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Abstract: The optimization of wind farm layouts is very important for the effec-
tive utilization of wind resources. A fixed wind turbine hub height in the layout of
wind farms leads to a low wind energy utilization and a higher LCOE (levelized
cost of electricity). WOMH (Wind Farm Layout Optimization Model Considering
Multiple Hub Heights) is proposed in this paper to tackle the above problem. This
model is different from the traditional fixed hub height model, as it uses a variable
height wind turbine. In WOMH, the Jensen wake and Weibull distribution are
used to describe the wake effect on the wind turbines and wind speed distribution,
respectively. An algorithm called DEGM (differential evolution and greedy meth-
od with multiple strategies) is proposed to solve WOMH, which is NP hard. In the
DEGM, seven strategies are designed to adjust the distribution coordinates of
wind turbines so that the height of the wind turbines will be arranged from low
to high in the wind direction. This layout reduces the Jensen wake effect, thus
reducing the value of the LCOE. The experimental results show that in the
DEGM, when the number of wind turbines is 5, 10, 20, 30 and 50, the WOMH
reduces the LCOE by 13.96%, 12.54%, 8.22%, 6.14% and 7.77% compared with
the fixed hub height model, respectively. In addition, the quality of the solution of
the DEGM is more satisfactory than that of the three-dimensional greedy
algorithm and the DEEM (differential evolution with a new encoding mechanism)
algorithm. In the case of five different numbers of wind turbines, the LCOE of
DEGM is at least 3.67% lower than that of DEEM, and an average of 6.83% lower
than that of three-dimensional greedy. The model and algorithm in this paper
provide an effective solution for the field of wind farm layout optimization.
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1 Introduction

Air pollution, climate warming, the energy crisis and other factors are forcing people to find and develop
clean energy that can replace fossil fuels. Wind energy is pollution-free and renewable and is currently one of
the most competitive and mature green energy sources [1].

The main form of wind energy utilization is to generate electricity through wind farms [2]. Wind turbines
are the core equipment used in wind farms to convert wind energy into electricity. The layout of a wind farm has
a great impact on the wind turbines. There are three factors that affect the layout of wind farms: the size of the
wind farm, the number of wind turbines placed in the wind farm, and the wake effect of upstream wind turbines
on downstream wind turbines [3]. The focus of this research is how to eliminate the wake effect between wind
turbines. A reasonable layout of wind turbines in wind farms can effectively reduce the wake effect, and a good
wind farm layout can improve the power of wind turbines to make better use of wind energy resources.

The layout models of existing wind farms fall into two categories: discrete coordinate models and
continuous coordinate models. The discrete coordinate model regards wind turbines as independent and
scattered points for layout optimization. In the continuous coordinate model, the wind turbine can be
placed anywhere in the wind farm. Because these two models are difficult to solve analytically and have
a large amount of computations, many heuristic algorithms have been designed to solve the models.
Mosetti et al. [4] proposed a model based on discrete coordinates and used a genetic algorithm to deter-
mine the optimal solution. Considering the wake effect of wind farms, a wind farm cost model was
designed that takes the LCOE (levelized cost of electricity) generated by the wind farm as the objective
function. Three kinds of wind scenarios were assigned in the experiment: scenario 1-the wind direction
and speed are constant; scenario 2-the wind speed is constant, and the wind direction is uniformly
distributed between 0 and 360 degrees; scenario 3-the wind speed is variable, and the wind direction is
uneven. Kusiak et al. [5] developed a continuous coordinate model and used the SPEA algorithm to solve
the problem. They regarded individual wind turbines as a population, so when the number of wind
turbines increases, the performance of the algorithm will be seriously degraded, and there may even be
dimensional disasters. Subsequently, many researchers [6–10] studied different heuristic algorithms to
solve the model based on continuous coordinates. Wang et al. [11] proposed a DE (differential evolution)
algorithm with a new coding mechanism, which reduced the dimension of the search space to 2 and
eliminated a key parameter (population size), thus solving the dimensional disaster problem.

