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ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare and progressive disease, characterized by increased
vascular resistance leading to right ventricle (RV) failure. The extent of right ventricular dysfunction
crucially influences disease prognosis; however, currently no therapies have specific cardioprotective effects.
Besides discussing the pathophysiology of right ventricular adaptation in PAH, this review focuses on the
roles of growth factors (GFs) in disease pathomechanism. We also summarize the involvement of GFs in
the preservation of cardiomyocyte function, to evaluate their potential as cardioprotective biomarkers and
novel therapeutic targets in PAH.
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INTRODUCTION

Pulmonary hypertension (PH) is a progressive disease characterized by an increased mean
pulmonary arterial pressure (mPAP ≥25 mmHg) [1]. Classes of PH are defined and regularly
updated by the WHO based on hemodynamic and clinical characteristics (Table 1). According
to the hemodynamic definition pre-capillary and post-capillary PH can be distinguished by a
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normal and elevated pulmonary arterial wedge pressure (PAWP), respectively. The predominant
pathophysiological abnormality in pre-capillary PH is the remodeling of the arterial wall,
particularly in pulmonary arterial hypertension (PAH, WHO group 1). The increased prolif-
eration and inhibited apoptosis of lung vascular endothelial cells, pulmonary arterial smooth
muscle cells (PASMC) and fibroblasts result in remodeling of the muscular type of pulmonary
arteries, manifested as intimal hyperplasia, medial thickness, plexiform lesions and in situ
thrombosis [1]. In addition, other mechanisms as hypoxic vasoconstriction (WHO group 3) and
mechanical obstruction by thrombi (WHO group 4) also play a role in the increase in pul-
monary vascular resistance (PVR). In post-capillary PH the underlying disorder is a left heart
disease and the consequent pulmonary congestion causes a rise in PAWP (WHO group 2). In
combined pre-capillary and post-capillary PH in addition to the presence of increased left
ventricle (LV) pressure and PAWP, pulmonary arterial remodeling is pronounced and leads to
an increase in PVR. Irrespective of the etiology of PH right ventricle (RV) pressure overload
leads to right ventricular myocardial hypertrophy, dilatation and right ventricular failure at
advanced stages. The mechanism of RV adaptation involves complex processes, which are
influenced by different factors including the etiology of PAH, genetic predispositions, neuro-
humoral regulation, immune and inflammatory activation [2].

Growth factors (GFs) are diffusible signaling proteins that stimulate cell growth, cellular
differentiation and survival, tissue inflammation and tissue repair. Several studies described the
involvement of GFs in the development of PAH [3–6]. Moreover, accumulating evidence sug-
gests that they may also contribute to the preservation of right heart function, but also influence
the development of RV remodeling and disease progression (Fig. 1). Notably, some of these
mediators also have well-known effects during myocardial protection in cardiac disorders such
as ischemic heart disease, myocardial hypertrophy or left heart failure [3, 4]. GFs may, in
addition, support better myocardial adaptation in response to pressure overload of the RV and
may be related to better prognosis in PAH. In the current review, we aim to systematically
discuss the evidence on the involvement of the major GFs in the pathophysiology of PAH and
the consequent right heart failure and evaluate their potential as cardioprotective biomarkers.

Table 1. Classification of pulmonary hypertension

Hemodynamic
classification

Pulmonary hypertension mPAP >25 mmHg

Pre-capillary PH, PAWP <15
mmHg

Post-capillary PH, PAWP >15
mmHg

Clinical classification WHO Group 1. Pulmonary arterial
hypertension

WHO Group 2. PH due to left heart
disease

WHO Group 3. PH due to lung
disease and/or hypoxia
WHO Group 4. Chronic

thromboembolic PH or other
pulmonary artery obstructions

WHO Group 5. PH with unclear
and/or multifactorial mechanisms

mPAP: mean pulmonary arterial pressure; PH: pulmonary hypertension; PAWP: pulmonary arterial wedge
pressure.
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THE REGULATION OF GROWTH FACTORS (GFS) DURING THE
DEVELOPMENT OF PAH

GFs regulate various cellular functions such as survival, proliferation, migration and differen-
tiation and thus play significant roles in the repair mechanisms of organs under physiological
circumstances [3].

