
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-18-2021 9:45 AM

Leveraging Machine Learning Techniques towards Intelligent Leveraging Machine Learning Techniques towards Intelligent

Networking Automation Networking Automation

Cesar A. Gomez, The University of Western Ontario

Supervisor: Shami, Abdallah, The University of Western Ontario

Co-Supervisor: Wang, Xianbin, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Cesar A. Gomez 2021

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, Digital

Communications and Networking Commons, and the Systems and Communications Commons

Recommended Citation Recommended Citation
Gomez, Cesar A., "Leveraging Machine Learning Techniques towards Intelligent Networking Automation"
(2021). Electronic Thesis and Dissertation Repository. 8091.
https://ir.lib.uwo.ca/etd/8091

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F8091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=ir.lib.uwo.ca%2Fetd%2F8091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ir.lib.uwo.ca%2Fetd%2F8091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ir.lib.uwo.ca%2Fetd%2F8091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ir.lib.uwo.ca%2Fetd%2F8091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8091?utm_source=ir.lib.uwo.ca%2Fetd%2F8091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

In this thesis, we address some of the challenges that the Intelligent Networking Automation

(INA) paradigm poses. Our goal is to design schemes leveraging Machine Learning (ML)

techniques to cope with situations that involve hard decision-making actions. The proposed

solutions are data-driven and consist of an agent that operates at network elements such as

routers, switches, or network servers. The data are gathered from realistic scenarios, either

actual network deployments or emulated environments. To evaluate the enhancements that

the designed schemes provide, we compare our solutions to non-intelligent ones.

Additionally, we assess the trade-off between the obtained improvements and the

computational costs of implementing the proposed mechanisms.

Accordingly, this thesis tackles the challenges that four specific research problems present.

The first topic addresses the problem of balancing traffic in dense Internet of Things (IoT)

network scenarios where the end devices and the Base Stations (BSs) form complex

networks. By applying ML techniques to discover patterns in the association between the end

devices and the BSs, the proposed scheme can balance the traffic load in a IoT network to

increase the packet delivery ratio and reduce the energy cost of data delivery. The second

research topic proposes an intelligent congestion control for internet connections at edge

network elements. The design includes a congestion predictor based on an Artificial Neural

Network (ANN) and an Active Queue Management (AQM) parameter tuner. Similarly, the

third research topic includes an intelligent solution to the inter-domain congestion. Different

from second topic, this problem considers the preservation of the private network data by

means of Federated Learning (FL), since network elements of several organizations

participate in the intelligent process. Finally, the fourth research topic refers to a framework

to efficiently gathering network telemetry (NT) data. The proposed solution considers a

traffic-aware approach so that the NT is intelligently collected and transmitted by the

network elements.

iii

All the proposed schemes are evaluated through use cases considering standardized

networking mechanisms. Therefore, we envision that the solutions of these specific problems

encompass a set of methods that can be utilized in real-world scenarios towards the

realization of the INA paradigm.

Keywords

Autonomic Networking, Data-driven Networks, Intelligent Networking Automation, Intent-

based Networking, Machine Learning, Zero-touch Network Management.

iv

Summary for Lay Audience

Imagine living in a huge city where the traffic of the vehicles is solely controlled by officers:

no traffic lights, no barricades, no separators, no signage, just traffic officers. What if a

massive event is taking place near your home and you did not know? What if an accident

occurs on a road you just merged onto? It is hard to visualize the flows of the vehicles going

smoothly. Although the city had so many officers and their protocols were very well

established, it would not be enough to regulate the vehicle flows properly. This research

work is about something similar: the effective application of artificial intelligence methods to

automate the control of Internet flows when the networks experience unforeseen situations.

The proposed solutions allow the network administrators to manage some network tasks

more efficiently, with minimal intervention, and focus on the situations where the human

involvement is critical.

v

To my beloved wife Carolina and sweet daughters Sarita and Abril. I will never thank you

enough for all your love, joyful support, and unselfish sacrifice. This endeavor would not

have been possible without you.

To my loving parents Martha and Samuel. God bless you for all you have taught me to grow

as a fulfilled person in this world. I hope to keep learning from you for many more years to

come.

In memory of my exceptional grandparents Socorro, Gilma, Servio, and Samuel. Both your

tenacity and tenderness run in my blood.

vi

Acknowledgments

I would like to express my sincere appreciation to my supervisors, Dr. Abdallah Shami and

Dr. Xianbin Wang, for all their guidance and support. I learned a lot from them and their

expertise was crucial to the successful completion of my research journey during my doctoral

studies. I feel so grateful and honored to have worked with them.

I would also like to thank the staff in the Department of Electrical and Computer Engineering

at Western University, especially Stephanie Tigert, Courtney Harper, and Andrea Krasznai,

for all their remarkable assistance and kindness to make the administrative tasks of my

program easier to carry out. Correspondingly, many thanks to the team supporting the

graduate matters in the Faculty of Engineering, including Dr. Kamran Siddiqui, Karen

McDonald, and Whitney Barret. They were very open, approachable, and caring when I

needed their help.

A special thank-you message to the staff of the School of Graduate and Postdoctoral Studies,

particularly Dr. Linda Miller, Dr. Peter Simpson, and Dr. Mihaela Harmos, for their

wonderful initiatives to support the PhD students at Western, such as the engaging Own Your

Future program led by Dr. Julie Jonkhans. Many of their talks, workshops, and dialogues

with other peers at their events served as a source of encouragement to tackle the inherent

challenges of pursuing a PhD degree. In the same way, I feel grateful for the counselling

services provided by the Career Education unit, which helped me explore the value and

potential of my PhD degree both in and outside the academia. Special thanks to Jennifer

Baytor and Dr. Steven Martin.

I am also thankful for all the support given by the members of the International and

Exchange Student Centre, especially Sandra Pehilj and Fabiana Tepedino. They were always

eager to help and their services were key to my successful adaptation as an international

student at Western. Likewise, special thanks to Dr. Olga Kharytonava from the Western

English Language Centre, a passionate language educator from whom I learned a lot to

enhance my writing.

vii

Additionally, I would like to thank my colleagues and research group coworkers for all their

advice and willingness to help me, even when they were very busy doing their own research

work. Special thanks to Dr. Fuad Shamieh, Dr. Khaled Alhazmi, Dr. Hassan Hawilo, Dr.

Manar Jammal, Dr. Elena Uchiteleva, Dr. Abdallah Moubayed, Dr. Shree Sharma, Dr. Tianqi

Yu, Golara Zafari, and Hessam Yousefi (RIP). Likewise, I am very thankful for the

friendship offered by the colleagues I met at Western University, including Sabin Bhandari,

Jose Masache, Sunanda Gamage, Ibrahim Shaer, Dimitrios Manias, Santiago Gomez, Mahsa

Bataghva, Hasitha Wimalarathna, Sandra Lopez, Elham Okhovat, Sriyananda Mattaka, and

Yuyan Zhao. Also, special mention to Dr. Julio Suarez for his unconditional amicability and

mentorship on how to effectively navigate my doctorate pathway.

Last but not least, I would like to thank my family for their boundless love, trust, and patient

support: Carolina, Abril, Sarita, Martha, Samuel, Ma. Laurita, Natalia, Daniela, Samuel F.,

Carlos, Amparo, Miguel, Johana, Ma. Jose, Silvana, Antonia, and Elkin. I thank God

everyday for bringing you into my life.

viii

Table of Contents

Abstract ... ii

Summary for Lay Audience ... iv

Acknowledgments.. vi

Table of Contents ... viii

List of Tables ... xi

List of Figures ... xii

List of Abbreviations .. xv

1. Introduction .. 1

1.1. Motivation ... 1

1.2. Preliminary Notions on INA ... 2

1.3. Dissertation Contributions .. 8

1.4. Dissertation Organization ... 9

2. Intelligent Load Balancing in IoT Networks ... 11

2.1. Motivation ... 11

2.2. Related Work .. 13

2.3. A LoRaWAN Network Seen as a HetNet ... 15

2.4. Proposed Scheme .. 17

2.4.1. Data Preprocessing.. 17

2.4.2. Pattern Analysis .. 19

2.4.3. Classification Method for Association Biasing .. 21

2.4.4. Decision-Making Model for Load Balancing ... 23

2.5. Network Simulation Design .. 28

2.6. Evaluation Results .. 30

ix

2.6.1. PCA Patterns ... 31

2.6.2. Classifiers Outcomes .. 32

2.6.3. Network PDR Improvement ... 35

2.6.4. Network ECD Reduction .. 37

2.7. Summary ... 38

3. Intelligent Active Queue Management .. 39

3.1. Motivation ... 39

3.2. Intelligent AQM Design ... 41

3.2.1. Congestion Predictor ... 43

3.2.2. Q-learning based AQM Parameter Tuner ... 44

3.3. Evaluation Methodology and Results ... 46

3.3.1. Effects of Tuning AQM Parameters ... 46

3.3.2. Transferring the Predictor Model .. 48

3.3.3. Performance Evaluation of the Intelligent AQM 51

3.4. Summary ... 54

4. Federated Intelligence for Inter-Domain Congestion .. 55

4.1. Motivation ... 55

4.2. Related Work .. 60

4.3. Architecture of FIAQM .. 62

4.3.1. Federated Congestion Predictor .. 63

4.3.2. AQM Parameter Tuner ... 67

4.4. Experimentation Design.. 70

4.5. FIAQM performance evaluation ... 75

4.5.1. FCP algorithm predictions accuracy ... 75

4.5.2. Real-time AQM tuning with FIAQM ... 79

4.6. Summary ... 83

x

5. Efficient Network Telemetry based on Traffic Awareness .. 84

5.1. Motivation ... 84

5.2. Related Work .. 88

5.3. TANT Traffic Classifier ... 89

5.3.1. Inference Acceleration .. 97

5.4. TANT Controller .. 100

5.5. Experimentation and Evaluation Results .. 102

5.6. Summary ... 106

6. Conclusion ... 108

6.1. Dissertation Conclusions .. 108

6.2. Discussion on the Findings and Limitations of this Thesis 109

6.3. Future Work .. 112

7. References .. 114

8. Curriculum Vitae .. 132

xi

List of Tables

Table 2.1. Simulation parameters for the evaluation of Packet Delivery Ratio and Energy

Cost of Data Delivery. 30

Table 3.1. Buffer occupancy comparison 53

Table 4.1. Model parameters to be transferred for the FCP. 74

Table 4.2. Emulation parameters for the evaluation of the FIAQM scheme in real time 79

Table 4.3. Hyperparameters of the FIAQM’S learning modules. 82

Table 5.1. Time-related traffic features 91

Table 5.2. F1-Scores comparison after second feature selection 97

Table 5.3. Granularity Levels 102

xii

List of Figures

Figure 1.1. Reference Model for an Autonomic Node. Adapted from [6]. 4

Figure 1.2. Mapping between architectural blocks and closed-loop automation stages in the

ZSM framework. Adapted from [10]. ... 6

Figure 1.3. Architecture for ML in closed-loop automation. Adapted from [11]. 7

Figure 2.1. LoRaWAN network architecture. An end device may be associated with more

than one gateway. Adapted from [40]. .. 16

Figure 2.2. Locations of BS and their associated devices within the selected urban area. 18

Figure 2.3. Coverage approximation of BS based on data points, assuming isotropic

radiation, and ideal propagation. ... 18

Figure 2.4. Example of a load-balancing decision to be made. .. 24

Figure 2.5. Algorithm for the traffic offloading decision. .. 27

Figure 2.6. Discovered patterns for BS after projecting the first two principal components. 31

Figure 2.7. Device-BS association comparison: (a) estimated coverage based on RSSI; (b)

CRE based on biased association. ... 33

Figure 2.8. Classifiers performance comparison: (a) average classification accuracy; (b)

average training time. .. 34

Figure 2.9. Network PDR improvement based on proposed scheme. 36

Figure 2.10. Computational time comparison for the MDPs. ... 36

Figure 2.11. Network EDC reduction based on proposed scheme. .. 37

xiii

Figure 3.1. Scenario for our stated problem. Edge routers aggregate end devices and connect

to the core network through bottleneck links. ... 42

Figure 3.2. Effects of varying the target parameter in CoDel and FQ-CoDel algorithms on: a)

Averaged mRTT. b) Averaged throughput. .. 47

Figure 3.3. Actual and predicted congestion obtained after: a) Pre-training over 100 epochs,

using the CAIDA’s dataset and time intervals of 100 ms. b) Re-training in one epoch, based

on network emulation data in time intervals of 1 ms. ... 49

Figure 3.4. Cumulative power of the connection measured during the experiments in the

emulation environment. The intelligent method is applied to CoDel and FQ-CoDel. All

schemes utilize ECN ... 52

Figure 4.1. Example of an inter-domain communication scenario. .. 57

Figure 4.2. Typical scenario for the proposed FIAQM scheme. .. 60

Figure 4.3. The FIAQM architecture for inter-domain congestion control. Main modules are

replicated within each border router. .. 62

Figure 4.4. LSTM network structure for the FIAQM’s congestion predictor. 63

Figure 4.5. Implementation of the FIAQM for experimentation. ... 70

Figure 4.6. Preliminary tests for the Experimentation Design. a) Queues data at Border

Router Domain 1. b) Effects of tuning FQ-CoDel target parameter on 𝒎𝒎𝐑𝐑𝐑𝐑𝐑𝐑 and 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻. ... 73

Figure 4.7. Actual congestion of the IXP queue and predicted congestion by the FCP. 76

Figure 4.8. Evaluation loss comparison between a centralized congestion predictor and the

FCP algorithm. .. 77

Figure 4.9. Number of training rounds needed to reach the target loss by a centralized

congestion predictor and the FCP algorithm. ... 78

xiv

Figure 4.10. Improvement over time provided by FIAQM in terms of congestion reduction

and 𝑷𝑷𝑷𝑷 growth. AQM tuning starts at 150 s. .. 81

Figure 5.1. TANT system overview. Each network element comprises a traffic classifier and

an NT controller, which transmits the NT data to the NT engine. .. 87

Figure 5.2. Correlation matrix of the selected features based on the Pearson coefficients. ... 94

Figure 5.3. Classifiers’ scores comparison before and after first feature selection. 95

Figure 5.4. Feature ranking based on PFI calculation. ... 96

Figure 5.5. Computational resources used by the classifier algorithms for inferring in a single

call. .. 99

Figure 5.6. Network scenario for the TANT use case evaluation. .. 103

Figure 5.7. Evaluation resutls of TANT and its comparison against the classic INT. a)

Network bandwidth overhead reduction per granularity level. b) Instantaneous and average

network overhead measured during 1,200 seconds of network emulation. 105

xv

List of Abbreviations

ACK Acknowledged

AI Artificial Intelligence

ANIMA Autonomic Networking Integrated Model and Approach

ANN Artificial Neural Network

AQM Active Queue Management

AS Autonomous System

BGP Border Gateway Protocol

BS Base Station

CAIDA Center for Applied Internet Data Analysis

CE Congestion Experienced

CIC Canadian Institute for Cybersecurity

CoDel Controlling Queue Delay

ConEx Congestion Exposure

CP Content Provider

CRE Cell Range Expansion

CWR Congestion Window Reduced

DDoS Distributed Denial of Service

DE Decision-making Element

DL Downlink

xvi

DoS Denial of Service

DT Decision Trees

E2E End-to-End

ECD Energy Cost of Data Delivery

ECE ECN-Echo

ECN Explicit Congestion Notification

ET Extra Trees

ETSI European Telecommunications Standards Institute

FCP Federated Congestion Predictor

FedAvg Federated Averaging

FIAQM Federated Intelligence for AQM

FL Federated Learning

FN False Negative

FP False Positive

FQ-CoDel Flow Queue - Controlling Queue Delay

GANA Generic Autonomic Network Architecture

GNB Gaussian Naive Bayes

HCL Hierarchical Control Loop

HetNet Heterogeneous Network

IAQM Intelligent AQM

xvii

IAT Inter-Arrival Time

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

INA Intelligent Network Automation

INT In‐Band Network Telemetry

INT-XD INT-Export Data

IoT Internet Of Things

IP Internet Protocol

IPFIX IP Flow Information Export

IRTF Internet Research Task Force

ISG Industry Specification Group

ISP Internet Service Provider

ITU-T International Telecommunication Union - Standardization Sector

IXP Internet Exchange Point

LDA Linear Discriminant Analysis

LightGBM Light Gradient Boosting Machine

LoRaWAN Long-Range Wide Area Network

LPWAN Low-Power Wide Area Network

LR-SGD Logistic Regression with Stochastic Gradient Descent Training

LSTM Long Short-Term Memory

xviii

M2M Machine-To-Machine

MAE Mean Absolute Error

MBS Macro Base Stations

MDP Markov Decision Process

ME Managed Entity

ML Machine Learning

MLFO Machine Learning Function Orchestrator

ML-ML Machine Learning Meta Language

MLR Multiple Logistic Regression

mRTT Measured RTT

MSE Mean Square Error

Multi-RAT Multiple Radio Access Technology

NF Network Function

NFV Network Function Virtualization

NN Neural Network

NT Network Telemetry

ONNX Open Neural Network Exchange

OODA Observe, Orient, Decide, and Act

OPEX Operational Expenditure

PBT Postcard-Based Telemetry

xix

PBT-M Packet-Marking variation of PBT

PCA Principal Components Analysis

PDP Programmable Data Plane

PDR Packet Delivery Ratio

PFI Permutation Feature Importance

PIE Proportional Integral Controller Enhanced

QDA Quadratic Discriminant Analysis

QoS Quality of Service

RAT Radio Access Technology

RCA Root Cause Analysis

RED Random Early Detection

RF Random Forest

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RRUL Real-Time Response Under Load

RSSI Received Signal Strength Indicator

RTT Round-Trip Time

SBS Small Base Stations

SDN Software Defined Networking

xx

SFTP Secure File Transfer Protocol

SINR Signal-to-Interference-plus-Noise Ratio

SNMP Simple Network Management Protocol

SNR Signal-to-Noise Ratio

SSH Secure Shell

SVM-SGD Support Vector Machines with Stochastic Gradient Descent

TANT Traffic-Aware Network Telemetry

TC Traffic Control

TCP Transmission Control Protocol

TFF TensorFlow Federated

TN True Negative

ToS Type of Service

TP True Positive

TTN The Things Network

UDP User Datagram Protocol

UL Uplink

WAN Wide Area Network

XGBoost Extreme Gradient Boosting

ZSM Zero-touch Network and Service Management

1

Chapter 1

1. Introduction

As a subfield of Artificial Intelligence (AI), Machine Learning (ML) is a discipline that

aims to give a machine (or agent) the ability to execute tasks autonomously by detecting

and extrapolating patterns, as well as adapting to new circumstances. Thus, an agent

learns if it improves its performance after making observations (data samples) [1].

Researchers have applied ML techniques to solve a variety of non-trivial problems in

many areas and the field of networking is not the exception. Because of the complexity

and the dynamics of the networks, ML techniques can be successfully used to improve

the performance of networking scenarios where optimal solutions are intractable to

compute or difficult to represent through analytical models. Accordingly, the application

of ML in networking includes a vast diversity of challenging tasks such as traffic

prediction, traffic classification, routing, congestion control, resource management, load

balancing, network scheduling, intrusion detection, and parameter adaptation, among

others [2], [3].

1.1. Motivation

One of the most promising applications of ML in networking is to automate the networks

in an intelligent way with minimal to no human intervention. As networks scale, they

become more dynamic and complex systems. However, obtaining a closed-form function

of these systems is non-trivial and analytical approximations to automate the networks

may be imprecise. The closed-loop network automation refers to the notion of

continuously evaluating real-time network conditions, traffic demands, and resource

availability to determine the best placement of traffic for optimal service quality and

resource utilization, according to the network operator policies. Consequently, the desired

operation and performance improvement depend on the timely parameters’ adjustment

and the changing network conditions.

2

Therefore, the notion of Intelligent Networking Automation (INA) has recently emerged

as an answer to the challenge of managing large, complex, and very dynamic networks.

The idea of having autonomous networks that can configure, monitor, and independently

maintain themselves is not new. That is why the goals that INA pursues have been

envisioned under different concepts, such as cognitive networking, autonomic

networking, self-organized networks, knowledge-defined networks, intent-based

networking, zero-touch networking, data-driven networking, and self-driving networks.

INA will have a deep impact on the network management processes, as ML-based agents

will carry out the tough networking tasks, allowing the operators to focus on the

customers’ needs and reduce their operational expenditure (OPEX). In addition, the

combination of virtualized network infrastructure and online ML techniques will give the

operators the flexibility to respond to real-time network parameters adjustment and scale

their networks efficiently based on the changing business needs and the customers’

demands.

Accordingly, the main objective of this chapter is to review the key components that the

intelligent networks should have in terms of operations and management as well as

presenting the concepts and frameworks that can make the INA a reality in the upcoming

years. Also, we introduce how this dissertation contributes to the realization of that INA

paradigm.

1.2. Preliminary Notions on INA

In order to achieve automation, the closed-loop control concept has been studied and

applied to a variety of fields for decades, such as robotics and vehicle technologies. In

networking, closed-loop control is used to automate tasks like resource allocation,

performance optimization, devices management, fault analysis, etc. In a closed-loop

control system, the controllers are connected in feedforward and feedback structures with

physical elements and its components together determine the behavior of the overall

system [4]. Thus, the closed-loop network automation refers to the notion of continuously

evaluating real-time network conditions, traffic demands, and resource availability to

3

determine the best placement of traffic for optimal service quality and resource

utilization, according to the network operator policies [5].

The closed loops among network elements make the distinction between an automatic (or

automated) network and an autonomic network. In the former, there are predefined

processes that must be manually adjusted if the network environment changes. In the

latter, the network processes act in a self-management fashion and can adapt to changing

environments. Consequently, the RFC7575 from the Internet Research Task Force

(IRTF) defines the concept of Autonomic Networking, which refers to the network

capabilities of self-managing, i.e. self-configuring, self-protecting, self-healing, and self-

optimizing [6]. An autonomic network consists of autonomic nodes, which exclusively

employ autonomic functions: features that require no configuration and can adapt to a

changing environment based on the information derived from self-knowledge, discovery,

or intent. Thus, an autonomic node may have guidance by a central entity through

intents, i.e. high-level policies used to operate the network.

The autonomic functions can be defined on a node level or on a system level. On a node

level, the autonomic nodes interact each other to form feedback loops. On a system level,

the central elements are also included in the feedback loops. These closed loops are a key

aspect in autonomic networks and imply two-way negotiations between each pair or

groups of peers involved in the loops. For this reason, a discovery phase is necessary

before a closed-loop control can take place within an autonomic network.

The RFC7575 focuses on the intelligence of algorithms for node-level autonomic

functions. This intelligence is realized by Autonomic Service Agents, which implement

autonomic functions either entirely or partially (distributed functions). In this way, [6]

presents the overview of a reference model for autonomic nodes, as depicted in Figure

1.1. Moreover, the Internet Engineering Task Force (IETF) has been working on an

Internet-Draft that describes a reference model with more details, which is defined as

Autonomic Networking Integrated Model and Approach (ANIMA) [7]. The ANIMA

framework is an in-progress work and its architecture is well summarized in [8].

4

The Generic Autonomic Network Architecture (GANA) is another reference model,

defined by the European Telecommunications Standards Institute (ETSI). In the GANA

model, the ETSI defines a “blueprint model" with recommendations on the design and

operational principles of autonomic decision-making elements (DEs), which are

responsible for autonomic management and control of resources and parameters such as

protocols, stacks, and mechanisms. Additionally, the DEs control the Managed Entities

(MEs) in both physical and virtual network elements [9]. The GANA’s Decision Plane

includes a Hierarchical Control Loop (HCL) architecture, in which DEs and MEs interact

at different levels. In this way, the inferior DEs serve as the MEs of the superior DEs.

Authors in [8] also review the GANA architecture although in less detail than the

ANIMA model.

Figure 1.1. Reference Model for an Autonomic Node. Adapted from [6].

Another interesting initiative also from ETSI is the Zero-touch Network and Service

Management (ZSM) Reference Architecture, which is a Group Specification by the

Industry Specification Group (ISG) [10]. This specification presents an architecture for

end-to-end (E2E) network automation, leveraging the principles of Network Functions

Virtualization (NFV) [11], Software Defined Networking (SDN) [12], and cloud-native

5

network services [13], as well as data-driven Artificial Intelligence algorithms [14], [15].

The ZSM architecture considers 13 principles to achieve its goal of full network

automation, as follows: (1) modularity, (2) extensibility, (3) scalability, (4) model-driven

and open interfaces, (5) closed-loop management automation, (6) support for stateless

management functions, (7) resilience, (8) separation of concerns in management, (9)

service composability, (10) intent-based interfaces, (11) functional abstraction, (12)

simplicity, and (13) designed for automation.

We highlight the separation of concerns in management, as this architecture defines two

domains: the Network Management Domain and the E2E Service Management Domain.

The former manages resources and services delimited by technological or organizational

boundaries and decouples the internal domain details from the outside world. The latter

manages E2E services across multiple management domains and provides coordination

between those domains. The internal domains of the network Management Domain

includes: domain data collection, domain analytics, domain intelligence, domain

orchestration, and domain control. Similarly, the E2E Service Management Domain

comprises the E2E service data collection, E2E service data service analytics, E2E

service intelligence, and E2E service orchestration. The management services in both

domains can be provided and consumed by management functions, which are logical

entities, deemed as either service consumers or service producers. In order to enable the

interoperation and communication between management functions within and across

management domains, the ZSM framework also outlines Domain Integration Fabric and

Cross-domain Data services.

On the other hand, the principle of closed-loop management is the one that enables the

E2E automation and zero-touch management of network services and infrastructures.

Closing the management loop involves the transfer of information, knowledge, functions

and operations such as analysis, learning, reasoning, planning, or decision-making

capabilities. In order to achieve the closed-loop operation, ZSM considers a model that

comprises the OODA stages: Observe, Orient, Decide, and Act. The management

functions contribute with their respective management services capabilities at the

respective OODA stages, as described in Figure 1.2.

6

Similarly, the International Telecommunication Union and its standardization sector

(ITU-T) published a technical specification document that defines a unified architecture

for ML in Fifth Generation and future networks [16]. This specification presents a set of

requirements and constructs for the ML pipeline integration into evolving networks. This

pipeline comprises the logical entities that can be combined to form analytics functions

and each functionality in the pipeline is defined as a node. The possible nodes are: source

of data (input for the ML function), collector of data, data pre-processor, ML model,

policy (specific rules for network control), distributor (of ML outputs), and sink (target of

the ML output, on which it takes action). The nodes are logical entities that are monitored

and managed by a ML function orchestrator (MLFO) and hosted in a variety of network

functions (NFs).

Figure 1.2. Mapping between architectural blocks and closed-loop automation stages in

the ZSM framework. Adapted from [10].

The MLFO is a logical orchestrator that also selects and reselects the ML model based on

its performance. Additionally, the MLFO is responsible for the placement of various ML

pipeline nodes, based on the corresponding capabilities and constraints of the use cases,

which are technology-independent and defined by intents. In other words, intents are

7

mechanisms to specify the ML use case constructs and can employ ML meta language

(ML-ML), which is needed to add the ML use case and the ML pipeline into the service

design in a declarative manner.

The three main building blocks of the unified logical architecture comprises the

management subsystem (which includes orchestration and various existing management

entities), the multi-level ML pipeline (which uses the services of an MLFO for

instantiation and setup), and the closed-loop subsystem (which allows the ML pipeline to

adapt to dynamic network environments). Figure 1.3 depicts a simplified version of the

proposed architecture to achieve closed-loop automation in operation and management on

5G networks. The management system is automated to promptly react to failures in the

Network Function Virtualization (NFV). In this way, the network operator can promptly

discover such failures, which result in gradually unstable behaviour before the process

escalates into critical failure. Root Cause Analysis (RCA) is also important to properly

convey the relationship information between failure type and location to the automation

function. Consequently, the NFV Orchestrator is configured based on policy or

workflows from the automation function. On the other hand, the ML pipeline is

monitored and set up by the MLFO.

Figure 1.3. Architecture for ML in closed-loop automation. Adapted from [11].

8

1.3. Dissertation Contributions

This dissertation presents the solution to several challenging networking situations that

are aligned with the concepts on INA explained in the previous section. There are some

commonalities among the proposed schemes, which leverage the application of ML

methods to achieve different levels of INA. Those commonalties include the existence of

a data collector and an autonomic agent that decides and takes actions based on the

insights, knowledge discovery, or predictions derived from the collected data.

