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Abstract

Whether someone is born with a missing limb or an amputation occurs later in life, living with

this disability can be extremely challenging. The robotic prosthetic devices available today are

capable of giving users more functionality, but the methods available to control these prostheses

restrict their use to simple actions, and are part of the reason why users often reject prosthetic

technologies. Using multiple myography modalities has been a promising approach to address these

control limitations; however, only two myography modalities have been rigorously tested so far, and

while the results have shown improvements, they have not been robust enough for out-of-lab use.

In this work, a novel multi-modal device that allows data to be collected from three myography

modalities was created. Force myography (FMG), surface electromyography (sEMG), and inertial

measurement unit (IMU) sensors were integrated into a wearable armband and used to collect signal

data while subjects performed gestures important for the activities of daily living. An established

machine learning algorithm was used to decipher the signals to predict the user’s intent/gesture

being held, which could be used to control a prosthetic device. Using all three modalities provided

statistically-significant improvements over most other modality combinations, as it provided the

most accurate and consistent classification results. This work provides justification for using three

sensing modalities and future work is suggested to explore this modality combination to decipher

more complex actions and tasks with more sophisticated pattern recognition algorithms.

Index terms— Human–machine–interface, sensor fusion, data fusion, upper limb prosthetics,

gesture recognition, machine learning.
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Lay Summary

Living with a lost limb can be extremely challenging as the activities of daily living become more

difficult. Robotic prosthetic devices have been developed to help amputees with these activities

to improve their quality of life. The available robotic prosthetic devices are capable of giving the

user more functionality, but the methods available to control these prostheses restrict their use to

simple actions. Furthermore, the limitations of the available controls usually lead to rejection of

the prostheses that they are attached to because they are unreliable and lead to user frustration.

Thus, it is very important to develop a method of prosthesis control that is reliable, simple, and

intuitive to use.

The goal of this project is to create a system that can provide natural, reliable and intuitive

control of modern prosthetics for at-the-forearm amputees. This research aims to improve the

ability of a prosthetic arm to distinguish between several complex gestures for improved control.

For this work, a device that detects muscle information from electrical activity, physical

changes, and motion changes of the arm was designed. The device allows for muscle informa-

tion to be collected from the three sensor types while a participant performs hand/wrist gestures

in arm positions important for activities of daily living. After the data was collected, it was an-

alyzed using pattern recognition methods determine whether using three sensors is beneficial for

finding patterns in the data associated with muscle activity.

ii
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Chapter 1

Introduction

1.1 Motivation

Whether someone is born with a missing limb or an amputation occurs later in life, living with

a missing limb can be extremely challenging. One’s ability to conduct simple activities that are

important for daily living are limited and can hinder a person’s ability to live independently [1]. To

address this concern, highly functional prostheses have been extensively researched and developed.

These devices have the potential to give those with missing full or partial limbs functionality close

to that of their missing biological counterparts. With added functionality, these prosthetic devices

introduce more complexity to the already difficult challenge of being able to control them. Thus,

the biggest limitation in this field has become the user’s ability to control their prostheses [2–4].

Users often reject prosthetic technologies (rejection rates are as high as 75% [5]) because tra-

ditional prosthetics have limited usefulness, and the high-tech, newer ones have frustrating, non-

intuitive controls that are unreliable [6]. To address this concern, a system that intuitively and

accurately detects a user’s movement intent must be created. This can bring users a natural feeling

way to control their prosthetic devices. The success of this system can bring the field closer to a

solution and generally speaking, advance the fields of sensor fusion and human–machine-interfaces

for the control of mechatronic systems.

1
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1.2 General Research Problem

Pairs of electromyography (EMG) sensors were commonly used to provide those with missing limbs

a natural feeling human–machine-interface (HMI) for controlling prosthetics. With the advance-

ment of mechatronic systems, these prostheses have become very complex, and the requirements

for communication between prosthesis and user more demanding—far beyond what a few EMG

electrodes are capable of. Extensive work has been done to make EMG more effective using various

sensing techniques, sensor arrays and pattern interpreting methods; however the systems remain

limited [3, 7]. Force myography (FMG) is a more recent development and is capable of discerning

between multiple grasps, but is still limited in its robustness and accuracy [8, 9]. A potential solu-

tion is to fuse multiple sensing modalities so that, where each individual modality is limited, they

may compensate for one another. Ultimately, this would give the pattern interpreting algorithm

more reliable information to work with. To this effect, inertial measurement unit (IMU) sensors

have been paired with EMG or FMG in order to record spatial information—giving the pattern

recognition algorithm more distinct cases to decipher [10–12]. This method has been found to in-

crease the robustness of the system, possibly accounting for some of the sensor limitations that can

be problematic for EMG and FMG [4, 13]. Recent studies have also tried fusing EMG and FMG,

and have accounted for an incremental increase in accuracy [14, 15]. Multi-modal myography is

being affirmed as one of the main ways forward in this field.

This work proposes that by integrating EMG, FMG and IMU sensors into a single system, it

is possible to more accurately and consistently decipher between multiple grasps and arm posi-

tions that are important for the activities of daily living. Overcoming this hurdle can unlock the

functional potential of modern prostheses.
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1.3 Objectives and Hypothesis

The goal of this thesis is to create a robust, accurate and intuitive HMI that detects hand motion

intent for transradial (at the forearm) amputees in order to provide a natural, reliable, and com-

fortable way to control modern prostheses. To help drive this field closer to a solution, this thesis

will focus on determining whether simultaneously using three sensing modalities helps to increase

the classification accuracy of gestures that are important for activities of daily living.

The forearm contains all of the muscles that act to control the hand and wrist. From these

muscles, a significant amount of information can be obtained and used to infer intent. The field of

myography uses various methods/sensors to detect muscle activity and can be used to distinguish

between complex gestures using pattern recognition algorithms. A myography device placed on

the forearm can detect information about what the user intends to do with their wrist and hand.

Surface electromyography (sEMG) and FMG sensors have been extensively tested for this purpose.

Recorded data from myography sensor modalities can be sent to a pattern interpreting algo-

rithm to decode the user’s intent. Machine learning methods have been used successfully for this

application and have become the standard way to associate myography signal patterns with a

user’s intended gesture or movement pattern [3, 7, 14]. The deciphered signal information can be

easily used to control prostheses and can ultimately provide the user with a natural feeling way

to control their advanced robotic prosthesis for day-to-day use [2]. Although the concept of using

machine learning to decipher gestures from myography sensor data has been validated, there has

been limited success outside of the lab. A large part of this can be attributed to sensor limita-

tions. For example, the consistency of sEMG signals is limited by moisture level changes on the

skin [16]. To combat this challenge and discover a more robust method of control, using multiple

myography types at once is being explored. Systems that use two sensing modalities often achieve

greater accuracies than using just one sensing modality and it has been unanimously stated that

using multiple sensing modality types is one of the main ways of getting these systems to perform

adequately [4, 14, 16]. The theory behind this potential solution is that the interpreting algorithm

(machine learning model) gets both supplemental information (if a sensor’s information is insuf-

ficient), and redundant information (to confirm patterns in the signal) from the combination of
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sensors [7]. Still, the systems explored to date have their limitations and have not been able to

provide adequate robustness and accuracy.

For this work, a device that combines sEMG, FMG, and inertial measurement sensors was de-

signed. The device allows for data to be simultaneously collected from the three sensing modalities

while a user performs hand/wrist gestures in arm positions that are critical for activities of daily

living (i.e., pinch, grasp). A well-established machine learning (ML) algorithm called a support

vector machine (SVM) is used to decipher the signal information. The use of an already validated

ML algorithm was chosen to limit the number of variables under consideration and focus the re-

search on testing the efficacy of using these three sensor modalities simultaneously—something

that has only been tested once before in a preliminary study that achieved up to 90% accuracy

with just a simple control strategy and without the use of ML. There were only 10 subjects in

this study and no statistical analysis was conducted to investigate significance of the results [17].

For this thesis, obtained classification accuracies from the device using just two sensors (EMG and

FMG, EMG and IMU, FMG and IMU) will be compared against classification accuracies obtained

using all three sensors in an extensive study to draw clear statistical conclusions.

This research will be used to test the hypothesis of whether simultaneously using these three

sensing modalities provides an increase in gesture classification accuracy. It is expected that the

machine learning and multi-modal myography sensing system will more consistently detect an

amputee’s intended gestures, and give users a classification accuracy of above 90%, above which

usability becomes adequate, and a prosthesis becomes practical to use [18]. This work will be

able to provide justification for future work: whether using these sensing modalities provides an

increase in accuracy, and whether using the multi-modal system should be explored further in

conjunction with advancements in other avenues such as signal processing and pattern recognition

methods.
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1.4 Scope

The purpose of this thesis is to delve further into the potential benefits of sensor and data fusion

for intuitive prostheses control. For the first time, three different myocontrol, co-located modality

types will be simultaneously recorded and used for ML pattern recognition, and the results rig-

orously assessed. A device that integrates EMG, FMG and IMU sensors into a single band was

created for this work and used to collect data from a subject’s forearm while they performed seven

hand gestures in three different arm positions. The gestures were chosen for their importance as

activities of daily living, and as a benchmark for assessing the accuracy and robustness of the

system when classifying gestures. The data from the sensors was processed using well established

pre-processing and pattern recognition methods. An optimized support vector machine was chosen

as the pattern recognition model as it is widely accepted for this purpose. It is also the precur-

sor to the similarly formulated support vector regression model that is used for the logical next

step, and more challenging task of simultaneous and proportional control [8]. The less complex,

precursor model was chosen to focus this work on sensor and data fusion, and to validate the new

multisensor hardware. Various data and sensor fusion configurations were tested, and the model’s

ability to accurately classify gestures was assessed. This work lays the groundwork for advanced

uses of this device, such as proportional control and task-oriented experiments. The results of this

experiment are presented and discussed.
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1.5 Overview of the Thesis

The structure of this thesis is summarized in the outline below:

Chapter 1 Introduction: Presents the motivation, hypothesis, objectives, and scope of

this work.

Chapter 2 Literature Review: In depth background and state-of-the-art information on

the forearm and hand anatomy, robotic hand prostheses, non-invasive sensing

methods, and pattern recognition algorithms for controlling advanced pros-

theses.

Chapter 3 Data Collection: A thorough description of the equipment designed and built

for the purpose of sensor fusion for prosthesis control, allowing for the collec-

tion of EMG, FMG, and IMU data simultaneously. This chapter includes the

experimental protocol that was used to acquire data points.

Chapter 4 Data Processing and Pattern Recognition: Outlines the methods that were

used for signal segmentation, feature extraction, and creating data sets for

subsequent pattern recognition. Then specifies the pattern recognition algo-

rithm and model training methods that were used.

Chapter 5 Results and Discussion: Presents and discusses results of the multi-modal

device’s accuracy compared to other state-of-the-art systems.

Chapter 6 Concluding Remarks: Highlights the contributions and limitations of this work

and provides recommendations for future work.

Appendix A Permissions and Approvals: Includes ethics approval form.



Chapter 2

Literature Review

2.1 Human Hand Anatomy and Kinetics

The human body is an extremely intricate and intertwined biological system. To extract informa-

tion from this system using sensing modalities, it is important to understand how the underlying

system works. For practical use of this knowledge, it is also important to know what movements

are critical for human life. For example, to understand the kinematics and biological phenomena

of grabbing and drinking from a cup, it is important to understand the anatomy of the forearm

and how the body instructs itself and moves through space. The insights learned in this section

will be used to determine what phenomena are occurring, what may be measurable and in what

scenarios the gesture recognition system will need to work. This section of the review will focus

on the most important factors affecting people with missing partial limbs at the elbow and below.

2.1.1 Nervous System

The biological network that transmits information to and from parts of the body is comprised of

individual units called nerve cells, otherwise known as neurons. Neurons are either of the sensory

or motor type and function as their names imply. The cause of motor neurons’ signals is either

from reflex actions or from conscious thought/the somatic system. These are otherwise known as

involuntary versus voluntary actions. The signal effects caused by these actions are not easy to

isolate as they often put motor neuron branches or pathways into effect [19].

7
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Neurons communicate via the nervous system through signals that are measurable and de-

tectable as electrical potentials on the surface of the skin [20]. The electrical potentials arise from

chemical changes within the system and travel as impulse “waves of negativity” that move close

to the speed of sound [19].

The nervous system innervates the muscles of the body and communicates to them at an inter-

face called the neuromuscular junction. Neurons at the neuromuscular junction instruct muscles

to contract and the signals spread into adjacent muscle cells. As the electrically detectable signal

sweeps through a muscle membrane it sparks internal events that cause the muscle to contract

[21].

The nerve supply to the upper limb originates at the spinal column, then branches through

a hub of nerves called the brachial plexus [19]. From the brachial plexus, the main nerves that

control the hand, wrist and forearm can be found. They are the median, ulnar and radial nerves.

The median nerve runs deep on the anterior forearm and controls most of the flexors of the forearm

as well as the thumb, index and middle finger. The ulnar nerve wraps around the funny bone and

passes along the lateral side of the forearm, supplying most of the hand muscles, as well as flexion

of the ring and pinky finger. The radial nerve runs on the posterior side of the forearm and is

mostly for sensory nerves, but also has motor nerves to control extension of the fingers [21].

2.1.2 Muscular System

When the nervous system signals for a muscle to activate, it initiates internal events in the muscle

that cause it to contract [21]. These internal events are also detectable as electrical potentials that

correspond to the number of motor units activated and are a function of the musculature demand.

When the muscle is relaxed, it generates very little electrical potential [3]. Contracting/relaxing

muscles, and their attachment to the skeletal system via tendons, are the means by which the

human body moves [21]. When muscle fibres are contracted, they bring the ends of the muscle

together and pull the attached skeleton to move it through space. When the tension is released,

the skeleton is freed to move in the opposing direction. Contraction causes muscles to shorten and

is visible as a volumetric change [22]. This is easily observed when, for example, one flexes their

bicep to bring their forearm to their shoulder, and the bicep muscle becomes more prominent near
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Figure 2.1: Anterior and posterior views of the muscles of the hand, wrist and forearms. Reprinted,
with permission [26].

the middle of the upper arm.

The main purpose of the muscular system is to perform various movements, which mostly

consist of the activities important for daily living. These activities include tasks such as grabbing

utensils or a cup to drink from, and using a key to lock and unlock a door [15]. The human

hand/wrist is critical for these activities of daily living (ADL). In mechanical terms, the wrist is

a three degree-of-freedom (DOF) system, making it extremely complex but also capable of these

movements and more [23]. The human hand, capable of over forty-eight grasps and gestures, also

adds considerable complexity and capability to the upper limb [24]. The degrees of freedom for the

hand/wrist present themselves as flexion/extension, rotation (pronation/supination), adduction

and abduction, as well as the movements of the digits [25].

All of the muscles used to control the hand/wrist pass through the forearm and are especially
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prevalent at the part of the forearm with the greatest girth, as indicated by the red line in Fig-

ure 2.1. This spot is typically one-third of the distance from the elbow to the wrist and is usually

the location chosen for sensing physical and electrical changes associated with interpreting a user’s

intended hand/wrist gestures [4, 8, 9]. Logically, it makes sense that relevant biological signals are

detectable here since most of the signals and muscles used to control the distal limb pass through

this area of the forearm.