In PAH GFs affect the development of vascular remodeling, the proliferation of endothelial
cells, smooth muscle cells and fibroblasts, and the formation of the plexiform lesions [5, 6].
Several GFs are expressed locally in the pulmonary parenchyma and in the plexiform lesions.
The expression of platelet-derived growth factor (PDGF) and PDGF receptor was elevated in
explanted lungs of patients with severe PAH [6], and the appearance of vascular endothelial
growth factor (VEGF) and VEGF receptors is confirmed in the plexiform lesions and medial
smooth muscle cells of the proximal arteries during lung autopsies [7]. Nerve growth factor
(NGF) expression and its secretion were increased in the pulmonary arteries of patients with
pre-capillary PH complicating chronic obstructive pulmonary disease (group 3 in Table 1) and
in experimental PAH induced by monocrotaline administration or chronic hypoxia [8]. Other
studies proved elevated circulating levels of these factors in patients, and found high trans-
pulmonary gradients of these molecules suggesting their pulmonary production [9].

The mechanisms behind the abnormal expression of GFs in the lungs in PAH are only
partially known, and multiple pathways have been implicated. In 80% of familiar PAH (FPAH)
the mutations of the bone morphogenic protein receptor type 2 (BMPR2), a member of the
transforming growth factor-b (TGF-b) superfamily can be identified, and approximately 20% of
sporadic idiopathic PAH (IPAH) patients carry this mutation. Epigenetic factors play a role in
its penetrance [10]. BMPs can activate various receptors such as the BMP type I and type II and

Fig. 1. The roles of growth factors in the pathophysiology of PAH. Growth factors are produced in pul-
monary vascular cells and cardiomyocytes in response to various stimuli in PAH. These factors play a role
both in the development of pulmonary vascular remodeling and the modulation of right ventricular function.
FGF: fibroblast growth factor, IGF-I: Insulin-like growth factor-I; PAH: pulmonary arterial hypertension; RV:

right ventricle; TGF-b:transforming growth factor-b; VEGF: vascular endothelial growth factor
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also the activin type II receptor, however only BMPRII is specific for BMPs. In the vasculature
the signaling is mainly mediated by BMP2, 4, 6, 9, and 10, which can activate all three receptors
and play a prominent role in vasculogenesis and angiogenesis. The disturbed BMP signaling via
the intracellular specific intracellular signal transduction protein (SMAD) pathway contributes
to the development of abnormal vascular remodeling in PAH [11].

A further 5% of FPAH patients have rare mutations in other genes of the TGF-b superfamily
including activin-like receptor kinase-1 or endoglin. These genetic disorders result in abnormal
tissue repair and vascular remodeling caused by the abnormal growth response of pulmonary
artery smooth muscle cells and the reduced apoptosis of endothelial cells [12]. Interestingly, in
the animal model of Schistosoma infection, PAH is induced as a result of the pulmonary acti-
vation of TGF-b by bone marrow-derived thombospondin-1 [13].

Hypoxia is a powerful stimulus for pulmonary vasoconstriction and pulmonary vascular
remodeling. The expression of VEGF and FGF (fibroblast growth factor)-2 is increased in
endothelial cells by hypoxia-induced signaling molecules [14, 15]. Furthermore, the expression
of the growth differentiation factor 11, a member of the BMP/TGF-b superfamily, is induced in
pulmonary artery endothelial cells under hypoxia, which plays a crucial role in the development
of hypoxia-induced PAH in animal models [16].

Exogenic stimuli such as drugs and toxins have been shown to be involved in the devel-
opment of PAH. The tyrosine kinase inhibitor (TKI) dasatinib is successfully used in the
treatment of chronic myelogenous leukemia, but case reports found an increased prevalence of
PAH in treated patients, where PAH was (at least partly) reversible in most cases after the
cessation of therapy [17, 18]. It is presumed that the modulation of PDGF signaling by TKIs is
responsible for the development of PAH [19].

THE ADAPTATION OF THE RIGHT VENTRICLE (RV) IN PAH

The anatomy and function of the RV is partially distinct from the LV, which is also reflected in
its different adaptation mechanisms in response to pathophysiological processes. The RV pumps
the blood into the low vascular resistant pulmonary circulation, a process requiring less stroke
work compared to that of the LV, but the stroke volume is similar [20]. Exercise results in a
decrease in PVR to prevent a significant increase in pulmonary pressure. Consequently, under
physiological circumstances, the RV wall contains less muscular tissue and its compliance is also
greater than observed in the LV. Therefore, in contrast to the LV, the RV can undergo
significantly higher volume changes under pathological conditions [21].

