width, 𝜔. These EAPs 

were then compared to the prespecified assurance probability at three levels: 50 percent, 80 

percent, and 90 percent. 

We were able to see a few common trends within both simulations. The ratio between 

typical and atypical patients, r seemed to be directly proportional to the empirical assurance 

probability and sample size. The level of prespecified assurance is directly proportional to sample 

size, where the greater the prespecified assurance, the greater the required sample size. The 
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difference between 𝜃 and 𝜃  is inversely proportional to the sample size, where the greater the 

difference between them, the smaller the required sample size. This is also true of 𝜔 where the 

required sample size is smaller when 𝜔 is bigger. 

For the case of achieving a prespecified lower bound, we can see that the variance formulas 

perform quite similarly. The EAPs are generally close to the prespecified assurance probability, 

though sometimes they may overshoot especially when using the binormal variance estimator. For 

the case of achieving a certain confidence interval width, the results were unexpected as there were 

dramatic drops and peaks in the EAP. We suspect that it may be due to the small standard deviation 

ratio between the study groups of 𝐵 =  0.5 paired with the extreme group size ratio of 𝑟 =  0.5. 

This may have caused extreme variability amongst the atypical group, thus causing the confidence 

intervals to be much wider than expected. Additionally, the usage of a non-parametric method on 

normally distributed data may have compromised the power of the method, thus making the 

confidence intervals wider than expected.   

Overall, the trends in the data match with the results of previous literature and what one 

would expect. The method based on pilot data performed the best since its empirical assurance 

probabilities were the closest to the prespecified assurance probabilities out of all of the methods. 

They were the most consistent and did not contain the drops and peaks seen in the confidence 

interval width simulation and they were also within a narrower range than those in the lower bound 

simulation.  
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Chapter 5 Illustration 

 

After examining the finite sample size performance via simulations in Chapter 4, we now illustrate 

the application using examples from studies of biomarkers for pancreatic cancer.  

Pancreatic cancer is often associated with two biomarkers: CA 125 and CA 19-9. CA 125 

is known as cancer antigen 125, a protein that is associated with many types of cancer including 

ovarian, breast, stomach, and lung cancers. It can also be found in normal cells in the body and is 

secreted into the bloodstream, thus can be measured (Bast et al., 1983). Carbohydrate antigen 19-

9 is a protein found on the surface of cancer cells and is often associated with pancreatic cancer, 

though can also exist in healthy individuals as well (Del Villano et al., 1983). It is also measured 

from the bloodstream. 

These biomarkers are strongly correlated with having pancreatic cancer but having high 

levels of these biomarkers do not guarantee that someone will have pancreatic cancer. Wieand et 

al. (1989) evaluated the sensitivity and specificity of CA 125 (Bast et al., 1983) and CA 19-9 (Del 

Villano et al., 1983) markers based on a study done at the Mayo Clinic. In 141 patients, 50 had 

pancreatitis and 91 had pancreatic cancer. Their disease status was recorded as well as the levels 

of the two biomarkers in units U/mL. Wieand et al. (1989) then used the data from the study to 

compare the two biomarkers and evaluate how suitable they were for the diagnosis of pancreatic 

cancer, based on the ROC curves. For this illustration, we used the CA 125 biomarker, which has 

an AUC of 0.86, to investigate how the position of a lower bound 𝜃  would affect the required 

sample size. Specifically, we want to determine a sample size that would ensure that the lower 
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bound of 95 percent confidence interval around an AUC of 0.86 is not lower than a preset lower 

limit of 0.8 or 0.75 or 0.7, with 80 percent assurance.  

The first step would be to determine the variances that are needed in the proposed sample 

size formula (3.6): 

𝑁 =
(𝑟 + 1)

𝑟

𝑍 / + 𝑍

lgt 𝜃 −  lgt 𝜃

 𝑟 var(𝑝 ) + var(𝑞 )

𝜃  (1 − 𝜃)
 . 

Recall that the variance formulas for var(𝑝 )and var(𝑞 ) are: 

var(𝑝 ) =  
∑ 𝑝 −  �̅�

𝑛 − 1
 

var(𝑞 ) =  
∑ (𝑞 −  𝑞)

𝑚 − 1
 . 

The rank procedure from Section 3.3.3 is performed in order to determine the proportion 

of times a biomarker value from the atypical group is greater than biomarker values from the 

typical group, and vice versa. For the CA 125 data, we get var(𝑝 ) = 0.068325 and var(𝑞 ) =

0.009001743. Assuming an equal typical to atypical group ratio, 𝑟 = 1, the sample size formula 

gives us 

𝑁 =
(𝑟 + 1)

𝑟

𝑍 / + 𝑍

lgt 𝜃 −  lgt 𝜃

𝑟 var(𝑝 ) + var(𝑞 )

𝜃  (1 − 𝜃)
 

=
(1 + 1)

1

1.96 + 0.842

lgt (0.86) −  lgt (0.8)

(1)0.068325 + 0.009001743

0.86  (1 − 0.86)
 

= 2
1.96 + 0.842

ln
0.86

1 − 0.86
− ln

0.8
1 − 0.8

0.068325 + 0.009001743

0.86  (1 − 0.86)
 

≈ 439 . 