Particular actions often emerge as branches of signals and chains of muscle activations. Day-

to-day scenarios and the activities of daily living add to the complexity of these chains as there

are several reflexive muscle paths that activate as functions of arm position, whether the limb is

accelerating/decelerating, or whether the person is carrying something [22]. Between people, there

are also differences in anatomical structure and movement idiosyncrasies. Even with a similar

anatomical configuration, differences in limb size, skin thickness and muscle density are important

to note [8]. Thus, although there are underlying muscle groups and phenomena that are similar

among all humans, the signals are not deciphered easily; this is especially true outside of a lab

setting.

2.1.3 Kinetics and Activities Important for Daily Living

The human hand, wrist and forearm are made up of twenty-nine bones with an intermingling

relationship between muscles and nerves that make it capable of moving through a multitude of

actions [27, 28]. In general, the human body allows people to perform intricate tasks and adopt

different poses depending on the situation. Though complex, the capabilities offered by these

systems are critical. Critical tasks are referred to as the ADL and were summarized by Peerdman

et al. [29] as using zippers, making a bed, grabbing a cup and using utensils. These functional

tasks all involve a grasping type, movement pattern and the subsequent release of an object [30].

Broken down into simpler motions, these activities are made up of sequences or combinations of

pronation/supination of the forearm, flexion/extension of the wrist and the tripod, power grasp

and open hand actions [11, 29, 31]. The importance of these particular actions is demonstrated by

their repeated use in testing for transradial prosthesis and rehabilitation research [4, 11, 20, 24].

Depending on the action a person is trying to achieve, the body has several mechanisms that
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help it adapt in the real/dynamic world. When the body is accelerating/decelerating, overcoming a

force, moving in a particular orientation, or trying to stay balanced, the body activates muscles that

are not necessarily associated with the intended action [30]. These phenomena are a form of the

reflex actions discussed in Section 2.1.2. The residual, but necessary, reflexive muscle activations

make it harder to distinguish the muscle patterns for particular gestures. In addition, physical

injury or someone’s physiological makeup can further cause variations in muscle activation patterns,

making it even more difficult to associate muscle activation patterns to actions [19]. Although they

are not simple to detect, there are still underlying patterns and behaviours that are repeated across

the greater population [11].

2.1.4 Amputee Physiology

Although transradial amputees and those with intact upper limbs have similar physiology, there are

anatomical and physiological differences that are critical to understand and consider. A defining

feature of transradial amputees is that they are missing parts of their forearm, including their

hand/wrist, and the functionality that the appendage provides. Partial limbs may be the result

of trauma, disease, musculoskeletal tumours or the result of a procedure used to straighten a

deformed limb. Some are also born with missing body parts [32, 33]. Whether the partial limb is

missing as a result of trauma, surgery or childbirth, residual muscles that normally move the hand

and articulate the wrist are often still there [6, 32]. Thus, the physiological principles discussed

previously are still relevant; however, there are several additional challenges when working with

individuals with fully- or partially-amputated limbs.

One of the challenges when working with amputee physiology is the variability of how the limb

was lost. Even within the limited scope of transradial amputees, there are significant differences

in amputation location along the forearm, and amounts of scar tissue, residual muscle and nerve

damage [32, 34]. Campbell et al. [35] found that residual limb size was an important factor when

determining how well underlying physiological phenomena could be detected. Another consequence

of severing nerve and muscle is that the neuromuscular system begins autonomously looking for

nearby sources of input or musculature to assist with movement. This biological process is not

consistent and creates even more variability among amputees [34, 36]. Fortunately, with advances
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in amputation surgery, nerves, muscles and the residual limb can be preserved and manipulated

to retain some similarity and optimality for prostheses control [37]. Still, the variability among

transradial amputees can be substantial as the events that caused the amputation can be so

different.

Another challenge for those with missing full or partial limbs is the lack of feedback past the

point of amputation. Although it is possible for an amputee to control the physiology normally

used to move the missing hand and wrist, the lack of an appendage makes it difficult for the am-

putee because of the lack of visual feedback, limited sensation and proprioception that make fine

control nearly impossible [15, 38]. With limited proprioception, sensation, and visual feedback, it

is mentally taxing for an amputee to specifically activate the muscles associated with particular

movement patterns [12, 39]. This is important because researchers have been trying to use physi-

ological signals proximal to the hand/wrist to predict what a person is intending to do with their

appendage. Intent prediction based on measurable physiological phenomena is useful because it

can provide amputees with a control mechanism for prostheses that is natural feeling and intuitive

[4]. With the physiological limitations associated with a missing full or partial limb, it is not

surprising that amputees consistently perform worse than able-bodied participants in experiments

that use these signals to predict hand/wrist gesture intent [18]. Of note is that the relative per-

formance between able-bodied and disabled subjects often remains the same, so performance can

still be evaluated with able-bodied subjects, but one should assume that the system will perform

worse on amputees [40].

2.1.5 Conclusion

This review of human anatomy and kinematics gave a foundation of the knowledge needed to un-

derstand of the relevant physiological phenomena that are important for transradial amputees and

controlling prostheses. To have a natural-feeling prosthesis control method, it is critical that there

are detectable physiological phenomena that can be deciphered and mapped to movement patterns

for predicting motion intent [29]. Important, measurable phenomena of the upper limb are the

volumetric changes and electrical potentials associated with muscle contraction [4]. Measuring

these phenomena can give insights into what a person is intending to do with their hand/wrist.
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Orientation and momentum of the upper limb are also important factors for distinguishing be-

tween particular patterns. For hand/wrist control, these signals are best detected at the part of

the forearm with the greatest girth [24]. Although it is well understood where and how these phe-

nomena can be measured, the signals come from complex, intertwined systems that can be very

challenging to decipher [11]. The task is made even more difficult with the physiological differences

associated with having partial limbs. Fortunately, with partial limbs, there are still muscle groups

and patterns associated with movements that make it possible to decipher, albeit more challenging

to do so [40]. The techniques used to decipher these phenomena must overcome variability between

subjects, such as skin thickness, scar tissue, gait, muscle definition and amounts of residual phys-

iology [32, 34]. To restore lost functionality to a transradial amputee, the most important actions

that they should be able to control (and that are often benchmarked) are pronation/supination

of the forearm, flexion/extension of the wrist, and the tripod, power grasp and open hand actions

[29].

2.2 Prosthesis Technology

A major goal of the prosthetics research community is to provide amputees with a prosthesis

system that can be controlled as though it is an extension of the biological body [4]. Doctors often

recommend prostheses to amputees, especially if the amputation occurs later in life, as the person

is accustomed to the functionality of the missing limb [32]. The purposes of this recommendation

are to avoid gait changes resulting from the loss of mass (to maintain balance), avoid unwanted

attention to the amputee (for aesthetic purposes), and to restore the ability to perform at least

some of the activities of daily living (provide functionality) [6, 33].

Today, amputees have several prosthesis types to choose from. All of the currently available

prostheses fall into either the passive, body-powered, externally-powered or hybrid categories.

Passive prostheses are primarily cosmetic but can be used to stabilize the body and the residual

limb. Body-powered prostheses use forces generated by the residual limb or other body movements

to control the prosthesis. A major advantage of body-powered systems is that the user can maintain

fine and smooth control, but at the expense that the user is limited to very simple motions.
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Externally-powered prostheses use batteries and actuators for movement, and often use sensors

on the residual limb as the inputs for control. Hybrid prostheses are a combination of body-

powered and externally-powered systems [32]. Most state-of-the-art research today focuses on

the use of externally-powered systems. This is likely because they have the greatest potential to

restore close-to-full functionality to the user. Some examples of commercially available, externally-

powered prostheses are the i-Limb by Össur [41] and Be-Bionic by Ottobock [42], which already

have the capabilities of mimicking the human hand and wrist.

Robotic appendages, which at this point are well developed, are only one part of the prosthetic–

limb-system. What remains is the extremely difficult component of the system that gives the

amputee control of their prosthesis [2, 4]. This part of the prosthesis system is known as the

control system [43]. Giving amputees control of multiple degrees of freedom — a fundamental

feature of modern prosthesis systems — introduces incredible amounts of complexity for control

[4, 44]. One approach alluded to previously uses sensors to extract signals from the body. Body

signals must be recorded, processed and decoded for the robotic appendage to know how to behave

for the user [43]. This is not an easy feat, and the challenges presented by these requirements

makes the reliability of the prosthesis control system a major limiting factor — along with their

cost and universality. Control system limitations contribute to why only 50–60% of amputees

use a prosthetic limb, and why the newer technologies have a rejection rate as high as 40% [44].

Creating a sufficiently accurate, reliable, quick, universal and affordable control system is critical

for the future of advanced robotic prosthesis use.

2.3 Non-Invasive Myocontrol Sensors

Myography is the field of measuring biological signals — typically muscular signals from the human

body. These measurement signals are taken with myography sensors, which are either of the

invasive or non-invasive type. Invasive myography sensors require surgery as they innervate the

neuromuscular system directly, while, non-invasive myography sensors sit on the surface of the

skin, making them more universal and often more economical [33]. Using non-invasive myography

sensors with modern, externally-powered prosthetic systems has the potential to give amputees a
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simple, economical and natural feeling way to restore lost functionality.

To control a prosthesis as if it were a natural limb, the system must be able to interpret

the gestural intent of the user [45]. Intent interpretation is the ability to infer user desires from

available information. For a robotic appendage/control system, the available information is in the

form of signal data from the sensor types chosen to measure relevant phenomena from the user.

The success of a natural-feeling control system greatly depends on the sensors’ ability to accurately

and reliably detect relevant myographic phenomena of movement and important gestures [43]. For

a natural-feeling, gestural-intent prosthesis control system to become widely adopted, it needs to

interpret the users intent accurately and consistently in different arm positions. Also, the time

delay between muscle contraction and prosthesis reaction must be under 300 ms [40, 46]. Meeting

these criteria will ensure that real-time control is intuitive and practical to use [47].

Section 2.1 referred to many different biological phenomena exhibited by the human body while

performing gestures important for the activities of daily living (ADL). The phenomena focused

on were neuromuscular changes that could be detected as electric potentials on the surface of

the skin, volumetric changes of the muscle, which are also detectable at surface level of the skin,

and motion/orientation effects associated with movements. These phenomena can be detected

by sEMG sensors, FMG sensors and IMUs respectively. Being able to detect and measure these

phenomena gives the prostheses’ control system information that can be relevant to particular

movements and gestures [43].

2.3.1 Surface Electromyography

In 1948, EMG became the first myography modality used to drive a hand prosthesis [48]. EMG was

pursued for prostheses control because of its ability to detect the electrical phenomena associated

with muscle contraction, measured as a motor unit action potential (MUAP). This method allowed

users to control their prostheses with their nervous system, which could give the user control of

their prostheses as if it were a natural extension of their body. This technology was also successful

because of its applicability to real-time control, since the onset of a MUAP can be detected

approximately 100 ms ahead of any physical movement [31, 49].

Since EMG has been around for so long and has proven that it can be useful for prosthesis
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control, it is the most thoroughly researched modality [50]. For most of time that EMG has been

used for prosthesis control, it has been used for 1 degree-of-freedom (DOF) control, but with recent

advancements in ML and pattern recognition research, it has also been found that more complex

patterns can be discerned from the body using multiple EMG electrodes [31, 49]. As mentioned in

Section 2.1, there are muscle patterns that activate that are associated with particular gestures.

By using several EMG electrodes on these muscles, and using pattern recognition algorithms, these

muscle activation patterns can be matched to movements and gestures that can be communicated

to a prosthesis, giving the user seamless control of multiple DOFs and complicated gestures [51, 52].

There are two main types of EMG electrodes, which are surface EMG electrodes and intra-

muscular EMG electrodes. sEMG is preferable and more often used for prosthesis control than

intramuscular EMG because it is able to detect MUAPs via electrodes on the surface of the skin

versus intramuscular EMG, which must be inserted with a needle. Being non-invasive in this

way also makes sEMG a cheaper and more comfortable solution that does not require surgery

[51]. Since sEMG detects muscle activations from the surface of the skin, it detects activity from

muscles that are not directly beneath the probing electrode, which has been found to be both ben-

eficial and detrimental [52]. This phenomenon of detecting adjacent muscle activation is referred

to as cross-talk. The detrimental effects have been mostly mitigated with advancements in signal

processing, and the more important considerations have been deemed to be clinical considerations

such as ease-of-use and cost, which are addressed by using sEMG [53].

sEMG electrodes can detect muscle activity from the skin using either wet or dry electrodes [54].

Wet electrodes are held in place by an adhesive substance and typically have better conduction

with the skin and underlying MUAP. Unfortunately, they are impractical to use since they are often

disposable, making them a recurring cost and wasteful. Wet electrodes are also less comfortable

because they do not allow for airflow near the electrode. Reusable dry electrodes are the most

practical since they do not need to be replaced and allow for airflow, but they are affected by

limitations such as contact concerns with the skin, and electrode shift because they are only held

in place with arm bands or pressure fit into sockets, and can cause artifacts in the signal [52]. Other

hardware considerations such as electrode geometry, material, configuration and size are important

factors that need to be considered when creating a successful system. Commercial sEMG systems
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tend to use dome electrodes made of either stainless steel or titanium [42, 55]. The configuration of

sEMG systems employed is monopolar, bipolar or high definition arrays, but bipolar configurations

are by far the most used, and have had the most success in industry for this application [56].

The amplitude of an sEMG signal without amplification ranges from microvolts to low millivolt

(0–6 mV peak-to-peak or 0–1.5 mV RMS) range [52]. Within this relatively weak signal is a

considerable amount of information related to muscle activation and fatigue [46, 57]. The amplitude

and frequency of EMG signals is also influenced by physiology, including fat, scar tissue, missing

physiology, fatigue and sweat [52, 58, 59]. Sweat in particular is an important consideration, as

the salinity of sweat helps conduct signals from the surface of the skin. Using dry electrodes is

often limited because of a lack of good adhesion to the to the skin, but after some time with a

sensor on the skin, sweat develops, which increases conductivity at the electrode. This phenomena

is why signal noise from EMG tends to be high shortly after putting electrodes on the skin, versus

after some time has passed. After sweat develops on the skin, the signal level increases and level

of noise decreases [13].

For an sEMG system to be useful for advanced prosthesis control, the system needs to de-

tect patterns of muscle activation. To do this, sEMG sensors should be placed on the muscles

responsible for the movements to be deciphered [15]. Some researchers have tried targeting spe-

cific muscles, but this is not practical for an amputee to do every time they want to put on their

prosthesis. One strategy is to use multiple sensors, or arrays of sensors in an area of interest,

to increase the chance of landing on important muscles. An extreme example of this is high-

definition sEMG electrode arrays, which have been able to successfully classify hand gestures, but

are expensive and computationally-demanding, making them unrealistic for affordable, real-time

prosthesis control [60]. Having several electrodes does have its benefits, such as making it more

likely for the sensors to be in a good location, and providing the pattern recognition algorithms

ample information to decipher. A balance must be found between a sufficient number of sEMG

sensors to measure adequate muscle activity information, but not make the system too financially

and computationally-expensive.

To strengthen the possibility of good sensor placement while keeping the number of sensors

down, groups have found general locations that have been successful at detecting the relevant
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signals for specific motions [4, 11, 15, 29]. For hand and wrist control, most groups put sensors

one-third of the distance distal from the elbow (olecranon process) to the wrist (ulnar styloid

process) [4, 20]. This is the same band of the forearm highlighted in Section 2.1 and Figure 2.1.

Fortunately, these ideal EMG zones for hand and wrist control are often intact for transradial

amputees [35].