In PAH, sustained pulmonary vasoconstriction and excessive pulmonary vascular remod-
eling cause elevated PVR which is resistant to physical exercise. Due to the gradually increasing
PVR, the RV produces higher systolic pressures to maintain blood flow. The constantly elevated
RV and pulmonary pressures result in right ventricular remodeling. In early disease stages,
concentric myocardial hypertrophy of the right ventricular wall is observed (adaptive remod-
eling), which is the result of upregulated intracellular protein synthesis and the increased size of
cardiomyocytes; therefore, ventricular contractility and the systolic function also improve. As a
consequence, hemodynamic parameters such as cardiac index and right atrial pressure remain
normal [22].
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As the disease progresses, the gradually increasing pressure overload induces eccentric
myocardial hypertrophy mainly in the free wall of the RV, which is associated with increased
collagen production but also with excessive degradation of normal extracellular matrix in the
myocardium (maladaptive remodeling). The maladaptive hypertrophy and the additional vol-
ume overload due to increasing functional tricuspid regurgitation lead to progressive dilatation
of the RV, deterioration of contractility and the systolic function [23]. This mechanism results in
progressive RV dysfunction and failure at advanced disease stages as summarized in Fig. 2.

The prognosis of PAH is strongly associated with the grade of structural abnormalities of the
RV [24]. More specifically, the increased right ventricular diameter is a biomarker of a poor
prognosis; however, the increased wall thickness is related to reduced risk of mortality in pa-
tients with dilated RV [25]. In line with this, increasing evidence suggests that the detailed
assessment of RV structure and function holds relevant prognostic information and can support
treatment decisions to improve clinical outcomes [26].

The molecular mechanisms of RV myocardial adaptation are not yet completely understood.
In PAH the pressure overload induces wall stretch, being the main trigger to initiate myocardial
adaptation, which improves RV systolic function during early stages. Subsequently, in further
phases of PAH ischemia and oxidative stress in the myocardium activate neurohumoral, in-
flammatory and immune processes, leading to extracellular matrix degradation and car-
diomyocyte dysfunction and/or apoptosis [2]. These processes induce chamber dilatation and
systolic dysfunction. The peculiarity of the right ventricular muscle is that when PVR is
normalized (e.g. after pulmonary endarterectomy or lung transplantation), size, wall thickness
and molecular differences normalize very rapidly through reversible remodeling [24].

As described above, GFs contribute to the development of vascular remodeling in PAH, but
some could also have a role in controlling myocardial adaptation to PAH. Myocardial ischemia,
the imbalance between myocardial oxygen supply and oxygen demand, is caused by several
mechanisms in PAH [27]. The disturbance of the alveolar gas exchange leads to chronic sys-
temic hypoxemia. On the one hand, the increased right ventricular wall tension associated with

Fig. 2. The effects of increased pulmonary vascular resistance on the right ventricle in PAH. A schematic
presentation of the vicious circle induced by increased pulmonary arterial vascular resistance on the
morphology and function of the right ventricle in PAH. Mechanisms potentially influenced by growth

factors are highlighted in italics. RV: right ventricle
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systemic hypotension impairs coronary perfusion. On the other hand, myocardial hypertrophy
and the increased wall tension require increased oxygen supply. Several GFs are released by the
myocardium during myocardial ischemia including the angiogenetic GFs such as VEGF, FGF
and others which have direct myocardial protective effect such as IGF and TGF-b [3, 4].

In the following sections, we discuss GFs which potentially exert cardioprotective effects,
contribute to right ventricular adaptation, as well as to hemodynamic changes in PAH. The
known intracellular pathways of these factors are shown in Table 2 and Fig. 3.

VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF)

Members of the VEGF family including VEGF-A (called generally VEGF), -B, -C, -D, -E and the
placental GFs play significant roles in angiogenesis [41]. VEGF-A is the most potent angiogenic
factor, and it is produced in high amounts in the adult lung. The tyrosine kinase VEGF receptors
are VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (FLT-4). VEGFR-1 and VEGFR-2
are expressed in vascular endothelial cells, and upon activation they induce signals for prolif-
eration, migration and remodeling.

VEGF was suggested to be involved in the formation of plexiform lesions, as this cytokine,
produced by the modified smooth muscle cells of the plexiform lesions and the medial smooth
muscle cells, can activate pulmonary endothelial cells expressing the VEGF receptor [42].
However, the overexpression of VEGF-A or VEGF-B in the lungs can partially restore endo-
thelium-dependent function and ameliorate PAH in an animal model of chronic hypoxia [43,
44]. In support, VEGFR-2 blockade in combination with chronic hypoxia resulted in the
development of severe PAH in an experimental model as the result of precapillary arterial
occlusion induced by proliferating endothelial cells [45].