Additionally, some designs also contemplate the orchestration of the intelligent

mechanisms across different domains, meaning more than one single organization

participating in the ML process.

On the other hand, we intend to introduce not only novel approaches to tackle the

challenges that some networking scenarios pose, but also INA-oriented solutions that

may eventually be implemented in real-world use cases. For this reason, all the

frameworks introduced in this dissertation consider their application using standard

protocols, specifications, or technologies. Furthermore, the data collection and

knowledge discovery processes of the ML pipelines are performed in an online manner,

so that the presented frameworks are evaluated through more realistic networking

settings.

Accordingly, the main contributions of this thesis comprise the design of several INA

solutions that aim at solving various networking problems, summarized as follows:

• Balancing the traffic in dense IoT networks, considering the Heterogeneous

Network paradigm. To this end, we propose an ML scheme that learns from the

available data of an operating IoT network to improve the network capacity in

terms of the packet delivery ratio and the energy cost of data delivery.

• Proposing an ML-based scheme that address problem of congestion control for

TCP/IP traffic, considering the AQM and ECN paradigms. The designed solution

is fully compatible with existing TCP congestion control mechanisms and already

9

deployed AQM techniques and improves the IP network capacity in terms of

throughput and delay.

• A proof-of-concept study on non-static AQM. We demonstrate how the idea of

dynamically tuning AQM parameters may boost the adoption of AQM

mechanisms to mitigate the Internet’s bufferbloat effect.

• An intelligent framework to control congestion over inter-domain links, which are

not managed by a single party. The proposed solution is a multi-domain learning

scheme in which local network data remains private. As in inter-domain scenarios

privacy is a major concern, it allows the cooperation of two or more organizations

to achieve common goals in terms of congestion by avoiding the share of raw

data.

• The design of a flexible framework to achieve efficient Network Telemetry that

can be adapted to a variety of telemetry schemes regardless their way of operation

(in-band or out-of-band). The proposed mechanism can be intelligently adjusted

to mitigate the network overhead that telemetry data collection and transmission

produce.

• A set of methodological strategies to evaluate and implement solutions that

employ ML algorithms making predictions based on real-world data and taking

actions in real-time, such as the networking automation scenarios presented in this

dissertation.

1.4. Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 describes the

problem of load balancing in dense IoT networks. The chapter introduces some concepts

on unsupervised and supervised ML as well as the applied techniques from those

approaches to tackle the challenge of balancing traffic load. The utilized methodology is

presented along with the results obtained from evaluating the presented solution through

10

simulations. At the end of the chapter, the achieved improvements are discussed in terms

of the packet delivery ratio and the energy cost of data delivery in a LoRaWAN network

as a use case.

In Chapter 3, an intelligent scheme is proposed to address the problem of adjusting the

parameters of standardized AQM schemes in dynamic TCP/IP networks. The chapter

presents the application of a Deep Learning architecture to predict congestion on Internet

links. Additionally, a RL method based on the Q-learning algorithm is utilized to

adaptively change the AQM parameters of the links. The solution is evaluated through

network emulations to consider a more realistic networking scenario and make the results

reproducible in real networks. The end of the chapter shows that the intelligent method

can enhance the TCP/IP connections in terms of latency and throughput.

In the same way, Chapter 4 presents a scenario where the intelligent AQM control needs

to be achieved on links that interconnect two or more networks belonging to different

organizations. To this end, the Federated Learning approach is applied, so that the

network elements of each organization do not share private network data. The assessment

of the proposed method presented at the end of the chapter shows that our proposed

scheme is capable of adaptively changing the AQM parameters to reduce congestion on

links that are shared by different domains, while preserving the privacy of each

organization’s data.

Correspondingly, Chapter 5 introduces a novel method to collect and transmit network

telemetry data by considering the types of traffic that a network element forwards. By

means of supervised learning techniques, the proposed scheme determines the granularity

of the telemetry data based on the classification of the flows that are being forwarded.

Through network emulations, the solution is assessed and its results are discussed at the

end of the chapter.

In Chapter 6, the major findings and limitations of this thesis are discussed. In addition,

possible directions for future research work on the topics covered in this dissertation are

explained. Finally, the references used in the research work of this thesis are presented

and a brief Curriculum Vitae of the author is provided, including his publications to date.

11

Chapter 2

2. Intelligent Load Balancing in IoT Networks

2.1. Motivation

Thanks to the proliferation of Internet-connected wireless devices, the Internet of things

(IoT) [17], [18] and the machine-to-machine (M2M) communications paradigms [19],

highly dense cellular networks have emerged as a connectivity solution for large scale

IoT applications. These wireless devices are diverse and comprise not only increasingly

powerful devices like smart phones, but also tiny ones such as sensors, actuators,

wearable electronics, etc. To alleviate the congestion in dense wireless networks, a

number of solutions have been proposed. For instance, the idea of heterogeneous

networks (HetNets) has been conceived. In a HetNet, the network infrastructure is

supported by heterogeneous elements consisting of macro base stations (MBS), which

provide a wide area coverage, and small base stations (SBS), that are meant to cover high

traffic hotspots. The design of a cellular HetNet is based on a multi-tier topology, which

features overlapped coverage between a tier of MBS and several sub-tiers of SBS. This

design enhances the network capacity but at the cost of a challenging co-existence

governing the network topology [20]. In fact, in urban areas, more SBS are added each

year to the existing networks, creating a HetNet scenario where a wireless device may

communicate with multiple BS, either MBS or SBS [21].

One of the most challenging design issues in HetNets is to achieve an optimal load

balance among the base stations (BS), since the network traffic might be unevenly

distributed. To this end, the association between devices and serving BS is a critical

consideration. In homogeneous wireless networks, like the traditional cellular networks, a

device is associated with the BS providing the strongest signal and, therefore, the

association mechanisms are based on metrics such as signal-to-noise ratio (SNR) or

received signal strength indicator (RSSI). However, this association method is not

efficient for HetNets in terms of network capacity, since other critical aspects should be

12

considered, such as, for example, the traffic load on the BS to be associated [22]. Device

association methods based on signal metrics may lead to a major load imbalance in

HetNets because MBS usually offer higher transmit power to devices than SBS.

Consequently, load balancing methods for HetNets have been proposed by considering

performance metrics like outage/coverage probability, spectrum efficiency, energy

efficiency, uplink-downlink asymmetry, backhaul bottleneck, and mobility support [23].

Nevertheless, the achievement of a balanced HetNet is not easy and intelligent

mechanisms that consider the traffic load and all related network conditions of BS are

desirable due to the overall complexity of the process [24]. For this reason, artificial

intelligence theory has been applied to overcome these kinds of challenges in complex

systems like HetNets.

Load balancing in a HetNet may be performed by using either a single radio access

technology (RAT) or multiple RAT (Multi-RAT). Multi-RAT techniques are aimed at

taking advantage of load balancing between spectrum licensed technologies, e.g., cellular

networks, and unlicensed ones, e.g., WiFi. However, the RAT selection algorithms, as

well as the offloading mechanisms across cellular BS and WiFi access points, comprise

an ambitious goal in terms of coordination and quality of service (QoS) [25]. In this

work, we focus on the load balancing problem by considering a single RAT and its

application to an actual IoT network. Specifically, the RAT used in this study is the

LoRaWAN (long-range wide-area network) standard. In other words, we assume that the

problem is delimited to the load balancing in an IoT network using a specific RAT. How

to balance load considering more than one RAT is beyond of the scope of this work and it

could be a promising research future work.

LoRaWAN is one of the most notable LPWAN (low-power wide area-network)

technologies, alternative standards to conventional cellular networks, which have

noteworthy expansions through IoT services providers [26]. As with other LPWAN

technologies, LoRaWAN devices operate at a very low power, with long coverage (end

devices can connect to a BS at a several-kilometers distance), and through a star

topology, such as cellular networks [27], [28]. Another important characteristic is that

LoRaWAN works in the unlicensed sub-GHz band, which is suitable for IoT applications

13

in complex environments. However, the LoRaWAN protocol poses relevant challenges

for dense networks regarding scalability and capacity. For example, in the default and

most used class operation (Class A), LoRaWAN devices employ an uncoordinated access

scheme (ALOHA) which might produce a collision avalanche in a large-scale network

[29]. Therefore, optimization techniques are needed to allow reliable services and to

avoid capacity drain in LoRaWAN networks with high densities of devices, such as those

deployed in urban scenarios for smart cities.

In this work, we first show that an urban LoRaWAN network may be deemed as a

HetNet. Hence, we address the problem of load balancing in a HetNet through

appropriate machine learning (ML) techniques and we apply the proposed solution to

improve the performance of a LoRaWAN network in a city. We further evaluate the

performance of our solution in terms of the packet delivery ratio (PDR) and energy cost

of data delivery (ECD) when the network has from a few to several thousands of end

devices connected to it. Moreover, we expand our analysis to the case when devices

request downlink traffic and not only the basic IoT scenario where uplink traffic is

analyzed. The evaluation of our scheme is based on data collected from an actual network

and its results illustrate that both PDR and energy cost are enhanced.

In the next sections, we review relevant works related to load balancing methods in

HetNets (Section 2.2), we explain the factors to consider for an urban LoRaWAN

network as a HetNet (Section 2.3), we describe our proposed scheme and its methods

(Section 2.4), we give details about our network simulation design (Section 2.5), and we

finally present the evaluation results (Section 2.6).

2.2. Related Work

A variety of approaches exists in the literature regarding the single RAT load balancing

in HetNets. One of the most studied techniques is the cell range expansion (CRE): a

mechanism to virtually expand an SBS range by adding a bias value to the power that a

device receives from that SBS. In this way, instead of increasing the actual transmit

14

power of an SBS, a virtual range expansion is performed so that a device will not connect

to an MBS, but an SBS. However, to find an optimal bias value for minimizing the

devices’ outage is a non-trivial problem and depends on several factors.

Accordingly, in [30] a scheme is proposed for the bias value optimization based on the

Q-learning algorithm. The authors show that their method can decrease the number of

outage devices and improve average throughput compared to non-learning schemes with

a common bias value. Conversely, in [31] Ye et al. present a load-aware association

method applied to CRE by considering two types of biasing factors, signal-to-

interference-plus-noise ratio (SINR) and rate. The authors point out that the optimal

biasing factors are nearly independent of the BS densities across tiers, but highly

dependent on the per-tier transmit powers. Authors in [32] develop a clustering algorithm

to classify BS into groups and present a central-aided distributed algorithm for adjusting

the CRE bias. Their objective is to obtain a solution for the rate-related utility

optimization problem based on local information. Thus, a central MBS is used to collect

the information from the SBS, which determine their own CRE bias based on the shared

central information. Similarly, authors in [33], [34] propose clustering techniques for

optimizing the load balancing problem in HetNets.

Taking into account the energy efficiency, Ref. [35], [36] present techniques that are

basically based on active/sleep schemes for multitier HetNets. In a similar manner,

Muhammad et al. propose in [37] an association method that selectively mutes certain

SBS. Then, end devices are covered by CRE for achieving load balancing in non-uniform

HetNets, i.e., networks with SBS randomly deployed close to the edges of the MBS

coverage, where the signals are weak. Contrary to the uniform case, their results show

that biasing has distinct effects on the coverage and rate performance of a non-uniform

HetNet. Lastly, authors in [38] propose a load balancing solution for a two-tier HetNet

based on stochastic geometry. Their algorithm performs a CRE biasing to achieve an

optimal SBS density regarding network energy efficiency.

Overall, biasing methods such as CRE are aimed at finding the appropriate bias values

and at determining whether a specific BS should be considered or not for communication

15

with a particular wireless device. An optimal decision of this association yields a network

with balanced BS. This enhances the network performance in terms of capacity and

energy efficiency, for instance, especially in scenarios with a large number of devices.

Although several ML algorithms have been presented in the literature to address the load

balancing problem, they mainly focus on reinforcement learning techniques. Our method

uses an unsupervised technique to discover the hidden pattern behind the selected

features and a supervised technique to take advantage of the historical labeled data. Then,

a supervised classifier is applied in order to accomplish a biasing scheme by

contemplating metrics that are not directly related to signals strength. In this way, our

model learns from data to predict a device-BS association without considering signal-

based measurements. Additionally, our method employs a Markov Decision Process

(MDP) to determine whether a BS needs to be balanced or not. For both techniques, the

data are obtained from a real IoT LoRaWAN network deployed in an urban area, which is

the use case scenario for our solution. To the best of our knowledge, this work is the first

one that presents a solution to the load balancing problem applied to a LoRaWAN

network.

2.3. A LoRaWAN Network Seen as a HetNet

As we have explained, the BS in a HetNet are dissimilar in terms of coverage and,

therefore, BS are either MBS or SBS. We have also mentioned that LoRaWAN networks

are cellular-like and are deployed following a star topology. However, unlike traditional

cellular networks, LoRaWAN is an open standard and operates in the unlicensed bands,

which allows rapid implementation of public and private networks. Then, in a smart city

scenario where the priority of an IoT network might be capacity rather than

communication range, the LoRaWAN access points are prone to being deployed in a non-

homogeneous manner.

Moreover, it is also important to highlight that the LoRaWAN standard lets an end device

be concurrently associated with more than one BS (i.e., gateway) [39], as shown in

16

Figure 2.1. We take into account this characteristic to evaluate the performance of our

load balancing scheme. In this way, to be consistent with the standard, our goal is to

determine what BS should transmit the downlink (DL) message to an end device, once an

uplink (UL) message is received through more than one BS. This procedure is not

defined by the LoRaWAN specifications and a network operator has to choose an optimal

mechanism for it. Therefore, we consider a number of Class A end devices transmitting

confirmed UL packets, i.e., packets that need to be acknowledged (ACK), and a network

server that must make decisions on which gateways should relay the DL packets to end

devices.

Figure 2.1. LoRaWAN network architecture. An end device may be associated with more

than one gateway. Adapted from [40].

We also point out that our use case is based on data from The Things Network (TTN), a

global collaborative LoRaWAN network crowdsourced by enthusiasts and with more

than 4000 gateways [41]. Because of the nature of this IoT network, many gateways are

randomly deployed, particularly in urban areas. Furthermore, the community members

are encouraged to build their own gateways and private deployments might use a variety

of available options in the marketplace, from macro gateways to pico gateways, e.g.,

[42]. As a result, the coverage areas of gateways are heterogeneous and overlap each

17

other with diverse signal strength values. For these reasons, LoRaWAN networks such as

TTN may be deemed as HetNets.

2.4. Proposed Scheme

Since our proposed solution for the load balancing problem is an ML-aided scheme, our

methodology is data-driven and divided into four main stages: data preprocessing, pattern

analysis, classification method, and decision-making model. The following subsections

provide the details about each phase.

2.4.1. Data Preprocessing

In this stage we gather the historical data from an actual operating network. As

mentioned in Section 2.3, the use case for our method is an IoT LoRaWAN network and

that is why we take advantage of the TTN initiative. Specifically, we use the data

available at the TTN Mapper website [43]. The TTN Mapper is an application fed by

users with mobile devices and its main objective is to map the TTN gateways coverage

by sending UL packets. For this work, we use the data dumped into tab-delimited files,

which contain several fields that describe the connectivity status of the end devices at a

given time and location, such as: node ID, timestamp, node address, address of the

gateway the device is connected to, modulation in use, transmission data rate, SNR,

RSSI, frequency, latitude, longitude, and altitude (the latter not available for all samples).

Since the files contain raw data, the first step is to clean and select the entries that are

useful for our problem. To this end, we searched for data corresponding to an urban area

taking into account the following considerations: (1) the BS with the highest number of

received packets is the reference BS; (2) other BS are selected within a 10 km radius of

the reference BS; (3) as end devices are mobile, only entries with location information of

devices are considered; and (4) every BS is associated with two or more devices, thereby

avoiding “dedicated” BS in the analysis. The resulting data is a subset of 261,576

samples, corresponding to seven BS. Figure 2.2 depicts the locations of the found BS and

their devices in order to visualize how they are distributed and associated. Similarly,

18

Figure 2.3 shows an idealization of the BS coverage based on their associated devices’

locations. As can be seen, the data points show an urban scenario where some gateways

behave like SBS and others like MBS. For example, BS 1 and BS 3 have shorter

coverage ranges compared with the other gateways and their devices might be associated

with BS 0 or BS 2, as well. Therefore, the selected data is suitable for our scheme and is

consistent with our hypothesis of treating an urban dense IoT network as a HetNet.

Figure 2.2. Locations of BS and their associated devices within the selected urban area.

Figure 2.3. Coverage approximation of BS based on data points, assuming isotropic

radiation, and ideal propagation.

19

Secondly, as our goal is to bias the device association to accomplish a load balancing, we

extract several variables from data and waive the SNR and RSSI metrics. The main

reason of doing so is to learn from the correlation among device’s variables that are not

directly influenced by the signal strength values. Thus, the features to be analyzed are

some already available in the dataset such as frequency, data rate, latitude, and longitude,

and others extracted from the timestamp field like time of the day, and day of the week.

The idea of using these variables is to learn from their values as they describe the

particular situation of a device at the moment that is successfully transmitting a packet to

the BS.

2.4.2. Pattern Analysis

The purpose of this phase is to find out whether the extracted features provide

differentiated patterns for each BS. To this end, we analyze the samples of the seven BS

by using the principal components analysis (PCA). PCA is an unsupervised ML

technique widely used for data visualization and feature selection. In this work, the main

purpose to use PCA is to reduce the feature space to only two dimensions, so that the data

of the end devices considering the selected features can be visualized.

PCA is a linear transform that maps the data into a lower dimensional space, known as

the principal subspace, preserving as much data variance as possible, i.e., with minimum

loss of information [44]. Since our features are frequency, data rate, latitude, longitude,

time of the day, and day of the week, the original dimension of our data is a matrix

𝑁𝑁 × 𝐷𝐷, where 𝐷𝐷 = 6 and 𝑁𝑁 = 261,576. In this way, our objective is to project the data

of each BS into two dimensions, i.e., 𝐷𝐷 = 2, in order to visualize and verify that the

extracted features do show a distinctive pattern. Therefore, for each BS there are 𝑁𝑁𝑘𝑘

samples and PCA will produce two vectors of 𝑁𝑁𝑘𝑘 elements, corresponding to the first two

principal components. These vectors are computed as follows:

𝐩𝐩𝑐𝑐 = 𝐰𝐰𝑐𝑐
T𝐱𝐱𝑘𝑘

(2.1)

20

where 𝑐𝑐 = {1, 2}, 𝐰𝐰𝑐𝑐 are the projection vectors, and 𝐱𝐱𝑘𝑘 are the data subsets of each BS,

i.e., 𝑘𝑘 = {0, 1, 2, 3, 4, 5, 6}. In this case, the learning task is to choose 𝐰𝐰𝑐𝑐 so that vectors

𝐩𝐩𝑐𝑐 have the maximum variance. Thus, PCA determines vectors 𝐰𝐰𝑐𝑐 by maximizing the

variance in the projected space and by making them orthogonal, which means that

𝐰𝐰1
T𝐰𝐰2 = 0. This maximization problem can be solved through the incorporation of

Lagrangian terms [44], that yields:

𝐒𝐒𝐰𝐰𝑐𝑐 = 𝜆𝜆𝑐𝑐𝐰𝐰𝑐𝑐 (2.2)

The pairs 𝜆𝜆𝑐𝑐 and 𝐰𝐰𝑐𝑐 are the eigenvalues and the eigenvectors, respectively, of the

covariance matrix 𝐒𝐒, which is defined by(2.3):

𝐒𝐒 =
1
𝑁𝑁𝑘𝑘

�(𝐱𝐱𝑘𝑘𝑛𝑛 − �̅�𝑥𝑘𝑘)
𝑁𝑁𝑘𝑘

𝑛𝑛=1

(𝐱𝐱𝑘𝑘𝑛𝑛 − �̅�𝑥𝑘𝑘)T (2.3)

where �̅�𝑥𝑘𝑘 is the mean of sample subset 𝐱𝐱𝑘𝑘.

Consequently, the variance will be maximum when 𝐰𝐰1 is equal to the eigenvector with

the highest eigenvalue 𝜆𝜆1, giving as result the first principal component. The second

principal component is given by selecting a new direction, so that 𝐰𝐰2 is orthogonal to 𝐰𝐰1

and equal to the eigenvector with the second highest eigenvalue 𝜆𝜆2.

Finally, it is also important to highlight that before performing the PCA, each feature is

normalized by using the min-max scaling method (2.4):

𝑧𝑧 =
𝑥𝑥 − 𝑥𝑥min

𝑥𝑥max − 𝑥𝑥min
 (2.4)

where z represents the normalized data points and x the original ones. The main objective

of the scaling procedure is to have the values of all features within a range that is not too

large, so that the variance maximization is not affected by their actual values [45]. Also,

we have delimited 𝑁𝑁𝑘𝑘 = 10,000 in order to have an equal number of samples for each BS

and make a fairer comparison among their patterns.

21

2.4.3. Classification Method for Association Biasing

In this stage, we use the data to train the system and determine a biased association

between a device and a particular BS. In our use case, we denote the device-BS

association as the selection of a BS to relay DL packets. We do this distinction as a

LoRaWAN device may be connected to several gateways to send UL packets to the

Network Server, so biasing in UL makes no sense and is not consistent with the standard.

On the other hand, we assume that the default DL association in TTN is based on signal

strength, as suggested in [46]. Then, our purpose is to bias that DL path configuration,

recognizing that a bidirectional traffic in a LoRaWAN network represents a more realistic

scenario [47].

To bias the device-BS association, we take advantage of the labeled data by applying a

supervised learning technique. Specifically, this technique is intended to perform a multi-

class classification, since our goal is to predict the BS that should forward DL messages

to an end device by avoiding the SNR and RSSI metrics. Hence, in our use case scenario

we have seven classes, one per BS. In addition, the inputs of the classifier are the features

contemplated for PCA and the labels, which are categorical values corresponding to one

of the seven classes.

ML classification algorithms can be categorized into two types: probabilistic and non-

probabilistic classifiers. The main difference between them is that non-probabilistic

classifiers define a decision boundary to determine whether a prediction belongs or not to

a specific class [48]. It means that a non-probabilistic classifier performs a hard

classification: given the inputs values, the model yields only one class. On the other hand,

a probabilistic classifier provides the probabilities of belonging to each class, instead of

giving only one class as a result. Then, a probabilistic classifier produces a soft

classification and does not define decision boundaries. As we want to bias the default

device-BS association, it is desirable to find the probabilities of receiving DL packets

through other BS. For this reason, we choose to use a probabilistic classifier.

Additionally, these kinds of classifiers allow us to find the classification posterior

probabilities, which can be used for our decision-making problem of load balancing.

22

In general, probabilistic classifiers are based on the Bayes’ theorem to find the posterior

class probabilities and determine the class membership for each new input 𝐱𝐱 [44]. Thus,

the posterior probabilities 𝑝𝑝(𝐶𝐶𝑘𝑘|𝐱𝐱) are given by (2.5):

𝑝𝑝(𝐶𝐶𝑘𝑘|𝐱𝐱) =
𝑝𝑝(𝐱𝐱|𝐶𝐶𝑘𝑘)𝑝𝑝(𝐶𝐶𝑘𝑘)

𝑝𝑝(𝐱𝐱)

(2.5)

where 𝑝𝑝(𝐱𝐱|𝐶𝐶𝑘𝑘) represents the class-conditional densities individually inferred for each

class 𝐶𝐶𝑘𝑘, 𝑝𝑝(𝐶𝐶𝑘𝑘) are the prior class probabilities, which can be estimated from portions of

the training subset, and 𝑝𝑝(𝐱𝐱) is found as follows (2.6):

𝑝𝑝(𝐱𝐱) = �𝑝𝑝
𝑘𝑘

(𝐱𝐱|𝐶𝐶𝑘𝑘)𝑝𝑝(𝐶𝐶𝑘𝑘)
(2.6)

To select a specific classification method, we compare the accuracy and the

computational time of several algorithms, such as multiple logistic regression (MLR),

Gaussian naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic

Discriminant Analysis (QDA), and Decision Trees (DT). In addition, we include in our

comparison some ensemble methods such as the Random Forests (RF), Extra Trees (ET)

and a voting classifier. Details about the algorithms behind these classifiers can be found

in [45], [48], [49].

Similar to the pattern analysis, an equal number of samples 𝑁𝑁𝑘𝑘 = 10,000 are extracted

for each class in order to have a balanced dataset and prevent the classifiers from being

biased during the training process. To train and test the classifiers, the dataset is divided

into two subsets: 80% and 20%, respectively. Based on these subsets, we also calculate

the average accuracy of each classifier. In this way, we determine the true positive (TP),

true negative (TN), false positive (FP), and false negative (FN) classification outcomes

per class by comparing the predicted labels to the actual labels from the test subset

samples. Note that a hard classification is needed for this comparison, therefore, we

consider the class with the highest probability as the predicted label. Accordingly, the

terms TP, TN, FP, and FN are derived from the confusion matrix, which summarizes the

23

comparison: columns describe the outputs of predicted labels and rows, the actual labels.

Thus, the value of TP for class 1, for example, is the number of predictions with label 1

that match the actual label 1, and the number of predictions that do not match is the value

of FP. Similarly, TN is the number of predictions with other label different from label 1

that match any other actual label, and FN represents the otherwise case. Subsequently, the

overall classifier accuracy with 𝐾𝐾 classes can be calculated by macro-averaging the

accuracy of the classes [50], i.e., all classes equally treated, as follows (2.7):

Accuracy =
1
𝐾𝐾
�

TP𝑘𝑘 + TN𝑘𝑘

TP𝑘𝑘 + TN𝑘𝑘 + FP𝑘𝑘 + FN𝑘𝑘

𝐾𝐾

𝑘𝑘=1

(2.7)

Additionally, we point out that before training the classifiers, the features are

standardized by using the z-score Formula (2.8):

𝑧𝑧 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

(2.8)

where 𝑧𝑧 is the standardized data point value, 𝑥𝑥 is the original value, 𝜇𝜇 and 𝜎𝜎 are the mean

and the standard deviation of each variable, respectively. In this way, the classifiers

perform better with standard normally distributed data, i.e., with zero mean and unit

variance [45].

Finally, we define 𝐫𝐫𝑘𝑘 as the vector with the found probabilities after making a prediction

for the biased association. Therefore, the values of 𝐫𝐫𝑘𝑘 correspond to a device’s

probabilities of being associated with specific BS by waiving the signal-based features,

and then ∑ 𝑟𝑟𝑘𝑘𝑘𝑘 = 1.

2.4.4. Decision-Making Model for Load Balancing

Our goal with the decision-making model is to achieve a load balance and, consequently,

improve the network capabilities in terms of PDR and energy cost of data delivery.

24

Without loss of generality, we delimit our analysis to those cases when an end device

transmits UL packets to two BS at the same time. In this fashion, we filter the original

dataset, obtaining a new subset with 17,146 samples. For example, a pair of samples from

that subset represent an end device that concurrently sends UL traffic to BS 2 and BS 3,

as shown in Figure 2.4. The default path for DL traffic depends on the BS with the

highest RSSI, as we explained in Section 2.4.3. In our example, that default DL

association is done via BS 2. Therefore, the decision to be made is whether DL packets

are forwarded through the BS corresponding to the default path or not. In the latter case,

the DL traffic would be transferred to BS 3. As mentioned in Section 2.2, our decision-

making model is based on an MDP, so that the Network Server can make decisions on

DL load balancing at each BS. We also model our MDP with some calculations based on

data of the new subset.

Figure 2.4. Example of a load-balancing decision to be made.

Generally speaking, an MDP is a sequential decision problem for an observable and

stochastic environment with the Markovian property. In other words, MDPs are a

fundamental formalism for sequential learning problems in stochastic domains, such as

decision-theoretic planning and reinforcement learning [51]. A set of states 𝑠𝑠, a set of

actions in each state 𝑎𝑎(𝑠𝑠), the transition probabilities among states 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎), and a

25

reward function 𝑅𝑅(𝑠𝑠) comprise an MDP. Thus, a decision maker (also known as agent)

must choose to perform an action when the process is in a singular state, based on a

policy 𝜋𝜋, which is the decision solution given 𝑃𝑃 and 𝑅𝑅 [1]. For our scheme, we model an

MDP with states corresponding to the number of BS. There are two actions to complete

in each BS: to offload or not to offload its DL traffic, i.e., 𝑎𝑎(𝑠𝑠) = {0, 1}. Two matrices

describe the values of 𝑃𝑃 for each action, defined as 𝐏𝐏0 when the decision is to not offload,

and 𝐏𝐏1 to offload the BS.