The main benefits of sEMG are that it is the most extensively researched modality and that it is

still being actively researched and used today. It is the only myography sensor used for commercial

prosthesis control, which can be attributed to its robustness to arm position changes, and limited

need to be precisely locate muscles, which are important factors for out-of-lab scenarios [55, 61, 62].

Specific to its use as a sensing modality for prostheses control, sEMG sensors are low power, can

have a small form factor and have rapid MUAP detection, being able to detect actions even before

the muscle makes physical changes [15, 18].

Although using sEMG for prosthesis control has been researched and been around the longest,

researchers are still trying to find better modalities to use as sEMG on its own is not sufficiently

capable [4]. The sEMG signal is complex and noisy, and in order to get relevant information,

extensive, potentially expensive signal processing has to be done to it. Electrodes can experience

noise due to shifting and pick up signals from adjacent muscles, and are sensitive to transient

variables such as varying amounts of perspiration on the skin [61]. This can cause inconsistencies

in the sensor data and pattern recognition results. Using sEMG for prosthesis myocontrol has not

been accurate, robust or reliable enough to make the system practical for use by amputees [38, 59].

The most commonly used sEMG electrodes in the literature for controlling prostheses are the

Ottobock’s MyoBock 13E200 sensor [42]. The MyoBock sEMG sensors are bipolar electrodes that

include on-board signal processing [4, 63]. These electrodes have also been used commercially for

prosthesis control, but only for controlling basic, 1 or 2 DOF motions [1]. A commercially available

prosthesis control system made by CoApt uses an array of bipolar electrodes that are incorporated

into a custom fit prosthetic socket. The CoApt system includes advanced signal processing and

pattern recognition software that makes it one of the most advanced prosthesis control systems

commercially available [55]. Unfortunately, these systems remain out of reach to most consumers

because they are extremely expensive, and still, the systems are not robust enough for regular use
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by amputees [61].

2.3.2 Force Myography

Force myography senses the physical manifestation of muscle contraction, otherwise known as the

volumetric changes associated with muscle activation/deactivation. Research of this myography

modality is relatively new to the field of myocontrol, as the first work on FMG began in 1999,

and has only really picked up since 2018, with the popularity of ML technology [8, 64]. In some

applications to date, FMG has been found to be at more accurate than sEMG, but there are

concerns that its usability is limited outside of the lab and on amputees [4, 61].

One type of FMG sensor is the piezoelectric transducer, which generates electricity when

a force-induced movement occurs on the piezoelectric membrane. The amplitude of the signal

generated is proportional to the speed of deformation of the piezoelectric membrane. Since this type

of sensor only detects transient effects, it only accounts for a very small percentage of FMG research

and has had limited success for prosthesis control [8, 65]. The most recent FMG development

found in the literature is a subset of FMG called tactile myography (TMG) [66, 67]. TMG works

by separating two electrodes with a semi-conductive foam. The resistance of the foam changes

based on the pressure applied, thereby allowing force changes to be detected. It has a similar

construction as a bipolar sEMG sensor, albeit with a different geometry and foam layer in between

the electrodes, and requires custom hardware as it is still early in its development and is not

commercially available. TMG has been used for offline prosthesis control with good accuracy and

promising results [66]. Another type of FMG is the resistive polymer thick film (RPTF), which

changes its conductivity based on the pressure applied to it. Two flat electrodes are separated

by a semi-conductive polymer layer, so that when a force is applied, the overall output resistance

decreases [68]. This type of FMG sensor accounts for 55% of the sensors found in the literature,

which can partially be attributed to it being a compact and cost-effective sensor [8]. A major

limitation of the RPTF FMG sensor is that it degrades over time, which limits the reliability of

their measurements after days or weeks [8].

RPTF FMG sensors are very thin, flat sensors so to conform to the forearm and localize

muscle volume changes onto the sensing membrane, researchers have found success by using rigid
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backplates and bumpers between the sensing membrane and the skin [4, 8, 63, 69]. The bumpers

are usually either dome or cone shaped, and are made of semi-rigid materials. Bumpers have been

successful because the shape and material concentrates the force exerted by the muscles onto the

FMG sensing area. FMG bumper types and styles have not been formally investigated, but it is

believed that these bumper membranes also contribute to signal stability since they behave as a

mechanical filter [16, 69]. RPTF FMG sensors are commercially available, but in most scenarios, a

custom FMG housing and electrode–skin interface needs to be built. Conveniently, this housing is

often also used as the housing for the sensor’s electronics [8]. Custom-built FMG control systems

are often designed in the form of a band, with FMG sensors placed inside adjacent to one another

with firm backplates for each sensor, and a bumper between the sensing membrane and the skin.

Other groups have fit FMG strips into prosthetic sockets to test on amputees [65, 70]. Some bands

and prosthetic sockets were made to fit over 50 FSR sensors, where they were able to detect up to

48 gestures with good accuracy, and using only 8 FSRs on the forearm achieved better accuracy

than many sEMG configurations [24, 61, 71, 72].

As a newer myography method, the standards of signal processing, sensor configuration and

application methods have yet to be standardized for FMG. An important feature is that because

this modality senses pressure changes, FMG sensors also capture the weight of the sensing system

as it presses against the arm. Furthermore, FMG can be affected by the prostheses weight they are

attached to and any types of transient changes associated with balancing, accelerating, decelerating

or even bumping into objects. Based on the signal itself, it is nearly impossible to distinguish

between an external (from disturbance) and internal (muscle activation/deactivation) force [12, 73].

Typically these sensors are used in an array in the form of a matrix or a strap. For hand and

wrist gesture recognition, this is usually in the form of a strap that goes around the bulk of the

forearm — similar to sEMG. These bands are usually highly conformable to the user’s limb shape

and can be quite comfortable; but the band and sensors’ flexibility introduces inconsistencies in

the pressure applied to the forearm and FMG sensors. This can be compounded if the sensors

are very tight against the skin and the force exceeds the linear range, and the corresponding

voltage is not proportional. If the band is not tight enough, the sensors may shift within the

device and along the arm, and it is difficult to ensure sensors are donned with the exact same
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force, which may cause artefacts and signal inconsistencies. So far researchers have adjusted the

tightness based on user feedback and comfort levels but this is inconsistent. Fortunately, easy-

to-use software techniques that normalize/auto-scale the signal have been found to adequately

mitigate some of these inconsistencies in a lab setting [8, 66, 74, 75]. Another concern with FMG

is the between-subject variability. Muscle mass, limb size, skin thickness and fat percentage all

affect the pressure signature felt by the sensor. This is especially true when the user is an amputee

[8]. Even within subjects, variability has been found in the pressure signature before and after

exercise with varying levels of fatigue. This can change day-to-day, and as such, researchers suggest

incorporating other sensors such as sEMG to assess fatigue level, which is more useful information

for a pattern recognition algorithm to decipher [8].

Although FMG has been used successfully for pattern recognition, RPTF FMG sensors have a

non-linear response, large hysteresis, and long-term drift error associated with the degradation of

the sensors. Also, because this modality detects muscle’s volumetric changes, the sensors acquire a

muscle activation signal after contraction, and thus is slower than EMG. The non-linear behaviour

is addressed by selecting bias resistors that keep the voltage output within a linear range [8, 64].

The large hysteresis and long-term drift error are said to be of little concern in prostheses control

applications because of the low force exhibited on them and the lack of large constant loads [8, 12].

These drawbacks are somewhat mediated, and sometimes superseded by the high signal-to-noise

ratio and ease-of-use of these sensors [64]. Still, there are no commercially available prosthetic

control systems that use FMG; and is likely, or at least partially, due to the sensor longevity

concerns [8].

To summarize, some of the advantages of RPTF FMG sensors are their compact size, light

weight, low power, low cost and high signal-to-noise ratio. Compared to sEMG, the signal is also

significantly less complex, which also reduces the cost of any electronics necessary for the system

to function. This opens up the possibility to more affordably use FMG sensors in bands or array

configurations. Since FMG technology is cost-effective and allows for high levels of customization,

the idea of using several sensors is often explored with the theory that using more sensors makes

the system more robust [61]. RPTF FMG sensors are good at distinguishing hand and finger

patterns, and like sEMG with modern pattern recognition techniques, don’t need precise sensor
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placement [17, 24].

The main limitation of FMG development thus far is the lack of thorough research. Research

groups working with FMG have achieved promising results, even with mapping dynamic tasks,

but there are no commercially available prosthetic control systems based on FMG because it has

several sources of unreliability [8, 76]. Two of the main factors affecting the reliability of FMG

are the sensor limitations and the device configuration [8]. They are prone to deterioration over

time, have hysteresis, nonlinear effects and slower response than sEMG. FMG is also sensitive to

external forces such as mechanical disturbances and transient effects. Another concern with FMG

is the donning pressure of the sensing system, as this can be a source of inconsistency without

adequate mitigation considerations [16]. For the control of prostheses, these sensors may be limited

to large muscle bodies that provide stable contraction and muscle definition [72, 77].

2.3.3 Inertial Measurement Unit

Inertial sensors, which are commonly found in smartphones, are of three types: accelerometers, gy-

roscopes and magnetometers. Together these are commonly referred to as IMUs. Accelerometers

measure acceleration about the x, y and z axes. Since the force of gravity is always accelerating

towards the Earth, gravity registers on an accelerometer. Gyroscopes measure angular velocity,

or change in orientation about the x, y and z axes, and the magnetometer measures x, y and z

positioning, relative to magnetic north [78]. Nowadays, most IMUs are based on microelectrome-

chanical systems that are small, light, inexpensive and have low power consumption, making them

easily integrated into wearable systems.

As mentioned, gyroscopes measure angular velocity, which is a unit over time. When the IMU is

stationary, the gyroscope’s values are near zero, making it a measurement that detects movement.

This is important for measuring body kinematics to detect how the IMU and the system that it is

attached to is moving. The accelerometer measures acceleration, which is also a unit over time, and

is important for detecting acceleration and deceleration effects associated with moving, stopping

and balancing. The constant downward gravity vector is also captured by the accelerometer, and

can be extremely useful for determining the orientation of the IMU (or system that it is attached

to) [30, 79]. Sensing the gravity vector has been very useful in prosthesis research as a way to
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counteract the “limb position effect,” which refers to changes in myography sensor signal due to

positioning of the arm and/or orientation of the prosthesis system [12, 43, 80].

Orientation and movement detection gives a prosthesis control system more information about

the system that it is measuring, so that a pattern associated with these effects can be considered

when deciphering patterns. These sensors are important for measuring body kinematics, such as

the compensatory balancing movements, limb orientation and even information associated with

fatigue, smoothness and the velocity of limb movements [81]. These sensors are rarely used on

their own for hand and wrist gesture recognition, as the kinetic and orientation information alone

is not enough to find patterns associated with relevant gestures. They have been found to be

extremely beneficial when combined with either EMG or FMG, and will be discussed further in

the following section [8, 11, 12].

2.4 Multi-modal Myography

Individually, sEMG, FMG and IMU sensors have all been tried as natural and intuitive prosthesis

control modalities, but have not satisfied the required accuracy and robustness criteria to be

practical for amputees to use. Each sensor modality has its limitations that cause the system

to not work adequately. By capturing redundant and supplemental information with various

modalities, in theory, sensor limitations can be filled by another modality, thereby attenuating its

limitations. For example, IMUs combine accelerometers, gyroscopes and magnetometers to make

more robust motion and position measurements [78]. As an example specific to this application,

combining inertial information with FMG adds arm orientation effects that can be used to decipher

why a particular pressure signature is occurring on the sensing membrane so that the weight of

the prosthesis can be considered [12]. As another example, FMG signals are known to be more

consistent at separating muscle patterns, and a known limitation of sEMG is that its signal contains

a lot of noise and senses the activation of adjacent muscles — so if sEMG is giving an indistinct

muscle pattern, FMG could mitigate this problem and be more effective, or at least more consistent

at deciphering the intended gesture [16]. The use of different kinds of sensors captures more of

the variables associated with what is happening with the system of interest. Though some of the
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information collected may be redundant, it may still be useful to validate and increase consistency

of the prosthesis control system’s pattern predicting ability.

As mentioned, individually these sensors have their limitations, but there is a growing field of

interest in combining these modalities to create more robust sensing systems for pattern recogni-

tion models to utilize. Many recent papers on modern prosthesis myocontrol push for multi-modal

control schemes [4, 8, 11, 14]. All of the texts report improvement when using multiple modali-

ties, whether in accuracy or robustness. Potential challenges of multi-modal myocontrol are the

increased amounts of information processing required, and the complexity of integrating all of the

sensors into a single system. These are challenges that need to be considered and overcome for the

feasibility and effectiveness of a multi-modal system to be used for prosthetic control systems.

2.4.1 sEMG+FMG

To combine sEMG and FMG, most researchers use the commercial Ottobock EMG and Interlink

402 FMG RPTF sensors, and integrate them into an arm band or prosthetic socket [4, 8, 63].

Some groups integrate the sensing system by co-locating the sensors, some alternate the sensors,

and some have each modality on separate bands [7, 61, 82]. Co-locating the sensors gives the best

way to compare the sensing modalities since all of the sensors share similar points of contact on

the forearm. Also, because useful surface area of the forearm is limited, using one band where

each sensor housing contains both modalities utilizes this space more efficiently, especially since

these modalities are affected by their contact with relevant muscle features [8, 83]. Jiang et al.

[83] used co-located sensors and achieved a consistent 10% accuracy improvement by using the two

modalities simultaneously over using just one modality. Whereas a group who did not have co-

located sensors had insignificant accuracy improvement, but had robustness increase by combining

FMG+sEMG [4]. No matter the integration technique used, the literature points in the direction

that multi-modal is required to drive the field forward [14, 61, 83]. In some cases, FMG was found

to be nearly as good as FMG+EMG, so it is debated whether there is a need for EMG, but overall,

many agree that multi-modal data adds consistency and accuracy to transient control — a much

more difficult task than gesture classification [4, 24, 82]. Consistency improvements are critical

for out-of-lab scenarios because of extra variables that are introduced in out-of-lab scenarios. It
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is recommended that multi-modal systems be used for myocontrol of prostheses — especially for

transient control [16].

What makes FMG+sEMG so enticing is that it detects both the electric and volumetric phe-

nomena associated with muscle contraction. sEMG has quick detection, robustness to arm position

changes, and sensors that last a long time. These characteristics can mitigate the slower response

time, force distribution changes with motion, and deterioration of the sensor over time observed

with FMG. FMG has better gesture separation, is cheaper, and requires much less data process-

ing, which can offset sEMG’s cross-talk concerns, computational and monetary costs. Co-located

sensors are recommended to ensure that both sensors are placed on the same critical muscle bodies

[83, 84].

2.4.2 sEMG+IMU

The modality combination most experimented with is the combination of sEMG+IMU, which can

be found in a couple commercial systems. The Trigno, made by Delsys, uses 10 wireless sEMG

sensors with on board signal conditioning, and 3-axis accelerometers on each sensor board [80, 85].

Another commercial system is the Myoband, by Thalmic labs, which uses 8 wireless sEMG sensors

with a 3-axis gyroscope and accelerometer [11, 86]. Having these systems commercially available

is a testament to the benefit of this combination, and how it is the most researched modality

combination.