VEGF can be generated in the myocardium in response to myocardial ischemia [46].
VEGFR-1 and VEGFR-2 are expressed on both pulmonary vascular endothelial cells and car-
diomyocytes, at least in rat models of PH [30], suggesting that VEGF stimulation can induce
acute or chronic cardiac effects either by directly acting on cardiomyocytes or by exerting
vascular effects. These receptors activate known cytoprotective pathways in myocytes such as the
MEK1/2-Erk1/2-p90rsk [3], which promotes cell survival by increasing the adhesive interactions
between cardiomyocytes and extracellular matrix components [47]. In an animal model of
hypoxia-induced PH the increased level of VEGF mRNA has been demonstrated in the
myocardium, suggesting that VEGF may be one of the factors in the development of hypoxia-
induced angiogenesis as shown by an increase in the number of capillaries per myocyte [30]. In
support, VEGF mRNA expression was increased in rat RVs with adaptive hypertrophy
compared to control animals, but it was unchanged in RV failure [37]. Moreover, the admin-
istration of VEGF to the recovery solution of the isolated rat heart can improve the functional
recovery of the myocardium after ischemia-reperfusion injury [48].

An increase in circulating VEGF concentration was measured in patients with IPAH
compared to controls [49, 50]. In patients there was a significant positive relationship between
plasma VEGF concentrations and the tricuspid annular plane systolic excursion, which is an
echocardiographic marker of right ventricular systolic function [50]. In other words, patients
with better right heart function had higher circulating VEGF values suggesting a possible role for
this mediator in protection against the development of right ventricular failure. In line with this,
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Table 2. The intracellular signaling pathways of growth factors with putative cardioprotective effects

Mediator
Receptor
subtypes Intracellular pathway Effects References

VEGF VEGFR1 MEK1/2 p90rsk activation of cardiac
myocytes and fibroblasts in
response to ischemic stresses

[28]
VEGFR2

VEGFR2 PI3K-Akt-eNOS endothelial cell survival [29, 30]
vascular neogenesis in the

myocardium
VEGFR2 ICPP-induced ERK

phosphorylation
improvement of ischemia-

reperfusion-induced
mitochondrial dysfunction

[31]

TGF-b TGF-b
RIIþRI

Smad 3 infarct healing and cardiac
remodeling

[7]

TGF-b
RIIþRI

p42/p44 MAPK relieving apoptosis of
myocytes and limiting infarct

size

[32]

TGF-b
RIIþRI

MAPK protecting against myocardial
ischemia-reperfusion injury
by attenuating inflammation
and cardiomyocyte apoptosis

[33]

FGF1,
FGF2

FGFR1 PI3K-Akt MEK1/2-Erk 1/2 direct cardioprotective effect [3]

FGF2 FGFR1 PI3K/Akt protecting cardiomyocytes
against oxidative stress

[34]

FGFR1 MAPK promoting cardiac
hypertrophy and fibrosis

[35]

FGF21 FGFR1c ERK1/2-p38 MAPK-
AMPK

preventing cardiomyocyte
apoptosis

[36]

IGF-I IGF-IR PI3K/Akt hypertrophy and
proliferation of
cardiomyocytes

[37, 38]

adaptive right ventricular
hypertrophy

PDGF-BB not
investigated

PI3K/Akt promoting contractility [39]
preventing apoptosis of

cardiomyocytes
PDGF-BB PDGFR-b ERK1/2, MEK, PLC, PKC promoting growth of

cardiomyocytes
[40]

Akt: protein kinase B; AMPK: AMP-activated protein kinase; eNOS: endothelial nitric oxide synthase; ERK:
extracellular signal regulated kinase; FGF: fibroblast growth factor, FGFR: FGF receptor; ICPP: increasing
capillary permeability protein; MEK or MAPK: mitogen-activated protein kinase, p90rsk – ribosomal s6
kinase; PI3K: phosphoinositide 3-kinase; PDGF: platelet-derived growth factor; PKC: protein kinase C;
PLC: phospholipase C; TGF-b: transforming growth factor beta; TGF-b R: TGF-b receptor; VEGF: vascular
endothelial growth factor; VEGFR: VEGF receptor.
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in an experimental model of LV hypertrophy the overexpression of VEGF using a viral vector
resulted in the preservation of cardiac function [51]. Interestingly, the plasma VEGF levels of
patients did not change after 3 months of PAH-targeted therapy [49], although treatment was
associated with a decrease in PVR and an improvement of cardiac index.