We assume that any device is concurrently transmitting confirmed packets to two BS,

which means that one of those BS must respond an ACK, i.e., a DL message. As we

explained in Section 2.4.3, the default DL association for transmitting an ACK is between

the BS with highest RSSI and the end device. Therefore, the decision that the Network

Server has to make is whether the DL association remains with the default BS, 𝑎𝑎(𝑠𝑠) = 0,

or switches to the other one, 𝑎𝑎(𝑠𝑠) = 1. Subsequently, the probability of being in state 𝑠𝑠

and staying in that state if the decision is to not offload is 𝑃𝑃(𝑠𝑠′ = 𝑠𝑠|𝑠𝑠, 𝑎𝑎 = 0) = 1, and

then 𝐏𝐏0 is defined as follows (2.9):

𝐏𝐏0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

(2.9)

To calculate 𝐏𝐏1, the transition probabilities can be estimated from historical records [52].

Thus, we use the data samples to count the total number of device associations that each

BS had and the shared associations between each pair of BS. Hence, the probabilities that

the DL traffic is offloaded from a BS to another BS, 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎 = 1), are given by (2.10):

26

𝐏𝐏1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

∑(𝐱𝐱0 ∩ 𝐱𝐱1)
∑𝐱𝐱0

⋯
∑(𝐱𝐱0 ∩ 𝐱𝐱6)

∑𝐱𝐱0
∑(𝐱𝐱1 ∩ 𝐱𝐱0)

∑𝐱𝐱1
0 …

∑(𝐱𝐱1 ∩ 𝐱𝐱6)
∑𝐱𝐱1

⋮ ⋮ ⋱ ⋮
∑(𝐱𝐱6 ∩ 𝐱𝐱0)

∑𝐱𝐱6

∑(𝐱𝐱6 ∩ 𝐱𝐱1)
∑𝐱𝐱6

⋯ 0
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(2.10)

With respect to 𝑅𝑅(𝑠𝑠), we also estimate its values based on the historical data and the

classifier results. Basically, we compute how busy a BS might be transmitting DL

packets to define how “rewarding” that BS is. In this way, the more occupied a BS is, the

higher its reward is for the offloading decision. This consideration is consistent with the

fact that gateways utilization is taken into account to schedule DL traffic in TTN [46].

Then, the rewards vector for the MDP is calculated as follows (2.11):

𝐑𝐑 = �𝐫𝐫𝑘𝑘𝑛𝑛

𝑁𝑁𝐴𝐴

𝑛𝑛=1

(2.11)

where 𝑁𝑁𝐴𝐴 is the total number of end devices requesting ACKs and 𝐫𝐫𝑘𝑘 is the vector

containing the obtained probabilities from the classifier.

It is also important to point out that we model our MDP with an indefinite horizon for the

decision making, which means that there is no fixed time limit and that the optimal policy

𝜋𝜋∗ is stationary [1]. Also, we consider a discount factor 𝛾𝛾 that describes the preference of

the decision maker (in our case, the Network Server) for current rewards over future

rewards. Accordingly, the utility of a state sequence is defined as (2.12):

𝑈𝑈 = �𝛾𝛾𝑘𝑘𝑅𝑅(𝑠𝑠𝑘𝑘)
𝑘𝑘

(2.12)

More importantly, we must find 𝜋𝜋∗ for our MDP, which is an optimization problem to

choose the action that maximizes the expected utility of the subsequent state (2.13):

27

𝜋𝜋∗(𝑠𝑠) = argmax𝑎𝑎 �𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)𝑈𝑈(𝑠𝑠′)
𝑠𝑠′

(2.13)

There are several methods to solve this optimization problem. In this work, we assess the

performance of two well-known algorithms: value iteration and policy iteration. On the

one hand, the value iteration algorithm calculates the utility of each state and then

iteratively uses the state utilities to select an optimal action in each state. On the other

hand, the policy iteration algorithm alternates between the evaluation of the states utilities

under the current policy (starting from some initial policy) and the improvement of the

current policy with respect to the current utilities. Details about these and other

algorithms can be found in [1], [52].

Figure 2.5. Algorithm for the traffic offloading decision.

28

Another point to consider is that we define the amount of DL traffic offloading based on

the classifier outputs to avoid that any BS ends up with no packets to transmit. As a

result, the quantity of end devices to be offloaded from a BS, that is 𝑀𝑀𝑘𝑘, depends not only

on 𝜋𝜋∗ but also on 𝐫𝐫𝑘𝑘, as shown in Figure 2.5. In this flowchart, �̅�𝑟𝑘𝑘 is the mean value of

vector 𝐫𝐫𝑘𝑘, 𝑁𝑁𝑘𝑘 is the number of devices associated with a specific BS, and 𝐾𝐾 is total

number of BS in the network.

2.5. Network Simulation Design

To simulate a system using our proposed scheme, we adapt some analytical models found

in the literature for the simulation of LoRaWAN networks. As we assume that in the

network all the devices are Class A, they use the uncoordinated transmission scheme

ALOHA. The PDR in a network that employs pure ALOHA can be modeled based on a

Poisson distribution [53], as follows (2.14):

where 𝑁𝑁 is the number of devices in the network, 𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃 is the average airtime that takes

transmitting a packet, and 𝜆𝜆 is the average packet arrival rate. However, this model does

not take into account the retransmissions when devices request ACKs from the network.

Therefore, the model is adapted to consider the retransmissions (2.15):

PDR𝐴𝐴 = 𝑒𝑒−2𝑁𝑁𝐴𝐴∗𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑃𝑃𝑃𝑃∗𝜆𝜆∗𝑝𝑝𝐵𝐵𝐵𝐵
(2.15)

𝑁𝑁𝐴𝐴 is the total number of end devices requesting ACKs, as described in Section 2.4.4, and

the new term 𝑝𝑝𝐵𝐵𝐵𝐵 is the blocking probability of a BS due to the ACKs (DL traffic), given

by (2.16):

PDR = 𝑒𝑒−2𝑁𝑁∗𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑃𝑃𝑃𝑃∗𝜆𝜆
(2.14)

29

𝑝𝑝𝐵𝐵𝐵𝐵 = 1 − (1 − 𝑞𝑞𝐵𝐵𝐵𝐵)𝐴𝐴𝑇𝑇𝑇𝑇
(2.16)

where 𝑞𝑞𝐵𝐵𝐵𝐵 is the ratio between DL traffic and UL traffic in a BS and 𝐴𝐴𝑇𝑇𝑇𝑇 is the number of

retransmissions of a device before receiving an ACK. As the LoRaWAN standard

specifies a maximum number of seven retransmissions and considering the original

transmission as a retransmission, according to [54], we run our simulations with 𝐴𝐴𝑇𝑇𝑇𝑇 = 8,

which corresponds to the worst case. It is also important to highlight that, for the 𝑞𝑞𝐵𝐵𝐵𝐵

calculation, the DL traffic is either the default load or the balanced load at the BS,

depending on the offloading decision.

Next, to simulate the PDR over all the BS in the network, we calculate the total PDR

following the product form (2.17):

PDRTotal = �PDR𝐴𝐴𝑘𝑘

𝐾𝐾

𝑘𝑘=1

(2.17)

where 𝐾𝐾 is the total number of BS, that is 𝐾𝐾 = 7 for our use case scenario.

In our simulations, each experiment represents an MDP. For each experiment, we take

samples from the subset described in Section 2.4.4. In this manner, we conduct more

realistic experiments by using actual data instead of synthetic data. An experiment

consists of randomly selecting a pair of samples corresponding to an end device

associated with two BS. Without loss of generality, we delimit our analysis to 𝑁𝑁𝐴𝐴max =

5000, starting with an experiment of 5 devices and increasing the number by 5 in each

experiment. The main reason of this constrain is that most of the samples in the dataset

correspond to end devices associated with one BS only. Then, in order to consider the

end devices requesting DL traffic, we need to filter out those with a single association. In

relation to 𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃, we choose an airtime that is consistent with common LoRaWAN

deployments like TTN. Consequently, we set 𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃 = 1712.13 ms, which is a robust

packet airtime for those kinds of deployments, according to [55].

30

With respect to the energy cost of data delivery (ECD), we adapt the model for a dense

LoRaWAN network presented in [56]. Thus, the ECD is given by (2.18):

ECD = 𝛼𝛼
𝑒𝑒𝑁𝑁𝐴𝐴∗𝜆𝜆∗𝑝𝑝𝐵𝐵𝐵𝐵∗𝐿𝐿𝑃𝑃𝑃𝑃

𝐿𝐿𝑃𝑃𝑃𝑃

(2.18)

where 𝛼𝛼 is a constant expressed in Joules and 𝐿𝐿𝑃𝑃𝑃𝑃 is the size of messages payload. We

assume that a typical Smart City IoT application transmits messages with a payload size

of 20 bytes, on average. For both PDR and ECD models, Table 2.1 summarizes the

parameters used in our simulations.

Table 2.1. Simulation parameters for the evaluation of Packet Delivery Ratio and Energy

Cost of Data Delivery.

Parameter Description Value

𝛾𝛾 Discount factor for MDP 0.9

𝑁𝑁𝐴𝐴 Number of end devices requesting ACK {5, 10, 15, ⋯ 5000}

𝜆𝜆 Average packet arrival rate 0.25 × 10−4 packets/ms

𝑇𝑇𝑃𝑃𝑎𝑎𝑐𝑐𝑘𝑘𝑃𝑃𝑃𝑃 Packet airtime 1712.13 ms

𝐴𝐴𝑇𝑇𝑇𝑇 Number of retransmissions 8

𝛼𝛼 Energy constant 0.4 J

𝐿𝐿𝑃𝑃𝑃𝑃 Size of messages payload 20 B

2.6. Evaluation Results

We evaluate our method through computer simulations and, specifically, by running code

written in Python 3. Some packages for data analysis and ML are used, such as pandas

[57], scikit-learn [58], and MDPToolbox [59]. The simulations are run on a PC with

31

Ubuntu 16.04 64 bits, processor Intel® Core™ i3 CPU M 350 @ 2.27 GHz × 4, and RAM

of 4 GB. Note that we decided not to use High Performance Computing systems, as we

are aware that many private LoRaWAN deployments do not count on these sorts of

resources. In the following subsections we present the numerical results of our

simulations and discuss their implications.

2.6.1. PCA Patterns

Figure 2.6. Discovered patterns for BS after projecting the first two principal

components.

32

As explained in Section 2.4.2, we want to discover whether there is a characteristic

pattern for each BS when the device association is biased by obviating the RSSI and SNR

metrics. Therefore, the PCA analysis is performed taking into account the normalized

values of the features: frequency, data rate, latitude, longitude, time of the day, and day of

the week. To visualize the analysis, Figure 2.6 shows the pattern projected by the first

two principal components for each BS. It is noticeable that each BS depicts a different

pattern, which means that a device with particular values of the extracted features might

be associated with specific BS through classification. In other words, we can predict the

device’s probability of having a specific DL path by biasing the signal-based variables.

2.6.2. Classifiers Outcomes

As we explained in Section 2.4.3, our goal with the classifier is to bias the default device-

BS association based on signal strength measurements like RSSI. Then, the classifier is

trained with features that represent the particular condition of the devices, excluding the

signal-based variables. To evaluate the association biasing, we use data samples from the

subset described in Section 2.4.4. In this manner, we select 8500 devices that

simultaneously transmit UL packets to two BS. Assuming that the default association is

given by the BS with the highest RSSI, an approximation of all BS coverage is shown in

Figure 2.7a. As can be seen, this coverage mapping is comparable to that depicted in

Figure 2.3. On the contrary, Figure 2.7b illustrates a coverage map estimate based on the

classification results. In this case, the association of a device with the default BS is

changed to the BS with the highest probability given by the classifier. It is noticeable that

the proposed biasing method yields a CRE, as described in Section 2.2. For instance, the

range of BS 1 and BS 3, which act as SBS, are virtually expanded after performing the

association biasing.

To compare the performance of the probabilistic classifiers, we ran the training code

5000 times. Figure 2.8 shows the average classification accuracy and the average training

times for each considered algorithm. The voting method is an ensemble classifier that

combines the classification results from GNB and QDA.

33

(a)

(b)

Figure 2.7. Device-BS association comparison: (a) estimated coverage based on RSSI;

(b) CRE based on biased association.

As can be seen, the most accurate classifier is ET, however, this algorithm also employs

the third longest training time. In contrast, our intention with the voting classifier is to

evaluate any accuracy enhancement given by the combination of the two fastest

algorithms, i.e., GNB and QDA. Although the accuracy of the voting algorithm is slightly

above the QDA’s score, the total training time is approximately the summation of their

34

individual training times. For these reasons, we finally use the ET algorithm outcomes as

inputs for the decision-making model.

(a)

(b)

Figure 2.8. Classifiers performance comparison: (a) average classification accuracy; (b)

average training time.

35

2.6.3. Network PDR Improvement

In this subsection we present the obtained results when the network is simulated with the

parameters specified in Section 2.5. We first compare the PDR improvement achieved

with our proposed scheme through two simulation setups: MDP with and without the

classifier. The objective is to determine if the combination of the classification method

and the modeled MDP really makes a difference compared to the MDP working alone.

Note that, to compare the MDP results without the classifier, the reward vector 𝐑𝐑 is found

by counting the number of default DL associations. In this way, one simulation setup is

based on the association biasing given by the classifier’s predictions (as described in

Section 2.4.4) and the other setup relies on the RSSI-based association.

Figure 2.9 depicts the resulting graphs of the system simulation in terms of PDR. As can

be seen, the proposed scheme performs better when the outcomes from the classifier are

taken into account, particularly in the circumstances when many devices are requesting

DL traffic (note that the MDP-only load balancing method outperforms the combined

method just when the number of devices is small, i.e., between 0 and 300 devices,

roughly). However, there is a trade-off between the PDR improvement and the

computational time, Figure 2.10. We point out that in this comparison we only consider

the classifier’s prediction time, in other words, we do not include its training time, as we

assume that the Network Server has previously trained the model. It is noticeable that

when the proposed scheme uses the association biasing based on the predicted classes,

the MDP needs more time to make a decision on load balancing. It is also important to

highlight that the graph show some peaks, which means that the iteration algorithm

employed more iterations to find 𝜋𝜋∗. Because of the stochastic nature of the samples, the

algorithm might have dealt with tough values to determine 𝜋𝜋∗. However, we can see that

in those cases, although more time was needed, the goal of improving the PDR was

achieved.

36

Figure 2.9. Network PDR improvement based on proposed scheme.

Figure 2.10. Computational time comparison for the MDPs.

In terms of improvement percentages, we find that the PDR increases by 13.11%, on

average, and up to 26.8% without the classifier. Similarly, the PDR rises by 23.74%, on

average, and up to 49.98% when the classifier results are incorporated in the decision-

making model. In contrast, the average decision time is 89.33% higher for the latter case,

reaching a maximum of 0.27 s. However, we highlight that the decision process is run on

the Network Server which is supposed to have enough resources to deal with this trade-

off and take advantage of a better PDR for the whole network.

37

Additionally, as mentioned in Section 2.4.4, we compare the computational time of both

value iteration and policy iteration algorithms to solve the MDPs. The measured average

decision times are 70 ms and 95 ms for the policy iteration and the value iteration

methods, respectively, after running the experiments with the MDP-only simulation

setup. This fact reveals that the policy iteration method is about 26% faster than the value

iteration method to find the optimal policy of our load balancing decision model. That is

why we used the policy iteration algorithm for the comparison described in Figure 2.10.

2.6.4. Network ECD Reduction

In relation to the ECD, we also compare the results of the MDPs with and without the

association biasing. Figure 2.11 depicts the normalized ECD. Similar to the PDR

evaluation results, our proposed scheme yields an ECD reduction of 8.1%, on average,

and up to 13.36% when the classification method is ignored. Conversely, a maximum

reduction of 19.1% and an average ECD reduction of 12.04% are achieved when the

biasing method, based on the classifier, is included in the load balancing model.

Figure 2.11. Network EDC reduction based on proposed scheme.

38

2.7. Summary

With the dramatic increase of connected devices, the Internet of things (IoT) paradigm

has become an important solution in supporting dense scenarios such as smart cities. The

concept of heterogeneous networks (HetNets) has emerged as a viable solution to

improving the capacity of cellular networks in such scenarios. However, achieving

optimal load balancing is not trivial due to the complexity and dynamics in HetNets. For

this reason, we propose a load balancing scheme based on machine learning techniques

that uses both unsupervised and supervised methods, as well as a Markov Decision

Process (MDP). As a use case, we apply our scheme to enhance the capabilities of an

urban IoT network operating under the LoRaWAN standard. The simulation results show

that the packet delivery ratio (PDR) is increased when our scheme is utilized in an

unbalanced network and, consequently, the energy cost of data delivery is reduced.

Furthermore, we demonstrate that better outcomes are attained when some techniques are

combined, achieving a PDR improvement of up to about 50% and reducing the energy

cost by nearly 20% in a multicell scenario with 5000 devices requesting downlink traffic.

39

Chapter 3

3. Intelligent Active Queue Management

3.1. Motivation

Thanks to the proliferation of smart devices and the paradigm of Internet of Things (IoT),

the demand for connections to the Internet is dramatically growing. As a response,

Internet Service Providers (ISPs) are focused on improving the performance of their

networks and connections to the Internet. However, engineers and researchers are trying

to address this challenge by solving the traditional networks’ congestion problems. On

the one hand, congestion avoidance mechanisms in TCP have been part of the solution

and essential for the massive adoption of the World Wide Web. On the other hand, due to

the bottlenecks along the paths, buffers have been deployed to avoid packet loss when

packets arrive at faster rate than can the links. Nevertheless, excessive buffering leads to

increasing delays, as packets have to stay longer in the queues, and causing a

phenomenon known as bufferbloat [60]. Network devices tackle this effect through

Active Queue Management (AQM) techniques, which aim to avoid the buffer’s overflow

by dropping or marking the packets before the buffer fills completely. A variety of AQM

schemes has been proposed, including the classical Random Early Detection (RED)

algorithm [61], the Controlling Queue Delay (CoDel) [62], and newer ones such as the

Proportional Integral controller Enhanced (PIE) [63] and the Flow Queue CoDel (FQ-

CoDel) [64]. Despite the advantages of AQM techniques, they are not widely adopted in

ISPs’ network devices for the following reasons: first, some AQM mechanisms have

parameters that might be difficult to tune in very dynamic environments. Second, routers

and switches with more memory available in the market have created the misconception

that the larger the buffers, the better.

The main advantage of dropping packets with AQM rather than with tail-drop queues, i.e.

buffers with no AQM, is to avoid the unnecessary global synchronization of flows when

a queue overflows. Consequently, network devices drop more packets when no AQM

40

scheme is in use and the network throughput is deteriorated. In contrast, an AQM method

can decide to either drop or mark packets when the network experiences incipient

congestion. The process of marking packets instead of dropping them is known as

Explicit Congestion Notification (ECN). The employment of ECN can reduce the packet

loss and latency of Internet connections, among other benefits such as improving

throughput, reducing probability of retransmission timeout expiry, and reducing the head-

of-line blocking [65]. Moreover, the importance of ECN relies on its fact of making

incipient congestion visible, by exposing the presence of congestion on a path to network

and transport layers. The data containing ECN-marked packets can be exploited to learn

some characteristics such as the level of congestion of a network operator and the

behavior of TCP protocols or applications, for instance. For these reasons, the

deployment of new ECN-capable end systems and the necessity of reducing queuing

delay in modern networks have motivated the interest in ECN [66]. Indeed, IETF has

published a significant number of RFC documents regarding ECN, which indicates strong

level of interests from industry and academia.

ECN is specified in the RFC3168 [67], which defines four codepoints through two bits in

the IP header, to indicate whether a transport protocol supports ECN and if there is

congestion experienced (CE). This IETF recommendation also specifies two flags in the

TCP header to signal ECN: the ECN-Echo (ECE) and the Congestion Window Reduced

(CWR). Then, if the AQM algorithm in any router along the path determines that there is

congestion, the router marks the packets with the CE code to indicate to the receiver that

the network has experienced congestion. Once the CE-marked packet arrives at the

receiver, it echoes back a packet to the sender with the ECE flag set in the TCP header to

notify that congestion was experienced along the path. Consequently, the sender reduces

the data transmission rate and sends the next TCP segment to the receiver with the CWR

flag set. It is important to highlight that TCP also responds to non-explicit congestion

indication produced by tail-drop queues or AQM dropping. How TCP performs those

actions depends on the congestion control mechanisms on the transport layer and their

details are out of the scope of this work. However, it is evident that the utilization of ECN

mitigates the need for packet retransmission and, consequently, avoids the excessive

delays due to retransmissions after packet losses. In addition, without ECN it is not

41

possible to determine if the packets are lost because of congestion or poor link quality.

Finally, we point out the rest-of-path congestion concept introduced in the Congestion

Exposure (ConEx) mechanism, which to some extent has inspired our work. Although

proposed several years ago, the implementation of ConEx is not widely deployed, as it

needs modifications to the TCP protocol at the sender side [68].

Accordingly, in this work we propose an intelligent use of the standardized ECN

mechanism for existing AQM solutions. We build our method on Machine Learning

techniques for the exploitation of ECN. The method consists of two main parts: a

congestion predictor and a dynamic parameter tuner. The latter applies a Reinforcement

Learning (RL) technique to balance the delay and throughput by adaptively setting the

AQM parameters. The congestion predictor is a Neural Network (NN) that forecasts if

there will be congestion on the rest-of-path. Our main goal is to propose a scheme that is

fully compatible with existing TCP congestion control mechanisms and already deployed

AQM techniques. Although previous works have used Machine Learning techniques to

solve problems regarding AQM, to the best of our knowledge, none of them exploits

ECN to improve the AQM mechanisms. For example, authors in [69] compare several

AQM techniques based on NN with conventional AQM techniques. Through simulations,

the authors show that the studied NN-based methods converge faster than the traditional

techniques. Similarly, Bisoy and Pattnaik propose in [70] an AQM controller based on

feed-forward NN, which stabilizes the queue length by learning the traffic patterns. Also,

on the basis of RL, Bouacida and Shihada present in [71] the LearnQueue method, which

focuses on the operation in wireless networks. Authors model their solution by adapting

the Q-learning algorithm to control the buffer size. By means of unsupervised learning

techniques, authors in [72] propose a cognitive algorithm to detect and penalize

misbehaving ECN-enabled connections. Although this problem and the employed

techniques differ from ours, we find some similarities in terms of exploiting the TCP

connection data and the implementation on top of existing AQM mechanisms.

3.2. Intelligent AQM Design

As we mentioned in the Introduction, our goal is to enhance the performance that current

AQM techniques provide at bottlenecks. We have explained how the ECN can reduce the

42

connections’ latency when enabled in the AQM along a path. However, ECN is not

currently exploited to estimate the congestion ahead and dynamically adjust the AQM

parameters in a router. Our hypothesis is that TCP connections can have a better

performance if AQM schemes are tuned based on the specific network conditions. Yet,

this is a non-trivial problem due to the complexity of IP networks. Consequently, we

propose an intelligent method for improving existing AQM that learns from the

experience and ECN feedback of a changing network. Our method is meant to be

implemented on edge routers for two main reasons: first, edge routers are more prone to

experience congestion than core routers, due to the bottleneck link between the access

network and the backbone. Second, our mechanism uses traffic data in the downstream

direction, which may take different paths in the core network. Despite these reasons, our

solution can be deployed in core network devices even if ECN feedback is not completely

obtained. The overall scenario for our stated problem is shown in Figure 3.1, which is a

valid topology for end points connected through a shared bottleneck link [73]. It is also

important to highlight that ECN is not a perfect mechanism for congestion control. If an

AQM decides to mark every packet with incipient congestion regardless the status of the

queue, the AQM could produce a harmful effect. That is why we argue that a right and

dynamic setting of the AQM parameters is pertinent. Moreover, we point out the

potential application of Machine Learning techniques for this purpose.

Figure 3.1. Scenario for our stated problem. Edge routers aggregate end devices and

connect to the core network through bottleneck links.

43

(3.1)

3.2.1. Congestion Predictor

To predict the congestion, we take advantage of the ECE flag available in the TCP header

of the packets in direction B without considering the ones involved in the ECN

negotiation, as those packets indicate the setting of ECN-capable TCP sessions rather

than congestion or response to congestion [67]. We model the congestion prediction as a

time-series problem. The core of the congestion predictor is a Long Short-Term Memory

(LSTM), which is a Recurrent Neural Network (RNN) architecture with memory blocks

in the hidden layers. The memory blocks have multiplicative gates that allow storing and

accessing information over long periods. In this way, the vanishing gradient problem of

the RNN is mitigated in the LSTM, since the gradient information is preserved over time.

For this reason, LSTMs have been successfully applied to address real-world sequential

and time-series problems [74]. The inputs consist of both the current sample and the

previous observed sample, such that output at time step t -1 affects the output at time step

t. Each neuron has a feedback loop that returns the current output as an input for the next

step. This structure makes LSTMs an effective tool for prediction, especially in those

cases where there is no previous knowledge about the extent of the time dependencies.

The inputs of our LSTM-based congestion predictor are denoted as a sample vector with

the number of ECE-marked packets arriving at time intervals of 100 ms. This value

corresponds to the typical assumption for the Round-Trip Time (RTT) in IP networks.

Additionally, we rearrange that vector as an input matrix 𝐗𝐗 corresponding to ten time

steps and an output vector 𝐲𝐲 of one time step, such that:

𝐗𝐗 = �

𝑥𝑥𝑃𝑃0 𝑥𝑥𝑃𝑃1 ⋯ 𝑥𝑥𝑃𝑃9
𝑥𝑥𝑃𝑃1 𝑥𝑥𝑃𝑃2 ⋯ 𝑥𝑥𝑃𝑃10
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑃𝑃𝑁𝑁−10 𝑥𝑥𝑃𝑃𝑁𝑁−9 ⋯ 𝑥𝑥𝑃𝑃𝑁𝑁−1

� , 𝐲𝐲 = �

𝑥𝑥𝑃𝑃10
𝑥𝑥𝑃𝑃11
⋮
𝑥𝑥𝑃𝑃𝑁𝑁

�

where 𝑥𝑥𝑃𝑃𝑖𝑖 is the quantity of ECE-marked packets in the time interval 𝑖𝑖 and 𝑁𝑁 is the total

number of samples. The rationale behind rearranging the samples in ten time steps is to

improve the performance of the predictive model by having additional context. In this

way, the estimation of arriving ECE-marked packets contemplates more prior

observations.

44

(3.2)

For the design and training of the LSTM, we assume that the data are gathered in a ten-

minute period, which is reasonable due to the dynamics of Internet networks.

Consequently, there would be a dataset with 6000 samples, corresponding to the number

of intervals of 100 ms in ten minutes. In addition, we consider an LSTM with three

hidden layers: the employment of a low number of layers for LSTM has been well

studied in the literature and, based on our own experimentation, we were able to confirm

that three layers are enough for making accurate predictions, as presented in [75]. Also,

we use the approximation formula proposed in [76] to determine the number of neurons

per layer, as follows:

𝑁𝑁𝑛𝑛 = �𝑁𝑁𝑖𝑖𝑛𝑛 + √𝑁𝑁� 𝐿𝐿⁄

where 𝑁𝑁𝑖𝑖𝑛𝑛 is the number of inputs, 𝑁𝑁 is the number of samples, and 𝐿𝐿 is the quantity of

hidden layers. Then, 𝑁𝑁𝑛𝑛 ≈ 30 neurons per hidden layer. Although this formula was

empirically determined for time-series forecasting using Feed-Forward Neural Networks,

our experimentation show that it also works well for RNNs. Finally, we take into account

a dropout regularization of 20%, so that the model does not overfit and yields more

generalized weights after training.

3.2.2. Q-learning based AQM Parameter Tuner

In general, the parameters of AQM algorithms are set to values that yield a reasonable

performance for the typical network conditions. However, AQM mechanisms are

expected to allow parameters adjustment depending on the specific characteristics of a

network and their interactions with other network tasks over time [77]. Consequently, we

embrace the idea of adjusting AQM parameters according to the network’s changing

circumstances, so that the performance is dynamically improved, as well. Nevertheless,

the achievement of this goal can end up in a very complex job. For this reason, we

propose a mechanism that adaptively tunes the parameters of the AQM in use as an RL-

aided decision process.