For custom sEMG+IMU systems, Krasoulis et al. [87] conducted an analysis on how many sen-

sors were required when using sEMG versus sEMG+IMU and found that by combining modalities,

they could reduce the overall number of sensors required and improve real-time performance. The

main benefit of combining these modalities is accuracy improvement, although robustness increases

are not discussed nearly as much as with sEMG+FMG. Accuracy improvements are attributed

to the IMUs ability to provide information about the orientation of the arm and any potential

movement happening. With the IMU data, the pattern recognition algorithm has the information

necessary to make any connections between position/orientation effects and its relevance to any

sEMG signal changes [43, 88].

Groups using pattern recognition for prosthesis control have found success by combining sEMG
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data with accelerometer and gyroscope data, but groups have also found found accuracy improve-

ments while omitting gyroscope data [43, 80]. This is likely because for static gesture recognition,

the raw gyroscope data does not give additional information about the gesture being held, while

the accelerometer provides critical orientation information through the gravity vector.

2.4.3 FMG+IMU

As a newer modality combination, there are no FMG+IMU integrated systems available commer-

cially. There are commercial FMG and IMU sensors that researchers have integrated themselves,

such as Ferigo et al. [12], who integrated FMG array strips and an IMU into the prosthetic socket

of an amputee. The small form factor of the FMG sensors allowed the group to use over 50 FMG

sensors and integrate the IMU. This combination was found to be very successful in classifying

gestures, as it was able to mitigate the limb position limitations of using FMG sensors alone. The

limited work on FMG+IMU to date claims that this combination is enough to adequately classify

gestures, as they have achieved 99% accuracy; however, when dynamic tasks were added to the

pool, only 86% accuracy was achieved, which is not surprising since FMG sensors have varying

success with dynamic tasks [12]. Again, this is attributed to FMGs sensor limitations and working

principle which captures pressure changes on the membrane, detecting volumetric changes of the

muscle, but also the weight of the prosthesis against the arm, and pressure changes associated with

movement. Nonetheless, it appears that by combining FMG+IMU, the limb orientation effects

that hinder FMG, are attenuated by the inclusion of orientation data [72].

2.4.4 FMG+EMG+IMU

Integrating FMG+EMG+IMU into a device for prosthesis control was found only once in the lit-

erature. Carbonaro et al. [17] integrated these three modality types using commercially available

sensors into a rigid forearm brace. More specifically, they used 8 RPTF FMG sensors, 2 Ottobock

sEMG sensors and a standard IMU. Interestingly, the group did not try pattern recognition algo-

rithms to decipher the myography signals, but instead opted for a logical control system that used

both sEMG and FMG threshold values for grasp and release detection, and the IMU for position

detection [17]. They tested the hardware on 10 healthy subjects and were able to get a 90% success
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rate for completing a predefined task. Unfortunately, being a preliminary study, this work was

limited as there was no analysis done or statistical significance found.

2.4.5 Conclusion

In theory, integrating all three sensing modalities would capture redundant and supplemental

information about what an amputee is intending to do with their hand/wrist. This is important

for HMIs in general, because all of the myography methods available are imperfect, and are limited

in various ways. Robustness and accuracy improvement have consistently been reported in the

literature when combining two sensor modalities, so it is possible that even better performance

can come from combining three [4, 8, 46]. Prior work has also highlighted other benefits of using

multiple sensor modalities, such as the need for fewer sensors, which can help with financial and

computation costs.

Integrating all three sensor types into a single prosthesis control system with pattern recognition

has not been found in the literature. Exploring the fusion of FMG+sEMG+IMU with pattern

recognition is novel, and with that there are a lot of unknowns to explore. A probable downside of

such a system is that it will likely be difficult and complex to integrate the multiple sensor systems

into a compact, wearable device, as integrating two has been complex [4, 13]. Other potential

issues could be that having data from three separate modalities, may make the system highlight

the weaknesses of each modality instead of the strengths, and that it will be more computationally-

expensive — although this may be mitigated by being able to use fewer sensors [4, 8, 89]. The actual

benefits and downsides of integrating the three are unknown, but the theory and research success

of using two modalities leaves the question of a strong framework to explore: namely, whether

using three sensing modalities makes the system even more robust and accurate, economical and

likely to be adopted by amputees.

2.5 Data Set Creation

To use myography sensors for controlling an advanced prosthesis, raw sensor values need to be

processed so that they can be more readily deciphered by a pattern recognition algorithm. First,
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the myography data needs to be captured, organized and, for offline analysis, saved. To give the

classification algorithms the best chance at accurately mapping signal patterns to gestures, the

raw myography signals need to be filtered and segmented, and useful features extracted from the

signal values [43, 90]. This section will investigate the state-of-the-art methods used to create data

sets for use with pattern recognition algorithms for prosthesis control systems.

2.5.1 Signal Acquisition

To use the data from myography sensors for a prosthesis control system, the sensor signals need to

first be captured so that they can be processed and then interpreted. For many commercial sEMG

and sEMG+IMU systems, this comes in the form of a corresponding application programming

interface (API) for the sensors [91]. For custom systems, such as those with FMG sensors, custom

solutions need to be created. These solutions often include microcontrollers such as Arduinos and

data acquisition (DAQ) cards that can capture signals from the sensors [4, 63, 81, 83].

Common among all of the data capturing devices are analog-to-digital converters, which sample

the analog, continuous data from the sensors, and convert it to a digital, discretized representation.

The sampling rate is the rate at which the continuous signal from the sensors is being measured

and is a very important consideration when collecting sensor data onto a computer. To capture

phenomena from a sensor using an analog-to-digital converter (ADC), the sampling rate must

be quick enough to capture the phenomena that occur at certain frequencies [8]. The Nyqvist

Criterion is a rule that states that sampling frequency must be at least twice the highest frequency

of the phenomena to be measured, which is different for each myography modality [43].

As mentioned in the myography section, EMG has been around for quite a while, and its

energy distribution has been established to be within the 0–500 Hz range [58, 92]. According to

the Nyqvist Criterion, the minimum sampling frequency for sEMG must be 1000 Hz, but many

custom systems and the commercially available Trigno, use 2000 Hz as the standard sampling

frequency [24, 85, 90, 92]. FMG is less established, and the minimum sampling frequency is

still debated. Xiong and Quek [93] state that 4.5 Hz is the maximum frequency of human hand

motions, and thus recommend 10 Hz as the minimum sampling frequency [24]. A more recent

study by Menon et al. [64] looked at FMG minimum sampling frequencies required for different
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ADL tasks to ensure that the content of the signal is not compromised. For isometric and dynamic

conditions, they recommend minima of 58 Hz and 84 Hz respectively [8, 71]. Groups who have

taken a more conservative approach use higher sampling frequencies of 100 to 1000 Hz for FMG

signal acquisition [9]. Since FMG is newer, there is also more variation among custom FMG setups

— with the addition of backing plates and bumpers — so in order to accurately capture relevant

phenomena, it is likely better to use higher sampling frequencies.

2.5.2 Signal Filtering

After the signal is digitally acquired and saved, the signal must next be cleaned for unwanted

information captured by the DAQ card. Signal filtering is the process of removing unwanted

artifacts, such as electrical and environmental noise from the signal of interest [43]. The purpose

of this process is to maximize the signal-to-noise ratio and minimize distortion of the signal [51, 58].

EMG is a fairly weak signal and is greatly affected by noise from surrounding electronics,

shifting electrodes, data lines, ambient noise, and electromagnetic radiation from the environment

[11, 46]. The energy distribution of EMG ranges from 0–500 Hz, with the dominant components

being in the 50–150 Hz range [58]. Anything outside ranges from 0–500 Hz can be considered

unwanted noise and should be filtered out before proceeding to later stages of processing [51].

Although the energy distribution of EMG is between 0–500 Hz, 20 Hz high-pass filters are

often used because anything below 20 Hz could be caused by motion artifacts, which is a large

source of noise for EMG. Frequencies above 500 Hz are filtered out using a low-pass filter [46]. To

carry out the filtering, the most popular filter is a 4th-order Butterworth filter [11, 59]. Using a

4th-order Butterworth bandpass filter successfully reduces noise and keeps the useful information

in the signal [11, 51, 58]. Sometimes the sEMG signal is biased, and has been noted to affect

performance [46]. This unwanted feature can be easily filtered out of the signal by subtracting the

mean of the signal from the signal [59].

Sometimes a notch filter is also used to remove noise that comes from power lines — which in

North America this is in the 50–60 Hz range [11]. Note that the most important EMG information

lies within the 50–150 Hz range. Since there is no ideal notch filter that can remove noise at only

50 Hz or 60 Hz — it would always remove more of the bandwidth — many groups have opted to
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leave the power line interference since it will conserve useful EMG information. Therefore, a notch

filter is not recommended for EMG data processing [46, 58].

FMG and IMU accelerometer and gyroscope signals have been used unfiltered because they

have acceptable signal-to-noise ratios [12]. Furthermore, using bumpers on RPTF FMG membrane

naturally filters the signal by mechanical processes and is often used without any additional signal

filtering [8, 94].

2.5.3 Signal Segmentation

After unwanted information from the sensor signals is filtered out, the data must next be segmented

into sections of time, a process known as windowing. A signal window has at least two data points

and often has more. Windowing the signal is important for the next signal processing step,

which will be to find underlying features of the signal. Signal segmentation/windowing has been

thoroughly investigated for sEMG, so naturally, FMG research has started by trying the successful

sEMG windowing methods [61]. The optimal windowing procedure is a balance of window size,

measured in time, and overlap between adjacent time sectioned windows. It has been found that

window length is proportional to classification accuracy, but longer window lengths introduce

greater controller delays — overlapping windows is a technique that allows for larger window

lengths to be used with less delay [3, 80, 82].

For real-time prosthesis control, a constraint is that the window length must be less than 300

ms, as this is the maximum acceptable time delay. If the prosthetic system takes longer than this

to react to a user’s input, the system becomes frustrating for a user to use [18, 29]. Thus, 200

ms to 250 ms window lengths have become widely used by prostheses control researchers, with

some also including a 25 to 75% overlap so that there is less of a time delay between subsequent

windows, allowing for even faster response times [11, 40, 59]. These values were found to be a

good balance between accuracy and an acceptable prosthesis response time.

2.5.4 Feature Extraction

After the windows have been segmented appropriately, the window-based features must then be

calculated before use with a pattern recognition algorithm. For real-time, out-of-lab use, it is
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important that the features and pattern recognition models both work well enough, but also be

quick enough, in low power computational platforms [43, 90]. Extracting features from signal

data is critical for using myography modalities with pattern recognition algorithms. Extracting

signal features can break down each sensor channel into relevant attributes that can be used by

the pattern recognition algorithm to decipher a pattern.

Features from a digital signal can be extracted in the time-domain, frequency-domain or both.

Time-domain features are typically less computationally-expensive — and fortunately when using

sEMG for prostheses control — have been found to out perform time–frequency and frequency-

domain sets [11, 43, 46, 52, 95]. Using time-domain features for IMU and FMG has also been

successful [4, 8, 11]. There has been extensive research conducted to find the best features for

distinguishing EMG signals for classification and some of the most used time-domain features are

listed below [11, 96].

Mean absolute value (MAV): MAV is one of the simplest and most often used features out of

all window-based features [11]. This value is the rectified mean amplitude of the signal over the

window length, and is calculated as:

MAV =
1

N

N∑
i=1

|xi| . (2.1)

Mean absolute value slope (MAVs) reflects the trend of the signal, and is calculated by finding

the difference between the MAV of two adjacent time periods. This feature can be useful, but it

cannot be used for real-time applications [46].

Waveform Length (WL): WL measures the cumulative length of the waveform within the

window segment [97]. This value reflects the variability and frequency of the signal, which gives

an indication of the signal’s complexity in that window. It is calculated as:

WL =

N−1∑
i=1

|xi+1 − xi| . (2.2)

Autoregressive Coefficients (AR): AR coefficients are found by fitting the data points within

window length to a linear combination, plus a white noise error term [11]. The coefficients of this

linear combination are used as the calculated feature. The 4th-order AR has been suggested as
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the most suitable, and has been used in previous work [30, 46, 59]. p is the order of the AR model,

and the AR model is defined as follows:

xi =
P∑

p=1

apxi−p + wi. (2.3)

Zero Crossings (ZC): ZC is found by counting the number of times the signal crosses the

zero axis (with minimum threshold) within the window length. This feature is a reflection of the

frequency of the signal over the window length [11, 96]. The ZC value is computed as follows:

xi =
N−1∑
i=1

f [x(i), x(i+ 1)], (2.4)

f(x, y) =


1, if(x× y) ∩ |x− y| ≥ threshold

0, otherwise.

sEMG is a very complex signal, and finding distinct features from each window helps the

pattern recognition algorithm decipher the signal and find patterns more consistently than by just

using the raw signal [59]. The most commonly used and successful features for sEMG classification

are MAV, WL, ZC, AR, and MAVs as highlighted in a comparison study by Phinyomark et al.

[96], and validated by Campbell et al. [35] and other sworks [11, 46].

Some FMG features have been used with success, but the applications are very specific and

do not overlap with upper limb prosthesis control [64]. For upper limb prosthesis control, FMG

features are often not used at all as they do not seem to be critical. The most consistently successful

FMG information used for pattern recognition is simply the raw value or MAV of the signal. This

is likely due to the steady and high signal-to-noise ratio of the FMG signal. For IMU, raw signals

or the MAV are also the most often used [43, 80, 98].
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2.6 Pattern Recognition Methods

Data from the sensors is filtered, segmented, and features are extracted from the signal to provide a

pattern recognition algorithm a better chance at being able to parse and find connections between

input signals and particular gestures [43]. The pattern recognition algorithms use training data,

which is composed of input columns of the various processed sensing data and features. With the

training data, the algorithm is also given the output, in order to train the model to output that

value when it sees the associated patterns. To test the trained model, only the input data is given

and the model is used to predict the output — as would be done when the system is trying to

predict an amputee’s intended gesture with processed data from muscle inputs. There are several

pattern recognition models used for this application. Below are some of the most successful and

used ones.

There are two main categories of ML, pattern recognition algorithms, which are referred to as

classification, and regression models. Classification models are used to predict discrete gestures

from input signals, such as looking at the EMG, FMG and gyroscope signals at a discrete time step,

and predicting which hand gesture the user may be doing at that instant. Regression models are

used to predict continuous/transient states, such as the trajectory of the hand and wrist [8, 52].

Regression modelling has the potential to give the user proportional speed, force and transient

control of their prostheses, similar to how people control their natural limbs. Prosthetic control

systems that have been tried on both classification and prediction of regression/continuous states

have consistently performed worse when predicting transient states, as prediction is much more

difficult [4, 43]. The ideal eventual outcome for prostheses control systems is to allow the user

real-time prosthesis hand/wrist gesture control as well as proportional speed and force control that

will allow them to perform their ADL.

2.6.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a broad class of ML algorithms used for pattern recognition

and classification. They are known for their ability to have high generalization over large data sets

that are not linearly separable. ANNs are based on layers of interconnected activation functions
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and nodes (neurons), that attempt to build complex relationships between the input data and,

in the training stage, a known output. Input data percolates through the interconnected layers,

assigning neuron weights, and then the output data goes through the layers from the output to

input, adjusting the weights to further minimize the classification error. To minimize the error,

various optimization techniques, such as gradient descent, can be used to minimize the classification

error on the training data [8, 52]. These algorithms are highly configurable and there are numerous

techniques to auto-optimize to find the best performing combinations. Important, tuneable hyper-

parameters are the number of layers between the input and output layer (called hidden layers),

number of neurons in these layers, batch size, optimization loss function, the activation function

present in the hidden layer neurons, and the number of epochs used to train the model [8, 11, 99].

