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Abstract 

The goal of the Internet of Things (IoT) is to convert the physical world into a smart space in 

which physical objects, called things, are equipped with computing and communication 

capabilities. Those things can connect with anything, anyone at any time, any space via any 

network or service. The predominant Internet of Things (IoT) system model today is cloud 

centric. This model introduces latencies into the application execution, as data travels first 

upstream for processing and secondly the results, i.e., control commands, travel downstream 

to the devices. In contrast with the cloud-model, the cloud-fog-based model pushes 

computing capability to the edge of the network, which is closer to the data sources. This 

enables lower latency and a faster response time. The end-device can directly receive the 

service from the fog node instead of sending all the data to the central cloud server. In 

addition, with the application of microservice containerization technology, fog nodes can 

quickly set up various environments for heterogeneous services.  

 

Compared with cloud computing, fog computing needs to consider users’ mobility and 

geographic location. The application scenarios that fog computing are more dynamic and 

flexible. Therefore, fog computing requires real-time data monitoring and service 

management. In this thesis, we will explore how to deploy fog computing resources, what 

data is needed in the deployment process, and how to implement data monitoring. 
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Summary for Lay Audience 

As more devices are connected to the Internet, there is a need to support real-time analysis 

and mobility. Cloud computing usually provides computing power support for these 

interconnected devices. In order to adapt to the new requirements in IoT devices latency and 

mobility, fog computing is an extension of the cloud to deploy computing resources to the 

edge of the network.  

In the environment of fog computing, containerized microservice is a common service 

deployment approach. A container is considered to be a more lightweight implementation of 

computing resource virtualization compared to virtual machines. Container technology uses 

fewer computing resources than virtual machines, and can be deployed, expanded and 

migrated faster, which is more suitable for the dynamic computing environment of fog 

computing. The microservice architecture divides a software application into several 

microservices representing independent functions that communicate with each other though 

am API to act as a complete service. This flexible deployment method can deploy different 

microservices on several different fog service servers, making more efficient use of 

computing resources. 

The cost of this distributed software architecture is the cost of deployment and maintenance. 

System administrators often have to face complex service dependencies. System 

administrators need to perform real-time analysis, deployment, expansion, and migration for 

diverse microservices in heterogeneous servers. Therefore, the container orchestration 

algorithm of fog computing provides a solution to this problem. The container orchestration 

algorithm will manage containerized microservices in real time through different algorithms 

and deployment strategies based on the data of monitoring containerized microservices. 

Therefore, we analyzed the existing fog computing monitoring tools and the container 

orchestration algorithm for fog computing and developed a fog computing monitoring 

framework for the purpose of providing data for the fog computing container orchestration 

algorithm. 
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The framework we proposed can not only provide container-granular virtual hardware 

resource information, but also black-box monitoring of service layer information related to 

microservices. We tested the feasibility of the framework on Raspberry Pis and CPU 

overhead of this framework through experiments and showed what type of data and 

dashboards this framework can provide. The results show that this framework can be 

deployed on single-chip microcomputers with relatively insufficient computing performance. 
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Chapter 1  

1 Introduction 

The Internet of Things (IoT) has seen rapid development in the last 10 years [1]. A IoT 

device consists of sensors and/or actuators, connectivity and compute power. These 

devices are used to monitor and control physical objects. In 2015, there were 15.41 

billion connected devices, and this number is steadily rising every year. In 2025, the 

estimated number is expected to reach 75.44 billion [1].   

 

IoT devices are responsible for collecting data through sensors. Since IoT devices have 

limited computing power, cloud computing resources are used to analyze sensor data 

[21]. In this design model, there is a clear division of tasks between the cloud and IoT 

devices which are placed at the edge of network. That is, the edge is responsible for data 

collection and the cloud is responsible for processing of data and management of IoT 

devices. Cloud systems can aggregate data from different devices for IoT services. For 

example, for smart cities, a single IoT device is not enough, because it may be necessary 

to collect information from multiple IoT devices for temperature, humidity and air quality 

of the entire city. The cloud can aggregate data from temperature sensors, humidity 

sensors, anemometers, sensitivity meters, and air quality detectors to analyze weather 

forecast information [39]. 

 

However, with the increase in the number IoT devices and data, and the physical distance 

between the network edge and cloud data centers, the volume of data to be transferred is 

expected to increase dramatically which result is in a large network load. Even the 

promise of 5G is insufficient for some applications since 5G applies to the cellular 

network.  In addition to network congestion, cloud computing capabilities may also reach 

their limits during peak hours. Due to the overload of communication and computing 

resources, high latency will occur. For some services, high latency is unacceptable e.g., 

autonomous driving [2].   
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To address challenges posed by network latency, the concept of fog computing proposed 

by Cisco [40] has received widespread attention. Fog computing refers to the deployment 

of servers with low computing performance distributed near the edge of the network that 

is closer to data sources. These resources are used to provide data analysis, processing of 

aggregation data and other services. In this way, not all data needs to be sent to the cloud-

based system, and much of the data processing can be done in fog nodes. The 

communication load on the network core is greatly reduced.  

 

In application scenarios of cloud and fog computing and the Internet of Things [45], 

another notable technology is microservice containerization. The use of microservices 

has been proposed to be used in software development as opposed to monolithic 

software. The traditional monolithic software architecture means that all the functions of 

the software are encapsulated in one program. The microservice architecture can separate 

different functions in the software into different programs. This design pattern provides 

more flexibility [48]. These programs that provide part of the software's functions are 

called microservices. Microservices may be encapsulated in a container.  An IoT 

application may consist of multiple microservices. Some of these microservices may be 

shared by different IoT applications. Microservices can be encapsulated in a container 

and may be placed on different computing nodes. For example, an IoT application can be 

used to locate a lost child. The application may require the following types of services: (i) 

A service that captures surveillance camera images; (ii) A service that provides a face 

detector classifier for detecting faces on an image; (iii) A service to determine if the face 

is that of the missing child. If smartphone cameras are to be used, a service that can 

communicate with smartphone cameras is needed. Services may be replicated in order to 

better distribute the load of camera data and analyzing it. Services may be shared e.g., a 

parking lot IoT application may use the service that captures surveillance camera images. 

 

Microservices may need to be replicated due to high demand and this requires a suitable 

node to place the service on. There is also a need to be able to determine if the IoT 

application is able to meet the run-time requirements.  This requires the monitoring of the 
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interactions among microservices.  Furthermore, determining a node to place a 

microservice should consider the potential for overloading in order to avoid it. 

 

 .  

1.1 Problem Statement 

In the use of fog computing to extend cloud computing, the orchestration of computing 

resources plays a vital role. Most of the resource orchestration work of fog computing 

assumes that the monitoring of resources and service interaction is available [20].     

 

The data required by resource orchestration frameworks is diverse and can be categorized 

into two categories. One is the consumption of hardware resources represented by CPU, 

RAM, and network bandwidth, which we refer to as the monitoring of usage of 

computing resources. The other is service layer information, such as the number of 

requests received by microservices, the rate of error requests processed by microservices, 

and the dependency between microservices [34]. Currently, fog computing monitoring 

frameworks mostly provide the first type of data without considering the second type of 

data related to services.  This thesis addresses this limitation. 

 

 

1.2 Thesis Contribution 

We propose a monitoring framework that provides for black box monitoring of 

containerized microservices in a fog computing environment. This monitoring framework   

integrates computing resource usage and run-time information of services interaction 

using a black-box approach.      

 

The current container monitoring methods in fog computing are all indirect monitoring 

methods. That is, the performance of containerized services is evaluated through the 

consumption of virtual computing resources. However, in some service orchestration 

algorithms such as [13] and [43], there are references to container orchestration based on 

the information of the service layer. Therefore, the framework we propose attempts to 
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integrate service-level information and computing resource information into the same 

framework. 

1. Black-box monitoring of microservice in fog computing.  

In the microservice tracking tools represented by ZipKin1, Dapper [33], Dyna-

trace2, it is necessary to modify the code of the target microservice and insert the 

monitoring code. However, in the heterogeneous environment of fog computing, 

making modifications and updates to each microservice will generate a lot of 

labour work. Therefore, the framework we propose uses black box monitoring, 

that is, system administrators are not required to understand or even modify the 

microservices in the container. 

2. Acceptable consumption of computing resources.  

Through experiments, we deploy our monitoring framework on a single-chip 

computer with relatively low computing performance. The results of the 

experiment show that even when a large number of concurrent requests are made, 

the computing resources used by this monitoring framework can still be borne by 

the single-chip microcomputer. 

 

1.3 Thesis Structure 

The thesis is organized as follows: Chapter 2 provides the background of container 

monitoring in fog computing.   Chapter 3 presents a literature review on the issues of fog 

computing orchestration, fog computing monitoring and microservice monitoring.   

Chapter 4 describes a new monitoring framework. Chapter 5 describes the 

implementation.  Chapter 6 presents the evaluation of the monitoring framework.   

Finally, we summarize and analyze our work in Chapter 7 and propose future research 

directions. 

 
1
 https://zipkin.io/ 

2
 https://www.dynatrace.com/ 

https://zipkin.io/


5 

 

Chapter 2  

2 Background 

2.1 Cloud Computing 

The development of the Internet has brought more users and over time more complex 

needs.  Applications have higher requirements for computing resources such as more 

powerful computing power, more storage capacity and faster transmission speed.  

Enterprises need to continuously manage these computing resources. These tasks include 

installation, deployment, upgrade, testing, management system, etc.  Often this demand 

for computing resources is dynamic and will continue to change as the number of users 

changes. It is often difficult for enterprises to accurately assess the appropriate 

deployment of computing resources.   

 

Figure 1: Cloud Computing 

 

The emergence of cloud computing has greatly reduced the cost of computing resources 

for developers and enables clients to rent computing resources from cloud computing 

vendors that have data centers with powerful computing resources. Developers can 

deploy their applications and services in the data centers and pay according to resource 

usage. With cloud computing, developers can better control costs by using computing 
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resources as needed. Cloud computing can provide dynamic and flexible computing and 

resources, scalability, stable backup, and simple deployment.   

Cloud computing provides different models of service as presented in figure 2. The most 

common modes are Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and 

Software as a Service (SaaS). IaaS can provide the hardware equipment required by the 

application, including server, storage and network. Developers can rent these resources to 

deploy their own operating systems, computing environments and applications. IaaS 

service providers include Rackspace, Amazon Web Service, Microservice Azure etc. 

IaaS and PaaS service providers also provide and manage operating systems, middleware 

and software. Clients only need to focus on application development and maintenance. 

AWS Elastic Beanstalk and Google App Engine are the typical providers of PaaS. 

SaaS is a way in which service providers directly provide services to end users. Users can 

access data stored in the cloud through any device at any location. Representative 

examples of such services are Google Drive Storage, Google apps. 

 

Figure 2: Cloud Service Type and Layers 

2.2 Fog Computing 

Internet of Things application scenarios typically include sensors that generate data 

which is often done periodically and often results in large amounts of data. The reliance 

on cloud computing means long-distance data transmission resulting in high latency for 

processing and the potential for high amounts of data being transmitted that can result in 

network congestion. This led to Cisco proposing the concept of fog computing [17], 
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which refers to deployment of computing resources at the network edge which is closer to 

the data sources. Fog computing is an extension of cloud computing, making up for the 

shortcomings of cloud computing by placing computing power at the network edge. 

These computing nodes near the edge of the network are called fog nodes. The name fog 

computing comes from the fact that fog is closer to the ground than clouds. 

