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Abstract 

 

In this thesis, we address some of the challenges that the Intelligent Networking Automation 

(INA) paradigm poses. Our goal is to design schemes leveraging Machine Learning (ML) 

techniques to cope with situations that involve hard decision-making actions. The proposed 

solutions are data-driven and consist of an agent that operates at network elements such as 

routers, switches, or network servers. The data are gathered from realistic scenarios, either 

actual network deployments or emulated environments. To evaluate the enhancements that 

the designed schemes provide, we compare our solutions to non-intelligent ones. 

Additionally, we assess the trade-off between the obtained improvements and the 

computational costs of implementing the proposed mechanisms.   

Accordingly, this thesis tackles the challenges that four specific research problems present. 

The first topic addresses the problem of balancing traffic in dense Internet of Things (IoT) 

network scenarios where the end devices and the Base Stations (BSs) form complex 

networks. By applying ML techniques to discover patterns in the association between the end 

devices and the BSs, the proposed scheme can balance the traffic load in a IoT network to 

increase the packet delivery ratio and reduce the energy cost of data delivery. The second 

research topic proposes an intelligent congestion control for internet connections at edge 

network elements. The design includes a congestion predictor based on an Artificial Neural 

Network (ANN) and an Active Queue Management (AQM) parameter tuner. Similarly, the 

third research topic includes an intelligent solution to the inter-domain congestion. Different 

from second topic, this problem considers the preservation of the private network data by 

means of Federated Learning (FL), since network elements of several organizations 

participate in the intelligent process. Finally, the fourth research topic refers to a framework 

to efficiently gathering network telemetry (NT) data. The proposed solution considers a 

traffic-aware approach so that the NT is intelligently collected and transmitted by the 

network elements. 
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All the proposed schemes are evaluated through use cases considering standardized 

networking mechanisms. Therefore, we envision that the solutions of these specific problems 

encompass a set of methods that can be utilized in real-world scenarios towards the 

realization of the INA paradigm. 

 

Keywords 

Autonomic Networking, Data-driven Networks, Intelligent Networking Automation, Intent-

based Networking, Machine Learning, Zero-touch Network Management. 
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Summary for Lay Audience 

 

Imagine living in a huge city where the traffic of the vehicles is solely controlled by officers: 

no traffic lights, no barricades, no separators, no signage, just traffic officers. What if a 

massive event is taking place near your home and you did not know? What if an accident 

occurs on a road you just merged onto? It is hard to visualize the flows of the vehicles going 

smoothly. Although the city had so many officers and their protocols were very well 

established, it would not be enough to regulate the vehicle flows properly. This research 

work is about something similar: the effective application of artificial intelligence methods to 

automate the control of Internet flows when the networks experience unforeseen situations. 

The proposed solutions allow the network administrators to manage some network tasks 

more efficiently, with minimal intervention, and focus on the situations where the human 

involvement is critical. 
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Chapter 1  

1. Introduction  

 

As a subfield of Artificial Intelligence (AI), Machine Learning (ML) is a discipline that 

aims to give a machine (or agent) the ability to execute tasks autonomously by detecting 

and extrapolating patterns, as well as adapting to new circumstances. Thus, an agent 

learns if it improves its performance after making observations (data samples) [1]. 

Researchers have applied ML techniques to solve a variety of non-trivial problems in 

many areas and the field of networking is not the exception. Because of the complexity 

and the dynamics of the networks, ML techniques can be successfully used to improve 

the performance of networking scenarios where optimal solutions are intractable to 

compute or difficult to represent through analytical models. Accordingly, the application 

of ML in networking includes a vast diversity of challenging tasks such as traffic 

prediction, traffic classification, routing, congestion control, resource management, load 

balancing, network scheduling, intrusion detection, and parameter adaptation, among 

others [2], [3]. 

 

1.1. Motivation 

One of the most promising applications of ML in networking is to automate the networks 

in an intelligent way with minimal to no human intervention. As networks scale, they 

become more dynamic and complex systems. However, obtaining a closed-form function 

of these systems is non-trivial and analytical approximations to automate the networks 

may be imprecise. The closed-loop network automation refers to the notion of 

continuously evaluating real-time network conditions, traffic demands, and resource 

availability to determine the best placement of traffic for optimal service quality and 

resource utilization, according to the network operator policies. Consequently, the desired 

operation and performance improvement depend on the timely parameters’ adjustment 

and the changing network conditions. 
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Therefore, the notion of Intelligent Networking Automation (INA) has recently emerged 

as an answer to the challenge of managing large, complex, and very dynamic networks. 

The idea of having autonomous networks that can configure, monitor, and independently 

maintain themselves is not new. That is why the goals that INA pursues have been 

envisioned under different concepts, such as cognitive networking, autonomic 

networking, self-organized networks, knowledge-defined networks, intent-based 

networking, zero-touch networking, data-driven networking, and self-driving networks. 

INA will have a deep impact on the network management processes, as ML-based agents 

will carry out the tough networking tasks, allowing the operators to focus on the 

customers’ needs and reduce their operational expenditure (OPEX). In addition, the 

combination of virtualized network infrastructure and online ML techniques will give the 

operators the flexibility to respond to real-time network parameters adjustment and scale 

their networks efficiently based on the changing business needs and the customers’ 

demands. 

Accordingly, the main objective of this chapter is to review the key components that the 

intelligent networks should have in terms of operations and management as well as 

presenting the concepts and frameworks that can make the INA a reality in the upcoming 

years. Also, we introduce how this dissertation contributes to the realization of that INA 

paradigm. 

 

1.2. Preliminary Notions on INA 

In order to achieve automation, the closed-loop control concept has been studied and 

applied to a variety of fields for decades, such as robotics and vehicle technologies. In 

networking, closed-loop control is used to automate tasks like resource allocation, 

performance optimization, devices management, fault analysis, etc. In a closed-loop 

control system, the controllers are connected in feedforward and feedback structures with 

physical elements and its components together determine the behavior of the overall 

system [4]. Thus, the closed-loop network automation refers to the notion of continuously 

evaluating real-time network conditions, traffic demands, and resource availability to 
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determine the best placement of traffic for optimal service quality and resource 

utilization, according to the network operator policies [5]. 

The closed loops among network elements make the distinction between an automatic (or 

automated) network and an autonomic network. In the former, there are predefined 

processes that must be manually adjusted if the network environment changes. In the 

latter, the network processes act in a self-management fashion and can adapt to changing 

environments. Consequently, the RFC7575 from the Internet Research Task Force 

(IRTF) defines the concept of Autonomic Networking, which refers to the network 

capabilities of self-managing, i.e. self-configuring, self-protecting, self-healing, and self-

optimizing [6]. An autonomic network consists of autonomic nodes, which exclusively 

employ autonomic functions: features that require no configuration and can adapt to a 

changing environment based on the information derived from self-knowledge, discovery, 

or intent.  Thus, an autonomic node may have guidance by a central entity through 

intents, i.e. high-level policies used to operate the network. 

The autonomic functions can be defined on a node level or on a system level. On a node 

level, the autonomic nodes interact each other to form feedback loops. On a system level, 

the central elements are also included in the feedback loops. These closed loops are a key 

aspect in autonomic networks and imply two-way negotiations between each pair or 

groups of peers involved in the loops. For this reason, a discovery phase is necessary 

before a closed-loop control can take place within an autonomic network.  

The RFC7575 focuses on the intelligence of algorithms for node-level autonomic 

functions. This intelligence is realized by Autonomic Service Agents, which implement 

autonomic functions either entirely or partially (distributed functions). In this way, [6] 

presents the overview of a reference model for autonomic nodes, as depicted in Figure 

1.1. Moreover, the Internet Engineering Task Force (IETF)  has been working on an 

Internet-Draft that describes a reference model with more details, which is defined as 

Autonomic Networking Integrated Model and Approach (ANIMA) [7]. The ANIMA 

framework is an in-progress work and its architecture is well summarized in [8].  
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The Generic Autonomic Network Architecture (GANA) is another reference model, 

defined by the European Telecommunications Standards Institute (ETSI). In the GANA 

model, the ETSI defines a “blueprint model" with recommendations on the design and 

operational principles of autonomic decision-making elements (DEs), which are 

responsible for autonomic management and control of resources and parameters such as 

protocols, stacks, and mechanisms. Additionally, the DEs control the Managed Entities 

(MEs) in both physical and virtual network elements [9]. The GANA’s Decision Plane 

includes a Hierarchical Control Loop (HCL) architecture, in which DEs and MEs interact 

at different levels. In this way, the inferior DEs serve as the MEs of the superior DEs. 

Authors in [8] also review the GANA architecture although in less detail than the 

ANIMA model. 

Figure 1.1. Reference Model for an Autonomic Node. Adapted from [6]. 

Another interesting initiative also from ETSI is the Zero-touch Network and Service 

Management (ZSM) Reference Architecture, which is a Group Specification by the 

Industry Specification Group (ISG) [10]. This specification presents an architecture for 

end-to-end (E2E) network automation, leveraging the principles of Network Functions 

Virtualization (NFV) [11], Software Defined Networking (SDN) [12], and cloud-native 
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network services [13], as well as data-driven Artificial Intelligence algorithms [14], [15]. 

The ZSM architecture considers 13 principles to achieve its goal of full network 

automation, as follows: (1) modularity, (2) extensibility, (3) scalability, (4) model-driven 

and open interfaces, (5) closed-loop management automation, (6) support for stateless 

management functions, (7) resilience, (8) separation of concerns in management, (9) 

service composability, (10) intent-based interfaces, (11) functional abstraction, (12) 

simplicity, and (13) designed for automation. 

We highlight the separation of concerns in management, as this architecture defines two 

domains: the Network Management Domain and the E2E Service Management Domain. 

The former manages resources and services delimited by technological or organizational 

boundaries and decouples the internal domain details from the outside world. The latter 

manages E2E services across multiple management domains and provides coordination 

between those domains. The internal domains of the network Management Domain 

includes: domain data collection, domain analytics, domain intelligence, domain 

orchestration, and domain control. Similarly, the E2E Service Management Domain 

comprises the E2E service data collection, E2E service data service analytics, E2E 

service intelligence, and E2E service orchestration. The management services in both 

domains can be provided and consumed by management functions, which are logical 

entities, deemed as either service consumers or service producers. In order to enable the 

interoperation and communication between management functions within and across 

management domains, the ZSM framework also outlines Domain Integration Fabric and 

Cross-domain Data services. 

On the other hand, the principle of closed-loop management is the one that enables the 

E2E automation and zero-touch management of network services and infrastructures. 

Closing the management loop involves the transfer of information, knowledge, functions 

and operations such as analysis, learning, reasoning, planning, or decision-making 

capabilities. In order to achieve the closed-loop operation, ZSM considers a model that 

comprises the OODA stages: Observe, Orient, Decide, and Act. The management 

functions contribute with their respective management services capabilities at the 

respective OODA stages, as described in Figure 1.2. 
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Similarly, the International Telecommunication Union and its standardization sector 

(ITU-T) published a technical specification document that defines a unified architecture 

for ML in Fifth Generation and future networks [16]. This specification presents a set of 

requirements and constructs for the ML pipeline integration into evolving networks. This 

pipeline comprises the logical entities that can be combined to form analytics functions 

and each functionality in the pipeline is defined as a node. The possible nodes are: source 

of data (input for the ML function), collector of data, data pre-processor, ML model, 

policy (specific rules for network control), distributor (of ML outputs), and sink (target of 

the ML output, on which it takes action). The nodes are logical entities that are monitored 

and managed by a ML function orchestrator (MLFO) and hosted in a variety of network 

functions (NFs).  

Figure 1.2. Mapping between architectural blocks and closed-loop automation stages in 

the ZSM framework. Adapted from [10]. 

The MLFO is a logical orchestrator that also selects and reselects the ML model based on 

its performance. Additionally, the MLFO is responsible for the placement of various ML 

pipeline nodes, based on the corresponding capabilities and constraints of the use cases, 

which are technology-independent and defined by intents. In other words, intents are 
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mechanisms to specify the ML use case constructs and can employ ML meta language 

(ML-ML), which is needed to add the ML use case and the ML pipeline into the service 

design in a declarative manner. 

The three main building blocks of the unified logical architecture comprises the 

management subsystem (which includes orchestration and various existing management 

entities), the multi-level ML pipeline (which uses the services of an MLFO for 

instantiation and setup), and the closed-loop subsystem (which allows the ML pipeline to 

adapt to dynamic network environments). Figure 1.3 depicts a simplified version of the 

proposed architecture to achieve closed-loop automation in operation and management on 

5G networks. The management system is automated to promptly react to failures in the 

Network Function Virtualization (NFV). In this way, the network operator can promptly 

discover such failures, which result in gradually unstable behaviour before the process 

escalates into critical failure. Root Cause Analysis (RCA) is also important to properly 

convey the relationship information between failure type and location to the automation 

function. Consequently, the NFV Orchestrator is configured based on policy or 

workflows from the automation function. On the other hand, the ML pipeline is 

monitored and set up by the MLFO. 

Figure 1.3. Architecture for ML in closed-loop automation. Adapted from [11]. 
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1.3.  Dissertation Contributions 

This dissertation presents the solution to several challenging networking situations that 

are aligned with the concepts on INA explained in the previous section. There are some 

commonalities among the proposed schemes, which leverage the application of ML 

methods to achieve different levels of INA. Those commonalties include the existence of 

a data collector and an autonomic agent that decides and takes actions based on the 

insights, knowledge discovery, or predictions derived from the collected data. 

Additionally, some designs also contemplate the orchestration of the intelligent 

mechanisms across different domains, meaning more than one single organization 

participating in the ML process.  

On the other hand, we intend to introduce not only novel approaches to tackle the 

challenges that some networking scenarios pose, but also INA-oriented solutions that 

may eventually be implemented in real-world use cases. For this reason, all the 

frameworks introduced in this dissertation consider their application using standard 

protocols, specifications, or technologies. Furthermore, the data collection and 

knowledge discovery processes of the ML pipelines are performed in an online manner, 

so that the presented frameworks are evaluated through more realistic networking 

settings. 

Accordingly, the main contributions of this thesis comprise the design of several INA 

solutions that aim at solving various networking problems, summarized as follows: 

• Balancing the traffic in dense IoT networks, considering the Heterogeneous 

Network paradigm. To this end, we propose an ML scheme that learns from the 

available data of an operating IoT network to improve the network capacity in 

terms of the packet delivery ratio and the energy cost of data delivery. 

• Proposing an ML-based scheme that address problem of congestion control for 

TCP/IP traffic, considering the AQM and ECN paradigms. The designed solution 

is fully compatible with existing TCP congestion control mechanisms and already 
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deployed AQM techniques and improves the IP network capacity in terms of 

throughput and delay. 

• A proof-of-concept study on non-static AQM. We demonstrate how the idea of 

dynamically tuning AQM parameters may boost the adoption of AQM 

mechanisms to mitigate the Internet’s bufferbloat effect. 

• An intelligent framework to control congestion over inter-domain links, which are 

not managed by a single party. The proposed solution is a multi-domain learning 

scheme in which local network data remains private. As in inter-domain scenarios 

privacy is a major concern, it allows the cooperation of two or more organizations 

to achieve common goals in terms of congestion by avoiding the share of raw 

data. 

• The design of a flexible framework to achieve efficient Network Telemetry that 

can be adapted to a variety of telemetry schemes regardless their way of operation 

(in-band or out-of-band). The proposed mechanism can be intelligently adjusted 

to mitigate the network overhead that telemetry data collection and transmission 

produce. 

• A set of methodological strategies to evaluate and implement solutions that 

employ ML algorithms making predictions based on real-world data and taking 

actions in real-time, such as the networking automation scenarios presented in this 

dissertation. 

 

1.4. Dissertation Organization 

The remainder of this dissertation is organized as follows. Chapter 2 describes the 

problem of load balancing in dense IoT networks. The chapter introduces some concepts 

on unsupervised and supervised ML as well as the applied techniques from those 

approaches to tackle the challenge of balancing traffic load. The utilized methodology is 

presented along with the results obtained from evaluating the presented solution through 
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simulations. At the end of the chapter, the achieved improvements are discussed in terms 

of the packet delivery ratio and the energy cost of data delivery in a LoRaWAN network 

as a use case. 

In Chapter 3, an intelligent scheme is proposed to address the problem of adjusting the 

parameters of standardized AQM schemes in dynamic TCP/IP networks. The chapter 

presents the application of a Deep Learning architecture to predict congestion on Internet 

links.  Additionally, a RL method based on the Q-learning algorithm is utilized to 

adaptively change the AQM parameters of the links. The solution is evaluated through 

network emulations to consider a more realistic networking scenario and make the results 

reproducible in real networks. The end of the chapter shows that the intelligent method 

can enhance the TCP/IP connections in terms of latency and throughput. 

In the same way, Chapter 4 presents a scenario where the intelligent AQM control needs 

to be achieved on links that interconnect two or more networks belonging to different 

organizations. To this end, the Federated Learning approach is applied, so that the 

network elements of each organization do not share private network data. The assessment 

of the proposed method presented at the end of the chapter shows that our proposed 

scheme is capable of adaptively changing the AQM parameters to reduce congestion on 

links that are shared by different domains, while preserving the privacy of each 

organization’s data. 

Correspondingly, Chapter 5 introduces a novel method to collect and transmit network 

telemetry data by considering the types of traffic that a network element forwards. By 

means of supervised learning techniques, the proposed scheme determines the granularity 

of the telemetry data based on the classification of the flows that are being forwarded. 

Through network emulations, the solution is assessed and its results are discussed at the 

end of the chapter. 

In Chapter 6, the major findings and limitations of this thesis are discussed. In addition, 

possible directions for future research work on the topics covered in this dissertation are 

explained. Finally, the references used in the research work of this thesis are presented 

and a brief Curriculum Vitae of the author is provided, including his publications to date. 
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Chapter 2  

2. Intelligent Load Balancing in IoT Networks 

 

2.1.  Motivation 

Thanks to the proliferation of Internet-connected wireless devices, the Internet of things 

(IoT) [17], [18] and the machine-to-machine (M2M) communications paradigms [19], 

highly dense cellular networks have emerged as a connectivity solution for large scale 

IoT applications. These wireless devices are diverse and comprise not only increasingly 

powerful devices like smart phones, but also tiny ones such as sensors, actuators, 

wearable electronics, etc. To alleviate the congestion in dense wireless networks, a 

number of solutions have been proposed. For instance, the idea of heterogeneous 

networks (HetNets) has been conceived. In a HetNet, the network infrastructure is 

supported by heterogeneous elements consisting of macro base stations (MBS), which 

provide a wide area coverage, and small base stations (SBS), that are meant to cover high 

traffic hotspots. The design of a cellular HetNet is based on a multi-tier topology, which 

features overlapped coverage between a tier of MBS and several sub-tiers of SBS. This 

design enhances the network capacity but at the cost of a challenging co-existence 

governing the network topology [20]. In fact, in urban areas, more SBS are added each 

year to the existing networks, creating a HetNet scenario where a wireless device may 

communicate with multiple BS, either MBS or SBS [21]. 

One of the most challenging design issues in HetNets is to achieve an optimal load 

balance among the base stations (BS), since the network traffic might be unevenly 

distributed. To this end, the association between devices and serving BS is a critical 

consideration. In homogeneous wireless networks, like the traditional cellular networks, a 

device is associated with the BS providing the strongest signal and, therefore, the 

association mechanisms are based on metrics such as signal-to-noise ratio (SNR) or 

received signal strength indicator (RSSI). However, this association method is not 

efficient for HetNets in terms of network capacity, since other critical aspects should be 
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considered, such as, for example, the traffic load on the BS to be associated [22]. Device 

association methods based on signal metrics may lead to a major load imbalance in 

HetNets because MBS usually offer higher transmit power to devices than SBS. 

Consequently, load balancing methods for HetNets have been proposed by considering 

performance metrics like outage/coverage probability, spectrum efficiency, energy 

efficiency, uplink-downlink asymmetry, backhaul bottleneck, and mobility support [23]. 

Nevertheless, the achievement of a balanced HetNet is not easy and intelligent 

mechanisms that consider the traffic load and all related network conditions of BS are 

desirable due to the overall complexity of the process [24]. For this reason, artificial 

intelligence theory has been applied to overcome these kinds of challenges in complex 

systems like HetNets. 

Load balancing in a HetNet may be performed by using either a single radio access 

technology (RAT) or multiple RAT (Multi-RAT). Multi-RAT techniques are aimed at 

taking advantage of load balancing between spectrum licensed technologies, e.g., cellular 

networks, and unlicensed ones, e.g., WiFi. However, the RAT selection algorithms, as 

well as the offloading mechanisms across cellular BS and WiFi access points, comprise 

an ambitious goal in terms of coordination and quality of service (QoS) [25]. In this 

work, we focus on the load balancing problem by considering a single RAT and its 

application to an actual IoT network. Specifically, the RAT used in this study is the  

LoRaWAN (long-range wide-area network) standard. In other words, we assume that the 

problem is delimited to the load balancing in an IoT network using a specific RAT. How 

to balance load considering more than one RAT is beyond of the scope of this work and it 

could be a promising research future work. 

LoRaWAN is one of the most notable LPWAN (low-power wide area-network) 

technologies, alternative standards to conventional cellular networks, which have 

noteworthy expansions through IoT services providers [26]. As with other LPWAN 

technologies, LoRaWAN devices operate at a very low power, with long coverage (end 

devices can connect to a BS at a several-kilometers distance), and through a star 

topology, such as cellular networks [27], [28]. Another important characteristic is that 

LoRaWAN works in the unlicensed sub-GHz band, which is suitable for IoT applications 
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in complex environments. However, the LoRaWAN protocol poses relevant challenges 

for dense networks regarding scalability and capacity. For example, in the default and 

most used class operation (Class A), LoRaWAN devices employ an uncoordinated access 

scheme (ALOHA) which might produce a collision avalanche in a large-scale network 

[29]. Therefore, optimization techniques are needed to allow reliable services and to 

avoid capacity drain in LoRaWAN networks with high densities of devices, such as those 

deployed in urban scenarios for smart cities. 

In this work, we first show that an urban LoRaWAN network may be deemed as a 

HetNet. Hence, we address the problem of load balancing in a HetNet through 

appropriate machine learning (ML) techniques and we apply the proposed solution to 

improve the performance of a LoRaWAN network in a city. We further evaluate the 

performance of our solution in terms of the packet delivery ratio (PDR) and energy cost 

of data delivery (ECD) when the network has from a few to several thousands of end 

devices connected to it. Moreover, we expand our analysis to the case when devices 

request downlink traffic and not only the basic IoT scenario where uplink traffic is 

analyzed. The evaluation of our scheme is based on data collected from an actual network 

and its results illustrate that both PDR and energy cost are enhanced. 