ANNs have been used to classify sEMG fusion gestures with 85–91% classification accuracy

[11, 99]. ANNs have also been tried with FMG+IMU for dynamic grasp and release detection,

achieving 92.67% average classification accuracy [30]. They are a popular, often successful method

used in offline gesture classification analysis, but because of their complexity, they are not as

popular a choice for online/real-time pattern recognition/prosthesis control.

2.6.2 Support Vector Machines

A support vector machine (SVM) is another ML algorithm used for classification that is very useful

for solving nonlinear pattern recognition problems. SVMs works by taking input data and finding

an optimal hyperplane between the different class outputs. Distinct hyperplanes are established

to separate data points into different classes. An optimized hyperplane is calculated based on the

separation distance created by the data points in each class. The algorithm attempts to maximize

the separation distance (classification margins) while minimizing the number of classifications

that get placed within the margin. Within the margin, the algorithm also attempts to maximize

the separation distance from the centreline. Originally used to separate two classes, SVM has

evolved to be used for multi-class separation by using kernels to project the input data into higher

dimensional space. This transformation helps group data that are similar so that the hyperplane

can separate the data accordingly. The kernel is referred to as gamma, and defines how influential

the individual points are in creating the location of the hyperplane. The kernel’s degree and
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coefficients are all important aspects that are configurable, tuneable and can be optimized. This

model development can be computationally-expensive, but is not as expensive as ANNs, and with

modern processing is used in real-time applications [11, 97, 100].

SVMs have been successfully used for many EMG applications including motion classification

for the control of wearable devices [100, 101]. Using SVMs with muscle activation information from

sEMG sensors, Omario et al. [102] achieved 81–91% classification accuracy and Englehart et al. [94]

achieved an accuracy of 92% in a real-time experiment. For FMG it has even been found to have

superior performance compared to other pattern recognition algorithms [8]. Combining modalities,

using 2 sEMG and 37 FMG sensors on an amputee resulted in a classification accuracy of 94.8%

for 4 gestures and 81.6% for 6 gestures [82]. In another study on 22 healthy participants that used

the commercially available Myoband (EMG+IMU), SVM was the best performing classification

method with 82.4% accuracy [11, 99].

SVM is the second most used classification algorithm and is touted as one of the best for EMG

classification [11]. It is also the predecessor to the most often used regression pattern recognition

algorithm for prosthesis control, the support vector regression (SVR) algorithm, which makes SVM

enticing for building onto for future work [8].

2.6.3 Linear Discriminant Analysis

Of the classification algorithms mentioned thus far, LDA is the most straight forward, computationally-

efficient model [82]. The LDA algorithm searches for linear combinations of input variables to find

the linear combination that best separates each class using its covariance [103]. As it is a very

simple algorithm, it is also not very customizable and cannot be optimized for more difficult

scenarios.

A study using two sEMG sensors with 37 FMG sensors on an amputee to classify 3 gestures

achieved 94.8% accuracy, and 81.6% for 6 gestures (the same as SVM for the same study) [82].

Interestingly in FMG studies it was also found that there was no statistically-significant difference

between SVM and LDA classification results [8]. In a study using co-located FMG+sEMG to

classify 0–9 in American sign language, Jiang et al. [83] was able to achieve 91.6% classification

accuracy. In another study using eight sEMG electrodes and an IMU to classify 3 gestures in 5
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arm positions, Geng et al. [104] achieved an accuracy of 90%. By combining 43 FMG sensors

with an accelerometer on an amputee, Ferigo et al. [12] were able to obtain 86.3% accuracy for

classifying 11 gestures. LDA has been successfully used for offline and online gesture classification,

but its lack of customizability and regression counterpart makes it limited for future development.

2.6.4 Regression

Instead of interpreting the intent of the user as a discrete grasp/gesture, with regression models the

algorithms are tuned to transient effects, such as level of muscle activation, speed of contraction,

amount of force and path prediction. This type of control is significantly more akin to controlling a

biological limb and is an important capability for prostheses control technology, but is more difficult

to predict and hasn’t performed adequately with single and paired modality prosthesis control

systems [4, 96, 100, 105–107]. Regression models were not researched in depth and are left for

future works because the benefits of combining three sensing modalities for prosthetic control has

yet to be discovered. When sensing modalities are first tested for this application, typically their

discrete gesture classification accuracy is assessed to determine whether the modality combination

provides any benefit, and then regression control algorithms are tested as the next step [15].

Sensor fusion combinations have the potential to solve the minimum accuracy requirements and

address the main complaints by amputees, which is the lack of robustness of the system outside

of the lab setting [29]. Castellini et al. [4] tried trajectory prediction by combining FMG+sEMG

and had good results with the two modalities responsible for a significant improvement in their

results, but claim that the results were not robust enough for out-of-lab scenarios. They strongly

assert that multi-modal is a necessary forward step in this domain, as it has been found to provide

pattern recognition robustness by way of some sensors compensating for the limitations of others,

and has the potential to fill the need to use with transient prediction type [4, 14, 16].

2.7 Conclusion

There are important activities of daily living that a prosthetic system must be able to do in order

to be functional for an amputee. The prostheses themselves are not the limiting factor to this, but
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the technology used to control the prosthetic system. Myocontrol is the field of sensing biological

signals of the body, and using them with pattern recognition algorithms to give amputees control

of their prostheses as though it is a natural extension of their body. Unfortunately, the systems

developed to date have not been able to meet accuracy and robustness requirements for the system

to be readily adopted by amputees. To increase the reliability of these systems, researchers are

combining myography modalities, with the theory that by having multiple myocontrol modalities,

they can fill the gaps where other modalities are lacking, and to give a the pattern recognition

algorithm more complete information from which to associate gesture or movement patterns to

[108].

Most of the methods of sensor fusion for this domain have included pairs of sensing modalities,

but only one preliminary work has been published on combining three modalities. To assess

the effectiveness of combining three sensing modalities, it is critical to use co-located sensors

and state-of-the-art signal processing, data preparation and classification algorithms to properly

analyze performance and compare it to other modalities and in-lab benchmark testing. It is also

important to recognize that the system will likely perform worse in real-world, out-of-lab scenarios

[4, 13, 79].

To reach the point where these systems can be used by amputees in real-time, prosthesis control

systems need to be consistent at interpreting what the user is intending the prosthetic system to

do, and do it quickly, consistently and affordably enough for the system to become more widely

adopted [18]. ML pattern recognition algorithms with multiple-myography modalities as inputs

are critical for achieving this, as researchers have made large strides by using these technologies.

Once adequate real-time classification results have been achieved by amputees, regression control

and task-oriented assessments should be used as the final metric of an all-encompassing prosthetic

control system.



Chapter 3

Data Collection

This chapter describes the equipment and procedure used for collecting FMG, sEMG, and IMU

data from participants while they performed the gestures important for ADL. The main objective

of this experiment was to conduct a proof of concept of a custom data-collection system, and

determine if using three myography sensing modalities can improve the classification accuracy of

muscle activity associated with the ADL. Improvements would mean more accurate and consistent

control by increasing the ability of a pattern recognition algorithm to classify the sensory data

associated with performing hand and wrist gestures in different arm positions. Sensory data were

collected from the dominant arm of able-bodied subjects while they performed prescribed wrist

and hand gestures. A custom multi-modal sensing device needed to be created for this work; design

considerations and how the system was integrated will be outlined. The participant recruitment

procedure, and experimental protocol for data collection will also be outlined in this chapter.
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3.1 Equipment

A system that integrated FMG+sEMG+IMU into a single system did not exist commercially, and

thus a custom device needed to be researched and developed for this work. The system developed

and used for this work can be seen in Figure 3.1. To test the hypothesis that using three simul-

taneous sensing modalities brings accuracy and robustness improvements, the hardware needed

to be chosen carefully — as to be considered state-of-the-art work, the sensors and implementa-

tion needed to meet existing benchmarks. This section will go through the design considerations

and device design. Major considerations for the design were compactness (small form factor for

wearable systems), affordability, signal clarity, and ease-of-use.

Enclosure 

IMU 

FSR 
sEMG Electrode 

Figure 3.1: The multi-modal arm band that was designed and used for this work.
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3.1.1 FMG Design Considerations

Using FMG for myocontrol is a relatively recent development, and thus the state-of-the-art configu-

rations are not well established. What is known is that the force sensing resistors (FSRs) produced

by Interlink Technology are the most popular and one of the most affordable FMG sensors used

[8]. These sensors have a sensitivity of 0.1 N and can measure up to 20 N, which is well within

the range of forces generated by a contracted muscle pressing into the FSR [8, 68]. FSRs have

been used in various configurations for myocontrol/gesture recognition with accuracies reported

over 90% [16, 72, 76, 109].

To find an effective configuration for this work, a one subject experiment was conducted to test

various sensor configurations using the Interlink FSRs. All of the tested configurations used FSRs

placed within in a removable arm band. Within the arm band, the FSRs had either no support

material, a rigid backing plate, a bumper extension on the FSRs sensing membrane, or both the

rigid backing plate and bumper extension. An unmodified FSR, and modified version of the FSR

with backplate and bumper can be seen in Figure 3.2. FSRs were built into these configurations

(a)

Cylindrical Bumper 

Rigid Backplate 

(b)

Figure 3.2: A commercially-available Interlink 402 FSR in two configurations: (a) without modifi-
cations, and (b) with rigid backplate and cylindrical bumper modifications — the best
performing FSR configuration.
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and then tightened around forearm similar to where a myography arm band would be located

— around the largest bulk of the forearm. The subject was asked to clench their fist, and the

FSRs’ response was recorded and compared. The goal of this experiment was to test which FSR

configuration was the most sensitive to the forces exerted circumferentially into the arm band by

the contraction of the muscles of the forearm.

From the results, the most consistent and sensitive FMG configuration was the FSR with a rigid

backplate and bumper. A prototype version of this configuration can be seen in Figure 3.2. This

configuration likely worked well because FSRs are flexible, and when a user contracts an underlying

muscle, if the FSR is pressed into a deformable arm band that offers minimal opposition, much

of the axial force generated by the contracting muscle is dispersed into stretching that band. By

having a rigid backplate between the FSR and arm band (behind the FSR), axial forces generated

by the volumetric changes associated with muscle contraction are concentrated onto the FSR.

Further, by using a protruding bumper on the FSR’s force sensing membrane helps to concentrate

the force generated onto the sensing membrane of the FSR.

3.1.2 sEMG Design Considerations

For sEMG, several commercial options were available such as the Trigno, MyoBock electrode,

and Myo-Armband, but these sensors were ruled out for several reasons, including their lack of

customizability. To use the Myo-Armband, a separate FMG band would need to be used, or for the

Trigno and MyoBock sensors, FMG and sEMG sensors would need to alternate, wasting vital space

on the limited surface area of the important muscles on the forearm. The Trigno and MyoBock

sensors also have prohibitive costs for the average user, and all three commercially available options

would not allow for co-locating FMG sensors and sEMG electrodes. The ability to co-locate FMG

and sEMG sensors was important to maximize the use of the forearm’s limited surface area, and

because having the sensors in the same location is a more effective way to compare the modalities.

A critical feature of the sEMG system design was the electrodes. Many different electrodes

were examined, with important considerations being that they needed to be medically safe, good

conductors, easy to use, and relatively inexpensive. Gelled electrodes were ruled out because they

make the system inconvenient to use by either needing to be replaced, or cleaned and gelled after
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each use. Ease-of-use and affordability were important requirements of the system, and thus dry

electrodes were deemed ideal for this work. Commercially-available dry electrodes were surveyed

based on material, geometry and cost. The electrodes used in the commercially-available CoApt

prosthesis control system were found to be the most appropriate as they were made of stainless

steel, which is safe for medical applications, and provide good conductivity [55]. The geometry of

the CoApt electrodes was dome-shaped/convex and pushed onto the surface of the skin. By using

convex sEMG electrodes that depressed the skin, the surface area of the electrode–skin interface

increased, and was conducive to better conductivity at the skin–electrode interface. This was

important in order to satisfactorily register MUAPs, and to partially mitigate a limitation of dry

electrodes, which was their limited conductivity when compared to wet electrodes. Convex sEMG

electrodes are also beneficial because they push into the superficial layers of skin, allowing the

electrode to get closer to the muscle body where the MUAPs are generated and making signal

detection more robust. These electrodes were also chosen because they were already used in a

commercial product, which was a good indicator that they had been validated. For the sEMG

system designed for this work, the electrodes were the most expensive component of the system,

and for future versions will need to be addressed. The high cost of the electrodes was deemed to

be an acceptable expense for this stage of development because they were commercially-validated

electrodes, and once the system is better understood, could be optimized for cost.

A custom sEMG electrical system was chosen and developed based on the electrical designs

by Wang et al. [58]. This system detects MUAPs (akin to muscle activation) on the surface of

the skin, and then amplifies them using a differential amplifier. The signal from the differential

amplifier was extremely noisy and in the tens of microvolts, so the sEMG signal was filtered

and then amplified again to give a cleaner, larger signal that was akin and proportional to the

muscle activation below the electrodes. The sEMG electrical circuit was first implemented onto

a breadboard, its ability to detect MUAPs tested, confirmed, and was then used as the sEMG

circuit to be implemented into the multi-modal system.
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3.1.3 Multi-modal Integration

When integrating FMG, sEMG and IMU sensing modalities into a single device, form factor was

a critical consideration that was challenging to implement. The components that needed to be

integrated into the wearable were the commercially available FSRs, dome-shaped stainless-steel

electrodes, IMU, and relevant circuit components including amplification and filtration hardware.

All of the circuitry and components needed to be compact enough to be integrated into a wearable

device that fit onto the forearm of a user, so all of the electronic components chosen were surface-

mount to conform to the small form factor. The circuitry for the FMG and sEMG systems was

combined into a single 50 mm × 20 mm printed circuit board (PCB), as can be seen in Figure 3.3.

The PCBs were assembled using a reflow oven in order to robustly assemble the small compo-

nents. All of the traces and connections were tested and faults addressed following a robust test

plan that ensured that each system was working as intended. After the PCB passed the testing

process, the PCB was affixed to the opposite side of a backplate, which can be seen in Figure 3.4.

These sensor-module backplates were designed and 3D printed to contain two sEMG electrodes

and an FSR in between. The perimeter of the backplate contained loops that allowed for an ad-

justable velcro strap to loop through. The strap was used to securely fix the arm band to the user

and make it adjustable for different arm sizes. This design also allowed for the number of arm

band sensor backplates/modules to change.

Figure 3.3: Integrated FMG,
sEMG and IMU PCB
before the electrodes
were assembled.

Figure 3.4: The configuration on the left is an assembled
multi-modal arm band module without the enclo-
sure attached, and the module on the right is the
completely assembled module.
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Four of these co-located sensors modules were used for a single arm band. A fifth co-located

sensor also included the IMU and its relevant circuitry. The IMU chosen was the SparkFun 9

DOF IMU Breakout (LSM9DS1), which has a 3-axis gyroscope, 3-axis accelerometer, and 3-axis

magnetometer in a small breakout board. The IMU was soldered to the fifth sensor module, and

then all of the modules were enclosed by a cover to protect the electronics as can be seen in

Figure 3.5. A block diagram of the entire data collection system can be seen in Figure 3.6. The

system runs on 5 V, and consumes approximately 0.23 A. It can be seen in Figure 3.7.