45

We model the dynamic AQM parameter-tuning problem as a Markov Decision Process

(MDP). Previous works have successfully modeled complex decision-making problems

in networks through MDPs, [78]. For this intelligent method, the decision process is

based on the inferred rest-of-path congestion, i.e. the output of our congestion predictor

described in Section 3.2.1. In this way, we define the states 𝑆𝑆 as a set of discrete levels of

congestion that the flows will be likely to experience along the path, the set of actions 𝐴𝐴

comprises specific values of the target parameter, and the reward 𝑅𝑅 depends on the power

function of the connection, which is defined as the throughput-to-RTT ratio. In our

environment, the edge router acts as the agent that makes the decisions and, therefore, no

extra intelligence is needed at the end devices. The idea behind using the predicted rest-

of-path congestion is to proactively tune the AQM at the edge router. Consequently, our

method can adjust the target parameter so that more packets are dropped instead of being

marked, as they will be likely dropped ahead. On the other hand, if low congestion is

forecasted ahead, the AQM will mark more packets based only on its own experienced

congestion.

Nevertheless, finding the appropriate target for the balance between dropping/marking

packets is a non-trivial problem and that is why we use RL. In other words, we model our

problem as an MDP with the objective of finding an optimal behavior that maximizes the

throughput-to-RTT ratio. To do so, we utilize the Q-learning algorithm [79], which

defines a function 𝑄𝑄(𝑆𝑆,𝐴𝐴) representing the quality of a certain action in a given state and

that is defined by:

𝑄𝑄(𝑆𝑆,𝐴𝐴): = 𝑄𝑄(𝑆𝑆,𝐴𝐴) + 𝛼𝛼 [𝑅𝑅 + γ max𝑎𝑎𝑄𝑄(𝑆𝑆′,𝑎𝑎) − 𝑄𝑄(𝑆𝑆,𝐴𝐴)]

where 𝑎𝑎 ∈ 𝐴𝐴, 𝛼𝛼 ∈ [0,1] is the learning rate, and the discount factor γ ∈ [0,1] describes

the preference of the agent for current rewards over future rewards. This equation

characterizes the maximum future reward of present state and action in terms of

immediate reward and maximum future reward for the next state 𝑆𝑆′. In this manner, the

Q-learning algorithm iteratively approximates the function 𝑄𝑄(𝑆𝑆,𝐴𝐴).

More specifically, we model our AQM parameter tuner considering the current states as

the observed levels of congestion, i.e. the ECE-marked packets arriving at the router in

(3.3)

46

direction B, and the rest-of-path congestion prediction in direction A as possible next

states. Both current and next states are discretized to delimit the complexity of the

environment. On the other hand, the actions are a set of predefined values for the target

parameter of the specific AQM in use.

3.3. Evaluation Methodology and Results

In this section, we provide the details about the experimentation setup for the evaluation

of our proposed solution. We first explain the preliminary experiments conducted to

show the feasibility of our method as a whole, by studying the basis of each component

separately. Later, we evaluate the performance of our intelligent AQM scheme

comparing its operation to the behavior of conventional AQM. For our experimentation,

we use the Mininet network emulator and the queue disciplines available in the Linux

kernel. In this way, we validate the potential deployment of our solution in real network

scenarios.

3.3.1. Effects of Tuning AQM Parameters

With respect to the AQM parameter tuner, in this work we evaluate our proposal using

CoDel [62] and FQ-CoDel [64]. Therefore, the target parameter to tune is the acceptable

standing/persistent queue delay. Both in CoDel and FQ-CoDel, the minimum local queue

delay is measured and compared with the value of the acceptable queue delay given as a

target. To ensure that the minimum value does not become stale, the delay is measured

within the most recent interval and, typically, the target delay is 5% of that interval. In

this way, when the queue delay exceeds the target, a packet is dropped and a control law

sets the next drop time. When the queue delay goes below target, the controller stops

dropping [62].

To show the influence of changing the target parameter in both RTT and throughput

metrics, we conducted some preliminary experiments by implementing a topology like

the one depicted in Figure 3.1. In the emulation scenario, the edge router on the left (R1)

performs the AQM control and has 20 hosts, i.e. hosts B, connected to it. On the other

side, 20 hosts connect to the right edge router (R2): these are hosts A. There are also a

pair of monitor hosts, and one of them actively logs the measured RTT (mRTT) and

47

throughput by means of sending probe packets to the other one. Note that for this

experiment we consider a propagation delay of 20 ms and a bandwidth of 200 Mbps

between hosts B and R1. Conversely, there is no propagation delay from R1 to R2 and, to

emulate the path bottleneck, the link between the two routers has a bandwidth of 20

Mbps. The links between R2 and the hosts A have a bandwidth of 100 Mbps and no

propagation delay. In addition, all hosts are ECN-enabled and each pair of hosts AB

generates TCP traffic, mainly in direction A. In this work, we conduct our

experimentation only with CUBIC, the default TCP congestion control in Linux.

(a)

(b)

Figure 3.2. Effects of varying the target parameter in CoDel and FQ-CoDel algorithms

on: a) Averaged mRTT. b) Averaged throughput.

48

The experiment consists of modifying the target and interval parameters of CoDel and

FQ-CoDel in R1, while data are constantly and simultaneously transferred from the hosts

B to hosts A. Therefore, we set CoDel and FQ-CoDel in R1 with target values from 50 μs

to 6 ms and intervals from 1 ms to 120 ms, respectively. We left the other parameters as

default, except the hard limit on the queue size, which we set to 1000 packets. This a

configurable parameter set by the system administrator and the assumption of this value

is based on the fact that small buffer sizes in backbone routers are sufficient for many

networks and recommended for overall scalability [80], [81]. In addition, we were able

to determine that the assumed hard limit was enough for all the queues of our emulation

setting, i.e. there was no overflows at any buffer.

Figure 3.2 shows the resulting average mRTT and throughput for both queue disciplines

in this experiment. Note that Figure 3.2a has two different scales for the y-axis, since the

mRTT is significantly longer for CoDel. As can be seen, although the target parameter of

these AQM algorithms is meant to operate unchangeably, there is a noticeable effect

when the target parameter varies. The lower the target queue delay, the more dropped

packets, since not all packets can be ECN-marked when the router experiences

congestion. Consequently, RTT is low and throughput is high when low target delay is

configured, Figure 3.2b. In other words, as the target parameter increases, the AQM

mechanism produces more ECN-marked packets and drops less. This is consistent with

our solution formulation explained in Section 3.2.2.

3.3.2. Transferring the Predictor Model

As an initial training and test for our congestion predictor, we use the data from a

backbone Internet link of an ISP collected by the Center for Applied Internet Data

Analysis (CAIDA). The CAIDA’s monitors collect packet headers at large peering points

and a wide variety of research projects has used its anonymized traces [82]. Specifically,

we use the data from the collection monitor that is connected to an OC192 backbone link

(9953 Mbps) of a Tier 1 ISP, between New York, US, and Sao Paulo, Brazil. We use this

dataset as valid data for an edge router, according to previous works cited at CAIDA’s

website, in which those data have been used similarly. In particular, we chose to analyze

the data from December 20, 2018.

49

(a)

(b)

Figure 3.3. Actual and predicted congestion obtained after: a) Pre-training over 100

epochs, using the CAIDA’s dataset and time intervals of 100 ms. b) Re-training in one

epoch, based on network emulation data in time intervals of 1 ms.

We perform the pre-training for the congestion predictor with data containing ECE-

marked packets sent from New York to Sao Paulo, as we found that there are more ECE-

marked packets in direction B than in direction A. According to the assumptions

explained in Section 3.2.1, we use the trace data in the ten-minute period with the highest

number of ECE-marked packets that are not part of the ECN negotiation, that is from

8:00 to 8:10 EST. The traces show that, in this period, there were 402 different source

IPv4 addresses sending ECE-marked packets to 315 destination hosts. We split the

dataset into a training subset, corresponding to 80% of samples, and a test subset with

20% of samples. After 100 epochs of training, we test the model by making predictions

50

with samples from the normalized subsets. We obtain a Root Mean Squared Error

(RMSE) score of 0.08 and a Mean Absolute Error (MAE) score of 0.04 for the test

subset. Similarly, we get an RMSE of 0.07 and a MAE of 0.03 for the training subset.

Figure 3.3 shows the actual normalized number of ECE-marked packets arriving at the

router in direction B and the prediction over the test subset. As can be seen, the white

spaces in the graph mean consecutive time intervals with no congestion, i.e. no ECE-

marked packets at the router. On the other hand, the transients depict the time intervals in

which congestion was experienced. Note that the levels of congestion correspond to the

number of ECE-marked packets that arrive within an interval. In this way, we model the

predictor to estimate whether there will be a significant level of congestion describing a

transient in the number of ECE packets within the next time interval. Figure 3.3a

illustrates how the resulting prediction captures the intervals when the levels of

congestion ahead show those transients.

Hence, we use the pre-trained LSTM model to accelerate the congestion estimation in our

method. As the network conditions change, our method updates the predictor by re-

training it with new data. However, this re-training process is much faster, as the LSTM

updates in just one epoch, which takes about four seconds in our emulation environment.

To see how the pre-trained congestion predictor behaves in a new environment, we run

an experiment with the topology described in Section 3.3.1. Moreover, to stress the

network and make it more stochastic, we set random values of bandwidth and

propagation delays on the links between hosts and routers. Likewise, each host B starts its

transmission at a random time. The link bandwidth between R1 and R2 is the only non-

random value fixed at 10 Mbps. Also, FQ-CoDel is the AQM method in this experiment

with its default target delay and interval values, which are 5 ms and 100 ms, respectively.

In relation to the re-train process, we update the model with data gathered in six seconds.

The rational behind this assumption is that network traffic changes very fast and so does

its data. This situation can produce a model drift, which means that the relationship

between the target variable and the input variables changes with time. Due to this drift,

the model may become unstable and start making erroneous predictions over time [83]. It

51

is then evident that a model drift might happen more often in our scenario than in other

non-networking environments.

Consequently, as we designed the congestion predictor for 6000 intervals (see Section

3.2.1), we need to reduce the value of each time interval for the updates. Then, in this

case, we re-train the LSTM with data in time intervals of 1 ms. After one update, the

obtained values of RMSE are 0.09 and 0.13 for training and test subsets, respectively. In

the same way, the resulting values of MAE are 0.04 for training and 0.06 for test. These

scores show that our model can make predictions in the new network with a significant

approximation and without the need for training the model from scratch. Figure 3.3b

depicts the congestion prediction results in the described network. Note that we scale by

two times the graph corresponding to the prediction, i.e. the blue plot, for clarity of the

comparison. Again, rather than the exact number of ECE-marked packets, we want to

predict the transients of congestion level ahead.

3.3.3. Performance Evaluation of the Intelligent AQM

In this subsection we elaborate more about the experiments that we conducted to show

the job of our proposed method as a whole. In Section 3.2.2, we briefly described how the

congestion predictor integrates with the AQM parameter tuner. We evaluate the MDP for

this problem considering 100 levels of congestion as current or next states. The observed

congestion corresponds to the current state and the predicted congestion is the next state.

To determine their levels, we keep the maximum observed and predicted values as

reference for the discretization. We also delimit the actions to 100 values, which in this

case are the target delay of CoDel and FQ-CoDel. In this way, the possible actions are a

set of values from 50 μs to 5 ms in steps of 50 μs. As we explained in Section 3.3.1, we

modify two parameters at the same time: the target delay and the interval. Thus, the

experiments are more consistent, as these two parameters are tightly related. Again, the

hard limit buffer size is set to 1000 packets and the TCP congestion control is CUBIC.

The starting values for the target and the interval parameters are the default ones in the

Linux kernel: 5 ms and 100 ms, respectively. For this evaluation, R1 performs the

intelligent AQM while R2 needs only to be configured as ECN-enabled or as a regular

router that does not wipe CE-marked IP packets.

52

Figure 3.4. Cumulative power of the connection measured during the experiments in the

emulation environment. The intelligent method is applied to CoDel and FQ-CoDel. All

schemes utilize ECN

Figure 3.4 shows the results comparison when our intelligent method is applied to CoDel

and FQ-CoDel, in terms of the cumulative power function. Note that these AQM schemes

have static target parameters set to their default values when no intelligence is

dynamically adapting them. As any other RL-based solution, the basic idea is to have an

agent, i.e. the edge router in our problem, making decisions and getting feedback from

the environment to calculate the rewards. To achieve so, we constantly capture the ECE-

marked packets arriving at the router in direction B. Every second, the agent predicts the

congestion of the rest-of-path in direction A. As the agent does not know what action to

take at the beginning, there is an initial stage of exploration, which depends on the

parameter 𝜀𝜀. The value of this parameter determines if the Q-learning algorithm prefers to

explore rather than exploit the historical data. In our experiments, we set 𝜀𝜀 = 0.5 so that

the algorithm does not explore too greedily. After taking an action, either by randomly

exploring or by extracting Q-values, the monitoring hosts measure the mRTT and

throughput with active probes. We use these measures to calculate the power of the

connection, which is our reward function. Once the rewards are known, the algorithm

updates the Q-values by applying (3.3). Instead of updating the Q-values iteratively with

a matrix containing predefined rewards, we train the model in an online manner by

53

getting the feedback from the network. This could have the disadvantage of a poor

behavior at the beginning, but the results show that the tuning improves over the time.

We also point out that we implemented fixed values for the rest of the parameters of the

Q-learning algorithm during the experiment, that is 𝛾𝛾 = 0.8 and 𝛼𝛼 = 0.5.

Table 3.1. Buffer occupancy comparison

 Intelligent AQM
Non-Intelligent

AQM

 Average Maximum Average Maximum

FQ-

CoDel
1.60 % 2.70 % 2.09 % 2.80 %

CoDel 0.91 % 2.30 % 1.58 % 2.90 %

Another point to consider is the performance of our method in terms of the buffer

occupancy at the router. Based on the statistics obtained from the Linux Traffic Control

utility, we compare the percentage of buffer occupancy for each experiment in Table 3.1.

Note that we take into account the set hard limit buffer size for the percentage

calculation. In other words, the buffer occupancy would be 100% if the queue had 1000

packets at a specific instant. As can be seen, the buffer occupancy is lower when R1

employs our intelligent AQM, thanks to the balance between dropped/marked packets

that the algorithm achieves over the time. Finally, we want to mention that the Python

code of the experiments described in this subsection is publicly available at [84]. We

intent to make our contribution accessible to researchers and developers who are actively

working on congestion-related problems of the Internet. Please cite this work if you use

any posted script for your own works.

54

3.4. Summary

As more end devices are getting connected, the Internet will become more congested.

Various congestion control techniques have been developed either on transport or

network layers. Active Queue Management (AQM) is a paradigm that aims to mitigate

the congestion on the network layer through active buffer control to avoid overflow.

However, finding the right parameters for an AQM scheme is challenging, due to the

complexity and dynamics of the networks. On the other hand, the Explicit Congestion

Notification (ECN) mechanism is a solution that makes visible incipient congestion on

the network layer to the transport layer. In this work, we propose to exploit the ECN

information to improve AQM algorithms by applying Machine Learning techniques. Our

intelligent method uses an artificial neural network to predict congestion and an AQM

parameter tuner based on reinforcement learning. The evaluation results show that our

solution can enhance the performance of deployed AQM, using the existing TCP

congestion control mechanisms.

55

Chapter 4

4. Federated Intelligence for Inter-Domain Congestion

4.1. Motivation

Communication over the Internet relies on data packet transmission across a selected

network path, while involved over the complex interconnected network elements. To

achieve this, different network elements of the Internet, e.g. routers, usually first place the

received data packets in queues, where they wait their turn to be transmitted over the next

determined link. When there are too many queued packets awaiting transmission, the

buffers of the network element’s interface may overflow and the involved link is said to

be congested. Therefore, determining the proper buffer size is deemed as a key

component to evade packet losses along network paths when congestion appears. While a

large buffer could reduce packet losses, excessive buffering could lead to increased

latency, as packets have to wait longer in the queues. This phenomenon is known as

bufferbloat and causes poor performance at bottleneck links of today’s Internet [60]. This

effect can be tackled by the network elements through Active Queue Management

(AQM) methods, which are designed to control the flow of the arriving packets and avoid

network congestion. To achieve so, AQM schemes determine whether there is incipient

congestion on the involved link and choose either dropping specific packets or marking

them with “experienced congestion” labels. The main advantage of dropping packets with

AQM rather than with tail-drop queues, i.e. non-AQM buffers, is to eliminate the

unnecessary global synchronization of flows when a queue overflows. In this way, an

AQM scheme can decide to drop packets when the network experiences incipient

congestion in a controlled fashion. As a result, packets experience shorter delays, as their

flows are regulated by the AQM mechanism in use, and the throughput is improved.

Despite the advantages of AQM, it is not widely adopted on the network elements of the

Internet Service Providers (ISPs), since the AQM mechanisms have parameters that

might be difficult to tune in dynamic environments. Also, network elements with more

56

memory available in the market have created the misconception that the larger the

buffers, the better.

Accordingly, we proposed an intelligent method for implementing AQM in our previous

work [85] by exploiting the standardized Explicit Congestion Notification (ECN): a

process of making incipient congestion visible by exposing the presence of congestion on

a path to network and transport layers through codepoints and flags in both IP and TCP

headers. Our goal was to boost the alleviation performance that AQM techniques provide

at bottlenecks by dynamically adjusting the AQM parameters and considering the

specific network conditions. Therefore, we introduced a Machine Learning-based

solution that comprises a Recurrent Neural Network to predict congestion and an AQM

parameter tuner based on the Q-learning algorithm. The proposed scheme, however, was

delimited to scenarios where only one router performs the intelligent AQM process

(IAQM). For instance, a setting where an edge router predicts the congestion ahead,

based on the ECN feedback that it receives from the core network, and then tunes its

AQM parameters. As a result, the IAQM scheme dynamically reduces the Round-Trip

Time (RTT) and increases the throughput of the connections being handled by the edge

router.

In this work, we address the problem of congestion control by significantly enhancing

existing AQM methods and taking into account the routers involved in inter-domain

communications. This problem turns out to be even more challenging than a single-

domain communication scenario, as each border router may not be able to receive ECN

feedback in order to predict the congestion ahead. Additionally, a kind of cooperative

mechanism is needed to achieve an effective Machine Learning solution where the

privacy is paramount: an inter-domain link involves routers at several organizations or

geographical regions, which means the possibility of having one or more domains not

willing to share their data. That is why these domains are also known as Autonomous

Systems (ASes), which consist of ISPs or Content Providers (CPs) communicating each

other through an Internet Exchange Point (IXP), as depicted in Figure 4.1.

57

Figure 4.1. Example of an inter-domain communication scenario.

Managing congestion is an essential factor for an IXP and its connecting ASes. However,

despite experiencing significant and persistent congestion at multiple peering links, both

ASes and IXPs have no primary means of controlling congestion. That is, as the traffic

sources and destinations are beyond its domain, a border router or an IXP cannot rely on

the traditional congestion notification mechanisms such as ECN [86]. On the other hand,

understanding the performance of the network elements requires measuring several

parameters, such as utilization, loss rates, and variation in latency. Operators that control

IXPs could measure such parameters for their links, although accurate assessment of

these parameters may require cooperation of the operator at the other end of the links

[87]. Moreover, the operators do not usually share this kind of information with their

counterparts. For these reasons, we propose to apply the Federated Learning (FL)

paradigm to intelligently address the inter-domain congestion problem.

FL is an approach where multiple entities collaborate in solving a Machine Learning

problem, under the coordination of a central server or service provider [88]. To achieve

the learning objective, each entity participates without exchanging private raw data,

which are stored locally. The original emphasis of FL was on cross-device settings, i.e.

mobile and edge devices applications [89], but FL has been applied to an increasing

number of scenarios where a few and relatively reliable entities, such as the data centers

of several organizations, collaborate to train a model [90], [91]. These kinds of scenarios

58

are known as cross-silo settings. The main difference between the cross-device and cross-

silo settings is that, in the former, a very large number of devices participate in the

learning and their participation is likely to occur once in a task. On the other hand, in

cross-silo settings only a small number of elements (typically, 2 to 100) contribute to the

learning process by training a model on siloed data. In both cases, the data are generated

locally and remain decentralized. At the same time, a central entity orchestrates the

training process and receives the contributions of all entities. These characteristics make

FL conceptually different from the decentralized and distributed learning approaches. A

more detailed comparison of the FL settings versus the distributed and peer-to-peer

learning can be found in [88]. It is also important to highlight that, different from many

Machine Learning approaches, in FL the data are usually considered as unbalanced and

not independently or identically distributed (non-i.i.d.) because each entity has different

amount of local data to train on and these data rely on particular entities’ behaviours [89].

Furthermore, depending on the distribution characteristics of the data, FL can be

categorized as horizontal or vertical. In horizontal FL scenarios, the local datasets have

the same feature space, but may have different sample ID space. In contrast, vertical FL

refers to those cases where the datasets have the same sample ID space, but dissimilar

feature space [92]–[94].

Accordingly, in this work we propose an intelligent scheme for AQM where the inter-

domain congestion is predicted based on the horizontal FL approach. That is why we

introduce our solution as the Federated Intelligence for AQM (FIAQM), whose key

contributions are summarized as follows:

• A proof-of-concept study on non-static AQM. We demonstrate how the idea of

dynamically tuning AQM parameters may boost the adoption of AQM

mechanisms to mitigate the Internet’s bufferbloat effect.

• An intelligent congestion control framework that is compatible with other

solutions. Our proposed FIAQM leverages the benefits of using existing AQM

mechanisms to control congestion over inter-domain links, which are not

managed by a single party.

59

• A multi-domain learning approach in which local network data remains private.

As in inter-domain scenarios privacy is a major concern, FIAQM allows the

cooperation of two or more ASes to achieve common goals in terms of congestion

by avoiding the sharing of raw data.

• A practical application of Deep Learning and FL in networking. We propose an

adaptation of the FL algorithm that, along with a tailored neural network,

effectively learns congestion levels of the link queues involved in cross-domain

connections.

• An open-source environment for real-time evaluation. Finally, we evaluate the

performance and feasibility of the FIAQM scheme in a setting that emulates a

realistic inter-domain network communication, whose code is publicly available

for further research and development.

Overall, a typical scenario for FIAQM comprises two border routers, which belong to

different ASes, and an IXP. Each border router has intra-domain link buffers

corresponding to the interfaces that connect them to other network elements within their

own domains, as depicted in Figure 4.2. Both border routers exchange the aggregated

parameters of the model to be trained with a central server, known as the Learning

Orchestrator in our solution. We propose to place the Learning Orchestrator at the IXP

premises, since it is supposed to be a neutral player. In this way, FIAQM applies FL to

predict the IXP congestion based on the buffer statistics of the intra-domain links of the

border routers involved (denominated as the Local Learners). The predicted IXP

congestion is then used for the AQM parameter tuning of the inter-domain link buffers,

similar to the tuning process introduced in [85].

The remainder of this chapter is organized as follows. We review the related work on

inter-domain congestion in Section 4.2. In Section 4.3, we provide further details about

the FIAQM architecture, whose evaluation performance results are discussed in Section

4.5. On the other hand, we explain the details of our experimentation design in Section

4.4.

60

Figure 4.2. Typical scenario for the proposed FIAQM scheme.

4.2. Related Work

The inter-domain congestion control problem has been addressed from different

perspectives. One common approach is to tackle the routing bottlenecks. These

bottlenecks are inevitably caused by the Border Gateway Protocol (BGP), since the

border routers tend to forward packets along the path with minimal routing cost. As a

result, routing bottlenecks concentrate on a few links and happen to be asymmetrical, i.e.

the inbound congestion does not correspond to the outbound one on the same link [95].

Therefore, the solutions for routing bottlenecks proposed in the literature mainly rely on

dynamic load balancing, which can operate either on inter-domain or intra-domain links.

To this end, authors in [96] present a system to improve the ISPs network throughput by

jointly optimizing intra-domain routes and inter-domain routes. Their solution provides

an ISP and its neighbor CPs with a network abstraction on a virtual switch that allows to

program requirements in a collaborative way. Conversely, an architecture for an efficient

inbound traffic control based on the Software Defined Networking (SDN) paradigm is

proposed in [97]. This architecture exploits the features of the OpenFlow protocol for

network traffic engineering tasks in inter-domain routing. Similarly, Chiesa et al.

describe the benefits of using the SDN approach for traffic engineering at IXPs. The

61

authors explain how SDN enables such a network programmability that permits the

members of an IXP to optimize their traffic load balancing and overcome the limitations

of BGP [86]. Considering the privacy preservation in SDN-enabled scenarios for inter-

domain traffic, authors in [98] propose a solution to avoid incorrect forwarding

behaviours without exposing private routing information among domains. Likewise, [99]

presents a mechanism for a dynamic end-to-end Quality of Service (QoS) coordination in

multi-domain scenarios. This mechanism processes information in a distributed manner

at the domain level and optimizes the routing by adaptively learning the results of past

QoS requests.

It is important to highlight that a routing bottleneck is essentially different from a

bandwidth bottleneck. The latter refers to the link with the smallest available bandwidth

on a route, while the former is related to the number of routes carried by a link regardless

the provisioned link capacity [100]. Even though they do not necessarily imply each

other, routing bottlenecks can derive in bandwidth bottlenecks, which are the ones that

ultimately cause the congestion that affects the networks’ communication performance.

For this reason, we address the inter-domain congestion problem with a focus on the

bandwidth bottlenecks. This does not mean that our method cannot be used along with

some of the described solutions for routing bottlenecks. Nevertheless, how to combine

both approaches is beyond the scope of this work.

With regards to our learning setting based on buffer statistics, there is some literature

about the use of queue measurements for congestion control improvement. For instance,

authors in [101] propose a fine-grained queue measurement solution in the data plane for

immediate control actions, which can support the deployment of new and more

sophisticated AQM schemes. Using In‐band Network Telemetry (INT) and traffic

snapshots (fixed-sized time windows of traffic on a queue), their solution can determine

the flows that consume large portions of a queue. Similarly, Li et al. propose a High

Precision Congestion Control mechanism, which leverages the INT metadata reported by

the routers along the path [102]. The metadata includes egress port metrics such as

timestamp, queue length, transmitted bytes, and link bandwidth capacity to avoid

congestion in high-speed networks. Although we acknowledge the value of the INT

62

framework and its metadata, we consider not using INT in this work because it aims to

monitor the performance of a core network within a single domain. However, we believe

that the application of the INT metrics for the solution of an inter-domain problem, like

the one presented in this chapter, could be a promising direction for a future work.

4.3. Architecture of FIAQM

In this section, we describe our solution in detail. Primarily, FIAQM consists of two

principal modules: a congestion predictor and an AQM parameter tuner, like the IAQM

solution presented in [85]. In FIAQM, however, the congestion ahead is predicted by

means of the FL approach. This prediction is then utilized for the AQM parameter tuning

of the inter-domain link buffers in both directions. Figure 4.3 depicts the overall

architecture of FIAQM and the following subsections explain each component,

respectively.

Figure 4.3. The FIAQM architecture for inter-domain congestion control. Main modules

are replicated within each border router.

Border Router Domain 1 Border Router Domain 2

IXP

63

4.3.1. Federated Congestion Predictor

The first of the main components of the FIAQM architecture is a congestion predictor

based on a Long Short-Term Memory (LSTM). An LSTM is a type of Recurrent Neural

Network and deemed as an effective tool for time-series forecast. Its inputs include both

the current sample and the previous observed sample, such that output at time step 𝑡𝑡 − 1

affects the output at time step 𝑡𝑡. Each neuron of the LSTM has a feedback loop that

returns the current output as an input for the next step [74]. For these reasons, FIAQM

employs an LSTM to predict congestion in a federated manner by considering drop rates

at each queue per time interval as inputs. Hence, the drop rate 𝑥𝑥 in a time interval 𝑖𝑖 is

calculated as follows:

𝑥𝑥𝑃𝑃𝑖𝑖 =
𝐷𝐷𝑃𝑃𝑖𝑖
𝑃𝑃𝑃𝑃𝑖𝑖

where 𝐷𝐷 is the number or dropped packets and 𝑃𝑃 the total packets arriving at the queue

within each time interval. Additionally, we rearrange the vector of drop rates as an input

matrix 𝐗𝐗 corresponding to ten time steps and an output vector 𝐲𝐲 of one time step, as

shown in (3.1).