 

Figure 3: Fog Computing 

 

The main feature of fog computing is that computing resources are   distributed at the 

edge of network. The computing resources / capacity of a single fog node server is less 

than that of the cloud data centers [50].  

 

Figure 4: Fog Node 
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Compared with cloud computing, where all computing tasks are centralized and delivered 

in the cloud, fog computing is used to support latency sensitive application at the edge of 

the network which allows for client requests to be processed more quickly. This feature 

makes it possible to have latency-sensitive application scenarios such as autonomous 

driving [23], healthcare [24], smart factory [25]. If the computing performance of fog 

computing cannot support client requests, fog computing can be used as a gateway to 

aggregate and filter the original data, and thus reduce the communication load from the 

client to the cloud. 

 

The implementation of fog computing is diverse [26], but the main feature is to combine 

multiple computing devices with low computing performance into a cluster which is 

often referred to as a fog node. The roles of computing devices in the fog node are either    

manager or worker. In general, there is only one manager for a fog node. The manager is 

responsible for the deployment and distribution of tasks, while the worker nodes focus on 

executing the assigned computing tasks. These tasks may be implemented using 

microservices. 

 

Among the different fog node implementation methods, Raspberry Pi is considered to be 

a suitable and promising implementation method. Bellavista et al. [27] showed the 

feasibility of the Raspberry Pi as a fog node computing device and claimed that the fog 

node that uses Raspberry Pis has good scalability, flexibility, appropriate cost and easy 

deployment features. Other research [28] shows that the use of a Raspberry Pi for fog 

computing to implement a Raspberry Pi fog node for processing real-time data can be 

used in fog nodes. 

 

Fog computing is essentially an extension of cloud computing, that is, deploying services 

closer to end users. However, this kind of extension is more than simply increasing the 

deployment volume and density of servers. Compared with cloud computing, fog 

computing is closer to users, and relatively more dynamic in response to usage scenarios, 

such as providing automatic services for autonomous driving [23], providing instant data 

processing and equipment management for smart factories [25], and providing computing 



9 

 

for smart cities Infrastructure [15], etc. These different application scenarios means that 

fog computing has different characteristics, such as the geographic awareness of equipment, 

real-time migration of services according to user needs, the diversity of server hardware, 

and the limited computing performance of hardware equipment. These problems have not 

been well studied within cloud computing because of the relatively concentrated and 

unified computing resources. 

 

2.3 Computing Resource Virtualization 

In the development of cloud computing, cloud computing users may have various demand 

for computing resources. If cloud providers customize different hardware for each user, a 

lot of labor, time and resource costs will be incurred. Therefore, cloud providers address 

this problem through resource virtualization. 

 

Computing virtualization technology uses virtualization management software 

(Hypervisor or Virtual Machine Manager) to decouple the hardware resources of the 

physical server from the upper-layer applications to form a unified computing resource 

pool, which can then be flexibly allocated to logically isolated virtual machines or 

containers for shared use. 

 

The advantage of this virtualization technology lies in dynamic computing resource 

planning [51], improved utilization, manageability, and reliability [52]. Currently, the two 

widely used implementations of virtualization are through virtual machine or container 

technology. 

2.3.1 Container and Virtual Machine 

Container technology [29] refers to the virtualization of applications, where each 

application has its own independent user space. The container includes the code, system 

tools, library and environment configuration required by the application being hosted in 

the container.  The application of container technology allows developers to focus more 

on developing and deploying applications instead of repeatedly deploying development 

environments. The components needed to run a program is packaged into an image file. 
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The image file can be loaded into a container in order to be executed. This reusability and 

convenience greatly enhance the flexibility and scalability of services. Containers can 

also download image files from image file storage repositories (such as Docker Hub) for 

rapid deployment. 

 

Virtual machines differ from containers in that a virtual machine can use an operating 

system that differs from the server’s operating system.    The virtual operating system will 

run like any another program on the server. A virtual machine (VM) can virtualize different 

operating systems on the host to adapt to different system requirements on the system 

environment. However, the unique feature of container technology is that all containerized 

applications can share the same container engine, and thus avoids the usage of system 

resources by requiring its own operating system.  The creation of a container does not need 

to allocate fixed memory and disk storage like a virtual machine [30]. Therefore, compared 

to virtual machines, containers are more lightweight, and the utilization of host hardware 

computing resources is more flexible and dynamic [30]. In terms of data, the minimum 

amount of RAM resources used by the container can be small as 5MB while the smallest 

resource usage required by the virtual machine is 250MB [2]. 

 

2.3.2 Container Orchestration 

Containers placed on the same host share the same operating system.  To efficiently run 

multiple containers on a single host requires that no one container starves the other 

containers of CPU, memory, or networking I/O.  Thus, as the number of containers 

increases, the complexity of managing resources also increases. Container orchestration 

tools are needed to manage containers and applications. Tools widely used in the industry 

include Docker Swarm and Kubernetes.  

 

Docker Swarm3 is the official native management tool for Docker container. By using it, 

users can pack multiple docker servers into a single large virtual docker cluster to quickly 

 
3
 https://docs.docker.com/engine/swarm/ 

https://docs.docker.com/engine/swarm/
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build a container platform.  Kubernetes [31] is the container platform designed by Google. 

Kubernetes has more features such as alert and visualization. In the 2017 Docker 

Conference, Docker announced that they would provide native support to Kubernetes.   

Research [4] shows that Kubernetes uses more resources than Docker swarm. However, 

Kubernetes provide more features. Briefly, Docker Swarm is known for native lightweight 

deployment, and Kubernetes provides more and powerful functionality. 

 

 The tools required for management includes monitoring of containers and container host 

systems. Management tools are usually integrated with tools designed for container 

monitoring.  For example, Docker Swarm integrates Docker's native monitoring tool 

docker stats and Kubernetes integrates CAdvisor.  

 

We studied popular monitoring tools used by industry.  These tools can be categorized   

into three categories. The first category represents the basic tools. These tools are known 

for being lightweight and fast. These tools can efficiently and quickly provide the basic 

information of the containers and host machines. One tool is the Docker Stats command 

from Docker. This tool provides CPU and memory usage, network and block I/O, and 

process identifiers (PIDS) for each container on the physical server.  Kubernetes’s 

CAdvisor is able to query this information and provide a web-accessed visualization 

dashboard. The visualization shows the information for the past 1 minute. The downside 

of these tools is that they cannot provide advanced features such as an alert system, 

monitoring multiple docker machines and long-term data storage. CAdvisor can be 

integrated with most of the management tools e.g., Kubernetes, Amazon ECS.   

 

The second category is hosted tools.  These tools provide monitoring services from third-

party companies. The administrator pays for an account, and then deploys the configuration 

files onto the docker machines. The configuration files are used by Docker machines to 

link to the account on the cloud.   The monitoring services (e.g., Scout4, Datadog5 )typically 

 
4
 https://scoutapm.com/ 

5
 https://www.datadoghq.com/ 

https://scoutapm.com/
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use basic monitoring (e.g., Docker Stats) Additional monitoring services may provide a 

flexible visualization dashboard and an alert system with customized thresholds.   

 

The third category is the self-hosting tools. For some administrators, self-deploying, 

controlling and customizing the monitoring tool is a better option. These kinds of tools are 

open source. They usually provide different kinds of monitoring such as virtual machine, 

system process, user customized metrics, as well as the containers. Even if it requires some 

extra effort for deployment, the tools can also provide complete functionality by integrating 

stack of different tools. These tools usually have a well-developed docker image.  One tool 

stack example is Prometheus6 which consists of four containerized components: MySQL 

for data storage, Prometheus for data aggregation, Grafana for the visualization and Node 

Exporter for information query. 

 

2.4 Microservice and Tracing 

With the dynamic and flexible computing resource planning brought about by 

virtualization technology, the concept of microservices has also been proposed. In 

traditional software service development, all parts of application software are packaged in 

the same program and run on a server. This traditional application software architecture is 

a monolithic application. The concept of microservices is intended to adapt to a more 

dynamic and flexible computing resources environment [49]. The microservice 

architecture splits a monolithic application into different parts, and each part is called a 

microservice. The services provided by the monolithic application is through the 

collaboration of microservices. In this section, we introduce the characteristics of 

microservices, the advantages and disadvantages compared to monolithic applications, and 

the challenges that microservices currently face. 

 

 
6
 https://prometheus.io/ 
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2.4.1 Microservice  

Microservices is a software architecture, which means that the software is composed of 

multiple independent services where each service is responsible for a single function.  

The idea is not to develop a huge monolithic application, but to decompose the application 

into small, interconnected microservices. One microservice completes a specific function, 

such as passenger management and order management. Each microservice has its own 

business logic. Some microservices also provide API interfaces for other microservices and 

application clients. 

 

Compared with monolithic applications, the microservice architecture has the advantages 

of low coupling and better maintainability [16]. In a monolithic application, a small 

change may affect the deployment of the entire application. The modification of a single 

module may require coordination of other modules. This type of maintenance requires   

programmers to have a sufficient understanding of the entire application architecture. In 

the microservice architecture, changes made by the programmer to a single microservice 

will not affect other microservices.   

 

2.4.2 Microservice Tracing 

The disadvantage of the current microservice architecture compared to monolithic 

applications is troubleshooting. When a single application fails, the system maintainer can   

troubleshoot the problem by reading the application log on a single server [22]. The 

microservice architecture is different. Each microservice may have its own log storage 

format and method, and each microservice may be deployed on a different server. This 

feature increases the cost of troubleshooting system failure points. In order to solve this 

problem, the industry proposed the concept of microservice tracing. 

 

Compared with traditional monolithic service systems, in the microservice architecture, a 

user's request may need to access multiple microservices deployed on different servers. In 

a monolithic system, the system architecture is relatively fixed and stable; and all modules 

are deployed on the same server. If errors and abnormalities are found with real-time 
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monitoring, the system administrator can quickly locate the abnormal server and deal with 

it quickly [22].  

 

With microservices, different containerized components may have multiple replicas as 

working instances, and these replicas are deployed on different machines. This low-

coupling system architecture layer has flexibility and scalability advantages in large cluster 

deployments. However, this distributed deployment brings challenges to monitoring and 

tracking. Each request may be passed between multiple stateless microservices through 

API interaction, and these microservices may be distributed on different servers. 

Therefore, in the industry, there are also many service layer monitoring tools developed 

for tracking the performance of microservices such as ZipKin [32], Dapper [33], Dyna-

trace [34], etc. 

 

The approach of these tools is to assign a trace identifier to each request that is being 

tracked. A complete microservice trace chain record is generated by combining records 

with the same trace identifier together. The limitation of this method is that the system 

administrator needs to have a certain degree of understanding of the application design and 

this approach requires the modification of the code of the service.   This method is referred 

to as white box monitoring, that is, the service function and monitoring function of the 

system are mixed together. From a development perspective, this increases the difficulty 

and complexity of development. Developers not only need to pay attention to the business 

algorithm, but also need to understand monitoring, communication and DevOps logic [49].  

 

On the other hand, when the maintainers and developers of the system are from different 

parties (for example, when the service is hosted in an AWS cluster), this typically increases 

the difficulty of operation and maintenance. 

 

We will discuss the pros and cons of white box monitoring in more detail in section 3.3, 

as well as the comparison with black box monitoring. 
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2.5 Containerized Microservice 

Since containers and microservices are both dynamic and flexible, the combination has 

become popular.   Cockcroft et al [53] believes that containerized microservices can 

multiply the dynamic and flexible characteristics, making microservices more elastic and 

flexible. In this section, we will briefly discuss the usage scenarios of containerized 

microservices and a monitoring method that is being developed for containerized 

microservices. 