In the next sections, we review relevant works related to load balancing methods in 

HetNets (Section 2.2), we explain the factors to consider for an urban LoRaWAN 

network as a HetNet (Section 2.3), we describe our proposed scheme and its methods 

(Section 2.4), we give details about our network simulation design (Section 2.5), and we 

finally present the evaluation results (Section 2.6). 

 

2.2. Related Work 

A variety of approaches exists in the literature regarding the single RAT load balancing 

in HetNets. One of the most studied techniques is the cell range expansion (CRE): a 

mechanism to virtually expand an SBS range by adding a bias value to the power that a 

device receives from that SBS. In this way, instead of increasing the actual transmit 
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power of an SBS, a virtual range expansion is performed so that a device will not connect 

to an MBS, but an SBS. However, to find an optimal bias value for minimizing the 

devices’ outage is a non-trivial problem and depends on several factors. 

Accordingly, in [30] a scheme is proposed for the bias value optimization based on the  

Q-learning algorithm. The authors show that their method can decrease the number of 

outage devices and improve average throughput compared to non-learning schemes with 

a common bias value. Conversely, in [31] Ye et al. present a load-aware association 

method applied to CRE by considering two types of biasing factors, signal-to-

interference-plus-noise ratio (SINR) and rate. The authors point out that the optimal 

biasing factors are nearly independent of the BS densities across tiers, but highly 

dependent on the per-tier transmit powers. Authors in [32] develop a clustering algorithm 

to classify BS into groups and present a central-aided distributed algorithm for adjusting 

the CRE bias. Their objective is to obtain a solution for the rate-related utility 

optimization problem based on local information. Thus, a central MBS is used to collect 

the information from the SBS, which determine their own CRE bias based on the shared 

central information. Similarly, authors in [33], [34] propose clustering techniques for 

optimizing the load balancing problem in HetNets. 

Taking into account the energy efficiency, Ref. [35], [36] present techniques that are 

basically based on active/sleep schemes for multitier HetNets. In a similar manner, 

Muhammad et al. propose in [37] an association method that selectively mutes certain 

SBS. Then, end devices are covered by CRE for achieving load balancing in non-uniform 

HetNets, i.e., networks with SBS randomly deployed close to the edges of the MBS 

coverage, where the signals are weak. Contrary to the uniform case, their results show 

that biasing has distinct effects on the coverage and rate performance of a non-uniform 

HetNet. Lastly, authors in [38] propose a load balancing solution for a two-tier HetNet 

based on stochastic geometry. Their algorithm performs a CRE biasing to achieve an 

optimal SBS density regarding network energy efficiency. 

Overall, biasing methods such as CRE are aimed at finding the appropriate bias values 

and at determining whether a specific BS should be considered or not for communication 
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with a particular wireless device. An optimal decision of this association yields a network 

with balanced BS. This enhances the network performance in terms of capacity and 

energy efficiency, for instance, especially in scenarios with a large number of devices. 

Although several ML algorithms have been presented in the literature to address the load 

balancing problem, they mainly focus on reinforcement learning techniques. Our method 

uses an unsupervised technique to discover the hidden pattern behind the selected 

features and a supervised technique to take advantage of the historical labeled data. Then, 

a supervised classifier is applied in order to accomplish a biasing scheme by 

contemplating metrics that are not directly related to signals strength. In this way, our 

model learns from data to predict a device-BS association without considering signal-

based measurements. Additionally, our method employs a Markov Decision Process 

(MDP) to determine whether a BS needs to be balanced or not. For both techniques, the 

data are obtained from a real IoT LoRaWAN network deployed in an urban area, which is 

the use case scenario for our solution. To the best of our knowledge, this work is the first 

one that presents a solution to the load balancing problem applied to a LoRaWAN 

network. 

 

2.3.  A LoRaWAN Network Seen as a HetNet 

As we have explained, the BS in a HetNet are dissimilar in terms of coverage and, 

therefore, BS are either MBS or SBS. We have also mentioned that LoRaWAN networks 

are cellular-like and are deployed following a star topology. However, unlike traditional 

cellular networks, LoRaWAN is an open standard and operates in the unlicensed bands, 

which allows rapid implementation of public and private networks. Then, in a smart city 

scenario where the priority of an IoT network might be capacity rather than 

communication range, the LoRaWAN access points are prone to being deployed in a non-

homogeneous manner. 

Moreover, it is also important to highlight that the LoRaWAN standard lets an end device 

be concurrently associated with more than one BS (i.e., gateway) [39], as shown in 
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Figure 2.1. We take into account this characteristic to evaluate the performance of our 

load balancing scheme. In this way, to be consistent with the standard, our goal is to 

determine what BS should transmit the downlink (DL) message to an end device, once an 

uplink (UL) message is received through more than one BS. This procedure is not 

defined by the LoRaWAN specifications and a network operator has to choose an optimal 

mechanism for it. Therefore, we consider a number of Class A end devices transmitting 

confirmed UL packets, i.e., packets that need to be acknowledged (ACK), and a network 

server that must make decisions on which gateways should relay the DL packets to end 

devices. 

Figure 2.1. LoRaWAN network architecture. An end device may be associated with more 

than one gateway. Adapted from [40]. 

We also point out that our use case is based on data from The Things Network (TTN), a 

global collaborative LoRaWAN network crowdsourced by enthusiasts and with more 

than 4000 gateways [41]. Because of the nature of this IoT network, many gateways are 

randomly deployed, particularly in urban areas. Furthermore, the community members 

are encouraged to build their own gateways and private deployments might use a variety 

of available options in the marketplace, from macro gateways to pico gateways, e.g., 

[42]. As a result, the coverage areas of gateways are heterogeneous and overlap each 
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other with diverse signal strength values. For these reasons, LoRaWAN networks such as 

TTN may be deemed as HetNets. 

2.4. Proposed Scheme 

Since our proposed solution for the load balancing problem is an ML-aided scheme, our 

methodology is data-driven and divided into four main stages: data preprocessing, pattern 

analysis, classification method, and decision-making model. The following subsections 

provide the details about each phase. 

 

2.4.1. Data Preprocessing 

In this stage we gather the historical data from an actual operating network. As 

mentioned in Section 2.3, the use case for our method is an IoT LoRaWAN network and 

that is why we take advantage of the TTN initiative. Specifically, we use the data 

available at the TTN Mapper website [43]. The TTN Mapper is an application fed by 

users with mobile devices and its main objective is to map the TTN gateways coverage 

by sending UL packets. For this work, we use the data dumped into tab-delimited files, 

which contain several fields that describe the connectivity status of the end devices at a 

given time and location, such as: node ID, timestamp, node address, address of the 

gateway the device is connected to, modulation in use, transmission data rate, SNR, 

RSSI, frequency, latitude, longitude, and altitude (the latter not available for all samples). 

Since the files contain raw data, the first step is to clean and select the entries that are 

useful for our problem. To this end, we searched for data corresponding to an urban area 

taking into account the following considerations: (1) the BS with the highest number of 

received packets is the reference BS; (2) other BS are selected within a 10 km radius of 

the reference BS; (3) as end devices are mobile, only entries with location information of 

devices are considered; and (4) every BS is associated with two or more devices, thereby 

avoiding “dedicated” BS in the analysis. The resulting data is a subset of 261,576 

samples, corresponding to seven BS. Figure 2.2 depicts the locations of the found BS and 

their devices in order to visualize how they are distributed and associated. Similarly, 
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Figure 2.3 shows an idealization of the BS coverage based on their associated devices’ 

locations. As can be seen, the data points show an urban scenario where some gateways 

behave like SBS and others like MBS. For example, BS 1 and BS 3 have shorter 

coverage ranges compared with the other gateways and their devices might be associated 

with BS 0 or BS 2, as well. Therefore, the selected data is suitable for our scheme and is 

consistent with our hypothesis of treating an urban dense IoT network as a HetNet. 

Figure 2.2. Locations of BS and their associated devices within the selected urban area. 

Figure 2.3. Coverage approximation of BS based on data points, assuming isotropic 

radiation, and ideal propagation. 
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Secondly, as our goal is to bias the device association to accomplish a load balancing, we 

extract several variables from data and waive the SNR and RSSI metrics. The main 

reason of doing so is to learn from the correlation among device’s variables that are not 

directly influenced by the signal strength values. Thus, the features to be analyzed are 

some already available in the dataset such as frequency, data rate, latitude, and longitude, 

and others extracted from the timestamp field like time of the day, and day of the week. 

The idea of using these variables is to learn from their values as they describe the 

particular situation of a device at the moment that is successfully transmitting a packet to 

the BS. 

 

2.4.2. Pattern Analysis 

The purpose of this phase is to find out whether the extracted features provide 

differentiated patterns for each BS. To this end, we analyze the samples of the seven BS 

by using the principal components analysis (PCA). PCA is an unsupervised ML 

technique widely used for data visualization and feature selection. In this work, the main 

purpose to use PCA is to reduce the feature space to only two dimensions, so that the data 

of the end devices considering the selected features can be visualized. 

PCA is a linear transform that maps the data into a lower dimensional space, known as 

the principal subspace, preserving as much data variance as possible, i.e., with minimum 

loss of information [44]. Since our features are frequency, data rate, latitude, longitude, 

time of the day, and day of the week, the original dimension of our data is a matrix 

𝑁𝑁 × 𝐷𝐷, where 𝐷𝐷 = 6 and 𝑁𝑁 = 261,576. In this way, our objective is to project the data 

of each BS into two dimensions, i.e., 𝐷𝐷 = 2, in order to visualize and verify that the 

extracted features do show a distinctive pattern. Therefore, for each BS there are 𝑁𝑁𝑘𝑘 

samples and PCA will produce two vectors of 𝑁𝑁𝑘𝑘 elements, corresponding to the first two 

principal components. These vectors are computed as follows: 

𝐩𝐩𝑐𝑐 = 𝐰𝐰𝑐𝑐
T𝐱𝐱𝑘𝑘 

( 2.1) 

 



20 

 

where 𝑐𝑐 = {1, 2}, 𝐰𝐰𝑐𝑐 are the projection vectors, and 𝐱𝐱𝑘𝑘 are the data subsets of each BS, 

i.e., 𝑘𝑘 = {0, 1, 2, 3, 4, 5, 6}. In this case, the learning task is to choose 𝐰𝐰𝑐𝑐 so that vectors 

𝐩𝐩𝑐𝑐 have the maximum variance. Thus, PCA determines vectors 𝐰𝐰𝑐𝑐 by maximizing the 

variance in the projected space and by making them orthogonal, which means that 

𝐰𝐰1
T𝐰𝐰2 = 0. This maximization problem can be solved through the incorporation of 

Lagrangian terms [44], that yields: 

𝐒𝐒𝐰𝐰𝑐𝑐 = 𝜆𝜆𝑐𝑐𝐰𝐰𝑐𝑐 ( 2.2) 

The pairs 𝜆𝜆𝑐𝑐 and 𝐰𝐰𝑐𝑐 are the eigenvalues and the eigenvectors, respectively, of the 

covariance matrix 𝐒𝐒, which is defined by( 2.3): 

𝐒𝐒 =
1
𝑁𝑁𝑘𝑘

�(𝐱𝐱𝑘𝑘𝑛𝑛 − �̅�𝑥𝑘𝑘)
𝑁𝑁𝑘𝑘

𝑛𝑛=1

(𝐱𝐱𝑘𝑘𝑛𝑛 − �̅�𝑥𝑘𝑘)T ( 2.3) 

where �̅�𝑥𝑘𝑘 is the mean of sample subset 𝐱𝐱𝑘𝑘. 

Consequently, the variance will be maximum when 𝐰𝐰1 is equal to the eigenvector with 

the highest eigenvalue 𝜆𝜆1, giving as result the first principal component. The second 

principal component is given by selecting a new direction, so that 𝐰𝐰2 is orthogonal to 𝐰𝐰1 

and equal to the eigenvector with the second highest eigenvalue 𝜆𝜆2. 

Finally, it is also important to highlight that before performing the PCA, each feature is 

normalized by using the min-max scaling method ( 2.4): 

𝑧𝑧 =
𝑥𝑥 − 𝑥𝑥min

𝑥𝑥max − 𝑥𝑥min
 ( 2.4) 

where z represents the normalized data points and x the original ones. The main objective 

of the scaling procedure is to have the values of all features within a range that is not too 

large, so that the variance maximization is not affected by their actual values [45]. Also, 

we have delimited 𝑁𝑁𝑘𝑘 = 10,000 in order to have an equal number of samples for each BS 

and make a fairer comparison among their patterns. 

 



21 

 

2.4.3. Classification Method for Association Biasing 

In this stage, we use the data to train the system and determine a biased association 

between a device and a particular BS. In our use case, we denote the device-BS 

association as the selection of a BS to relay DL packets. We do this distinction as a 

LoRaWAN device may be connected to several gateways to send UL packets to the 

Network Server, so biasing in UL makes no sense and is not consistent with the standard. 

On the other hand, we assume that the default DL association in TTN is based on signal 

strength, as suggested in [46]. Then, our purpose is to bias that DL path configuration, 

recognizing that a bidirectional traffic in a LoRaWAN network represents a more realistic 

scenario [47]. 

To bias the device-BS association, we take advantage of the labeled data by applying a 

supervised learning technique. Specifically, this technique is intended to perform a multi-

class classification, since our goal is to predict the BS that should forward DL messages 

to an end device by avoiding the SNR and RSSI metrics. Hence, in our use case scenario 

we have seven classes, one per BS. In addition, the inputs of the classifier are the features 

contemplated for PCA and the labels, which are categorical values corresponding to one 

of the seven classes. 

ML classification algorithms can be categorized into two types: probabilistic and non-

probabilistic classifiers. The main difference between them is that non-probabilistic 

classifiers define a decision boundary to determine whether a prediction belongs or not to 

a specific class [48]. It means that a non-probabilistic classifier performs a hard 

classification: given the inputs values, the model yields only one class. On the other hand, 

a probabilistic classifier provides the probabilities of belonging to each class, instead of 

giving only one class as a result. Then, a probabilistic classifier produces a soft 

classification and does not define decision boundaries. As we want to bias the default 

device-BS association, it is desirable to find the probabilities of receiving DL packets 

through other BS. For this reason, we choose to use a probabilistic classifier. 

Additionally, these kinds of classifiers allow us to find the classification posterior 

probabilities, which can be used for our decision-making problem of load balancing. 



22 

 

In general, probabilistic classifiers are based on the Bayes’ theorem to find the posterior 

class probabilities and determine the class membership for each new input 𝐱𝐱 [44]. Thus, 

the posterior probabilities 𝑝𝑝(𝐶𝐶𝑘𝑘|𝐱𝐱) are given by ( 2.5): 

𝑝𝑝(𝐶𝐶𝑘𝑘|𝐱𝐱) =
𝑝𝑝(𝐱𝐱|𝐶𝐶𝑘𝑘)𝑝𝑝(𝐶𝐶𝑘𝑘)

𝑝𝑝(𝐱𝐱)
 

( 2.5) 

 

where 𝑝𝑝(𝐱𝐱|𝐶𝐶𝑘𝑘) represents the class-conditional densities individually inferred for each 

class 𝐶𝐶𝑘𝑘, 𝑝𝑝(𝐶𝐶𝑘𝑘) are the prior class probabilities, which can be estimated from portions of 

the training subset, and 𝑝𝑝(𝐱𝐱) is found as follows ( 2.6): 

𝑝𝑝(𝐱𝐱) = �𝑝𝑝
𝑘𝑘

(𝐱𝐱|𝐶𝐶𝑘𝑘)𝑝𝑝(𝐶𝐶𝑘𝑘) 
( 2.6) 

 

To select a specific classification method, we compare the accuracy and the 

computational time of several algorithms, such as multiple logistic regression (MLR), 

Gaussian naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), and Decision Trees (DT). In addition, we include in our 

comparison some ensemble methods such as the Random Forests (RF), Extra Trees (ET) 

and a voting classifier. Details about the algorithms behind these classifiers can be found 

in [45], [48], [49]. 

Similar to the pattern analysis, an equal number of samples 𝑁𝑁𝑘𝑘 = 10,000 are extracted 

for each class in order to have a balanced dataset and prevent the classifiers from being 

biased during the training process. To train and test the classifiers, the dataset is divided 

into two subsets: 80% and 20%, respectively. Based on these subsets, we also calculate 

the average accuracy of each classifier. In this way, we determine the true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) classification outcomes 

per class by comparing the predicted labels to the actual labels from the test subset 

samples. Note that a hard classification is needed for this comparison, therefore, we 

consider the class with the highest probability as the predicted label. Accordingly, the 

terms TP, TN, FP, and FN are derived from the confusion matrix, which summarizes the 
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comparison: columns describe the outputs of predicted labels and rows, the actual labels. 

Thus, the value of TP for class 1, for example, is the number of predictions with label 1 

that match the actual label 1, and the number of predictions that do not match is the value 

of FP. Similarly, TN is the number of predictions with other label different from label 1 

that match any other actual label, and FN represents the otherwise case. Subsequently, the 

overall classifier accuracy with 𝐾𝐾 classes can be calculated by macro-averaging the 

accuracy of the classes [50], i.e., all classes equally treated, as follows ( 2.7): 

Accuracy =
1
𝐾𝐾
�

TP𝑘𝑘 + TN𝑘𝑘

TP𝑘𝑘 + TN𝑘𝑘 + FP𝑘𝑘 + FN𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 
( 2.7) 

 

Additionally, we point out that before training the classifiers, the features are 

standardized by using the z-score Formula ( 2.8): 

𝑧𝑧 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

 
( 2.8) 

 

where 𝑧𝑧 is the standardized data point value, 𝑥𝑥 is the original value, 𝜇𝜇 and 𝜎𝜎 are the mean 

and the standard deviation of each variable, respectively. In this way, the classifiers 

perform better with standard normally distributed data, i.e., with zero mean and unit 

variance [45]. 

Finally, we define 𝐫𝐫𝑘𝑘 as the vector with the found probabilities after making a prediction 

for the biased association. Therefore, the values of 𝐫𝐫𝑘𝑘 correspond to a device’s 

probabilities of being associated with specific BS by waiving the signal-based features, 

and then ∑ 𝑟𝑟𝑘𝑘𝑘𝑘 = 1. 

 

2.4.4. Decision-Making Model for Load Balancing 

Our goal with the decision-making model is to achieve a load balance and, consequently, 

improve the network capabilities in terms of PDR and energy cost of data delivery. 
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Without loss of generality, we delimit our analysis to those cases when an end device 

transmits UL packets to two BS at the same time. In this fashion, we filter the original 

dataset, obtaining a new subset with 17,146 samples. For example, a pair of samples from 

that subset represent an end device that concurrently sends UL traffic to BS 2 and BS 3, 

as shown in Figure 2.4. The default path for DL traffic depends on the BS with the 

highest RSSI, as we explained in Section 2.4.3. In our example, that default DL 

association is done via BS 2. Therefore, the decision to be made is whether DL packets 

are forwarded through the BS corresponding to the default path or not. In the latter case, 

the DL traffic would be transferred to BS 3. As mentioned in Section 2.2, our decision-

making model is based on an MDP, so that the Network Server can make decisions on 

DL load balancing at each BS. We also model our MDP with some calculations based on 

data of the new subset. 

Figure 2.4. Example of a load-balancing decision to be made. 

Generally speaking, an MDP is a sequential decision problem for an observable and 

stochastic environment with the Markovian property. In other words, MDPs are a 

fundamental formalism for sequential learning problems in stochastic domains, such as 

decision-theoretic planning and reinforcement learning [51]. A set of states 𝑠𝑠, a set of 

actions in each state 𝑎𝑎(𝑠𝑠), the transition probabilities among states 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎), and a 
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reward function 𝑅𝑅(𝑠𝑠) comprise an MDP. Thus, a decision maker (also known as agent) 

must choose to perform an action when the process is in a singular state, based on a 

policy 𝜋𝜋, which is the decision solution given 𝑃𝑃 and 𝑅𝑅 [1]. For our scheme, we model an 

MDP with states corresponding to the number of BS. There are two actions to complete 

in each BS: to offload or not to offload its DL traffic, i.e., 𝑎𝑎(𝑠𝑠) = {0, 1}. Two matrices 

describe the values of 𝑃𝑃 for each action, defined as 𝐏𝐏0 when the decision is to not offload, 

and 𝐏𝐏1 to offload the BS. 

We assume that any device is concurrently transmitting confirmed packets to two BS, 

which means that one of those BS must respond an ACK, i.e., a DL message. As we 

explained in Section 2.4.3, the default DL association for transmitting an ACK is between 

the BS with highest RSSI and the end device. Therefore, the decision that the Network 

Server has to make is whether the DL association remains with the default BS, 𝑎𝑎(𝑠𝑠) = 0, 

or switches to the other one, 𝑎𝑎(𝑠𝑠) = 1. Subsequently, the probability of being in state 𝑠𝑠 

and staying in that state if the decision is to not offload is 𝑃𝑃(𝑠𝑠′ = 𝑠𝑠|𝑠𝑠, 𝑎𝑎 = 0) = 1, and 

then 𝐏𝐏0 is defined as follows ( 2.9): 

𝐏𝐏0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 
( 2.9) 

 

 

To calculate 𝐏𝐏1, the transition probabilities can be estimated from historical records [52]. 

Thus, we use the data samples to count the total number of device associations that each 

BS had and the shared associations between each pair of BS. Hence, the probabilities that 

the DL traffic is offloaded from a BS to another BS, 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎 = 1), are given by ( 2.10): 
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𝐏𝐏1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

∑(𝐱𝐱0 ∩ 𝐱𝐱1)
∑𝐱𝐱0

⋯
∑(𝐱𝐱0 ∩ 𝐱𝐱6)

∑𝐱𝐱0
∑(𝐱𝐱1 ∩ 𝐱𝐱0)

∑𝐱𝐱1
0 …

∑(𝐱𝐱1 ∩ 𝐱𝐱6)
∑𝐱𝐱1

⋮ ⋮ ⋱ ⋮
∑(𝐱𝐱6 ∩ 𝐱𝐱0)

∑𝐱𝐱6

∑(𝐱𝐱6 ∩ 𝐱𝐱1)
∑𝐱𝐱6

⋯ 0
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
( 2.10) 

 

With respect to 𝑅𝑅(𝑠𝑠), we also estimate its values based on the historical data and the 

classifier results. Basically, we compute how busy a BS might be transmitting DL 

packets to define how “rewarding” that BS is. In this way, the more occupied a BS is, the 

higher its reward is for the offloading decision. This consideration is consistent with the 

fact that gateways utilization is taken into account to schedule DL traffic in TTN [46]. 