Enclosure 

PCB 

Backplate 

FSR 

sEMG 
Electrodes 

Figure 3.5: Exploded computer aided design (CAD) view of a multi-modal arm band module with
labelled components.
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Shielded	Multi-
conductor	Cable	

FMG	

ADC	

NI-9205	DAQ	

Arduino	
Mega	

PC	

Multi-modal	Armband	

Filters	 Amplifier	
Differential	
Amplifier	

IMU	

EMG	

Amplifier	

Figure 3.6: Block diagram of the FMG, EMG, and IMU data collection hardware. FMG and EMG
data is collected from the multi-modal arm band, and then via a shielded wire to the
National Instruments (NI) 9205 DAQ card for ADC. The IMU data is digitized on
board, so it it sent via simple twisted wire pairs where it is decoded by an Arduino.

Figure 3.7: Complete multi-modal arm band system. From left to right: power supply, DAQ
hardware wired to the completely assembled multi-modal arm band.
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3.2 Signal Acquisition

3.2.1 Participant Recruitment

Trials using the custom multi-modal arm band began following approval from the Human Research

Ethics Board at Western University (Appendix A.1). Participants were recruited via physical and

email advertisement. Only healthy subjects over the age of 18 years old, with no previous upper-

body injuries or neuromuscular deficiencies were considered for the trials. These exclusion criteria

were implemented because musculoskeletal and neurological injuries or disorders could limit/affect

the subjects ability to perform the gestures, and would introduce another variable to the study.

3.2.2 Experimental Protocol

Upon arrival at the laboratory, participants were given a copy of a consent form to review, which

outlined the experiment requirements. Following participant consent, each participant provided

information about their age, dominant hand, sex, gender, hours per week of physical activity, upper

limb injuries, and whether they did any particular upper limb activities (i.e., rock climbing or

weight lifting). Next, the investigator measured and recorded the subjects’ forearm circumference,

and bicep and tricep skin-fold measurements using a cost-effective arm-fat measurement technique

found in the literature [110, 111]. Only a portion of this information was used for this study,

but the subject information was collected because it could account for anatomical differences in

myography signals that may be useful for future work. A summary of the participants’ information

can be found in Table 3.1.

Table 3.1: Summary of participant information.

Sex Dominant Hand Age (years)

16 Male 22 Right
25.0± 4.6

7 Female 1 Left
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3.2.3 Multi-modal Device Placement

To ensure consistency in the myography readings, the multi-modal arm band was placed in a

similar location for every participant. Participants were asked to flex the wrist of their dominant

hand in order to localize the flexor carpi-ulnaris muscle using palpation techniques, and then the

IMU board was placed over it. The arm band was always placed in the same orientation, so

the adjacent board modules were placed in similar locations. Longitudinally, the arm band was

placed around the part of the forearm with the largest bulk, roughly one-third of the length of the

forearm distal to the olecranon process (elbow). The velcro straps of the arm band were tightened

as much as possible within the participants’ comfort level. A tension band was used to affix the

wire to participants’ lower forearm as per Figure 3.8, in order to mitigate movement restriction

and relieve tension on the interface between the wire and multi-modal arm band. The device was

then powered and left to idle for two minutes, as recommended by Nazmi et al. [112] in order to

give the sEMG electrodes time to settle, and sweat to develop at the electrode–skin interface.

Next, a Matlab data collection program was started, and live sensor data were displayed on

the screen. The participant was asked to flex and extend their wrist to determine if the FMG and

sEMG sensors were sensing and transmitting data correctly. To ensure that the IMU was working,

participants were asked to move their arm, and the accelerometer and gyroscope measures were

monitored to ensure that they corresponded with the participant’s movement.

Figure 3.8: Multi-modal arm band affixed to a participant’s forearm, with the data wire affixed
close to the wrist in order to relieve wire tension and mitigate movement restriction
caused by the wire.
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3.2.4 Data Collection Procedure

After the initial setup, participants were asked to follow a randomized combination of hand/wrist

gestures and arm position prompts displayed on the monitor while sensor data were collected.

An image of the gesture hold and rest prompts can be seen in Figure 3.9. The gestures were

wrist flexion, wrist extension, wrist pronation, wrist supination, hand closed (fist), hand open,

and precision pinch, as shown in Figure 3.10. All of these gestures were performed in a low,

medium, and high arm position, corresponding to the upper limb at full extension (0°), arm at

90°, and arm at 135°, respectively, as can be seen in Figure 3.11. The gestures chosen for this work

were based on critical gestures for ADL and used for previous prosthesis research on upper limb

gesture classification [7, 11, 20, 29]. The arm positions were also picked based on these criteria,

but also because changing the arm position changes each sensor modality’s response to muscle

pattern activation, so by collecting signal data in these arm positions, the system would capture

the sensory patterns associated with arm position as well [11, 113].

The order of the hand/wrist gesture and arm position combinations were chosen at random

and displayed on the monitor to instruct the participant, as indicated in Figure 3.9. Random

combinations were chosen to remove the variability of fatigue from the experiment. Participants

were asked to perform the gesture at a moderate and repeatable force level. The graphical user

interface (GUI) prompted participants to hold each gesture/arm position combination for 3 sec-

onds, while FMG, sEMG and IMU data were simultaneously collected. An average of the five

FMG and sEMG sensor values was displayed for the participant during this time to provide them

with visual feedback — something deemed critical by Lunardini et al. [38]. An example of how

visual feedback was displayed to the subject can be seen in Figure 3.9(b). This was followed by a

3 second rest prompt in a neutral hand position during which sensor data were not collected, as

seen in Figure 3.9(a). This was done for 10 repetitions, after which, the participants had a break

until they prompted the investigator that they were ready for the next set of gesture/arm posi-

tion repetitions to begin. In total, each participant performed 10 repetitions of every gesture/arm

position combination, totalling 210 repetitions. The sensor data were timestamped, labelled with

the gesture/arm position, and then saved for the offline processing discussed in the next chapter.
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(a)

(b)

Figure 3.9: GUI displayed to participants while they are prompted to hold/release gestures. (a)
shows the rest/neutral gesture screen with no live data recorded/displayed. The red
indicator notifies the participant to release the gesture/rest. In (b) the participant is
asked to hold the displayed arm position and gesture. The green indicator notifies the
participant to hold the gesture/arm position and the live sensor data are displayed on
the screen, with EMG and FMG data displayed in green and blue, respectively.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.10: Hand/wrist gestures that were recorded: (a) wrist flexion, (b) wrist extension, (c)
wrist pronation, (d) wrist supination, (e) hand closed (fist), (f) hand open, and (g)
precision pinch.

(a) (b) (c)

Figure 3.11: Arm positions that were recorded: (a) low, (b) medium, and high arm positions.



Chapter 4

Data Processing and Pattern

Recognition

The previous chapter outlined how FMG, sEMG and IMU data were collected while participants

held important gestures for the ADL. The data were saved with a label of the gesture/arm position

that was held during the data collection. Only static-gesture classification was explored for this

work, so the transient gyroscope data were not used from the IMU. Only accelerometer data from

the IMU was used for the gravity vector, as it pertains to arm orientation information. For the

remainder of this thesis when referring to IMU data, it is only in regards to the x, y and z-axes

accelerometer data, and sEMG will simply be referred to as EMG.

This chapter will describe the data processing procedure and subsequent use of the processed

data with a pattern recognition algorithm to predict gesture labels — in other words, using sensory

data collected at the forearm to interpret the intent of the participant. EMG, FMG and IMU data

collected under each combination of gestures/arm positions were analyzed in Matlab. The process

of signal filtering, segmenting, feature extraction, and data normalization will be referred to as data

processing. After processing, pattern recognition was the process of training an ML algorithm with

gesture labelled data, and then using the model to predict unlabelled data. Multiple myography

modality combination data sets were made and assessed for this work. To interpret the results of

the data processing and ML models, metrics such as classification accuracy and confusion matrices

51
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were calculated for subsequent analysis in the following chapter.

4.1 Signal Filtering

EMG is a fairly weak signal with a low signal-to-noise ratio, so to be useful, the signal needed to

undergo signal conditioning, or more specifically, filtering. The EMG hardware that was designed

for this work had on-board amplification and filtering, but since the data were not digitized close

to the measurement source, and the analog data were transmitted to the DAQ through a wire,

there were sources of noise past the point of on-board filtering. For example, some artefacts were

visible when the wire was moved or the subject fidgeted. It is likely that the wire acted as a

receiver of electromagnetic radiation in the environment, although this was mitigated with the

use of a shielded, multi-conductor cable from the multi-modal arm band to the DAQ. To assess

the noise introduced by the wire, live data were displayed while the arm band was powered off

and the wire was moved. There were several sources of interference identified. The greatest

source of noticeable interference was isolated to the wire-to-DAQ interface and the arm band-to-

wire interface. Interference of this nature is likely why filtering analog EMG data after it has been

collected is widely accepted and used as EMG data processing best practices [11, 46]. Furthermore,

filtering the analog data was critical when comparing the custom arm band designed for this work

to other systems that had on-board ADC, since the systems that convert to a digital signal closer

to the electrodes are more robust to noise [58].

To remove bias from the signal, a DC–DC filter is typically used on an EMG signal [11, 46]. For

this work, a variable DC–DC filter was used. A variable DC–DC filter was applied to each EMG

channel by calculating the mean of the first 500 samples (or 250 ms) of each repetition, and then

subtracting the mean from the EMG signal value for every EMG signal value in that repetition.

The DC–DC filter centred the EMG’s amplitude about the x-axis, which has been found to make

pattern recognition more reliable [59, 113]. The sample size was chosen because it aligned with

the maximum 300 ms response time constraint needed for online applications.

The EMG circuit used for this work already had a 20–500 Hz bandpass filter, but it was

visually noted during the experiment that there were EMG artefacts when the participant fidgeted
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with their hands or feet. This was isolated, in part, to the wired connection of the analog system.

Wired, analog systems are susceptible to motion artefacts, and ambient noise from electromagnetic

radiation in the environment [58]. Thus, a 20–500 Hz 4th-order Butterworth bandpass filter was

also applied to the data set to reduce this noise, as per EMG signal processing best practices

[11, 46]. No notch filter was used to remove the power-line noise at 60 Hz because the information

in this band also falls within EMG’s dominant frequency range of 50–150 Hz [46, 58].

FMG sensors have a high signal-to-noise ratio and because the bumper FMG configuration was

used for this experiment, the FMG system also benefited from some mechanical filtering [12, 64].

Thus, no filtering was applied to any of the FMG channels. The signal was acceptably decipherable

without applying any filtering to the data set, as can be seen in Figure 4.1, and has shown repeated

success without filtration in the literature [8, 64].
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Figure 4.1: 5 channels of raw FMG data from the multi-modal arm band while the closed fist
gesture is being held. Note the pressure signature change at the 0.75 s mark, which
is when the participant responded to the GUI prompt and moved to hold the gesture.
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The IMU’s accelerometer sensor used for this work had a good signal-to-noise ratio, so no

filtration of the x, y and z accelerometer data were used. Raw IMU data has also been used

successfully in the literature, and looking at the data, it was clear that the changing gravity vector

was decipherable between the three arm positions [12, 113]. An example of the differing IMU

gravity vector for the three different arm positions can be seen in Figure 4.2.
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Figure 4.2: IMU data plotted to show the effect of arm position changes on the accelerometer x,
y and z-axes values. These values indicate how the gravity vector changes, relative
to the positioning of the IMU on the participant’s arm. The accelerometer data were
plotted while in the (a) low arm position, (b) medium arm position, and (c) high arm
position.
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4.2 Signal Segmentation

The FMG signal was downsampled to 1000 Hz since this was the highest sample frequency found

in the literature for pattern recognition using FMG [64]. 1000 Hz is on the highest end of what

has been deemed necessary, but was used to remove sample rate as limiting factor of the success

the experiment [8]. The IMU signal was only sampled at 140 Hz, and thus, as per previous work in

the literature, the IMU data were upsampled using a cubic spline to 1000 Hz to match the sample

rate of the FMG data [11].

The data set recorded for each repetition of gestures was collected for 3 seconds, but only the

1.5–2.5 second range was used for this work. This 1 second window segment was the most consistent

across all participants. Before the 1.5 second mark, participants were delayed in reacting to the

gesture prompt, and after the 2.5 second mark, during some repetitions, participants released the

gesture early. Using the 1.5–2.5 second range removed these transient effects from the data set,

simplifying the classification problem to static gesture classification. An example of the useful

EMG data from the 1.5–2.5 s time segment can be seen in Figure 4.3. The data set was parsed

from 3 seconds to 1 second of data, per 10 repetitions, of each of the 21 arm position/gesture

combinations, for each of the 5 co-located FMG and EMG sensors, and single IMU, per subject.

State-of-the-art pattern recognition methods for prosthetic control systems require the use of

feature-based data sets, which require the data to be segmented into appropriate window lengths

[43]. In work by Englehart et al. [18], it is asserted that for real-time control, the system delay

must be less than 300 ms. Although the analysis for this work was conducted offline, a window

size that could accommodate the real-time threshold was chosen to simulate real-time conditions

as per other previous work [11, 46]. Deciding a window length for three modalities was challenging

since there have been no extensive studies to determine which window size is best for FMG signal

processing [8]. For EMG, it was found that window length is proportional to classification accuracy,

which comes at the cost of greater controller delays [46]. Overlapping windows refers to capturing

part of the data from previous windows into the next, and allows for even less time delay between

each window. A window length of 250 ms with an overlap of 50% (125 ms) was used since it is

below the 300 ms constraint, and would allow for sufficiently quick response times. This window
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Figure 4.3: Sample data set showing a participant’s EMG while they are performing the closed
fist gesture. The first column contains the EMG signals of Channels 1, 3 and 5; the
second column contains the EMG signals of Channels 2 and 4. The red box indicates
the time section that was parsed for static-gesture prediction.

length and overlap is also widely accepted in the EMG myocontrol literature [11, 46, 74]. These

window characteristics were used on the signals of all three modalities since the criteria for FMG

and IMU are not well established, and because it was imperative that each modality had the same

number of samples per unit time to not bias the pattern recognition algorithm [11]. In Figure 4.4,

it can be seen that each second of sampled data, which consists of 1000–2000 samples per sensor,

is segmented into 7 sample windows. Features will be calculated for each window, and gestures

predicted for each window.

4.3 Feature Extraction

Feature extraction is important for myocontrol because it makes pattern recognition algorithms

more capable of deciphering patterns in complex input signals [46]. To accommodate real-time
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Figure 4.4: One channel of FMG, EMG and IMU data is plotted to show how each modality’s
signal was segmented in the same way. From the 1 second of data per repetition, 7
window segments are created and used for subsequent feature calculation.

conditions, only features that could be applied online were considered. Also, only time-domain

features were considered for this work because they are the most computationally-inexpensive

features, and the most often used for real-time myocontrol applications. The features used for

EMG were AR, MAV, WL and ZC. These features have been used successfully for EMG gesture

classification by several groups in the literature, and are the ones most often used for interpreting

gesture input from the upper limb [11, 59, 105]. To accommodate the use of window-based features

and the requirement of the same number of samples per modality, a simple average of the signal

over the time window, or MAV, was used for the FMG and IMU signals. The decision to use

MAV for the FMG and IMU windows was further justified by its previous success in works on

upper-body prosthesis control [8, 80].
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Figure 4.5: Summary of the data set creation process that is done for each sensor channel.