Then a total sample size of 439 is required, with 220 subjects in the atypical group and 219 subjects 

in the typical group, to achieve a lower bound of 0.8 with 80 percent assurance.  
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To achieve a lower bound of 0.75 with 80 percent assurance, the sample size required is 

obtained using the same variances calculated from the pilot data set by the sample size formula: 

𝑁 =
(𝑟 + 1)

𝑟

𝑍 / + 𝑍

lgt 𝜃 −  lgt 𝜃

𝑟 var(𝑝 ) + var(𝑞 )

𝜃  (1 − 𝜃)
 

=
(1 + 1)

1

1.96 + 0.842

ln 
0.86

1 − 0.86
−  ln 

0.75
1 − 0.75

(1)0.068325 + 0.009001743

0.86  (1 − 0.86)
 

≈ 161 

which gives us a total sample size of 161 subjects, with 81 in the atypical group and 80 in the 

typical group.  

Similarly, to achieve a lower bound of 0.7, we have  

𝑁 =
(𝑟 + 1)

𝑟

𝑍 / + 𝑍

lgt 𝜃 −  lgt 𝜃

𝑟 var(𝑝 ) + var(𝑞 )

𝜃  (1 − 𝜃)
 

=
(1 + 1)

1

1.96 + 0.842

ln 
0.86

1 − 0.86
−  ln 

0.7
1 − 0.7

(1)0.068325 + 0.009001743

0.86  (1 − 0.86)
 

≈ 89 

which gives us a total sample size of 89 subjects, with 45 in the atypical group and 44 in the typical 

group.  

We can also calculate the required sample size when the group size ratio is not equal. When 

𝑟 = 1.5, assurance is 80 percent, and the lower bound 𝜃  is 0.8, we have 

𝑁 =
(𝑟 + 1)

𝑟

𝑍 / + 𝑍

lgt 𝜃 −  lgt 𝜃

𝑟 var(𝑝 ) + var(𝑞 )

𝜃  (1 − 𝜃)
 

=
(1.5 + 1)

1.5

1.96 + 0.842

ln 
0.86

1 − 0.86
−  ln 

0.8
1 − 0.8

(1)0.068325 + 0.009001743

0.86  (1 − 0.86)
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≈ 527 . 

Thus, we would need a total sample size of 527, with 211 subjects in the atypical group and 316 

subjects in the typical group.  
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Chapter 6 Discussion 

 
Existing sample size formulas based on confidence interval width can provide inadequate 

sample sizes. This is because they do not take into consideration the probability of achieving 

the desired confidence interval, and usually there is only a 50 percent chance that the observed 

confidence interval excludes a prespecified value to be excluded. In order to ensure adequate 

sample sizes for studies assessing accuracy of diagnostic tests, we can incorporate into the 

sample size formula a prespecified assurance probability of achieving a desired lower limit or 

confidence interval width. 

In this thesis, we derived asymptotic sample size formulas which incorporated a 

prespecified assurance probability to ensure that sample sizes are not underestimated. These 

were based on three different formulas for estimating the variance of the AUC. Sample sizes 

were determined based on the AUC 𝜃, its variance, the ratio between the typical and atypical 

group sizes r, the ratio between their standard deviations B, and either the lower bound 𝜃  or 

the confidence interval half-width 𝜔. We evaluated the performance of the proposed sample 

size formulas via simulation studies. Data were then simulated 10000 times based on these 

calculated sample sizes, and then the means, variances, and AUCs of each data set were 

determined using the nonparametric method by DeLong et al. (1988). The logit transformation 

was applied to ensure that confidence intervals were not outside the plausible range of (0,1), 

then later transformed back into the raw scale in order to be compared. The empirical assurance 

probabilities were determined based on how many confidence interval lower bounds were 

greater than 𝜃 , or how many confidence interval half-widths were smaller than 𝜔. These EAPs 

were compared to the prespecified assurance probability to evaluate the performance of the 
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sample size formulas using each of the three variance estimators. We went on to evaluate the 

robustness of the sample size formula by using these same parametric variance estimators on 

the generated data for achieving confidence interval width. A new method was developed 

based on pilot data and DeLong et al.'s (1988) nonparametric method, and a simulation study 

was also conducted in a similar way to the previous simulation studies. We also applied this 

new method to a data set in the real world to illustrate its impact on the sample size. 