However, only wind turbines with the same height are considered in the above studies. In practice, due to
terrain or other reasons, the hub heights of wind turbines will differ. At the same time, different hub heights
also help to further reduce the wake effect of the whole wind farm. In previous research, many scholars have
discussed the multiple hub height model. Herbert et al. [12] placed wind turbines with two different heights in
a line. The results showed that the use of wind turbines of different heights is beneficial for improving the
power generation of wind farms. Chowdhury et al. [13] and Long et al. [14] used particle swarm optimization
to optimize the multiple hub height model. The experimental results showed that the multiple hub height
model can significantly increase the power output of the wind farm. Chen et al. [15] made use of greedy
algorithm to solve wind turbines with different hub height models. In an experiment based on three-
dimensional coordinates, two kinds of wind turbines with different hub heights were used. Then, two
planes in three-dimensional coordinates were used as the candidate positions of the wind turbines. All of
their results showed that the existence of wind turbines with different heights in a wind farm is beneficial
for improving the power generation of the wind farm.

A wind farm layout optimization model considering multiple hub heights is studied in this paper. The
DEGM (differential evolution and greedy method with multiple strategies) is proposed in this paper to
solve the optimization problem. The complex terrain problem is studied and optimized in an experiment,
and the advantages of using multiple hub height wind turbines in wind farms are further studied.
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The main contributions of this paper are summarized as follows:

In the process of solving the actual wind farm layout, it is determined that wind turbines with multiple
hub heights can effectively reduce the wake effect between wind turbines. In this paper, a novel model named
WOMH (wind farm layout optimization model considering multiple hub heights) is designed to simulate the
optimized layout of wind farms with multiple hub heights.

A series of adjustment strategies are proposed in the DEGM. These strategies integrate the position and
height information of wind turbines so that the wind turbines are arranged in linear with a high probability to
reduce the LCOE, and thus to improve the wind farm layout.

The remainder of this article is organized as follows. The second section introduces WOMH, and the
specific details of the DEGM are described. The third part describes the experiment and data analysis.
The fourth part summarizes the paper.

2 System Model

WOMH takes LCOE as the optimization goal. It contains three submodules: Jensen wake, Weibull
distribution and output power. Jensen wake and Weibull distribution are used to describe the wake effect
between wind turbines and wind speed distribution respectively. The output power model is made use of
quantifying the output power.

2.1 The Jensen Wake Model

The Jensen wake model [16] is a one-dimensional wake model suitable for flat terrain. Fig. 1 depicts the
Jensen wake model. In the model, v0 is the natural incoming wind speed, vr is the wind speed when the wind
passes through the front turbine rotor, v is the incoming wind speed at the rear exhaust turbine affected by the
wake, x is the distance between the front and rear exhaust turbines, R1 is the initial radius of the wake area,
and Rw is the wake influence radius.

The wind speed v in the downstream wake region is computed by (1):

v ¼ v0 1� 2t

1þ k x
Rw

� �2

2
64

3
75; (1)

Figure 1: The Jensen wake model

IASC, 2021, vol.29, no.2 527



where k is the expansion rate of the wake area radius. k is related to the height, calculated by (2):

k ¼ 0:5

lnðHn0Þ
; (2)

where H is the height of the wind turbine, n0 is the roughness of the ground.

Rw is calculated by (3):

RW ¼ R1 þ kx (3)

t is the axial induction factor, as shown in (4)

t ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gT

p
2

; (4)

where gT is a fixed thrust coefficient [17,18].

2.2 Output Power Model

The wind turbine output power is related to the wind speed at the wind turbine wheel, Pi [19] is
calculated by (5):

Pi ¼ f vð Þ ¼
0; vo � v; v, vi

ev

aþbev ; vi � v, vr

Prate; vr � v � vo;

8>><
>>:

(5)

where Pi represents output power of the wind turbine i. a and b are the limiting parameters. vi, vo and vr
represent cut-in speed, cut-off speed and rated speed, respectively. When vi is faster than v, energy cannot
be extracted from the natural wind. When vo less than the wind speed v, the wind turbine will cut off and
protect itself. If v is between the rated speed vr and vo, the wind turbine will sustain the rated output
power Prate.

2.3 Weibull Distribution

To use the Jensen wake model, the wind farm is set up on a flat area. The wind turbines can always keep
the rotation plane perpendicular to the wind direction by turning their nacelles. The wind direction is c, and
the wind speed is v which follows Weibull distribution. The probability distribution function [11] is (6):

x v; ci cð Þ; ki cð Þð Þ¼ ki cð Þ
ci cð Þ

v

ciðcÞ
� �ki cð Þ�1

� e�ð v
ciðcÞÞ

kiðcÞ
; 0� � c, 360�; (6)

where ki cð Þ is the shape parameter and ci cð Þ is the scale parameter respectively.