Then, the rewards vector for the MDP is calculated as follows ( 2.11): 

𝐑𝐑 =  �𝐫𝐫𝑘𝑘𝑛𝑛

𝑁𝑁𝐴𝐴

𝑛𝑛=1

 
( 2.11) 

 

where 𝑁𝑁𝐴𝐴 is the total number of end devices requesting ACKs and 𝐫𝐫𝑘𝑘 is the vector 

containing the obtained probabilities from the classifier. 

It is also important to point out that we model our MDP with an indefinite horizon for the 

decision making, which means that there is no fixed time limit and that the optimal policy 

𝜋𝜋∗ is stationary [1]. Also, we consider a discount factor 𝛾𝛾 that describes the preference of 

the decision maker (in our case, the Network Server) for current rewards over future 

rewards. Accordingly, the utility of a state sequence is defined as ( 2.12): 

𝑈𝑈 = �𝛾𝛾𝑘𝑘𝑅𝑅(𝑠𝑠𝑘𝑘)
𝑘𝑘

 
( 2.12) 

 

More importantly, we must find 𝜋𝜋∗ for our MDP, which is an optimization problem to 

choose the action that maximizes the expected utility of the subsequent state ( 2.13): 
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𝜋𝜋∗(𝑠𝑠) = argmax𝑎𝑎  �𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑈𝑈(𝑠𝑠′)
𝑠𝑠′

 
( 2.13) 

 

There are several methods to solve this optimization problem. In this work, we assess the 

performance of two well-known algorithms: value iteration and policy iteration. On the 

one hand, the value iteration algorithm calculates the utility of each state and then 

iteratively uses the state utilities to select an optimal action in each state. On the other 

hand, the policy iteration algorithm alternates between the evaluation of the states utilities 

under the current policy (starting from some initial policy) and the improvement of the 

current policy with respect to the current utilities. Details about these and other 

algorithms can be found in [1], [52]. 

Figure 2.5. Algorithm for the traffic offloading decision. 
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Another point to consider is that we define the amount of DL traffic offloading based on 

the classifier outputs to avoid that any BS ends up with no packets to transmit. As a 

result, the quantity of end devices to be offloaded from a BS, that is 𝑀𝑀𝑘𝑘, depends not only 

on 𝜋𝜋∗ but also on 𝐫𝐫𝑘𝑘, as shown in Figure 2.5. In this flowchart, �̅�𝑟𝑘𝑘 is the mean value of 

vector 𝐫𝐫𝑘𝑘, 𝑁𝑁𝑘𝑘 is the number of devices associated with a specific BS, and 𝐾𝐾 is total 

number of BS in the network. 

 

2.5. Network Simulation Design 

To simulate a system using our proposed scheme, we adapt some analytical models found 

in the literature for the simulation of LoRaWAN networks. As we assume that in the 

network all the devices are Class A, they use the uncoordinated transmission scheme 

ALOHA. The PDR in a network that employs pure ALOHA can be modeled based on a 

Poisson distribution [53], as follows ( 2.14): 

where 𝑁𝑁 is the number of devices in the network, 𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃 is the average airtime that takes 

transmitting a packet, and 𝜆𝜆 is the average packet arrival rate. However, this model does 

not take into account the retransmissions when devices request ACKs from the network. 

Therefore, the model is adapted to consider the retransmissions ( 2.15): 

PDR𝐴𝐴 = 𝑒𝑒−2𝑁𝑁𝐴𝐴∗𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑃𝑃𝑃𝑃∗𝜆𝜆∗𝑝𝑝𝐵𝐵𝐵𝐵 
( 2.15) 

 

𝑁𝑁𝐴𝐴 is the total number of end devices requesting ACKs, as described in Section 2.4.4, and 

the new term 𝑝𝑝𝐵𝐵𝐵𝐵 is the blocking probability of a BS due to the ACKs (DL traffic), given 

by ( 2.16): 

PDR = 𝑒𝑒−2𝑁𝑁∗𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑃𝑃𝑃𝑃∗𝜆𝜆 
( 2.14) 
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𝑝𝑝𝐵𝐵𝐵𝐵 = 1 − (1 − 𝑞𝑞𝐵𝐵𝐵𝐵)𝐴𝐴𝑇𝑇𝑇𝑇 
( 2.16) 

 

where 𝑞𝑞𝐵𝐵𝐵𝐵 is the ratio between DL traffic and UL traffic in a BS and 𝐴𝐴𝑇𝑇𝑇𝑇 is the number of 

retransmissions of a device before receiving an ACK. As the LoRaWAN standard 

specifies a maximum number of seven retransmissions and considering the original 

transmission as a retransmission, according to [54], we run our simulations with 𝐴𝐴𝑇𝑇𝑇𝑇 = 8, 

which corresponds to the worst case. It is also important to highlight that, for the 𝑞𝑞𝐵𝐵𝐵𝐵 

calculation, the DL traffic is either the default load or the balanced load at the BS, 

depending on the offloading decision. 

Next, to simulate the PDR over all the BS in the network, we calculate the total PDR 

following the product form ( 2.17): 

PDRTotal = �PDR𝐴𝐴𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 
( 2.17) 

 

where 𝐾𝐾 is the total number of BS, that is 𝐾𝐾 = 7 for our use case scenario. 

In our simulations, each experiment represents an MDP. For each experiment, we take 

samples from the subset described in Section 2.4.4. In this manner, we conduct more 

realistic experiments by using actual data instead of synthetic data. An experiment 

consists of randomly selecting a pair of samples corresponding to an end device 

associated with two BS. Without loss of generality, we delimit our analysis to 𝑁𝑁𝐴𝐴max =

5000, starting with an experiment of 5 devices and increasing the number by 5 in each 

experiment. The main reason of this constrain is that most of the samples in the dataset 

correspond to end devices associated with one BS only. Then, in order to consider the 

end devices requesting DL traffic, we need to filter out those with a single association.  In 

relation to 𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃, we choose an airtime that is consistent with common LoRaWAN 

deployments like TTN. Consequently, we set 𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃 = 1712.13 ms, which is a robust 

packet airtime for those kinds of deployments, according to [55]. 
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With respect to the energy cost of data delivery (ECD), we adapt the model for a dense 

LoRaWAN network presented in [56]. Thus, the ECD is given by ( 2.18): 

ECD = 𝛼𝛼
𝑒𝑒𝑁𝑁𝐴𝐴∗𝜆𝜆∗𝑝𝑝𝐵𝐵𝐵𝐵∗𝐿𝐿𝑃𝑃𝑃𝑃

𝐿𝐿𝑃𝑃𝑃𝑃
 

( 2.18) 

 

where 𝛼𝛼 is a constant expressed in Joules and 𝐿𝐿𝑃𝑃𝑃𝑃 is the size of messages payload. We 

assume that a typical Smart City IoT application transmits messages with a payload size 

of 20 bytes, on average. For both PDR and ECD models, Table 2.1 summarizes the 

parameters used in our simulations. 

Table 2.1. Simulation parameters for the evaluation of Packet Delivery Ratio and Energy 

Cost of Data Delivery. 

Parameter Description Value 

𝛾𝛾 Discount factor for MDP 0.9 

𝑁𝑁𝐴𝐴 Number of end devices requesting ACK {5, 10, 15, ⋯ 5000} 

𝜆𝜆 Average packet arrival rate 0.25 × 10−4 packets/ms 

𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃 Packet airtime 1712.13 ms 

𝐴𝐴𝑇𝑇𝑇𝑇 Number of retransmissions 8 

𝛼𝛼 Energy constant 0.4 J 

𝐿𝐿𝑃𝑃𝑃𝑃 Size of messages payload 20 B 

 

2.6. Evaluation Results 

We evaluate our method through computer simulations and, specifically, by running code 

written in Python 3. Some packages for data analysis and ML are used, such as pandas 

[57], scikit-learn [58], and MDPToolbox [59]. The simulations are run on a PC with 
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Ubuntu 16.04 64 bits, processor Intel® Core™ i3 CPU M 350 @ 2.27 GHz × 4, and RAM 

of 4 GB. Note that we decided not to use High Performance Computing systems, as we 

are aware that many private LoRaWAN deployments do not count on these sorts of 

resources. In the following subsections we present the numerical results of our 

simulations and discuss their implications. 

2.6.1. PCA Patterns 

Figure 2.6. Discovered patterns for BS after projecting the first two principal 

components. 
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As explained in Section 2.4.2, we want to discover whether there is a characteristic 

pattern for each BS when the device association is biased by obviating the RSSI and SNR 

metrics. Therefore, the PCA analysis is performed taking into account the normalized 

values of the features: frequency, data rate, latitude, longitude, time of the day, and day of 

the week. To visualize the analysis, Figure 2.6 shows the pattern projected by the first 

two principal components for each BS. It is noticeable that each BS depicts a different 

pattern, which means that a device with particular values of the extracted features might 

be associated with specific BS through classification. In other words, we can predict the 

device’s probability of having a specific DL path by biasing the signal-based variables. 

  

2.6.2. Classifiers Outcomes 

As we explained in Section 2.4.3, our goal with the classifier is to bias the default device-

BS association based on signal strength measurements like RSSI. Then, the classifier is 

trained with features that represent the particular condition of the devices, excluding the 

signal-based variables. To evaluate the association biasing, we use data samples from the 

subset described in Section 2.4.4. In this manner, we select 8500 devices that 

simultaneously transmit UL packets to two BS. Assuming that the default association is 

given by the BS with the highest RSSI, an approximation of all BS coverage is shown in 

Figure 2.7a. As can be seen, this coverage mapping is comparable to that depicted in 

Figure 2.3. On the contrary, Figure 2.7b illustrates a coverage map estimate based on the 

classification results. In this case, the association of a device with the default BS is 

changed to the BS with the highest probability given by the classifier. It is noticeable that 

the proposed biasing method yields a CRE, as described in Section 2.2. For instance, the 

range of BS 1 and BS 3, which act as SBS, are virtually expanded after performing the 

association biasing. 

To compare the performance of the probabilistic classifiers, we ran the training code 

5000 times. Figure 2.8 shows the average classification accuracy and the average training 

times for each considered algorithm. The voting method is an ensemble classifier that 

combines the classification results from GNB and QDA. 
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Figure 2.7. Device-BS association comparison: (a) estimated coverage based on RSSI; 

(b) CRE   based on biased association. 

As can be seen, the most accurate classifier is ET, however, this algorithm also employs 

the third longest training time. In contrast, our intention with the voting classifier is to 

evaluate any accuracy enhancement given by the combination of the two fastest 

algorithms, i.e., GNB and QDA. Although the accuracy of the voting algorithm is slightly 

above the QDA’s score, the total training time is approximately the summation of their 
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individual training times. For these reasons, we finally use the ET algorithm outcomes as 

inputs for the decision-making model. 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

Figure 2.8. Classifiers performance comparison: (a) average classification accuracy; (b) 

average training time. 
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2.6.3. Network PDR Improvement 

In this subsection we present the obtained results when the network is simulated with the 

parameters specified in Section 2.5. We first compare the PDR improvement achieved 

with our proposed scheme through two simulation setups: MDP with and without the 

classifier. The objective is to determine if the combination of the classification method 

and the modeled MDP really makes a difference compared to the MDP working alone. 

Note that, to compare the MDP results without the classifier, the reward vector 𝐑𝐑 is found 

by counting the number of default DL associations. In this way, one simulation setup is 

based on the association biasing given by the classifier’s predictions (as described in 

Section 2.4.4) and the other setup relies on the RSSI-based association. 

Figure 2.9 depicts the resulting graphs of the system simulation in terms of PDR. As can 

be seen, the proposed scheme performs better when the outcomes from the classifier are 

taken into account, particularly in the circumstances when many devices are requesting 

DL traffic (note that the MDP-only load balancing method outperforms the combined 

method just when the number of devices is small, i.e., between 0 and 300 devices, 

roughly). However, there is a trade-off between the PDR improvement and the 

computational time, Figure 2.10. We point out that in this comparison we only consider 

the classifier’s prediction time, in other words, we do not include its training time, as we 

assume that the Network Server has previously trained the model. It is noticeable that 

when the proposed scheme uses the association biasing based on the predicted classes, 

the MDP needs more time to make a decision on load balancing. It is also important to 

highlight that the graph show some peaks, which means that the iteration algorithm 

employed more iterations to find 𝜋𝜋∗. Because of the stochastic nature of the samples, the 

algorithm might have dealt with tough values to determine 𝜋𝜋∗. However, we can see that 

in those cases, although more time was needed, the goal of improving the PDR was 

achieved. 
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Figure 2.9. Network PDR   improvement based on proposed scheme. 

Figure 2.10. Computational time comparison for the MDPs. 

In terms of improvement percentages, we find that the PDR increases by 13.11%, on 

average, and up to 26.8% without the classifier. Similarly, the PDR rises by 23.74%, on 

average, and up to 49.98% when the classifier results are incorporated in the decision-

making model. In contrast, the average decision time is 89.33% higher for the latter case, 

reaching a maximum of 0.27 s. However, we highlight that the decision process is run on 

the Network Server which is supposed to have enough resources to deal with this trade-

off and take advantage of a better PDR for the whole network. 
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Additionally, as mentioned in Section 2.4.4, we compare the computational time of both 

value iteration and policy iteration algorithms to solve the MDPs. The measured average 

decision times are 70 ms and 95 ms for the policy iteration and the value iteration 

methods, respectively, after running the experiments with the MDP-only simulation 

setup. This fact reveals that the policy iteration method is about 26% faster than the value 

iteration method to find the optimal policy of our load balancing decision model. That is 

why we used the policy iteration algorithm for the comparison described in Figure 2.10. 

 

2.6.4.  Network ECD Reduction 

In relation to the ECD, we also compare the results of the MDPs with and without the 

association biasing. Figure 2.11 depicts the normalized ECD. Similar to the PDR 

evaluation results, our proposed scheme yields an ECD reduction of 8.1%, on average, 

and up to 13.36% when the classification method is ignored. Conversely, a maximum 

reduction of 19.1% and an average ECD reduction of 12.04% are achieved when the 

biasing method, based on the classifier, is included in the load balancing model. 

Figure 2.11. Network EDC reduction based on proposed scheme. 
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2.7. Summary 

With the dramatic increase of connected devices, the Internet of things (IoT) paradigm 

has become an important solution in supporting dense scenarios such as smart cities. The 

concept of heterogeneous networks (HetNets) has emerged as a viable solution to 

improving the capacity of cellular networks in such scenarios. However, achieving 

optimal load balancing is not trivial due to the complexity and dynamics in HetNets. For 

this reason, we propose a load balancing scheme based on machine learning techniques 

that uses both unsupervised and supervised methods, as well as a Markov Decision 

Process (MDP). As a use case, we apply our scheme to enhance the capabilities of an 

urban IoT network operating under the LoRaWAN standard. The simulation results show 

that the packet delivery ratio (PDR) is increased when our scheme is utilized in an 

unbalanced network and, consequently, the energy cost of data delivery is reduced. 

Furthermore, we demonstrate that better outcomes are attained when some techniques are 

combined, achieving a PDR improvement of up to about 50% and reducing the energy 

cost by nearly 20% in a multicell scenario with 5000 devices requesting downlink traffic. 
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Chapter 3  

3. Intelligent Active Queue Management  

 

3.1.  Motivation 

Thanks to the proliferation of smart devices and the paradigm of Internet of Things (IoT), 

the demand for connections to the Internet is dramatically growing. As a response, 

Internet Service Providers (ISPs) are focused on improving the performance of their 

networks and connections to the Internet. However, engineers and researchers are trying 

to address this challenge by solving the traditional networks’ congestion problems. On 

the one hand, congestion avoidance mechanisms in TCP have been part of the solution 

and essential for the massive adoption of the World Wide Web. On the other hand, due to 

the bottlenecks along the paths, buffers have been deployed to avoid packet loss when 

packets arrive at faster rate than can the links. Nevertheless, excessive buffering leads to 

increasing delays, as packets have to stay longer in the queues, and causing a 

phenomenon known as bufferbloat [60]. Network devices tackle this effect through 

Active Queue Management (AQM) techniques, which aim to avoid the buffer’s overflow 

by dropping or marking the packets before the buffer fills completely. A variety of AQM 

schemes has been proposed, including the classical Random Early Detection (RED) 

algorithm [61], the Controlling Queue Delay (CoDel) [62], and newer ones such as the 

Proportional Integral controller Enhanced (PIE) [63] and the Flow Queue CoDel (FQ-

CoDel) [64]. Despite the advantages of AQM techniques, they are not widely adopted in 

ISPs’ network devices for the following reasons: first, some AQM mechanisms have 

parameters that might be difficult to tune in very dynamic environments. Second, routers 

and switches with more memory available in the market have created the misconception 

that the larger the buffers, the better. 

The main advantage of dropping packets with AQM rather than with tail-drop queues, i.e. 

buffers with no AQM, is to avoid the unnecessary global synchronization of flows when 

a queue overflows. Consequently, network devices drop more packets when no AQM 
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scheme is in use and the network throughput is deteriorated. In contrast, an AQM method 

can decide to either drop or mark packets when the network experiences incipient 

congestion. The process of marking packets instead of dropping them is known as 

Explicit Congestion Notification (ECN). The employment of ECN can reduce the packet 

loss and latency of Internet connections, among other benefits such as improving 

throughput, reducing probability of retransmission timeout expiry, and reducing the head-

of-line blocking [65]. Moreover, the importance of ECN relies on its fact of making 

incipient congestion visible, by exposing the presence of congestion on a path to network 

and transport layers. The data containing ECN-marked packets can be exploited to learn 

some characteristics such as the level of congestion of a network operator and the 

behavior of TCP protocols or applications, for instance. For these reasons, the 

deployment of new ECN-capable end systems and the necessity of reducing queuing 

delay in modern networks have motivated the interest in ECN [66]. Indeed, IETF has 

published a significant number of RFC documents regarding ECN, which indicates strong 

level of interests from industry and academia. 

ECN is specified in the RFC3168 [67], which defines four codepoints through two bits in 

the IP header, to indicate whether a transport protocol supports ECN and if there is 

congestion experienced (CE). This IETF recommendation also specifies two flags in the 

TCP header to signal ECN: the ECN-Echo (ECE) and the Congestion Window Reduced 

(CWR). Then, if the AQM algorithm in any router along the path determines that there is 

congestion, the router marks the packets with the CE code to indicate to the receiver that 

the network has experienced congestion. Once the CE-marked packet arrives at the 

receiver, it echoes back a packet to the sender with the ECE flag set in the TCP header to 

notify that congestion was experienced along the path. Consequently, the sender reduces 

the data transmission rate and sends the next TCP segment to the receiver with the CWR 

flag set. It is important to highlight that TCP also responds to non-explicit congestion 

indication produced by tail-drop queues or AQM dropping. How TCP performs those 

actions depends on the congestion control mechanisms on the transport layer and their 

details are out of the scope of this work. However, it is evident that the utilization of ECN 

mitigates the need for packet retransmission and, consequently, avoids the excessive 

delays due to retransmissions after packet losses. In addition, without ECN it is not 
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possible to determine if the packets are lost because of congestion or poor link quality. 

Finally, we point out the rest-of-path congestion concept introduced in the Congestion 

Exposure (ConEx) mechanism, which to some extent has inspired our work. Although 

proposed several years ago, the implementation of ConEx is not widely deployed, as it 

needs modifications to the TCP protocol at the sender side [68]. 

Accordingly, in this work we propose an intelligent use of the standardized ECN 

mechanism for existing AQM solutions. We build our method on Machine Learning 

techniques for the exploitation of ECN. The method consists of two main parts: a 

congestion predictor and a dynamic parameter tuner. The latter applies a Reinforcement 

Learning (RL) technique to balance the delay and throughput by adaptively setting the 

AQM parameters. The congestion predictor is a Neural Network (NN) that forecasts if 

there will be congestion on the rest-of-path. Our main goal is to propose a scheme that is 

fully compatible with existing TCP congestion control mechanisms and already deployed 

AQM techniques. Although previous works have used Machine Learning techniques to 

solve problems regarding AQM, to the best of our knowledge, none of them exploits 

ECN to improve the AQM mechanisms. For example, authors in [69] compare several 

AQM techniques based on NN with conventional AQM techniques. Through simulations, 

the authors show that the studied NN-based methods converge faster than the traditional 

techniques. Similarly, Bisoy and Pattnaik propose in [70] an AQM controller based on 

feed-forward NN, which stabilizes the queue length by learning the traffic patterns. Also, 

on the basis of RL, Bouacida and Shihada present in [71] the LearnQueue method, which 

focuses on the operation in wireless networks. Authors model their solution by adapting 

the Q-learning algorithm to control the buffer size. By means of unsupervised learning 

techniques, authors in [72] propose a cognitive algorithm to detect and penalize 

misbehaving ECN-enabled connections. Although this problem and the employed 

techniques differ from ours, we find some similarities in terms of exploiting the TCP 

connection data and the implementation on top of existing AQM mechanisms. 

3.2. Intelligent AQM Design 

As we mentioned in the Introduction, our goal is to enhance the performance that current 

AQM techniques provide at bottlenecks. We have explained how the ECN can reduce the 
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connections’ latency when enabled in the AQM along a path. However, ECN is not 

currently exploited to estimate the congestion ahead and dynamically adjust the AQM 

parameters in a router. Our hypothesis is that TCP connections can have a better 

performance if AQM schemes are tuned based on the specific network conditions. Yet, 

this is a non-trivial problem due to the complexity of IP networks. Consequently, we 

propose an intelligent method for improving existing AQM that learns from the 

experience and ECN feedback of a changing network. Our method is meant to be 

implemented on edge routers for two main reasons: first, edge routers are more prone to 

experience congestion than core routers, due to the bottleneck link between the access 

network and the backbone. Second, our mechanism uses traffic data in the downstream 

direction, which may take different paths in the core network. Despite these reasons, our 

solution can be deployed in core network devices even if ECN feedback is not completely 

obtained. The overall scenario for our stated problem is shown in Figure 3.1, which is a 

valid topology for end points connected through a shared bottleneck link [73]. It is also 

important to highlight that ECN is not a perfect mechanism for congestion control. If an 

AQM decides to mark every packet with incipient congestion regardless the status of the 

queue, the AQM could produce a harmful effect. That is why we argue that a right and 

dynamic setting of the AQM parameters is pertinent. Moreover, we point out the 

potential application of Machine Learning techniques for this purpose. 