2.5.1 Usage and Application 

In this section, we will introduce two representative application scenarios of 

containerized microservices:  providing computing support for the Internet of Thing (IoT) 

applications and the realization of network function virtualization. Both of these 

application scenarios involve pushing computing functions to the edge of the network and 

deploying microservices in a fog computing environment closer to the data source. 

2.5.1.1 Container and IoT 

IoT applications are characterized by their integration with sensor data.  Sensor data may 

be shared by multiple applications as well as some of the analysis of data.  For example, 

data collected from wearable sensors that monitor patient vitals can be continuously sent 

to data aggregators and, in the event of detection of abnormal behavior, hospital personnel 

can be immediately notified in order to take appropriate measures.   In this example, there 

could be multiple conditions that could be detected that use a particular sensor but not 

necessarily use all the same sensors.  Furthermore, more conditions can be detected. It is 

possible to create a single stand-alone application for this but would be difficult to maintain 

with the implementation of new features that may require different analysis.  This is 

addressed by using microservices that allows applications to be composed from multiple 

microservices and microservices can be shared by multiple applications.  Microservices 

can be replicated or have additional resources allocated to it as needed e.g., a newly 

deployed application may use an existing microservice; mobile movement of sensors may 

require services to be deployed on new fog nodes.  This implies high dynamicity.  

Containers are often used to host a microservice. Under this trend, the deployment of fog 

nodes at the edge of the network as gateways for IoT devices can effectively deal with the 
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latency problem. However, the resource-constrained nature and diversity of these gateways 

pose a challenge to the development of widely deployable applications. Cziva et al. [55] 

focus on this issue and proved through experiments that deploying gateways through 

containerized services can improve the computing performance of IoT gateways. On the 

other hand, because of the lower consumption of computing resources and faster 

deployment speed of containers, the deployment of containers [56] is more flexible and 

faster than virtual machines and can adapt to dynamic user needs faster to achieve real-

time expansion. Scaling and migration. 

  

2.5.1.2 Container and Network Function Virtualization 

As an increasing number of network middleware devices are deployed in the network. 

Problems such as high development cost, fast update, and difficulty in upgrading and 

deployment based on dedicated hardware have become increasingly prominent. These 

middleware or proprietary services often require specific hardware to work together. 

Network function virtualization (NFV) aims to change the current situation faced by 

network operators. Network function virtualization (NFV) is a method of virtualizing 

network services (such as routers, firewalls, and load balancers) that traditionally run-on 

proprietary hardware. 

 

At present, industry and academia tend to use virtual machine technology to implement 

NFV platforms [53]. With the rise of container technology, containers are considered to 

be the technology to implement NFV in the future. For example, Cziva et al. [54] have 

conducted in-depth research using containerized NFV. Cziva et al [54] believe that with 

the increase number of users and new mobile devices, telecommunications service 

providers (TSP) often encounter the problems of low resource utilization, tight coupling 

with specific hardware and lack of flexible control interfaces and cannot support multiple 

mobile applications and service. Therefore, the authors proposed a framework for 

implementing NFV by container instead of Virtual Machine (VM) at the edge of the 

network. Since containers take less hardware computing resources and are more flexible, 

TSP could reduce unnecessary core network usage, better troubleshoot faults, and 

provide users with location-aware and transparent services. 
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2.5.2 Service Mesh  

When containers are chosen as the running environment of microservices, the service 

mesh7 is considered to be a way of complete microservice tracking in the future. The 

service mesh is an infrastructure component for the processing of service communication.  

 

The service grid monitoring solution is to deploy a corresponding traffic proxy called 

"sidecar" for each container. All communication services related to the container will be 

processed through the sidecar. The service mesh architecture is relatively simple and 

consists of a two-tier architecture. One is the data layer (data plate). This layer deploys 

sidecars for each container. The sidecar could completely proxy request and response 

related to the container. These tasks include processing data packets, forwarding, routing, 

load balancing, monitoring, etc. [35] These sidecars can communicate with each other, and 

these communication records can be used to track microservice requests. The other layer 

is the control layer (control plate). This layer does not directly parse the data packets, but 

communicates with the sidecar of the data layer, collects the information of the data layer 

and assign distribution/routing policy. Also, the control layer could provide APIs to system 

administrators to facilitate configuration, monitoring, visualization, continuous integration 

and deployment. 

 

This architecture splits out service communication, allowing developers to focus more on 

service code logic. The related management and control functions of the communication 

and network layers are lowered to the infrastructure layer. In this design, service code and 

communication are fully decoupling. 

 

Service mesh also has limitations. The most frequently mentioned limitation of the service 

mesh is the increase in system complexity and latency. The integration of sidecar's 

additional agents into the entire distributed microservice system will make the entire 

 
7
 https://linkerd.io/ 

https://linkerd.io/
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system even more troublesome and increase the difficulty of operation and maintenance.  

Since all information is proxied by the sidecar instead of directly communicating with the 

container, this will cause a slight delay. In some business scenarios, this kind of delay 

cannot be tolerated. 

 

Moreover, the current research on service mesh is all in the cloud environment without 

considering the characteristics of fog computing. When the computing performance is 

limited and the configuration process needs to be simplified, whether the service mesh is 

still applicable has not been well studied [36]. 
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Chapter 3  

3 Related Work 

This chapter reviews the current work on containerized microservice monitoring and 

container management using the evaluation criteria described below which focusses on 

supporting IoT applications. 

 

1. Support for fog computing. 

 Fog computing is expected to host applications composed of services that are 

dynamic and that to have more dynamic application scenarios than cloud computing. 

In the fog computing environment, we need to consider the diversity of fog server 

devices, the mobility of the services, the geographical location of clients, and the 

limited computing resources of the server devices.   

 

2.  Support for the collection of run-time information of microservices and 

containers    

The monitoring of containers and   microservices are usually carried out separately 

with different design and tools. Container monitoring is a type of virtual resource 

monitoring. The focus of virtual resource monitoring is to provide the visibility of 

virtual machines’ resource and performance. Therefore, the indicators that the 

container monitoring solution focuses on are Health (On/Off), Performance (CPU, 

RAM, Bandwidth, Storage), capacity, security and power [32]. The focus of 

microservice monitoring is to ensure the stable operation and optimization of service 

applications. Therefore, the indicators of concern are at the service layer, such as 

request tracking, specific service error rates and service interaction and dependencies 

[34]. These two monitoring methods have different design logics and purposes, so 

they are often not integrated into the same framework. In the fog computing 

environment, the combination of these two technologies can be of good use of various 

service scenarios. Therefore, when we conduct a literature review, we will also pay 

attention to whether there is a framework that can combine the different needs of the 
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two parties. 

 

3. Support for Black box monitoring.  

Black box monitoring refers to the monitoring   that doesn’t require modifying the 

source code of the microservices. This is in contrast to white box monitoring, where 

the source code of the microservice is modified.  With the diversity of services, 

requiring system administrators to have a clear understanding of each service will 

increase   learning costs.   

4. Support for run-time information of microservices, containers and resource 

usage. 

 

We conducted a comprehensive literature review in the fields of fog computing monitoring, 

container orchestration and microservice tracing.  In the field of container orchestration of 

fog computing, our research purpose is to explore what kind of data is needed in this field 

to support the container orchestration algorithm. We have selected [44], [43], [13] and [42] 

to represent the information we obtained in the literature study in this field. [44] is a review 

survey, where they analyzed that the orchestration of fog computing should be looped by 

Probe(Monitoring), Analyze, Plan and Execute, and the purpose of monitoring should be 

to provide necessary data for the orchestration and analysis. Then [43], [42] and [13] 

represent the different algorithms in three different scenario which may require different 

monitoring data. [43] represent general fog computing and IoT environment which may 

need QoS data such as request latency, packet loss rate etc. [13] proposed the collection of 

task specification files describing the characteristics of microservices to load appropriate 

tasks on the appropriate servers; [42] proposed fog computing applications in the NFV 

field and mentioned to use packet processing rates in the algorithm. In [43], Yousefpour et 

al also mentioned that most of the data required for container orchestration work 

assumptions have been well collected, but the availability of these data depends on the 

implementation of monitoring work. 
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Then, we put the research focus on the implementation of fog computing monitoring. [11] 

and [12] represent the general work for fog computing monitoring. Their research focus 

includes the topology of fog computing, the communication between nodes and the support 

for IoT devices. However, these works do not consider the usage of container. And our 

primary concern is the monitoring of container granularity at the edge of the network. The 

articles [4],[5],[7],[10] are the work that we found through search engines to monitor the 

granularity of containers in the fog computing environment. We will discuss in detail their 

research motivations, solutions, advantages, and disadvantages in section 3.2. 

 

Finally, we also refer to the containerized microservices in the cloud computing 

environment. There are [22] and [37] respectively. When analyzing this type of article, our 

research focuses on whether the solutions proposed in these articles are feasible in a fog 

computing environment. 

 

After analyzing the current research in these three categories in detail, we believe that none 

of the papers in these three categories address the problem of monitoring microservices in 

the fog computing environment. In the field of fog computing monitoring, the current 

monitoring implementation work focuses on the consumption of container computing 

resources, such as CPU and RAM. In terms of monitoring at the service level, current 

microservice tracking solutions are aimed at cloud computing environments, which does 

not consider the resource constrain in the fog computing environment. We define this as 

the research gap and discuss each article and this research gap in detail in section 3.4. 

3.1 Fog Node Monitoring Requirements 

 This section describes monitoring solutions designed specifically for fog computing. The 

motivation and goal of this type of work is usually in the context of MAPE [44]. MAPE 

stands for monitoring, analysis, plan and executing. The set of processes is planned and 

managed by monitoring some quantitative metrices of the fog node or virtualized 

resources which is followed by an analysis of the collected metrics to support 

management tasks.  These management tasks include migrating services, restarting 

servers, changing the connection path between servers, etc.  
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3.1.1 Orchestration and Monitoring in Fog Computing 

Bonomi et al [44]   analyzed the characteristics of fog computing from the perspective of 

application scenarios and composition structure. Cloud computing resources are managed 

in a centralized manner, and the composition of server resources is relatively more 

homogeneous. As an extension of the cloud computing layer, the fog computing layer is 

composed of heterogeneous server devices. This heterogeneous scope includes high-end 

servers, edge routers, single board computer, set-top boxes and end devices such as 

vehicles or mobile phones. In the fog computing environment, the network infrastructure 

may also be heterogeneous e.g., LTE, WiFi. 

 

Figure 5: Fog Abstract Layer and Orchestration Loop [44] 

In order to standardize the management of fog node devices, Bonomi et al [44]    defined 

a fog abstraction layer as shown in figure 5. This fog abstraction layer hides the 

heterogeneity of the devices by defining device from the perspective of computing 

resources. Computing, storage, and networking resources may be virtualized.   

Monitoring data is to be used for service provisioning and orchestration. 

 

To better understand the monitoring needs for fog computing, we studied the literature on 

orchestration.  This section describes several papers that are representative of recent 

work.  Although container monitoring solution is to provide monitoring data for container 

management/orchestration algorithm, under different needs, there are different 

requirements for the monitoring data. In order to show in more detail what kind of data is 

demanded for container orchestration, we describe some of the orchestration work that 
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includes Foggy [13], FogPlan [43] and a containerized NFV orchestration framework 

[42]. 

 

FogPlan:  Yousefpour et al [43] designed FogPlan which is a container orchestration 

framework that uses a greedy algorithm to optimize service latency. This algorithm 

focuses on QoS metrics such as service delay, hardware resource capacity and traffic rate. 