2.4 Wind Farm Layout Model

2.4.1 Average Output Power of the Wind Turbines
The average output power E Pið Þ [11] of wind turbine i can be obtained as (7):

E Pið Þ ¼
Z 360�

0�
x cð Þ

Z 1

0
f vð Þ ki cð Þ

c;i cð Þ
v

c;iðcÞ
� �ki cð Þ�1

� e
�ð v

c;
i
ðcÞÞkiðcÞdvdc; (7)

where c;iðcÞ is the scale parameter modified by the wake effect.
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2.4.2 The Layout Model of the Wind Farm
In optimizing the layout of wind farms, it is hoped that the total power output can be maximized while

the cost can be minimized. Therefore, LCOE [20] is used as the evaluation function, as computed by (8):

LCOE ¼
PN
i¼1

ðCostH � Hi þ CostbÞ
PN
i¼1

EðPiÞ
; (8)

where Costb is the basic cost of a wind turbine and CostH is the additional cost per unit height of the wind
turbine, including the cost of cables and materials. The total number of wind turbines is N , and Hi represents
the height of the wind turbine i.

The LCOE is the target of optimization inWOMH. In three-dimensional coordinates, the position of each
wind turbine must ensure that the impeller does not cross the boundary and that the distance between two
random wind turbines must be not less than five times the radius of the turbine impeller, that is, 5R.
LCOE and its constraints are shown in (9):

minimize: LCOE ¼
PN
i¼1

ðCostH�HiþCostbÞ
PN
i¼1

EðPiÞ

subject to:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xi
� �2 þ yj � yi

� �2 þ zj � zi
� �2q

� 5R;
R � xi � �x� R;
R � yi � �y� R;
i ¼ 1; 2; . . . ;N ; j ¼ 1; 2; . . . ;N and j 6¼ i:

8>>>>>>>>>><
>>>>>>>>>>:

(9)

Suppose the coordinates of wind turbines i and j are ðxi; yi; ziÞ, and ðxj; yj; zjÞ, respectively, where �x and �y
are the upper bounds of the wind farm. InWOMH, x, y, z are all continuous variables. Where z represents the
height of the wind turbine, and its value range is [50,80].

2.5 DEGM Algorithm

In view of the variable hub height of wind turbine in WOMH, DEGM is proposed to solve this model.
Before the advent of DEGM, many algorithms updated the coordinates of wind turbines in a way that was
passive. Most of these algorithms use crossover, mutation or traversal when updating wind turbine
coordinates. None of these methods is very purposeful. But DEGM is a purposeful algorithm. The DEGM
not only integrates heuristic algorithms, such as DE and greedy algorithm, to balance the global search
and local search capabilities but also adds six adjustment strategies to further improve the LCOE. In
addition, a parameter adaptive mechanism [21,22] is introduced to give the DEGM a good robustness and
ensure the quality of the solution. DEGM flowchart is shown in Fig. 2.

2.5.1 Seven Strategies
Seven adjustment strategies are the core of theDEGM, which can adjust the positions of wind turbines to

optimize LCOE. The following are the details of the seven adjustment strategies:

Strategy 1: Update the positions of wind turbines based on DE and greedy algorithm.

Strategy 2: Randomly select n wind turbines in the wind farm and set Y to the value of the y
coordinates of one of the wind turbines. Then, the y coordinates of the n wind turbines are all set to Y .
Strategy 2 is shown in Fig. 3.
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Figure 2: DEGM flowchart

Figure 3: Strategy 2

530 IASC, 2021, vol.29, no.2



Strategy 3: Randomly select n wind turbines in the wind farm and set X to the value of the x coordinates
of one of the wind turbines. Then, the x coordinates of the n wind turbines are all set to X .

Strategy 4: n1 wind turbines are randomly selected from wind farms, and the average y coordinates of
these wind turbines are recorded as A. Then, select n2 wind turbines from the wind farm and set the y
coordinates of these wind turbines to A. Strategy 4 is shown in Fig. 4.

Strategy 5: n3 wind turbines are randomly selected from wind farms, and the average x coordinates of
these wind turbines are recorded as B. Then, select n4 wind turbines from the wind farm and set the x
coordinates of these wind turbines to B.

Strategy 6: Randomly select n wind turbines and set them to random values.

Strategy 7: Randomly select Strategy 1 to Strategy 6 as Strategy 7.

These seven adjustment strategies can guide the algorithm to seek breakthroughs in different goals. To a
certain extent, the algorithm not only has the global search ability, but also has a good local search ability.