The association of circulating GFs level with clinical characteristics in patients with PAH are
listed in Table 3.

TRANSFORMING GROWTH FACTOR-b (TGF-b)

TGF-b is a pleiotropic and multifunctional polypeptide, which is a member of the TGF su-
perfamily together with other proteins including activins and BMP. TGF-b binds to the type II
TGF-b1 receptor, which activates the TGF-b1 receptor type I, and the signal is transmitted by
these transmembrane serine/threonine kinase receptors to activate the Smads and Smad-inde-
pendent pathways, the phosphoinositide 3-kinase (PI3K)/Akt and the MEK1/2-Erk1/2 kinase
cascades [3]. TGF-b regulates many physiological processes such as embryonic development,
cell growth and differentiation, immune processes and angiogenesis and it also stimulates the
production of extracellular matrix components, the synthesis of elastin, and it can control the
proliferation of smooth muscle cells as well [54].

An elegant human study showed that in normal human pulmonary arteries TGF-b receptor
expression is more pronounced in endothelial cells than in vascular smooth muscle cells [55].
Plexiform lesions in IPAH are associated with the loss of TGF-b signaling, suggesting a role for
this pathway in the abnormal growth of endothelial cells in patients. In contrast, a rare form of
PAH associated with schistosomiasis showed heightened TGF-b signaling in the pulmonary

Fig. 3. Intracellular pathways of growth factors involved in myocardial protection in PAH. Growth factors
use similar intracellular pathways in adaptation mechanisms of cardiomyocytes. These mechanisms sup-
port myocardial viability against ischemic and metabolic injury, might aid the development of adaptive
myocardial hypertension and could lead to the preservation of the right ventricle function in early stage of
PAH. VEGFR: vascular endothelial growth factor receptor; TGFb1R: transforming growth factor-b1 re-
ceptor; FGFR: fibroblast growth factor receptor; IGF-IR: Insulin-like growth factor-I receptor; PDGFR:
Platelet-derived growth factor receptor; Ras: intracellular signal transduction protein; MEK or MAPK:
mitogen-activated protein kinase; SMAD: specific intracellular signal transduction protein; ERK: extra-

cellular signal regulated kinase; PI3K: phosphoinositide 3-kinase; Akt: protein kinase B
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arteries both in patients and in infected mice [56]. Importantly, the blockade of TGF-b signaling
yielded protection against PAH in the animal model. Furthermore, the upregulation of pul-
monary TGF-b signaling was observed in the experimental model of monocrotaline-induced
PAH, and the blockage of TGF-b receptor type I resulted in attenuated morphological pre-
sentation of pulmonary vascular remodeling including decreased early vascular cell apoptosis,
adventitial cell proliferation and matrix metalloproteinase expression [57]. The increased
expression of the growth differentiation factor-15 (GDF-15), a distant member of the TGF-b
cytokine superfamily was observed in macrophages in the lungs of patients with PAH associated
with systemic sclerosis [58]. GDF-15 can exert anti-apoptotic effects on the cells of the pul-
monary vasculature and contribute to vascular remodeling.

The function of TGF-b during myocardial repair and remodeling after cardiac injury has been
studied in cardiac disorders. TGF-b pre-treatment reduced the myocardial infarct size in an animal
model by decreasing the level of oxidative stress markers in the coronary circulation and preserving
endothelium-dependent coronary relaxation [59]. Other studies attributed these direct car-
dioprotective effects of TGF-b to intracellular signal transduction pathways including the MEK1/2-
Erk1/2, a component of the RISK pathway [3]. Extensive animal studies on left heart failure showed
that TGF-b overexpression promotes myocardial hypertrophy, remodeling and fibrosis (reviewed
in detail [60]), suggesting an important role in myocardial adaptation, i.e. the development of
ventricular hypertrophy and diastolic dysfunction. Indeed, serum TGF-b levels correlated with left
ventricular structural abnormalities in long-term hypertensive patients [61]. An excessive TGF-b
production may be harmful to myocardial function by increasing myocardial fibrosis. In support, a
highly elevated plasma TGF-b concentration was found to be an independent predictor of all-cause
mortality in patients with IPAH and FPAH [53]. Nonetheless, a moderate induction of TGF-b
signaling may be necessary for cardiac adaptation during pressure overload, as this GF inhibits
uncontrolled matrix degradation that could result in cardiac dilation [60].