Figure 3.1. Scenario for our stated problem. Edge routers aggregate end devices and 

connect to the core network through bottleneck links. 
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( 3.1) 

3.2.1. Congestion Predictor 

To predict the congestion, we take advantage of the ECE flag available in the TCP header 

of the packets in direction B without considering the ones involved in the ECN 

negotiation, as those packets indicate the setting of ECN-capable TCP sessions rather 

than congestion or response to congestion [67]. We model the congestion prediction as a 

time-series problem. The core of the congestion predictor is a Long Short-Term Memory 

(LSTM), which is a Recurrent Neural Network (RNN) architecture with memory blocks 

in the hidden layers. The memory blocks have multiplicative gates that allow storing and 

accessing information over long periods. In this way, the vanishing gradient problem of 

the RNN is mitigated in the LSTM, since the gradient information is preserved over time. 

For this reason, LSTMs have been successfully applied to address real-world sequential 

and time-series problems [74]. The inputs consist of both the current sample and the 

previous observed sample, such that output at time step t -1 affects the output at time step 

t. Each neuron has a feedback loop that returns the current output as an input for the next 

step. This structure makes LSTMs an effective tool for prediction, especially in those 

cases where there is no previous knowledge about the extent of the time dependencies.  

The inputs of our LSTM-based congestion predictor are denoted as a sample vector with 

the number of ECE-marked packets arriving at time intervals of 100 ms. This value 

corresponds to the typical assumption for the Round-Trip Time (RTT) in IP networks.  

Additionally, we rearrange that vector as an input matrix 𝐗𝐗 corresponding to ten time 

steps and an output vector 𝐲𝐲 of one time step, such that: 

𝐗𝐗 = �

𝑥𝑥𝑃𝑃0 𝑥𝑥𝑃𝑃1 ⋯ 𝑥𝑥𝑃𝑃9
𝑥𝑥𝑃𝑃1 𝑥𝑥𝑃𝑃2 ⋯ 𝑥𝑥𝑃𝑃10
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑃𝑃𝑁𝑁−10 𝑥𝑥𝑃𝑃𝑁𝑁−9 ⋯ 𝑥𝑥𝑃𝑃𝑁𝑁−1

� , 𝐲𝐲 = �

𝑥𝑥𝑃𝑃10
𝑥𝑥𝑃𝑃11
⋮
𝑥𝑥𝑃𝑃𝑁𝑁

� 

where 𝑥𝑥𝑃𝑃𝑖𝑖 is the quantity of ECE-marked packets in the time interval 𝑖𝑖 and 𝑁𝑁 is the total 

number of samples. The rationale behind rearranging the samples in ten time steps is to 

improve the performance of the predictive model by having additional context. In this 

way, the estimation of arriving ECE-marked packets contemplates more prior 

observations. 
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( 3.2) 

For the design and training of the LSTM, we assume that the data are gathered in a ten-

minute period, which is reasonable due to the dynamics of Internet networks. 

Consequently, there would be a dataset with 6000 samples, corresponding to the number 

of intervals of 100 ms in ten minutes.  In addition, we consider an LSTM with three 

hidden layers: the employment of a low number of layers for LSTM has been well 

studied in the literature and, based on our own experimentation, we were able to confirm 

that three layers are enough for making accurate predictions, as presented in [75]. Also, 

we use the approximation formula proposed in [76] to determine the number of neurons 

per layer, as follows: 

𝑁𝑁𝑛𝑛 = �𝑁𝑁𝑖𝑖𝑛𝑛 + √𝑁𝑁� 𝐿𝐿⁄  

where 𝑁𝑁𝑖𝑖𝑛𝑛 is the number of inputs, 𝑁𝑁 is the number of samples, and 𝐿𝐿 is the quantity of 

hidden layers. Then, 𝑁𝑁𝑛𝑛 ≈ 30 neurons per hidden layer. Although this formula was 

empirically determined for time-series forecasting using Feed-Forward Neural Networks, 

our experimentation show that it also works well for RNNs. Finally, we take into account 

a dropout regularization of 20%, so that the model does not overfit and yields more 

generalized weights after training. 

 

3.2.2. Q-learning based AQM Parameter Tuner 

In general, the parameters of AQM algorithms are set to values that yield a reasonable 

performance for the typical network conditions. However, AQM mechanisms are 

expected to allow parameters adjustment depending on the specific characteristics of a 

network and their interactions with other network tasks over time [77]. Consequently, we 

embrace the idea of adjusting AQM parameters according to the network’s changing 

circumstances, so that the performance is dynamically improved, as well. Nevertheless, 

the achievement of this goal can end up in a very complex job. For this reason, we 

propose a mechanism that adaptively tunes the parameters of the AQM in use as an RL-

aided decision process. 
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We model the dynamic AQM parameter-tuning problem as a Markov Decision Process 

(MDP). Previous works have successfully modeled complex decision-making problems 

in networks through MDPs, [78]. For this intelligent method, the decision process is 

based on the inferred rest-of-path congestion, i.e. the output of our congestion predictor 

described in Section 3.2.1. In this way, we define the states 𝑆𝑆 as a set of discrete levels of 

congestion that the flows will be likely to experience along the path, the set of actions 𝐴𝐴 

comprises specific values of the target parameter, and the reward 𝑅𝑅 depends on the power 

function of the connection, which is defined as the throughput-to-RTT ratio. In our 

environment, the edge router acts as the agent that makes the decisions and, therefore, no 

extra intelligence is needed at the end devices. The idea behind using the predicted rest-

of-path congestion is to proactively tune the AQM at the edge router.  Consequently, our 

method can adjust the target parameter so that more packets are dropped instead of being 

marked, as they will be likely dropped ahead. On the other hand, if low congestion is 

forecasted ahead, the AQM will mark more packets based only on its own experienced 

congestion.  

Nevertheless, finding the appropriate target for the balance between dropping/marking 

packets is a non-trivial problem and that is why we use RL. In other words, we model our 

problem as an MDP with the objective of finding an optimal behavior that maximizes the 

throughput-to-RTT ratio. To do so, we utilize the Q-learning algorithm [79], which 

defines a function 𝑄𝑄(𝑆𝑆,𝐴𝐴) representing the quality of a certain action in a given state and 

that is defined by: 

𝑄𝑄(𝑆𝑆,𝐴𝐴): = 𝑄𝑄(𝑆𝑆,𝐴𝐴) + 𝛼𝛼 [𝑅𝑅 + γ max𝑎𝑎𝑄𝑄(𝑆𝑆′,𝑎𝑎) − 𝑄𝑄(𝑆𝑆,𝐴𝐴)]  

where 𝑎𝑎 ∈ 𝐴𝐴, 𝛼𝛼 ∈ [0,1] is the learning rate, and the discount factor γ ∈ [0,1] describes 

the preference of the agent for current rewards over future rewards. This equation 

characterizes the maximum future reward of present state and action in terms of 

immediate reward and maximum future reward for the next state 𝑆𝑆′. In this manner, the 

Q-learning algorithm iteratively approximates the function 𝑄𝑄(𝑆𝑆,𝐴𝐴). 

More specifically, we model our AQM parameter tuner considering the current states as 

the observed levels of congestion, i.e. the ECE-marked packets arriving at the router in 

( 3.3) 
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direction B, and the rest-of-path congestion prediction in direction A as possible next 

states. Both current and next states are discretized to delimit the complexity of the 

environment. On the other hand, the actions are a set of predefined values for the target 

parameter of the specific AQM in use. 

3.3. Evaluation Methodology and Results 

In this section, we provide the details about the experimentation setup for the evaluation 

of our proposed solution. We first explain the preliminary experiments conducted to 

show the feasibility of our method as a whole, by studying the basis of each component 

separately. Later, we evaluate the performance of our intelligent AQM scheme 

comparing its operation to the behavior of conventional AQM. For our experimentation, 

we use the Mininet network emulator and the queue disciplines available in the Linux 

kernel. In this way, we validate the potential deployment of our solution in real network 

scenarios. 

3.3.1. Effects of Tuning AQM Parameters 

With respect to the AQM parameter tuner, in this work we evaluate our proposal using 

CoDel [62] and FQ-CoDel [64]. Therefore, the target parameter to tune is the acceptable 

standing/persistent queue delay. Both in CoDel and FQ-CoDel, the minimum local queue 

delay is measured and compared with the value of the acceptable queue delay given as a 

target. To ensure that the minimum value does not become stale, the delay is measured 

within the most recent interval and, typically, the target delay is 5% of that interval. In 

this way, when the queue delay exceeds the target, a packet is dropped and a control law 

sets the next drop time. When the queue delay goes below target, the controller stops 

dropping [62]. 

To show the influence of changing the target parameter in both RTT and throughput 

metrics, we conducted some preliminary experiments by implementing a topology like 

the one depicted in Figure 3.1. In the emulation scenario, the edge router on the left (R1) 

performs the AQM control and has 20 hosts, i.e. hosts B, connected to it. On the other 

side, 20 hosts connect to the right edge router (R2): these are hosts A. There are also a 

pair of monitor hosts, and one of them actively logs the measured RTT (mRTT) and 
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throughput by means of sending probe packets to the other one. Note that for this 

experiment we consider a propagation delay of 20 ms and a bandwidth of 200 Mbps 

between hosts B and R1. Conversely, there is no propagation delay from R1 to R2 and, to 

emulate the path bottleneck, the link between the two routers has a bandwidth of 20 

Mbps. The links between R2 and the hosts A have a bandwidth of 100 Mbps and no 

propagation delay. In addition, all hosts are ECN-enabled and each pair of hosts AB 

generates TCP traffic, mainly in direction A. In this work, we conduct our 

experimentation only with CUBIC, the default TCP congestion control in Linux. 

 

 

 

(a)   

 

 

 

 

 

(b) 

 

 

 

Figure 3.2. Effects of varying the target parameter in CoDel and FQ-CoDel algorithms 

on: a) Averaged mRTT. b) Averaged throughput. 
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The experiment consists of modifying the target and interval parameters of CoDel and 

FQ-CoDel in R1, while data are constantly and simultaneously transferred from the hosts 

B to hosts A. Therefore, we set CoDel and FQ-CoDel in R1 with target values from 50 μs 

to 6 ms and intervals from 1 ms to 120 ms, respectively. We left the other parameters as 

default, except the hard limit on the queue size, which we set to 1000 packets. This a 

configurable parameter set by the system administrator and the assumption of this value 

is based on the fact that small buffer sizes in backbone routers are sufficient for many 

networks and recommended for overall scalability  [80], [81]. In addition, we were able 

to determine that the assumed hard limit was enough for all the queues of our emulation 

setting, i.e. there was no overflows at any buffer. 

Figure 3.2 shows the resulting average mRTT and throughput for both queue disciplines 

in this experiment. Note that Figure 3.2a has two different scales for the y-axis, since the 

mRTT is significantly longer for CoDel. As can be seen, although the target parameter of 

these AQM algorithms is meant to operate unchangeably, there is a noticeable effect 

when the target parameter varies. The lower the target queue delay, the more dropped 

packets, since not all packets can be ECN-marked when the router experiences 

congestion. Consequently, RTT is low and throughput is high when low target delay is 

configured, Figure 3.2b. In other words, as the target parameter increases, the AQM 

mechanism produces more ECN-marked packets and drops less.  This is consistent with 

our solution formulation explained in Section 3.2.2. 

3.3.2. Transferring the Predictor Model 

As an initial training and test for our congestion predictor, we use the data from a 

backbone Internet link of an ISP collected by the Center for Applied Internet Data 

Analysis (CAIDA). The CAIDA’s monitors collect packet headers at large peering points 

and a wide variety of research projects has used its anonymized traces [82]. Specifically, 

we use the data from the collection monitor that is connected to an OC192 backbone link 

(9953 Mbps) of a Tier 1 ISP, between New York, US, and Sao Paulo, Brazil.  We use this 

dataset as valid data for an edge router, according to previous works cited at CAIDA’s 

website, in which those data have been used similarly. In particular, we chose to analyze 

the data from December 20, 2018. 
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Figure 3.3. Actual and predicted congestion obtained after: a) Pre-training over 100 

epochs, using the CAIDA’s dataset and time intervals of 100 ms. b) Re-training in one 

epoch, based on network emulation data in time intervals of 1 ms. 

We perform the pre-training for the congestion predictor with data containing ECE-

marked packets sent from New York to Sao Paulo, as we found that there are more ECE-

marked packets in direction B than in direction A. According to the assumptions 

explained in Section 3.2.1, we use the trace data in the ten-minute period with the highest 

number of ECE-marked packets that are not part of the ECN negotiation, that is from 

8:00 to 8:10 EST. The traces show that, in this period, there were 402 different source 

IPv4 addresses sending ECE-marked packets to 315 destination hosts. We split the 

dataset into a training subset, corresponding to 80% of samples, and a test subset with 

20% of samples. After 100 epochs of training, we test the model by making predictions 
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with samples from the normalized subsets. We obtain a Root Mean Squared Error 

(RMSE) score of 0.08 and a Mean Absolute Error (MAE) score of 0.04 for the test 

subset. Similarly, we get an RMSE of 0.07 and a MAE of 0.03 for the training subset.  

Figure 3.3 shows the actual normalized number of ECE-marked packets arriving at the 

router in direction B and the prediction over the test subset. As can be seen, the white 

spaces in the graph mean consecutive time intervals with no congestion, i.e. no ECE-

marked packets at the router. On the other hand, the transients depict the time intervals in 

which congestion was experienced. Note that the levels of congestion correspond to the 

number of ECE-marked packets that arrive within an interval. In this way, we model the 

predictor to estimate whether there will be a significant level of congestion describing a 

transient in the number of ECE packets within the next time interval. Figure 3.3a 

illustrates how the resulting prediction captures the intervals when the levels of 

congestion ahead show those transients. 

Hence, we use the pre-trained LSTM model to accelerate the congestion estimation in our 

method. As the network conditions change, our method updates the predictor by re-

training it with new data. However, this re-training process is much faster, as the LSTM 

updates in just one epoch, which takes about four seconds in our emulation environment. 

To see how the pre-trained congestion predictor behaves in a new environment, we run 

an experiment with the topology described in Section 3.3.1. Moreover, to stress the 

network and make it more stochastic, we set random values of bandwidth and 

propagation delays on the links between hosts and routers. Likewise, each host B starts its 

transmission at a random time.  The link bandwidth between R1 and R2 is the only non-

random value fixed at 10 Mbps. Also, FQ-CoDel is the AQM method in this experiment 

with its default target delay and interval values, which are 5 ms and 100 ms, respectively. 

In relation to the re-train process, we update the model with data gathered in six seconds. 

The rational behind this assumption is that network traffic changes very fast and so does 

its data. This situation can produce a model drift, which means that the relationship 

between the target variable and the input variables changes with time. Due to this drift, 

the model may become unstable and start making erroneous predictions over time [83]. It 
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is then evident that a model drift might happen more often in our scenario than in other 

non-networking environments.  

Consequently, as we designed the congestion predictor for 6000 intervals (see Section 

3.2.1), we need to reduce the value of each time interval for the updates. Then, in this 

case, we re-train the LSTM with data in time intervals of 1 ms. After one update, the 

obtained values of RMSE are 0.09 and 0.13 for training and test subsets, respectively. In 

the same way, the resulting values of MAE are 0.04 for training and 0.06 for test. These 

scores show that our model can make predictions in the new network with a significant 

approximation and without the need for training the model from scratch. Figure 3.3b 

depicts the congestion prediction results in the described network. Note that we scale by 

two times the graph corresponding to the prediction, i.e. the blue plot, for clarity of the 

comparison. Again, rather than the exact number of ECE-marked packets, we want to 

predict the transients of congestion level ahead. 

3.3.3. Performance Evaluation of the Intelligent AQM 

In this subsection we elaborate more about the experiments that we conducted to show 

the job of our proposed method as a whole. In Section 3.2.2, we briefly described how the 

congestion predictor integrates with the AQM parameter tuner. We evaluate the MDP for 

this problem considering 100 levels of congestion as current or next states. The observed 

congestion corresponds to the current state and the predicted congestion is the next state. 

To determine their levels, we keep the maximum observed and predicted values as 

reference for the discretization. We also delimit the actions to 100 values, which in this 

case are the target delay of CoDel and FQ-CoDel. In this way, the possible actions are a 

set of values from 50 μs to 5 ms in steps of 50 μs. As we explained in Section 3.3.1, we 

modify two parameters at the same time: the target delay and the interval. Thus, the 

experiments are more consistent, as these two parameters are tightly related. Again, the 

hard limit buffer size is set to 1000 packets and the TCP congestion control is CUBIC. 

The starting values for the target and the interval parameters are the default ones in the 

Linux kernel: 5 ms and 100 ms, respectively. For this evaluation, R1 performs the 

intelligent AQM while R2 needs only to be configured as ECN-enabled or as a regular 

router that does not wipe CE-marked IP packets. 
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Figure 3.4. Cumulative power of the connection measured during the experiments in the 

emulation environment. The intelligent method is applied to CoDel and FQ-CoDel. All 

schemes utilize ECN 

Figure 3.4 shows the results comparison when our intelligent method is applied to CoDel 

and FQ-CoDel, in terms of the cumulative power function. Note that these AQM schemes 

have static target parameters set to their default values when no intelligence is 

dynamically adapting them. As any other RL-based solution, the basic idea is to have an 

agent, i.e. the edge router in our problem, making decisions and getting feedback from 

the environment to calculate the rewards. To achieve so, we constantly capture the ECE-

marked packets arriving at the router in direction B. Every second, the agent predicts the 

congestion of the rest-of-path in direction A. As the agent does not know what action to 

take at the beginning, there is an initial stage of exploration, which depends on the 

parameter 𝜀𝜀. The value of this parameter determines if the Q-learning algorithm prefers to 

explore rather than exploit the historical data. In our experiments, we set 𝜀𝜀 = 0.5 so that 

the algorithm does not explore too greedily. After taking an action, either by randomly 

exploring or by extracting Q-values, the monitoring hosts measure the mRTT and 

throughput with active probes. We use these measures to calculate the power of the 

connection, which is our reward function. Once the rewards are known, the algorithm 

updates the Q-values by applying (3.3). Instead of updating the Q-values iteratively with 

a matrix containing predefined rewards, we train the model in an online manner by 
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getting the feedback from the network. This could have the disadvantage of a poor 

behavior at the beginning, but the results show that the tuning improves over the time. 

We also point out that we implemented fixed values for the rest of the parameters of the 

Q-learning algorithm during the experiment, that is  𝛾𝛾 = 0.8 and 𝛼𝛼 = 0.5.  

Table 3.1. Buffer occupancy comparison 

 Intelligent AQM 
Non-Intelligent 

AQM 

 Average Maximum Average Maximum 

FQ-

CoDel 
1.60 % 2.70 % 2.09 % 2.80 % 

CoDel 0.91 % 2.30 % 1.58 % 2.90 % 

 

Another point to consider is the performance of our method in terms of the buffer 

occupancy at the router. Based on the statistics obtained from the Linux Traffic Control 

utility, we compare the percentage of buffer occupancy for each experiment in Table 3.1. 

Note that we take into account the set hard limit buffer size for the percentage 

calculation. In other words, the buffer occupancy would be 100% if the queue had 1000 

packets at a specific instant. As can be seen, the buffer occupancy is lower when R1 

employs our intelligent AQM, thanks to the balance between dropped/marked packets 

that the algorithm achieves over the time. Finally, we want to mention that the Python 

code of the experiments described in this subsection is publicly available at [84]. We 

intent to make our contribution accessible to researchers and developers who are actively 

working on congestion-related problems of the Internet.  Please cite this work if you use 

any posted script for your own works. 
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3.4. Summary 

As more end devices are getting connected, the Internet will become more congested. 

Various congestion control techniques have been developed either on transport or 

network layers. Active Queue Management (AQM) is a paradigm that aims to mitigate 

the congestion on the network layer through active buffer control to avoid overflow. 

However, finding the right parameters for an AQM scheme is challenging, due to the 

complexity and dynamics of the networks. On the other hand, the Explicit Congestion 

Notification (ECN) mechanism is a solution that makes visible incipient congestion on 

the network layer to the transport layer. In this work, we propose to exploit the ECN 

information to improve AQM algorithms by applying Machine Learning techniques. Our 

intelligent method uses an artificial neural network to predict congestion and an AQM 

parameter tuner based on reinforcement learning. The evaluation results show that our 

solution can enhance the performance of deployed AQM, using the existing TCP 

congestion control mechanisms. 
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Chapter 4  

4. Federated Intelligence for Inter-Domain Congestion 

 

4.1. Motivation 

Communication over the Internet relies on data packet transmission across a selected 

network path, while involved over the complex interconnected network elements. To 

achieve this, different network elements of the Internet, e.g. routers, usually first place the 

received data packets in queues, where they wait their turn to be transmitted over the next 

determined link. When there are too many queued packets awaiting transmission, the 

buffers of the network element’s interface may overflow and the involved link is said to 

be congested. Therefore, determining the proper buffer size is deemed as a key 

component to evade packet losses along network paths when congestion appears. While a 

large buffer could reduce packet losses, excessive buffering could lead to increased 

latency, as packets have to wait longer in the queues. This phenomenon is known as 

bufferbloat and causes poor performance at bottleneck links of today’s Internet [60]. This 

effect can be tackled by the network elements through Active Queue Management 

(AQM) methods, which are designed to control the flow of the arriving packets and avoid 

network congestion. To achieve so, AQM schemes determine whether there is incipient 

congestion on the involved link and choose either dropping specific packets or marking 

them with “experienced congestion” labels. The main advantage of dropping packets with 

AQM rather than with tail-drop queues, i.e. non-AQM buffers, is to eliminate the 

unnecessary global synchronization of flows when a queue overflows. In this way, an 

AQM scheme can decide to drop packets when the network experiences incipient 

congestion in a controlled fashion. As a result, packets experience shorter delays, as their 

flows are regulated by the AQM mechanism in use, and the throughput is improved. 