From the results of the simulation study, we concluded that the method based on pilot 

data performs the best. The empirical assurance probabilities of this method were the closest 

to the prespecified assurance probabilities, and they were the most consistent. While there is 

some overshooting, the EAPs do not have dramatic drops and spikes like in the simulation for 

achieving a prespecified confidence interval width, and they are within a narrower range than 

the EAPs in the simulation for achieving a prespecified lower bound. 

There were certain patterns found in the results of the simulation study. Generally, we 

found that the sample size is inversely proportional to the ratio between typical and atypical people, 

where the greater the r, the smaller the required sample size. Sample size also depends on the 

magnitude of the difference between 𝜃 and 𝜃  or of the confidence interval width 𝜔, where the 

greater the difference or width, the smaller the sample size. In general, sample size and EAP are 

directly proportional, with a larger sample size giving the experiment more assurance. We can also 

see that EAP tends to increase as B increases, with its highest usually when B = 1. 

The results do follow previous findings in the existing literature. The binormal based 

variance formula was known to be more conservative than the exponential based variance, 

especially when 𝜃 is large, and we can see that reflected in the results of this simulation. The 

sample sizes calculated with the binormal based variance are indeed larger than the other two 



 

   

 

94 

 

variances when 𝜃 is large. Additionally, we did comparisons at three different assurance levels—

50 percent, 80 percent, and 90 percent. The 50 percent assurance level condition was to act as a 

control because it is the level of assurance in traditional confidence interval based estimation. As 

we can see, the sample sizes are indeed larger for the 80 and 90 percent assurance levels than the 

50 percent assurance level, indicating that a greater sample size is needed for more precision. 

Since the results from the confidence interval width simulation study were not as expected, 

we suspected that this was due to the standard deviation ratio and group size ratios being too 

extreme. When a large standard deviation is paired with a small group size for the atypical group, 

this would create very wide confidence intervals, thus leading to very small EAPs. Another issue 

would be the usage of a nonparametric method on normally distributed data, as the method may 

be ineffective. The power of the formula would be reduced, variance would be increased, and this 

would lead to wide confidence intervals and small EAPs as well. We decided to test the robustness 

of this method by using the same three parametric variance estimators when calculating the 

variance of the AUC estimate instead of using the nonparametric method by DeLong et al. (1988). 

This provided decent EAPs that did not have the extreme drops and peaks as found in the previous 

setting.  

There are several areas for future research. One area would be adjusting for covariates 

through stratification or regression. We did not consider the possibility that there may be 

confounding variables or other factors that may influence the results of a diagnostic test, so a 

diagnostic test may perform differently according to certain characteristics that a group of subjects 

may have.  One could consider stratifying the groups by the confounding characteristic and then 

conducting the diagnostic test for each group separately. In this case, the proposed sample size 

formulas would be adjusted for estimating the required sample size within each stratum, and the 
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AUC may be an indication of the test accuracy within each stratum. More explicitly, the effect of 

covariates can be adjusted using regression to estimate the AUC and the sample size formula for 

the AUC can be adjusted as well.  

Multiple AUCs can be compared to determine the differences between diagnostic tests—

whether one may be more accurate than another or whether one is better suited for diagnostics or 

screening purposes. Obuchowski (1997) proposed a sample size formula for comparing multiple 

AUCs, and the formula for the difference between two AUCs can be improved to include a 

prespecified precision so that the sample size is not underestimated.  

Lastly, sample size estimation can also be improved in the case of using repeated measures 

from the same subject. For repeated measures, the correlation between the measures from the same 

subject should be taken into account to improve the precision of the AUC estimation. Further study 

would be required to derive and evaluate a sample size formula with prespecified precision with 

the incorporation of repeated measures and their correlation



 

   

 

96 

 

Bibliography 

 
 

Altman, D.G., & Bland, J.M. (1994). Diagnostic tests 1: sensitivity and specificity. BMJ, 309, 

1552. 

Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver 

operating graph. Journal of Mathematical Psychology, 12, 387-415. 

Bast, R.C., Klug, T.L., St. John, E., Jenison, E., Nilo , J.M., Lazarus, H., Berkowitz, R.S., Leavitt, 

T., Griffths, C.T., Parker, L., Zurawski, V.R. & Knapp, R.C. (1983). Radio- immunoassay 

using a monoclonal antibody to monitor the course of epithelial ovarian cancer. New 

England Journal of Medicine, 309, 883-887. 

Daly, L.E. (1991). Confidence intervals and sample sizes: don’t throw out all your old sample size 

tables. BMJ. 302, 333-336. 

DeLong, E.R., Delong, D.M., & Clarke-Pearson, D.L. (1988). Comparing the areas un-der two or 

more correlated receiver operating characteristic curves: A nonparametric approach. 