The rationale behind rearranging the samples in ten time steps is to improve the

performance of the predictive model by having additional context. In this way, the

estimation of drop rates contemplates more prior observations. Note that this data

rearrangement is performed with the available samples of each queue participating in the

FL training.

Figure 4.4. LSTM network structure for the FIAQM’s congestion predictor.

Lineartanh

Dropout
20%

Dropout
20%

tanh tanh

(4.1)

64

The structure of the LSTM is similar to the one described in [85] and encompasses 𝐿𝐿 = 3

hidden layers with 30 neurons each. The output layer employs a linear activation function

while the hyperbolic tangent (tanh) is used as the non-linear activation function at the

hidden layers, since it provides a three-state decision making (negative/neutral/positive)

on what information to add or remove to/from the hidden cells [103]. Also, a dropout

regularization of 20% is included at the output of each hidden layer, except the last one,

in order to avoid model’s overfitting, as shown in Figure 4.4. More specifically, each

hidden layer 𝑙𝑙 ∈ [0, 𝐿𝐿) of the LSTM network computes the following function for each

element in the input sequence [104]:

where ℎ𝑃𝑃
(𝑃𝑃) is the hidden state at time 𝑡𝑡, 𝑊𝑊𝑖𝑖ℎ

(𝑃𝑃) and 𝑏𝑏𝑖𝑖ℎ
(𝑃𝑃) represent the weight and bias of the

block input at layer 𝑙𝑙, and 𝑊𝑊ℎℎ
(𝑃𝑃) and 𝑏𝑏ℎℎ

(𝑃𝑃) are the weight and bias values of the hidden

cells. Correspondingly, ℎ𝑃𝑃−1
(𝑃𝑃) is the hidden state of the layer at time 𝑡𝑡 − 1 and the input of

the 𝑙𝑙-th layer, 𝑥𝑥𝑃𝑃
(𝑃𝑃), is the hidden state of the previous layer ℎ𝑃𝑃

(𝑃𝑃−1) multiplied by the

dropout of the previous layer, 𝛿𝛿𝑃𝑃
(𝑃𝑃−1) = 0.2. Conversely, each output in the sequence is

computed at the output layer through a linear function, as follows:

where 𝑊𝑊𝑜𝑜 and 𝑏𝑏𝑜𝑜 are the weights and bias of the output layer, respectively, and ℎ𝑃𝑃
(𝐿𝐿−1) is

the state of the last hidden layer. The formulation of the LSTM presented above focuses

on the activation functions for the hidden layers and the output layer to explain their

relationship with the time steps. A more detailed formulation regarding the rest of the

components of the LSTM architecture can be found in [105].

The Learning Orchestrator performs the global training of the LSTM model, which is

used for the congestion prediction of the inter-domain link in each direction. In this way,

the proposed LSTM-aided Federated Congestion Predictor (FCP) functions as follows:

ℎ𝑃𝑃
(𝑃𝑃) = tanh�𝑊𝑊ih

(𝑃𝑃)𝑥𝑥𝑃𝑃
(𝑃𝑃) + 𝑏𝑏ih

(𝑃𝑃) + 𝑊𝑊hh
(𝑃𝑃)ℎ𝑃𝑃−1

(𝑃𝑃) + 𝑏𝑏hh
(𝑃𝑃)�

𝑦𝑦𝑃𝑃 = 𝑊𝑊𝑜𝑜�ℎ𝑃𝑃
(𝐿𝐿−1)+𝑏𝑏𝑜𝑜�

(4.2)

(4.3)

65

each router has a fixed local dataset that differs from the other router’s dataset, since they

might have different number of intra-domain links with dissimilar levels of queue drop

rates. At the beginning of each learning round, the Learning Orchestrator sends the

current global model state to the routers, also known as the Local Learners in our

solution. Next, each router performs a local computation based on the global state and its

local dataset and, afterwards, sends an update to the orchestrator. Finally, the Learning

Orchestrator applies the updates received from the Local Learners to its global state and

the learning process repeats.

Due to the nature of our problem, we employ a cross-silo FL since individual routers or

group of routers might belong to different proprietary networks. Our learning model is

intended to be trained across these silos without exchanging raw data, which may

represent ASes private information or a single organization’s data that cannot be

centralized between different geographical regions. Additionally, we consider the routers

data as unbalanced and non-i.i.d., as well as the synchronous model updates that proceed

in rounds of communication, as presented in [89]. The canonical FL problem involves

learning a single, global statistical model from data stored on remote entities. For our

problem, we aim to learn this model under the constraint that border routers data are

stored and processed locally, with only intermediate updates being periodically

communicated to the Learning Orchestrator. In particular, the goal is to minimize the

objective function for the global learning [94], as follows:

min
𝑤𝑤

𝐹𝐹(𝑤𝑤) ≔�𝑝𝑝𝑘𝑘𝐹𝐹𝑘𝑘(𝑤𝑤)
𝑀𝑀

𝑘𝑘=1

where 𝑤𝑤 represents the model parameters, i.e. the weight and bias values of the hidden

and output layers of the LSTM network. In our scenario, 𝑀𝑀 is total number of queues

involved in the congestion prediction process and 𝑝𝑝𝑘𝑘 is the relative impact of each queue.

On the other hand, 𝐹𝐹𝑘𝑘 is the local objective function for the learning on the 𝑘𝑘 queue, as

follows:

(4.4)

66

𝐹𝐹𝑘𝑘 =
1
𝑛𝑛𝑘𝑘

� 𝑓𝑓𝑗𝑗𝑘𝑘(𝑤𝑤; 𝑥𝑥𝑗𝑗𝑘𝑘 ,𝑦𝑦𝑗𝑗𝑘𝑘)
𝑛𝑛𝑘𝑘

𝑗𝑗𝑘𝑘=1

where 𝑛𝑛𝑘𝑘 is the number of samples available locally.

To solve this federated optimization problem, we adapt the Federated Averaging

(FedAvg) algorithm presented in [89]. Accordingly, the algorithm combines a local

stochastic gradient descent computed with the data of each queue at each border router

 1: 𝑞𝑞 ← set of queues with non-zero drop rate data

 2: for each round 𝑟𝑟 = 1, 2, 3, … , Γ do

 3: 𝑢𝑢 ← random subset, 𝑢𝑢 ∈ 𝑞𝑞

 4: for each queue 𝑘𝑘 = 1, 2, … ,𝑀𝑀 ∈ 𝑢𝑢 in parallel do

 5: get 𝑤𝑤 from Learning Orchestrator

 6: 𝑤𝑤𝑘𝑘 ← 𝑤𝑤

 7: 𝑑𝑑𝑘𝑘 ← count 𝑛𝑛𝑘𝑘 ∀ 𝑥𝑥𝑗𝑗𝑘𝑘 ≠ 0

 8: for each local training iteration 𝑧𝑧 = 1, 2, 3, … ,𝑍𝑍 do

 9: 𝑤𝑤𝑘𝑘 ← 𝑤𝑤𝑘𝑘 − 𝜂𝜂∇𝐹𝐹𝑘𝑘

10: return 𝑤𝑤𝑘𝑘 and 𝑑𝑑𝑘𝑘 to Learning Orchestrator

11: 𝑝𝑝𝑘𝑘 ← 𝑑𝑑𝑘𝑘 ∑ 𝑑𝑑𝑘𝑘,𝑀𝑀
𝑘𝑘=1⁄ ∀ 𝑘𝑘

12: 𝑤𝑤𝑃𝑃+1 ← ∑ 𝑝𝑝𝑘𝑘𝑤𝑤𝑘𝑘𝑀𝑀
𝑘𝑘=1

Algorithm 4.1. Federated Congestion Predictor (FCP)

(4.5)

67

and a model averaging performed by the Learning Orchestrator. The adaptation of the

FedAvg algorithm for our proposed FCP is detailed in Algorithm 4.1, where 𝜂𝜂 is the

learning rate, which is assumed to be the same for all the Local Learners. It is important

to highlight that 𝑑𝑑𝑘𝑘 contains the number of data samples with non-zero values. The

rationale behind this idea is that queues with higher drop rates affect the parameter

averaging with higher values of relative impact 𝑝𝑝𝑘𝑘. In this way, the federated LSTM

model learns more from those queues with non-zero drop rates for the congestion

prediction. On the contrary, the queues with a few or zero samples of congestion data

make a little or no contribution to the learning process.

4.3.2. AQM Parameter Tuner

In general, the parameters of the AQM algorithms are set to values that yield a reasonable

performance for the typical network conditions. However, AQM mechanisms are

expected to allow parameters adjustment depending on the specific characteristics of a

network and their interactions with other network tasks over time [77]. Consequently, we

embrace the idea of adjusting the AQM parameters according to the network’s changing

circumstances, so that the performance is dynamically improved, as well. Nevertheless,

the achievement of this goal can end up in a very complex job and that is the main reason

why network managers prefer not to use AQM at all. Another point to consider is the

right metric to evaluate the effectiveness of a resource allocation/configuration in a

network. The key metrics to be considered for queue management are, usually,

throughput and delay. Accordingly, the objective is to minimize the delay and maximize

the throughput. It turns out that, trying to increase the throughput by allowing as many

packets into the links as possible, results in a rising length of the queues and, therefore,

longer delays. As an alternative, a separate metric that combines throughput and delay

can be taken into account. That is why the ratio of throughput, 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃, to measured RTT,

𝑚𝑚RTT, has been proposed by network designers as a metric to evaluate the effectiveness

of a resource configuration, such as the AQM parameters. This throughput-to-delay ratio

is also known as the power of the connection, 𝑃𝑃𝑐𝑐 = 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 𝑚𝑚RTT⁄ , and, even though this

68

metric has some limitations, it is widely accepted for evaluating the network resource

configuration effectiveness [106], especially the queue management for congestion

control [107]. Maximizing 𝑃𝑃𝑐𝑐 is, however, a non-trivial task considering the network

dynamics.

For the reasons explained above, we model the AQM parameter-tuning problem as a

Markov Decision Process (MDP). In the FIAQM scheme, the decision process is based

on the inferred congestion ahead, i.e. the output of the FCP described in Section 4.3.1. In

this way, we define the states 𝑆𝑆 as a set of discrete levels of congestion that the inter-

domain link will be likely to experience, the set of actions 𝐴𝐴 comprises specific values of

the target parameter of the AQM algorithm in use, and the reward 𝑅𝑅 depends on 𝑃𝑃𝑐𝑐. In

our scenario, each border router acts as the agent that makes the decisions. This way, our

method can adjust the target parameter so that more packets are dropped proactively and

in a controlled manner at the sending border router, as they will be likely dropped ahead

in the other domain. In other words, the AQM parameter tuner is modelled as an MDP

with the objective of finding an optimal behavior that maximizes 𝑃𝑃𝑐𝑐. To do so, we utilize

the Q-learning algorithm [79], which defines the function 𝑄𝑄(𝑆𝑆,𝐴𝐴), representing the

quality of a certain action in a given state, and that is defined by (3.3)

This equation characterizes the maximum future reward of present state 𝑠𝑠 and action 𝑎𝑎 in

terms of immediate reward and maximum future reward for the next state �̅�𝑠 and action 𝑎𝑎�.

In this manner, the Q-learning algorithm iteratively approximates the function 𝑄𝑄(𝑆𝑆,𝐴𝐴), as

shown in Algorithm 4.2. More specifically, our AQM parameter tuner observes current

and next states as levels of congestion, i.e. the predicted drop rates of the link buffer at

the router in the destination domain. Additionally, both current and next states are

discretized to delimit the complexity of the environment. Finally, the actions are a set of

predefined values for the target parameter of the specific AQM in use. As the agent does

not know what action to take at the beginning, there is an initial stage of exploration,

which depends on the parameter 𝜀𝜀. The value of this parameter determines if the Q-

learning algorithm prefers to explore random actions rather than exploit the historical

data to take an action.

69

 1: 𝑆𝑆 ← set of discretized values of predicted congestion

1: S ← set of discretized values of predicted congestion

2: 𝐴𝐴 ← set of AQM target parameter values

 3: 𝑄𝑄(𝑆𝑆,𝐴𝐴) ← Q-table initialization

 4: 𝜀𝜀 ← exploration/exploitation rate, 𝜀𝜀 ∈ [0,1]

 5: 𝑠𝑠 ← get state from FCP, 𝑠𝑠 ∈ 𝑆𝑆

 6: for each period 𝑇𝑇 = 1, 2, 3, … do

 7: if random number < 𝜀𝜀

 8: then 𝑎𝑎 ← select a random action, 𝑎𝑎 ∈ 𝐴𝐴

 9: else 𝑎𝑎 ← argmax𝑎𝑎𝑄𝑄(𝑠𝑠,𝐴𝐴)

10: change parameters according to 𝑎𝑎

11: 𝑚𝑚RTT ← measure delay

12: 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 ← measure throughput

13: 𝑅𝑅 ← 𝑃𝑃𝑐𝑐

14: �̅�𝑠 ← get state from FCP, �̅�𝑠 ∈ 𝑆𝑆

15: update 𝑄𝑄(𝑆𝑆,𝐴𝐴)

16: 𝑠𝑠 ← �̅�𝑠

Algorithm 4.2. AQM Tuner

70

4.4. Experimentation Design

In order to evaluate our FIAQM scheme, we set up a network emulation environment on

Mininet to run experiments and obtain more realistic results. We chose Mininet as the

tool to validate our prototype since it allows a flexible SDN environment with high

degree of confidence for real-time tests [108]. Moreover, Mininet eases the sharing of our

solution, which could be deployed into a real production network using our code and test

scripts, publicly available at [109]. Accordingly, our emulation network consists of two

border routers and 20 hosts connected to each one, forming a dumbbell topology. In this

way, there are 20 pairs of hosts generating traffic from one domain to the other (hosts of

each pair are in different domains). Figure 4.5 depicts the implementation of our

experimentation setting. Note that for simplicity, only one direction of the learning

process for the congestion prediction is depicted, that is, considering traffic from Domain

2 to Domain 1. Therefore, the IAQM tuning happens at the egress buffer of the Border

Router Domain 2 in this setting.

Figure 4.5. Implementation of the FIAQM for experimentation.

71

With respect to the FCP implementation, our environment involves three Mininet hosts

acting as the Learning Orchestrator and two Local Learners, the latter being represented

by the processor block at each border router. Additionally, PyTorch is employed on these

hosts for the execution of the learning process as described in Algorithm 4.2. We chose

PyTorch as the framework for the implementation of our FCP algorithm because it

provides a high level of control and flexibility, which we weigh as a key feature for our

network emulation. Moreover, PyTorch’s usability and developer-centric design

facilitates the implementation of new Deep Learning architectures, using the familiar

concepts developed for general purpose programming languages such as Python [110].

This is particularly relevant for the application of the FL approach, since it needs to be

deployed in a distributed manner when implementing real-world setups. We see this fact

as a significant advantage of PyTorch over other Deep Learning frameworks like

TensorFlow. For example, we employed TensorFlow Federated (TFF) for the fulfilment

of the FL version of the LSTM model proposed in [85]. We were able to confirm that

TFF only enables the simulation of FL models with decentralized datasets, as stated in

[111], but not an actual distributed deployment. For these reasons, we decided to utilize

PyTorch as the Deep Learning framework for the validation of our FIAQM scheme.

In relation to the traffic generation between the host pairs for the queue metrics, we use

the NetPerf tool [112], which allows to stress the network under a combination of several

types of IP traffic. Furthermore, we perform tests according to the Real-time Response

Under Load (RRUL) Specification to emulate a more core-network-like IP traffic. In fact,

RRUL-based tests reliably saturate the measured link and, therefore, exposes any

presence of the bufferbloat effect. To this end, the RRUL specification contemplates

simultaneous bidirectional TCP and UDP streams, VoIP-like streams, multiple up/down

TCP streams to shorten the ramp-up-to-saturation period, running traffic long enough to

defeat bursty bandwidth optimizations, and test server(s) within 80 ms of testing client(s)

[113]. Next, the emulator collects the buffer statistics in intervals of 100 ms using the

Linux Traffic Control (TC), since this utility lets monitor the queue events generated by

the kernel [114]. The value of the time interval corresponds to the typical assumption for

a single RTT interval in IP networks.

72

Subsequently, we use set both the intra-domain and the inter-domain link buffers to a

relatively small hard limit of 1000 packets. This assumption is based on the fact that

small buffer sizes in backbone routers are sufficient for many networks and

recommended for overall scalability [80], [81]. Additionally, all the intra-domain link

buffers are configured with AQM. More specifically, we consider the Flow Queue -

Controlling Queue Delay (FQ-CoDel) whose target parameter to configure is the

acceptable minimum standing/persistent queue delay [34]. As this parameter decreases,

more packets are dropped in a controlled manner, since they are supposed to stay for

shorter times in the queue. Consequently, there are less packets in the queue and the link

delay decreases. On the other hand, when the FQ-CoDel target parameter is high, the

scheme does not drop packets and there is a higher delay due to longer queues. Also,

packets start to be dropped uncontrollably as the queue overflows and, therefore, the

throughput is deteriorated.

As a preliminary experiment, we show that the drop rate data of the queues at the Border

Router Domain 1 describe dissimilar patterns, as depicted in Figure 4.6a. Therefore, the

traffic data generated by the RRUL test and gathered with the TC utility exhibits the kind

of non-i.i.d. behaviour necessary for the FL model of the FCP. For the sake of clarity, we

depict the drop rate data corresponding to ten queues only, but similar graphs are

obtained when more queues are considered. On the other hand, to show the influence of

tuning FQ-CoDel, we set up a simple test that consists of modifying its target and interval

parameters at the egress buffer of the Border Router Domain 2 while data are constantly

transferred between two hosts, each one in a different domain. The interval parameter

ensures that the measured minimum delay does not become too old and, typically, the

target delay is 5% of this interval [64]. Therefore, we set FQ-CoDel with target values

from 1 ms to 6 ms and intervals from 20 ms to 120 ms, respectively. As can be seen in

Figure 4.6b, although an AQM scheme such as FQ-CoDel is meant to operate

unchangeably, there is a noticeable effect when its target parameter varies: both 𝑚𝑚𝑅𝑅𝑇𝑇𝑇𝑇

and 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 are affected by the target delay configuration. This is consistent with our

solution formulation explained in Section 4.3.2.

73

(a)

(b)

Figure 4.6. Preliminary tests for the Experimentation Design. a) Queues data at Border

Router Domain 1. b) Effects of tuning FQ-CoDel target parameter on 𝒎𝒎𝐑𝐑𝐑𝐑𝐑𝐑 and 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻.

For the parameters exchange between the Learning Orchestrator and the Local Learners,

we use the Secure File Transfer Protocol (SFTP), which runs over the Secure Shell (SSH)

protocol, to avoid sending the parameters in the clear. SFTP protects the data integrity

through cryptographic hash functions and provides authentication for both the server and

the client [115]. In this way, we also consider security concerns in a real inter-domain

scenario by adding encryption functionality to the communication between the parties

involved in the FCP. Additionally, we assume that the pair of private and public keys

74

have been shared prior to the execution of the Algorithm 4.1 and that a different port

from the default SSH port, i.e. port 22, is agreed for the transfer.

Table 4.1. Model parameters to be transferred for the FCP.

Parameter Description
Tensor

Dimension

𝑊𝑊ih
(0) Weights of block input, hidden layer 0 120×1

𝑏𝑏ih
(0) Bias of block input, hidden layer 0 120

𝑊𝑊hh
(0) Weights of hidden cells, hidden layer 0 120×30

𝑏𝑏hh
(0) Bias of hidden cells, hidden layer 0 120

𝑊𝑊ih
(1) Weights of block input, hidden layer 1 120×30

𝑏𝑏ih
(1) Bias of block input, hidden layer 1 120

𝑊𝑊hh
(1) Weights of hidden cells, hidden layer 1 120×30

𝑏𝑏hh
(1) Bias of hidden cells, hidden layer 1 120

𝑊𝑊ih
(2) Weights of block input, hidden layer 2 120×30

𝑏𝑏ih
(2) Bias of block input, hidden layer 2 120

𝑊𝑊hh
(2) Weights of hidden cells, hidden layer 2 120×30

𝑏𝑏hh
(2) Bias of hidden cells, hidden layer 2 120

𝑊𝑊o Weights of output layer 1×30

𝑏𝑏o Bias of output layer 1

75

The use of SFTP is sufficient for the needs of our experimentation, since 𝑤𝑤𝑘𝑘 are

transferred as a Python dictionary with the parameters of the FCP model. The size of this

dictionary is 77.8 kB and it contains the PyTorch tensors with the weight and bias values,

whose dimensions are specified in Table 4.1. On the other hand, 𝑑𝑑𝑘𝑘 is a Python list with

𝑢𝑢 elements. For private and secure transfer of high-dimensional parameter vectors in a FL

setting, which is not the case of this work, we point the reader to other research papers

such as [116], [117]. It is also important to highlight that, although the FIAQM is tested

in a distributed setting, the FCP algorithm is synchronously executed between the

Learning Orchestrator and the Local Learners. This means that our experimentation

design considers the coordination of the learning algorithm execution along with the

transfer of the parameter files.

4.5. FIAQM performance evaluation

To evaluate our FIAQM scheme, we first demonstrate how the FCP algorithm predicts

congestion accurately as a stand-alone entity. Next, we illustrate how the FCP integrates

with the AQM parameter tuner to attain the objective of reducing congestion and

improving the performance of an inter-domain connection.

4.5.1. FCP algorithm predictions accuracy

The experiments of this subsection are conducted in an offline setting with data

previously gathered during the preliminary tests described in Section 4.4. Hence, we

count on 21 datasets: one from the IXP queue, corresponding to the link between the IXP

switch and Border Router Doman 1, and 20 from the queues of the intra-domain links of

the aforementioned router. Subsequently, we train the FPC with η=0.001 and u=2, which

means that two queues of the router are randomly selected to average the model

parameters in each round. Also, the number of training rounds are set to Γ=10 and the

local iterations to Z=1000. To make predictions, we utilize the data from the IXP queue

as the set of test samples. Figure 4.7 shows how the predicted congestion of the FPC

model, trained with the queue data of Border Router Domain 1, resembles the actual

congestion of the IXP’s queue. Note that, rather than predicting the exact value of drop

76

rate in a particular time interval, we are more interested in capturing the tendency of that

value. Hence, the predictions are accurate enough for our goal. In terms of the loss

metric, we chose the Mean Square Error (MSE), which yields a value of 0.002 over the

test subset.

Figure 4.7. Actual congestion of the IXP queue and predicted congestion by the FCP.

On the other hand, we compare the loss obtained when the congestion predictor is trained

in a federated fashion and in a centralized manner. As this comparison requires more

exhaustive tests, we change the emulation parameters Γ and 𝑍𝑍 to 50 and 2000,

respectively. We also run a separate centralized model that is trained with data from the

IXP’s queue. As can be seen in Figure 4.8, FCP gets lower cumulative loss than the

LSTM model of the centralized congestion predictor. What is interesting about this result

is that both federated and centralized models are evaluated by making predictions over a

test subset from the IXP’s queue. That is, the FCP outperforms the centralized congestion

predictor, even though the test data is a subset of the dataset used for the centralized

model training. This result is consistent with those presented in [89].

77

Figure 4.8. Evaluation loss comparison between a centralized congestion predictor and

the FCP algorithm.

In contrast, the time complexity of the FedAvg algorithm can be expressed in terms of the

total training rounds, Γ, local epochs, 𝐸𝐸, and the number of local samples, 𝑛𝑛𝑘𝑘, as 𝒪𝒪(Γ ×

𝐸𝐸 × max𝑘𝑘(𝑛𝑛𝑘𝑘)). This means that the time taken for the FL training depends on the

slowest participant in each round, also known as stragglers, because of the number of

local updates that those participants need to execute [118]. In our proposed FCP

algorithm, we reduce this complexity by considering that all the participants have the

same number of local samples, that is 𝑁𝑁 = 𝑛𝑛𝑘𝑘. It is important to highlight that this is a

realistic consideration, since the traffic in core networks is very high and the routers’

queues are likely to expose congestion frequently. In this way, the local epochs and local

batches of the FedAvg algorithm are converted into 𝑍𝑍 local training iterations in FCP

(step 8, Algorithm 4.1), which correspond to 𝑛𝑛𝑘𝑘. In other words, different from the

FedAvg algorithm, in the FCP algorithm every participant happens to have the same

number of local updates (or local training iterations, 𝑍𝑍), which yields a time complexity

of 𝒪𝒪(Γ × 𝑁𝑁). Nevertheless, we show that Γ ≪ 𝑁𝑁 is generally the case for our problem

scenario.

To this end, we set various target loss values in order to determine how many rounds of

training the FCP needs to reach those targets. Thus, four benchmarks are defined based

78

on the cumulative loss over 2000 predictions as targets. In this experiment, the number of

local iterations is 𝑍𝑍 = 2000, as well. Similar to the evaluation test explained previously,

the predictions are made considering a test subset from the IXP’s queue. We then

compare the number of training rounds needed by the FPC algorithm against an LSTM

trained in a centralized host, Figure 4.9. It is important to point out that, for the sake of

the comparison, the term training rounds means the equivalent of training iterations for

the centralized predictor. As this predictor acts alone, there is no real rounds of training.

As can be seen, the FCP algorithm requires less rounds during the training process to

attain the desired loss on the test data. This result shows that, although there is an

overhead in the congestion predictor training of the FIAQM, the proposed algorithm

compensates this overhead by enabling a lighter training process in terms of the rounds

needed. Moreover, this outcome evidences that the complexity of the FCP algorithm is

heavily influenced by the number of samples used for the training process, 𝑁𝑁, rather than

Γ.

Figure 4.9. Number of training rounds needed to reach the target loss by a centralized

congestion predictor and the FCP algorithm.

79

4.5.2. Real-time AQM tuning with FIAQM

In this subsection, we elaborate about the experiments that we conducted in real time to

show the performance of our proposed method as a whole, that is, the FIAQM’s main

components working together. To this end, we carry out several experiments in the

emulation setting described in Section 4.4. The network emulation parameters for this

evaluation are summarized in Table 4.2. We assess the MDP for the AQM tuning

problem by considering 100 levels of congestion as current or next states. To determine

their levels, we keep the maximum observed and predicted values as reference for the

discretization. We also delimit the actions to 100 values, which are the target delay of

FQ-CoDel. In this way, the possible actions to take are a set of values from 1.1 ms to 11

ms in steps of 100 μs. As we explained in Section 4.3.2, we modify two parameters at the

same time: the target delay and the interval. Thus, the experiments are more consistent as

these two parameters are tightly related. For this assessment, the Border Router Domain 2

performs the IAQM while the Border Router Domain 1 is configured with the default

target and the interval parameters in the Linux kernel: 5 ms and 100 ms, respectively.

Table 4.2. Emulation parameters for the evaluation of the FIAQM scheme in real time

Network Emulation Parameter Value

Border Router Domain 1 - IXP link bandwidth 1 Gbps

Border Router Domain 2 - IXP link bandwidth 1 Gbps

Intra-domain links bandwidth Random integer, [250, 500) Mbps

Border Router Domain 1 - IXP link delay 2 ms

Border Router Domain 2 - IXP link delay 2 ms

Intra-domain links delay Random integer, [2, 10) ms

Number of hosts per domain 20

Buffers hard limit (all queues) 1000 packets

80

AQM mechanism (all queues) FQ-CoDel

Intra-domain links AQM target (static) 2 ms

Intra-domain links AQM interval (static) 40 ms

Period of AQM parameters tuning, T 2 s

Emulation time 600 s

In terms of the FIAQM execution, the FCP runs in the background while the AQM tuner

performs its job in an online manner. To achieve so, the Q-values are updated iteratively

every 2 seconds based on both the predicted level of congestion ahead and 𝑃𝑃𝑐𝑐, which is

calculated from the 𝑇𝑇𝑝𝑝𝑝𝑝𝑃𝑃 and 𝑚𝑚RTT values that two monitoring hosts, one in each domain,

measure with active probes. Once the reward based on 𝑃𝑃𝑐𝑐 is known, the algorithm updates

the Q-values by applying (3.3).