Table 3. Plasma growth factor concentration and its association with clinical factors in patients with PAH

Growth
factor

Patient
population Concentration Association with clinical factors Reference

VEGF IPAH 82/0–345/pg/mL TAPSE [50]
primary PH 41.4 (7.5–92) pg/

mL
when combined with FGF-2:

� mean PAP
� right atrial pressure

� WHO functional class

[52]

TGF-b IPAH 5.02 (3.34–8.29) ng/
mL

• WHO functional class [53]

hereditary PAH 4.36 (2.98–7.05) ng/
mL

• independent factor for all-cause
mortality

FGF2 primary PH 2.15 (0.5–9.3) pg/
mL

• WHO functional class [52]

Data are shown as median/range/or (interquartile range). FGF: fibroblast growth factor; IPAH: idiopathic
pulmonary arterial hypertension; PAH: pulmonary arterial hypertension; PAP: pulmonary arterial
pressure; PH: pulmonary hypertension; TAPSE: tricuspid annular plane systolic excursion; TGF:
transforming growth factor; VEGF: vascular endothelial growth factor, WHO: World Health Organization.
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FIBROBLAST GROWTH FACTOR (FGF)

Fibroblast growth factors are multifunctional polypeptides that affect cell growth and differenti-
ation. The FGF family has 23 members, and certain mediators exert intracrine stimulus, while
others have paracrine or endocrine effects. The paracrine and the endocrine members bind to
tyrosine kinase receptors (FGFR 1-4), which mainly activate the intracellular signal transduction
protein-mitogen-activated protein kinase (RAS-MAPK) or PI3K/Akt intracellular pathways to
induce mitogenic cell response and promote cell survival [27]. In addition, FGF-2 stimulation
inhibits endothelial cell apoptosis by inducing signaling via the pathways of B-cell lymphoma
(BCL)2 and BCL extra long [62]. Several members of the FGF family, including FGF-2, -16, -21
and -23 have been implied in the pathophysiological processes of cardiac diseases [35]. Among
them, the effects of FGF-2 have been studied most extensively in cardiovascular pathologies.

The upregulated expressions of FGF-2 and FGF receptor 1 (FGFR-1) were demonstrated in the
pulmonary arteries of animals with monocrotaline-induced PAH, and FGFR-1 blockage resulted in
attenuated vascular remodeling [63]. Additionally, endothelial cells isolated from distal pulmonary
arteries of patients with IPAH showed heightened FGF-2 production. Stimulation with FGF-2
resulted in increased proliferative response and survival of these cells, whereas dampened FGF-2
signaling normalized these cellular functions suggesting a role of FGF-2 in the development of an
abnormal phenotype of pulmonary arterial endothelial cells [62]. Benisty et al. found that both
urinary and plasma FGF-2 were significantly higher in patients with PAH than in control subjects.
Interestingly, there was a difference in FGF-2 concentrations according to etiologies of PH, with the
highest levels seen in patients with primary PAH compared to patients with congenital heart disease
or connective tissue disease. However, they did not find a relationship between either blood or
urinary FGF-2 levels and cardiac index, suggesting that an increase in mediator concentrations was
not the result of a low cardiac output state or systemic hypoperfusion [52].

FGF-2 is released from damaged myocardial cells and it is mainly stored in the extracellular
matrix. It modulates vascular endothelial and smooth muscle cell growth and migration, and the
synthesis of extracellular matrix proteins. Accordingly, FGF-2 can stimulate the development of
ventricular hypertrophy and fibrosis during cardiac remodeling by activating the MAPK signal
pathway [35]. It was demonstrated in an in vitro model that isolated adult myocytes upregulated
protein synthesis and increased in size in response to co-culture with FGF-2 [64]. In line with this,
FGF-2-deficient mice showed a failure in the development of cardiac hypertrophy when exposed to
pressure overload to the LV [65]. Furthermore, FGF-2 overexpression led to excessive hypertrophic
response to isoproterenol, which was associated with ischemic preconditioning and the increased
resistance of the myocardium to ischemia-reperfusion injury [66]. Hence, FGF-2, secreted by car-
diomyocytes in response to myocardial damage such as ischemia, can play a role in myocardial
protection and regeneration processes [67]. Accordingly, pre-treatment with FGF-2 reduced the size
of the infarcted area in the isolated rat heart [68]. Other authors demonstrated that FGF-2 given
during reperfusion protected against ischemia-reperfusion injury of the ex vivo heart [69].