The design of FogPlan includes a monitoring module. There is no discussion on how 

monitoring is done due to the assumption that the fog node already has the required 

monitoring capability that is able to parse network traffic packets. FogPlan assumes that 

the monitoring solution extracts IP addresses and packet header information (such as 

HTTP header) to map the request to the service by IP address and port number. 

 

Foggy:  Yigitoglu et al. [13] proposed Foggy, which is an orchestration framework for 

containerized microservices in a fog computing environment.  User preferences and 

desired container behaviour are specified using a JSON file. An example is presented in  

Figure 6. The Computation field is used to indicate the computing power required, the 

Latency field is used to indicate the time sensitivity of the service and Output field is 

used to indicate the size of the output. 

 

 

Figure 6: Foggy Container Behavior Specification File Example 

Foggy monitors the resource usage of containers and fog nodes through CAdvisor. Foggy 

uses self-matching algorithms to match each microservice with the most suitable fog 

node in order to support maximizing   the quality of service.  Placement can be adjusted 

as resource needs change. 



24 

 

 

Containerized NFV orchestration framework: Application scenarios considered by 

Zou et al. [42] is a fast-moving containerized NFV (Network Function Virtualization). 

They designed a Rate Limit Strategy that needs to monitor the packet throughput and rate 

of the container granularity. 

 

We observe that for container-based management the physical hardware constraints 

requires knowledge of CPU, RAM and network bandwidth.  However, as indicated by the 

orchestration papers described in this section there is work on managing containerized 

services through quality of service (QoS) metrics e.g., service delay. The work improves 

the utilization of computing resources through optimization approaches that considers 

quality of service indicators.  This requires information that is not hardware usage but 

rather service based.   

 

3.2 Fog Computing Monitoring Implementation of 
Framework 

This section describes five monitoring frameworks designed for a fog computing 

environment framework. Four of these focus on container monitoring (e.g., [4], [5], [7], 

[10]) and one focusses on monitoring server hardware utilization [11].  

 

PyMon: Großmann et al [4] developed PyMon which is a container monitoring 

framework for fog nodes. Großmann et al [4] observed that cloud monitoring solutions 

transplanted to a fog computing environment were not effective since these solutions do 

not consider that fog computing nodes are not as powerful as cloud servers.  Großmann et 

al [4] introduced PyMon a lightweight monitoring solution for single-chip computers. In 

PyMon, the collection of monitored data is through Monit8. Monit is an open-source 

Unix/Linux system monitoring tool. Monit [6] can query the system information and send 

the monitoring data though HTTP. Monit is installed on each worker node.  Monit can 

periodically collect the host information and create an XML file. However, Monit does 

 
8
 https://mmonit.com/monit/ 
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not natively support monitoring of container information, so the authors modified Monit 

with additional information that includes container CPU and RAM usage, image name 

and status. The host information and the additional container information is put in an 

XML file. The XML file is periodically sent to a manager server though HTTP. On the 

server (master node), PyMon provides support for data aggregation and filter processing. 

The pre-processed data is put into a Postgres SQL database on the manager server for 

long-term storage. 

 

After completing PyMon, Großmann et al conducted an evaluation study of PyMon [5]. 

The purpose of the evaluation study was to verify whether PyMon and monitoring tools 

in the cloud computing field can adapt to the fog computing environment, and whether 

future research directions should continue to focus on reducing the hardware usage 

overhead. Therefore, they chose two commonly used tools in the field of cloud 

computing monitoring and deployed them in a fog computing environment. The tools are 

Prometheus and CAdvisor. Prometheus, as a data aggregation server deployed on the 

manager node, corresponds to the role of MonitCollector in PyMon. CAdvisor in the 

Prometheus stack is responsible for collecting hardware information on the worker nodes. 

This is similar to the use of Monit in PyMon. They evaluated two fog computing 

monitoring solutions from the perspectives of CPU overhead and RAM usage. The 

results of the evaluation are shown in Table 1. 

 

Table 1: PyMon vs Prometheus Comparison [5] 

Component CPU Usage RAM usage Component CPU Usage RAM usage

container info Monit 28.69% 13 MB CAdvisor 12.51% CPU usage 50-60MB

Aggreatation Monitcollector 20% - 90% 75MB Prometheus 6% 500MB

Visualization Web UI / / Grafana / /

Storage SQLite / / MySQL / /

PyMon Prometheus

 

 

As shown in Table 1, PyMon has better performance in RAM usage, while Prometheus 

and CAdvisor use less CPU. When the number of monitored containers increases, PyMon 

will also increase CPU usage correspondingly, and serious delays occur when the number 
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of containers reaches more than 32, forming a bottleneck in the system. The combination 

of CAdvisor and Prometheus does not have such a problem. 

The conclusion was that the current open-source tools CAdvisor and Prometheus can be 

part of a monitoring framework for a fog computing environment.   

 

Rule Based Monitoring Framework: Bali et al [7] evaluated PyMon with a focus on 

monitoring efficiency in a fog architecture.  They proposed the use of rules to be 

executed by nodes to determine when data filtering, aggregation and other operations are 

to take place.   For example, a rule on a worker node can specify not to send monitoring 

data to a manager unless the CPU usage exceeds a threshold value. This reduces 

communication load. The rules can also be used by master nodes.  

This rule-based framework not only enables workers nodes to evaluate simple conditions, 

but also provides simple management capabilities for master nodes. The Master Analyzer 

is deployed on the Master node. The responsibility of the Master Analyzer is to manage, 

apply and update the rule set. In comparison to the deployment algorithm described in 

[13] and the machine learning model in [14], this approach of using simple rules could 

reduce the communication load between the client and the server by applying rules to 

filter monitoring data. 

 

The use of rules can be used to reduce monitoring overhead, but it also means that large 

amounts of data cannot be saved for the long term.   In some applications, detailed system 

logs may be required e.g., fog applications with real-time communication such as auto-

driving [2] and auto-drone [9]. 

 

FMonE: FMonE [10] is designed for container monitoring on fog nodes.  The framework 

is made of three components: worker node (FMonE Agent), pipeline, and backend. The 

pipeline is the communication link between different components in the system. The 

backend is the database for the data analysis and long-term storage. FMonE uses the 

concept of region, which refers to a group of worker nodes that are geographically near to 

each other. 
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On each worker node, there is a plugin referred to as the FMonE agent, that manages the 

data stream. FMonE agents consist of three components: inplugin, midplugin and 

outplugin. The inplugin is designed to collect the information from the containers and the 

node. The   metrics includes the CPU usage, RAM usage and network I/O usage.  If these 

basic indicators are not enough to help users monitor fog computing clusters, FMonE also 

supports user to define customized filter/aggregation function on the collected data. The 

midplugin is responsible for aggregating and filtering the data. Finally, the outplugin 

takes the pre-processed data and sends it to the corresponding backend database though 

pipelines.  The backend is only responsible for the storage of data and system logs 

without corresponding data aggregation and analysis capabilities. The work of data 

aggregation is done by a FMonE Agent, while the work of data analysis is handled by 

applications hosted on the central cloud center. In the design of FMonE, the backend is 

just an abstract data storage concept rather than a specific tool. Developers can use 

different database tools for different application scenarios. For example, in the case of a 

small amount of monitoring data, MySQL is sufficient if there are not too many 

monitored nodes. Developers focused on scalability may select Cassandra. 

 

The worker nodes in same region share the 

same backend, and the backends are 

connected to the worker nodes though the 

pipelines. The system administrator can 

easily modify the pipelines to change the 

hierarchical structure. Moreover, the 

pipelines can connect different backends 

together. As the figure 8 shows, the 

pipeline can also link up two backends for 

linkage operation.  

  Fog computing clusters are not as stable as cloud computing clusters. Any network node 

in fog computing may leave the cluster at any time, and an uncertain number of devices 

may join the cluster at any time. Therefore, the monitoring of fog computing needs to 

meet the two conditions of dynamic and flexibility to adapt to the unstable network 

Figure 7 FMonE Architecture 
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environment.  In order to meet the flexible and dynamic requirement, all the components 

are encapsulated into a container for easy setup and deployment. 

 

FMonE has been compared to Prometheus and DataDog. These tools do not fully meet 

the nine requirements of fog computing monitoring described by the FMonE design team.    

PyMon is the closest work FMonE’s, but FMonE has paid more attention to efficiency 

and provides support that provided by PyMon.  

 

M3: A. Souza et al [12] proposed an integrated monitoring system referred to as M3.  

The goal is a monitoring system that provides enough information for container 

management. The work starts with CLAMBS [41], which is a monitoring framework   

designed for cloud environment, but it lacks the ability to monitor the edge device such as 

container information and bandwidth monitoring.  

In M3, the monitoring is supported by four components: The SmartAgent handles 

registration, configuration and communication between the nodes. The SystemAgent 

collects resource information in the container, including process, system, container and 

hardware information. The NetworkAgent monitors the inflow and outflow of network 

traffic. The DeviceAgent is responsible for the communication between nodes and IoT 

devices, including various sensors. The DeviceAgent is designed to be adaptable and 

compatible with a large number of different devices and communication protocols. 

The above four components are deployed on the worker node, and all the information is 

aggregated on the manager node. The Manager Agent deployed on the manager node 

aggregates data from the worker nodes assigned to it. 

 

FogMon: Brogi et al [11] proposed a monitoring framework FogMon which is designed 

for the fog computing environment. Compared with the previous papers in this section, 

they do not include the container in the scope of monitoring. The monitoring content of 

FogMon is limited to the hardware information of the fog server. More specifically, the 

resources they monitor represent hardware indicators, QoS network indicators and IoT 

device indicators. 
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FogMon defines nodes as leader 

node and follower nodes.   FogMon 

is designed to optimize Quality of 

Service (QoS). When a new follower 

node joins the cluster, it will also 

operate for the purpose of optimizing 

QoS. The follower node will first 

connect to an arbitrary leader node 

(assuming that the follower node 

already knows the leader node's IP address).  The follower node will get all other leader 

node information from the leader node. The follower node will then send a message to all 

leader nodes to measure the delay, and then select the leader node with the shortest delay 

time as its leader. 

FogMon's unique feature is P2P communication between leading nodes. Unlike the work 

in Section 3.1, FogMon does not make use of a cloud center. As shown in the figure, the 

highest level of the entire framework is a group of leader node. They designed a P2P 

communication algorithm with a complexity of O (log L) to ensure that all leader nodes 

can share monitoring data. The L in O (log L) represents the number of leader nodes. 

This approach    reduces fog computing's dependence on cloud servers. 

 

3.2.1 Comparison and Discussion  

 As noted earlier, Prometheus, has lower CPU consumption than PyMon.  PyMon 

developers suggests that with the vigorous development of the open-source community, 

open-source software (e.g., Prometheus) can be used to monitor containers in fog nodes. 

Currently, there are no studies comparing the performance of other monitoring 

frameworks (e.g., FMonE, rule-based framework).  

 

 There are three lessons. First, the monitoring system cannot overuse too many system 

resources. The monitoring system should not affect the performance of applications due 

to monitoring. 

Figure 8: FogMon Topology 
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Second, scalability and flexibility. In the fog/edge computing environment, devices 

consist of heterogeneous resources. Therefore, the monitoring system should minimize 

the difficulty of deployment and reduce parameter configuration. 

Third, the future research direction should not be limited to the performance and 

architecture of the monitoring system but can explore more indicators that can be used by 

the orchestration system. 

 

3.3 Monitoring Microservices 

This section presents work related to monitoring microservices.   

3.3.1 White box direct monitoring  

Direct monitoring [22] refers to directly collecting performance metrics   such as the 

number of requests, the amount of concurrency, and the average response waiting time. 