On the other hand, the FCP utilizes pre-trained model parameters while the first training

round is completed. Thus, the FCP predictions during this time are accurate enough for

the AQM tuner. Additionally, 100 samples of the IXP’s queue data are considered for the

predictions, which means the historical levels of congestion in the past 10 seconds. Those

predictions are transferred from the Learning Orchestrator to the Local Learner

asynchronously, in form of a NumPy array of dimension 100 × 1 and 928 B in size. This

array corresponds to the global drop rate estimate of the other domain, DREst, as depicted

in Figure 4.5. In this way, the AQM tuner takes into account the most recent available

values of DREst, even if the FCP is still processing a new training round.

Accordingly, Figure 4.10 shows the results of the real-time network emulation in 600 s.

Note that, for the comparison sake, we set the FIAQM’s tuner to start operating at 150 s

of the emulation. Then, the AQM parameters of Border Router Domain 2 are fixed to the

default values during the first 150 s and, from this time on, the IAQM tunes these

parameters according to Algorithm 4.2.

81

Figure 4.10. Improvement over time provided by FIAQM in terms of congestion

reduction and 𝑷𝑷𝑷𝑷 growth. AQM tuning starts at 150 s.

As can be seen, the drop rate ahead at the Border Router Domain 1, which corresponds to

the DREst values forecasted by the FCP, decreases significantly once the FIAQM starts

the tuning process. Conversely, 𝑃𝑃𝑐𝑐 tends to get higher values as the AQM tuner improves

over time. As a result, the tuning process populates the Q-table with the values of 𝑃𝑃𝑐𝑐 in

the respective (𝑠𝑠, 𝑎𝑎) coordinates at every iteration of Algorithm 4.2. We highlight that,

thanks to the way that we design the AQM tuner, the resulting Q-table is a light NumPy

array of 100 × 100 elements and 39.1 kB in size.

Finally, Table 4.3 summarizes the hyperparameters of both modules of the FIAQM

scheme utilized for its evaluation in the real-time emulation. It is also important to point

out that, although we designed our experimentation setting to make it as realistic as

possible, Mininet has some limitations regarding the links bandwidth of the emulated

network elements. In actual backbone networks, link data rates are of the order of tens or

hundreds of Gbps. However, Mininet emulations are constrained by the data rate of the

computer’s network interface where Mininet is running and the number of emulated

network interfaces. This means that, in order to achieve results that resemble real-world

networks, this data rate capacity must be considered for all the links in the emulation

environment. Nevertheless, the emulation parameters can be easily scaled when running

82

our setting on other computers, actual SDNs, or even Linux-based bare metal routers

[119]. Last but not least, we would like to remind the reader that the code of the

experiments described in this subsection is publicly available at [109]. We intent to make

our contribution accessible to researchers and developers who are actively working on

congestion-related problems of the Internet. Please cite this work if you use any posted

script for your own works.

Table 4.3. Hyperparameters of the FIAQM’S learning modules.

Module Hyperparameter Value

FCP

LSTM hidden layers, 𝐿𝐿 3

Cells per LSTM hidden layer 30

LSTM dropout regularization, 𝛿𝛿 0.2

Learning rate, 𝜂𝜂 0.001

Subsets of non-zero queues, 𝑢𝑢 2

Local training iterations, 𝑍𝑍 1000

Training rounds (maximum), Γ 10

AQM Tuner

Learning rate, 𝛼𝛼 0.5

Discount factor, 𝛾𝛾 0.8

Exploration/exploitation rate, 𝜀𝜀 0.5

83

4.6. Summary

Active Queue Management (AQM) has been considered as a paradigm for the

complicated network management task of mitigating congestion by controlling buffer of

network link queues. However, finding the right parameters for an AQM scheme is very

challenging due to the dynamics of the IP networks. In addition, this problem becomes

even more complex in inter-domain scenarios where several organizations interconnect

each other with the limitation of not sharing raw and private data. As a result, existing

AQM schemes have not been widely employed despite their advantages. Therefore, we

present a solution that tackles the challenges of tuning the AQM parameters for inter-

domain congestion control scenarios where the network management goes beyond an

organization’s domain. We then introduce the Federated Intelligence for AQM (FIAQM)

architecture, which enhances the existing AQM schemes by leveraging the Federated

Learning approach. The proposed FIAQM framework is capable of dynamically

adjusting the AQM parameters in a multi-domain setting, which is hard to achieve with

the conventional AQM solutions working alone. To this end, FIAQM uses an artificial

neural network, trained in a federated manner, to predict beyond-own-domain congestion

and an intelligent AQM parameter tuner. The evaluation results show that FIAQM can

effectively improve the performance of the inter-domain connections by reducing the

congestion on their links while preserving the network data private within each

participating domain.

84

Chapter 5

5. Efficient Network Telemetry based on Traffic Awareness

5.1. Motivation

With the advancement of Software-Defined Networks (SDN) paradigm and the

development of its programmable data plane (PDP) technologies, the network telemetry

(NT) notion has emerged differing from the traditional network measurement schemes, as

it comprises an automated process for remotely gathering and processing network data

[120]. Moreover, traditional network monitoring technologies usually rely on active

probes that are protocol-specific, such as Internet Control Message Protocol (ICMP) and

Simple Network Management Protocol (SNMP) packets, or passive methods of

measurements, which are based only on observations of undisturbed and unmodified

packet streams of interest [121]. That is why NT is then deemed as a suitable answer to

the challenges that the traditional network measurement technologies face in terms of

adequate network visibility with better scalability, accuracy, and coverage, as well as

hardware and protocol independencies.

The study of how to get high-quality network measurement data at low cost is important,

since NT produces massive data in real network environments. The main goal of any NT

scheme is to generate and collect measurement data locally at network nodes, depending

on different service requirements, and transmit those data to a centralized controller for

enabling an optimal network management. Therefore, an efficient telemetry deployment

strategy is needed to compensate for the network performance loss due to the impact of

gathering and transmitting the telemetry data itself. Networks’ failures and performance

problems can have a variety of causes, which requires different types of information to

diagnose. That is why the ideal telemetry scenario contemplates the gathering of all the

fine-grained data at a fine time scale. However, this means a high cost in terms of

communication overhead. On the other hand, network managers need to get the telemetry

information in a timely manner to quickly identify, isolate, and fix performance problems

85

in order to minimize the impact on users and organization’s revenue. Yet, it is difficult to

measure many flows and packets with constrained resources at the network elements,

which focus more on control functions such as packet forwarding. Since NT not only

processes all the packets but also stores information about the packets, NT sometimes

requires even more resources than the control functions do.

Today’s NT practices follow a bottom-up approach, i.e. network managers collect data

from network elements, aggregate it in a centralized collector, and extract the information

they need. This approach poses several problems like having too many data to process.

For this reason, a new approach is needed, one that provides network managers with

abstractions of the metrics they are interested in [122]. Based on those interests, the

granularity of the measurements should be different allowing to minimize the overhead

produced by the telemetry data’s transmission. In this way, different levels of

measurement accuracy can also be obtained considering the network resources’

limitations. Nevertheless, the task of matching network managers’ desires with specific

telemetry granularities might be challenging due to the network’s changing conditions.

Moreover, NT applications only care about the telemetry data, instead of how to obtain

those data. Then, a sort of telemetry tasks orchestration should be used in order to

achieve efficient tasks distribution and telemetry data acquisition. In addition to upper-

level monitoring applications, the orchestration of NT tasks should consider real-time and

changing network flows. Nevertheless, how to achieve high-quality network

measurement at low cost according to the existing network status is a key issue of NT

that needs further research and development [120].

We then propose to address the problem of efficiently gathering NT data through a

modular framework that is independent of the NT scheme in use. The core of our solution

is Machine Learning-based NT Controller, which autonomously decides the granularity

of the measurements to be transmitted. This decision is made taking into account network

managers’ needs and the traffic that a network element is experiencing. To achieve so, we

consider an anomaly detection mechanism, which aims to discover unexpected events in

86

the traffic data. In this way, several types of traffic are identified and the telemetry data

are selectively transmitted based on those traffic types.

Accordingly, our proposed mechanism utilizes a classifier to detect anomalous

behaviours in the traffic that a network element is forwarding. The classification model

considers the traffic characteristics that common cyberattacks expose, so that the flows

are segmented in different types (including benevolent traffic) based on those

characteristics. Thus, our design aims to classify the network traffic anomalies and,

according to this segmentation, decides the level of granularity of the telemetry data that

a network element should transmit. Our rationale behind this proposal is that malicious

traffic patterns can be exploited to determine the frequency in which NT data should be

sent. In other words, when normal patterns of flows are detected, there is no need for a

very fine granularity in the NT data gathering. In this way, for example, the queue

occupancy measurements are not to be transmitted very frequently unless malicious

traffic is negatively affecting the network elements’ buffers. In fact, this kind of

approach has been researched in the literature. For instance, authors in [123] study the

behaviour of some network performance metrics, such as the buffer occupancy, as a

consequence of malevolent traffic produced by attacks like Denial of Service (DoS),

Distributed Denial of Service (DDoS), and SYN/TCP flooding (a type of DoS/DDoS

flood attack using the TCP protocol). Therefore, we aim to take advantage of such a

relationship between the traffic patterns that typical cyberattacks pose and the metrics

that an NT mechanism usually collects and transmits.

For the reasons explained above, we denote our solution as Traffic-Aware Network

Telemetry, or TANT for short. A general overview of the TANT solution is shown in

Figure 5.1. As can be seen, the main components of the system at the network elements

are a traffic flows classifier and the NT controller, which operates according to the

telemetry standard in use. The NT controller determines the granularity of the telemetry

data to be transmitted depending on the outcomes of the local traffic classifier. In

summary, the main contributions of this work are:

87

• A flexible framework to achieve efficient NT that can be adapted to a variety of

NT schemes regardless their way of operation (in-band or out-of-band).

• The design of a lightweight traffic classifier that does not consider the classical 5-

tuple (protocol type, source IP address and port, and destination address and port)

to identify different types of traffic.

• A methodology to evaluate and implement inference acceleration of ML

algorithms making predictions in real-time scenarios, such as the NT use case

presented in this work.

Figure 5.1. TANT system overview. Each network element comprises a traffic classifier

and an NT controller, which transmits the NT data to the NT engine.

It is important to point out that, although the TANT framework could be applied in

networking setups, such as Wide Area Networks (WAN) and Internet Service Providers

(ISPs) networks, its application would be more representative in networks delimited by

the local management of a single organization, like enterprises or campuses networks.

Also, the implementation of the TANT framework and the utilization of its NT data to

tackle inter-domain scenarios’ problems, like the one presented in [12], needs further

research that is out of the scope of this work.

88

5.2. Related Work

The challenges that NT poses have been addressed by the research community, in both

academic and industry settings, with diverse approaches that generally fell in one of these

two main categories: in-band telemetry and out-of-band telemetry. In-band telemetry

refers to the case when the NT data transmission usually shares the same link, path, or

packet with the users’ data whereas the transportation of out-of-band telemetry data does

not [120]. The in-band telemetry solutions reviewed in this subsection are related to the

In-band Network Telemetry (INT) Dataplane Specification [124]. This specification

defines the monitoring system as a system that collects telemetry data sent from different

network elements. The components of the monitoring system may be physically

distributed but logically centralized. Additionally, with INT the original data packets are

monitored and may be modified to carry INT instructions and INT metadata (telemetry

data). It is important to highlight that there are other in-band telemetry specifications

different from the INT standard. For this reason, we make the distinction between these

two terms.

Existing NT systems usually trade off expressiveness (accuracy of the measurements) for

scalability (amounts of the telemetry data collected), or vice versa. That is why most of

the INT-based schemes aim to reduce the telemetry data transportation overhead and, at

the same time, try to avoid losing too much measurement accuracy. Accordingly, authors

in [125] present a sampling-based INT mechanism, in which the source node inserts INT

headers into the packets at a configurable rate to reduce the overhead. To compensate for

the accuracy, their solution also supports a sampling based on events, in which metadata

is inserted only when the latency difference between the last hop and the current hop

exceeds a predefined threshold. Similarly, Chowdhury et al. propose a lightweight INT-

based scheme to reduce the overhead by trying to estimate the amount of error that can be

introduced at the INT collector if the requested telemetry data are not piggybacked on the

current packet [126]. For estimating this error, a predictor function based on

Exponentially Weighted Moving Average is used for each telemetry data item of interest.

By encoding the requested data on multiple packets, authors in [127] introduce a

probabilistic INT method that bounds the per-packet overhead as low as one bit. The

89

solution supports several aggregation operations that allow efficient encoding of the

aggregated data onto packets: per-packet aggregation, static per-flow aggregation, and

dynamic per-flow aggregation. Conversely, Wang et al. introduce a bandwidth-efficient

INT system by tracking the rules matched by the packets of a flow in a previous period

[128]. Their proposed solution assigns globally unique IDs to every rules and stores rule-

changed INT reports in a database server so that the rate of generated INT reports is

reduced. In contrast, [129] considers the overhead not only at the data plane, but also at

the control and management planes while employing INT. The authors model the INT

Orchestration as an optimization problem and propose two heuristic algorithms to

produce feasible solutions in polynomial computational time with respect to the network

size and number of flows. From [129], we find interesting the idea of taking into account

the three SDN planes to reduce the INT overhead in an orchestrated manner. Finally, Kim

et al. present a selective INT scheme where an algorithm adjusts the insertion ratio of

packets to be monitored according to the frequency of significant changes in network

data [130].

What all the solutions reviewed above have in common is the goal to make NT efficient

in terms of the usage of the network resources, such as bandwidth and network elements’

computational limitations. However, those schemes delimit their applicability to the INT

specification, as the per-packet NT data overhead is assumed as the main issue to solve.

Although INT is becoming the mainstream telemetry standard, we advocate for a more

generalized framework that can also be applied to other in-bound telemetry mechanisms

or even out-of-band ones. On the other hand, [125] and [130] are the schemes that relates

the most to our proposed framework in terms of the adjustment of the NT data granularity

(or rate) to reduce overhead.

5.3. TANT Traffic Classifier

The traffic classification process involves the identification of both normal and different

types of abnormal traffic flows. We then design the traffic classifier of our solution using

the CICIDS2018 dataset as a benchmark [131]. This and other datasets from the

90

Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick have

been widely used by researchers worldwide to evaluate their network traffic-related

methods, such as Internet traffic classification. The CICIDS2018 dataset contains benign

and common attacks, which resembles true real-world network data. It also includes the

results of the network traffic analysis with labeled flows based on the time stamp, source

and destination IP addresses, source and destination ports, and protocols. The dataset was

generated with realistic background traffic to profile the abstract behavior of human

interactions and includes benign traffic. The final dataset was gathered from different

attack scenarios whose attacking infrastructure considers 50 machines and the victim

organization has 420 hosts and 30 servers. More than 80 statistical features are extracted

from the network traffic in forward and backward directions, as described in [131].

Therefore, the traffic classifier considers multiple classes, including benign traffic and the

malicious traffic described by these attacks: DoS-Hulk, DoS-SlowHTTP, DDoS-HOIC,

DDoS-LOIC, FTP-BruteForce, and SSH-BruteForce. We chose these attacks because

they are the most representative classes in the CICIDS2018 dataset and encompass both

TCP and UDP flows. A description of these attacks and the methodology used to obtain

their traffic data can be found in [132]. After merging and cleaning the data subsets

corresponding to the chosen attacks, the final dataset ended up containing 4,723,155

samples. For the training and test of the traffic classifier, the final dataset is split into 70%

and 30%, respectively.

On the other hand, one of our goals is to design a lightweight and protocol-independent

scheme to identify network traffic. To achieve so, we first perform an explainable feature

engineering process. As we are interested in controlling the granularity of the NT, there is

an initial feature selection that considers all time-related features, 27 in total, which are

based on traffic flows’ metrics (see Table 5.1). It is important to highlight that, in the

context of this work, we consider a traffic flow according to the IETF’s RFC 7011,

Specification of the IP Flow Information Export (IPFIX): “A Flow is defined as a set of

packets or frames passing an Observation Point in the network during a certain time

interval. All packets belonging to a particular Flow have a set of common properties.”

[133]. Those common properties include the packet header fields, i.e. the 5-tuple of

91

source IP address, destination IP address, source port, destination port, and protocol type.

Similarly, we point out that the data used for our analysis and proposed solution

correspond to the RFC 7011’s definition of Flow Records, which contain measured

properties of the flows at the Observation Point. In this way, the features of the input data

for the traffic classifier are based on the Flow Records but not on the flows’ common

properties themselves, such as the 5-tuple.

Table 5.1. Time-related traffic features

Feature Description

Active Max Maximum time a flow was active before becoming idle

Active Mean Mean time a flow was active before becoming idle

Active Min Minimum time a flow was active before becoming idle

Active Std
Standard deviation time a flow was active before becoming

idle

Bwd IAT Max
Maximum time between two packets sent in the backward

direction

Bwd IAT Mean
Mean time between two packets sent in the backward

direction

Bwd IAT Min
Minimum time between two packets sent in the backward

direction

Bwd IAT Std
Standard deviation time between two packets sent in the

backward direction

Bwd IAT Total
Total time between two packets sent in the backward

direction

Bwd Packets/s Number of backward packets per second

92

Flow Byte/s Number of flow bytes per second

Flow duration Duration of the flow in microseconds

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Flow IAT Std Standard deviation time between two packets sent in the flow

Flow Packets/s Number of flow packets per second

Fwd IAT Max
Maximum time between two packets sent in the forward

direction

Fwd IAT Mean Mean time between two packets sent in the forward direction

Fwd IAT Min
Minimum time between two packets sent in the forward

direction

Fwd IAT Std
Standard deviation time between two packets sent in the

forward direction

Fwd IAT Total Total time between two packets sent in the forward direction

Fwd Packets/s Number of forward packets per second

Idle Max Maximum time a flow was idle before becoming active

Idle Mean Mean time a flow was idle before becoming active

Idle Min Minimum time a flow was idle before becoming active

Idle Std
Standard deviation time a flow was idle before becoming

active

93

As a next step in the feature engineering process, we normalized the values of the

preselected features and perform a correlation analysis of them. Intuitively, one can

suppose that several time-related features described in Table 5.1 are strongly correlated.

For example, some of the forward-direction metrics should have a significant correlation

with their backward-direction counterparts, the majority of the traffic data correspond to

TCP flows. For this reason, we perform another feature selection using the Pearson

correlation coefficients. These coefficients are a statistical measure of the linear

dependency between two vectors, which are assumed to be normally distributed and to

contain 𝑛𝑛 elements each [134]. Thus, the Pearson correlation coefficients are calculated

as follows:

𝑟𝑟(𝑥𝑥1, 𝑥𝑥2) =
∑ �𝑥𝑥1

(𝑖𝑖) − �̅�𝑥1��𝑥𝑥2
(𝑖𝑖) − �̅�𝑥2�𝑛𝑛

𝑖𝑖=1

�∑ �𝑥𝑥1
(𝑖𝑖) − �̅�𝑥1�

2
𝑛𝑛
𝑖𝑖=1 �∑ �𝑥𝑥2

(𝑖𝑖) − �̅�𝑥2�
2

𝑛𝑛
𝑖𝑖=1

where 𝑥𝑥1 and 𝑥𝑥2 are the vectors of the two features being analyzed, �̅�𝑥1 and �̅�𝑥2 the mean

values of those feature vectors, respectively, and 𝑥𝑥𝑗𝑗
(𝑖𝑖) refers to the value of the instance 𝑖𝑖

from feature 𝑗𝑗. For each coefficient, 𝑟𝑟(𝑥𝑥1, 𝑥𝑥2) ∈ [−1, 1] and a positive number close to 1

means that an increase or decrease in the values of 𝑥𝑥1 is met with the same trend, increase

or decrease, in the values of 𝑥𝑥2. Accordingly, we discard one of the features whose values

have a correlation greater than 0.9 with another feature. The resulting 14 features and

their coefficients after carrying out the correlation analysis are shown in Figure 5.2.

(5.1)

94

Figure 5.2. Correlation matrix of the selected features based on the Pearson coefficients.

For the traffic flows classifier, we consider the following classification techniques, which

are deemed by ML researchers and practitioners as efficient methods for multi-class

problems: Logistic Regression with Stochastic Gradient Descent training (LR-SGD),

linear Support Vector Machines with Stochastic Gradient Descent training (SVM-SGD),

Random Forest (RF), Extra Trees (ET), Light Gradient Boosting Machine (LightGBM),

and Extreme Gradient Boosting (XGBoost). In order to compare the outcomes of these

methods, we use the F1-score as the statistical measure of the classification quality,

defined by the harmonic mean of the precision and the recall [135], as follows:

𝐹𝐹1 = 2
𝑃𝑃 ∙ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 (5.2)

95

where the recall, 𝑅𝑅, represents the ratio between the number of correct positive results

and the number of all relevant samples, and the precision, 𝑃𝑃, is the relation between the

number of correct positive results and the number of positive results. Figure 5.3 shows

the comparison of the F1-scores of the abovementioned classifiers before and after

performing the feature selection based on the Pearson correlation analysis.

Figure 5.3. Classifiers’ scores comparison before and after first feature selection.

As can be seen, the accuracy of the LightGBM, ET, and XGBoost classifiers are slightly

lower when almost half of the features (14 out of 27) are used. In contrast, although faster

in training, LR-SGD and linear SVM-SGD algorithms are outperformed by the other

three in both cases. It is important to highlight that we are more interested in the

inference times, rather than the training times, as our goal is to come up with a

lightweight traffic classifier to efficiently make predictions in real time. That is why we

are not comparing the training times that the algorithms take, however, the inference

times will be compared in the performance evaluation of the proposed solution. For the

classifier design, we intent to engineer a method that employs a reduced number of

features without sacrificing the accuracy too much, so that its complexity is lowered,

especially when inferencing traffic anomalies for the NT control process.

As a further step, we complete another feature extraction based on the importance

analysis, which helps identify what the most informative features are during the

96

classification process. In this way, we could reduce even more the number of features

needed for the inference, if the accuracy is not significantly degraded. We explore this

possibility by calculating the Permutation Feature Importance (PFI): a model inspection

technique and especially useful for non-linear classifiers. This technique is model

agnostic and breaks the relationship between the feature and the target. The PFI for a

feature 𝑥𝑥𝑗𝑗 is defined as the average increase in prediction loss, ℒ, when the feature is

permuted in training or test dataset [136], as follows:

𝑃𝑃𝐹𝐹𝑃𝑃𝑗𝑗 =
1
𝑀𝑀
�

1
𝑛𝑛

𝑀𝑀

𝑚𝑚=1

��ℒ �𝑦𝑦(𝑖𝑖),𝑓𝑓�𝑥𝑥�𝑗𝑗
𝑚𝑚(𝑖𝑖), 𝑥𝑥�̃�𝚥

(𝑖𝑖)�� − ℒ �𝑦𝑦(𝑖𝑖),𝑓𝑓�𝑥𝑥(𝑖𝑖)���
𝑛𝑛

𝑖𝑖=1

where 𝑓𝑓�𝑥𝑥(𝑖𝑖)� and 𝑦𝑦(𝑖𝑖) refer to the model predictions and the targets, respectively , 𝑥𝑥�𝑗𝑗
𝑚𝑚(𝑖𝑖)

is a permutation of 𝑥𝑥𝑗𝑗, 𝑀𝑀 is the number of repeated permutations, and 𝑥𝑥�̃�𝚥 refers to the

complementary feature space. Figure 5.4 shows the PFI coefficients calculated for the

classification algorithm with the highest F1-score, i.e. XGBoost, over the test subset

(meaning 𝑛𝑛 = 1,416,947) and with 𝑀𝑀 = 15. As can be seen, the first nine features in

importance contribute to over 95% of the classification process.

Figure 5.4. Feature ranking based on PFI calculation.

(5.3)

97

Finally, we test the LightGBM, ET, and XGBoost classifiers only with the top nine

features selected from the PFI analysis. The new F1-scores are compared with the

previous ones in Table 5.2, which reveals that the changes in the classification accuracy

are minuscule, especially for the LightGBM and XGBoost algorithms. This explainable

feature space reduction allows the traffic identification process to be less complex and, as

a result, to achieve shorter inference times for the NT control mechanism at each network

element. The inference performance will be evaluated and discussed in the next

subsection. For that evaluation, we compare the best two techniques in terms of accuracy

in the reduced feature space, i.e. LightGBM and XGBoost, which yield F1-scores of

0.899 and 0.897, respectively, after tuning their hyperparameters [137]. Note that we

avoid overturning the hyperparameters that add complexity and make the models more

likely to overfit such as the maximum depth and the maximum leaves of the trees. In this

way, we keep the structure of both the LightGBM and XGBoost models comparable for

the inference performance benchmarking as well as more generalized for making

predictions on unseen data.

Table 5.2. F1-Scores comparison after second feature selection

Classifier Feat. = 27 Feat. = 9 Difference

ET 0.89370 0.89102 0.00268

LightGBM 0.89300 0.89232 0.00068

XGBoost 0.89667 0.89585 0.00082

5.3.1. Inference Acceleration

As explained earlier, the main goal of having a reduced feature space without

significantly sacrificing the traffic classification accuracy is to decrease the model’s

complexity and, therefore, the inference time. In achieving so, the classifier may be

implemented in more realistic network scenarios and operate in real time. We go further

towards this goal by utilizing an ML inferencing accelerator. For this work, we employ

98

the tools from the Open Neural Network Exchange (ONNX) framework to improve the

performance of our model. ONNX is an open ecosystem that provides a standard format

for representing the prediction function of trained ML models [138]. It defines an

extensible computation graph model and the models trained using several ML

frameworks can be exported to ONNX. With ONNX, each computation dataflow graph is

structured as a list of nodes that form an acyclic graph, a process known as serialization.

As a result, ONNX offers a convenient interoperability of ML models across frameworks

and that is why it is widely backed by important companies in the Artificial Intelligence

(AI) industry.

We then operationalize the optimized traffic classifier by ONNX with the ONNX

Runtime: a high-performance and resource-efficient inference engine for ML models that

takes advantage of the specific hardware capabilities where the model is run on [139].

ONNX Runtime can perform inference for any prediction function converted into the

ONNX format and its cross-platform nature allows it to be run on different hardware and

operating systems. In this manner, ONNX Runtime tries to parallelize the model’s

operations and optimizes the model graph by applying graph transformation, that is,

elimination and fusion of graph nodes.

Accordingly, we assess the efficiency of the LightGBM and XGBoost classifiers when

making predictions for one observation at a time, a common situation in computer

networking scenarios such as the use case for this work. To achieve so, we take 15,000

random samples from the resulting dataset after reducing the feature space, as explained

in the previous subsection, and measure the processing time that each model takes to

predict the type of traffic flow (one sample corresponds to one flow). Similarly, we trace

the allocated memory to process each prediction. Figure 5.5 shows the averaged

computation times and the averaged RAM usage over the 15,000 samples.

99

Figure 5.5. Computational resources used by the classifier algorithms for inferring in a

single call.

Note the logarithmic scale used for comparing the processing times. As can be seen,

XGBoost algorithm achieves faster predictions than LightGBM on batches of one sample

in size. More importantly, it is evident that ONNX optimization does accelerate the

inference time by a factor of 4.9x and 3.6x for LigthGBM and XGBoost, respectively.

Similarly, the memory usage is significantly reduced when ONNX is employed, being

nearly the same for both algorithms and improved by a factor of 15.9x, for LigthGBM,

and a factor of 15.3x, for XGBoost. All these measurements were obtained by running

the ONNX inference calls on a machine with Intel® Xeon® CPU E5-2686, four cores @

2.30 GHz, and Ubuntu 18.04.4. We also point out that these measured values correspond

to the complexity exhibited by a single flow and that complexity grows linearly with the

number of flows, 𝑁𝑁𝑓𝑓, meaning a time complexity of 𝒪𝒪�𝑁𝑁𝑓𝑓� when multiple flows are

considered.

It is important to highlight that several research works have reported lower processing

times of LightGBM, although with lower accuracy scores too, when compared to

XGBoost. However, LightGBM may be faster when being trained or making batch

predictions, but not when inferencing on one observation at a time. This is due to the

100

hyperparameter tuning that the LightGBM needs in order to get similar or higher

accuracy than XGBoost. That tuning might result in a more complex model, which

significantly affects the inferencing performance. Therefore, we consider the XGBoost

algorithm for our proposed efficient telemetry scheme and the performance assessments

in the rest of this work. Again, as we discussed in the introduction, we are more

interested in attaining a reasonable traffic identification accuracy with an algorithm that

provides fast inference in a single call.