Despite the advantages of AQM, it is not widely adopted on the network elements of the 

Internet Service Providers (ISPs), since the AQM mechanisms have parameters that 

might be difficult to tune in dynamic environments. Also, network elements with more 
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memory available in the market have created the misconception that the larger the 

buffers, the better. 

Accordingly, we proposed an intelligent method for implementing AQM in our previous 

work [85] by exploiting the standardized Explicit Congestion Notification (ECN): a 

process of making incipient congestion visible by exposing the presence of congestion on 

a path to network and transport layers through codepoints and flags in both IP and TCP 

headers. Our goal was to boost the alleviation performance that AQM techniques provide 

at bottlenecks by dynamically adjusting the AQM parameters and considering the 

specific network conditions. Therefore, we introduced a Machine Learning-based 

solution that comprises a Recurrent Neural Network to predict congestion and an AQM 

parameter tuner based on the Q-learning algorithm. The proposed scheme, however, was 

delimited to scenarios where only one router performs the intelligent AQM process 

(IAQM). For instance, a setting where an edge router predicts the congestion ahead, 

based on the ECN feedback that it receives from the core network, and then tunes its 

AQM parameters. As a result, the IAQM scheme dynamically reduces the Round-Trip 

Time (RTT) and increases the throughput of the connections being handled by the edge 

router. 

In this work, we address the problem of congestion control by significantly enhancing 

existing AQM methods and taking into account the routers involved in inter-domain 

communications. This problem turns out to be even more challenging than a single-

domain communication scenario, as each border router may not be able to receive ECN 

feedback in order to predict the congestion ahead. Additionally, a kind of cooperative 

mechanism is needed to achieve an effective Machine Learning solution where the 

privacy is paramount: an inter-domain link involves routers at several organizations or 

geographical regions, which means the possibility of having one or more domains not 

willing to share their data. That is why these domains are also known as Autonomous 

Systems (ASes), which consist of ISPs or Content Providers (CPs) communicating each 

other through an Internet Exchange Point (IXP), as depicted in Figure 4.1. 
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Figure 4.1. Example of an inter-domain communication scenario. 

Managing congestion is an essential factor for an IXP and its connecting ASes. However, 

despite experiencing significant and persistent congestion at multiple peering links, both 

ASes and IXPs have no primary means of controlling congestion. That is, as the traffic 

sources and destinations are beyond its domain, a border router or an IXP cannot rely on 

the traditional congestion notification mechanisms such as ECN [86]. On the other hand, 

understanding the performance of the network elements requires measuring several 

parameters, such as utilization, loss rates, and variation in latency. Operators that control 

IXPs could measure such parameters for their links, although accurate assessment of 

these parameters may require cooperation of the operator at the other end of the links 

[87]. Moreover, the operators do not usually share this kind of information with their 

counterparts.  For these reasons, we propose to apply the Federated Learning (FL) 

paradigm to intelligently address the inter-domain congestion problem. 

FL is an approach where multiple entities collaborate in solving a Machine Learning 

problem, under the coordination of a central server or service provider [88]. To achieve 

the learning objective, each entity participates without exchanging private raw data, 

which are stored locally. The original emphasis of FL was on cross-device settings, i.e. 

mobile and edge devices applications [89], but FL has been applied to an increasing 

number of scenarios where a few and relatively reliable entities, such as the data centers 

of several organizations, collaborate to train a model [90], [91]. These kinds of scenarios 
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are known as cross-silo settings. The main difference between the cross-device and cross-

silo settings is that, in the former, a very large number of devices participate in the 

learning and their participation is likely to occur once in a task. On the other hand, in 

cross-silo settings only a small number of elements (typically, 2 to 100) contribute to the 

learning process by training a model on siloed data. In both cases, the data are generated 

locally and remain decentralized. At the same time, a central entity orchestrates the 

training process and receives the contributions of all entities. These characteristics make 

FL conceptually different from the decentralized and distributed learning approaches. A 

more detailed comparison of the FL settings versus the distributed and peer-to-peer 

learning can be found in [88]. It is also important to highlight that, different from many 

Machine Learning approaches, in FL the data are usually considered as unbalanced and 

not independently or identically distributed (non-i.i.d.) because each entity has different 

amount of local data to train on and these data rely on particular entities’ behaviours [89]. 

Furthermore, depending on the distribution characteristics of the data, FL can be 

categorized as horizontal or vertical. In horizontal FL scenarios, the local datasets have 

the same feature space, but may have different sample ID space. In contrast, vertical FL 

refers to those cases where the datasets have the same sample ID space, but dissimilar 

feature space [92]–[94]. 

Accordingly, in this work we propose an intelligent scheme for AQM where the inter-

domain congestion is predicted based on the horizontal FL approach. That is why we 

introduce our solution as the Federated Intelligence for AQM (FIAQM), whose key 

contributions are summarized as follows: 

• A proof-of-concept study on non-static AQM. We demonstrate how the idea of 

dynamically tuning AQM parameters may boost the adoption of AQM 

mechanisms to mitigate the Internet’s bufferbloat effect. 

• An intelligent congestion control framework that is compatible with other 

solutions. Our proposed FIAQM leverages the benefits of using existing AQM 

mechanisms to control congestion over inter-domain links, which are not 

managed by a single party. 
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• A multi-domain learning approach in which local network data remains private. 

As in inter-domain scenarios privacy is a major concern, FIAQM allows the 

cooperation of two or more ASes to achieve common goals in terms of congestion 

by avoiding the sharing of raw data. 

• A practical application of Deep Learning and FL in networking. We propose an 

adaptation of the FL algorithm that, along with a tailored neural network, 

effectively learns congestion levels of the link queues involved in cross-domain 

connections. 

• An open-source environment for real-time evaluation. Finally, we evaluate the 

performance and feasibility of the FIAQM scheme in a setting that emulates a 

realistic inter-domain network communication, whose code is publicly available 

for further research and development. 

Overall, a typical scenario for FIAQM comprises two border routers, which belong to 

different ASes, and an IXP. Each border router has intra-domain link buffers 

corresponding to the interfaces that connect them to other network elements within their 

own domains, as depicted in Figure 4.2. Both border routers exchange the aggregated 

parameters of the model to be trained with a central server, known as the Learning 

Orchestrator in our solution. We propose to place the Learning Orchestrator at the IXP 

premises, since it is supposed to be a neutral player. In this way, FIAQM applies FL to 

predict the IXP congestion based on the buffer statistics of the intra-domain links of the 

border routers involved (denominated as the Local Learners). The predicted IXP 

congestion is then used for the AQM parameter tuning of the inter-domain link buffers, 

similar to the tuning process introduced in [85]. 

The remainder of this chapter is organized as follows. We review the related work on 

inter-domain congestion in Section 4.2. In Section 4.3, we provide further details about 

the FIAQM architecture, whose evaluation performance results are discussed in Section 

4.5. On the other hand, we explain the details of our experimentation design in Section 

4.4. 
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Figure 4.2. Typical scenario for the proposed FIAQM scheme. 

 

4.2. Related Work 

The inter-domain congestion control problem has been addressed from different 

perspectives. One common approach is to tackle the routing bottlenecks. These 

bottlenecks are inevitably caused by the Border Gateway Protocol (BGP), since the 

border routers tend to forward packets along the path with minimal routing cost. As a 

result,  routing bottlenecks concentrate on a few links and happen to be asymmetrical, i.e. 

the inbound congestion does not correspond to the outbound one on the same link [95]. 

Therefore, the solutions for routing bottlenecks proposed in the literature mainly rely on 

dynamic load balancing, which can operate either on inter-domain or intra-domain links. 

To this end, authors in [96] present a system to improve the ISPs network throughput by 

jointly optimizing intra-domain routes and inter-domain routes. Their solution provides 

an ISP and its neighbor CPs with a network abstraction on a virtual switch that allows to 

program requirements in a collaborative way. Conversely, an architecture for an efficient 

inbound traffic control based on the Software Defined Networking (SDN) paradigm is 

proposed in [97]. This architecture exploits the features of the OpenFlow protocol for 

network traffic engineering tasks in inter-domain routing. Similarly, Chiesa et al. 

describe the benefits of using the SDN approach for traffic engineering at IXPs. The 
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authors explain how SDN enables such a network programmability that permits the 

members of an IXP to optimize their traffic load balancing and overcome the limitations 

of BGP [86]. Considering the privacy preservation in SDN-enabled scenarios for inter-

domain traffic, authors in [98] propose a solution to avoid incorrect forwarding 

behaviours without exposing private routing information among domains. Likewise, [99] 

presents a mechanism for a dynamic end-to-end Quality of Service (QoS) coordination in 

multi-domain scenarios. This mechanism processes information in a distributed manner 

at the domain level and optimizes the routing by adaptively learning the results of past 

QoS requests. 

It is important to highlight that a routing bottleneck is essentially different from a 

bandwidth bottleneck. The latter refers to the link with the smallest available bandwidth 

on a route, while the former is related to the number of routes carried by a link regardless 

the provisioned link capacity [100]. Even though they do not necessarily imply each 

other, routing bottlenecks can derive in bandwidth bottlenecks, which are the ones that 

ultimately cause the congestion that affects the networks’ communication performance. 

For this reason, we address the inter-domain congestion problem with a focus on the 

bandwidth bottlenecks. This does not mean that our method cannot be used along with 

some of the described solutions for routing bottlenecks. Nevertheless, how to combine 

both approaches is beyond the scope of this work. 

With regards to our learning setting based on buffer statistics, there is some literature 

about the use of queue measurements for congestion control improvement. For instance, 

authors in [101] propose a fine-grained queue measurement solution in the data plane for 

immediate control actions, which can support the deployment of new and more 

sophisticated AQM schemes. Using In‐band Network Telemetry (INT) and traffic 

snapshots (fixed-sized time windows of traffic on a queue), their solution can determine 

the flows that consume large portions of a queue. Similarly, Li et al. propose a High 

Precision Congestion Control mechanism, which leverages the INT metadata reported by 

the routers along the path [102]. The metadata includes egress port metrics such as 

timestamp, queue length, transmitted bytes, and link bandwidth capacity to avoid 

congestion in high-speed networks. Although we acknowledge the value of the INT 
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framework and its metadata, we consider not using INT in this work because it aims to 

monitor the performance of a core network within a single domain. However, we believe 

that the application of the INT metrics for the solution of an inter-domain problem, like 

the one presented in this chapter, could be a promising direction for a future work. 

 

4.3. Architecture of FIAQM 

In this section, we describe our solution in detail. Primarily, FIAQM consists of two 

principal modules: a congestion predictor and an AQM parameter tuner, like the IAQM 

solution presented in [85]. In FIAQM, however, the congestion ahead is predicted by 

means of the FL approach. This prediction is then utilized for the AQM parameter tuning 

of the inter-domain link buffers in both directions. Figure 4.3 depicts the overall 

architecture of FIAQM and the following subsections explain each component, 

respectively. 

Figure 4.3. The FIAQM architecture for inter-domain congestion control. Main modules 

are replicated within each border router. 

 

Border Router Domain 1 Border Router Domain 2

IXP
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4.3.1. Federated Congestion Predictor 

The first of the main components of the FIAQM architecture is a congestion predictor 

based on a Long Short-Term Memory (LSTM). An LSTM is a type of Recurrent Neural 

Network and deemed as an effective tool for time-series forecast. Its inputs include both 

the current sample and the previous observed sample, such that output at time step 𝑡𝑡 − 1 

affects the output at time step 𝑡𝑡. Each neuron of the LSTM has a feedback loop that 

returns the current output as an input for the next step [74]. For these reasons, FIAQM 

employs an LSTM to predict congestion in a federated manner by considering drop rates 

at each queue per time interval as inputs.  Hence, the drop rate 𝑥𝑥 in a time interval 𝑖𝑖 is 

calculated as follows: 

𝑥𝑥𝑃𝑃𝑖𝑖 =
𝐷𝐷𝑃𝑃𝑖𝑖
𝑃𝑃𝑃𝑃𝑖𝑖

            

where 𝐷𝐷 is the number or dropped packets and 𝑃𝑃 the total packets arriving at the queue 

within each time interval. Additionally, we rearrange the vector of drop rates as an input 

matrix 𝐗𝐗 corresponding to ten time steps and an output vector 𝐲𝐲 of one time step, as 

shown in ( 3.1). 

The rationale behind rearranging the samples in ten time steps is to improve the 

performance of the predictive model by having additional context. In this way, the 

estimation of drop rates contemplates more prior observations. Note that this data 

rearrangement is performed with the available samples of each queue participating in the 

FL training. 

Figure 4.4. LSTM network structure for the FIAQM’s congestion predictor. 

Lineartanh

Dropout 
20%

Dropout 
20%

tanh tanh

( 4.1) 
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The structure of the LSTM is similar to the one described in [85] and encompasses 𝐿𝐿 = 3 

hidden layers with 30 neurons each. The output layer employs a linear activation function 

while the hyperbolic tangent (tanh) is used as the non-linear activation function at the 

hidden layers, since it provides a three-state decision making (negative/neutral/positive) 

on what information to add or remove to/from the hidden cells [103].  Also, a dropout 

regularization of 20% is included at the output of each hidden layer, except the last one, 

in order to avoid model’s overfitting, as shown in Figure 4.4. More specifically, each 

hidden layer 𝑙𝑙 ∈ [0, 𝐿𝐿) of the LSTM network computes the following function for each 

element in the input sequence [104]: 

 

 

where ℎ𝑃𝑃
(𝑃𝑃) is the hidden state at time 𝑡𝑡,  𝑊𝑊𝑖𝑖ℎ

(𝑃𝑃) and 𝑏𝑏𝑖𝑖ℎ
(𝑃𝑃) represent the weight and bias of the 

block input at layer 𝑙𝑙, and 𝑊𝑊ℎℎ
(𝑃𝑃) and 𝑏𝑏ℎℎ

(𝑃𝑃) are the weight and bias values of the hidden 

cells. Correspondingly, ℎ𝑃𝑃−1
(𝑃𝑃)  is the hidden state of the layer at time 𝑡𝑡 − 1 and the input of 

the 𝑙𝑙-th layer,  𝑥𝑥𝑃𝑃
(𝑃𝑃), is the hidden state of the previous layer ℎ𝑃𝑃

(𝑃𝑃−1) multiplied by the 

dropout of the previous layer, 𝛿𝛿𝑃𝑃
(𝑃𝑃−1) = 0.2. Conversely, each output in the sequence is 

computed at the output layer through a linear function, as follows: 

where 𝑊𝑊𝑜𝑜 and 𝑏𝑏𝑜𝑜 are the weights and bias of the output layer, respectively, and ℎ𝑃𝑃
(𝐿𝐿−1) is 

the state of the last hidden layer. The formulation of the LSTM presented above focuses 

on the activation functions for the hidden layers and the output layer to explain their 

relationship with the time steps. A more detailed formulation regarding the rest of the 

components of the LSTM architecture can be found in [105]. 

The Learning Orchestrator performs the global training of the LSTM model, which is 

used for the congestion prediction of the inter-domain link in each direction. In this way, 

the proposed LSTM-aided Federated Congestion Predictor (FCP) functions as follows: 

ℎ𝑃𝑃
(𝑃𝑃) = tanh�𝑊𝑊ih

(𝑃𝑃)𝑥𝑥𝑃𝑃
(𝑃𝑃) + 𝑏𝑏ih

(𝑃𝑃) + 𝑊𝑊hh
(𝑃𝑃)ℎ𝑃𝑃−1

(𝑃𝑃) + 𝑏𝑏hh
(𝑃𝑃)�      

𝑦𝑦𝑃𝑃 = 𝑊𝑊𝑜𝑜�ℎ𝑃𝑃
(𝐿𝐿−1)+𝑏𝑏𝑜𝑜� 

( 4.2) 

( 4.3) 
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each router has a fixed local dataset that differs from the other router’s dataset, since they 

might have different number of intra-domain links with dissimilar levels of queue drop 

rates. At the beginning of each learning round, the Learning Orchestrator sends the 

current global model state to the routers, also known as the Local Learners in our 

solution. Next, each router performs a local computation based on the global state and its 

local dataset and, afterwards, sends an update to the orchestrator. Finally, the Learning 

Orchestrator applies the updates received from the Local Learners to its global state and 

the learning process repeats. 

Due to the nature of our problem, we employ a cross-silo FL since individual routers or 

group of routers might belong to different proprietary networks. Our learning model is 

intended to be trained across these silos without exchanging raw data, which may 

represent ASes private information or a single organization’s data that cannot be 

centralized between different geographical regions. Additionally, we consider the routers 

data as unbalanced and non-i.i.d., as well as the synchronous model updates that proceed 

in rounds of communication, as presented in [89]. The canonical FL problem involves 

learning a single, global statistical model from data stored on remote entities. For our 

problem, we aim to learn this model under the constraint that border routers data are 

stored and processed locally, with only intermediate updates being periodically 

communicated to the Learning Orchestrator. In particular, the goal is to minimize the 

objective function for the global learning [94], as follows: 

min
𝑤𝑤

𝐹𝐹(𝑤𝑤) ≔�𝑝𝑝𝑘𝑘𝐹𝐹𝑘𝑘(𝑤𝑤)
𝑀𝑀

𝑘𝑘=1

 

 

where 𝑤𝑤 represents the model parameters, i.e. the weight and bias values of the hidden 

and output layers of the LSTM network.  In our scenario, 𝑀𝑀 is total number of queues 

involved in the congestion prediction process and 𝑝𝑝𝑘𝑘 is the relative impact of each queue. 

On the other hand, 𝐹𝐹𝑘𝑘 is the local objective function for the learning on the 𝑘𝑘 queue, as 

follows: 

( 4.4) 
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𝐹𝐹𝑘𝑘 =
1
𝑛𝑛𝑘𝑘

� 𝑓𝑓𝑗𝑗𝑘𝑘(𝑤𝑤; 𝑥𝑥𝑗𝑗𝑘𝑘 ,𝑦𝑦𝑗𝑗𝑘𝑘)
𝑛𝑛𝑘𝑘

𝑗𝑗𝑘𝑘=1

 

where 𝑛𝑛𝑘𝑘 is the number of samples available locally.  

 

 

 

 

 

 

 

 

 

 

 

 

 

To solve this federated optimization problem, we adapt the Federated Averaging 

(FedAvg) algorithm presented in [89]. Accordingly, the algorithm combines a local 

stochastic gradient descent computed with the data of each queue at each border router 

  1:  𝑞𝑞 ← set of queues with non-zero drop rate data 

  2:  for each round 𝑟𝑟 = 1, 2, 3, … , Γ do 

  3:     𝑢𝑢 ← random subset, 𝑢𝑢 ∈ 𝑞𝑞 

  4:     for each queue 𝑘𝑘 = 1, 2, … ,𝑀𝑀 ∈ 𝑢𝑢 in parallel do 

  5:         get 𝑤𝑤 from Learning Orchestrator 

  6:         𝑤𝑤𝑘𝑘 ← 𝑤𝑤 

  7:         𝑑𝑑𝑘𝑘 ← count 𝑛𝑛𝑘𝑘 ∀ 𝑥𝑥𝑗𝑗𝑘𝑘 ≠ 0 

  8:         for each local training iteration 𝑧𝑧 = 1, 2, 3, … ,𝑍𝑍 do 

  9:             𝑤𝑤𝑘𝑘 ← 𝑤𝑤𝑘𝑘 − 𝜂𝜂∇𝐹𝐹𝑘𝑘 

10:         return 𝑤𝑤𝑘𝑘 and 𝑑𝑑𝑘𝑘 to Learning Orchestrator 

11:     𝑝𝑝𝑘𝑘 ←  𝑑𝑑𝑘𝑘 ∑ 𝑑𝑑𝑘𝑘,𝑀𝑀
𝑘𝑘=1⁄  ∀ 𝑘𝑘  

12:     𝑤𝑤𝑃𝑃+1 ← ∑ 𝑝𝑝𝑘𝑘𝑤𝑤𝑘𝑘𝑀𝑀
𝑘𝑘=1  

Algorithm 4.1. Federated Congestion Predictor (FCP) 

( 4.5) 
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and a model averaging performed by the Learning Orchestrator. The adaptation of the 

FedAvg algorithm for our proposed FCP is detailed in Algorithm 4.1, where 𝜂𝜂 is the 

learning rate, which is assumed to be the same for all the Local Learners. It is important 

to highlight that 𝑑𝑑𝑘𝑘 contains the number of data samples with non-zero values. The 

rationale behind this idea is that queues with higher drop rates affect the parameter 

averaging with higher values of relative impact 𝑝𝑝𝑘𝑘. In this way, the federated LSTM 

model learns more from those queues with non-zero drop rates for the congestion 

prediction. On the contrary, the queues with a few or zero samples of congestion data 

make a little or no contribution to the learning process. 

  

4.3.2.  AQM Parameter Tuner 

In general, the parameters of the AQM algorithms are set to values that yield a reasonable 

performance for the typical network conditions. However, AQM mechanisms are 

expected to allow parameters adjustment depending on the specific characteristics of a 

network and their interactions with other network tasks over time [77]. Consequently, we 

embrace the idea of adjusting the AQM parameters according to the network’s changing 

circumstances, so that the performance is dynamically improved, as well. Nevertheless, 

the achievement of this goal can end up in a very complex job and that is the main reason 

why network managers prefer not to use AQM at all. Another point to consider is the 

right metric to evaluate the effectiveness of a resource allocation/configuration in a 

network. The key metrics to be considered for queue management are, usually, 

throughput and delay. Accordingly, the objective is to minimize the delay and maximize 

the throughput. It turns out that, trying to increase the throughput by allowing as many 

packets into the links as possible, results in a rising length of the queues and, therefore, 

longer delays. As an alternative, a separate metric that combines throughput and delay 

can be taken into account. That is why the ratio of throughput, 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃, to measured RTT, 

𝑚𝑚RTT, has been proposed by network designers as a metric to evaluate the effectiveness 

of a resource configuration, such as the AQM parameters. This throughput-to-delay ratio 

is also known as the power of the connection, 𝑃𝑃𝑐𝑐 =  𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 𝑚𝑚RTT⁄ , and, even though this 
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metric has some limitations, it is widely accepted for evaluating the network resource 

configuration effectiveness [106], especially the queue management for congestion 

control [107]. Maximizing 𝑃𝑃𝑐𝑐 is, however, a non-trivial task considering the network 

dynamics. 