This is done by inserting code in the services that enables the assignment of a unique 

trace identifier for a request. This allows for request tracking.  Examples of tools that use 

this approach include Dynatrace [34] and Dapper [33]. These tools require developers to 

have a certain degree of understanding of the application. 

3.3.2  Black box direct monitoring 

Black box monitoring does not require code to be inserted in an application for 

monitoring purposes. Currently, in the application scenario of fog computing, there is no 

direct monitoring solution that takes into account the characteristics of fog computing. 

Moreover, in the possible application scenarios of fog computing, we need to consider 

the diversity and dynamics of services [10]. According to the characteristics of diversity, 

it is concluded that the monitoring system of fog computing needs to meet the 

requirements of installation-free. Modifying the source code of each service to collect 

metrics is a very inefficient behavior. Black box monitoring meets this requirement. The 

monitoring framework of fog computing needs to assume that we do not know what 

services are running in the container, and the code cannot be modified. This section 

focusses on black box monitoring in fog computing usage scenarios. 
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 Cinque et al [22] proposed a black box service log collection solution for microservices. 

The application layer is complex as reflected in the diversity and complex dependencies 

of microservices. When system administrators perform maintenance and troubleshooting, 

diverse application logs and heterogeneous platform architectures pose huge challenges. 

System administrators need to traverse the system logs and do analysis. Therefore, the 

researchers propose the use of a unified format log that is convenient for system 

administrators to view through a black box monitoring method. They developed the 

“Metro Funnel” tool to sniff HTTP request information on each service port. This 

solution sniffs the request packets through different service ports, perform filtering and 

aggregation operations, and then generates a   log file for system administrators to view.  

It is assumed that the system administrator does not know the service running inside of 

the container. The log information is used to help experienced system administrators to 

quickly locate system bottlenecks, error information and run-time bugs through the 

generated logs. This work is not targeted to measuring containerized microservice 

performance or error detection. However, this black box monitoring method can be used 

to improve service performance by increasing the number of microservice replicas based 

on the analysis of the timeout rate of the requests.  

 

 Pina et al [37] uses blackbox monitoring to monitor the number of requests per 

microservices, response times and the dependencies between microservices.  A 

centralized gateway collects and routes all microservices requests and response. Any 

request from the client, or communication information between the containers will be 

routed by this centralized gateway. In other words, they collect the requested information 

in an accessible, programmable and controllable central server. Through the collected 

information, the framework can clearly provide information, such as the number of 

requests per microservice, response time, and dependencies between microservices. 

In order to implement this centralized proxy monitoring architecture, they modified the 

Netflix gateway ZUUL to route requests between microservices. The experimental 

environment is for Docker containers and the HTTP communication protocol. ZUUL 

collects, aggregate, and filters the communication information of microservices by 

reading HTTP header. 
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The metrics collected are similar to those found in [22]. They also collect access 

timestamps, sender IP, receiver IP, request method, and request path. This is used for the 

monitoring log.  In comparison with the work presented by Cinque et al with [22], the 

difference is how they use the collected information. Cinque et al [22] generate a unified 

format log record from the collected data, passively viewed by the system administrator 

used to help the system administrator locate system abnormalities and bottlenecks.  Pina 

et a [37] stores the collected data in the form of structured data to provide a data source 

for the visual dashboard of system monitoring. 

 

3.4 Discussion and Problem Statement  

Table 2: Summarizes the attributes of the different frameworks discussed in this 

chapter 

Framework Year 
Support 

container 

Support 

microservice 
Support fog Hardware Blackbox 

PyMon 2017 yes no yes yes yes 

PyMon & 

Prometheus 
2018 yes no yes yes yes 

FMonE 2018 yes no yes yes yes 

Rule-based 2019 yes no yes yes yes 

FonMon 2019 no no yes no yes 

M3 

2018 no no yes no yes 

2019 no no yes no yes 

Foggy 2017 yes yes yes 
not 

applicable 
no 

Cognitive IoT 

Gateways 
2017 

not 

applicable 
not applicable 

not 

applicable 

not 

applicable 
no 

Dapper 2010 no yes no no no 

MetroFunnel 2019 yes yes no no yes 

Service mesh  2016 yes yes no no yes 

non-instructive 

monitoring 
2018 yes yes no yes yes 
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3.4.1 Discussion on Fog Computing 

In summary, in the currently known literature, the current research focus of container 

monitoring in the fog computing environment is based on the system architecture, which 

mainly considers the flexibility and scalability of the system. Therefore, the monitoring 

requirements put forward by these fog computing container monitoring tools are related 

to the system, such as flexible data backends, acceptable performance overhead [4], 

geographic awareness, etc. [10].  This type of work considers the service dynamics in the 

fog computing environment with current research that focusses on indirect monitoring at 

the hardware level for CPU, RAM and Bandwidth. This kind of monitoring methods is 

primarily used in response to frequent migration and expansion of containerized 

microservices in the fog computing environment. If the system needs to monitor the 

service-related content of microservices, the heterogeneity and diversity of services in the 

fog computing environment will bring a huge and tedious workload for administrators. 

 

3.4.2 Discussion on Microservice Monitoring 

Compared with fog computing, the cloud computing environment has fixed capacity of 

servers in a stable data center environment [6]. The cloud servers are usually more 

powerful and can provide more computing resources.  There has not been any work to 

determine if the black box monitoring method in cloud computing environment could be 

adapted in the fog computing environment. 

 

Among the four methods mentioned in Section 3.2, Dapper requires the system 

administrator to modify part of the code in the container, so it is not a completely black 

box containerized microservice solution. The growth of service mesh to computing 

resources will increase with the growth of the number of containers, which is not 

conducive to the scalability of services. Some representative service meshes, such as 

AnyPoint Service Mesh [58], have minimum hardware requirements of at least 8GB of 

RAM. Netflix ZUUL in [37] also has requirements for hardware. This requirement is still 

too high for devices such as Raspberry Pi and Arduino, which represent computing power 

suitable   for fog service devices. 
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Although MetroFunnel [22], which is very similar to the work described in Pina et al 

[37], does not describe hardware requirements, this framework is not for real-time 

monitoring. MetroFunnel is a tool that helps system administrators to output unified logs 

when they observe abnormalities in the system. MetroFunnel itself does not have the 

ability to monitor, store, and analyze monitoring data in real time. 

 

 In fog computing, it may have different system architecture than cloud computing, 

difference computing resource limitations and different application user scenarios. 

 

3.4.3 Research Gap   

Monitoring frameworks have been developed specifically to support fog computing. 

However, while there is support for monitoring the resource usage of containers and 

available resource capacity of fog nodes there isn’t specific support for microservice-

specific metrics e.g., service delay.   

 

Existing monitoring frameworks designed specifically for the cloud require resources that 

may not be available in a fog computing environment.  Furthermore, a fog node may host 

more than one instance of containers that encapsulate the same microservice. Each of 

these have different IP addresses. Some management applications need information for 

each instance in order to determine if there is sufficient capacity to support the demand. 

 

According to the monitoring of fog computing containers and the black box monitoring 

of containerized microservices, we can conclude that in the monitoring of fog computing, 

the current focus of work is to consider the scalability of services that adapt to dynamic 

needs in the fog computing environment. Therefore, the monitoring of the fog computing 

environment needs to meet the requirements of real-time monitoring and low computing 

performance overhead. There is no service-level monitoring for microservices for the 

time being in fog computing monitoring field. 
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For containerized microservices, the current black box monitoring methods will incur 

considerable overhead.  Hence, these black box monitoring solutions do not meet the 

low-overhead requirements of fog computing. 

 

Therefore, we put forward a research question, can we design and implement a black box 

direct monitoring method for the characteristics of fog computing in the environment of 

fog computing? The black box monitoring method means that there is no need for system 

administrators to modify and understand microservices. It can not only greatly reduce the 

workload of system administrators, but also completely separate the work of microservice 

development and monitoring. 

 

Combining the current research from the two fields of fog computing monitoring and 

indirect monitoring, we hope that our framework can combine the needs of the two fields 

to meet the following requirements: 

1.  Use reasonable computing resources. 

2. Use black box monitoring so that there isn’t a need for system administrators to 

understand and modify the microservice code. 

3. The granularity of the monitoring information is accurate to the container level. 

In Chapter 4, we will introduce a solution for black box monitoring of containerized 

microservices for fog computing environments. 
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Chapter 4  

4 Architecture of Monitoring Framework 

This chapter describes the architecture of our proposed monitoring framework. The 

monitoring   measures the run-time behavior of applications that consist of one or more 

microservices deployed in containers that may be placed in multiple fog nodes.  The 

framework assumes a black box approach to monitoring.  For each container, we monitor 

hardware resource usage and for each microservice we monitor the number of requests 

received, the average response time, and response code for each request.  In a dynamic run-

time environment, the states of containers change frequently. These measurements can be 

used by management applications to diagnose performance bottlenecks and determine 

when a microservice may need to be replicated and where it could successfully be 

replicated.   

 

Section 4.1   describes the format of the target collected data and discussed why we need 

these data. In section 4.2, we will discuss where these data are generated and how to 

design the system architecture to collect these target data. In section 4.3, we will discuss 

how to process the collected raw data and generate structured data in the target format. 

Section 4.4 will discuss and compare our design framework with other similar work. 

Section 4.5 will discuss some of the limitations of our framework. 

 

4.1  Measurements 

4.1.1 Network Connection Information   

Requests often span multiple services. Each service handles a request by performing one 

or more operations, e.g., database queries, publishes messages. Request tracing is a method 

used to profile and monitor applications built using microservices architecture. Request 

tracing helps pinpoint where failures occur and what causes poor performance.  

Network connection information can be retrieved by analyzing the headers of network 

traffic packets from the application and transport layers.  The traffic packets are parsed in 
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order extract the network connection information. The sniffer attempt to parse each 

packet in HTTP protocol. The relevant network connection information is presented in 

Table 1. 

 

We have summarized this indicator information in the following table: 

Table 3: Microservice Trace Metrics Table 

Metrics Data type Description 

Source IP  string The IP address of sender of the request  

Source Port string The source port of the request sender 

Method string The RESTFUL method such as “GET”, “PUT” 

Path string The request URL such as “/data” 

Response Code integer The HTTP response status code  

Container instance string The container ID of the container that which responds 

to the client 

Start Time Unix timestamp The UNIX timestamp of representing when the fog 

node received the client request 

Duration Big int  The time difference between the fog node receiving 

the request and sending the response 

4.1.2 Hardware Usage Measurements 

This section focusses on measuring the resource usage of containers e.g., CPU, RAM.  

These measurements are used to determine if a container's resource usage    is within a 

reasonable range and does not exceed the upper limit of the server.  This can be used in 

making decisions on replication and migration of containers.  Memory and CPU usage 

are considered to be two most critical pieces of information. For fog computing, 

researchers [19] have emphasized that sufficient network bandwidth is critical for 

minimizing service delay and therefore there is a need to collect the network traffic 

throughput of each container. 

 

The collection methods of network traffic information and hardware are different. 