5.4. TANT Controller

Network applications require NT to be elastic enough in order to efficiently use the

network resources and reduce the performance degradation. Also, routine network

monitoring should cover the entire network with low data sampling rate. However, NT

data rate may be boosted when issues arise or trends emerge [140]. That is the ultimate

goal of the Network Telemetry Controller module in our scheme. As a use case, we

evaluate our solution by means of a postcard-like telemetry mechanism, such as the

Postcard-Based Telemetry (PBT) or the INT in eXport Data mode (INT-XD). In this

mode, INT nodes directly export metadata from their dataplane to the monitoring system

based on the INT instructions configured at their Flow Watchlists. A Flow Watchlist is a

dataplane table that matches on packet headers and applies INT instructions on each

matched flow. The instructions indicate which INT metadata to collect at each INT node

and they are either configured at each INT-capable node’s Flow Watchlist or written into

the INT header. Although INT-XD is a valid mode of operation, it does not represent the

classic and the default hop-by-hop INT operation, where the INT devices embed both

instructions and metadata, i.e. telemetry data, and the packets are modified the most

[124].

Similarly, the PBT-M, a packet-marking variation of the PBT, does not require the

encapsulation of telemetry instruction headers, avoiding some of the implementation

challenges of the instruction-based PBT and the default INT, also known as on-path

telemetry in passport mode [141]. PBT-M uses a marking-bit in the existing headers of

101

user packets to trigger the NT data collection and export. If an NT node detects the mark,

a postcard (a dedicated packet triggered by a marked user packet) is generated and

transmitted to the NT collector. This postcard packet contains the data requested and

configured by the management plane. The main advantage of PBT-M is that it avoids

growing user packets with new headers and introducing new data plane protocols.

However, the data plane devices need to be configured to know what NT data to collect.

Another important benefit of PBT-M is that the collected NT data can be transported

independently through in-band or out-of-band channels and the types of data collected

from each node may be different according to the application requirements and nodes’

capabilities. Nevertheless, since each postcard packet has its own header, the overall

network bandwidth overhead of PBT may be higher than the passport-based NT,

depending on the number of postcards to be transmitted.

For these reasons explained above, our TANT solution is designed as a PBT-M-like

scheme that additionally takes into account the granularity of the NT data to be

transported, so that the network bandwidth overhead is minimized. To achieve so, we

assume that the levels of granularity can be marked through some or all of the 8 bits of

the Type of Service (ToS) field of a standard IP packet header. In this way, a network

device acting as the NT Source detects the type of traffic that is forwarding and, based on

that, marks the level of granularity needed. Then, both NT Source, NT Transit, and NT

Sink devices send postcard packets to the NT Monitoring Engine. Finally, the NT Sink

unmarks the IP headers. It is important to highlight that, similar to the PBT-M scheme,

TANT assumes that the NT devices are instructed on what kind of NT data collect and

transmit by the management plane beforehand.

With respect to the granularity levels of the NT data, we analyze the packets’ Inter-

Arrival Time (IAT) of the types of traffic identified by the classifier. To this end, we

explore the values of the attribute describing the average IAT between two packets sent

in the forward direction (Fwd IAT Mean) from the whole CICIDS2018 dataset. We point

out that, by selecting these IAT values, our analysis is more realistic so that the

granularity levels are applicable to real-time scenarios. Also, the selection of the IAT

values in the forward direction is consistent with the NT specifications described above,

102

in which a network element triggers the telemetry tasks and forwards the NT instructions

to the next elements ahead. On the other hand, the packet IAT values have a significant

relationship with the type of traffic that a network element is forwarding and cannot be

easily obfuscated or manipulated [142]. For this reason, the IAT characteristics of packets

have been used to detect malicious traffic patterns, such as the one described by DDoS

attacks [143]. Consequently, we define five levels of NT granularity according to values

of the Fwd IAT Mean feature for each traffic class, as shown in Table 5.3. Note that this

attribute is not part of the group of nine features finally selected for the proposed traffic

classifier (see Figure 5.4).

Table 5.3. Granularity Levels

Granularity (ms) Type(s) of Traffic

100 Benign

10 DDOS attack-HOIC, DoS attacks-Hulk

1 SSH-BruteForce

0.5 DDOS attack-LOIC-UDP

0.1 FTP-BruteForce, DoS attacks-SlowHTTPTest

5.5. Experimentation and Evaluation Results

In this section, we provide the details about the experimentation setup for the evaluation

of our proposed solution. The network topology for our experiments is similar to the one

presented in [130], although we consider one path only for the NT Transit devices,

instead of two, Figure 5.6. The reason why is because their experiments focus on the path

changes whereas ours are focused on the variations of the types of traffic. Nevertheless,

the ultimate goal is the same: to compare the performance of the proposed NT

mechanism against INT when the traffic flows are affected, either by the paths they are

103

being transported on or the specific traffic type they are carrying. Likewise, we use the

Mininet emulator as the software tool to implement and evaluate the TANT prototype in

the described network topology [119]. Mininet is a suitable tool for our use case, as it

allows a flexible SDN environment with high degree of confidence for real-time tests

[108].

Figure 5.6. Network scenario for the TANT use case evaluation.

On the other hand, we use Scapy [144] as the tool to manipulate the standard IP packets

in the TANT implementation. Scapy can be used to construct packets of a variety of

existing or new protocols, send and receive them, match requests and replies, and more

[145]. Accordingly, the NT Source, NT Transit, and NT Sink devices transmit

manipulated PBT-M-like packets to the NT Monitoring Engine, as described in the

previous section, by means of Scapy’s protocol stacking and fields manipulation

functionalities. More specifically, an IP packet is created with the standard IP header and

12 bytes are stacked as the payload of that packet. The rationale behind having a 12-byte

payload is that we intend to compare our TANT solution to the conventional INT and the

solution presented in [130], which is a scheme based on INT, although with

modifications. According to that work, three types of INT metadata are considered as

examples for its evaluation: switch ID, hop latency, and queue occupancy. These NT data

is inserted into the user data every hop by each network element involved in the INT

process, i.e. the NT Source, the NT Transit, and the NT Sink. Taking into account the

INT specification [124], INT metadata per measured variable occupy 32 bits (4 bytes).

Therefore, we consider NT data of 12 bytes in length to make it comparable to the three

INT measurements considered in the experiments of [130].

104

In relation to the evaluation of both TANT modules working together, we run the Mininet

emulation as follows: the Traffic Source host picks traffic samples randomly, meaning

that any of the types of traffic described in Table 5.3 may be selected. Based on this

random selection, the TANT Traffic Classifier determines the type of traffic by

considering the selected flow attributes, as explained in Section 5.2: Flow Byts/s, Flow

Pkts/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Tot, Bwd IAT Min,

Bwd IAT Std, and Bwd IAT Tot. Based on the identified traffic, the NT granularity is

established for that flow according to the levels showed in Table 5.3. Afterwards, the NT

Source creates an IP packet and uses three of the eight ToS bits to indicate the level of

granularity needed, as explained in Section 5.3. Note that three bits are enough to mark

all the five granularity levels that the TANT scheme considers for the use case presented

in this chapter. However, more bits could be used for that purpose. Additionally, the NT

Source inserts the 12-byte payload and send the NT packet to the NT Monitoring Engine.

As TANT implements a PBT-like NT, all the NT Transits and the NT Sink perform a

similar task in order transmit their NT data to the NT Monitoring Engine. Recall that,

similar to the PBT-M specification, we are assuming that all the NT nodes know the

measurement data that they need to collect and send a priori. This could be accomplished

by means of instructions from the management plane. Finally, each NT node starts

transmitting the NT data of the pre-determined measurements in the granularity intervals

specified in the ToS bits of the IP packet.

In order to determine the network overhead, we measure the throughput every five

seconds using the iPerf tool [146]. More specifically, we set up a pair of monitor hosts in

the emulation environment, one of them actively logging the measured throughput by

means of sending probe packets to the other one in 5-second intervals. In this way, we

measure the throughput without transmitting any NT data and, right after that, the

network throughput while the NT data is being transmitted for another 5 s. The network

overhead is then calculated by subtracting the measured throughput with NT data from

the measured throughput without it. Again, method is similar to the one utilized in [130].

105

(a)

(b)

Figure 5.7. Evaluation resutls of TANT and its comparison against the classic INT. a)

Network bandwidth overhead reduction per granularity level. b) Instantaneous and

average network overhead measured during 1,200 seconds of network emulation.

106

Figure 5.7 depicts the results of our solution evaluation. As can be seen, the proposed

TANT scheme achieves a substantial lower overhead when compared to the regular INT

mechanism: the worst-case granularity, i.e. 0.1 ms, represents less than 50% of the INT’s

overhead (Figure 5.7a). With respect to the emulation in real time, TANT attains a

reduction of 76.4% in network overhead, on average (Figure 5.7b).

Furthermore, this overhead decrease outperforms the reduction reported in [130], which

is 37% less than the conventional INT. It is important to point out that there are some

transients of the instantaneous measures of TANT that overpass the INT overhead. These

transients are due to the abnormal traffic detected by the classifier, which, at the same

time, lowers the granularity. However, our TANT mechanism adaptively changes the

granularity of the NT data when normal flows or other types of traffic flows are detected.

As a result, the overall network overhead is considerably lesser than that produced by the

per-packet INT’s granularity.

5.6. Summary

Network Telemetry (NT) is a crucial component in today’s networks, as it provides the

network managers with important data about the status and behaviour of the network

elements. NT data are then utilized to get insights and rapidly take actions to improve the

network performance or avoid its degradation. Intuitively, the more data are collected, the

better for the network managers. However, the gathering and transportation of excessive

NT data might produce an adverse effect, leading to a paradox: the data that are supposed

to help actually damage the network performance. This is the motivation to introduce a

novel NT framework that dynamically adjusts the rate in which the NT data should be

transmitted.

In this chapter, we presented a NT scheme that is traffic-aware, meaning that the network

elements collect and send NT data based on the type of traffic that they forward. The

evaluation results of our Machine Learning-based mechanism show that it is possible to

107

reduce by over 75% the network bandwidth overhead that a conventional NT scheme

produces.

108

Chapter 6

6. Conclusion

6.1. Dissertation Conclusions

The main conclusions of this dissertation are summarized as follows:

• The research work of this thesis presented a set of novel methods based on

Machine Learning techniques to achieve the realization of the Intelligent

Networking Automation paradigm in several scenarios.

• The proposed solutions are data-driven and consist of predictors and agents,

which operate at network elements such as routers, switches, or network servers.

• We have effectively applied ML techniques of several types (including

supervised, unsupervised, and reinforcement learning) to solve real-world

networking challenges.

• We showed that the developed schemes can cope with complex networking

situations that involve hard decision-making actions.

• The evaluation of the solutions has been carried out through realistic networking

scenarios and with data gathered from either actual network deployments or real-

time environments.

• For all the presented frameworks, we have considered standardized network

protocols and technologies as use cases. However, they are agnostic enough to be

utilized with other mechanisms not considered in this research work.

109

6.2. Discussion on the Findings and Limitations of this Thesis

In Chapter 2, we proposed a scheme for load balancing in HetNets that can be applied to

dense IoT networks such as Smart Cities scenarios. Our approach is based on several ML

techniques to discover hidden patterns using PCA, learn from the labeled data by means

of supervised probabilistic classifiers, and make decisions through an MDP. As a use

case, we validated our method with data from an actual LoRaWAN IoT network. Once

we preprocessed the data, we confirmed that such a network deployed in urban areas can

be deemed as a HetNet.

We demonstrated that with our scheme the goal of device-BS association biasing can be

achieved based on predictions that are made by obviating signal-based features. Unlike

other related works, we used labeled data for biasing the device-BS association through a

supervised classifier. This approach solves the CRE problem in such a manner that is less

complex to implement than other solutions based on reinforcement learning. Therefore,

the proposed association biasing method might be more suitable in scenarios where the

computational resources of core network elements, such as the Network Server, are more

constrained.

We also confirmed that our MDP-based decision-making model for the traffic offloading

has better results when the classifier’s predictions are considered. The evaluation results

describe the improvement of network capabilities in terms of PDR (an increase of 50%)

and reduction of ECD (nearly a decrease of 20%). On the other hand, although MDPs are

the basis for reinforcement learning algorithms such as Q-learning, our method does not

consider the action-value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎), i.e., the current state and each possible action

that can be taken individually. In other words, in our method the policy and expected

reward are based on the current state and the average across all of the actions that can be

taken. Therefore, our method needs less data as the function 𝑄𝑄 is not considered.

However, a further study is needed to determine the trade-off of getting better results by

including 𝑄𝑄 and the likely longer time to learn and make decisions. This is also a relevant

consideration for wireless networks with very restricted resources.

110

In this work, we validated our methodology through a specific standard, but the method

may be implemented in IoT networks operating under other standards, particularly in

dense environments. It is also important to highlight that the only process of our scheme

that runs in real time is the MDP and, consequently, the data preprocessing and the

classification training can be carried out offline.

Although the time delay caused by the decision process of our model may be

unacceptable for several WAN RAT applications, we point out that a particular

characteristic of technologies like LoRaWAN is that they are focused on the connectivity

of devices that transmit messages in relatively long periods at low data rates.

Nevertheless, more research is needed about the optimization of methods like the one we

have proposed, as well as the time complexity analysis for their implementation in

specific solutions, especially where there is a large number of end devices.

Thinking of a LoRaWAN network, specifically, we point out the importance of

considering more adjusted parameters such as data rate, number of retransmissions, and

packet arrival rate. Since we used values corresponding to worst-case scenarios in our

analytical models, better results can be achieved with our scheme by adjusting those

variables to specific situations.

In Chapter 3, we showed how the appropriate tuning of AQM parameters can improve

the RTT and throughput of TCP connections in a dynamic IP network. Additionally, we

showed that it is possible to take advantage of the ECN mechanism to predict congestion

on the rest-of-path. We modeled a congestion predictor based on an LSTM, which we

pre-trained with data of an unknown network topology. We exposed how to transfer the

predictor model to a new network and get good estimates with a rapid re-training. Also,

we described a solution for the decision-making problem on the parameters that an AQM

scheme should have according to the networks’ conditions.

We also demonstrated that it can be achieved by modeling the problem as an MDP and

finding pair values of state-action through the Q-learning algorithm. Although we

employed the power function of the connection as the reward function, our method can

work with other rewards depending on the applications or the TCP connection variable to

111

be optimized. However, we point out that the proposed Intelligent AQM has the

limitation of working with TCP traffic whose headers can be extracted by the router

utilizing the scheme. In other words, if the TCP traffic is being carried through encrypted

tunnels, such as those used in Virtual Private Networks, the ECE-marked packets cannot

be distinguished by the router.

In Chapter 4, we showed how the appropriate tuning of AQM parameters can improve

the RTT and throughput of inter-domain connections. We presented our FIAQM solution,

which leverages the characteristics of existing AQM schemes in such scenarios where

several parties are involved in a communication process and privacy is a major

consideration. The main components of the FIAQM architecture effectively applies the

fundamentals of the FL approach to attain congestion control between ASes managed by

different organizations and whose network data cannot be shared. We described in detail

the main components of FIAQM: an LSTM trained in a federated fashion to predict the

beyond-own-domain congestion and an AQM parameter tuner based on the Q-learning

algorithm. We also explained how these two components integrate to make possible for a

border router to dynamically tune the AQM scheme of its link queue that connects to the

border router in another domain.

On the other hand, we evaluated the performance of FIAQM in a realistic environment by

means of network emulations. Despite the limitations of the software tool used to this

end, our solution can be easily adapted to other real-world environments. It is important

to highlight, however, that the way we obtained the drop rate data has some limitations in

terms of the routers’ operating system functionalities. For example, we used Linux TC

tool to collect the queue statistics, whose performance heavily relies on the number of

processes that the CPU carries out.

In Chapter 5, we presented a novel framework for efficient collection and transportation

of network telemetry data by making the network devices “aware” of the traffic types that

they are forwarding. To accomplish so, our TANT scheme comprises two principal

modules: an ML-based traffic classifier and an NT controller that adjusts the level of

granularity of the telemetry data. We also showed how the inference process of the

112

classifier can be accelerated in order to make per-flow predictions in shorter times and

using less memory, important characteristics for any NT mechanism working in real time.

In addition, we evaluated the performance of the proposed scheme by means of network

emulations and demonstrated that TANT can reduce the network bandwidth overhead to

about ¼ of the overhead caused by the classic INT scheme.

Despite its advantages, it is worth mentioning that the main drawback of the TANT

framework is that the levels of NT granularity should be known by the nodes beforehand.

An automatic and dynamic selection of those levels have not been considered and further

research is needed in that regard.

6.3. Future Work

As a future work for our first research problem, an even more realistic scenario may be

set such as a prototype network with a server running our scheme and a significantly

large number of tiny devices using its services. Additionally, the possibility of combining

some of other techniques described in the literature with ours might be explored, to

obtain better results in terms of energy efficiency. However, in future implementations

we recommend performing these tasks periodically in order to get more accurate results

thanks to the updated data.

In terms of the Intelligent AQM scheme, we propose to test our method with different

TCP congestion control mechanisms, as well as more AQM algorithms. We also point

out that, although our experiments included only two AQM schemes with queue delay as

the target parameter, the proposed intelligent method could be easily adapted to other

schemes with different target parameters such as the queue size. Finally, although our

experiments included only FQ-CoDel as the AQM scheme, the proposed FIAQM method

could be straightforwardly implemented with other schemes. In those cases, the only

necessary changes would be the redefinition of the set of actions for the AQM tuner

module and the inclusion of the specific instructions for the desired AQM scheme

configuration in Linux.

113

With regard to the FIAQM framework, the performance of future implementations may

be further improved by considering other design aspects for the neural network of the

FCP. For instance, different activation functions could yield more accurate and faster

predictions of congestion in situations where shorter time intervals for the measurements

are required. Moreover, although in this work we proposed the use of metrics directly

taken from the queues as the income data for FIAQM, other kinds of data may easily feed

our proposed method. For example, as we mentioned in Section 4.2, the metadata

reported by routers employing the INT standard can be adapted to be used in FIAQM.

However, how to incorporate INT metrics in multi-domain settings and Machine

Learning-based solutions such as FIQAM requires further research.

As a future work for the TANT scheme, it would be interesting to include subcategories

of benign traffic for the flow classification process. In this way, other types of traffic can

be detected event if they do not correspond to cyber attacks. These subclasses of

benevolent, but abnormal, traffic might be very useful to detect and take actions on

events that can degrade the network performance. However, quality datasets of real

network traces that include those situations need to be generated or made publicly

available without compromising private data. Additionally, it would be worth exploring

the application of the Federated Learning approach to the traffic classifier in the TANT

scheme. In this way, a more scalable solution could be accomplished by decentralizing

the learning process and, as a result, a more seamlessly deployment across several local

networks or even WANs would be also possible.

114

7. References

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson,

2016.

[2] R. Boutaba et al., “A comprehensive survey on machine learning for networking:

evolution, applications and research opportunities,” J. Internet Serv. Appl., vol. 9,

no. 1, p. 16, Jun. 2018, doi: 10.1186/s13174-018-0087-2.

[3] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine Learning for

Networking: Workflow, Advances and Opportunities,” IEEE Netw., vol. 32, no. 2,

pp. 92–99, Mar. 2018, doi: 10.1109/MNET.2017.1700200.

[4] J. Lunze and L. Grüne, “Introduction to Networked Control Systems,” in Control

Theory of Digitally Networked Dynamic Systems, J. Lunze, Ed. Heidelberg:

Springer International Publishing, 2014, pp. 1–30. doi: 10.1007/978-3-319-01131-

8_1.

[5] Ciena Corporation, “What is Closed-loop Automation?”

https://www.blueplanet.com/resources/what-is-closed-loop-automation.html

(accessed Jan. 21, 2020).

[6] M. H. Behringer et al., “Autonomic Networking: Definitions and Design Goals,”

RFC Editor, RFC 7575, Jun. 2015. doi: 10.17487/RFC7575.

[7] M. H. Behringer, B. E. Carpenter, T. Eckert, L. Ciavaglia, and J. C. Nobre, “A

Reference Model for Autonomic Networking,” Internet Engineering Task Force,

Internet-Draft draft-ietf-anima-reference-model-10, Nov. 2018. [Online].

Available: https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-

10

115

[8] X. Long et al., “Autonomic Networking: Architecture Design and

Standardization,” IEEE Internet Comput., vol. 21, no. 5, pp. 48–53, 2017, doi:

10.1109/MIC.2017.3481338.

[9] ETSI, “Autonomic network engineering for the self-managing Future Internet

(AFI); Generic Autonomic Network Architecture; Part 2: An Architectural

Reference Model for Autonomic Networking, Cognitive Networking and Self-

Management,” Technical Specification ETSI TS 103 195-2 V1.1.1, May 2018.

[10] ETSI, “Zero-touch network and Service Management (ZSM); Reference

Architecture,” Group Specification ETSI GS ZSM 002 V1.1.1, Aug. 2019.

[11] H. Hawilo, M. Jammal, and A. Shami, “Network Function Virtualization-Aware

Orchestrator for Service Function Chaining Placement in the Cloud,” IEEE J. Sel.

Areas Commun., vol. 37, no. 3, pp. 643–655, Mar. 2019, doi:

10.1109/JSAC.2019.2895226.

[12] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined

networking: State of the art and research challenges,” Comput. Netw., vol. 72, pp.

74–98, Oct. 2014, doi: 10.1016/j.comnet.2014.07.004.

[13] M. Abu Sharkh, A. Ouda, and A. Shami, “A resource scheduling model for cloud

computing data centers,” in 2013 9th International Wireless Communications and

Mobile Computing Conference (IWCMC), Jul. 2013, pp. 213–218. doi:

10.1109/IWCMC.2013.6583561.

[14] M. Injadat, F. Salo, A. B. Nassif, A. Essex, and A. Shami, “Bayesian Optimization

with Machine Learning Algorithms Towards Anomaly Detection,” in 2018 IEEE

Global Communications Conference (GLOBECOM), Dec. 2018, pp. 1–6. doi:

10.1109/GLOCOM.2018.8647714.

[15] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-Stage Optimized

Machine Learning Framework for Network Intrusion Detection,” IEEE Trans.

116

Netw. Serv. Manag., vol. 18, no. 2, pp. 1803–1816, Jun. 2021, doi:

10.1109/TNSM.2020.3014929.

[16] ITU-T, “Unified Architecture for Machine Learning in 5G and Future Networks,”

Technical Specification FG-ML5G-ARC5G, Jan. 2019.

[17] T. Yu, X. Wang, and A. Shami, “A Novel Fog Computing Enabled Temporal Data

Reduction Scheme in IoT Systems,” in GLOBECOM 2017 - 2017 IEEE Global

Communications Conference, Dec. 2017, pp. 1–5. doi:

10.1109/GLOCOM.2017.8253941.

[18] T. Yu, X. Wang, and A. Shami, “Recursive Principal Component Analysis-Based

Data Outlier Detection and Sensor Data Aggregation in IoT Systems,” IEEE

Internet Things J., vol. 4, no. 6, pp. 2207–2216, Dec. 2017, doi:

10.1109/JIOT.2017.2756025.

[19] A. Moubayed, A. Shami, and H. Lutfiyya, “Wireless Resource Virtualization With

Device-to-Device Communication Underlaying LTE Network,” IEEE Trans.

Broadcast., vol. 61, no. 4, pp. 734–740, Dec. 2015, doi:

10.1109/TBC.2015.2492458.

[20] A. Ghosh et al., “Heterogeneous cellular networks: From theory to practice,” IEEE

Commun. Mag., vol. 50, no. 6, pp. 54–64, Jun. 2012, doi:

10.1109/MCOM.2012.6211486.

[21] J. G. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” IEEE

Commun. Mag., vol. 51, no. 3, pp. 136–144, Mar. 2013, doi:

10.1109/MCOM.2013.6476878.

[22] J. G. Andrews, S. Singh, Q. Ye, X. Lin, and H. S. Dhillon, “An overview of load

balancing in hetnets: old myths and open problems,” IEEE Wirel. Commun., vol.

21, no. 2, pp. 18–25, Apr. 2014, doi: 10.1109/MWC.2014.6812287.

117

[23] D. Liu et al., “User Association in 5G Networks: A Survey and an Outlook,” IEEE

Commun. Surv. Tutor., vol. 18, no. 2, pp. 1018–1044, Second quarter 2016, doi:

10.1109/COMST.2016.2516538.

[24] A. H. Arani, M. J. Omidi, A. Mehbodniya, and F. Adachi, “A distributed learning–

based user association for heterogeneous networks,” Trans. Emerg. Telecommun.

Technol., vol. 28, no. 11, p. e3192, Nov. 2017, doi: 10.1002/ett.3192.

[25] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-Dense Networks: A Survey,”

IEEE Commun. Surv. Tutor., vol. 18, no. 4, pp. 2522–2545, Fourth quarter 2016,

doi: 10.1109/COMST.2016.2571730.

[26] J. de C. Silva, J. J. P. C. Rodrigues, A. M. Alberti, P. Solic, and A. L. L. Aquino,

“LoRaWAN - A low power WAN protocol for Internet of Things: A review and

opportunities,” in 2017 2nd International Multidisciplinary Conference on

Computer and Energy Science (SpliTech), Jul. 2017, pp. 1–6.

[27] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area Networks:

An Overview,” IEEE Commun. Surv. Tutor., vol. 19, no. 2, pp. 855–873,

Secondquarter 2017, doi: 10.1109/COMST.2017.2652320.

[28] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range

communications in unlicensed bands: the rising stars in the IoT and smart city

scenarios,” IEEE Wirel. Commun., vol. 23, no. 5, pp. 60–67, Oct. 2016, doi:

10.1109/MWC.2016.7721743.

[29] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T.

Watteyne, “Understanding the Limits of LoRaWAN,” IEEE Commun. Mag., vol.

55, no. 9, pp. 34–40, Sep. 2017, doi: 10.1109/MCOM.2017.1600613.

[30] T. Kudo and T. Ohtsuki, “Cell range expansion using distributed Q-learning in

heterogeneous networks,” EURASIP J. Wirel. Commun. Netw., vol. 2013, no. 1, p.

61, Dec. 2013, doi: 10.1186/1687-1499-2013-61.

118

[31] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “User

Association for Load Balancing in Heterogeneous Cellular Networks,” IEEE

Trans. Wirel. Commun., vol. 12, no. 6, pp. 2706–2716, Jun. 2013, doi:

10.1109/TWC.2013.040413.120676.

[32] H. Jiang, Z. Pan, N. Liu, X. You, and T. Deng, “Gibbs-Sampling-Based CRE Bias

Optimization Algorithm for Ultradense Networks,” IEEE Trans. Veh. Technol.,

vol. 66, no. 2, pp. 1334–1350, Feb. 2017, doi: 10.1109/TVT.2016.2560900.

[33] M. Afshang and H. S. Dhillon, “Poisson Cluster Process Based Analysis of

HetNets With Correlated User and Base Station Locations,” IEEE Trans. Wirel.

Commun., vol. 17, no. 4, pp. 2417–2431, Apr. 2018, doi:

10.1109/TWC.2018.2794983.

[34] J. B. Park and K. S. Kim, “Load-Balancing Scheme With Small-Cell Cooperation

for Clustered Heterogeneous Cellular Networks,” IEEE Trans. Veh. Technol., vol.

67, no. 1, pp. 633–649, Jan. 2018, doi: 10.1109/TVT.2017.2748570.

[35] S. Fan, H. Tian, and W. Wang, “Joint Effect of User Activity Sensing and Biased

Cell Association in Energy Efficient HetNets,” IEEE Commun. Lett., vol. 20, no.

10, pp. 1999–2002, Oct. 2016, doi: 10.1109/LCOMM.2016.2571287.

[36] K. Yang, L. Wang, S. Wang, and X. Zhang, “Optimization of Resource Allocation

and User Association for Energy Efficiency in Future Wireless Networks,” IEEE

Access, vol. 5, pp. 16469–16477, 2017, doi: 10.1109/ACCESS.2017.2722007.

[37] F. Muhammad, Z. H. Abbas, and F. Y. Li, “Cell Association With Load Balancing

in Nonuniform Heterogeneous Cellular Networks: Coverage Probability and Rate

Analysis,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 5241–5255, Jun. 2017,

doi: 10.1109/TVT.2016.2614696.