2.5.2 Strategy Selection
In this paper, the roulette wheel algorithm is adopted to select the above seven strategies. The advantage

of using this mechanism is that each strategy has the opportunity to be selected in each iteration, which
increases the diversity of the position and the height of the wind turbine, so the algorithm has a good
global search ability.

When the fitness value of population which selects si is less than the previous one, the corresponding
selected probability � sið Þ will be updated. The probability of being selected is calculated by (10)-(11):

� sið Þ ¼ g sið Þ
PN
i¼1

g sið Þ
; (10)

� sið Þ ¼ 1� � sið Þ
PN
i¼1

1� � sið Þð Þ
; (11)

where si refers to population i, g sið Þ is the fitness value of strategy i, � sið Þis the weight of the fitness value,
and � sið Þ is the selected probability for this strategy.

Figure 4: Strategy 4
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3 Experimental Design and Results

3.1 Experimental Scheme Design

DEGM , DEEM and three-dimensional greedy algorithm are used to conduct experiments on fixed-hub
height and multiple hub height in WOMH to verify that multiple hub heights can further improve the
utilization of wind resources. In addition, the experiments also compare the performance of DEGM, DEEM
and three-dimensional greedy algorithm in the above two models. DEEM refers to differential evolution
with a new encoding mechanism. GREEDY is used instead of “three-dimensional greedy algorithm”.
GREEDY is a classical mathematical probability algorithm, and DEEM is the latest and effective algorithm.
So we chose these two algorithms to compare with DEGM. Finally, the probability of the emergence of
seven adjustment strategies and the impact of these probabilities on the algorithm are analyzed.

In order to ensure the rationality of the results, the experiments are conducted on different numbers of
wind turbines in a wind scenario [4,15,23], and the scale of the wind farm is changed for each number of
wind turbines. The specific parameters are shown in Tab. 1.

In order to simulate the real wind scenario, the following definition is adopted in this paper. The wind
direction is defined as 0° from west to east, 90° from south to north, 180° from east to west and 270° from
north to south. en is the weight of each wind direction. kiðcÞ is the shape parameter and ciðcÞ is the scale
parameter respectively. For details of en, please see [11]. The specific parameters of the wind scenario are
shown in Tab. 2.

3.2 Experimental Results and Analysis

Tab. 3 records the LCOE obtained by GREEDY, DEEM and the DEGM. -F means the algorithm is
applied to the wind farm with the fixed hub height, and -M means the algorithm is applied to a situation
with multiple hub heights. In the experiment, both DEEM and the DEGM will be run 30 times. GREEDY
is deterministic, so it only runs once.

In this kind of wind scenario, the distribution of the wind direction is very irregular. The probability
distribution of the wind speed in each wind direction is also different, which puts higher requirements on
the performance of the algorithm. In every case, the results of DEGM-M are smaller than those of
DEEM-M and GREEDY-M.

Table 1: Wind turbine parameters

Parameter Explanation Value Range

H the height of the wind turbine (m) [50,80]

R wind turbine radius (m) 40

gT coupling 0.88

n0 ground roughness 0.3

α power curve parameter 6.0268

β power curve parameter 0.0007

Prate rated power 1500

Costb basic cost of wind turbine 593.87

CostH high cost per unit tower 1.5
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In the case of N = 5, 10, 20, 30, and 50, DEGM-M reduces the LCOE by 7.91%, 7.91%, 5.13%, 3.67%,
and 4.45% compared with DEEM- M, respectively. Compared with GREEDY-M, DEGM-M was reduced
by 10.81%, 9.43%, 6.88%, 3.38%, and 3.64%, respectively. This shows that the DEGM has a strong
adaptability when facing complex wind scenes. In addition, no matter how the number of wind turbines
varies, the performance of different algorithms in WOMH is always better than that of fixed hub height
model. For example, when the number of wind turbines is 5, the LCOE of DEGM-M, DEEM-M and
GREEDY-M are 13.96%, 5.48% and 3.83% lower than those of DEGM-F, DEEM-F and GREEDY-F,
respectively. This shows that multiple hub heights are beneficial for reducing the influence of the wake effect.

Figs. 5 and 6 reflect the layout of wind turbines under different algorithms. Here we take the number of
wind turbines as 5 and 50 as examples. The trend of DEGM arranging from low to high along a certain wind
direction is obvious. The main reason the DEGM achieves an excellent performance in the complex wind
scenario is that its seven adjustment strategies. These seven adjustment strategies constantly update the
coordinates of wind turbines so that they are roughly arranged in lines. This layout further reduces the
wake effect.