For the reasons explained above, we model the AQM parameter-tuning problem as a 

Markov Decision Process (MDP). In the FIAQM scheme, the decision process is based 

on the inferred congestion ahead, i.e. the output of the FCP described in Section 4.3.1. In 

this way, we define the states 𝑆𝑆 as a set of discrete levels of congestion that the inter-

domain link will be likely to experience, the set of actions 𝐴𝐴 comprises specific values of 

the target parameter of the AQM algorithm in use, and the reward 𝑅𝑅 depends on 𝑃𝑃𝑐𝑐. In 

our scenario, each border router acts as the agent that makes the decisions. This way, our 

method can adjust the target parameter so that more packets are dropped proactively and 

in a controlled manner at the sending border router, as they will be likely dropped ahead 

in the other domain. In other words, the AQM parameter tuner is modelled as an MDP 

with the objective of finding an optimal behavior that maximizes 𝑃𝑃𝑐𝑐. To do so, we utilize 

the Q-learning algorithm [79], which defines the function 𝑄𝑄(𝑆𝑆,𝐴𝐴), representing the 

quality of a certain action in a given state, and that is defined by ( 3.3) 

This equation characterizes the maximum future reward of present state 𝑠𝑠 and action 𝑎𝑎 in 

terms of immediate reward and maximum future reward for the next state �̅�𝑠 and action 𝑎𝑎�. 

In this manner, the Q-learning algorithm iteratively approximates the function 𝑄𝑄(𝑆𝑆,𝐴𝐴), as 

shown in Algorithm 4.2. More specifically, our AQM parameter tuner observes current 

and next states as levels of congestion, i.e. the predicted drop rates of the link buffer at 

the router in the destination domain. Additionally, both current and next states are 

discretized to delimit the complexity of the environment. Finally, the actions are a set of 

predefined values for the target parameter of the specific AQM in use. As the agent does 

not know what action to take at the beginning, there is an initial stage of exploration, 

which depends on the parameter 𝜀𝜀. The value of this parameter determines if the Q-

learning algorithm prefers to explore random actions rather than exploit the historical 

data to take an action. 
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  1:  𝑆𝑆 ← set of discretized values of predicted congestion 

1:  S ← set of discretized values of predicted congestion 

2:  𝐴𝐴 ← set of AQM target parameter values 

  3:  𝑄𝑄(𝑆𝑆,𝐴𝐴) ← Q-table initialization 

  4:  𝜀𝜀 ← exploration/exploitation rate, 𝜀𝜀 ∈ [0,1] 

  5:  𝑠𝑠 ← get state from FCP, 𝑠𝑠 ∈ 𝑆𝑆 

  6:  for each period 𝑇𝑇 = 1, 2, 3, … do 

  7:      if random number < 𝜀𝜀  

  8:          then 𝑎𝑎 ← select a random action, 𝑎𝑎 ∈ 𝐴𝐴 

  9:          else 𝑎𝑎 ← argmax𝑎𝑎𝑄𝑄(𝑠𝑠,𝐴𝐴) 

10:      change parameters according to 𝑎𝑎 

11:      𝑚𝑚RTT ← measure delay 

12:      𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 ← measure throughput 

13:      𝑅𝑅 ←  𝑃𝑃𝑐𝑐  

14:      �̅�𝑠 ← get state from FCP, �̅�𝑠 ∈ 𝑆𝑆 

15:      update 𝑄𝑄(𝑆𝑆,𝐴𝐴) 

16:      𝑠𝑠 ← �̅�𝑠 
 

 

 

 

 

 

 

 

 

Algorithm 4.2. AQM Tuner 
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4.4. Experimentation Design  

In order to evaluate our FIAQM scheme, we set up a network emulation environment on 

Mininet to run experiments and obtain more realistic results. We chose Mininet as the 

tool to validate our prototype since it allows a flexible SDN environment with high 

degree of confidence for real-time tests [108]. Moreover, Mininet eases the sharing of our 

solution, which could be deployed into a real production network using our code and test 

scripts, publicly available at [109]. Accordingly, our emulation network consists of two 

border routers and 20 hosts connected to each one, forming a dumbbell topology. In this 

way, there are 20 pairs of hosts generating traffic from one domain to the other (hosts of 

each pair are in different domains). Figure 4.5 depicts the implementation of our 

experimentation setting. Note that for simplicity, only one direction of the learning 

process for the congestion prediction is depicted, that is, considering traffic from Domain 

2 to Domain 1. Therefore, the IAQM tuning happens at the egress buffer of the Border 

Router Domain 2 in this setting. 

Figure 4.5. Implementation of the FIAQM for experimentation. 
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With respect to the FCP implementation, our environment involves three Mininet hosts 

acting as the Learning Orchestrator and two Local Learners, the latter being represented 

by the processor block at each border router. Additionally, PyTorch is employed on these 

hosts for the execution of the learning process as described in Algorithm 4.2. We chose 

PyTorch as the framework for the implementation of our FCP algorithm because it 

provides a high level of control and flexibility, which we weigh as a key feature for our 

network emulation. Moreover, PyTorch’s usability and developer-centric design 

facilitates the implementation of new Deep Learning architectures, using the familiar 

concepts developed for general purpose programming languages such as Python [110]. 

This is particularly relevant for the application of the FL approach, since it needs to be 

deployed in a distributed manner when implementing real-world setups. We see this fact 

as a significant advantage of PyTorch over other Deep Learning frameworks like 

TensorFlow. For example, we employed TensorFlow Federated (TFF) for the fulfilment 

of the FL version of the LSTM model proposed in [85]. We were able to confirm that 

TFF only enables the simulation of FL models with decentralized datasets, as stated in 

[111], but not an actual distributed deployment. For these reasons, we decided to utilize 

PyTorch as the Deep Learning framework for the validation of our FIAQM scheme. 

In relation to the traffic generation between the host pairs for the queue metrics, we use 

the NetPerf tool [112], which allows to stress the network under a combination of several 

types of IP traffic. Furthermore, we perform tests according to the Real-time Response 

Under Load (RRUL) Specification to emulate a more core-network-like IP traffic. In fact, 

RRUL-based tests reliably saturate the measured link and, therefore, exposes any 

presence of the bufferbloat effect. To this end, the RRUL specification contemplates 

simultaneous bidirectional TCP and UDP streams, VoIP-like streams, multiple up/down 

TCP streams to shorten the ramp-up-to-saturation period, running traffic long enough to 

defeat bursty bandwidth optimizations, and test server(s) within 80 ms of testing client(s) 

[113]. Next, the emulator collects the buffer statistics in intervals of 100 ms using the 

Linux Traffic Control (TC), since this utility lets monitor the queue events generated by 

the kernel [114]. The value of the time interval corresponds to the typical assumption for 

a single RTT interval in IP networks. 
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Subsequently, we use set both the intra-domain and the inter-domain link buffers to a 

relatively small hard limit of 1000 packets. This assumption is based on the fact that 

small buffer sizes in backbone routers are sufficient for many networks and 

recommended for overall scalability  [80], [81]. Additionally, all the intra-domain link 

buffers are configured with AQM. More specifically, we consider the Flow Queue - 

Controlling Queue Delay (FQ-CoDel) whose target parameter to configure is the 

acceptable minimum standing/persistent queue delay [34]. As this parameter decreases, 

more packets are dropped in a controlled manner, since they are supposed to stay for 

shorter times in the queue. Consequently, there are less packets in the queue and the link 

delay decreases. On the other hand, when the FQ-CoDel target parameter is high, the 

scheme does not drop packets and there is a higher delay due to longer queues. Also, 

packets start to be dropped uncontrollably as the queue overflows and, therefore, the 

throughput is deteriorated. 

As a preliminary experiment, we show that the drop rate data of the queues at the Border 

Router Domain 1 describe dissimilar patterns, as depicted in Figure 4.6a. Therefore, the 

traffic data generated by the RRUL test and gathered with the TC utility exhibits the kind 

of non-i.i.d. behaviour necessary for the FL model of the FCP. For the sake of clarity, we 

depict the drop rate data corresponding to ten queues only, but similar graphs are 

obtained when more queues are considered. On the other hand, to show the influence of 

tuning FQ-CoDel, we set up a simple test that consists of modifying its target and interval 

parameters at the egress buffer of the Border Router Domain 2 while data are constantly 

transferred between two hosts, each one in a different domain. The interval parameter 

ensures that the measured minimum delay does not become too old and, typically, the 

target delay is 5% of this interval [64]. Therefore, we set FQ-CoDel with target values 

from 1 ms to 6 ms and intervals from 20 ms to 120 ms, respectively. As can be seen in 

Figure 4.6b, although an AQM scheme such as FQ-CoDel is meant to operate 

unchangeably, there is a noticeable effect when its target parameter varies: both 𝑚𝑚𝑅𝑅𝑇𝑇𝑇𝑇 

and 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 are affected by the target delay configuration. This is consistent with our 

solution formulation explained in Section 4.3.2. 
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Figure 4.6. Preliminary tests for the Experimentation Design. a) Queues data at Border 

Router Domain 1. b) Effects of tuning FQ-CoDel target parameter on 𝒎𝒎𝐑𝐑𝐑𝐑𝐑𝐑 and 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻. 

For the parameters exchange between the Learning Orchestrator and the Local Learners, 

we use the Secure File Transfer Protocol (SFTP), which runs over the Secure Shell (SSH) 

protocol, to avoid sending the parameters in the clear. SFTP protects the data integrity 

through cryptographic hash functions and provides authentication for both the server and 

the client [115]. In this way, we also consider security concerns in a real inter-domain 

scenario by adding encryption functionality to the communication between the parties 

involved in the FCP. Additionally, we assume that the pair of private and public keys 
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have been shared prior to the execution of the Algorithm 4.1 and that a different port 

from the default SSH port, i.e. port 22, is agreed for the transfer.  

Table 4.1. Model parameters to be transferred for the FCP. 

Parameter Description 
Tensor 

Dimension 

𝑊𝑊ih
(0) Weights of block input, hidden layer 0 120×1 

𝑏𝑏ih
(0) Bias of block input, hidden layer 0 120 

𝑊𝑊hh
(0) Weights of hidden cells, hidden layer 0 120×30 

𝑏𝑏hh
(0) Bias of hidden cells, hidden layer 0 120 

𝑊𝑊ih
(1) Weights of block input, hidden layer 1 120×30 

𝑏𝑏ih
(1) Bias of block input, hidden layer 1 120 

𝑊𝑊hh
(1) Weights of hidden cells, hidden layer 1 120×30 

𝑏𝑏hh
(1) Bias of hidden cells, hidden layer 1 120 

𝑊𝑊ih
(2) Weights of block input, hidden layer 2 120×30 

𝑏𝑏ih
(2) Bias of block input, hidden layer 2 120 

𝑊𝑊hh
(2) Weights of hidden cells, hidden layer 2 120×30 

𝑏𝑏hh
(2) Bias of hidden cells, hidden layer 2 120 

𝑊𝑊o Weights of output layer 1×30 

𝑏𝑏o Bias of output layer 1 
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The use of SFTP is sufficient for the needs of our experimentation, since 𝑤𝑤𝑘𝑘 are 

transferred as a Python dictionary with the parameters of the FCP model. The size of this 

dictionary is 77.8 kB and it contains the PyTorch tensors with the weight and bias values, 

whose dimensions are specified in Table 4.1. On the other hand, 𝑑𝑑𝑘𝑘 is a Python list with 

𝑢𝑢 elements. For private and secure transfer of high-dimensional parameter vectors in a FL 

setting, which is not the case of this work, we point the reader to other research papers 

such as [116], [117]. It is also important to highlight that, although the FIAQM is tested 

in a distributed setting, the FCP algorithm is synchronously executed between the 

Learning Orchestrator and the Local Learners. This means that our experimentation 

design considers the coordination of the learning algorithm execution along with the 

transfer of the parameter files. 

4.5. FIAQM performance evaluation 

To evaluate our FIAQM scheme, we first demonstrate how the FCP algorithm predicts 

congestion accurately as a stand-alone entity. Next, we illustrate how the FCP integrates 

with the AQM parameter tuner to attain the objective of reducing congestion and 

improving the performance of an inter-domain connection. 

 

4.5.1. FCP algorithm predictions accuracy 

The experiments of this subsection are conducted in an offline setting with data 

previously gathered during the preliminary tests described in Section 4.4. Hence, we 

count on 21 datasets: one from the IXP queue, corresponding to the link between the IXP 

switch and Border Router Doman 1, and 20 from the queues of the intra-domain links of 

the aforementioned router. Subsequently, we train the FPC with η=0.001 and u=2, which 

means that two queues of the router are randomly selected to average the model 

parameters in each round. Also, the number of training rounds are set to Γ=10 and the 

local iterations to Z=1000. To make predictions, we utilize the data from the IXP queue 

as the set of test samples. Figure 4.7 shows how the predicted congestion of the FPC 

model, trained with the queue data of Border Router Domain 1, resembles the actual 

congestion of the IXP’s queue. Note that, rather than predicting the exact value of drop 
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rate in a particular time interval, we are more interested in capturing the tendency of that 

value. Hence, the predictions are accurate enough for our goal. In terms of the loss 

metric, we chose the Mean Square Error (MSE), which yields a value of 0.002 over the 

test subset. 

Figure 4.7.  Actual congestion of the IXP queue and predicted congestion by the FCP. 

 

On the other hand, we compare the loss obtained when the congestion predictor is trained 

in a federated fashion and in a centralized manner. As this comparison requires more 

exhaustive tests, we change the emulation parameters Γ and 𝑍𝑍 to 50 and 2000, 

respectively. We also run a separate centralized model that is trained with data from the 

IXP’s queue.   As can be seen in Figure 4.8, FCP gets lower cumulative loss than the 

LSTM model of the centralized congestion predictor. What is interesting about this result 

is that both federated and centralized models are evaluated by making predictions over a 

test subset from the IXP’s queue. That is, the FCP outperforms the centralized congestion 

predictor, even though the test data is a subset of the dataset used for the centralized 

model training. This result is consistent with those presented in [89]. 
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Figure 4.8. Evaluation loss comparison between a centralized congestion predictor and 

the FCP algorithm. 

In contrast, the time complexity of the FedAvg algorithm can be expressed in terms of the 

total training rounds, Γ, local epochs, 𝐸𝐸, and the number of local samples, 𝑛𝑛𝑘𝑘, as 𝒪𝒪(Γ ×

𝐸𝐸 × max𝑘𝑘(𝑛𝑛𝑘𝑘)). This means that the time taken for the FL training depends on the 

slowest participant in each round, also known as stragglers, because of the number of 

local updates that those participants need to execute [118]. In our proposed FCP 

algorithm, we reduce this complexity by considering that all the participants have the 

same number of local samples, that is 𝑁𝑁 = 𝑛𝑛𝑘𝑘. It is important to highlight that this is a 

realistic consideration, since the traffic in core networks is very high and the routers’ 

queues are likely to expose congestion frequently. In this way, the local epochs and local 

batches of the FedAvg algorithm are converted into 𝑍𝑍 local training iterations in FCP 

(step 8, Algorithm 4.1), which correspond to 𝑛𝑛𝑘𝑘. In other words, different from the 

FedAvg algorithm, in the FCP algorithm every participant happens to have the same 

number of local updates (or local training iterations, 𝑍𝑍), which yields a time complexity 

of 𝒪𝒪(Γ × 𝑁𝑁). Nevertheless, we show that Γ ≪ 𝑁𝑁 is generally the case for our problem 

scenario. 

To this end, we set various target loss values in order to determine how many rounds of 

training the FCP needs to reach those targets. Thus, four benchmarks are defined based 
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on the cumulative loss over 2000 predictions as targets. In this experiment, the number of 

local iterations is 𝑍𝑍 = 2000, as well. Similar to the evaluation test explained previously, 

the predictions are made considering a test subset from the IXP’s queue. We then 

compare the number of training rounds needed by the FPC algorithm against an LSTM 

trained in a centralized host, Figure 4.9. It is important to point out that, for the sake of 

the comparison, the term training rounds means the equivalent of training iterations for 

the centralized predictor. As this predictor acts alone, there is no real rounds of training. 

As can be seen, the FCP algorithm requires less rounds during the training process to 

attain the desired loss on the test data. This result shows that, although there is an 

overhead in the congestion predictor training of the FIAQM, the proposed algorithm 

compensates this overhead by enabling a lighter training process in terms of the rounds 

needed. Moreover, this outcome evidences that the complexity of the FCP algorithm is 

heavily influenced by the number of samples used for the training process, 𝑁𝑁, rather than 

Γ. 

Figure 4.9.  Number of training rounds needed to reach the target loss by a centralized 

congestion predictor and the FCP algorithm. 
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4.5.2. Real-time AQM tuning with FIAQM 

In this subsection, we elaborate about the experiments that we conducted in real time to 

show the performance of our proposed method as a whole, that is, the FIAQM’s main 

components working together. To this end, we carry out several experiments in the 

emulation setting described in Section 4.4.  The network emulation parameters for this 

evaluation are summarized in Table 4.2. We assess the MDP for the AQM tuning 

problem by considering 100 levels of congestion as current or next states. To determine 

their levels, we keep the maximum observed and predicted values as reference for the 

discretization. We also delimit the actions to 100 values, which are the target delay of 

FQ-CoDel. In this way, the possible actions to take are a set of values from 1.1 ms to 11 

ms in steps of 100 μs. As we explained in Section 4.3.2, we modify two parameters at the 

same time: the target delay and the interval. Thus, the experiments are more consistent as 

these two parameters are tightly related. For this assessment, the Border Router Domain 2 

performs the IAQM while the Border Router Domain 1 is configured with the default 

target and the interval parameters in the Linux kernel: 5 ms and 100 ms, respectively. 

Table 4.2. Emulation parameters for the evaluation of the FIAQM scheme in real time 

Network Emulation Parameter Value 

Border Router Domain 1 - IXP link bandwidth 1 Gbps 

Border Router Domain 2 - IXP link bandwidth 1 Gbps 

Intra-domain links bandwidth Random integer, [250, 500) Mbps 

Border Router Domain 1 - IXP link delay 2 ms 

Border Router Domain 2 - IXP link delay 2 ms 

Intra-domain links delay Random integer, [2, 10) ms 

Number of hosts per domain 20 

Buffers hard limit (all queues) 1000 packets 
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AQM mechanism (all queues) FQ-CoDel 

Intra-domain links AQM target (static) 2 ms  

Intra-domain links AQM interval (static) 40 ms  

Period of AQM parameters tuning, T 2 s 

Emulation time 600 s 

 

In terms of the FIAQM execution, the FCP runs in the background while the AQM tuner 

performs its job in an online manner. To achieve so, the Q-values are updated iteratively 

every 2 seconds based on both the predicted level of congestion ahead and 𝑃𝑃𝑐𝑐, which is 

calculated from the 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 and 𝑚𝑚RTT values that two monitoring hosts, one in each domain, 

measure with active probes. Once the reward based on 𝑃𝑃𝑐𝑐 is known, the algorithm updates 

the Q-values by applying ( 3.3). 

On the other hand, the FCP utilizes pre-trained model parameters while the first training 

round is completed. Thus, the FCP predictions during this time are accurate enough for 

the AQM tuner. Additionally, 100 samples of the IXP’s queue data are considered for the 

predictions, which means the historical levels of congestion in the past 10 seconds. Those 

predictions are transferred from the Learning Orchestrator to the Local Learner 

asynchronously, in form of a NumPy array of dimension 100 × 1 and 928 B in size. This 

array corresponds to the global drop rate estimate of the other domain, DREst, as depicted 

in Figure 4.5. In this way, the AQM tuner takes into account the most recent available 

values of DREst, even if the FCP is still processing a new training round. 

Accordingly, Figure 4.10 shows the results of the real-time network emulation in 600 s. 

Note that, for the comparison sake, we set the FIAQM’s tuner to start operating at 150 s 

of the emulation. Then, the AQM parameters of Border Router Domain 2 are fixed to the 

default values during the first 150 s and, from this time on, the IAQM tunes these 

parameters according to Algorithm 4.2. 
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Figure 4.10. Improvement over time provided by FIAQM in terms of congestion 

reduction and 𝑷𝑷𝑷𝑷 growth. AQM tuning starts at 150 s. 

As can be seen, the drop rate ahead at the Border Router Domain 1, which corresponds to 

the DREst values forecasted by the FCP, decreases significantly once the FIAQM starts 

the tuning process. Conversely, 𝑃𝑃𝑐𝑐 tends to get higher values as the AQM tuner improves 

over time. As a result, the tuning process populates the Q-table with the values of 𝑃𝑃𝑐𝑐 in 

the respective (𝑠𝑠, 𝑎𝑎) coordinates at every iteration of Algorithm 4.2. We highlight that, 

thanks to the way that we design the AQM tuner, the resulting Q-table is a light NumPy 

array of 100 × 100 elements and 39.1 kB in size. 

Finally, Table 4.3 summarizes the hyperparameters of both modules of the FIAQM 

scheme utilized for its evaluation in the real-time emulation. It is also important to point 

out that, although we designed our experimentation setting to make it as realistic as 

possible, Mininet has some limitations regarding the links bandwidth of the emulated 

network elements. In actual backbone networks, link data rates are of the order of tens or 

hundreds of Gbps. However, Mininet emulations are constrained by the data rate of the 

computer’s network interface where Mininet is running and the number of emulated 

network interfaces. This means that, in order to achieve results that resemble real-world 

networks, this data rate capacity must be considered for all the links in the emulation 

environment. Nevertheless, the emulation parameters can be easily scaled when running 
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our setting on other computers, actual SDNs, or even Linux-based bare metal routers 

[119]. Last but not least, we would like to remind the reader that the code of the 

experiments described in this subsection is publicly available at [109]. We intent to make 

our contribution accessible to researchers and developers who are actively working on 

congestion-related problems of the Internet.  Please cite this work if you use any posted 

script for your own works. 

 

Table 4.3. Hyperparameters of the FIAQM’S learning modules. 

