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MATHEMATICAL MODELING

I Process of using various mathematical structures to
represent real world situations.

I Predict pandemics, natural disasters, population data, and
other real world aspects.

I Create and study models.
I Track a disease’s possible spread.
I Applying real world data.
I Simulation of a disease and understand behavior.

I Results can be put into perspective to create effective
precautions and actions to combat an outbreak.



MEASLES
I Washington State Department of Health

I Measles, Mumps, Rubella vaccine reminder.
I Snohomish Health District

I More than one person in a household tested positive for
Measles.

I Outbreaks
I France, Germany, Greece, Italy, Romania
I 95% of a population should be immunized to prevent an

outbreak.[1]

Figure: Mathematica simulation of Measles. Parameters: β = 0.3, and
λ = 0.2.



EBOLA
I Democratic Republic of Congo

I Present since 1976.
I Outbreak days after last outbreak was declared over.
I Largely contained.

I Largest epidemic 2014-2016
I Originated in Liberia, Sierra Leone, and Guinea in West Africa.
I About 11,000 people died.

I No cure
I Strict travel restrictions [2].



ORDINARY DIFFERENTIAL EQUATIONS
BRIEF OVERVIEW

I An Ordinary Differential Equation (ODE) is a differential
equation containing one or more functions of one
independent variable and its derivatives. [3]



SIR MODEL
HISTORY

I Kermack and McKendrick
I Earliest classical work on theory of Epidemics.
I Compartmental models as a technique to simplify

Mathematical Modeling of diseases originated in 1927.

I Many choose the SIR to study epidemics.



SIR MODEL
BRIEF OVERVIEW

IS R
β λ

I Widely used model
I Susceptible (S), Infected (I), Recovered (R)
I Infection rate β .
I Recovery rate λ.

I Deals with viral diseases
I Immunity from disease.

I Examples of viral diseases:
I Measles, Mumps, Chickenpox, and Smallpox. [4]



SIR MODEL
ASSUMPTIONS

The assumptions for the basic SIR models are [5]:
1. S + I + R = 1
2. The only way an individual can leave the S compartment

is to become Infected. The only way an individual can
leave the I compartment is to become Recovered.

3. The population is fixed and mixes homogeneously.
4. There is an Infection rate, β.
5. There is a Recovery rate, λ.
6. Once Recovered, an individual is immune and can no

longer spread the disease.
7. Age, sex, social status and race do not affect the probability

of being Infected.
8. Immunity is not inherited.



SIR MODEL
MORE IN DEPTH

I Using the stated assumptions we put together the
equations:

S′(t) = −βSI
I′(t) = βSI − λI

R′(t) = λI
(1)

I Equilibrium
I I compartment is at 0.
I Only one equilibrium.
I E∗ = (S∗, I∗,R∗) where:

I S∗ is anything.
I I∗ = 0
I R∗ = 1 − S∗



SIR MODEL
MORE IN DEPTH

I Contact number
I c = β/λ
I Measures how contagious disease is.
I Want this to be relatively low.

I Herd immunity
I Almost the entire population has contracted the disease.
I There are not enough Susceptible population left to allow

an endemic to occur.

I For this type of model the population is fixed, so there is
no birth and death rate.



MEASLES EXAMPLE
SIR MODEL

I The Infection rate, β = 0.3.
I The Recovery rate, λ = 0.2.
I Contact rate: c = 1.5
I Herd immunity: When 95% of the population is

immunized an outbreak will be prevented.



MEASLES EXAMPLE
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Figure: Mathematica simulation of Measles. Parameters:
S(0) = 0.95, I(0) = 0.05, R(0) = 0, β = 0.3, λ = 0.2.

I I fulfills equilibrium point around 65 days.
I S∗ = 0.4
I R∗ = 0.6



DELAY DIFFERENTIAL EQUATIONS
BRIEF OVERVIEW

I Delay Differential Equations (DDE) are commonly used to
represent technological and biological control systems.

I Derivative of unknown function at a certain time in terms
of the values of the function at previous times.



SIR WITH TIME DELAY
BRIEF OVERVIEW

I Compartments
I Susceptible, Infected, Recovered.

I Variation of a compartmental model.
I Delay embedded within compartments.
I Composed of Delay Differential Equations.

I Realistic model
I Diseases have incubation periods.