INSULIN-LIKE GROWTH FACTOR-I (IGF-I)

IGF-I is a polypeptide produced in the liver as a result of growth hormone stimulation, but a
limited amount can also be synthetized in the target tissue including the heart. It is bound to
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IGF-binding factors in the circulation, and only a small fraction of IGF-I (approximately 1%)
can be found as a free molecule [70]. This factor exerts its biological actions by binding to the
IGF-I receptor (IGF-IR), a tyrosine kinase receptor, which is expressed in multiple tissues, and
upon activation it supports cell survival, stimulates cellular migration and proliferation, and
suppresses autophagy via multiple intracellular cascades including PI3K/Akt, ERK, Ras/Raf/
mitogen-activated protein kinase pathways [3]. IGF-I promotes the synthesis and inhibits the
breakdown of proteins in cardiomyocytes via the PI3K/Akt cascade, thereby contributing to
physiological cardiac hypertrophy [38, 71].

IGF-I was implicated in the development of pulmonary vascular remodeling. The prolifer-
ation of PASMC was attenuated in the absence of IGF-I or after the inhibition of IGF-IR. In
addition, the smooth muscle cell-specific deletion of IGF-I inhibited the development of hyp-
oxia-induced PH in neonatal but not adult mice [72].

Early studies showed that IGF-I treatment attenuates hypoxia-reoxygenation injury [73] and
also suppresses doxorubicin-induced apoptosis of cardiomyocytes in vitro [74]. Moreover, the
cardiac gene transfer of IGF-I resulted in reduced infarct size after ischemia-reperfusion injury in
vivo [75]. Of note, IGF-I transgenic mice presented with preserved left ventricular contractility in
aging animals, which was associated with the improved regenerative capacity of cardiac stem cells
[76]. In patients with chronic left heart failure, a single intravenous infusion of IGF-I resulted in
decreased afterload (i.e. decreased systemic vascular resistance), it induced positive inotropic ef-
fects and thereby improved cardiac index. However, it did not influence PAP and PVR [77].

In the animal model of monocrotaline-induced PAH and in patients with IPAH an increased
level of IGF-I was measured in the hypertrophied RV and in the explanted lungs [78,79]. The
pathophysiological significance of these findings is currently unclear. In young, but not in adult
mice suffering from PH induced by hypoxia or pressure overload, the genetic inactivation or the
pharmacological blockage of IGF-IR was associated with improved right heart function [79].
Nonetheless, an increase in IGF-I expression in right ventricular cardiomyocytes was associated
with the significant improvement of cellular cross-sectional area [80]. Importantly, adaptive right
ventricular hypertrophy (due to hypoxia or pressure overload) was associated with the increased
expression of IGF-I, which was, however, missing in a rat model of right heart failure [37].

PLATELET-DERIVED GROWTH FACTOR (PDGF)

Four polypeptide chains with a common structure have been described in the PDGF family, namely
PDGF-A, PDGF-B, PDGF-C and PDGF-D. They form dimers through disulfide bonds creating the
isoforms of PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC and PDGF-DD. The PDGF receptors
PDGFR-a and PDGFR-b are transmembrane tyrosine kinases with different affinities to these ligands.
PDGF-B, PDGF-C and PDGF-D can bind to both receptor subtypes, whereas PDGF-A is restricted to
PDGFR-a. These receptors induce cellular growth during embryogenesis, carcinogenesis and also in
vascular development, where they promote proliferation and survival of vascular mural cells [81].

The involvement of PDGF in vascular remodeling during the development of PAH has
extensively been studied (for more details see [82]). The expression of PDGFR is upregulated and
its phosphorylation is elevated in the remodeled pulmonary arterioles of patients with PAH. These
changes lead to the abnormal proliferation and migration of murine vascular smooth muscle cells,
which is dependent on PI3K and phospholipase C-g signaling [83]. The same authors found in a
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murine model that blocked or impaired PDGF signaling was protective against the development of
PH and right ventricular hypertrophy induced by chronic hypoxia. Others described the critical
involvement of sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) in the PDGF-
mediated proliferation of rat PASMC, and pre-silencing of SphK1 could reverse cell proliferation
[84]. It has been demonstrated that imatinib, a multi-tyrosine kinase inhibitor including PDGFR
could reverse PAH in animal models (monocrotaline-induced or hypoxic PH). Furthermore, in
the monocrotaline rat model imatinib therapy reversed hemodynamic changes and vascular
remodeling [19]. Therefore, blocking PDGF signaling seemed a potential drug target. Although
imatinib as an add-on therapy for 24 weeks might convey some clinical benefit (an increase in six-
minute walking distance) as shown by a clinical trial in patients with PAH [85], a 3-year open label
trial demonstrated a high burden of complications with a number of unexpected cases of subdural
hematoma discouraging the use of imatinib therapy in PAH [86].