4.3.1 Standardization

Pattern recognition algorithms can be imparted with false significance by the range and magnitude

of the data used to train the algorithms, so it is critical that the data have a consistent scale [11, 46].

This is especially important when using features and data from various sensors, whose values are

of varying scales. To reduce this discrepancy, each feature was normalized using the standard score

equation, which is calculated as:

Z =
X − µ
σ

, (4.1)

where X is the feature value, µ is the average of the feature set and σ is the standard deviation

of the feature set.

By subtracting each independent feature value by the mean of that feature set, and then

dividing that by the standard deviation of the set, each feature is left with a mean close to
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zero and standard deviation of 1. This step is also called auto-scaling, and is especially useful

for FMG to mitigate the variability of the donning force of the arm band between subjects [8].

Standardization was used across all modalities and features.

4.4 Data Set Creation

To train the pattern recognition algorithm and test each modality combination, various data set

combinations were created for this work. These are presented Figure 4.6. The modality feature

data set was broken into modality pairs, which corresponded to modalities that have been tried in

the literature, and they were FMG+IMU, FMG+EMG, and EMG+IMU. These data sets were also

used to compare the performance of the custom system to previous work found in the literature.

There were also two data sets created using the features from all three modalities. One of these sets

was similar to the pair modality data sets, which included sensory data from all of the hand/wrist

gestures, but another was made, called the main gesture set, that did not include the open hand

and precision pinch hand gestures. Having a greater number of classes to differentiate between

typically reduces the performance of a pattern recognition algorithm, so this set was created to

test the system’s performance when classifying fewer gestures. The five grasps chosen were deemed

to be the most critical as they were the ones that were used in the literature the most often. These

5 data set combinations were created for each of the 23 subjects.

Modality	Feature	Dataset	

FMG+IMU	
Features	

FMG+EMG+IMU	
Features	

FMG+EMG	
Features	

EMG+IMU	
Features	

Main	Gesture	
Dataset	

Train	SVM	Train	SVM	 Train	SVM	 Train	SVM	 Train	SVM	

Figure 4.6: Visualization of how the modality combination data sets were organized and used to
train the SVM classifier. Features from the respective modality are combined into one
set and used to train one classifier; this is done for each subject.

Within each modality combination set, data from the participant’s 10 repetitions of each ges-
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ture/arm position were used. 8 repetitions were used to create a training set and 2 were used

to create a testing set. To remove the variability of fatigue, the repetition number from each

gesture/arm position set was randomized. The training set consisted of the processed sensor data,

as well as the relevant classification labels, and was used to train the pattern recognition algo-

rithm. Arm positions were not considered in the labels because gesture classification is the most

important thing to predict for prosthetic control. Classifying gestures instead of arm position (or

a combination of the two) is the most relevant for prosthetic control because users require that

the control system is able to detect their gestural intent no matter the orientation of their arm.

Detecting the intended arm position is not as critical, but is important to include that information

so the pattern recognition algorithm that is tuned to each data set will learn how the gesture signal

data looks in each arm orientation. For the testing set, the processed input data were configured

in a similar way to the training set, except that it did not include the classification labels. The

classification labels were kept separate so that after the tuned pattern recognition model used the

test input data to make a prediction, the test set labels could be used to assess the accuracy and

consistency of the model’s predictions.

4.5 Pattern Recognition

After the data were processed, it was used as input data to train and test an ML, pattern recog-

nition algorithm. Using pattern recognition algorithms for controlling prostheses is analogous to

interpreting the intent of the user based on their processed biological signal data, and using that

prediction to control a robotic prosthesis accordingly [43]. For this work, an SVM was chosen

as the pattern recognition algorithm because of its efficiency and simplicity when compared to

ANNs. LDAs, being the most computationally-efficient algorithm mentioned in Section 2.6 were

also not chosen because SVMs are more customizable, making them highly tuneable and could be

better optimized [82]. Another critical reason for choosing SVMs over other pattern recognition

models was in consideration of future work. The intuitive next step from successfully classifying

static gestural intent would be proportional control, which would require the use of regression

pattern recognition modelling and prediction [4, 43]. With that in mind, SVM is very similar to



4.5 Pattern Recognition 61

the most popular regression model, SVR, which works on a similar working principle. The results

of the SVM classification testing used for this work would be insightful for how the modalities

would perform when using an SVR for regression prediction [8]. Testing the classification accuracy

achievable by using the novel, multi-modal arm band designed for this work and comparing the

modality combinations to ones previously tested in the literature will help to determine if the

multi-modal arm band and using three modalities provides any benefits, and if so, could be used

as the foundation for future regression prosthesis control works.

The Statistics and Machine Learning Toolbox in Matlab was used for its built-in SVM template.

The template was used to train and tune an SVM model for each training data set input, which

consisted of the modality combination’s sensor features and gesture labels. Parameters and hyper-

parameters were optimized for each modality combination and subject-specific data set. The

parameters and hyper-parameters tuned were the box constraints, kernel type, kernel degree, and

gamma coefficient. An automated process that used a Bayesian search of parameters and hyper-

parameters was used to iteratively train and optimize an SVM for each data set. The optimization

algorithm used was the sequential minimal optimization algorithm, and was used to find the best

combination of parameters and hyper-parameters that yielded the highest accuracy and lowest

validation loss. This optimized model was saved for subsequent use on the testing data set. The

test data set was then used as input to the optimized model, and its gesture prediction outputs

saved. These output results were compared to the known test set labels, and were used to calculate

the classification algorithms’ accuracy, recall and precision. The obtained performance metrics of

the different modality combinations were used to assess and compare the system’s performance,

and will be discussed in the following chapter.



Chapter 5

Results and Discussion

To assess and compare the performance of the pattern recognition model for each modality combi-

nation, accuracy, precision, and recall were used to quantify their performance. Accuracy was cal-

culated by dividing the number of correct class predictions by the total number of class predictions

for that modality combination. Accuracy was also found for each sensing modality combination,

per arm position (low, medium, high). These accuracy scores were averaged across all subjects.

IBM SPSS 27 was used to conduct a statistical analysis for each of these scenarios to draw clear,

statistically supported insights from the results.

To qualify the custom arm band designed for this work, benchmarks in the literature were used.

Since the combination of FMG+EMG+IMU has not been used before with pattern recognition

algorithms, the capabilities of the custom arm band had to be assessed by comparing modality

pairs. For FMG+IMU, Menon and Sadarangani [30] tested a system with 3 FMG sensors and an

accelerometer on 9 able-bodied subjects, and were able to achieve 92.67± 7.86% when classifying

between grasp and release gestures. A follow-up study by Menon et al. [12] used 80 FMG sensors

and an accelerometer on one amputee to get 99.8% classification accuracy on 6 gestures. The

custom arm band developed for this thesis achieved 97.8 ± 3.4% across 23 subjects classifying 7

gestures. Although the FMG+IMU classification accuracy achieved by the system developed for

this work was not as good as what was achieved by Menon et al., this thesis was tested on more

than one subject. In the study by Menon and Sadarangani [30], which had 9 participants, there

was large variability between participants, with some getting 100% and the worst getting 75.69%.

62



5.1 Overall Accuracy Results 63

This inconsistency is mirrored by the performance of the custom arm band and pattern recognition

system developed for this work, which had 10 participants achieve 100% classification accuracy,

while also having some of the worst performing classification accuracies across all modality com-

binations at 89.8%. For FMG+EMG, Jiang et al. [83] tested 5 able-bodied subjects using 8 FMG

and 8 EMG sensors and achieved 91.6±3.5% classification accuracy on 10 gestures. This is similar

to the results achieved by the custom system developed for this work with 96.8 ± 2.5% across 7

gestures. The custom system designed for this work performed better percentage wise, but the

comparison study had more gestures, putting it at a disadvantage — as the number of gestures

increases, classification accuracy typically decreases because there are more patterns to distinguish

between. For EMG+IMU, Englehart et al. [113] conducted a similar experiment to this thesis

with 17 able-bodied subjects, 8 EMG sensors and an accelerometer to classify 8 gestures, and

achieved accuracy of 95±1.7%, which is extremely close to the 95.6±3.2% achieved by the custom

system developed for this work. Overall, the results achieved by the custom multi-modal arm band

developed for this work met the standards set by previous work that used modality pairs. Thus,

the subsequent analysis and comparisons of modality pairs to three modality combinations can be

made more definitively.

5.1 Overall Accuracy Results

For the overall accuracy comparison between sensor modality combinations, a one-way Within-

Subjects Analysis of Variance (ANOVA) was used to analyze their overall performance. Pairwise

comparisons with Bonferroni correction were also used. Normality was evaluated on the stan-

dardized residuals of these results using the Shapiro-Wilk test and it was found that four of the

accuracy distributions were non-normal. Square, cube-root, and log transformations were used

to potentially mitigate this issue, to no avail. This is likely because the data from most subjects

were classified with an accuracy above 90%, forcing the distributions to skew to the left. To verify

the results found by the parametric (ANOVA) testing, the non-parametric Friedman, and non-

parametric pairwise tests were examined. The results of the parametric and non-parametric testing

agreed with one another, so for simplicity, only the results of the ANOVA with Greenhouse-Geiser
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corrections were reported.

The difference between the classification accuracies of each modality combination was found to

be statistically-significant (p <0.001), confirming the hypothesis that sensor modality has a strong

influence on the accuracy of the SVM’s ability to correctly classify gestures. The significance of this

effect is strengthened by the fact that data was collected from sensors placed on the same location

of the forearm, and during the same trials — mitigating the variance that could be introduced by

sensors in slightly different locations and at different times. This distinction is important because

these sensor modalities are affected by sensor location and subject physiology, which changes over

time.

The observed power of this effect was 0.993, indicating that the relationship of modality to

accuracy was almost perfectly captured by this experiment. Also, η2p = 0.348, meaning that a

moderate amount of the variance found in the experiment was due to the choice of modality

combination. The observed power and η2p were only given in the parametric testing and cannot be

confirmed with non-parametric testing, and should be considered as having this limitation. Their

values indicate that they successfully captured the modality effect, but that the variance of the

results can be from many other things. Variance from factors other than modality makes sense

in clinical trials, which have several varying factors. Many of the factors were controlled as much

as possible — the same gestures, sensor location, allowance for rest between gestures, etc. —

but there were still factors not captured or controlled by the experiment. This unaccounted for

variance could be from subject physiology, or inconsistent arm band pressure and inconsistent rest

intervals across trials.

Comparing the classification accuracy of the modality combinations, FMG+EMG+IMU had

the highest accuracy (97.9±1.9%) when considering all of the gestures from the study. This was a

statistically-significant improvement over EMG+IMU (95.6 ± 3.2%, p <0.001), and FMG+EMG

(96.8 ± 2.5%, p <0.001), implying that using three modalities improves the ability of the pat-

tern recognition to predict intent. FMG+EMG+IMU was not statistically different from using

FMG+IMU (97.8± 3.4%), which is likely because the average classification accuracy is only 0.1%

different, and this modality pair performed quite well. Of note, is that the standard deviation of

FMG+IMU is much greater than FMG+EMG+IMU, implying that using all three sensing modal-
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ities is more consistent and can be attributed to the additional EMG feature information in the

data set. The accuracy results are presented in Figure 5.1.
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Figure 5.1: The mean classification accuracy of each modality combination. FMG+EMG+IMU
(97.9 ± 1.9%), FMG+IMU (97.8 ± 3.4%), FMG+EMG (96.8 ± 2.5%), EMG+IMU
(95.6 ± 3.2%), Main Gesture (99.2 ± 1.3%). Error bars represent a 95% confidence
interval. Note that the y-axis begins at 90%.

The worst case accuracies for the two best performing modality combinations (FMG+EMG+IMU

and FMG+IMU) were 93.9% and 89.8%, respectively — showing that even at its worst, FMG+EMG+IMU

performs well above 90%. FMG+IMU’s worst case performance is nearly identical to the worst

performing modality combination (EMG+IMU with 89.5%). This highlights FMG+IMUs ability

to perform well, but also its inconsistency. Modality combination pairs with EMG included had

lower accuracy, but also smaller standard deviations, which may imply that when EMG is incor-

porated, the system becomes more consistent, albeit is not as accurate as a system with FMG

sensors.

Oddly, using FMG+IMU sensors presents no statistically-significant difference between any

modality combination, even though its accuracy is so close to that of FMG+EMG+IMU, which
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is significantly different than the other two modality combinations. This can either be attributed

to its large standard deviation, with ten participants getting 100% accuracy and four having less

than 92%, or the fact that it was the most non-normal result. This large discrepancy in accuracy

results could be due to a lack of consistency in the donning pressure of the arm band, as it was

wrapped around participants’ forearms according to their comfort levels, and not force level, which

the sensors are sensitive to. The signal was normalized to attempt to mitigate this issue; however,

this effect is a known limitation of the current FMG sensing modality used for this work.

5.2 Arm Position Accuracy

For the accuracy comparison of each sensing modality per arm position, a three-way Within-

Subjects ANOVA with Bonferroni correction and a pairwise comparison for the three arm positions

was used. This was done to assess the robustness of each sensing modality to arm position effects.

Assessing arm position accuracy is important for amputees in out-of-lab scenarios because for a

prosthetic control system to be practical to use, it will need to perform in various arm positions

when carrying out the ADL.

The combined effect of modality and arm position did not present significant differences. Look-

ing at the pairwise analysis, it was also found that there was no significant difference within the

same modalities between arm positions. As shown in Figure 5.2, the average FMG+IMU classifi-

cation accuracy across the low, medium and high arm positions is very similar, but there is a large

standard deviation. This implies that using this modality is robust to arm position, but suffers

from inconsistencies between subjects. This could be from sensor limitations, or because of the

lack of consistency in the donning pressure of the arm band — two of the known FMG limitations.

Using the FMG+EMG+IMU data set gave some of the highest accuracies across arm positions,

with the smallest standard deviations, but interestingly it seemed, on average, to be more affected

by arm position than FMG+IMU alone, although this effect was not significant. This could be

attributed to noisy data introduced by the EMG data set. Modality pairs that included EMG had

greater accuracy discrepancy across arm positions, which may be explained by the limb position

effect and amount of contact between the EMG electrodes and the participant’s skin in different
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Figure 5.2: The mean classification accuracy of each modality calculated for the low, medium and
high arm position, respectively. FMG+EMG+IMU (98.6± 2.3%, 97.3± 3.3%, 97.7±
3.1%), FMG+IMU (97.5± 4.6%, 97.9± 4.0%, 98.1± 3.6%), FMG+EMG (98.3± 2.5%,
95.7± 4.0%, 96.3± 4.6%), EMG+IMU (96.4± 3.4%, 95.7± 3.8%, 94.8± 5.6%). Error
bars represent a 95% confidence interval. Note that the y-axis begins at 90%.

arm orientations. When the arm is in the medium and high position, electrodes on the top side

of the arm band are pulled into the arm by gravity, while the electrodes on the opposite side of

the arm band are pulled away from the forearm. This effect can cause electrodes to shift, and the

level of conduction between the electrode and the skin to change, affecting the signal. This is not

experienced by FMG+IMU because the limb position effect creates different pressure signatures

on FMG sensors and is more decipherable, while EMG’s limb position effect can limit the ability

of EMG to detect MUAPs. The FMG+IMU data set had great average results, but again had

large standard deviations across the arm positions, indicating inconsistent performance across

trials. When all three sensors were combined, it had great accuracy across arm positions, but also

added resilience and consistency to the system as the sensors are able to account for each other’s

limitations. This could be attributed to the classification model’s access to ample information
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from the three modalities that could be parsed for recognizable patterns.