Module Hyperparameter Value 

FCP 

LSTM hidden layers, 𝐿𝐿 3 

Cells per LSTM hidden layer 30 

LSTM dropout regularization, 𝛿𝛿 0.2 

Learning rate, 𝜂𝜂 0.001 

Subsets of non-zero queues, 𝑢𝑢 2 

Local training iterations, 𝑍𝑍 1000 

Training rounds (maximum), Γ 10 

AQM Tuner 

Learning rate, 𝛼𝛼 0.5 

Discount factor, 𝛾𝛾 0.8 

Exploration/exploitation rate, 𝜀𝜀 0.5 
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4.6. Summary  

Active Queue Management (AQM) has been considered as a paradigm for the 

complicated network management task of mitigating congestion by controlling buffer of 

network link queues. However, finding the right parameters for an AQM scheme is very 

challenging due to the dynamics of the IP networks. In addition, this problem becomes 

even more complex in inter-domain scenarios where several organizations interconnect 

each other with the limitation of not sharing raw and private data. As a result, existing 

AQM schemes have not been widely employed despite their advantages. Therefore, we 

present a solution that tackles the challenges of tuning the AQM parameters for inter-

domain congestion control scenarios where the network management goes beyond an 

organization’s domain. We then introduce the Federated Intelligence for AQM (FIAQM) 

architecture, which enhances the existing AQM schemes by leveraging the Federated 

Learning approach. The proposed FIAQM framework is capable of dynamically 

adjusting the AQM parameters in a multi-domain setting, which is hard to achieve with 

the conventional AQM solutions working alone. To this end, FIAQM uses an artificial 

neural network, trained in a federated manner, to predict beyond-own-domain congestion 

and an intelligent AQM parameter tuner. The evaluation results show that FIAQM can 

effectively improve the performance of the inter-domain connections by reducing the 

congestion on their links while preserving the network data private within each 

participating domain. 
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Chapter 5  

5. Efficient Network Telemetry based on Traffic Awareness 

 

5.1. Motivation 

With the advancement of Software-Defined Networks (SDN) paradigm and the 

development of its programmable data plane (PDP) technologies, the network telemetry 

(NT) notion has emerged differing from the traditional network measurement schemes, as 

it comprises an automated process for remotely gathering and processing network data 

[120]. Moreover, traditional network monitoring technologies usually rely on active 

probes that are protocol-specific, such as Internet Control Message Protocol (ICMP) and 

Simple Network Management Protocol (SNMP) packets, or passive methods of 

measurements, which are based only on observations of undisturbed and unmodified 

packet streams of interest [121]. That is why NT is then deemed as a suitable answer to 

the challenges that the traditional network measurement technologies face in terms of 

adequate network visibility with better scalability, accuracy, and coverage, as well as 

hardware and protocol independencies. 

The study of how to get high-quality network measurement data at low cost is important, 

since NT produces massive data in real network environments. The main goal of any NT 

scheme is to generate and collect measurement data locally at network nodes, depending 

on different service requirements, and transmit those data to a centralized controller for 

enabling an optimal network management. Therefore, an efficient telemetry deployment 

strategy is needed to compensate for the network performance loss due to the impact of 

gathering and transmitting the telemetry data itself. Networks’ failures and performance 

problems can have a variety of causes, which requires different types of information to 

diagnose. That is why the ideal telemetry scenario contemplates the gathering of all the 

fine-grained data at a fine time scale. However, this means a high cost in terms of 

communication overhead. On the other hand, network managers need to get the telemetry 

information in a timely manner to quickly identify, isolate, and fix performance problems 
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in order to minimize the impact on users and organization’s revenue. Yet, it is difficult to 

measure many flows and packets with constrained resources at the network elements, 

which focus more on control functions such as packet forwarding. Since NT not only 

processes all the packets but also stores information about the packets, NT sometimes 

requires even more resources than the control functions do. 

Today’s NT practices follow a bottom-up approach, i.e. network managers collect data 

from network elements, aggregate it in a centralized collector, and extract the information 

they need. This approach poses several problems like having too many data to process. 

For this reason, a new approach is needed, one that provides network managers with 

abstractions of the metrics they are interested in [122]. Based on those interests, the 

granularity of the measurements should be different allowing to minimize the overhead 

produced by the telemetry data’s transmission. In this way, different levels of 

measurement accuracy can also be obtained considering the network resources’ 

limitations. Nevertheless, the task of matching network managers’ desires with specific 

telemetry granularities might be challenging due to the network’s changing conditions. 

Moreover, NT applications only care about the telemetry data, instead of how to obtain 

those data. Then, a sort of telemetry tasks orchestration should be used in order to 

achieve efficient tasks distribution and telemetry data acquisition. In addition to upper-

level monitoring applications, the orchestration of NT tasks should consider real-time and 

changing network flows. Nevertheless, how to achieve high-quality network 

measurement at low cost according to the existing network status is a key issue of NT 

that needs further research and development [120]. 

We then propose to address the problem of efficiently gathering NT data through a 

modular framework that is independent of the NT scheme in use. The core of our solution 

is Machine Learning-based NT Controller, which autonomously decides the granularity 

of the measurements to be transmitted. This decision is made taking into account network 

managers’ needs and the traffic that a network element is experiencing. To achieve so, we 

consider an anomaly detection mechanism, which aims to discover unexpected events in 
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the traffic data. In this way, several types of traffic are identified and the telemetry data 

are selectively transmitted based on those traffic types. 

Accordingly, our proposed mechanism utilizes a classifier to detect anomalous 

behaviours in the traffic that a network element is forwarding. The classification model 

considers the traffic characteristics that common cyberattacks expose, so that the flows 

are segmented in different types (including benevolent traffic) based on those 

characteristics. Thus, our design aims to classify the network traffic anomalies and, 

according to this segmentation, decides the level of granularity of the telemetry data that 

a network element should transmit. Our rationale behind this proposal is that malicious 

traffic patterns can be exploited to determine the frequency in which NT data should be 

sent. In other words, when normal patterns of flows are detected, there is no need for a 

very fine granularity in the NT data gathering. In this way, for example, the queue 

occupancy measurements are not to be transmitted very frequently unless malicious 

traffic is negatively affecting the network elements’ buffers.  In fact, this kind of 

approach has been researched in the literature. For instance, authors in [123] study the 

behaviour of some network performance metrics, such as the buffer occupancy, as a 

consequence of malevolent traffic produced by attacks like Denial of Service (DoS), 

Distributed Denial of Service (DDoS), and SYN/TCP flooding (a type of DoS/DDoS 

flood attack using the TCP protocol). Therefore, we aim to take advantage of such a 

relationship between the traffic patterns that typical cyberattacks pose and the metrics 

that an NT mechanism usually collects and transmits. 

For the reasons explained above, we denote our solution as Traffic-Aware Network 

Telemetry, or TANT for short. A general overview of the TANT solution is shown in 

Figure 5.1. As can be seen, the main components of the system at the network elements 

are a traffic flows classifier and the NT controller, which operates according to the 

telemetry standard in use. The NT controller determines the granularity of the telemetry 

data to be transmitted depending on the outcomes of the local traffic classifier. In 

summary, the main contributions of this work are: 
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• A flexible framework to achieve efficient NT that can be adapted to a variety of 

NT schemes regardless their way of operation (in-band or out-of-band). 

• The design of a lightweight traffic classifier that does not consider the classical 5-

tuple (protocol type, source IP address and port, and destination address and port) 

to identify different types of traffic.  

• A methodology to evaluate and implement inference acceleration of ML 

algorithms making predictions in real-time scenarios, such as the NT use case 

presented in this work. 

Figure 5.1. TANT system overview. Each network element comprises a traffic classifier 

and an NT controller, which transmits the NT data to the NT engine. 

It is important to point out that, although the TANT framework could be applied in 

networking setups, such as Wide Area Networks (WAN) and Internet Service Providers 

(ISPs) networks, its application would be more representative in networks delimited by 

the local management of a single organization, like enterprises or campuses networks. 

Also, the implementation of the TANT framework and the utilization of its NT data to 

tackle inter-domain scenarios’ problems, like the one presented in [12], needs further 

research that is out of the scope of this work. 
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5.2. Related Work 

The challenges that NT poses have been addressed by the research community, in both 

academic and industry settings, with diverse approaches that generally fell in one of these 

two main categories: in-band telemetry and out-of-band telemetry.  In-band telemetry 

refers to the case when the NT data transmission usually shares the same link, path, or 

packet with the users’ data whereas the transportation of out-of-band telemetry data does 

not [120]. The in-band telemetry solutions reviewed in this subsection are related to the 

In-band Network Telemetry (INT) Dataplane Specification [124]. This specification 

defines the monitoring system as a system that collects telemetry data sent from different 

network elements. The components of the monitoring system may be physically 

distributed but logically centralized. Additionally, with INT the original data packets are 

monitored and may be modified to carry INT instructions and INT metadata (telemetry 

data). It is important to highlight that there are other in-band telemetry specifications 

different from the INT standard. For this reason, we make the distinction between these 

two terms. 

Existing NT systems usually trade off expressiveness (accuracy of the measurements) for 

scalability (amounts of the telemetry data collected), or vice versa. That is why most of 

the INT-based schemes aim to reduce the telemetry data transportation overhead and, at 

the same time, try to avoid losing too much measurement accuracy. Accordingly, authors 

in [125] present a sampling-based INT mechanism, in which the source node inserts INT 

headers into the packets at a configurable rate to reduce the overhead. To compensate for 

the accuracy, their solution also supports a sampling based on events, in which metadata 

is inserted only when the latency difference between the last hop and the current hop 

exceeds a predefined threshold. Similarly, Chowdhury et al. propose a lightweight INT-

based scheme to reduce the overhead by trying to estimate the amount of error that can be 

introduced at the INT collector if the requested telemetry data are not piggybacked on the 

current packet [126]. For estimating this error, a predictor function based on 

Exponentially Weighted Moving Average is used for each telemetry data item of interest. 

By encoding the requested data on multiple packets, authors in [127] introduce a 

probabilistic INT method that bounds the per-packet overhead as low as one bit. The 
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solution supports several aggregation operations that allow efficient encoding of the 

aggregated data onto packets: per-packet aggregation, static per-flow aggregation, and 

dynamic per-flow aggregation. Conversely, Wang et al. introduce a bandwidth-efficient 

INT system by tracking the rules matched by the packets of a flow in a previous period 

[128]. Their proposed solution assigns globally unique IDs to every rules and stores rule-

changed INT reports in a database server so that the rate of generated INT reports is 

reduced. In contrast, [129] considers the overhead not only at the data plane, but also at 

the control and management planes while employing INT. The authors model the INT 

Orchestration as an optimization problem and propose two heuristic algorithms to 

produce feasible solutions in polynomial computational time with respect to the network 

size and number of flows. From [129], we  find interesting the idea of taking into account 

the three SDN planes to reduce the INT overhead in an orchestrated manner. Finally, Kim 

et al. present a selective INT scheme where an algorithm adjusts the insertion ratio of 

packets to be monitored according to the frequency of significant changes in network 

data [130]. 

What all the solutions reviewed above have in common is the goal to make NT efficient 

in terms of the usage of the network resources, such as bandwidth and network elements’ 

computational limitations. However, those schemes delimit their applicability to the INT 

specification, as the per-packet NT data overhead is assumed as the main issue to solve. 

Although INT is becoming the mainstream telemetry standard, we advocate for a more 

generalized framework that can also be applied to other in-bound telemetry mechanisms 

or even out-of-band ones. On the other hand, [125] and [130] are the schemes that relates 

the most to our proposed framework in terms of the adjustment of the NT data granularity 

(or rate) to reduce overhead. 

 

5.3. TANT Traffic Classifier 

The traffic classification process involves the identification of both normal and different 

types of abnormal traffic flows. We then design the traffic classifier of our solution using 

the CICIDS2018 dataset as a benchmark [131]. This and other datasets from the 
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Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick have 

been widely used by researchers worldwide to evaluate their network traffic-related 

methods, such as Internet traffic classification. The CICIDS2018 dataset contains benign 

and common attacks, which resembles true real-world network data. It also includes the 

results of the network traffic analysis with labeled flows based on the time stamp, source 

and destination IP addresses, source and destination ports, and protocols. The dataset was 

generated with realistic background traffic to profile the abstract behavior of human 

interactions and includes benign traffic. The final dataset was gathered from different 

attack scenarios whose attacking infrastructure considers 50 machines and the victim 

organization has 420 hosts and 30 servers. More than 80 statistical features are extracted 

from the network traffic in forward and backward directions, as described in [131]. 

Therefore, the traffic classifier considers multiple classes, including benign traffic and the 

malicious traffic described by these attacks: DoS-Hulk, DoS-SlowHTTP, DDoS-HOIC, 

DDoS-LOIC, FTP-BruteForce, and SSH-BruteForce. We chose these attacks because 

they are the most representative classes in the CICIDS2018 dataset and encompass both 

TCP and UDP flows. A description of these attacks and the methodology used to obtain 

their traffic data can be found in [132]. After merging and cleaning the data subsets 

corresponding to the chosen attacks, the final dataset ended up containing 4,723,155 

samples. For the training and test of the traffic classifier, the final dataset is split into 70% 

and 30%, respectively. 

On the other hand, one of our goals is to design a lightweight and protocol-independent 

scheme to identify network traffic. To achieve so, we first perform an explainable feature 

engineering process. As we are interested in controlling the granularity of the NT, there is 

an initial feature selection that considers all time-related features, 27 in total, which are 

based on traffic flows’ metrics (see Table 5.1). It is important to highlight that, in the 

context of this work, we consider a traffic flow according to the IETF’s RFC 7011, 

Specification of the IP Flow Information Export (IPFIX): “A Flow is defined as a set of 

packets or frames passing an Observation Point in the network during a certain time 

interval. All packets belonging to a particular Flow have a set of common properties.” 

[133]. Those common properties include the packet header fields, i.e. the 5-tuple of 
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source IP address, destination IP address, source port, destination port, and protocol type. 

Similarly, we point out that the data used for our analysis and proposed solution 

correspond to the RFC 7011’s definition of Flow Records, which contain measured 

properties of the flows at the Observation Point. In this way, the features of the input data 

for the traffic classifier are based on the Flow Records but not on the flows’ common 

properties themselves, such as the 5-tuple. 

Table 5.1. Time-related traffic features 

Feature Description 

Active Max Maximum time a flow was active before becoming idle 

Active Mean Mean time a flow was active before becoming idle 

Active Min Minimum time a flow was active before becoming idle 

Active Std 
Standard deviation time a flow was active before becoming 

idle 

Bwd IAT Max 
Maximum time between two packets sent in the backward 

direction 

Bwd IAT Mean 
Mean time between two packets sent in the backward 

direction 

Bwd IAT Min 
Minimum time between two packets sent in the backward 

direction 

Bwd IAT Std 
Standard deviation time between two packets sent in the 

backward direction 

Bwd IAT Total 
Total time between two packets sent in the backward 

direction 

Bwd Packets/s Number of backward packets per second 
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Flow Byte/s Number of flow bytes per second 

Flow duration Duration of the flow in microseconds 

Flow IAT Max Maximum time between two packets sent in the flow 

Flow IAT Mean Mean time between two packets sent in the flow 

Flow IAT Min Minimum time between two packets sent in the flow 

Flow IAT Std Standard deviation time between two packets sent in the flow 

Flow Packets/s Number of flow packets per second 

Fwd IAT Max 
Maximum time between two packets sent in the forward 

direction 

Fwd IAT Mean Mean time between two packets sent in the forward direction 

Fwd IAT Min 
Minimum time between two packets sent in the forward 

direction 

Fwd IAT Std 
Standard deviation time between two packets sent in the 

forward direction 

Fwd IAT Total    Total time between two packets sent in the forward direction 

Fwd Packets/s Number of forward packets per second 

Idle Max Maximum time a flow was idle before becoming active 

Idle Mean Mean time a flow was idle before becoming active 

Idle Min Minimum time a flow was idle before becoming active 

Idle Std 
Standard deviation time a flow was idle before becoming 

active 
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As a next step in the feature engineering process, we normalized the values of the 

preselected features and perform a correlation analysis of them. Intuitively, one can 

suppose that several time-related features described in Table 5.1 are strongly correlated. 

For example, some of the forward-direction metrics should have a significant correlation 

with their backward-direction counterparts, the majority of the traffic data correspond to 

TCP flows. For this reason, we perform another feature selection using the Pearson 

correlation coefficients. These coefficients are a statistical measure of the linear 

dependency between two vectors, which are assumed to be normally distributed and to 

contain 𝑛𝑛 elements each [134]. Thus, the Pearson correlation coefficients are calculated 

as follows: 

𝑟𝑟(𝑥𝑥1, 𝑥𝑥2) =  
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where 𝑥𝑥1 and 𝑥𝑥2 are the vectors of the two features being analyzed, �̅�𝑥1 and �̅�𝑥2 the mean 

values of those feature vectors, respectively, and 𝑥𝑥𝑗𝑗
(𝑖𝑖) refers to the value of the instance 𝑖𝑖 

from feature 𝑗𝑗. For each coefficient, 𝑟𝑟(𝑥𝑥1, 𝑥𝑥2) ∈ [−1, 1]  and a positive number close to 1 

means that an increase or decrease in the values of 𝑥𝑥1 is met with the same trend, increase 

or decrease, in the values of 𝑥𝑥2. Accordingly, we discard one of the features whose values 

have a correlation greater than 0.9 with another feature. The resulting 14 features and 

their coefficients after carrying out the correlation analysis are shown in Figure 5.2. 

( 5.1) 
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Figure 5.2. Correlation matrix of the selected features based on the Pearson coefficients. 

For the traffic flows classifier, we consider the following classification techniques, which 

are deemed by ML researchers and practitioners as efficient methods for multi-class 

problems: Logistic Regression with Stochastic Gradient Descent training (LR-SGD), 

linear Support Vector Machines with Stochastic Gradient Descent training (SVM-SGD), 

Random Forest (RF), Extra Trees (ET), Light Gradient Boosting Machine (LightGBM), 

and Extreme Gradient Boosting (XGBoost). In order to compare the outcomes of these 

methods, we use the F1-score as the statistical measure of the classification quality, 

defined by the harmonic mean of the precision and the recall [135], as follows: 

𝐹𝐹1 = 2
𝑃𝑃 ∙ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 ( 5.2) 
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where the recall, 𝑅𝑅, represents the ratio between the number of correct positive results 

and the number of all relevant samples, and the precision, 𝑃𝑃, is the relation between the 

number of correct positive results and the number of positive results. Figure 5.3 shows 

the comparison of the F1-scores of the abovementioned classifiers before and after 

performing the feature selection based on the Pearson correlation analysis. 

Figure 5.3. Classifiers’ scores comparison before and after first feature selection. 

As can be seen, the accuracy of the LightGBM, ET, and XGBoost classifiers are slightly 

lower when almost half of the features (14 out of 27) are used. In contrast, although faster 

in training, LR-SGD and linear SVM-SGD algorithms are outperformed by the other 

three in both cases. It is important to highlight that we are more interested in the 

inference times, rather than the training times, as our goal is to come up with a 

lightweight traffic classifier to efficiently make predictions in real time. That is why we 

are not comparing the training times that the algorithms take, however, the inference 

times will be compared in the performance evaluation of the proposed solution. For the 

classifier design, we intent to engineer a method that employs a reduced number of 

features without sacrificing the accuracy too much, so that its complexity is lowered, 

especially when inferencing traffic anomalies for the NT control process. 

As a further step, we complete another feature extraction based on the importance 

analysis, which helps identify what the most informative features are during the 
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classification process. In this way, we could reduce even more the number of features 

needed for the inference, if the accuracy is not significantly degraded. We explore this 

possibility by calculating the Permutation Feature Importance (PFI): a model inspection 

technique and especially useful for non-linear classifiers. This technique is model 

agnostic and breaks the relationship between the feature and the target. The PFI for a 

feature 𝑥𝑥𝑗𝑗 is defined as the average increase in prediction loss, ℒ, when the feature is 

permuted in training or test dataset [136], as follows: 

𝑃𝑃𝐹𝐹𝑃𝑃𝑗𝑗 =
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where 𝑓𝑓�𝑥𝑥(𝑖𝑖)� and 𝑦𝑦(𝑖𝑖) refer to the model predictions and the targets, respectively , 𝑥𝑥�𝑗𝑗
𝑚𝑚(𝑖𝑖) 

is a permutation of 𝑥𝑥𝑗𝑗, 𝑀𝑀 is the number of repeated permutations, and 𝑥𝑥�̃�𝚥 refers to the 

complementary feature space. Figure 5.4 shows the PFI coefficients calculated for the 

classification algorithm with the highest F1-score, i.e. XGBoost, over the test subset 

(meaning 𝑛𝑛 = 1,416,947) and with 𝑀𝑀 = 15. As can be seen, the first nine features in 

importance contribute to over 95% of the classification process. 

Figure 5.4. Feature ranking based on PFI calculation. 

(5.3) 
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Finally, we test the LightGBM, ET, and XGBoost classifiers only with the top nine 

features selected from the PFI analysis. The new F1-scores are compared with the 

previous ones in Table 5.2, which reveals that the changes in the classification accuracy 

are minuscule, especially for the LightGBM and XGBoost algorithms. This explainable 

feature space reduction allows the traffic identification process to be less complex and, as 

a result, to achieve shorter inference times for the NT control mechanism at each network 

element. The inference performance will be evaluated and discussed in the next 

subsection. For that evaluation, we compare the best two techniques in terms of accuracy 

in the reduced feature space, i.e. LightGBM and XGBoost, which yield F1-scores of 

0.899 and 0.897, respectively, after tuning their hyperparameters [137]. Note that we 

avoid overturning the hyperparameters that add complexity and make the models more 

likely to overfit such as the maximum depth and the maximum leaves of the trees. In this 

way, we keep the structure of both the LightGBM and XGBoost models comparable for 

the inference performance benchmarking as well as more generalized for making 

predictions on unseen data. 

Table 5.2. F1-Scores comparison after second feature selection 

Classifier Feat. = 27 Feat. = 9 Difference 

ET 0.89370 0.89102 0.00268 

LightGBM 0.89300 0.89232 0.00068 

XGBoost 0.89667 0.89585 0.00082 

  

5.3.1. Inference Acceleration 

As explained earlier, the main goal of having a reduced feature space without 

significantly sacrificing the traffic classification accuracy is to decrease the model’s 

complexity and, therefore, the inference time. In achieving so, the classifier may be 

implemented in more realistic network scenarios and operate in real time. We go further 

towards this goal by utilizing an ML inferencing accelerator. For this work, we employ 
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the tools from the Open Neural Network Exchange (ONNX) framework to improve the 

performance of our model. ONNX is an open ecosystem that provides a standard format 

for representing the prediction function of trained ML models [138]. It defines an 

extensible computation graph model and the models trained using several ML 

frameworks can be exported to ONNX. With ONNX, each computation dataflow graph is 

structured as a list of nodes that form an acyclic graph, a process known as serialization.  