Network traffic information is passive in that network tracking information is generated 

every time a client sends a request. The monitoring of hardware is proactive. The 

monitoring agent periodically collects the hardware consumption of the container. The 

scape cycle is defined as the interval time between two captures of container resource 
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usage information is referred to as the scape cycle.  The scrape cycle typically ranges 

from 5 seconds to 1 minute [5]. Each scrape provides the following information:  

Table 4: Hardware Metrics Table 
Metrics Data Type Description 

Container ID string The container ID of the container which 

corresponding to this record 

CPU percentage float The CPU time usage since the previous check 

Memory Usage int The memory usage in bytes 

Memory Limit int The maximum memory of the server 

Memory Percentage float The usage of the container 

Netflow_in int The network traffic inflow bytes 

Netflow_out int The network traffic outflow bytes 

Check_time big int The timestamp for the checking time 

 

4.1.3 Derived Information 

The information shown in Table 3 and Table 4 is stored in a database.  This information 

can be used to derive service-level information through different query methods to adapt 

to different needs. The derived information includes but is not limited to the following: 

1. Calculate the error request rate by querying and filtering the request/response 

status code from the header information of each container. 

2. Quantify the dependency and communication load between the containers by 

querying the number of requests between the container and the container. 

3. Calculate the packet rate that each container needs to process in real time. 

4. Evaluate the container working performance by packet average processing 

time. 

 

4.2 System Architecture 

The fog node architecture consists of multiple computing nodes. One of these computing 

nodes serves as a local manager and the rest are used to host microservices.    
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Figure 9: System Architecture 

Figure 10 shows the architecture of the monitoring system.  Each worker device hosts a 

monitoring agent. Monitoring agents are used to collect, filter and aggregate data 

measurements described in Section 4.1. The data processed by the monitoring agent will 

be sent to the manager server on the fog node. On the manager server, the   saved data 

can be used for management applications e.g., visualization, making resource 

management decisions (e.g., container migration or replication) and identifying 

performance bottlenecks.   

 

Each of the worker devices has an internal load balancer. The purpose of the internal load 

balancer is to distribute client requests to different containers. The internal load balancer 

is provided by a container management tool.  The rest of this section describes how the 

monitoring agent collects   the network traffic information of all containers from the 

internal load balancer in section 4.2.2. 
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4.2.1 Monitoring Agent 

Each worker device hosts a monitoring agent that is used to collect, filter and aggregate the 

data measurements described in 4.1. This monitoring agent will use the existing packet 

sniffing tools to monitor the data packets to and from the internal load balancer. The data 

processed by the monitoring agent will be sent to the manager server on the fog node. The 

processed data is stored on the database deployed on the manager node. On the manager 

server, the saved data can be used for visualization, making resource management 

decisions (e.g., container migration or replication) and identifying performance bottlenecks.  

Management applications can query the database for the monitoring information of the 

working nodes. Section 4.2 describes how the monitoring agent processes raw data. 

 

4.2.2 Internal Load Balancer 

With container management tools, e.g., Docker Swarm, Kubernetes, one microservice 

usually has multiple containerized replicated instances. In order to assign requests to 

these replicas from clients in a balanced fashion, the container management tool provides 

a module to process all requests from clients, and then forwards client requests to 

different replicated containers according to the distribution policy. In Docker Swarm, this 

module is referred to as the ingress sandbox and in Kubernetes this is referred to as the 

internal load balancer.  Each server has its own module. The module contains the 

information of all replicas for the cluster, including the replicas in the other servers. The 

module responsible for these requests is referred to as the internal load balancer. To be 

more specific, whichever a server within the cluster receives a request, the internal load 

balancer of the server which receives the request, processes the request and forwards it to 

a replica. The replica could be in the same server and or be in another server within the 

cluster. 
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Figure 10: Internal Balancer in container orchestration tools 

 

Each container has its own independent network namespace which consists of an IP 

address and network interfaces. The packets received and sent by each container may 

pass through different network interfaces. If the monitoring agent monitors the network 

name space of each container and each network interface, there is a need to create a 

thread for each container to monitor network information in different network name 

spaces. This processing method increases the thread and computational cost (resulting in 

additional CPU usage) due to the increase in the number of containers. This design is 

disadvantageous to the scalability of the system [5].  With the existence of an internal 

load balancer, there is a network namespace that all containers share. Therefore, instead 

of using multiple threads to monitor all containers, the monitoring agent monitors the 

internal load balancer to collect the network request information of all containers. 

 

4.3 Microservice Tracing Monitoring 

To support microservice tracing, the following information is needed:  the sender of the 

request, the receiver, the sending time, the container that responded to the request, and 

the response time.  Microservice tracing monitoring is used to determine how long it 

takes for the container to respond to the request after receiving the request. This 

information comes from multiple sniffed packets monitored by the packet sniffing tool in 

the monitoring agent. The information needed for a trace often comes from multiple 

sniffed network packets. Therefore, our monitoring framework needs to be able to 
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aggregate and analyze multiple interrelated packets and integrate this information 

together. For example, the monitoring framework uses the timestamp of an HTTP request 

packet and the corresponding http response packet timestamp to calculate the duration 

between two packets. The time difference between these two packets timestamps is also 

referred to as packet processing time. This kind of metric is often used to measure the 

working status of the server, especially in the service of network function virtualization. 

Section 4.3 describes the approach used to extract the target trace information from the 

raw data of several packets. 

 

4.3.1 Request Flow in the Internal Load Balancer 

In this work, a trace consists of the following data as presented in Table 3: request sender, 

the container instance used to handle the request, the timestamp of the request, the 

processing time of the request, the response code and the requested URL path. 

 

Figure 11:Request Flow 

When the client sends a request to the server, the internal load balancer can generate four 

pieces of information as shown in figure 12. We can extract the data needed for the trace 

information as follows: 

1.  The network connection information of the request sent by the client to the internal 

load balancer, from which the time that the fog node received the request, method, 

requested URL path, and sender's IP address of the request is extracted. 
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2. The container that the request is forwarded to by the internal load balancer can be 

extracted from the internal load balancer.    

3. The response of the container instance that hosts the internal load balancer. The 

response information provides the HTTP header information, which can be used to 

provide the response status code and the IP address of the selected container.  

4. The response time can be calculated by the internal load balancer by calculating the 

duration between receiving the client’s request and receiving the response from the 

container that was selected by the internal load balancer to handle the request.     

 

The Monitoring Agent uses a packet sniffing method to obtain these four pieces of 

information. 

 

4.3.2 Packet Pairing 

After collecting the information described in the previous subsection, the pairing module 

of the monitoring agent needs to find the connection between the corresponding pieces of 

information and generate one complete network tracing information as shown in table 5.  

With four pieces of information as figure 12 shows (client request, internal balancer 

request, selected container response and response to the client), we define the 

communication between the fog node and the client as the external trace, which consists 

of the request sent by the client and the response from the internal load balancer. The 

request consists of the requested URL and the request method (e.g., GET, POST).  The 

external trace consists of the following: the client’s request to the internal load balancer, 

the IP addresses of the client and the internal load balancer which received the client’s 

request, the timestamp recorded upon receiving the request and the internal load 

balancer’s response to the client.  

 

The communication between the internal load balancer and the selected container in the 

fog node is referred to as the internal trace, which consists of the client request 

forwarded by the internal load balancer and the response returned by the container.  The 

internal trace consists of the following: the internal load balancer’s request to the selected 

container, the IP addresses of the internal load balancer and the selected container, the 
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timestamp of the internal balancer sending and receiving the request / response, and the 

selected load balancer’s response to the client.  

 

Table 5 summarizes the source and destination IP addresses for the requests and 

responses. Rows 1 and 4 represent the request and response which makes up the external 

trace.  Rows 2 and 3 represent the pair of request and response which makes up the 

internal trace. The external and internal traces differ on the IP addresses but not on the 

TCP packet and the requested URL. 

  

Table 5 Source and Destination IP addresses of the Trace Information 

Info # Description Source IP Destination IP 

1 Client request Client Internal load balancer 

2 Internal load balancer request Internal load balancer Selected container 

3 Selected container response Selected container Internal load balancer 

4 Internal load balancer response Internal load balancer Client 

 

Row 2 represents the internal load balancer forwarding the client’s request to the selected 

container. It contains the same information as row except for the IP addresses. In row 2, 

the source IP address is for the internal load balancer on the server which received the 

request, and the destination IP address is for the selected container. 

 Row 3 represents is the response from the selected container to the internal load balancer 

and it is same as found in row 4 other than the IP addresses.   

 

We use source IP, source port, destination IP, and destination port from the HTTP header 

in the application layer as identifiers to pair the corresponding request and response 

together. When the paired trace is the external trace, the source IP address is the client, 

and the internal load balancer on the server which received the request. If the paired trace 

is an internal trace, the source IP address is the internal load balancer on the server which 

received the request, and the destination IP address is the selected container. 
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Figure 12: Trace pairing relation 

 

Internal trace and external trace cannot be connected by the information in the HTTP 

header by matching the HTTP header information of the application layer. The request 

and the response are matched by the IP address of the source and destination. However, 

the sender and destination may have multiple requests and responses. The HTTP header 

cannot identify which request corresponds to which response. We found that when the 

internal load balancer forwards the client's request, the internal load balancer only 

modifies the IP address on the HTTP Header but not the TCP packet information of 

transmission layer. Therefore, the corresponding external trace and internal trace have the 

same TCP packet information/We can combine the internal trace and outside trace by 

comparing the information of the transport layer (such as ack, seq) to form a complete 

trace chain. 

 

The matching relationship between this information can be intuitively seen in Figure 13. 

 

4.3.3 Trace Monitoring Working Process 

In the previous two sections, we described how we theoretically capture all the 

information we need. However, this information consists of network traffic information, 

and we cannot yet combine the traced information with the container. Therefore, in this 

section we will discuss the workflow of how the monitoring agent collects and processes 

this information.  
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The monitoring agent on each server needs to obtain the network addresses used by all 

containers in the cluster. This information is placed in a table with a mapping relationship 

between the container identifier and the container IP address. In this way, when the 

monitoring agent obtains all the information needed for a trace, the monitoring agent can 

use the mapping table to determine which container the trace corresponds to. If the IP 

address of the request sender is known in the mapping table, it means that this 

information is a communication between the containers in the fog node. The monitoring 

agent will mark this information as internal container communication within the cluster 

and label the request by the identifier of the container for the following process as figure 

14 shows. The request will temporarily be saved into the pending dictionary with 

container identifier. At the end, it will be saved into the database with the container 

identifier.  

 

Second, we need to consider the real-time nature of the requested information. When we 

try to pair requests and responses, we need to consider that the same sender may send the 

same request repeatedly in a short period of time. Therefore, the request and response 

need to be paired in real time, otherwise we need to obtain information other than the 

source IP address and destination IP address to complete the pairing. We used a 

dictionary data structure to temporarily store the request information. The request 

information includes the request sender’s IP address, the requested URL, requested port 

and the timestamp. If the request is a known container within the container, the 

information would also include the request sender container’s identifier. The dictionary 

key is the IP address of the request sender. This dictionary data structure is referred to as 

the pending dictionary. When the monitoring agent collects the response information, it 

will find the matching request in the pending dictionary, take it out of the dictionary and 

store it into the database for long-term data storage. 

 

Inside trace and outside trace do not need real-time processing. Therefore, the existence 

of the TCP packet identifier makes it unnecessary for us to complete the matching of 

inside trace and outside trace in a short time. In order to reduce the computing resource 

consumption of real-time monitoring, we choose not to match inside trace and outside 
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trace in real time. The system administrator can use the TCP packet identifier to match 

the inside trace and the outside trace. 

 

Figure 13: Monitoring Agent Workflow 

4.3.4 Hardware Data Processing 

Acquiring hardware resource usage data is relatively simple and straightforward. We can 

access the system cgroup, or directly access docker's stats API, or use third-party tools 

such as CAdvisor9. 

 

To reduce the amount of monitoring data sent to the manager node, monitoring agents on 

work nodes are able to filter.  Data is filtered based on the parameter setting that controls 

the Scrape interval of hardware data. The scrape time is the time difference between two 

measurements of the hardware resource usage. 