5.3 Classifier Performance

To properly assess the class predicting performance of the SVM models for each modality combina-

tion, confusion matrices were calculated for each modality. The confusion matrices and respective

precision and recall scores can be found in Figure 5.3. Precision is an indicator of how much the

model incorrectly predicts a class pattern to be that class, and recall is an indicator of how much

each class recognized the class patterns associated with it. The precision and recall results for each

modality are relatively balanced, indicating good model performance and that identifiable gesture

and arm position patterns are being deciphered from the data. This helps to validate the methods

chosen to collect and process the sensor data for this work [46, 59].

The misclassification values for FMG+EMG+IMU and FMG+IMU are much lower than those

of EMG+IMU and EMG+FMG, which agrees with the ANOVA results mentioned previously.

Looking deeper into how well each gesture was classified per modality, open hand and wrist supina-

tion are the most misclassified gestures across modality combinations that include EMG. It seems

that when EMG data is considered, the model has a harder time distinguishing between ges-

tures that share several muscle groups. Being able to distinguish between similar gestures is a

known limitation of EMG, but is a strength of FMG — as seen by its lower misclassification rate.

EMG+IMU, being the worst performing modality combination, is also limited by confusing ges-

tures, but has confusion spread across nearly all of the gestures. When FMG data is considered,

misclassification is not concentrated on a few gestures, but is spread out across several gestures and

is another example of how FMG is affected by general inconsistency. For modality combinations

including FMG, precision pinch was confused with gestures such as wrist extension, pronation,

and flexion, and was spread out across these gestures.

With modalities that include EMG, misclassification between gestures is concentrated between

gestures that activate similar muscles, while with FMG, the error is dispersed across many more

of the gestures. This can be explained by EMGs limitation of detecting the MUAPs of adjacent

muscles, which can confuse the pattern recognition algorithm. One of FMG’s strengths is its ability
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Figure 5.3: Confusion matrices, using the combined classification results for all subjects, for the (a)
FMG+EMG+IMU, (b) FMG+IMU, (c) FMG+EMG, and (d) EMG+IMU modalities.
Each matrix contains a positive/negative precision score summary in the final two rows,
and a positive/negative recall score summary in the final two columns.
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to distinguish between similar gestures so it is not affected by this, but is limited by inconsistency

— which can be attributed to FMG sensor limitations and possibly inconsistent donning pressures

across trials. Interestingly, for FMG+EMG+IMU, which includes both, error is low, but centred on

misclassifying wrist supination with the open hand grasp, while evenly distributing and minimizing

errors across the other gestures. This indicates that having FMG reduces misclassification between

two gestures, by way of finding distinct patterns from similar gestures, and EMG helps reduce the

overall, general error across multiple gestures — combining the benefits of both modalities, and

showing a clear advantage in including all three sensing modalities.

The classification models using FMG+EMG+IMU data misclassified between open hand and

wrist supination the most, and misclassification (precision and recall values) for the other gestures

was low. If the open hand gesture was removed from the gesture pool, classification accuracy,

recall and precision would get much better, and can be seen by the accuracy and low standard

deviation of the main gesture data set which used FMG+EMG+IMU data, but only considered 5

gestures (99.2 ± 1.3%). Results with better accuracy and consistency were expected with fewer,

and more distinct gestures. The gestures chosen for the main gestures data set were the most

critical for amputees, and had more distinct, measurable physiological patterns that made it easier

for the model to differentiate. Thus, FMG+EMG+IMU could be made better immediately, and

without losing functionality, by either using only the main gesture set, or by replacing the open

hand gesture with one that is just as functional, but more physiologically differentiable from other

gestures (such as relaxed hand).

5.4 Conclusion

In conclusion, the system designed for this work successfully met the benchmarks set by previous

work that used pairs of modalities — and in many cases with fewer sensors. This proof of concept

created a foundation from which to test the significance of introducing three modality combinations,

and the benefits are relatively clear. Using three sensing modalities brought significantly better

classification accuracy and consistency across the 23 able-bodied subjects who participated in the

experiment. This improvement is likely attributed to the fact that having more modality types
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provides the pattern recognition algorithm with more phenomena to associate a pattern with.

Each modality has limitations of what it is trying to measure and represent, so by having many

different modalities that measure different phenomena, the modalities supplement for each other’s

limitations, allowing for the system to more comprehensively portray what is happening in the

physical world, and the SVM is able to distinguish patterns from that data set, making the system

more robust.

The benefits of multi-modal systems were discovered in previous works by using pairs of modal-

ities, but this work took that idea a step further, and explored the benefits of adding a third

modality. Interestingly, the modality combination pair of FMG+IMU also had great classification

accuracy, albeit its results were less consistent. This modality combination was likely successful

because capturing orientation effects with the use of an IMU helps to overcome a major FMG

limitation — its susceptibility to the limb position effect and detecting pressure changes asso-

ciated with things other than the volumetric changes caused by muscle contraction. Although

FMG+EMG+IMU was the best performing modality combination overall, FMG+IMU showed

similar accuracy results and would be both computationally and financially more economical. Go-

ing forward, it could be considered as an alternative modality combination with a similar balance

between consistency/accuracy and cost.



Chapter 6

Concluding Remarks

6.1 Contributions

Multi-modal sensor and data fusion was deemed to be one of the leading ways to overcome the

difficult task of giving amputees a natural feeling and intuitive way to control their advanced

prostheses [4, 8, 64]. The objective of this thesis was to develop a system that explored sensor

and data fusion to push the field of prosthetic control closer to a solution. To that end, this work

investigated a combination of sensor and data fusion previously unexplored. The contributions of

the work presented in this thesis were a novel, multi-modal arm band that integrated FMG, sEMG,

and IMU sensors into a compact, wearable system that was used to collect muscle signal and arm

orientation data from healthy subjects and amputees. This data-collecting device was used with

custom software, GUI and experimental protocol that was designed to collect muscle signal and

arm orientation information while subjects held gestures in arm positions that are critical for ADL.

A large database of subject and sensory data was created from the experiment.

The database was used to conduct a proof of concept of the novel arm band by creating and

using software that used literature-supported signal processing and pattern recognition techniques

to test how gesture prediction compared to pre-existing technologies. The custom arm band created

for this work met the benchmarks set by previous works. The custom arm band, data processing

and pattern recognition software were then used to compare modality combinations, including

one that was previously unexplored. A major contribution of this work was the statistically-
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significant improvement of using the unexplored modality combination, which was using all three

sensing modalities — FMG, sEMG, and IMU sensors. This work used only 5 FMG and sEMG

sensors, which was also fewer sensors than reported in previous work, meaning that this system

performed similarly to previous work, but with fewer total sensors [4, 24]. These results helped to

strengthen the argument of previous work, namely that multi-modal myography can improve the

functionality of the prosthetic control system, while reducing the number of sensors required —

resulting in both cost and computational savings. The main benefits of combining FMG, EMG and

IMU were that the system had more consistent classification performance across several gestures

and arm positions, and the potential for cost savings by significantly reducing the number of

sensors required for adequate performance. Some of the discovered downsides of such a system

were the complexity of fusing the sensors and data of three separate modalities, which include

more maintenance, data processing, and hardware design challenges.

From this work it was also found that an argument could be made for using just FMG+IMU

without EMG. What limits advancement of this modality combination is the poor long term re-

liability of the popular FMG sensors chosen, which is likely why they have yet to be used for

commercial systems. FMG+IMU did not perform as consistently as using three modalities, but

there was no significant difference between FMG+IMU and FMG+EMG+IMU, meaning that

FMG+IMU has the potential to adequately meet the minimum accuracy requirements for pros-

thetic control. FMG+IMU should be explored further as a cost-effective muti-modal fusion modal-

ity, since EMG sensors were the most expensive part of the system. It is possible that a system

using only FMG+IMU sensors is adequately accurate, albeit less consistent, but this tradeoff may

be acceptable to some end users — especially if it is at a much lower cost.

In summary, it was exhibited that the novel, multi-modal arm band met benchmarks set by

previous work. No previous work fused these three sensing modalities with pattern recognition,

ML technology, so the success of the arm band was assessed by comparing its performance to using

modality pairs that have been tried before. It was found that the system created for this work was

at least as good as those found in the literature, and with fewer sensors. This work contributes to

the improvements of multi-modal control systems as a means to control mechatronic prostheses for

amputees, and the thesis that providing more information to the control system with supplemental
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and redundant information from multiple modalities will result in a more accurate and consistent

system.

6.2 Future Work

While the sensor and data fusion methods were successful at improving the performance of a

prosthetic control system, the insights gained during this work indicate that a lot more could be

done with the hardware, software and data set created.

A comprehensive data set of subject and muscle-signal data while holding hand/wrist gestures

was collected while subjects moved from rest to the gestures of interest, but it was only used to

classify static gestures. Gesture classification was an important step in giving amputees natural

feeling control of their prostheses, but is limited in its applicability for out-of-lab use. The system

did perform very well on the data set at static gesture classification — to the point that there

was no need for extensive pattern recognition optimization to prove the modalities’ efficacy — but

when considering transient motions, or automating activity detection instead of manually parsing

it (which are more realistic out-of-lab scenarios), the system accuracy would likely fall, as has been

shown by Ferigo et al. [12]. At that point, the pattern recognition techniques would likely need

to be optimized, or other, more advanced (possibly more computationally expensive) algorithms

such as ANNs tried.

On the data processing side, experimenting with different features, and varying window sizes

for FMG could also be done since only EMG had well-established signal processing processes to

follow [8]. Using the existing data set, more advanced data fusion methods could also be explored,

such as generating a gesture probability prediction using each modality, and then using those

aggregate probabilities to make gesture predictions [46].

For this work, a separate pattern recognition model was made for each subject. Other work has

tried the more difficult task of making the systems user-independent — meaning that they only

train one pattern recognition model that can be used across a population, and is recommended this

be tried with the existing data set. This makes the pattern recognition task more difficult because it

must account for physiological differences, electrode placement differences, and movement pattern
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differences across subjects. For day-to-day applications of prosthesis control, user-independent

classification could help reduce the calibration time required to use such a system, because data

from previous users and calibration sessions could be used to train the ML algorithm [11]. Since

differences in anatomy would likely cause deterioration in the model’s ability to classify gestures,

incorporating subject specific data such as sex, activity level and relative arm-fat values into the

data set may also help the system account for the anatomical differences between participants

[4, 24]. The recommendations of automating activity detection, including transient motions in the

gesture recognition algorithm and user-independent models could be implemented on the existing

data set created for this work, and could be used to further explore the arguments made for the

modalities tested.

Large efforts were made to control for variability in the data set, but in hindsight, there were

things that could have been done better. For example, controlled and consistent rest intervals may

have been beneficial, since it was noted during the experiments that, although participants were

given as much time as they needed to rest between sets — with the idea of removing fatigue as

a variable — some participants chose to take minimal rest and may have pushed through even

when fatigued. This could have affected the results, since it is known that fatigue affects both the

EMG and FMG signals [4, 8]. Also, participants were asked to hold gestures at consistent and

repeatable forces for the duration of the signal capture, but it was noted during the experiment

that some participants were able to move to some of the gestures without much effort, while

others needed to use more muscle activity to get there. This could be attributed to anatomical

differences between subjects, but more specifically in this case, musculoskeletal anatomy, such as

muscle tightness. This unconsidered variable likely introduced variability between subjects’ FMG

and EMG readings because these sensors detect muscle activity and not the gesture itself. If

one person needed to use more muscle activation to achieve a gesture than another, their signals

would have registered more clearly in the respective sensors’ data, thereby affecting the pattern

recognition algorithm’s ability to decipher associated patterns.

To further reduce variability in the data set, a wireless device is recommended for future work,

because the wire affected movement to and from certain gestures, and it was noted during exper-

iments that subject jittering, and movement to and from intended gestures was a large source of
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artefacts in the EMG signal. EMG is known to be highly sensitive to sources of noise, and the

wired connection also likely performed as an antenna which introduced more noise to the signals.

Another limitation of the arm band designed for data collection was the choice of FSRs as the

FMG sensor to use. FSRs are the most widely used FMG sensors, but have severe limitations

in their out-of-lab application because they have large hysteresis, deteriorate over time, and their

values depend highly on how tightly they are applied to a user. The FSR sensor limitations need

to be addressed by either waiting for a more robust commercially available FSR, or attempt to

implement TMG, which is a newer type of FMG that has been able to achieve promising results.

Unfortunately, a system using TMG would need to be custom designed, and would be a large un-

dertaking on its own. To mitigate the inconsistency of donning pressure, and to make the donning

procedure more consistent, FSRs could be calibrated after each use and used to detect an arm

band pressure threshold that notifies the investigator when the donning force is reached [8]. Even

with these limitations, the performance of FMG+IMU was the second best performing modality.

FMG+IMU has the potential to be a very affordable prosthetic control method. Although this

modality combination was not as good as using the more complex, and expensive three modality

combination, a strong argument can be made for FMG+IMU as a less consistent but significantly

more affordable sensors for prosthetic control system. It is recommended that along with exploring

FMG+EMG+IMU, FMG+IMU be investigated further, as a more cost-friendly, albeit less robust

alternative.

The experiment conducted for this work was designed to be able to use the sensory data to

classify static gestures. For a comprehensive prosthetic control system to be built, the system needs

to work for amputees in out-of-lab scenarios, and thus needs to also give amputees the ability to

control a prosthetic device in dynamic tasks and via proportional control. Having proportional

control and the ability to predict classes during dynamic tasks are critical for an amputee to be

able to perform important ADL tasks and task-oriented experiments. It is highly recommended

that future work makes use of regression/proportional control models with the FMG+EMG+IMU

and FMG+IMU modality combinations, in order to test the systems’ efficacy, as regression and

dynamic prediction usually perform worse than static classification [12]. SVM was chosen as the

pattern recognition model for the work presented in this thesis because its regression, dynamic task
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predicting counterpart, SVR, has a similar working principle to SVM, and in theory, using SVM

would give a relative indication of how the modality combinations would compare, and whether

exploring FMG+EMG+IMU was worth the added complexity for future work [8]. There were

significant improvements between modalities using SVM, and thus the regression model, SVR,

should be used to predict force, gait, and dynamic tasks from data collected in an experiment

focussed on this type of motion information [8]. The final test of such a system should be to assess

the performance of the system on task-oriented experiments to test how the user performs with

the system to complete actual ADL tasks, such as using the control system with a prosthetic limb

to pick up a fork, fold a shirt, unscrew a bottle, or pin clothes to a drying rack [4].

Along with the challenging task of proportional control and testing the system to complete

ADL tasks, it is imperative that future experimentation be done with amputees. Performance of

the system with able-bodied participants gives some indication of how the modalities will perform,

but amputees will be the end users of such a system so it is important to assess how an amputee

would fair when using such a system [18, 35]. Ultimately, the goal of this work is to solve a

problem that amputees face, and without testing potential solutions with amputees, the results

are detached from the end user. The known limitations will affect the results, but there are also

likely unforeseen nuances that will need to be addressed and considered as well [1]. There is a

prevalent disconnect in the literature as 55% of upper limb prosthesis control research is conducted

on subjects with intact forearms, while only 9% of papers in the last 20 years were conducted on

transradial amputees [8]. Continuing to mostly experiment on healthy subjects is a disconnect

from the target users who would benefit from a prosthesis control system and must be addressed

for a working prosthetic control system to be considered a final solution.
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