Table 2: The specific parameters of the wind scenario

n c ki cð Þ ci cð Þ en n c ki(γ) ci cð Þ en

1 7.5° 2 7 0.0003 13 187.5° 2 10 0.1909

2 22.5° 2 5 0.0072 14 222.5° 2 8.5 0.1162

3 37.5° 2 5 0.0237 15 217.5° 2 8.5 0.0793

4 52.5° 2 5 0.0242 16 232.5° 2 6.5 0.0082

5 67.5° 2 5 0.0222 17 247.5° 2 4.6 0.0041

6 82.5° 2 4 0.0301 18 262.5° 2 2.6 0.0008

7 97.5° 2 5 0.0397 19 277.5° 2 8 0.001

8 112.5° 2 6 0.0268 20 292.5° 2 5 0.0005

9 127.5° 2 7 0.0626 21 307.5° 2 6.4 0.0013

10 142.5° 2 7 0.0801 22 322.5° 2 5.2 0.0031

11 157.5° 2 8 0.1025 23 337.5° 2 4.5 0.0085

12 172.5° 2 9.5 0.1445 24 352.5° 2 3.9 0.0222

Table 3: Comparison of the LCOE of the three algorithms when N is 5, 10, 20, 30 and 50, respectively

N Algorithm

GREEDY-F GREEDY-M DEEM-F DEEM-M DEGM-F DEGM-M

5 1.854 1.783 1.826 1.726 1.848 1.590

10 1.927 1.856 1.893 1.825 1.922 1.681

20 1.890 1.811 1.824 1.790 1.850 1.698

30 1.875 1.804 1.826 1.810 1.857 1.743

50 1.959 1.873 1.894 1.889 1.957 1.805
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Figure 5: The layout of wind turbines under three algorithms when the number of wind turbines is 5 (a) The
layout obtained by GREEDY-M (b) The layout obtained by DEEM-M (c) The layout obtained by DEGM-M

Fig. 7 records LCOE of three algorithms when FEs changes from 0 to 200000. From Fig. 7a, we can see
that GREEDY is the most unsatisfactory in terms of the convergence speed and solution quality. Fig. 7b
magnifies the results of DEEM and DEGM, and it shows that DEEM quickly converges to the a local
optimal solution. In addition, it can also be observed in Fig. 7b that the curve of DEGM decreases
significantly several times, which is not available in DEEM. Because the adjustment strategy of DEGM
plays an important role, so that it will not converge to the local optimal solution prematurely.

Fig. 8 records the relationship between strategy selected probability, selected strategy and FEs. From
Fig. 8a, we can see that the probabilities of all strategies fluctuate obviously when FEs is less than
20000. When FEs is greater than 20000 and less than 40000, the probability of Strategy 1 and Strategy 6
decreases gradually, while the probability of other strategies increases. When FEs is greater than 40000,
the probability of all strategies tends to be stable. In the end, the probability of Strategy 1 is the highest,
and the probability of Strategy 6 is the lowest. It fully reflects that various strategies can show different
performance in different periods of the algorithm, which reflects that the algorithm has a good adaptive
ability. It is observed from Fig. 8b that although the probability of selecting different strategies varies, all
kinds of strategies have the chance of being selected. Through Fig. 8a, we can find that the probability of
strategy 6 being selected in the later stage is low, but from Fig. 8b we can see that it is still possible to be
selected, which shows that the algorithm retains a certain diversity. To sum up, DEGM has good adaptive
ability and maintains the diversity.
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Figure 6: The layout of wind turbines under three algorithms when the number of wind turbines is 50 (a)
The layout obtained by GREEDY-M (b) The layout obtained by DEEM-M (c) The layout obtained by
DEGM-M

Figure 7: The LCOE convergence comparison among the three algorithms (a) The LCOE provided by
DEEM, DEGM, GREEDY (b) The LCOE provided by the DEEM and DEGM
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4 Conclusions

A novel model called WOMH is proposed in this paper. Different from the traditional fixed hub height
model,WOMH can effectively reduce the wake effect and achieve lower LCOE. In order to solve theWOMH,
DEGM was proposed. In DEGM, the seven adjustment strategies are designed to update the coordinates of
wind turbines and further reduce the Jensen wake effect between wind turbines. WOMH with DEGM
provides a reference solution for the field of wind farm layout optimization. The wind farm layout
optimization under the flexible multi-stage long-term planning optimization model of distributed multi-
energy system will be further researched, which will comprehensively consider multiple dynamic factors,
including energy demand, price.
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