Biometrics, 44(3), 837-845. 

Del Villano, B.C., Brennan, S., Brock, P., Bucher, C., Liu, V., McClure, M., Rake, M., Space, B. 

& Zurawski, V.R. (1983). Radioimmunometric assay for a monoclonal antibody-defined 

tumor marker, CA19-9. Clinical Chemistry, 29, 549-52. 

El Khouli, R.H., Macura, K.J., Barker, P.B., Phil, D., Habba, M.R., Jacobs, M.A., & Bluemke, 

D.A. (2010). The relationship of temporal resolution to diagnostic performance for 

dynamic contrast enhanced (DCE) MRI of the breast. Journal of Magnetic Resonance 

Imaging: JMRI, 30(5), 999-10004. 



 

   

 

97 

 

Gardner, M.J., & Altman, D.G. (1986). Confidence intervals rather than P values: estimation rather 

than hypothesis testing. Statistics in Medicine, 292, 746-750. 

Gordon, I. (1987). Sample size estimation in occupational mortality studies with use of confidence 

interval theory. American Journal of Epidemiology, 125(1), 158-162. 

Green, D.M. & Moses, F.L. (1966). On the equivalence of two recognition measures of short-term 

memory. Psychological Bulletin, 66(3), 228-234. 

Green, D.M. & Swets, J. (1966). Signal Detection Theory and Psychophysics. New York: John 

Wiley and Sons, Inc. 

Greenland, S. (1988). On sample size and power calculations for studies using confidence 

intervals. American Journal of Epidemiology, 128, 231-237. 

Hanley, J.A., & Hajian-Tilaki, K. (1997). Sampling variability of nonparametric estimates of the 

areas under receiver operating characteristic curves: An update. Statistics in Radiology, 

4(1), 49-58. 

Hanley, J.A., & McNeil, B.J. (1982). The meaning and use of the area under a receiver operating 

characteristic (ROC) curve. Radiology, 143(1), 29-36. 

Hanley, J.A., & McNeil, B.J. (1983). A method of comparing the area under two ROC curves 

derived from the same cases. Radiology, 148(3), 839-843. 

Kupper, L.L., & Hafner, K.B. (1989). How appropriate are popular sample size formulas? The 

American Statistician, 43, 101-105. 

Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. New York: 

John Wiley. 

Mann, H.B. & Whitney, D.R. (1947). On a test of whether one of two random variables is 

stochastically larger than the other. Annals of Mathematical Statistics, 18(1), 50-60 



 

   

 

98 

 

Noether, G.E. (1967). Elements of nonparametric statistics. New York: Wiley. 

Obuchowski, N.A. (1994). Computing sample size for receiver operating characteristic studies. 

Statistics in Radiology, 29(2), 238-243. 

Obuchowski, N.A., & McClish, D.K. (1997). Sample size determination for diagnostic accuracy 

studies involving binormal ROC curve indices. Statistics in Medicine, 16, 1529-1542. 

Rothman K.J. (1978). A show of confidence. New England Journal of Medicine, 299, 1362-1363. 

DOI: 10.1056/NEJM197812142992410. 

Rosner, B., & Glynn, R.J. (2009). Power and sample size estimation for the Wilcoxon rank sum 

test with application to comparisons of C statistics from alternative prediction models. 

Biometrics, 65, 188-197. 

Wieand, S., Gail, M.H., James, B.R., & James, K.L. (1989). A family of nonparametric statistics 

for comparing diagnostic markers with paired or unpaired data. Biometrika, 76(3), 585-

592. 

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80-

83. 

Yerushalmy, J. (1947). Statistical Problems in Assessing Methods of Medical Diagnosis, with 

Special Reference to X-Ray Techniques. Public Health Reports, 62(40), 1432-1449. 

Zou, G.Y. (2012). Sample size formulas for estimating intraclass correlation coefficients with 

precision and assurance. Statistics in Medicine, 31, 3972-3981. 

Zou, G.Y. (2021). Confidence interval estimation for treatment effects in cluster randomization 

trials based on ranks [Press release]. DOI: 10.1002/SIM.8918. 



 

   

 

99 

 

VITA 

EDUCATION 

 Master of Science in Biostatistics       2018-2021 
   Western University, London, Ontario, Canada 
 
 Bachelor of Science in Psychology, Neuroscience, and Behaviour  2014-2018 
   McMaster University, Hamilton, Ontario, Canada 
 
 
WORK EXPERIENCE 
 
 Research Assistant          2015-2018 
   McMaster University, Hamilton, Ontario, Canada 


	Sample Size Formulas For Estimating Areas Under the Receiver Operating Characteristic Curves With Precision and Assurance
	Recommended Citation

	Microsoft Word - Grace Thesis clean word doc June 22