[38] Y. Sun, W. Xia, S. Zhang, Y. Wu, T. Wang, and Y. Fang, “Energy Efficient Pico

Cell Range Expansion and Density Joint Optimization for Heterogeneous

119

Networks with eICIC,” Sensors, vol. 18, no. 3, p. 762, Mar. 2018, doi:

10.3390/s18030762.

[39] LoRa Alliance Technical Committee, “LoRaWANTM 1.1 Specification.” Oct. 11,

2017.

[40] LoRa Alliance Technical Marketing Group, “LoRaWAN, What is it? A technical

review of LoRa and LoRaWAN.” Nov. 2015.

[41] “Building a global internet of things network together,” The Things Network.

https://www.thethingsnetwork.org/ (accessed Jul. 16, 2018).

[42] “LoRaWAN Gateways,” Tektelic. https://tektelic.com/iot/lorawan-gateways/

(accessed Aug. 07, 2018).

[43] “TTN Mapper.” https://ttnmapper.org/ (accessed Jul. 17, 2018).

[44] C. Bishop, Pattern Recognition and Machine Learning. New York: Springer-

Verlag, 2006. Accessed: Mar. 28, 2018. [Online]. Available:

//www.springer.com/gp/book/9780387310732

[45] S. Marsland, Machine Learning: An Algorithmic Perspective, Second Edition.

CRC Press, 2015.

[46] “Network Architecture,” The Things Network.

https://www.thethingsnetwork.org/docs/network/architecture.html (accessed Jul.

25, 2018).

[47] A. Pop, U. Raza, P. Kulkarni, and M. Sooriyabandara, “Does Bidirectional Traffic

Do More Harm Than Good in LoRaWAN Based LPWA Networks?,” in

GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Dec. 2017,

pp. 1–6. doi: 10.1109/GLOCOM.2017.8254509.

[48] S. Rogers and M. Girolami, A first course in machine learning. Boca Raton, FL:

CRC Press, 2012.

120

[49] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[50] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for

classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, Jul. 2009,

doi: 10.1016/j.ipm.2009.03.002.

[51] M. van Otterlo and M. Wiering, “Reinforcement Learning and Markov Decision

Processes,” in Reinforcement Learning, Springer, Berlin, Heidelberg, 2012, pp. 3–

42. doi: 10.1007/978-3-642-27645-3_1.

[52] T. J. Sheskin, Markov chains and decision processes for engineers and managers.

Boca Raton, FL: CRC Press, 2011.

[53] A. S. Tanenbaum and D. J. Wetherall, Computer Networks. Pearson Higher Ed,

2012.

[54] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin, “Improving

Reliability and Scalability of LoRaWANs Through Lightweight Scheduling,”

IEEE Internet Things J., vol. 5, no. 3, pp. 1830–1842, Jun. 2018, doi:

10.1109/JIOT.2018.2815150.

[55] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa Low-Power Wide-

Area Networks Scale?,” in Proceedings of the 19th ACM International Conference

on Modeling, Analysis and Simulation of Wireless and Mobile Systems, New York,

NY, USA, 2016, pp. 59–67. doi: 10.1145/2988287.2989163.

[56] L. Casals, B. Mir, R. Vidal, and C. Gomez, “Modeling the Energy Performance of

LoRaWAN,” Sensors, vol. 17, no. 10, p. 2364, Oct. 2017, doi: 10.3390/s17102364.

[57] “Python Data Analysis Library — pandas.” https://pandas.pydata.org/index.html

(accessed Jul. 27, 2018).

[58] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn.

Res., vol. 12, p. 2825−2830, Oct. 2011.

121

[59] I. Chadès, G. Chapron, M.-J. Cros, F. Garcia, and R. Sabbadin, “MDPtoolbox: a

multi-platform toolbox to solve stochastic dynamic programming problems,”

Ecography, vol. 37, no. 9, pp. 916–920, Sep. 2014, doi: 10.1111/ecog.00888.

[60] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,” Queue, vol.

9, no. 11, p. 40:40-40:54, Nov. 2011, doi: 10.1145/2063166.2071893.

[61] S. Floyd and V. Jacobson, “Random early detection gateways for congestion

avoidance,” IEEEACM Trans. Netw., vol. 1, no. 4, pp. 397–413, Aug. 1993, doi:

10.1109/90.251892.

[62] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Queue, vol. 10, no. 5, p.

20:20-20:34, May 2012, doi: 10.1145/2208917.2209336.

[63] R. Pan, P. Natarajan, F. Baker, and G. White, Proportional Integral Controller

Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat

Problem. RFC Editor, 2017. doi: 10.17487/RFC8033.

[64] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet, The

Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm.

RFC Editor, 2018. doi: 10.17487/RFC8290.

[65] G. Fairhurst and M. Welzl, The Benefits of Using Explicit Congestion Notification

(ECN). RFC Editor, 2017. doi: 10.17487/RFC8087.

[66] A. M. Mandalari, A. Lutu, B. Briscoe, M. Bagnulo, and O. Alay, “Measuring

ECN++: Good News for ++, Bad News for ECN over Mobile,” IEEE Commun.

Mag., vol. 56, no. 3, pp. 180–186, Mar. 2018, doi: 10.1109/MCOM.2018.1700739.

[67] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, The Addition of Explicit

Congestion Notification (ECN) to IP. RFC Editor, 2001. doi: 10.17487/RFC3168.

[68] M. Kühlewind and R. Scheffenegger, TCP Modifications for Congestion Exposure

(ConEx). RFC Editor, 2016. doi: 10.17487/RFC7786.

122

[69] F. Li et al., “A comparative simulation study of TCP/AQM systems for evaluating

the potential of neuron-based AQM schemes,” J. Netw. Comput. Appl., vol. 41, pp.

274–299, May 2014, doi: 10.1016/j.jnca.2014.01.005.

[70] S. K. Bisoy and P. K. Pattnaik, “An AQM Controller Based on Feed-Forward

Neural Networks for Stable Internet,” Arab. J. Sci. Eng., vol. 43, no. 8, pp. 3993–

4004, Aug. 2018, doi: 10.1007/s13369-017-2767-9.

[71] N. Bouacida and B. Shihada, “Practical and Dynamic Buffer Sizing using

LearnQueue,” IEEE Trans. Mob. Comput., pp. 1–1, Sep. 2018, doi:

10.1109/TMC.2018.2868670.

[72] S. Latré, W. V. de Meerssche, D. Deschrijver, D. Papadimitriou, T. Dhaene, and F.

D. Turck, “A cognitive accountability mechanism for penalizing misbehaving

ECN-based TCP stacks,” Int. J. Netw. Manag., vol. 23, no. 1, pp. 16–40, 2013, doi:

10.1002/nem.1806.

[73] T. D. Wallace, K. A. Meerja, and A. Shami, “On-demand scheduling for

concurrent multipath transfer using the stream control transmission protocol,” J.

Netw. Comput. Appl., vol. 47, pp. 11–22, Jan. 2015, doi:

10.1016/j.jnca.2014.09.008.

[74] A. Graves, “Long Short-Term Memory,” in Supervised Sequence Labelling with

Recurrent Neural Networks, A. Graves, Ed. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 37–45. doi: 10.1007/978-3-642-24797-2_4.

[75] Q. Zhang, H. Wang, J. Dong, G. Zhong, and X. Sun, “Prediction of Sea Surface

Temperature Using Long Short-Term Memory,” IEEE Geosci. Remote Sens. Lett.,

vol. 14, no. 10, pp. 1745–1749, Oct. 2017, doi: 10.1109/LGRS.2017.2733548.

[76] J. Ke and X. Liu, “Empirical Analysis of Optimal Hidden Neurons in Neural

Network Modeling for Stock Prediction,” in 2008 IEEE Pacific-Asia Workshop on

Computational Intelligence and Industrial Application, Dec. 2008, vol. 2, pp. 828–

832. doi: 10.1109/PACIIA.2008.363.

123

[77] F. Baker and G. Fairhurst, IETF Recommendations Regarding Active Queue

Management. RFC Editor, 2015. doi: 10.17487/RFC7567.

[78] C. A. Gomez, A. Shami, and X. Wang, “Machine Learning Aided Scheme for

Load Balancing in Dense IoT Networks,” Sensors, vol. 18, no. 11, p. 3779, Nov.

2018, doi: 10.3390/s18113779.

[79] R. S. Sutton and A. G. Barto, “Temporal-Difference Learning,” in Reinforcement

Learning: An Introduction, MIT Press, 2018, pp. 131–132.

[80] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in

Proceedings of the 2004 conference on Applications, technologies, architectures,

and protocols for computer communications, Portland, Oregon, USA, Aug. 2004,

pp. 281–292. doi: 10.1145/1015467.1015499.

[81] D. Wischik and N. McKeown, “Part I: buffer sizes for core routers,” ACM

SIGCOMM Comput. Commun. Rev., vol. 35, no. 3, pp. 75–78, Jul. 2005, doi:

10.1145/1070873.1070884.

[82] Center for Applied Internet Data Analysis, “CAIDA Internet Data -- Passive Data

Sources.” http://www.caida.org/data/passive/index.xml (accessed Jan. 07, 2019).

[83] S. Ackerman, E. Farchi, O. Raz, M. Zalmanovici, and P. Dube, “Detection of data

drift and outliers affecting machine learning model performance over time,” Dec.

2020, Accessed: Aug. 26, 2021. [Online]. Available:

https://arxiv.org/abs/2012.09258v2

[84] “Intelligent method to be used with AQM schemes such as CoDel and FQ-CoDel.”

https://github.com/cgomezsu/IntelligentAQM (accessed May 01, 2019).

[85] C. A. Gomez, X. Wang, and A. Shami, “Intelligent Active Queue Management

Using Explicit Congestion Notification,” in 2019 IEEE Global Communications

Conference (GLOBECOM), Dec. 2019, pp. 1–6. doi:

10.1109/GLOBECOM38437.2019.9013475.

124

[86] M. Chiesa et al., “Inter-domain networking innovation on steroids: empowering

ixps with SDN capabilities,” IEEE Commun. Mag., vol. 54, no. 10, pp. 102–108,

Oct. 2016, doi: 10.1109/MCOM.2016.7588277.

[87] K. C. Claffy, D. D. Clark, S. Bauer, and A. D. Dhamdhere, “Policy Challenges in

Mapping Internet Interdomain Congestion,” Social Science Research Network,

Rochester, NY, SSRN Scholarly Paper ID 2756868, Aug. 2016. Accessed: Jan. 22,

2020. [Online]. Available: https://papers.ssrn.com/abstract=2756868

[88] P. Kairouz et al., “Advances and Open Problems in Federated Learning,”

ArXiv191204977 Cs Stat, Dec. 2019, Accessed: Jan. 06, 2020. [Online]. Available:

http://arxiv.org/abs/1912.04977

[89] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-Efficient Learning of Deep Networks from Decentralized Data,”

in Artificial Intelligence and Statistics, Apr. 2017, pp. 1273–1282. Accessed: Jan.

07, 2020. [Online]. Available: http://proceedings.mlr.press/v54/mcmahan17a.html

[90] D. M. Manias and A. Shami, “Making a Case for Federated Learning in the

Internet of Vehicles and Intelligent Transportation Systems,” IEEE Netw., vol. 35,

no. 3, pp. 88–94, May 2021, doi: 10.1109/MNET.011.2000552.

[91] D. M. Manias and A. Shami, “The Need for Advanced Intelligence in NFV

Management and Orchestration,” IEEE Netw., vol. 35, no. 1, pp. 365–371, Jan.

2021, doi: 10.1109/MNET.011.2000373.

[92] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learning: Concept

and Applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, p. 12:1-12:19,

Jan. 2019, doi: 10.1145/3298981.

[93] YangQiang, LiuYang, ChenTianjian, and TongYongxin, “Federated Machine

Learning,” ACM Trans. Intell. Syst. Technol. TIST, Jan. 2019, Accessed: Jan. 08,

2020. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3298981

125

[94] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Challenges,

Methods, and Future Directions,” ArXiv190807873 Cs Stat, Aug. 2019, Accessed:

Jan. 06, 2020. [Online]. Available: http://arxiv.org/abs/1908.07873

[95] Y. Yang et al., “Inter-domain routing bottlenecks and their aggravation,” Comput.

Netw., vol. 162, p. 106839, Oct. 2019, doi: 10.1016/j.comnet.2019.06.017.

[96] Y. Zhao, A. Saeed, M. Ammar, and E. Zegura, “Unison: Enabling Content

Provider/ISP Collaboration using a vSwitch Abstraction,” in 2019 IEEE 27th

International Conference on Network Protocols (ICNP), Oct. 2019, pp. 1–11. doi:

10.1109/ICNP.2019.8888032.

[97] W. J. A. Silva, “An Architecture to Manage Incoming Traffic of Inter-Domain

Routing Using OpenFlow Networks,” Information, vol. 9, no. 4, p. 92, Apr. 2018,

doi: 10.3390/info9040092.

[98] A. Dethise, M. Chiesa, and M. Canini, “Privacy-Preserving Detection of Inter-

Domain SDN Rules Overlaps,” in Proceedings of the SIGCOMM Posters and

Demos, Los Angeles, CA, USA, Aug. 2017, pp. 6–8. doi:

10.1145/3123878.3131967.

[99] K. D. Joshi and K. Kataoka, “PRIME-Q: Privacy Aware End-to-End QoS

Framework in Multi-Domain SDN,” in 2019 IEEE Conference on Network

Softwarization (NetSoft), Jun. 2019, pp. 169–177. doi:

10.1109/NETSOFT.2019.8806645.

[100] M. S. Kang and V. D. Gligor, “Routing Bottlenecks in the Internet: Causes,

Exploits, and Countermeasures,” in Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, Scottsdale, Arizona,

USA, Nov. 2014, pp. 321–333. doi: 10.1145/2660267.2660299.

[101] X. Chen et al., “Fine-grained queue measurement in the data plane,” in

Proceedings of the 15th International Conference on Emerging Networking

126

Experiments And Technologies, Orlando, Florida, Dec. 2019, pp. 15–29. doi:

10.1145/3359989.3365408.

[102] Y. Li et al., “HPCC: high precision congestion control,” in Proceedings of the

ACM Special Interest Group on Data Communication, Beijing, China, Aug. 2019,

pp. 44–58. doi: 10.1145/3341302.3342085.

[103] S. Skansi, “Recurrent Neural Networks,” in Introduction to Deep Learning: From

Logical Calculus to Artificial Intelligence, S. Skansi, Ed. Cham: Springer

International Publishing, 2018, pp. 135–152. doi: 10.1007/978-3-319-73004-2_7.

[104] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen,

“Recurrent Neural Network Architectures,” in Recurrent Neural Networks for

Short-Term Load Forecasting: An Overview and Comparative Analysis, F. M.

Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen, Eds. Cham:

Springer International Publishing, 2017, pp. 23–29. doi: 10.1007/978-3-319-

70338-1_3.

[105] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen,

“Properties and Training in Recurrent Neural Networks,” in Recurrent Neural

Networks for Short-Term Load Forecasting: An Overview and Comparative

Analysis, F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R.

Jenssen, Eds. Cham: Springer International Publishing, 2017, pp. 9–21. doi:

10.1007/978-3-319-70338-1_2.

[106] “6.1 Issues in Resource Allocation — Computer Networks: A Systems Approach

Version 6.2-dev documentation.”

https://book.systemsapproach.org/congestion/issues.html (accessed Oct. 09, 2020).

[107] S. Floyd, Metrics for the Evaluation of Congestion Control Mechanisms. RFC

Editor, 2008. doi: 10.17487/RFC5166.

[108] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping

for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM

127

Workshop on Hot Topics in Networks, New York, NY, USA, Oct. 2010, pp. 1–6.

doi: 10.1145/1868447.1868466.

[109] C. A. Gomez, “FIAQM.” https://github.com/cgomezsu/FIAQM (accessed Oct. 05,

2020).

[110] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep

Learning Library,” in Advances in Neural Information Processing Systems 32, H.

Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox,

and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8026–8037. Accessed: Oct.

05, 2020. [Online]. Available: http://papers.nips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf

[111] “TensorFlow Federated.” https://www.tensorflow.org/federated (accessed May 06,

2020).

[112] “Care and Feeding of Netperf 2.7.X.”

https://hewlettpackard.github.io/netperf/doc/netperf.html#Global-Options

(accessed May 13, 2020).

[113] “Realtime Response Under Load (RRUL) Specification - Bufferbloat.net.”

https://www.bufferbloat.net/projects/bloat/wiki/RRUL_Spec/ (accessed Jul. 13,

2020).

[114] “tc(8) - Linux Traffic Control Manual Page.” https://man7.org/linux/man-

pages/man8/tc.8.html (accessed May 05, 2020).

[115] J. Galbraith and O. Saarenmaa, “SSH File Transfer Protocol,” Internet Engineering

Task Force, Internet-Draft draft-ietf-secsh-filexfer-13, Jul. 2006. [Online].

Available: https://datatracker.ietf.org/doc/html/draft-ietf-secsh-filexfer-13

[116] K. Bonawitz et al., “Practical Secure Aggregation for Privacy-Preserving Machine

Learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, New York, NY, USA, Oct. 2017, pp. 1175–1191. doi:

10.1145/3133956.3133982.

128

[117] M. Ion et al., “On Deploying Secure Computing: Private Intersection-Sum-with-

Cardinality,” presented at the 2020 IEEE European Symposium on Security and

Privacy (EuroS&P), Aug. 2020.

[118] S. Feng and H. Yu, “Multi-Participant Multi-Class Vertical Federated Learning,”

ArXiv200111154 Cs Stat, Jan. 2020, Accessed: Sep. 29, 2020. [Online]. Available:

http://arxiv.org/abs/2001.11154

[119] “Mininet Overview - Mininet.” http://mininet.org/overview/ (accessed May 06,

2021).

[120] L. Tan et al., “In-band Network Telemetry: A Survey,” Comput. Netw., vol. 186, p.

107763, Feb. 2021, doi: 10.1016/j.comnet.2020.107763.

[121] A. Morton, “Active and Passive Metrics and Methods (with Hybrid Types In-

Between),” RFC Editor, 7799, May 2016. doi: 10.17487/RFC7799.

[122] M. Yu, “Network telemetry: towards a top-down approach,” ACM SIGCOMM

Comput. Commun. Rev., vol. 49, no. 1, pp. 11–17, Feb. 2019, doi:

10.1145/3314212.3314215.

[123] N. Ouroua, W. Bouzegza, and M. Ioualalen, “Formal Modeling and Performance

Evaluation of Network’s Server Under SYN/TCP Attack,” in Mobile, Secure, and

Programmable Networking, Cham, 2017, pp. 74–87. doi: 10.1007/978-3-319-

67807-8_6.

[124] “In-band Network Telemetry (INT) Dataplane Specification,” The P4.org

Applications Working Group, Version 2.1, Oct. 2020. Accessed: Feb. 11, 2021.

[Online]. Available: https://github.com/p4lang/p4-applications/tree/master/docs

[125] D. Suh, S. Jang, S. Han, S. Pack, and X. Wang, “Flexible sampling-based in-band

network telemetry in programmable data plane,” ICT Express, vol. 6, no. 1, pp.

62–65, Mar. 2020, doi: 10.1016/j.icte.2019.08.005.

129

[126] S. R. Chowdhury, R. Boutaba, and J. François, “LINT: Accuracy-adaptive and

Lightweight In-band Network Telemetry”.

[127] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzenmacher,

“PINT: Probabilistic In-band Network Telemetry,” in Proceedings of the Annual

conference of the ACM Special Interest Group on Data Communication on the

applications, technologies, architectures, and protocols for computer

communication, New York, NY, USA, Jul. 2020, pp. 662–680. doi:

10.1145/3387514.3405894.

[128] S.-Y. Wang, Y.-R. Chen, J.-Y. Li, H.-W. Hu, J.-A. Tsai, and Y.-B. Lin, “A

Bandwidth-Efficient INT System for Tracking the Rules Matched by the Packets

of a Flow,” in 2019 IEEE Global Communications Conference (GLOBECOM),

Dec. 2019, pp. 1–6. doi: 10.1109/GLOBECOM38437.2019.9013581.

[129] J. A. Marques, M. C. Luizelli, R. I. Tavares da Costa Filho, and L. P. Gaspary, “An

optimization-based approach for efficient network monitoring using in-band

network telemetry,” J. Internet Serv. Appl., vol. 10, no. 1, p. 12, Jun. 2019, doi:

10.1186/s13174-019-0112-0.

[130] Y. Kim, D. Suh, and S. Pack, “Selective In-band Network Telemetry for Overhead

Reduction,” in 2018 IEEE 7th International Conference on Cloud Networking

(CloudNet), Oct. 2018, pp. 1–3. doi: 10.1109/CloudNet.2018.8549351.

[131] “IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB.”

https://www.unb.ca/cic/datasets/ids-2018.html (accessed Mar. 03, 2021).

[132] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new

intrusion detection dataset and intrusion traffic characterization.,” in ICISSp, 2018,

pp. 108–116.

[133] P. Aitken, B. Claise, and B. Trammell, “Specification of the IP Flow Information

Export (IPFIX) Protocol for the Exchange of Flow Information,” RFC Editor, RFC

7011, Sep. 2013. doi: 10.17487/RFC7011.

130

[134] M. Braschler, T. Stadelmann, and K. Stockinger, Applied Data Science: Lessons

Learned for the Data-Driven Business. Springer International Publishing, 2019.

[135] O. Campesato, Artificial Intelligence, Machine Learning, and Deep Learning.

Mercury Learning & Information, 2020.

[136] C. Molnar, G. König, B. Bischl, and G. Casalicchio, “Model-agnostic Feature

Importance and Effects with Dependent Features -- A Conditional Subgroup

Approach,” ArXiv200604628 Cs Stat, Jun. 2020, Accessed: Mar. 29, 2021.

[Online]. Available: http://arxiv.org/abs/2006.04628

[137] L. Yang and A. Shami, “On hyperparameter optimization of machine learning

algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, Nov.

2020, doi: 10.1016/j.neucom.2020.07.061.

[138] “Open Neural Network Exchange,” GitHub. https://github.com/onnx (accessed

Mar. 09, 2021).

[139] “ONNX Runtime.” https://www.onnxruntime.ai/ (accessed Apr. 10, 2021).

[140] H. Song, F. Qin, P. Martinez-Julia, L. Ciavaglia, and A. Wang, “Network

Telemetry Framework,” Internet Engineering Task Force, Internet-Draft draft-ietf-

opsawg-ntf-07, Feb. 2021. Accessed: Apr. 13, 2021. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-07

[141] H. Song et al., “Postcard-based On-Path Flow Data Telemetry using Packet

Marking,” Internet Engineering Task Force, Internet-Draft (work in progress)

draft-song-ippm-postcard-based-telemetry-09, Feb. 2021. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft-song-ippm-postcard-based-telemetry-09

[142] C. Rottondi and G. Verticale, “Using packet interarrival times for Internet traffic

classification,” in 2011 IEEE Third Latin-American Conference on

Communications, Oct. 2011, pp. 1–6. doi: 10.1109/LatinCOM.2011.6107404.

131

[143] O. Osanaiye, K. R. Choo, and M. Dlodlo, “Change-point cloud DDoS detection

using packet inter-arrival time,” in 2016 8th Computer Science and Electronic

Engineering (CEEC), Sep. 2016, pp. 204–209. doi: 10.1109/CEEC.2016.7835914.

[144] P. Biondi, “Scapy - Packet crafting for Python2 and Python3.” https://scapy.net/

(accessed May 13, 2021).

[145] R. R. S, R. R, M. Moharir, and S. G, “SCAPY- A powerful interactive packet

manipulation program,” in 2018 International Conference on Networking,

Embedded and Wireless Systems (ICNEWS), Dec. 2018, pp. 1–5. doi:

10.1109/ICNEWS.2018.8903954.

[146] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP.”

https://iperf.fr/iperf-doc.php (accessed Apr. 15, 2021).

132

8. Curriculum Vitae

Name: Cesar Gomez

Post-secondary BE, Electronics Engineering
Education and Saint Thomas Aquinas University
Degrees: Bogota, Colombia
 2000 - 2004

MESc, Telecommunications Engineering
National University of Colombia
Bogota, Colombia
2007-2010

PhD, Electrical and Computer Engineering
The University of Western Ontario
London, Ontario, Canada
2017-2021

Honours and Outstanding Young Professional Award
Awards: IEEE London Section
 November 2019

Finalist, Discover AI Challenge 2020
Microsoft – Agorize – McGill University
May 2020

Certificate of Volunteer Appreciation
IEEE London Section
November 2020

Related Work Network Engineer
Experience Nortel Networks

2006-2009

Lecturer
Unitec
2014-2017

Research and Teaching Assistant
The University of Western Ontario
2017-2021

133

Publications:

C.A. Gomez, A. Shami, and X. Wang, “Efficient Network Telemetry based on Traffic
Awareness”, IEEE Open Journal of the Communications Society, (submitted).

C.A. Gomez, X. Wang, and A. Shami, “Federated Intelligence for Active Queue
Management in Inter-Domain Congestion”, IEEE Access, vol. 9, pp. 10674-10685,
January 2021. DOI: 10.1109/ACCESS.2021.3050174.

C.A. Gomez, X. Wang, and A. Shami, “Intelligent Active Queue Management Using
Explicit Congestion Notification”, IEEE Global Communications Conference,
GLOBECOM 2019, December 2019. DOI: 10.1109/GLOBECOM38437.2019.9013475.

C.A. Gomez, A. Shami, and X. Wang, “Machine Learning Aided Scheme for Load
Balancing in Dense IoT Networks”, Sensors, vol. 18, no. 11, p.3779, November 2018.
DOI: 10.3390/s18113779.

C.A. Gomez and J.E. Ortiz, “A Greener Method for Content Sharing in Mobile Ad Hoc
Networks”, IEEE Latin-American Conference on Communications, LATINCOM 2010,
pp. 1-6, September 2010. DOI: 10.1109/LATINCOM.2010.5640998.

	Leveraging Machine Learning Techniques towards Intelligent Networking Automation
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1
	1. Introduction
	1.1. Motivation
	1.2. Preliminary Notions on INA
	1.3. Dissertation Contributions
	1.4. Dissertation Organization

	Chapter 2
	2. Intelligent Load Balancing in IoT Networks
	1
	2.1. Motivation
	2.2. Related Work
	2.3. A LoRaWAN Network Seen as a HetNet
	2.4. Proposed Scheme
	2.4.1. Data Preprocessing
	2.4.2. Pattern Analysis
	2.4.3. Classification Method for Association Biasing
	2.4.4. Decision-Making Model for Load Balancing

	2.5. Network Simulation Design
	2.6. Evaluation Results
	2.6.1. PCA Patterns
	2.6.2. Classifiers Outcomes
	2.6.3. Network PDR Improvement
	2.6.4. Network ECD Reduction

	2.7. Summary

	Chapter 3
	3. Intelligent Active Queue Management
	3.1. Motivation
	3.2. Intelligent AQM Design
	3.2.1. Congestion Predictor
	3.2.2. Q-learning based AQM Parameter Tuner

	3.3. Evaluation Methodology and Results
	3.3.1. Effects of Tuning AQM Parameters
	3.3.2. Transferring the Predictor Model
	3.3.3. Performance Evaluation of the Intelligent AQM

	3.4. Summary

	Chapter 4
	4. Federated Intelligence for Inter-Domain Congestion
	4.1. Motivation
	4.2. Related Work
	4.3. Architecture of FIAQM
	4.3.1. Federated Congestion Predictor
	4.3.2.  AQM Parameter Tuner

	4.4. Experimentation Design
	4.5. FIAQM performance evaluation
	4.5.1. FCP algorithm predictions accuracy
	4.5.2. Real-time AQM tuning with FIAQM

	4.6. Summary

	Chapter 5
	5. Efficient Network Telemetry based on Traffic Awareness
	5.1. Motivation
	5.2. Related Work
	5.3. TANT Traffic Classifier
	5.3.1. Inference Acceleration

	5.4. TANT Controller
	5.5. Experimentation and Evaluation Results
	5.6. Summary

	Chapter 6
	6. Conclusion
	6.1. Dissertation Conclusions
	6.2. Discussion on the Findings and Limitations of this Thesis
	6.3. Future Work

	7. References
	8. Curriculum Vitae