 

The scrape interval ranges from 5 seconds to 30 seconds [5]. When the scrape interval is 

too short, the monitoring agent will take up too much computing resources due to 

excessive calculations, thereby affecting the quality of other services [5]. When the 

scrape interval is too long, the monitored data may miss some data generated during the 

interval. Therefore, the specific interval period should be determined by factors such as 

the monitoring purpose and the computing power of the device. 

 

 
9
 https://github.com/google/cadvisor 

https://github.com/google/cadvisor
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4.4 Design Discussion and Novelty 

In this section, we compare related work [22], [37] to our system design. Our design 

focuses on monitoring network flow information using a black box approach [22],[37] 

and service mesh [35]. These three works can represent two typical ideas in black box 

microservice monitoring.  

 

Service-mesh is a container-oriented collection method, that is, at the system level, 

communication requests belonging to a container are concentrated into a sidecar, and the 

sidecar is solely responsible for all requests corresponding to the container. 

 

Clinque et al. [22] propose a service-oriented collection method (MetroFunnel), which 

does not need to be integrated with the system, and it will also change the request routing 

method of each container. The request are routed to a central gateway instead of access 

the container directly. Their approach is to monitor and sniff each packet passing through 

the target port according to the corresponding relationship between the service and the 

port. 

 

 Pina et al. [37] uses a network proxy collection method. This method is not deployed in 

the place where the data is generated but rather it is set up an independent, centralized 

proxy gateway. The advantage of this is that the monitoring task is completely separated 

from the worker nodes in the cluster. In this way, the worker node is not affected by 

monitoring tasks. The expansion of microservices will not significantly increase the 

overhead of monitoring tasks. On the other hand, all monitoring, analysis, and load 

balancing will be undertaken by the server where the gateway is located. This processing 

method has extremely high requirements on the computing performance of the gateway 

server, and in the fog computing environment, we cannot guarantee the hardware quality 

of the server. On the other hand, this processing method concentrates all request 

information into one point, which can easily lead to the problem of single-point failure. 

This potential hazard reduces the fault tolerance of the entire system. 
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As described above, Clinque et al. [22] and service mesh use similar approach where 

information collection components are deployed where the request is generated. This 

method can minimize the impact on the service and the code (one collector per 

container), but it will also impact the scalability of the system. Each additional container 

will bring some additional system cost. The method described by Pina et al. [37] using a 

proxy can be thought of as affecting the forwarding of service requests and concentrating 

information to the same point (one collector per cluster). This is analogous to the use of a 

data centralization approach in a local area. The advantage of this is that the service has 

good scalability and flexibility, but at the same time there are certain hardware 

requirements for the machine where the gateway is deployed. 

 

We propose a compromise. Between the decentralized approaches and the centralized 

approached, there is another computing resource unit which is the server.  We believe 

that each server has an internal load balancer that has a one-to-one correspondence with 

the device. The internal load balancer centralizes the communication information of all 

containers on the device. In theory, the expansion of the container will not cause 

additional unnecessary overhead to the monitoring system, and there is no need to 

concentrate all performance overhead on one machine, reducing the requirements for 

hardware. 

 

4.5 System target and limitations  

Our system provides service-level data and indicators for system administrators or system 

orchestration algorithms. For example, error response codes on the service level. In the 

current fog computing container monitoring , all indirect monitoring can only obtain 

hardware information about the container, such as CPU usage, RAM, etc. When a service 

level error occurs in the service, it cannot be detected by indirect monitoring. Such error 

scenarios include too long response time, too high timeout rate, and too many error 

responses. 

 

This system does not replace white box monitoring. Although we have designed service-

level tracking for the system, we cannot achieve request link monitoring similar to white 
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box monitoring. We also have no way of knowing the nested relationship between 

records. For instance, if a request from a client triggers different requests for multiple 

microservices, we can only collect the information of each request separately, but we 

cannot know how they cooperate to complete the service to the client. 
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Chapter 5  

5 Implementation 

In this chapter, we will introduce how we choose a container management tool and 

implement the development of a container monitoring system for the internal load 

balancer of the selected container management tool. We choose Docker Swarm as the 

container management tool. In section 5.1, we discuss the reasons why we chose docker 

swarm and the working mechanism of internal load balancer in docker swarm. Then, we 

choose to use Golang to implement the monitoring agent. In section 5.2, We will discuss 

the reasons for choosing Golang, the library used and the details of implementing the 

monitoring agent. In section 5.3, we discussed the deployment of database and 

visualization software on the manager node. 

 

5.1 Docker Swarm and Ingress Sandbox 

The two most popular container orchestration tools in the industry are Docker Swarm and 

Kubernetes. In [4], researchers compared the functions and overhead performance of 

Docker Swarm and Kubernetes. The results show that docker swarm consumes fewer 

computing resources, but it also has less support for container orchestration functions 

than Kubernetes. Considering that our research environment is fog computing, and the 

server is often a single broad microcomputer with relatively weak computing 

performance, we choose Docker Swarm as the container orchestration work. 

 

With the Docker Swarm, the internal load balancing is implemented by Docker Mesh 

routing mode.  In our design framework, all servers on a fog node belong to a docker 

swarm cluster. This distribution policy means that each service joining the docker swarm 

cluster has a docker swarm load balancer, which is responsible for monitoring all service 

ports. When the internal node balancer captures a user request, it forwards the request to 

a container called ingress sandbox through the modified DNS forwarding rules. This 

container is a default container generated by Docker Swarm. The ingress sandbox 

container will distribute requests to containers located on different devices in the entire 
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cluster to complete the service according to the set routing distribution rules. The 

monitoring tool we developed should obtain the network traffic information of all 

containers on the server by monitoring the ingress sandbox container. For this reason, 

when we run our monitoring agent, we should switch the network namespace of the 

system to be consistent with the ingress sandbox so that the monitoring agent be able to 

access all the network traffic of the ingress sandbox container. 

 

5.2 Monitoring Agent Implementation 

In the development of the monitoring agent, we chose to use Golang as the 

implementation language. The reason for choosing Golang is that Golang has excellent 

features in system development and distributed environments. Golang can also be binary 

compiled, which is convenient for us to quickly deploy monitoring tools on different 

servers. 

 

The monitoring agent uses libpcap library to sniff the network packets forwarded via the 

ingress sandbox. Each network packet will be analyzed through the GoPacket Library. If 

the network packet is using the HTTP protocol, then there will be four situations as 

described in section 4.3.2. The monitoring agent has a dictionary indexed by the IP and 

port of the sender. If the network traffic packet contains request information, the 

monitoring agent will temporarily store the request in the dictionary; if the network 

traffic packet contains response information, the monitoring agent will match the 

corresponding request from the dictionary and generate a complete trace information. 

 

5.3 Backend Implementation 

 We deployed MySQL on the local manager server as the back-end database for 

monitoring data storage. We also deployed Grafana on the local manager server as a tool 

for monitoring data visualization. System administrators can customize the data 

dashboard they want to monitor according to their needs. We will introduce the 

visualization results of monitoring data in detail in the chapter 6. 
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Chapter 6  

6 Experiment 

6.1 Experimental Environment 

6.1.1 Servers Deployment 

The Raspberry Pi [27] is considered a viable fog node component device. A Raspberry Pi 

is a single chip microcomputer that provides relatively lower computing power at an 

inexpensive cost. This cost-effective feature also makes Raspberry Pi a strong 

competitiveness in the large-scale deployment of the Internet of Things in the future.[15] 

The experiment environment used four Raspberry Pis for a fog node.  Table 5 presents 

the specification of the Raspberry Pis.  As seen in table 5 there is diversity in the 

hardware. 

 

Table 6:Raspberry Pi Specifications 

 

The Raspberry Pi with the most RAM was designated as the manager. The manager node 

hosts the request sniffer, the database MySQL, and the visualization tool Grafana. The 

other Raspberry PIs are designated as workers and host a request sniffer. Although these 

Raspberry Pis are different with respect to RAM these Raspberry Pis have the same 64-

bit Quad-Core Processor. 

 

Hostname RAM IP Role Deployment 

4GB01 4GB 192.168.0.24 manager request sniffer, MySQL, Grafana 

2GB01 2GB 192.168.0.23 worker request sniffer 

1GB02 1GB 192.168.0.22 worker request sniffer 

1GB01 1GB 192.168.0.21 worker request sniffer 
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The Raspbian10 operating system was installed for each Raspberry Pi. Raspbian is based 

on the Debian system and is optimized for Raspberry Pi hardware. 

The Raspberry Pis communicate with each other through Wi-Fi. We configure a fixed 

static IP for each Raspberry Pi in order to facilitate the identification and analysis of the 

communication information between the Raspberry Pis. 

 

6.1.2 Microservice Deployment 

In order to verify the feasibility of our monitoring system, we developed three related 

containerized microservices. The three microservices are the analyzer, data_provider and 

Client API. 

 

 

 
10

 https://www.raspbian.org/ 

Figure 14: Microservice Dependency 

https://www.raspbian.org/
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The data_provider simulates the collection of data from the sensor. This data may need to 

be temporarily saved for aggregation purposes.  To support this, we deployed several 

random length arrays in the data_provider image.  The data_provider exhibits 

characteristics of high RAM usage. The Analyzer is used to process the collected sensor 

data in real time. This is simulated with the use of loops that perform random 

calculations.   The Analyzer container was designed to have high CPU usage. The 

Client_API is mainly responsible for centrally processing client requests. These services 

use the RESTFUL interface, which can obtain different services and data content by 

sending different HTTP requests. There is also a dependency relationship between these 

three services that call APIs to each other. The relationships are shown in figure 15. 

 

Table 7: Microservice API Path 

 

The microservices are placed into container images and uploaded to Docker hub. The 

microservices were then deployed on the four Raspberry Pi devices in the Raspberry Pi 

cluster through the Docker Swarm on the manager server. For the Client_API and data 

analyzer microservices there are three replicas. For the data_provider microservice there 

are five replicas since this microservice is intended to receive sensor data.  Table 3 

summarizes the deployment configuration.    

 

The containers use different network interfaces for communication, which are bridge 

network and ingress network. The ingress network is used for distributing the request to 

the selected container. Whenever the internal load balancer receives a request, it can 

identify a container by the ingress IP address. The bridge IP network is used for the 

containers to communicate with the Docker Swarm. When a container is a sender of the 

micro-service Path description 

Client_API 

/temperature send a request to data provider 

/humidity send a request to data provider 

/calculate send a request to analyzer 

sensor  

data provider 

/temperature response random data 

/humidity response random data 

data analyzer /analyze send a request to data_provider 
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request, the internal load balancer can identify the container by the bridge IP address to 

the selected container. The internal load balancers are configured to be able to query this 

necessary information from the docker swarm directly so it can identify each request to 

each container. However, our system does not have this information to match containers 

to the IP address. Hence, our monitoring system will initialize a mapping table to match 

containers to the IP address as the Table 7 shown. 

Table 8: Container Deployment 

 

6.1.3 Purpose of the Experiment and Assumption 

We have two main purposes with our experiments. The first is to verify the feasibility of 

our framework. We want to evaluate what kind of information our monitoring framework 

can collect by simulating the real microservice application environment. The second 

purpose is that we want to evaluate the CPU overhead of the monitoring framework. 