There is also evidence that the PDGF pathway can also induce cardioprotective effects in
heart conditions. In a murine model of cardiac ischemia the pharmacological blockage of both
PDGFR-a and PDGFR-b led to defective angiogenesis and increased permeability of new vessels
in the infarcted area [87]. Rat cardiomyocytes under hypoxia upregulate PDGF-BB, which
promotes cell survival [88]. It was also shown in engineered heart tissue that PDGF-BB stim-
ulation conveys an anti-apoptotic effect and promotes contractility through PI3K-Akt signaling
[39]. Pre-treatment with PDGF-AB decreased infarct size after coronary occlusion in animal
models, which was related to the production of VEGF by cardiac endothelial cells [89]. In a rat
myocardial infarction model the sequential delivery of VEGF and PDGF resulted in improved
cardiac function, ventricular wall thickness and angiogenesis, as well as better cardiac muscle
survival in the infarcted zone [90]. The local administration of PDGF to the myocardium by
means of nanofibers in rats led to PDGFR-b phosphorylation and sustained improvement in
cardiac function after experimental myocardial infarction [91]. Interestingly, stem cells over-
expressing VEGF and PDGF migrate to the site of myocardial infarct to decrease its size,
improve angiogenesis, cardiac function and exercise capacity as shown in rats [92]. Data in PAH
are very limited; however, a decrease in serum PDGF-AA and PDGF-BB concentrations were
found in IPAH compared to control subjects [93]. Future studies should give more insight into
the potential beneficial effect of PDGF on cardiac function in PAH.

CLINICAL OUTLOOK

As circulating biomarkers, GFs might be reflecting cellular changes both in the pulmonary vasculature
and cardiomyocytes in the RV. Therefore, they can aid the diagnosis of PH in early stages of disease in
populations at high risk such as family members of patients with hereditary PAH, subjects with
scleroderma or HIV. As some GFs, particularly VEGF or FGF-2 have been positively associated with
right ventricular function, they might be early signals of deterioration in right heart function before overt
decline can be detected by cardiac imaging. Moreover, as biomarkers of cardiac function in a composite
model they might complement patient stratification to monitor and predict disease progression, which
is an important clinical goal during disease management. In this way clinicians can be guided to timely
escalate treatment for the long-term benefit of patients.

In spite of the limited evidence, GFs may also be drug targets as they potentially attenuate
pulmonary vascular remodeling and also have beneficial effects on cardiomyocyte function and
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the RV adaptation process. However, contradictory effects of GFs, such as of FGF-2 and PDGF
on vascular remodeling and cardiac function have been described. Hence, further clarification
on the involvement of GFs in the development and progression of PH is warranted with the
possibility that these pathways might be specific for certain subtypes of PH.

Pulmonary vasodilators including endothelin receptor antagonists, phosphodiesterase-5-
inhibitors and prostacyclins are available during the management of PAH. The interaction of
these drugs with GFs can be hypothesized as they might modulate the same intracellular
signaling pathways or interfere in other ways, like in the case of TGF-b, which is involved in the
regulation of endothelin expression in the pulmonary vasculature [94]. Treprostinil, a prosta-
cyclin analog was shown to interfere with PDGF signaling, as it improved PDGF-induced
remodeling parameters in PASMCs isolated from patients with PAH. Treprostinil treatment
reduced TGF-b and connective tissue GF secretion from these cells via the increased levels of
cyclic adenosine monophosphate [95]. Currently available drugs do not directly target car-
diomyocyte function; however, as GFs might exert such effects, a combination therapy may have
a dual influence and provide better survival than pulmonary vasodilators alone.

CONCLUSIONS

The mechanisms behind the development and progression of PAH are incompletely understood,
with even less knowledge on pathways regulating right ventricular dysfunction. Although the
preservation of right heart function is associated with better clinical prognosis, currently no
therapies specifically target and improve right ventricular function. Experimental and human
studies equivocally described the involvement of GFs such as VEGF, TGF-b, FGF-2, IGF-I and
PDGF in the development of PAH, but other studies (both in other cardiac disorders and in
PAH) suggested that these mediators can exert beneficial effects on cardiac function. Among
their multiple effects, these mediators support hypoxia-induced angiogenesis, restrict hypox-
emia-related cardiac injury, promote adaptive hypertrophy and inhibit apoptosis of car-
diomyocytes. These observations can pave the way to explore novel therapeutic targets to
preserve or predict the progression of right heart function in patients with PAH.
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