As a result, ONNX offers a convenient interoperability of ML models across frameworks 

and that is why it is widely backed by important companies in the Artificial Intelligence 

(AI) industry. 

We then operationalize the optimized traffic classifier by ONNX with the ONNX 

Runtime: a high-performance and resource-efficient inference engine for ML models that 

takes advantage of the specific hardware capabilities where the model is run on [139]. 

ONNX Runtime can perform inference for any prediction function converted into the 

ONNX format and its cross-platform nature allows it to be run on different hardware and 

operating systems. In this manner, ONNX Runtime tries to parallelize the model’s 

operations and optimizes the model graph by applying graph transformation, that is, 

elimination and fusion of graph nodes. 

Accordingly, we assess the efficiency of the LightGBM and XGBoost classifiers when 

making predictions for one observation at a time, a common situation in computer 

networking scenarios such as the use case for this work. To achieve so, we take 15,000 

random samples from the resulting dataset after reducing the feature space, as explained 

in the previous subsection, and measure the processing time that each model takes to 

predict the type of traffic flow (one sample corresponds to one flow). Similarly, we trace 

the allocated memory to process each prediction. Figure 5.5 shows the averaged 

computation times and the averaged RAM usage over the 15,000 samples. 
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Figure 5.5. Computational resources used by the classifier algorithms for inferring in a 

single call. 

Note the logarithmic scale used for comparing the processing times. As can be seen, 

XGBoost algorithm achieves faster predictions than LightGBM on batches of one sample 

in size. More importantly, it is evident that ONNX optimization does accelerate the 

inference time by a factor of 4.9x and 3.6x for LigthGBM and XGBoost, respectively. 

Similarly, the memory usage is significantly reduced when ONNX is employed, being 

nearly the same for both algorithms and improved by a factor of 15.9x, for LigthGBM, 

and a factor of 15.3x, for XGBoost. All these measurements were obtained by running 

the ONNX inference calls on a machine with Intel® Xeon® CPU E5-2686, four cores @ 

2.30 GHz, and Ubuntu 18.04.4. We also point out that these measured values correspond 

to the complexity exhibited by a single flow and that complexity grows linearly with the 

number of flows, 𝑁𝑁𝑓𝑓, meaning a time complexity of 𝒪𝒪�𝑁𝑁𝑓𝑓� when multiple flows are 

considered. 

It is important to highlight that several research works have reported lower processing 

times of LightGBM, although with lower accuracy scores too, when compared to 

XGBoost. However, LightGBM may be faster when being trained or making batch 

predictions, but not when inferencing on one observation at a time. This is due to the 
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hyperparameter tuning that the LightGBM needs in order to get similar or higher 

accuracy than XGBoost. That tuning might result in a more complex model, which 

significantly affects the inferencing performance. Therefore, we consider the XGBoost 

algorithm for our proposed efficient telemetry scheme and the performance assessments 

in the rest of this work. Again, as we discussed in the introduction, we are more 

interested in attaining a reasonable traffic identification accuracy with an algorithm that 

provides fast inference in a single call. 

 

5.4. TANT Controller 

Network applications require NT to be elastic enough in order to efficiently use the 

network resources and reduce the performance degradation. Also, routine network 

monitoring should cover the entire network with low data sampling rate. However, NT 

data rate may be boosted when issues arise or trends emerge [140]. That is the ultimate 

goal of the Network Telemetry Controller module in our scheme. As a use case, we 

evaluate our solution by means of a postcard-like telemetry mechanism, such as the 

Postcard-Based Telemetry (PBT) or the INT in eXport Data mode (INT-XD). In this 

mode, INT nodes directly export metadata from their dataplane to the monitoring system 

based on the INT instructions configured at their Flow Watchlists. A Flow Watchlist is a 

dataplane table that matches on packet headers and applies INT instructions on each 

matched flow. The instructions indicate which INT metadata to collect at each INT node 

and they are either configured at each INT-capable node’s Flow Watchlist or written into 

the INT header. Although INT-XD is a valid mode of operation, it does not represent the 

classic and the default hop-by-hop INT operation, where the INT devices embed both 

instructions and metadata, i.e. telemetry data, and the packets are modified the most 

[124]. 

Similarly, the PBT-M, a packet-marking variation of the PBT, does not require the 

encapsulation of telemetry instruction headers, avoiding some of the implementation 

challenges of the instruction-based PBT and the default INT, also known as on-path 

telemetry in passport mode [141]. PBT-M uses a marking-bit in the existing headers of 
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user packets to trigger the NT data collection and export. If an NT node detects the mark, 

a postcard (a dedicated packet triggered by a marked user packet) is generated and 

transmitted to the NT collector. This postcard packet contains the data requested and 

configured by the management plane. The main advantage of PBT-M is that it avoids 

growing user packets with new headers and introducing new data plane protocols. 

However, the data plane devices need to be configured to know what NT data to collect. 

Another important benefit of PBT-M is that the collected NT data can be transported 

independently through in-band or out-of-band channels and the types of data collected 

from each node may be different according to the application requirements and nodes’ 

capabilities. Nevertheless, since each postcard packet has its own header, the overall 

network bandwidth overhead of PBT may be higher than the passport-based NT, 

depending on the number of postcards to be transmitted. 

For these reasons explained above, our TANT solution is designed as a PBT-M-like 

scheme that additionally takes into account the granularity of the NT data to be 

transported, so that the network bandwidth overhead is minimized. To achieve so, we 

assume that the levels of granularity can be marked through some or all of the 8 bits of 

the Type of Service (ToS) field of a standard IP packet header. In this way, a network 

device acting as the NT Source detects the type of traffic that is forwarding and, based on 

that, marks the level of granularity needed. Then, both NT Source, NT Transit, and NT 

Sink devices send postcard packets to the NT Monitoring Engine. Finally, the NT Sink 

unmarks the IP headers. It is important to highlight that, similar to the PBT-M scheme, 

TANT assumes that the NT devices are instructed on what kind of NT data collect and 

transmit by the management plane beforehand. 

With respect to the granularity levels of the NT data, we analyze the packets’ Inter-

Arrival Time (IAT) of the types of traffic identified by the classifier. To this end, we 

explore the values of the attribute describing the average IAT between two packets sent 

in the forward direction (Fwd IAT Mean) from the whole CICIDS2018 dataset. We point 

out that, by selecting these IAT values, our analysis is more realistic so that the 

granularity levels are applicable to real-time scenarios. Also, the selection of the IAT 

values in the forward direction is consistent with the NT specifications described above, 
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in which a network element triggers the telemetry tasks and forwards the NT instructions 

to the next elements ahead. On the other hand, the packet IAT values have a significant 

relationship with the type of traffic that a network element is forwarding and cannot be 

easily obfuscated or manipulated [142]. For this reason, the IAT characteristics of packets 

have been used to detect malicious traffic patterns, such as the one described by DDoS 

attacks [143]. Consequently, we define five levels of NT granularity according to values 

of the Fwd IAT Mean feature for each traffic class, as shown in Table 5.3. Note that this 

attribute is not part of the group of nine features finally selected for the proposed traffic 

classifier (see Figure 5.4). 

Table 5.3.  Granularity Levels 

Granularity (ms) Type(s) of Traffic 

100 Benign 

10 DDOS attack-HOIC, DoS attacks-Hulk 

1 SSH-BruteForce 

0.5 DDOS attack-LOIC-UDP 

0.1 FTP-BruteForce, DoS attacks-SlowHTTPTest 

 

5.5. Experimentation and Evaluation Results 

In this section, we provide the details about the experimentation setup for the evaluation 

of our proposed solution. The network topology for our experiments is similar to the one 

presented in [130], although we consider one path only for the NT Transit devices, 

instead of two, Figure 5.6. The reason why is because their experiments focus on the path 

changes whereas ours are focused on the variations of the types of traffic. Nevertheless, 

the ultimate goal is the same: to compare the performance of the proposed NT 

mechanism against INT when the traffic flows are affected, either by the paths they are 
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being transported on or the specific traffic type they are carrying. Likewise, we use the 

Mininet emulator as the software tool to implement and evaluate the TANT prototype in 

the described network topology  [119].  Mininet is a suitable tool for our use case, as it 

allows a flexible SDN environment with high degree of confidence for real-time tests 

[108]. 

Figure 5.6. Network scenario for the TANT use case evaluation. 

On the other hand, we use Scapy [144] as the tool to manipulate the standard IP packets 

in the TANT implementation. Scapy can be used to construct packets of a variety of 

existing or new protocols, send and receive them, match requests and replies, and more 

[145]. Accordingly, the NT Source, NT Transit, and NT Sink devices transmit 

manipulated PBT-M-like packets to the NT Monitoring Engine, as described in the 

previous section, by means of Scapy’s protocol stacking and fields manipulation 

functionalities. More specifically, an IP packet is created with the standard IP header and 

12 bytes are stacked as the payload of that packet. The rationale behind having a 12-byte 

payload is that we intend to compare our TANT solution to the conventional INT and the 

solution presented in [130], which is a scheme based on INT, although with 

modifications. According to that work, three types of INT metadata are considered as 

examples for its evaluation: switch ID, hop latency, and queue occupancy. These NT data 

is inserted into the user data every hop by each network element involved in the INT 

process, i.e. the NT Source, the NT Transit, and the NT Sink. Taking into account the 

INT specification [124], INT metadata per measured variable occupy 32 bits (4 bytes).  

Therefore, we consider NT data of 12 bytes in length to make it comparable to the three 

INT measurements considered in the experiments of [130]. 
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In relation to the evaluation of both TANT modules working together, we run the Mininet 

emulation as follows: the Traffic Source host picks traffic samples randomly, meaning 

that any of the types of traffic described in Table 5.3 may be selected. Based on this 

random selection, the TANT Traffic Classifier determines the type of traffic by 

considering the selected flow attributes, as explained in Section 5.2: Flow Byts/s, Flow 

Pkts/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Tot, Bwd IAT Min, 

Bwd IAT Std, and Bwd IAT Tot. Based on the identified traffic, the NT granularity is 

established for that flow according to the levels showed in Table 5.3. Afterwards, the NT 

Source creates an IP packet and uses three of the eight ToS bits to indicate the level of 

granularity needed, as explained in Section 5.3. Note that three bits are enough to mark 

all the five granularity levels that the TANT scheme considers for the use case presented 

in this chapter. However, more bits could be used for that purpose. Additionally, the NT 

Source inserts the 12-byte payload and send the NT packet to the NT Monitoring Engine. 

As TANT implements a PBT-like NT, all the NT Transits and the NT Sink perform a 

similar task in order transmit their NT data to the NT Monitoring Engine. Recall that, 

similar to the PBT-M specification, we are assuming that all the NT nodes know the 

measurement data that they need to collect and send a priori. This could be accomplished 

by means of instructions from the management plane. Finally, each NT node starts 

transmitting the NT data of the pre-determined measurements in the granularity intervals 

specified in the ToS bits of the IP packet. 

In order to determine the network overhead, we measure the throughput every five 

seconds using the iPerf tool [146]. More specifically, we set up a pair of monitor hosts in 

the emulation environment, one of them actively logging the measured throughput by 

means of sending probe packets to the other one in 5-second intervals. In this way, we 

measure the throughput without transmitting any NT data and, right after that, the 

network throughput while the NT data is being transmitted for another 5 s. The network 

overhead is then calculated by subtracting the measured throughput with NT data from 

the measured throughput without it. Again, method is similar to the one utilized in [130]. 
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Figure 5.7. Evaluation resutls of TANT and its comparison against the classic INT. a) 

Network bandwidth overhead reduction per granularity level. b) Instantaneous and 

average network overhead measured during 1,200 seconds of network emulation. 
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Figure 5.7 depicts the results of our solution evaluation. As can be seen, the proposed 

TANT scheme achieves a substantial lower overhead when compared to the regular INT 

mechanism: the worst-case granularity, i.e. 0.1 ms, represents less than 50% of the INT’s 

overhead (Figure 5.7a). With respect to the emulation in real time, TANT attains a 

reduction of 76.4% in network overhead, on average (Figure 5.7b).  

Furthermore, this overhead decrease outperforms the reduction reported in [130], which 

is 37% less than the conventional INT. It is important to point out that there are some 

transients of the instantaneous measures of TANT that overpass the INT overhead. These 

transients are due to the abnormal traffic detected by the classifier, which, at the same 

time, lowers the granularity. However, our TANT mechanism adaptively changes the 

granularity of the NT data when normal flows or other types of traffic flows are detected. 

As a result, the overall network overhead is considerably lesser than that produced by the 

per-packet INT’s granularity. 

 

5.6. Summary 

Network Telemetry (NT) is a crucial component in today’s networks, as it provides the 

network managers with important data about the status and behaviour of the network 

elements. NT data are then utilized to get insights and rapidly take actions to improve the 

network performance or avoid its degradation. Intuitively, the more data are collected, the 

better for the network managers. However, the gathering and transportation of excessive 

NT data might produce an adverse effect, leading to a paradox: the data that are supposed 

to help actually damage the network performance. This is the motivation to introduce a 

novel NT framework that dynamically adjusts the rate in which the NT data should be 

transmitted.  

In this chapter, we presented a NT scheme that is traffic-aware, meaning that the network 

elements collect and send NT data based on the type of traffic that they forward. The 

evaluation results of our Machine Learning-based mechanism show that it is possible to 
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reduce by over 75% the network bandwidth overhead that a conventional NT scheme 

produces. 
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Chapter 6  

6. Conclusion 

 

6.1. Dissertation Conclusions 

The main conclusions of this dissertation are summarized as follows: 

• The research work of this thesis presented a set of novel methods based on 

Machine Learning techniques to achieve the realization of the Intelligent 

Networking Automation paradigm in several scenarios. 

• The proposed solutions are data-driven and consist of predictors and agents, 

which operate at network elements such as routers, switches, or network servers. 

• We have effectively applied ML techniques of several types (including 

supervised, unsupervised, and reinforcement learning) to solve real-world 

networking challenges. 

• We showed that the developed schemes can cope with complex networking 

situations that involve hard decision-making actions. 

• The evaluation of the solutions has been carried out through realistic networking 

scenarios and with data gathered from either actual network deployments or real-

time environments. 

• For all the presented frameworks, we have considered standardized network 

protocols and technologies as use cases. However, they are agnostic enough to be 

utilized with other mechanisms not considered in this research work. 
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6.2. Discussion on the Findings and Limitations of this Thesis 

In Chapter 2, we proposed a scheme for load balancing in HetNets that can be applied to 

dense IoT networks such as Smart Cities scenarios. Our approach is based on several ML 

techniques to discover hidden patterns using PCA, learn from the labeled data by means 

of supervised probabilistic classifiers, and make decisions through an MDP. As a use 

case, we validated our method with data from an actual LoRaWAN IoT network. Once 

we preprocessed the data, we confirmed that such a network deployed in urban areas can 

be deemed as a HetNet. 

We demonstrated that with our scheme the goal of device-BS association biasing can be 

achieved based on predictions that are made by obviating signal-based features. Unlike 

other related works, we used labeled data for biasing the device-BS association through a 

supervised classifier. This approach solves the CRE problem in such a manner that is less 

complex to implement than other solutions based on reinforcement learning. Therefore, 

the proposed association biasing method might be more suitable in scenarios where the 

computational resources of core network elements, such as the Network Server, are more 

constrained. 

We also confirmed that our MDP-based decision-making model for the traffic offloading 

has better results when the classifier’s predictions are considered. The evaluation results 

describe the improvement of network capabilities in terms of PDR (an increase of 50%) 

and reduction of ECD (nearly a decrease of 20%). On the other hand, although MDPs are 

the basis for reinforcement learning algorithms such as Q-learning, our method does not 

consider the action-value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎), i.e., the current state and each possible action 

that can be taken individually. In other words, in our method the policy and expected 

reward are based on the current state and the average across all of the actions that can be 

taken. Therefore, our method needs less data as the function 𝑄𝑄 is not considered. 

However, a further study is needed to determine the trade-off of getting better results by 

including 𝑄𝑄 and the likely longer time to learn and make decisions. This is also a relevant 

consideration for wireless networks with very restricted resources. 
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In this work, we validated our methodology through a specific standard, but the method 

may be implemented in IoT networks operating under other standards, particularly in 

dense environments. It is also important to highlight that the only process of our scheme 

that runs in real time is the MDP and, consequently, the data preprocessing and the 

classification training can be carried out offline.  

Although the time delay caused by the decision process of our model may be 

unacceptable for several WAN RAT applications, we point out that a particular 

characteristic of technologies like LoRaWAN is that they are focused on the connectivity 

of devices that transmit messages in relatively long periods at low data rates. 

Nevertheless, more research is needed about the optimization of methods like the one we 

have proposed, as well as the time complexity analysis for their implementation in 

specific solutions, especially where there is a large number of end devices. 

Thinking of a LoRaWAN network, specifically, we point out the importance of 

considering more adjusted parameters such as data rate, number of retransmissions, and 

packet arrival rate. Since we used values corresponding to worst-case scenarios in our 

analytical models, better results can be achieved with our scheme by adjusting those 

variables to specific situations. 

In Chapter 3, we showed how the appropriate tuning of AQM parameters can improve 

the RTT and throughput of TCP connections in a dynamic IP network. Additionally, we 

showed that it is possible to take advantage of the ECN mechanism to predict congestion 

on the rest-of-path. We modeled a congestion predictor based on an LSTM, which we 

pre-trained with data of an unknown network topology. We exposed how to transfer the 

predictor model to a new network and get good estimates with a rapid re-training. Also, 

we described a solution for the decision-making problem on the parameters that an AQM 

scheme should have according to the networks’ conditions.  

We also demonstrated that it can be achieved by modeling the problem as an MDP and 

finding pair values of state-action through the Q-learning algorithm. Although we 

employed the power function of the connection as the reward function, our method can 

work with other rewards depending on the applications or the TCP connection variable to 
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be optimized. However, we point out that the proposed Intelligent AQM has the 

limitation of working with TCP traffic whose headers can be extracted by the router 

utilizing the scheme. In other words, if the TCP traffic is being carried through encrypted 

tunnels, such as those used in Virtual Private Networks, the ECE-marked packets cannot 

be distinguished by the router. 

In Chapter 4, we showed how the appropriate tuning of AQM parameters can improve 

the RTT and throughput of inter-domain connections. We presented our FIAQM solution, 

which leverages the characteristics of existing AQM schemes in such scenarios where 

several parties are involved in a communication process and privacy is a major 

consideration. The main components of the FIAQM architecture effectively applies the 

fundamentals of the FL approach to attain congestion control between ASes managed by 

different organizations and whose network data cannot be shared. We described in detail 

the main components of FIAQM: an LSTM trained in a federated fashion to predict the 

beyond-own-domain congestion and an AQM parameter tuner based on the Q-learning 

algorithm. We also explained how these two components integrate to make possible for a 

border router to dynamically tune the AQM scheme of its link queue that connects to the 

border router in another domain. 

On the other hand, we evaluated the performance of FIAQM in a realistic environment by 

means of network emulations. Despite the limitations of the software tool used to this 

end, our solution can be easily adapted to other real-world environments. It is important 

to highlight, however, that the way we obtained the drop rate data has some limitations in 

terms of the routers’ operating system functionalities. For example, we used Linux TC 

tool to collect the queue statistics, whose performance heavily relies on the number of 

processes that the CPU carries out. 

In Chapter 5, we presented a novel framework for efficient collection and transportation 

of network telemetry data by making the network devices “aware” of the traffic types that 

they are forwarding. To accomplish so, our TANT scheme comprises two principal 

modules: an ML-based traffic classifier and an NT controller that adjusts the level of 

granularity of the telemetry data. We also showed how the inference process of the 
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classifier can be accelerated in order to make per-flow predictions in shorter times and 

using less memory, important characteristics for any NT mechanism working in real time. 

In addition, we evaluated the performance of the proposed scheme by means of network 

emulations and demonstrated that TANT can reduce the network bandwidth overhead to 

about ¼ of the overhead caused by the classic INT scheme. 

Despite its advantages, it is worth mentioning that the main drawback of the TANT 

framework is that the levels of NT granularity should be known by the nodes beforehand. 

An automatic and dynamic selection of those levels have not been considered and further 

research is needed in that regard. 

 

6.3. Future Work 

As a future work for our first research problem, an even more realistic scenario may be 

set such as a prototype network with a server running our scheme and a significantly 

large number of tiny devices using its services. Additionally, the possibility of combining 

some of other techniques described in the literature with ours might be explored, to 

obtain better results in terms of energy efficiency. However, in future implementations 

we recommend performing these tasks periodically in order to get more accurate results 

thanks to the updated data. 

In terms of the Intelligent AQM scheme, we propose to test our method with different 

TCP congestion control mechanisms, as well as more AQM algorithms. We also point 

out that, although our experiments included only two AQM schemes with queue delay as 

the target parameter, the proposed intelligent method could be easily adapted to other 

schemes with different target parameters such as the queue size. Finally, although our 

experiments included only FQ-CoDel as the AQM scheme, the proposed FIAQM method 

could be straightforwardly implemented with other schemes. In those cases, the only 

necessary changes would be the redefinition of the set of actions for the AQM tuner 

module and the inclusion of the specific instructions for the desired AQM scheme 

configuration in Linux. 
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With regard to the FIAQM framework, the performance of future implementations may 

be further improved by considering other design aspects for the neural network of the 

FCP. For instance, different activation functions could yield more accurate and faster 

predictions of congestion in situations where shorter time intervals for the measurements 

are required. Moreover, although in this work we proposed the use of metrics directly 

taken from the queues as the income data for FIAQM, other kinds of data may easily feed 

our proposed method. For example, as we mentioned in Section 4.2, the metadata 

reported by routers employing the INT standard can be adapted to be used in FIAQM. 

However, how to incorporate INT metrics in multi-domain settings and Machine 

Learning-based solutions such as FIQAM requires further research. 

As a future work for the TANT scheme, it would be interesting to include subcategories 

of benign traffic for the flow classification process. In this way, other types of traffic can 

be detected event if they do not correspond to cyber attacks. These subclasses of 

benevolent, but abnormal, traffic might be very useful to detect and take actions on 

events that can degrade the network performance. However, quality datasets of real 

network traces that include those situations need to be generated or made publicly 

available without compromising private data. Additionally, it would be worth exploring 

the application of the Federated Learning approach to the traffic classifier in the TANT 

scheme. In this way, a more scalable solution could be accomplished by decentralizing 

the learning process and, as a result, a more seamlessly deployment across several local 

networks or even WANs would be also possible. 
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