IS Rb

µ1 µ2 µ3

β λ



SIR WITH TIME DELAY
ASSUMPTIONS

The assumptions for a SIR Model with Time Delay are [5]:
1. Susceptibles must become Infected, Infected must become

Recovered.
2. Infection rate, β.
3. Recovery rate, λ.
4. Age, sex, social status and race do not affect infection rate.
5. Immunity is not inherited.
6. Recovered can no longer spread the disease.
7. Delay in time, τ .
8. Birth rate, b.
9. Death rates µ1, µ2, µ3, for S, I, and R compartments

respectively, are equal.



SIR WITH TIME DELAY
MORE IN DEPTH

I Using the stated assumptions we put together the
equations:

S′(t) = −βS(t)I(t − τ)− µ1S(t) + b
I′(t) = βS(t)I(t − τ)− µ2I(t)− λI(t)

R′(t) = λI(t)− µ3R(t)
(2)

I Disease-free equilibrium: E0 = (S0, 0, 0), where S0 = b
µ

I Endemic equilibrium: E+ = (S∗, I∗,R∗), where
S∗ = µ2+λ

β , I∗ = b−µ1S∗

βS∗ and R∗ = λ(b−µ1S∗)
µ3βS∗



EBOLA EXAMPLE
SIR MODEL

I Use SIR with Time Delay Model to track how Ebola can
spread.

I Infection rate, β = 0.2
I Delay in time, τ = 1
I Determine the behavior and simulate of spread Ebola

within the population.



EBOLA EXAMPLE
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Figure: Mathematica simulation of Ebola. Parameters:
S(0) = 0.95, I(0) = 0.05, R(0) = 0, β = 0.2, λ = 0.1, b = 0.013158, µ =
0.00828391

I Susceptible population decreases quickly.
I Recovered population increases rapidly.
I Infection population gradually increases, then gradually

decreases, and plateaus.



SIR WITH AND WITHOUT TIME DELAY
GRAPH
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Figure: Mathematica simulation of Ebola with (solid line) and
without (dashed line) time-delay. Parameters: S(0) = 0.95, I(0) =
0.05, R(0) = 0, β = 0.2, λ = 0.1, b = 0.013158, µ = 0.00828391

I Course of time is 100 days, parameters are the same values.
I Time delay

I Infectious percentage increases later.
I Affects the S and R compartments.



AIRPORT DATA
A CASE STUDY

I Motivated by a potential case in Denver a couple weeks
ago.

I Use 2017 airport information with 2014 airline route
information to create a network structure [6].

I Travelling while Infected is a common way to spread a
disease around the world.

I Model to track and simulate the spread of a disease of an
Infected person traveling out of the Seattle Tacoma
International Airport (Sea-Tac).

I Modifications:
I Weighted average over the number of people in each

compartment for all neighboring airports is calculated.



AIRPORT DATA
RESULTS
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Figure: Mathematica simulation of a disease if it originated in Sea-Tac

I Over a course of 300 days, a disease would not completely die out, so it
is endemic.

I In the future, the disease could have another peak or become pandemic.
I Behaviors are similar to the Ebola SIR.
I The Infected population does not outgrow the Recovered and

Susceptible populations.



AIRPORT DATA
RESULTS
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I Visual of how a disease can spread throughout the
network structure.

I Purple: the lowest percentage of Infection.
I Red: the highest percentage of Infection.



AIRPORT DATA
RESULTS



CONCLUSION

I Studied variations of compartmental models:
I SIR Model for spread of Measles.
I SIR with Time Delay Model for spread of Ebola.
I Used statistics that represented the birth and death rate for

the United States.
I Created a simulation for the spread of a disease from

Seattle.
I See how the disease begins as an endemic and becomes a

pandemic.



FUTURE WORK
VACCINATION

I An individual can be granted temporary or permanent
immunity.

I Number of studies have been done on how pulse
vaccination would be more effective rather than no
vaccination or constant vaccination [7, 8].

I Constant vaccination: A large proportion of newborn
population is vaccinated.

I Pulse vaccination: A fraction of the entire Susceptible class
is vaccinated in a pulse every designated amount of years
[8].

I With the advancement of modern medicine, new and more
effective vaccines become available.

I Researching SIR with vaccine will help health officials
decide on what course of action should be taken to get the
best possible outcome.



FUTURE WORK
STOCHASTIC EPIDEMIC MODEL

I A Stochastic Model: a collection of random variables.
I Deals with random behaviors.

I Ideally work well with tracking the spread of a disease
using a compartmental model, such as an SIR Model.

Figure: Gillespie SSA epidemics with the same input parameters[9]
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