 

We use JMeter to simulate the users’ actions, which sending requests to the servers, and 

we assume the users know the servers’ IP addresses. In a real environment, users will not 

directly access the IP address of the server. Application providers usually allow users to 

access a domain name, and then use request proxy tools such as Nginx11 to forward the 

user's request to the selected server. Our research work does not cover this process of 

work. Our framework only pays attention to the information monitoring after the server 

 
11

 https://www.nginx.com/ 

Container_id     ingress_ip bridge_ip  image_name               Host IP   

Microservice 

name       

Container 

Name           

1075f4a5e4 10.0.0.13  172.18.0.5 sharlec/client_api: latest          192.168.0.22 /client_api    /client_api_1    

16baa556d3 10.0.0.8   172.18.0.5 sharlec/data_provider: v2 192.168.0.24 /data_provider /data_provider_4 

1a5461e110 10.0.0.17  172.18.0.3 sharlec/analyzer: v2 192.168.0.21 /analyzer      /analyzer_3      

25329ecfe6 10.0.0.22  172.19.0.3 sharlec/client_api: latest         192.168.0.23 /client_api    /client_api_2    

35b27d7f72 10.0.0.7   172.18.0.6 sharlec/client_api: latest     192.168.0.24 /client_api    /client_api_3    

3a3e18c8a8 10.0.0.20  172.18.0.4 sharlec/data_provider: v2 192.168.0.22 /data_provider /data_provider_3 

6f4a23acb5 10.0.0.9   172.18.0.3 sharlec/analyzer: v2 192.168.0.24 /analyzer      /analyzer_2      

d113ea3720 10.0.0.24  172.18.0.3 sharlec/analyzer: v2 192.168.0.22 /analyzer      /analyzer_1      

db19a6fc20 10.0.0.23  172.19.0.4 sharlec/data_provider: v2 192.168.0.23 /data_provider /data_provider_5 

e0470d44ba 10.0.0.16  172.18.0.4 sharlec/data_provider: v2 192.168.0.21 /data_provider /data_provider_2 

fac22af288 10.0.0.12  172.18.0.4 sharlec/data_provider: v2 192.168.0.24 /data_provider /data_provider_1 
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receives the request. Therefore, our experiment uses JMeter to send requests directly to 

the server. 

 

6.2 Data Visualization 

We use Grafana for visualization. Grafana connects to the MySQL Database.  The data is 

used for monitoring dashboards in real-time. 

 

 

Figure 15:Real-Time Monitoring Dashboard 

6.2.1 Monitoring the containers 

Figure 16 shows a Grafana dashboard that container CPU usage information. The system 

administrator can easily obtain real-time CPU information, configure alerts, and refer to 

this information for real-time container management. 
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Figure 16: Real-Time CPU Monitoring 

Figure 17 shows a line graph of memory usage. The reason why we choose to use the line 

graph is that we want to show the trend of each container's consumption of memory 

resources. 

 

Figure 17:Real-Time RAM monitoring 

Combining figures 17 and 18, we can clearly see that the host container of the analyzer 

and data_provider services consume more computing resources than the container host 

the client_api service. This is to be expected since the client_api service only provides 

forwarding and aggregation of requests and thus does not consume more computing 

resources than the other two services. 

 

In addition to displaying real-time hardware information, we can also configure real-time 

container requests and average container processing time on the dashboard. The 

information shown in Figure 19 is the request accepted by each container at the container 

granularity. We can clearly see that the data_provider service, as the data source of the 

entire microservice system, receives the most requests. Figure 20 shows the average 

response time for each container. The response time is measured by calculating the 

difference of the request and response.  The Client_API service is responsible for 
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forwarding client requests as an intermediate gateway, so each Client_API container 

takes a relatively long time to respond to client requests. In the replicas of data_provider 

and analyzer, we find that data_provider 4 and analyzer 3 are containers that accept more 

requests, and their response time is longer than other similar containers.

 

Figure 18 Request Count of each Container 

 

Figure 19: Response Time of each Container 

 

6.2.2 Monitoring the Communication 

In this section we present a management application that makes use of asynchronous 

visualization of monitoring information for a specific period of time.  This is different 

from using Grafana which is real-time.   

 

The information shown in Figure 21 is the request count information between two 

containers in this figure. To be more specific, the request count represents how many 

requests are communicated by the containers. The y-axis represents the receiving 
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container, and the x-axis is used as the sending container. The IP address does not belong 

to a container known by the monitoring system.  

 

 

Figure 20:Communication Dependency Count Table 

The Figure 22 represent the communication latency between the containers. The latency 

is calculated by the timestamp difference of packet sending time and the response 

receiving time. 

 

Figure 21: Communication Response-Time Table 
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6.2.3 Monitoring the Microservices 

The charts and information we have shown above all use the container as the analysis 

granularity to evaluate the working state of the container. Our framework also supports 

analysis with microservices as the granularity. As shown in Figure 22, we aggregated the 

average response time of three microservices. As can be seen from the figure, client_api y 

takes longer to respond to requests than the other two services. The data_provider has the 

fastest response time. This data result is consistent with the characteristics of the service 

we deployed. The main functionality of Client_API is to receive requests from clients, 

then send requests to other services, and finally aggregate information to clients.  

 

Therefore, Client_API related requests often need to send requests to other services, wait 

for a response, and then reply to the user. Client_API is highly dependent on other 

services. Network delay and congestion can easily affect the response speed of 

Client_API. Data_provider has no similar problems since it designed to accept requests 

from other two microservices and provide data immediately. In this process, there is no 

need to send additional requests, nor do a lot of complicated calculations. Analyzer 

microservice will firstly query small amount of data from the data_provider and then 

does small amount of calculation before response back to the client.  

 

Figure 22: Response Time of Services 
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Figure 23: Response Time of Containers 

The above microservice characteristics can be directly reflected on the monitoring 

system. Although the system administrator’s internal knowledge of microservices is 

completely black box, the system administrator can still determine the service’s network 

traffic, hardware usage, received and sent request data statistics, response time, 

dependency, etc. The characteristics of microservices. 

 

6.3 Performance Overhead 

Table 9: Framework CPU usage 

  With agent Without agent   

concurrency CPU usage CPU usage difference 

0 0.29 0.69 0.4 

1 4.89 20.98 16.09 

10 21.557 28.47 6.913 

100 62.67 70.68 8.01 

1000 84.72 94.01 9.29 

 

In order to analyze the use of computing resources of the framework, we collected the 

CPU usage of the system when the monitoring agent was turned on, and the CPU usage 
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of the system when the monitoring agent was turned off. When the test is in progress, no 

other applications on the tested Raspberry Pi server occupy system resources except for 

the monitoring agent and docker microservices. Concurrency represents how many 

clients continue to send requests to the server at the same time. We calculate the overall 

CPU usage of the system of the monitoring agent by calculating the difference between 

the CPU usage when the monitoring agent is turned on and the CPU usage when the 

monitoring agent is not turned on. 

 

In each test, we continue to collect the CPU usage of the system for five minutes.  We 

then   calculated the average value of CPU usage in five minutes and fill it in Table 8. 

When the number of concurrent clients is 10, the monitoring agent consumes about 6.9% 

of the system CPU time. As the number of concurrent clients increases, the CPU usage of 

the monitoring agent also increases. 

 

It is also worth considering that our sampling method is immature. Due to the uncertainty 

of throughput and the complexity of service, a large number of tracking tasks themselves 

will bring a large number of computing requirements. Therefore, in order to limit the 

encroachment of computing resources by monitoring tools, in white box microservice 

monitoring tools such as Dapper, their solution is to limit the performance loss of the 

server by setting the sampling rate. When the amount of data is too large, the monitoring 

system will strictly control the CPU usage, and only sample and monitor microservices 

within the range allowed by the CPU usage limit. Monitoring records are only a small 

portion of all information. System administrators can infer overall system performance by 

analyzing sample data. Our framework collects all request information, and also 

completes real-time analysis, matching, aggregation, storage, and visualization. This is 

undoubtedly a huge consumption of CPU. We will optimize this problem in future work. 
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Chapter 7  

7 Future Work 

In this work, we discussed how to collect service information of microservices in a black 

box in the case of fog computing and implemented our ideas through the framework. The 

purpose of our preliminary work is to obtain sufficient information through complete 

information collection to determine the operating status, service characteristics and 

dependencies of each container. We propose a solution for black box monitoring of 

containers by monitoring the load balancer of the container management tool. Through 

experiments, we successfully demonstrated that we can provide operational data for 

visualization that can help system administrators evaluate the running status of containers 

using a black box approach. The system administrator does not need to understand and 

modify the target microservice to collect the service characteristics of the containerized 

microservice. And our method is suitable for the edge of the network, that is, it can run 

smoothly on the microcontroller with relatively weak computing performance. 

 

In future work, we have two research directions, namely the use of monitoring data and 

the continued development of the system.  

 

• Application of monitoring data 

 we hope to use the collected information for some dynamic container deployment, such 

as dynamic horizontal expansion of containers and real-time migration of containers. 

What caught our attention is that in the work of container deployment and migration, 

several articles represented by [13] mentioned the concept of task function. We believe 

that our framework can provide the characteristics of containerized services in a black 

box manner. For example, in [13], they manually mark tasks using tags such as priority, 

calculation density, and waiting time requirements, and then use algorithms to match the 

appropriate hardware to run. Our service collection method can not only use hardware 

information to determine the service's propensity for hardware resources (powerful CPU, 

powerful RAM or powerful bandwidth), but also can obtain similar features of high 
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request density and high concurrency through service requests. These black box analysis 

functions can be combined into algorithms for automatic deployment and management. 

Therefore, we want to study the relevant quantitative indicators required by the container 

migration algorithm, rather than the visualization functions provided by the framework at 

this stage. Then we will try to generate these metrics in real time using our framework. If 

feasible and with sufficient features and data sets, we can consider training machine 

learning models for container management.  

 

Our current work can also only collect every request information for each container. 

However, in microservices, there is often a correlation between requests and requests. For 

example, in an access event, request A is triggered by request B. Our framework 

currently cannot associate these requests together. To solve this problem, we consider 

researching and using a nesting algorithm [8] proposed by M. Aguilera et al. in 2003. 

This algorithm can judge multiple requests by analyzing request information (such as 

source, target, timestamp, etc.) obtained through black box monitoring. Whether the 

request belongs to the same event. 

 

• Extend the exploration of system information. 

 In this preliminary framework, we are using the ingress sandbox of the docker swarm to 

perform all the controls and aggregate all services into one network. This approach 

actually abandons the network isolation caused by the overlay network itself and avoids 

port conflicts. We will further learn how to integrate the overlay network into this 

framework to reduce development problems caused by port conflicts. We also hope to try 

to modify part of the container management tool code so that our framework can provide 

a real-time quantitative index for the load balancing algorithm to help optimize the load 

balancing algorithm.  

 

• Optimize the Framework For Real Production Environment 

Our current work is only considering the monitoring prototype in the fog computing 

environment, and we have not been able to put this framework in a real environment to 

work. In order to adapt to the complex network edge environment, there are several 



66 

 

issues that need to be considered. For example, for cross-node communications at the 

edge of the network, we need to encrypt communications for information security issues. 

Secondly, we currently use structured databases like MySQL to store data. Considering 

the problem of database capacity, we will consider using a time series database such as 

Influx DB12 for storage, and only retain the data for a certain period (such as a week). 

 

• Support other Protocols 

Finally, we will continue to develop this framework to support more service layer 

network protocols; in fog computing, the most noteworthy application prospect is the 

development of IoT applications. Therefore, we will extensively learn the common 

communication protocols of the Internet of Things environment represented by the 

MQTT protocol and enable our framework to support these protocols. In this case, our 

future usage scenarios will move closer to the Internet of Things. 

 
12

 https://www.influxdata.com/ 
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